WO2020082958A1 - 轴承润滑系统和微型燃气轮机发电机组 - Google Patents
轴承润滑系统和微型燃气轮机发电机组 Download PDFInfo
- Publication number
- WO2020082958A1 WO2020082958A1 PCT/CN2019/107387 CN2019107387W WO2020082958A1 WO 2020082958 A1 WO2020082958 A1 WO 2020082958A1 CN 2019107387 W CN2019107387 W CN 2019107387W WO 2020082958 A1 WO2020082958 A1 WO 2020082958A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bearing
- oil
- rotating shaft
- branch
- injection ring
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
- F02C7/06—Arrangements of bearings; Lubricating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/08—Cooling; Heating; Heat-insulation
- F01D25/12—Cooling
- F01D25/125—Cooling of bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
- F02C7/12—Cooling of plants
- F02C7/16—Cooling of plants characterised by cooling medium
Definitions
- the invention relates to the technical field of lubrication systems, in particular to a bearing lubrication system and a micro gas turbine generator set provided with the system.
- the rotating shaft When the micro gas turbine is working, the rotating shaft maintains high-speed rotation during the working process.
- the rotating shaft In order to reduce friction, the rotating shaft is generally connected to other components through bearings, and lubricating oil is applied to the bearings and the rotating shaft. In doing so, it can not only play the role of lubrication and reduce friction, but also reduce the temperature of bearings and rotating shafts.
- the present invention provides a bearing lubrication system and a micro gas turbine generator set including the bearing lubrication system, so that the bearing can effectively provide lubricating oil for the bearing in the case of slight displacement, so as to keep the bearing Operating status.
- the first aspect of the present invention provides a bearing lubrication system, including:
- the first oil passage, the second oil passage, the first bearing, the second bearing, the bearing sleeve, the oil injection ring and the abutment device arranged coaxially with the second rotating shaft;
- the first bearing and the second bearing are arranged on the second rotating shaft at a predetermined interval, wherein the rotors of the first bearing and the second bearing are fixedly connected to the second rotating shaft ,
- the stator is in contact with the inner surface of the bearing sleeve;
- the bearing sleeve is provided with a positioning stop, a side of the first bearing stator abuts a side of the positioning stop, and a side of the rotor abuts a positioning element fixed on the second rotating shaft;
- the oil injection ring is located between the bearing sleeve and the second rotating shaft, and the outer surface of the oil injection ring is in contact with the inner surface of the bearing sleeve, One side of the oil injection ring is in contact with one side of the stator of the second bearing;
- the abutment device abuts the other side of the positioning stop and the other side of the fuel injection ring;
- the first oil passage penetrates the bearing sleeve, and its outlet faces the first bearing;
- the second oil passage penetrates the bearing sleeve and the oil injection ring, and the outlet thereof faces the second bearing.
- a first oil accumulation groove is formed on the outer surface of the bearing sleeve, and the first oil accumulation groove communicates with a lubricating oil supply pipe, the first oil passage, and the second oil passage, respectively.
- the second oil passage includes a first branch and a second branch connected in sequence
- the first branch is provided in the bearing sleeve
- the second branch is provided in the fuel injection ring
- the width of the outlet of the first branch along the axis of the second rotation axis is smaller than the width of the inlet of the second branch along the axis of the second rotation axis.
- the second branch circuit includes a second oil accumulation groove and an oil hole that are sequentially connected;
- the second oil accumulation groove is provided along the circumferential direction of the oil injection ring and communicates with the first branch;
- the width of the second oil accumulation groove is greater than the width of the outlet of the first branch along the axial direction of the second rotating shaft;
- the outlet of the oil hole faces the second bearing.
- the abutment device is an elastic device.
- the contacting device is a spring.
- the distance ring is located between the second rotating shaft and the abutment device and fixedly connected to the second rotating shaft;
- the two end surfaces of the distance ring are respectively connected to the rotor of the first bearing and the second bearing Abut.
- the oil return system includes a first oil return branch, a second oil return branch, a third oil return branch, and an oil return path.
- the first oil return branch, the second One end of the oil return branch and the third oil return branch communicate with one end of the oil return path, the other end of the first oil return branch communicates with the outer surface of the first bearing, and the second oil return branch
- the other end of the path passes through the bearing sleeve to communicate with the inner cavity of the bearing sleeve, the third oil return branch communicates with the outer surface of the second bearing, and the other end of the oil return path communicates with the recovered oil
- the barrel is connected.
- Another aspect of the present invention provides a miniature gas turbine generator set, including a generator, a compressor, a bearing lubrication system and a turbine as described in any preceding paragraph, which are sequentially arranged on a rotating shaft.
- the present invention provides a bearing lubrication system and a micro gas turbine generator set including the bearing lubrication system.
- the beneficial effects are:
- the preload force of the elastic abutment device exerts an axial force on the injection ring , So that the injection ring always keeps close to the second bearing, and the outlet of the oil path always faces the second bearing, and provides lubricating oil to the bearing to improve the utilization rate and lubricating effect of lubricating oil.
- the elastic abutment device is diagonal The contact ball bearing exerts a pretension force, which eliminates the axial clearance of the bearing, reduces noise and vibration during the operation of the bearing, and improves the bearing rigidity and bearing rotation accuracy.
- the oil return path is set to realize the recovery of lubricating oil, to avoid the leakage of lubricating oil and affect the performance of the whole machine.
- FIG. 1 is a schematic structural view of the bearing lubrication system in the present invention
- FIG 2 is an overall front view of the micro gas turbine generator set in the invention
- Figure 3 is a cross-sectional view taken along line A-A in Figure 2;
- FIG. 4 is an overall plan view of the micro gas turbine generator set in the invention.
- FIG. 5 is a cross-sectional view taken along C-C in FIG. 4;
- FIG. 6 is a perspective view of the coupling in the present invention.
- FIG. 7 is a perspective view of a coupling of a preferred embodiment
- FIG. 8 is an enlarged view of part D in FIG. 5;
- FIG. 9 is a schematic structural view of a regenerator
- FIG. 10 is a schematic structural view of the housing of the regenerator
- Figure 11 is a schematic diagram of the structure of the heat exchange plate
- FIG. 12 is a schematic structural view of the first heat exchange element in the heat exchange plate
- FIG. 13 is a schematic structural view of the second heat exchange element in the heat exchange plate
- first medium deflector I 1211, first medium deflector I, 1212, heat exchange fins, 1213, first medium deflector II;
- the terms “installation”, “connected”, “connected”, and “abutment” should be understood in a broad sense, for example, it can be a fixed connection, It can also be a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected, or it can be indirectly connected through an intermediate medium, or it can be an internal connection between two components.
- installation should be understood in a broad sense, for example, it can be a fixed connection, It can also be a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected, or it can be indirectly connected through an intermediate medium, or it can be an internal connection between two components.
- the specific meaning of the above terms in the present invention can be understood in specific situations.
- FIG. 1 is a schematic structural view of a bearing lubrication system in the present invention; also an enlarged view of part B in FIG. 3.
- this embodiment provides a bearing lubrication system
- the bearing is preferably an angular contact ball bearing
- the lubrication system includes a second rotating shaft 7, a first bearing 20 and a second bearing 21; the first bearing 20 and the second Both bearings 21 have a stator and a rotor.
- the first bearing 20 and the second bearing 21 are provided on the second rotating shaft 7 at a predetermined interval, and the rotors of the first bearing 20 and the second bearing 21 It is fixedly connected to the second rotating shaft 7; the bearing sleeve 14 is sleeved on the first bearing 20 and the second bearing 21, and its inner surface is in contact with the stators of the first bearing 20 and the second bearing 21.
- the bearing sleeve 14 is provided with a positioning stop 142.
- the positioning stop 142 is provided near one end of the bearing sleeve 14.
- the positioning stop 142 is a protrusion extending inward from the inner surface of the bearing sleeve 14.
- a side surface of the stator of the first bearing 20 abuts a side surface of the positioning stop 142, and a side surface of the rotor of the first bearing 20 abuts the positioning element 143 fixed on the second rotating shaft 7.
- the oil injection ring 15 is located between the bearing sleeve 14 and the second rotating shaft 7.
- the outer surface of the oil injection ring 15 is in contact with the inner surface of the bearing 14.
- One side of the stator of the second bearing 21 abuts;
- the abutment device 16 abuts the other side of the positioning stop 142 and the other side of the injection ring 5, that is, both ends of the abutment device 16 respectively contact the other side of the positioning stop 142 One side is in contact with the other side of the injection ring 15.
- the first oil passage 17 is provided through the bearing sleeve 14 and its outlet faces the first bearing 20; the second oil passage 18 is provided through the bearing sleeve 14 and the oil injection ring 15 and its outlet faces the second bearing 21.
- the second oil passage 18 is composed of a first branch 181 and a second branch communicating with each other.
- the first branch 181 is provided in the bearing sleeve 14, and the second branch 181 is provided in the fuel injection ring 15. More specifically, a first branch 181 is provided in the bearing sleeve 14 and on the side close to the second bearing 21.
- the inlet of the first branch 181 communicates with the first oil accumulation groove 141, which is provided on the outer surface of the bearing sleeve 14.
- the first oil accumulation groove 141 is provided to store lubricating oil to provide sufficient lubrication for the bearing lubrication oil.
- the first branch 181 is a vertically arranged through hole. In a preferred embodiment, the first branch 181 is a vertically arranged cylindrical hole.
- the oil injection ring 15 has a cylindrical cylindrical structure; the second branch includes a second oil accumulation groove 182 and an oil hole 183 that communicate in sequence.
- the outer wall of the fuel injection ring 15 is recessed inwardly to form a second oil accumulation groove 182.
- the second oil accumulation groove 182 has an annular structure and is provided along the outer periphery of the oil injection ring 15.
- the oil hole 183 penetrates the oil injection ring 15 and communicates with the second oil accumulation groove 182. Due to the high operating temperature of the second bearing, a large amount of lubricating oil and cooling are required.
- the ring-shaped second oil reservoir can store lubricating oil in advance, thereby continuously providing lubricating oil to the bearing and improving the effect of lubricating and cooling.
- the width of the second oil accumulation groove 182 in the axial direction of the fuel injection ring 15 is larger than the diameter of the first branch 181 which is a cylindrical hole vertically provided on the bearing sleeve 14.
- the outlet width of the first branch is smaller than the inlet width of the second branch; When a small distance of displacement occurs, the first branch and the second branch are always in communication, and then continue to provide lubricating oil to the bearing to achieve lubrication and cooling.
- the contact device 16 is an elastic device, preferably a spring.
- a first oil accumulation groove 141 is formed on the outer surface of the bearing sleeve 14, and the first oil accumulation groove 141 communicates with the inlets of the lubricating oil supply pipe 144, the first oil passage 17, and the second oil passage 18, respectively.
- the distance ring 19 is also included; the distance ring 19 is along the second axis of rotation 7 is set in the radial direction, the distance ring 19 is located between the second rotating shaft 7 and the abutment device 16 and fixedly connected to the second rotating shaft 7; and the distance ring 19 is located between the first bearing 20 and the second bearing 21 Both end surfaces of the distance ring 19 are in contact with the rotors of the first bearing 20 and the second bearing 21, respectively.
- the oil return system includes a first oil return branch 231, a second oil return branch 232, a third oil return branch 233 and an oil return path 23, a first oil return branch 231, and a second oil return branch 232 and one end of the third oil return branch 233 communicate with one end of the oil return path 23, the other end of the first oil return branch 231 communicates with the outer surface of the first bearing 20, and the other end of the second oil return branch 232
- One end passes through the bearing sleeve 14 to communicate with the inner cavity of the bearing sleeve 14, the third oil return branch 233 communicates with the outer surface of the second bearing 21, and the other end of the oil return path 23 communicates with the recovery oil drum, by providing an oil return system
- it will be burned by high-temperature gas, and carbon deposits will be generated, which will cause the performance of the whole machine to decrease and the exhaust pollution to increase.
- the specific working process of the bearing lubrication system is as follows: the lubricating oil supply pipe 144 supplies lubricating oil into the first oil reservoir 141; since the inlets of the first oil passage 17 and the second oil passage 18 both communicate with the first oil reservoir 141 Therefore, the lubricating oil can be continuously sent to the first oil passage 17 and the second oil passage 18; furthermore, the lubricating oil can be continuously supplied to the first bearing 20 and the second bearing 21 to reduce the first bearing 20 and the second bearing 21 Friction and temperature.
- the lubricating oil discharged from the first bearing 20 and the second bearing 21 flows through the first oil return branch 231, the second oil return branch 232, the third oil return branch 233, and the oil return path 23 to the recovery tank.
- the preload force of the elastic abutment device exerts an axial force on the fuel injection ring to make the fuel injection
- the ring always keeps close to the bearing, and the outlet that reaches the oil path always faces the bearing, and provides lubricating oil to the bearing to improve the utilization rate and lubricating effect of the lubricating oil.
- the elastic abutment device applies a preload to the angular contact ball bearing, eliminating the axial clearance of the bearing, reducing noise and vibration during bearing operation, and improving bearing rigidity and bearing rotation accuracy.
- the oil return path is set to realize the recovery of lubricating oil, to avoid the leakage of lubricating oil and affect the performance of the whole machine.
- this embodiment provides a micro gas turbine generator set, including a coaxially connected and sequentially arranged generator 1, compressor 2, bearing lubrication system and turbine 3 of the above embodiment, combustion chamber 4 is provided at the end of the turbine 3 away from the compressor 2; the generator 1, the compressor 2, the turbine 3 and the combustion chamber 4 are all provided in the casing 10.
- the generator 1 and the compressor 2 are connected via a first rotating shaft 6, a second rotating shaft 7 and a coupling 8; two ends of the coupling 8 are connected to the first rotating shaft 6 and the second rotating shaft 7 respectively to realize the first rotating shaft 6 and
- the second rotating shaft 7 rotates synchronously to realize the synchronous rotation and energy transmission of the first rotating shaft 6 and the second rotating shaft 7.
- the coupling 8 includes a shaft main body 81 and an engaging rib 82.
- the engaging rib 82 is provided on the side surface of the shaft main body 81.
- the shaft main body 81 is made of metal and is a cylinder; the two round faces of the cylinder are called the bottom face, and the surrounding faces are called the side faces;
- grooves matching the coupling 8 are formed on the end surfaces of the two shafts to be connected, and the ends of the shaft main body 81 are inserted into the grooves provided on the two shafts to complete the installation. Processing, production and installation are relatively simple, saving time and cost.
- the engaging rib 82 is a protrusion formed to extend outward in the radial direction of the shaft body 81.
- the protrusion formed on the side surface of the cylinder extending outward in the radial direction of the cylinder is a clamping ridge 82.
- the shaft body 81 and the clamping rib 82 have an integrated structure, and can be finished by die casting.
- the protrusion is a bar-shaped structure, and its extending direction is parallel to the axis of the shaft body 81; it can also be understood that the length direction of the bar-shaped structure is parallel to the axis of the shaft body 81.
- the length of the protrusion matches the length of the shaft body 81, that is, the length of the protrusion is equal to the length of the shaft body 81, so as to increase the connection strength between the protrusion and the shaft body 81, thereby achieving The protrusion breaks during the rotation of energy.
- the cross section of the protrusion or it is understood that the projection of the protrusion on a plane perpendicular to the axis of the shaft body 81 may be a polygon; specifically, a rectangle, a triangle, or the like.
- the surface of the protrusion away from the shaft body 81 is a curved surface; preferably, the projection of the protrusion on the surface perpendicular to the axis of the shaft body 81 is semicircular.
- the convex side is set as a curved surface to reduce wear during installation and rotation, and extend the service life of the coupling 8.
- the plurality of protrusions are evenly distributed on the side of the shaft body 81; the uniform distribution here is understood to be distributed at equal intervals.
- the evenly distributed clamping ribs 82 can evenly decompose the shearing force generated by the rotation to each clamping rib 82 when transmitting the rotational energy, to avoid the snapping rib 82 from breaking, thereby extending the coupling 8 service life.
- the four protrusions are arranged on the side surface of the shaft body 81 in a cross shape.
- a rounded corner 83 is formed at the junction of the end surface of the shaft body 81 and its side surface, that is, a rounded corner 83 is formed at the junction between the end surface of the shaft main body 81 and its side surface; the connection between the raised end surface and the raised side surface is provided
- a rounded corner 83 that is, a rounded corner 83 is provided at the junction of the convex end face and the side face.
- the side surface of the protrusion refers to the side of the protrusion away from the shaft body 81.
- the protrusion and the rounded corner 83 provided on the shaft main body 81 can play a certain guiding role, which is convenient for inserting the protrusion into the shaft to be connected.
- the diameter of the middle section of the shaft body 81 is set to be smaller than the diameter of the front and rear sections of the shaft body.
- the diameter of the middle section of the shaft body is 40% -60%, preferably 50% of the diameter of the front and rear sections of the shaft body.
- This example discloses a transmission mechanism including a coupling as in the above-mentioned embodiment.
- the first rotating shaft 6 and the second rotating shaft 7 are included.
- One end of the first rotating shaft 6 and one end of the second rotating shaft 7 are provided with blind holes matching the coupling 8; the two ends of the coupling 8 are respectively inserted In two blind holes.
- a blind hole matching the above-mentioned coupling 8 is opened for each end surface of the first rotating shaft 6 close to the second rotating shaft 7 and the end surface of the second rotating shaft 7 close to the first rotating shaft 6, only the coupling
- the two ends of the shaft device 8 are inserted into the blind holes opened on the first rotating shaft 6 and the second rotating shaft 7, respectively, to realize the connection of the first rotating shaft 6 and the second rotating shaft 7, so that the first rotating shaft 6 and the second rotating shaft 7 rotate synchronously .
- the combustion chamber 4 and the turbine 3 not only have a high operating temperature, but also withstand the thermal shock caused by the dramatic temperature changes during the start-up and shutdown of the gas turbine, and the working conditions are poor. And since one end of the nozzle 9 is connected to the fuel supply device, and one end is inserted into the combustion chamber 4; therefore, the nozzle 9 and the casing 10 need to be sealed.
- FIG. 8 is a schematic structural view of the nozzle sealing structure in the invention.
- FIG. 5 is an enlarged view of part D.
- this embodiment provides a nozzle sealing structure, including a nozzle 9, a casing 10 and a sealing ring 11.
- the nozzle 9 includes a nozzle body 91 and a nozzle flange 92 that are fixedly connected or integrally formed.
- the casing 10 is provided with a nozzle mounting flange 101 and a nozzle mounting hole that are fitted with the nozzle flange 92.
- the lower part of the nozzle body 91 passes through the nozzle mounting hole of the casing 10 and is placed in the casing 10; the fastener 13 passes through the fastening holes of the nozzle flange 92 and the nozzle mounting flange 101 to connect the nozzle flange 92 and the nozzle mounting flange 101.
- the nozzle body 91, the nozzle flange 92 and the nozzle mounting flange 101 form an annular sealing cavity, and the sealing ring 11 is placed in the annular sealing cavity.
- the gap is reserved for deformation caused by vibration and temperature difference, which can avoid the deterioration of the service life due to the deformation of the nozzle, casing and other related components.
- the outer diameter of the fastener 13 is smaller than the fastening holes on the nozzle flange 92 and the nozzle mounting flange 101, so that between the fastener 13 and the fastening holes on the nozzle flange 92 and the nozzle mounting flange 101 Form a gap. Due to the vibration of the micro gas turbine generator set and the temperature difference between the combustion chamber and the outside, a small amount of relative displacement occurs between the combustion chamber and the casing; the fastening hole is set to form a gap between the fasteners, so as not to hinder The role of the relative displacement between the combustion chamber and the casing.
- the height of the seal cavity is smaller than the height of the seal ring 11; and / or the width of the seal cavity is smaller than the width of the seal ring 11.
- the gap between the nozzle flange 92 and the nozzle mounting flange 101 is 0.1-0.2 mm; specifically, it may be 0.1 mm, 0.15 mm or 0.2 mm.
- / or the gap between the nozzle body 91 and the nozzle mounting hole is 0.1-0.2 mm on one side; specifically, it may be 0.1 mm, 0.15 mm or 0.2 mm.
- the sealing ring 11 may be an elastic sealing ring or a graphite sealing ring.
- the sealing ring 11 is a lip-shaped sealing ring, and the lip 102 of the lip-shaped sealing ring faces the cabinet 10.
- the sealing ring is recessed toward the inside to form a groove to form a lip-shaped structure, and the lip faces the combustion chamber, so that under the action of internal pressure, the lip is close to the sealing surface, the higher the pressure, the more the lip and the sealing surface fit Tight, after the sealing lip is worn, it has a certain automatic compensation ability.
- annular seal cavity and the seal ring 11 are trapezoidal in cross section.
- This embodiment provides a micro gas turbine generator set, including a combustion chamber 4, a nozzle sealing flange 12 and the nozzle sealing structure as in the above embodiment; the flange surface of the nozzle sealing flange 12 is attached to the inner wall of the casing 10, The flange neck is fixedly connected to the outer wall 41 of the combustion chamber; the fastener 13 passes through the fastening holes of the nozzle flange 92, the nozzle mounting flange 101 and the nozzle sealing flange 12 to connect the nozzle flange 92, the nozzle mounting flange 101 and the nozzle The sealing flange 12; the nozzle body 91 is fixedly connected to the combustion chamber inner wall 42; the inner and outer wall passages 43 formed by the combustion chamber outer wall 41 and the combustion chamber inner wall 42 communicate with the air inlet hole 93 on the nozzle body 91, and the nozzle body 91 passes through the machine in sequence
- the working process of the nozzle is: air is compressed into a high-pressure gas by the compressor and then flows out from the compressor outlet, enters the nozzle body 91 through the inner and outer wall passages 43 of the combustion chamber 4 and the air inlet 93 on the nozzle body 91, so that the spray from the nozzle
- the outgoing fuel quickly atomizes and enters the combustion chamber for full combustion, increasing the fuel's combustion rate.
- the inner diameter of the flange neck of the nozzle sealing flange 12 is larger than the outer diameter of the nozzle body 91, and there is a gap between the nozzle body 91 and the flange of the nozzle sealing flange 12.
- the gap between the nozzle body 91 and the flange of the nozzle sealing flange 12 is 0.1-0.2 mm on one side, preferably 0.15 mm.
- the above nozzle sealing structure can improve the sealing of the nozzle, the casing and the combustion chamber while avoiding a small amount of relative displacement between the combustion chamber and the casing due to the vibration of the micro gas turbine generator set and the temperature difference between the inside and outside of the combustion chamber performance.
- the high-temperature and high-pressure gas discharged from the turbine 3 is generally discharged as tail gas.
- high-temperature exhaust gas is further utilized in the present invention.
- this embodiment provides a regenerator.
- high-temperature gas discharged from the turbine outlet is used to heat the high-pressure gas at the compressor outlet to increase the temperature of the high-pressure gas and improve the combustion efficiency.
- it reduces the temperature of the turbine exhaust, reduces the pollution of the high-temperature exhaust gas to the air, and realizes the energy recovery of the high-temperature exhaust gas of the gas.
- the hot plate 120 is fixedly disposed in the housing 110.
- the housing includes an upper bottom surface, a lower bottom surface, and an opposite side surface, and a first opening 111 and a second opening 112 are respectively provided on the other opposite side surface, so that the first opening 111 and The second opening 112 forms a through channel of the housing; the first bottom opening 113 and the second bottom opening 114 are provided in parallel on the lower bottom surface, and the first bottom opening 113 and the second bottom opening 114 are respectively provided near both ends of the lower bottom surface.
- the shell is set as a flat-shaped shell, and the flat-shaped shell and the connection parts are arranged so that the regenerator of the present application can be used as a heat exchange unit, which According to different heat exchange requirements, the two interconnected connecting parts can be assembled with multiple heat exchange units, which realizes the modular design of the regenerator and avoids the need of redesigning the regenerator for the different heat exchange requirements of the existing technology.
- the flat structure of the casing makes the micro gas turbine as a whole flat structure, easy to place smoothly, solve the problem of the existing micro gas turbine cylinder shape, not easy to place, more suitable for transportation such as automobiles
- the tool and the flat structure of the heat exchange unit are easy to process and have a high yield, which solves the mass production problem of the regenerator and indirectly reduces the manufacturing cost.
- each heat exchange plate 120 includes a first heat exchange element 121, a second medium guide plate 123 (as shown in FIG. 13), and a second heat exchange element 122 that are fixedly connected in sequence.
- the first heat exchange element 121 and the second heat exchange element 122 have the same structure; and the first heat exchange element 121 and the second heat exchange element 122 each include a first medium guide plate I 1211 that is fixedly connected in sequence
- the heat exchange fins 1212 and the first medium deflector II 1213 are shown in FIG. 12.
- FIG. 14 it is a schematic cross-sectional structure of the heat exchange fins 1212 in two adjacent heat exchange plates 120
- FIG. 15 is an enlarged view of the part E in FIG. 14.
- the heat exchange fins 1212 of the first heat exchange element 121 and the heat exchange fins 1212 of the second heat exchange element 122 of the adjacent heat exchange plate 120 form a first medium channel 124; as a preferred implementation
- the heat exchange fins 1212 are formed into a corrugated shape.
- the peaks of the heat exchange fins 1212 of the first heat exchange element 121 and the second heat exchange element 122 of two adjacent heat exchange plates 120 are opposite to each other.
- the wave trough is opposed, and the channel opposite the wave trough is formed as the first medium channel 124.
- the heat exchange fins 1212 of the first heat exchange element 121 and the heat exchange fins 1212 of the second heat exchange element 122 of each heat exchange plate 120 form a second medium channel 125; as a preferred embodiment, the heat exchange fins
- the fins 1212 are formed in a corrugated shape.
- the peaks of the heat exchange fins 1212 of the first heat exchange element 121 and the second heat exchange element 122 of each heat exchange plate 120 are opposite to the wave peak, the wave valley is opposite to the wave valley, and the wave valley is opposite to the wave valley
- the channel is formed as the second medium channel 125. As shown in FIG.
- the first medium channel 124 is provided with a first medium channel inlet 1241 and a first medium channel outlet 1242
- the second medium channel 125 is provided with a second medium channel inlet 1251 and a second medium channel outlet 1252.
- first medium channel 124 and the second medium channel 125 are arranged in parallel.
- a plurality of heat exchange plates 120 fixedly connected in sequence are placed in the housing 110, the first medium channel inlet 1241 faces the first opening 111, the first medium channel outlet 1242 faces the second opening 112, and the second medium channel inlet 1241 faces the first The bottom opening 113 and the second medium channel outlet 1242 face the second bottom opening 114.
- the above arrangement can cause the first medium and the second medium to flow in different directions.
- the second medium deflector 123 By providing the second medium deflector 123, the first medium and the second medium flow in opposite directions, thereby further improving the heat exchange efficiency.
- forty heat exchange plates 120 can be selected, and the forty heat exchange plates 120 are fixedly connected in sequence and placed in the housing 110.
- the number of heat exchange plates 120 can be set according to specific heat exchange requirements, and is not limited here.
- the heat exchange plate 120 is trapezoidal, the first medium channel inlet 1241 and the first medium channel outlet 1242 are respectively arranged on the two waists of the trapezoid, the second medium channel inlet 1251 and the second medium channel outlet 1252 are set on the bottom of the trapezoid.
- the trapezoid is an isosceles trapezoid.
- the heat exchange fins 1212 are corrugated heat exchange fins, which can be manufactured by bending process or stamping process.
- the height of the first medium channel 124 is 0.15-3 mm; specifically, it may be 0.15 mm, 0.8 mm, 1 mm, 2.5 mm, or 3 mm.
- the height is the distance between the wave trough and the wave trough of the heat exchange fins 1212 that are opposed to the first heat exchange element 121 and the second heat exchange element 122 of two adjacent heat exchange plates 120.
- the height of the second medium channel 125 is 0.1-2 mm; specifically, it may be 0.1 mm, 1 mm or 2 mm. This height is the distance between the troughs of the heat exchange fins 1212 of the first heat exchange element 121 and the second heat exchange element 122 of each heat exchange plate 120.
- the plate thickness of the heat exchange fins 1212 is 0.02-2mm; specifically, it may be 0.02mm, 0.05mm, 0.1mm, 0.15mm, 0.2mm, 0.5mm, 1mm, 1.5mm or 2mm .
- the distance from the crest to the trough of the corrugated heat exchange fin is 1.5-5 mm; specifically, it may be 1.5 mm, 2 mm, 3 mm, 4 mm, or 5 mm.
- the housing in order to realize the modular design of the regenerator 5, includes connection parts for connecting the two housings with each other, which can be assembled according to different heat exchange requirements.
- a heat exchange unit realizes the modular design of the regenerator, avoiding the problem that the existing technology needs to redesign the regenerator for different heat exchange requirements.
- FIG. 3 Another embodiment of the present invention provides a micro gas turbine, as shown in FIG. 3, including a compressor 2, a combustion chamber 4, a turbine 3, and a regenerator 5 as in the above embodiment, a first medium channel inlet 1241
- the first medium channel outlet 1242 communicates with the outlet of the turbine 3 and the outside atmosphere, so as to reduce the temperature of the high-temperature gas flowing out of the turbine 3 and discharge it as exhaust gas outside the gas turbine.
- the second medium channel inlet 1251 and the second medium channel outlet 1252 communicate with the outlet of the compressor 2 and the inlet of the combustion chamber 4, respectively, to heat the gas compressed by the compressor and deliver it to the combustion chamber to increase the gas entering the combustion chamber Temperature, which in turn increases fuel utilization.
- FIG. 3 shows a micro gas turbine, as shown in FIG. 3, including a compressor 2, a combustion chamber 4, a turbine 3, and a regenerator 5 as in the above embodiment, a first medium channel inlet 1241
- the first medium channel outlet 1242 communicates with the outlet of the turbine 3 and the outside
- the smoke exhaust duct 22 is further included, and the smoke exhaust duct 22 has a flat structure.
- the flat structure can be understood as a rectangular or elliptical cross-sectional view perpendicular to the extending direction of the exhaust duct 22.
- the exhaust duct 22 is in close contact with the outer wall of the regenerator 5 and is located on at least any one of the four sides of the regenerator 5.
- the exhaust duct 22 is rectangular in a cross-sectional view perpendicular to the extending direction of the exhaust duct 22, and the wall surface of the exhaust duct 22 where the long side of the rectangle is located is in close contact with the outer wall of the regenerator 5.
- the smoke exhaust duct 22 is rectangular in a cross-sectional view perpendicular to the extending direction of the smoke exhaust duct 22, and the wall surface of the smoke exhaust duct 22 where the rectangular long side is located is in close contact with the outer wall of the regenerator 5.
- the invention aims to provide a bearing lubrication system and a miniature gas turbine generator set.
- the bearing lubrication system includes: a first oil passage, a second oil passage, a first bearing, a second bearing, and a bearing sleeve arranged coaxially with the second rotating shaft ⁇ Injection ring and abutment device; the first oil passage through the bearing sleeve provides a lubricating oil supply path for the first bearing; the second oil passage through the bearing sleeve and the oil injection ring provides a lubricating oil supply path for the second bearing; abutment device They are in contact with the positioning stop on the bearing sleeve and the injection ring respectively.
- Axial force is exerted on the oil injection ring by the preload force of the abutment device, so that the bearing sleeve and the oil injection ring always keep close to the bearing, and the outlet of the oil path always faces the bearing, and provides lubricating oil to the bearing to improve lubrication Oil utilization and lubrication effect.
- the elastic abutment device applies a preload to the angular contact ball bearing, eliminating the axial clearance of the bearing, reducing noise and vibration during bearing operation, and improving bearing rigidity and bearing rotation accuracy.
- the oil return path is set to realize the recovery of lubricating oil, to avoid the leakage of lubricating oil and affect the performance of the whole machine.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Supercharger (AREA)
Abstract
一种轴承润滑系统和微型燃气轮机发电机组,该轴承润滑系统包括:第一油路(17)、第二油路(18)、与第二转轴(7)同轴设置的第一轴承(20)、第二轴承(21)、轴承套(14)、喷油环(15)和抵接装置(16);第一油路(17)贯穿轴承套(14)为第一轴承(20)提供润滑油供给通路;第二油路(18)贯穿轴承套(14)和喷油环(15)为第二轴承(21)提供润滑油供给通路;抵接装置(16)分别与轴承套(14)上的定位止口(142)和喷油环(15)抵接。通过抵接装置(16)的预紧力作用对喷油环(15)施加轴向力,以使轴承套(14)和喷油环(15)始终保持贴紧轴承,达到油路的出口始终朝向轴承,并向轴承提供润滑油,提高润滑油的利用率和润滑效果。此外,抵接装置(16)对轴承施加预紧力,消除了轴承轴向游隙,减少轴承运行过程中的噪声及振动,提高轴承刚度和轴承旋转精度。
Description
本发明涉及润滑系统技术领域,具体是一种轴承润滑系统以及设置有此系统的微型燃气轮机发电机组。
微型燃气轮机工作时,转轴在工作过程中保持高速旋转运动,为了降低摩擦力,一般通过轴承将转轴与其他部件转动连接,并在轴承和转轴上涂抹润滑油。这样做,不仅能起到润滑、降低摩擦力的作用,还能降低轴承和转轴的温度。
现在普遍采用通过油路系统向转轴和轴承上持续的供给润滑油,以达到润滑和降温的作用。由于油路系统无法移动,导致油路系统的出口固定,也就是供油点固定不变;但是转轴和轴承在长期的工作过程中,由于高速旋转和温度变化等因素导致轴承在转轴的轴向发生位移,但是润滑油的供给油路并未发生相应移动,因此将导致润滑油未能向轴承供给,影响润滑和冷却的效果。
可见,目前亟需提供一种持续有效为轴承提供润滑的轴承润滑系统。
发明内容
为解决上述问题,本发明提供了一种轴承润滑系统和包括该轴承润滑系统的微型燃气轮机发电机组,以使轴承在发生微小位移的情况下仍可有效为 轴承提供润滑油,以保持轴承的良好运行状态。
本发明的第一方面提供了一种轴承润滑系统,包括:
第一油路、第二油路、与第二转轴同轴设置的第一轴承、第二轴承、轴承套、喷油环和抵接装置;
沿第二转轴的轴向方向上,所述第一轴承和第二轴承按预定间隔设置在第二转轴上,其中,所述第一轴承和第二轴承的转子与所述第二转轴固定连接,定子与所述轴承套的内表面抵接;
所述轴承套设置有定位止口,所述第一轴承定子的一侧面与所述定位止口的一侧面抵接,转子的一侧面与固定在第二转轴上的定位元件抵接;
沿所述第二转轴的径向方向上,所述喷油环位于所述轴承套和所述第二转轴之间,所述喷油环的外表面与所述轴承套的内表面抵接,所述喷油环一侧面与第二轴承的定子的一侧面抵接;
沿所述第二转轴的轴向方向上,所述抵接装置与所述定位止口的另一侧面和所述喷油环的另一侧面抵接;
所述第一油路,贯穿所述轴承套,且其出口朝向所述第一轴承;
所述第二油路,贯穿所述轴承套和所述喷油环,且其出口朝向所述第二轴承。
进一步的,所述轴承套外表面形成有第一积油槽,所述第一积油槽分别与润滑油供油管、所述第一油路和所述第二油路连通。
进一步的,所述第二油路包括依次连通的第一支路和第二支路;
所述第一支路设置在所述轴承套内;
所述第二支路设置在所述喷油环内;
所述第一支路的出口沿所述第二转轴轴向的宽度小于所述第二支路的进口沿所述第二转轴轴向的宽度。
进一步的,所述第二支路包括依次连通的第二积油槽和油孔;
所述第二积油槽沿所述喷油环的圆周方向设置,且与所述第一支路连通;
所述第二积油槽的宽度大于所述第一支路出口沿所述第二转轴轴向的宽 度;
所述油孔的出口朝向所述第二轴承。
进一步的,所述油孔为多个,多个所述油孔均布在所述喷油环内。
进一步的,所述抵接装置为弹性装置。
进一步的,所述抵接装置为弹簧。
进一步的,还包括定距环;
沿所述第二转轴的径向方向上,所述定距环位于所述第二转轴和抵接装置之间并与所述第二转轴固定连接;
沿所述第二转轴的轴向方向上,位于所述第一轴承和所述第二轴承之间,所述定距环的两端面分别与所述第一轴承和所述第二轴承的转子抵接。
进一步的,包括回油系统,所述回油系统包括第一回油支路、第二回油支路、第三回油支路和回油路,所述第一回油支路、第二回油支路和第三回油支路的一端均与回油路的一端连通,所述第一回油支路的另一端与所述第一轴承外表面连通,所述第二回油支路的另一端穿过所述轴承套与所述轴承套的内腔连通,所述第三回油支路与所述第二轴承的外表面连通,所述回油路的另一端与回收油桶连通。
本发明的另一方面提供了一种微型燃气轮机发电机组,包括依次设置在转轴上的发电机、压气机、如前任一项所述的轴承润滑系统和透平。
综上所述,本发明提供了一种轴承润滑系统和包括该轴承润滑系统的微型燃气轮机发电机组,其具有的有益效果是:
在工作过程中,第二转轴的转动、热胀冷缩等因素会导致第二轴承在第二转轴上发生微小距离的移动;弹性抵接装置的预紧力作用对喷油环施加轴向力,以使喷油环始终保持贴紧第二轴承,达到油路的出口始终朝向第二轴承,并向轴承提供润滑油,提高润滑油的利用率和润滑效果,此外,弹性抵接装置对角接触球轴承施加预紧力,消除了轴承轴向游隙,减少轴承运行过程中的噪声及振动,提高轴承刚度和轴承旋转精度。除此之外,设置回油路,实现润滑油的回收,避免润滑油泄露,影响整机性能。
图1为本发明中轴承润滑系统的结构示意图;
图2为发明中微型燃气轮机发电机组整体主视图;
图3为图2中的A-A剖视图;
图4为发明中微型燃气轮机发电机组整体俯视图;
图5为图4中的C-C剖视图;
图6为本发明中联轴器的立体图;
图7是一种优选实施例的联轴器的立体图;
图8是图5中的D部放大图;
图9为回热器的结构示意图;
图10为回热器的壳体的结构示意图;
图11为换热板的结构示意图;
图12为换热板中第一换热元件的结构示意图;
图13为换热板中第二换热元件的结构示意图;
图14为相邻两块换热板的剖视图;
图15为图14中的E部放大图。
附图标记:
1、发电机,2、压气机,3、透平,4、燃烧室,5、回热器,6、第一转轴,7、第二转轴,8、联轴器,9、喷嘴,10、机壳,11、密封件,12、喷嘴密封法兰,13、紧固件;14、轴承套,15、喷油环,16、抵接装置,17、第一油路,18、第二油路,19、定距环,20、第一轴承,21、第二轴承,22、排烟道,23、回油路;
101、喷嘴安装法兰;102、唇部;
110、壳体,111、第一开口,112、第二开口,113、第一底部开口,114、 第二底部开口;
120、换热板,121、第一换热元件,122、第二换热元件,123、第二介质导流片,124、第一介质通道,125、第二介质通道;
1211、第一介质导流片Ⅰ,1212、换热翅片,1213、第一介质导流片Ⅱ;
1241、第一介质通道进口,1242、第一介质通道出口;
1251、第二介质通道进口,1252、第二介质通道出口;
141、第一积油槽,142、定位止口,143、定位元件,144、润滑油供油管;
181、第一支路,182、第二积油槽,183、油孔;
231、第一回油支路,232、第二回油支路,233、第三回油支路;
41、燃烧室外壁,42、燃烧室内壁,43、内外壁通道;
81、轴主体,82、卡接凸棱,83、圆角;
91、喷嘴本体,92、喷嘴法兰,93、进气孔。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“抵接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接; 可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
图1为本发明中轴承润滑系统的结构示意图;也是图3中的B部放大图。
请参照图1,本实施例提供了一种轴承润滑系统,该轴承优选为角接触球轴承,该润滑系统包括第二转轴7、第一轴承20和第二轴承21;第一轴承20和第二轴承21均具有定子和转子。在第二转轴7上且沿第二转轴7的轴向方向上,第一轴承20和第二轴承21按预定间隔设置在第二转轴7上,并且第一轴承20和第二轴承21的转子与第二转轴7固定连接;轴承套14套设在第一轴承20和第二轴承21上,并且其内表面与第一轴承20和第二轴承21的定子抵接。
轴承套14设置有定位止口142,定位止口142靠近轴承套14的一端设置,定位止口142为轴承套14的内表面向内延伸出的凸起。
第一轴承20定子的一侧面与定位止口142的一侧面抵接,第一轴承20转子的一侧面与固定在第二转轴7上的定位元件143抵接。
沿第二转轴7的径向方向上,喷油环15位于轴承套14和第二转轴7之间,喷油环15的外表面与轴承14的内表面抵接,喷油环15一侧面与第二轴承21的定子的一侧面抵接;
沿第二转轴7的轴向方向上,抵接装置16与定位止口142另一侧面和喷油环5另一侧面抵接,即抵接装置16的两端分别与定位止口142的另一侧面和喷油环15的另一侧面抵接。
第一油路17贯穿轴承套14设置,且其出口朝向第一轴承20;第二油路18贯穿轴承套14和喷油环15设置,且其出口朝向第二轴承21。
具体的,第二油路18由相互连通的第一支路181和第二支路组成。第一支路181设置在轴承套14内,第二支路设置在喷油环15内。更具体的,轴承套14内且靠近第二轴承21的一侧设置有第一支路181。第一支路181的进口与第一积油槽141连通,该第一积油槽141设置在轴承套14外表面,通过 设置第一积油槽141来存储润滑油,以对轴承的润滑提供充足的润滑油。
第一支路181为一个竖直设置的通孔。在一个优选的实施例中,第一支路181为一个竖直设置的圆柱孔。
在本实施例中,喷油环15为圆柱筒状结构;第二支路包括依次连通的第二积油槽182和油孔183。
具体的,喷油环15的外壁向内凹陷形成第二积油槽182,第二积油槽182为环形结构,沿喷油环15的外周设置。油孔183贯穿喷油环15,并且与第二积油槽182连通。由于第二轴承的工作温度较高,需大量的润滑油润滑和降温,环形的第二积油槽能够预先存储润滑油,进而对轴承持续的提供润滑油,提高润滑和降温的作用。
第二积油槽182沿喷油环15轴向的宽度大于轴承套14上竖直设置的圆柱孔即第一支路181的直径。在工作过程中,第二转轴的转动等因素会导致轴承套和喷油环在第二转轴上发生小距离的移动,第一支路的出口宽度小于第二支路的进口宽度;可以达到在发生小距离的位移时,第一支路与第二支路始终保持连通,进而对轴承持续的提供润滑油,达到润滑和降温的作用。
在一个优选的实施例中,油孔183为多个,且等间距分布。具体的,油孔183可以选用三个。
具体的,抵接装置16为弹性装置,优选为弹簧。
在轴承套14外表面形成第一积油槽141,第一积油槽141分别与润滑油供油管144、第一油路17和第二油路18的入口连通。
为了保证微型燃气轮机的正常工作,需确保压气机2和透平在预定位置和预定的轴向距离工作,在一个优选的实施例中,还包括定距环19;定距环19沿第二转轴7的径向方向上设置,定距环19位于第二转轴7和抵接装置16之间并与第二转轴7固定连接;且定距环19位于第一轴承20和第二轴承21之间,定距环19的两端面分别与第一轴承20和第二轴承21的转子抵接。通过设置定距环,实现轴向定位,避免第一轴承和第二轴承的距离小于预定距离而导致第一支路与第二支路没有完全连通,以致润滑油供给不足。
为了提高润滑油的流动性,增加润滑以及冷却效果,还增设了回油系统。
具体的,回油系统包括第一回油支路231,第二回油支路232,第三回油支路233和回油路23,第一回油支路231、第二回油支路232和第三回油支路233的一端均与回油路23的一端连通,第一回油支路231的另一端与第一轴承20的外表面连通,第二回油支路232的另一端穿过轴承套14与轴承套14的内腔连通,第三回油支路233与第二轴承21的外表面连通,回油路23的另一端与回收油桶连通,通过设置回油系统,避免润滑油流入涡轮一端,被高温燃气烧毁,产生积碳,造成整机性能下降,排气污染增加。
该轴承润滑系统的具体工作过程如下:通过润滑油供油管144向第一积油槽141内供给润滑油;由于第一油路17和第二油路18的入口均与第一积油槽141连通,因此可以将润滑油持续向第一油路17和第二油路18中输送;进而源源不断的向第一轴承20和第二轴承21提供润滑油,降低第一轴承20和第二轴承21的摩擦力和温度。从第一轴承20和第二轴承21排出的润滑油又通过第一回油支路231、第二回油支路232、第三回油支路233和回油路23流向回收油桶。
在工作过程中,第二转轴的转动等因素会导致第二轴承在第二转轴上发生微小距离的移动;弹性抵接装置的预紧力作用对喷油环施加轴向力,以使喷油环始终保持贴紧轴承,达到油路的出口始终朝向轴承,并向轴承提供润滑油,提高润滑油的利用率和润滑效果。此外,弹性抵接装置对角接触球轴承施加预紧力,消除了轴承轴向游隙,减少轴承运行过程中的噪声及振动,提高轴承刚度和轴承旋转精度。除此之外,设置回油路,实现润滑油的回收,避免润滑油泄露,影响整机性能。
请参照图2至图5,本实施例提供了一种微型燃气轮机发电机组,包括同轴连接且依次设置的发电机1、压气机2、上述实施例的轴承润滑系统和透平3,燃烧室4设置在透平3远离压气机2的一端;发电机1、压气机2、透平3和燃烧室4均设置在机壳10内。发电机1和压气机2通过第一转轴6、第二转轴7以及联轴器8轴连接;联轴器8的两端分别连接第一转轴6和第 二转轴7以实现第一转轴6和第二转轴7同步转动,实现第一转轴6与第二转轴7的同步转动、传递能量。
如图6所示,联轴器8包括轴主体81和卡接凸棱82,卡接凸棱82设置在轴主体81的侧面上。
具体的,轴主体81由金属制成,且为圆柱体;圆柱体的两个圆面叫底面,周围的面叫侧面;卡接凸棱82设置在圆柱体的侧面上。
在使用时,在待连接的两根轴的端面上开设有与联轴器8相匹配的凹槽,将轴主体81的两端分别插入两根轴上设置的凹槽中即完成了安装,加工、生产和安装都比较简单,节省时间成本。
在一个优选的实施例中,卡接凸棱82为沿轴主体81的径向向外延伸形成的凸起。具体的,在圆柱体的侧面上沿圆柱体的径向向外延伸形成出的凸起为卡接凸棱82。轴主体81与卡接凸棱82为一体式结构,可以通过模具铸造成型后进行精加工。
凸起为条状结构,其延伸方向与轴主体81的轴线平行;也可以理解为条状结构的凸起的长度方向与轴主体81的轴线平行。
在一个优选的实施例中,凸起的长度与轴主体81的长度相匹配,即凸起的长度与轴主体81的长度相等,以增加凸起与轴主体81的连接强度,进而达到在传递转动能量的过程中凸起的断裂。
凸起的截面或者理解为凸起在与轴主体81轴线垂直一面上的投影可以为多边形;具体可以是矩形、三角形等。
在一个实施例中,凸起远离轴主体81的一面为弧面;优选的,凸起在与轴主体81轴线垂直一面上的投影为半圆形。凸起的侧面设置为弧面可以降低安装和转动过程中的磨损,延长联轴器8的使用寿命。
为了提高安装后传动的强度,在一个实施例中,凸起为多个,多个凸起均匀分布在轴主体81的侧面上;这里的均匀分布理解为等间距分布。均匀分布的多个卡接凸棱82能够在传递转动能量时将转动产生的剪切力均匀的分解到每个卡接凸棱82上,避免卡接凸棱82的折断,进而延长联轴器8的使 用寿命。
具体的,凸起为四个,四个凸起呈十字形设置在轴主体81的侧面上。
为了方便安装,将轴主体81的端面与其侧面的连接处形成有圆角83,即轴主体81的端面与其侧面的交界处形成有圆角83;凸起的端面与凸起的侧面连接处设置有圆角83,即凸起的端面与侧面交界处设置有圆角83。该凸起的侧面是指凸起远离轴主体81的一面。凸起和轴主体81上设置的圆角83能够起到一定的导向作用,便于将凸起插入待连接轴中。
在一优选实施例中,如图7所示,将轴主体81中段的直径设置为小于轴主体的前,后两段的直径。具体的,轴主体中段的直径为轴主体的前,后两段的直径的40%-60%,优选50%。将轴主体中段的直径设置为小于轴主体的前,后两段的直径,将轴主体未插入第一转轴和第二转轴盲孔部分的直径设置小于轴主体插入第一转轴和第二转轴盲孔部分的直径,第一转轴和第二转轴不同心或者转动过程中发生振动时,成本较低的联轴器优先损坏,避免连接在第一转轴和第二转轴的高成本的轴承损坏。
本实施例公开了一种传动机构,包括有如上述实施方式的联轴器。具体的,包括第一转轴6和第二转轴7,第一转轴6的一端和第二转轴7的一端均设置有与联轴器8匹配的盲孔;联轴器8的两端分别插接在两个盲孔中。
在具体安装使用中,将第一转轴6靠近第二转轴7的端面以及第二转轴7靠近第一转轴6的端面上分别开设一个与上述联轴器8相匹配的盲孔,仅需将联轴器8的两端分别插入第一转轴6和第二转轴7上开设的盲孔中即实现了第一转轴6和第二转轴7的连接,达到第一转轴6和第二转轴7同步转动。
在工作过程中,燃烧室4和透平3不仅工作温度高,而且还承受燃气轮机在起动和停机时,因温度剧烈变化引起的热冲击,工作条件恶劣。且由于喷嘴9的一端连接燃料供给装置,一端插入燃烧室4内;因此需要将喷嘴9与机壳10密封。
图8为发明中喷嘴密封结构的结构示意图;为图5中的D部放大图。
请参照图1,本实施例提供了一种喷嘴密封结构,包括喷嘴9、机壳10和密封环11。
具体的,喷嘴9包括固定连接或一体成型的喷嘴本体91和喷嘴法兰92。
在机壳10上设置有与喷嘴法兰92配装的喷嘴安装法兰101和喷嘴安装孔。
喷嘴本体91下部穿过机壳10的喷嘴安装孔置于机壳10内;紧固件13穿过喷嘴法兰92和喷嘴安装法兰101的紧固孔连接喷嘴法兰92和喷嘴安装法兰101。
喷嘴本体91,喷嘴法兰92和喷嘴安装法兰101构成环形密封腔,密封环11置于环形密封腔内。
喷嘴法兰92和喷嘴安装法兰101之间存在间隙,该间隙为喷嘴法兰92和喷嘴安装法兰101上下之间的间隙。喷嘴本体91和喷嘴安装孔之间存在间隙,该间隙为喷嘴本体91和喷嘴安装孔沿周向之间的间隙。该间隙是为了震动及温度差导致的变形等预留的,可以避免由于喷嘴、机壳等相关部件发生变形而导致使用寿命的降低。
具体的,紧固件13的外径小于喷嘴法兰92和喷嘴安装法兰101上的紧固孔,使得紧固件13与喷嘴法兰92和喷嘴安装法兰101上的紧固孔之间形成间隙。由于微型燃气轮机发电机组的震动以及燃烧室内外温度差,导致燃烧室与机壳之间会发生少量的相对位移;将紧固孔设置成与紧固件之间形成有间隙,以此达到不妨碍燃烧室与机壳之间的相对位移的作用。
在一个优选的实施例中,密封腔的高度小于密封环11的高度;和/或密封腔的宽度小于密封环11的宽度。这样设置使密封环处于压缩状态,在燃烧室与机壳之间发生少量相对位移时还能达到密封的效果。
在一个优选的实施例中,喷嘴法兰92和喷嘴安装法兰101之间的间隙为0.1-0.2mm;具体的,可以为0.1mm、0.15mm或者0.2mm。
和/或喷嘴本体91和喷嘴安装孔之间的间隙单边为0.1-0.2mm;具体的,可以为0.1mm、0.15mm或者0.2mm。
密封环11可选用弹性密封环或石墨密封环。密封环11为唇形密封环,其中,且唇形密封环的唇部102朝向机壳10。密封环向其内部凹陷形成凹槽形成唇型结构,且唇口朝向燃烧室,这样在内部压力作用下,使唇边紧贴密封面,压力越高,唇边和密封面贴合的就越紧,密封唇边磨损后,具有一定的自动补偿能力。
在一个优选的实施例中,环形密封腔和密封环11的横截面为梯形。
本实施例提供了一种微型燃气轮机发电机组,包括燃烧室4,喷嘴密封法兰12和如上述实施例的喷嘴密封结构;喷嘴密封法兰12的法兰面与机壳10的内壁贴合,法兰颈与燃烧室外壁41固定连接;紧固件13穿过喷嘴法兰92、喷嘴安装法兰101和喷嘴密封法兰12的紧固孔连接喷嘴法兰92、喷嘴安装法兰101和喷嘴密封法兰12;喷嘴本体91与燃烧室内壁42固定连接,燃烧室外壁41和燃烧室内壁42构成的内外壁通道43与喷嘴本体91上的进气孔93连通,喷嘴本体91依次穿过机壳10的喷嘴安装孔、喷嘴密封法兰12的法兰盘、喷嘴密封法兰12的法兰颈和燃烧室内壁42后置于燃烧室4内。该喷嘴的工作过程为:空气经过压气机压缩成高压气体后从压气机出口流出,通过燃烧室4的内外壁通道43以及喷嘴本体91上的进气口93进入喷嘴本体91,使得从喷嘴喷出的燃料迅速雾化,进入燃烧室充分燃烧,提高燃料的燃烧率。
喷嘴密封法兰12的法兰颈的内径大于喷嘴本体91的外径,喷嘴本体91与喷嘴密封法兰12的法兰盘之间存在间隙。喷嘴本体91与喷嘴密封法兰12的法兰盘之间的间隙单边为0.1-0.2mm,优选0.15mm。
采用上述喷嘴密封结构,可以在避免由于微型燃气轮机发电机组的震动以及燃烧室内外温度差导致的燃烧室与机壳之间发生的少量的相对位移的同时,提高喷嘴和机壳以及燃烧室的密封性能。
从透平3排放出来的高温高压气体一般都作为尾气进行排放。为了提高燃烧室4的燃烧效率,在本发明中对高温尾气进一步的利用。
请参照图9至图15,本实施例提供了一种回热器,通过设置回热器将采 用透平出口排出的高温气体加热压气机出口的高压气体,提高高压气体的温度,提高燃烧效率的同时,降低了透平排气的温度,减少高温尾气对空气的污染,实现了燃气高温尾气的能量回收,如图9所示,包括壳体110和多块换热板120,多块换热板120固定设置在壳体110内。
具体的,如图10所示,壳体包括上底面、下底面和一相对设置的侧面,在另一相对的侧面上分别设置有第一开口111和第二开口112,使第一开口111和第二开口112形成壳体的贯穿通道;下底面上设置有平行的第一底部开口113和第二底部开口114,第一底部开口113和第二底部开口114分别靠近下底面的两端设置。壳体设置为扁平状结构的壳体,扁平状结构的壳体以及连接部件的设置使得本申请的回热器可以作为一个换热单元,通过壳体上设置用于多个壳体之间两两相互连接的连接部件,根据不同换热需求,可以组装多个换热单元,实现了回热器的模块化设计,避免了现有技术针对不同的换热要求,需要重新设计回热器的问题,除此以外,扁平状结构的壳体使得微型燃气轮机整体同样为扁平状结构,易于平稳摆放,解决现有微型燃气轮机圆柱体外形,不易摆放的问题,更加适用于例如汽车等相关交通工具,且扁平状结构的换热单元,易于加工,成品率高,解决了回热器的量产问题,间接降低了制造成本。
具体的,如图11所示,每个换热板120包括依次固定连接的第一换热元件121、第二介质导流片123(如图13所示)和第二换热元件122。在本实施例中,第一换热元件121和第二换热元件122结构相同;且第一换热元件121和第二换热元件122均包括依次固定连接的第一介质导流片Ⅰ1211、换热翅片1212和第一介质导流片Ⅱ1213,如图12所示。
如图14所示,为相邻两块换热板120中换热翅片1212部位的截面结构示意图,图15为图14中E部位的放大图。如图15所示,相邻换热板120的第一换热元件121的换热翅片1212和第二换热元件122的换热翅片1212形成第一介质通道124;作为一优选的实施例,该换热翅片1212形成为波纹状,两相邻换热板120的紧邻的第一换热元件121和第二换热元件122的换 热翅片1212的波峰与波峰相对,波谷与波谷相对,该波谷与波谷相对的通道形成为该第一介质通道124。每个换热板120的第一换热元件121的换热翅片1212和第二换热元件122的换热翅片1212形成第二介质通道125;作为一优选的实施例,该换热翅片1212形成为波纹状,每个换热板120的第一换热元件121和第二换热元件122的换热翅片1212的波峰与波峰相对,波谷与波谷相对,该波谷与波谷相对的通道形成为该第二介质通道125。如图11所示,第一介质通道124设置有第一介质通道进口1241和第一介质通道出口1242,第二介质通道125设置有第二介质通道进口1251和第二介质通道出口1252。通过设置第一介质导流片、第二介质导流片和换热翅片,形成第一介质通道和第二介质通道,实现了第一介质和第二介质以不同的方向流动,增大了换热面积,提高了换热效率。
在一个优选的实施例中,第一介质通道124和第二介质通道125平行设置。
多块依次固定连接的换热板120置于壳体110内,第一介质通道进口1241朝向第一开口111,第一介质通道出口1242朝向第二开口112,第二介质通道进口1241朝向第一底部开口113,第二介质通道出口1242朝向第二底部开口114。上述设置可以使第一介质和第二介质沿着不同的方向流动。通过设置第二介质导流片123,实现了第一介质和第二介质以相反方向流动,进一步提高了换热效率。
具体的,换热板120可选用四十块,四十块换热板120依次固定连接的置于壳体110内。换热板120的数量可以根据具体的换热需求进行设置,这里不做限制。
在一个优选的实施例中,换热板120为梯形,第一介质通道进口1241和第一介质通道出口1242分别设置在梯形的2个腰上,第二介质通道进口1251和第二介质通道出口1252均设置在梯形的下底边上。
更具体的,梯形为等腰梯形。
换热翅片1212为波纹换热翅片,可采用折弯工艺或冲压工艺加工加工制 成。
在一个优选的实施例中,第一介质通道124的高度为0.15-3mm;具体的,可以是0.15mm、0.8mm、1mm、2.5mm或者3mm。该高度为两相邻换热板120的紧邻的第一换热元件121和第二换热元件122相对的换热翅片1212的波谷与波谷之间的距离。
在一个优选的实施例中,第二介质通道125的高度为0.1-2mm;具体的,可以是0.1mm、1mm或者2mm。该高度为每个换热板120的第一换热元件121和第二换热元件122相对的换热翅片1212的波谷与波谷之间的距离。
在一个优选的实施例中,换热翅片1212的板材厚度为0.02-2mm;具体的,可以是0.02mm、0.05mm、0.1mm、0.15mm、0.2mm、0.5mm、1mm、1.5mm或者2mm。
在一个优选的实施例中,波纹换热翅片的波峰至波谷的距离为1.5-5mm;具体的,可以是1.5mm、2mm、3mm、4mm或者5mm。
在一个优选的实施例中,为了实现回热器5的模块化设计,在壳体上包括用于多个壳体之间两两相互连接的连接部件,可以根据不同换热需求,可以组装多个换热单元,实现了回热器的模块化设计,避免了现有技术针对不同的换热要求,需要重新设计回热器的问题。
本发明的另一个实施例提供了一种微型燃气轮机,如图3所示,包括压气机2,燃烧室4,透平3和如上述实施例的回热器5,第一介质通道进口1241和第一介质通道出口1242分别与透平3的出口和外界大气连通,以将从透平3流出的高温气体降低温度后作为尾气排出燃气轮机外部。第二介质通道进口1251和第二介质通道出口1252分别与压气机2的出口和燃烧室4的入口连通,以加热经压气机压缩的气体并将其输送至燃烧室,提高进入燃烧室气体的温度,进而提高燃料的利用率。如图3所示,在一个优选的实施例中,还包括排烟道22,排烟道22为扁平状结构。扁平状结构可以理解为沿垂直于排烟道22延伸方向的剖视图为矩形或者椭圆形。排烟道22与回热器5的外壁紧贴,位于回热器5四个侧面的至少任一侧面。优选的,排烟道22为沿 垂直于排烟道22延伸方向的剖视图为矩形,矩形长边所在的排烟道22的壁面与回热器5的外壁紧贴。通过设置排气烟道,使得微型燃气轮机的排气按照预定方向排出,使其能够灵活适用于各种场景,尤其是例如汽车等相关交通工具。
优选的,排烟道22为沿垂直于排烟道22延伸方向的剖视图为矩形,矩形长边所在的排烟道22的壁面与回热器5的外壁紧贴。
本发明旨在提供一种轴承润滑系统和微型燃气轮机发电机组,该轴承润滑系统包括:第一油路、第二油路、与第二转轴同轴设置的第一轴承、第二轴承、轴承套、喷油环和抵接装置;第一油路贯穿轴承套为第一轴承提供润滑油供给通路;第二油路贯穿轴承套和喷油环为第二轴承提供润滑油供给通路;抵接装置分别与轴承套上的定位止口和喷油环抵接。通过抵接装置的预紧力作用对喷油环施加轴向力,以使轴承套和喷油环始终保持贴紧轴承,达到油路的出口始终朝向轴承,并向轴承提供润滑油,提高润滑油的利用率和润滑效果。此外,弹性抵接装置对角接触球轴承施加预紧力,消除了轴承轴向游隙,减少轴承运行过程中的噪声及振动,提高轴承刚度和轴承旋转精度。除此之外,设置回油路,实现润滑油的回收,避免润滑油泄露,影响整机性能。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。
Claims (10)
- 一种轴承润滑系统,其特征在于,包括:第一油路(17)、第二油路(18)、与第二转轴(7)同轴设置的第一轴承(20)、第二轴承(21)、轴承套(14)、喷油环(15)和抵接装置(16);沿第二转轴(7)的轴向方向上,所述第一轴承(20)和第二轴承(21)按预定间隔设置在第二转轴(7)上,其中,所述第一轴承(20)和第二轴承(21)的转子与所述第二转轴(7)固定连接,定子与所述轴承套(14)的内表面抵接;所述轴承套(14)设置有定位止口(142),所述第一轴承(20)定子的一侧面与所述定位止口(142)的一侧面抵接,转子的一侧面与固定在第二转轴(7)上的定位元件(143)抵接;沿所述第二转轴(7)的径向方向上,所述喷油环(15)位于所述轴承套(14)和所述第二转轴(7)之间,所述喷油环(15)的外表面与所述轴承套(14)的内表面抵接,所述喷油环(15)一侧面与第二轴承(21)的定子的一侧面抵接;沿所述第二转轴(7)的轴向方向上,所述抵接装置(16)与所述定位止口(142)的另一侧面和所述喷油环(15)的另一侧面抵接;所述第一油路(17),贯穿所述轴承套(14),且其出口朝向所述第一轴承(20);所述第二油路(18),贯穿所述轴承套(14)和所述喷油环(15),且其出口朝向所述第二轴承(21)。
- 如权利要求1所述的轴承润滑系统,其特征在于:所述轴承套(14)外表面形成有第一积油槽(141),所述第一积油槽(141)分别与润滑油供油管(144)、所述第一油路(17)和所述第二油路(18)连通。
- 如权利要求1或2所述的轴承润滑系统,其特征在于:所述第二油路(18)包括依次连通的第一支路(181)和第二支路;所述第一支路(181)设置在所述轴承套(14)内;所述第二支路设置在所述喷油环(15)内;所述第一支路(181)的出口沿所述第二转轴(7)轴向的宽度小于所述第二支路的进口沿所述第二转轴(7)轴向的宽度。
- 如权利要求3所述的轴承润滑系统,其特征在于:所述第二支路包括依次连通的第二积油槽(182)和油孔(183);所述第二积油槽(182)沿所述喷油环(15)的圆周方向设置,且与所述第一支路(181)连通;所述第二积油槽(182)的宽度大于所述第一支路(181)出口沿所述第二转轴(7)轴向的宽度;所述油孔(183)的出口朝向所述第二轴承(21)。
- 如权利要求4所述的轴承润滑系统,其特征在于:所述油孔(183)为多个,多个所述油孔(183)均布在所述喷油环(15)内。
- 如权利要求1所述的轴承润滑系统,其特征在于:所述抵接装置(16)为弹性装置。
- 如权利要求6所述的轴承润滑系统,其特征在于:所述抵接装置(16)为弹簧。
- 如权利要求1所述的轴承润滑系统,其特征在于:还包括定距环(19);沿所述第二转轴(7)的径向方向上,所述定距环(19)位于所述第二转轴(7)和抵接装置(16)之间并与所述第二转轴(7)固定连接;沿所述第二转轴(7)的轴向方向上,位于所述第一轴承(20)和所述第二轴承(21)之间,所述定距环(19)的两端面分别与所述第一轴承(20)和所述第二轴承(21)的转子抵接。
- 如权利要求1所述的轴承润滑系统,其特征在于:包括回油系统,所述回油系统包括第一回油支路(231)、第二回油支路(232)、第三回油支路(233)和回油路(23),所述第一回油支路(231)、第二回油支路(232)和第三回油支路(233)的一端均与回油路(23)的一端连通,所述第一回油支路(231)的另一端与所述第一轴承(20)外表面连通,所述第二回油支路(232)的另一端穿过所述轴承套(14)与所述轴承套(14)的内腔连通,所述第三回油支路(233) 与所述第二轴承(21)的外表面连通,所述回油路(23)的另一端与回收油桶连通。
- 一种微型燃气轮机发电机组,其特征在于:包括依次设置在转轴上的发电机(1)、压气机(2)、如权利要求1至9任一项所述的轴承润滑系统和透平(3)。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811225761.1 | 2018-10-21 | ||
CN201811225761.1A CN109026397A (zh) | 2018-10-21 | 2018-10-21 | 轴承润滑系统和微型燃气轮机发电机组 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020082958A1 true WO2020082958A1 (zh) | 2020-04-30 |
Family
ID=64613521
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/107387 WO2020082958A1 (zh) | 2018-10-21 | 2019-09-24 | 轴承润滑系统和微型燃气轮机发电机组 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109026397A (zh) |
WO (1) | WO2020082958A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109026397A (zh) * | 2018-10-21 | 2018-12-18 | 至玥腾风科技投资集团有限公司 | 轴承润滑系统和微型燃气轮机发电机组 |
CN109057968A (zh) * | 2018-10-21 | 2018-12-21 | 至玥腾风科技投资集团有限公司 | 微型燃气轮机发电机组 |
CN114483303B (zh) * | 2021-12-30 | 2023-04-07 | 中车永济电机有限公司 | 一种应用于微型燃气轮机的高速永磁电机 |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4708602A (en) * | 1985-05-30 | 1987-11-24 | Teledyne Industries, Inc. | Lubrication system for a turbocharger |
US4789253A (en) * | 1987-01-30 | 1988-12-06 | Bbc Brown Boveri Ag | Axially pre-tensioned rolling contact bearing arrangement |
JPH07224680A (ja) * | 1994-02-16 | 1995-08-22 | Mitsubishi Heavy Ind Ltd | 片持ち式主軸の軸受用潤滑装置 |
CN101100958A (zh) * | 2007-07-10 | 2008-01-09 | 刘天成 | 微型燃气轮机 |
CN201420603Y (zh) * | 2009-03-27 | 2010-03-10 | 上海同济南汇科技产业园有限公司 | 采用浮环球轴承的微型燃气轮机转子系统 |
CN109026397A (zh) * | 2018-10-21 | 2018-12-18 | 至玥腾风科技投资集团有限公司 | 轴承润滑系统和微型燃气轮机发电机组 |
CN109057968A (zh) * | 2018-10-21 | 2018-12-21 | 至玥腾风科技投资集团有限公司 | 微型燃气轮机发电机组 |
CN109296465A (zh) * | 2018-10-21 | 2019-02-01 | 至玥腾风科技投资集团有限公司 | 回热器、微型燃气轮机和微型燃气轮机发电机组 |
CN109296464A (zh) * | 2018-10-21 | 2019-02-01 | 至玥腾风科技投资集团有限公司 | 喷嘴密封结构和微型燃气轮机发电机组 |
CN109356720A (zh) * | 2018-10-21 | 2019-02-19 | 至玥腾风科技投资集团有限公司 | 微型燃气轮机发电机组和无人机 |
CN209244673U (zh) * | 2018-10-21 | 2019-08-13 | 至玥腾风科技投资集团有限公司 | 回热器、微型燃气轮机和微型燃气轮机发电机组 |
CN209244674U (zh) * | 2018-10-21 | 2019-08-13 | 至玥腾风科技投资集团有限公司 | 轴承润滑系统和微型燃气轮机发电机组 |
CN209324526U (zh) * | 2018-10-21 | 2019-08-30 | 至玥腾风科技投资集团有限公司 | 喷嘴密封结构和微型燃气轮机发电机组 |
CN209324885U (zh) * | 2018-10-21 | 2019-08-30 | 至玥腾风科技投资集团有限公司 | 一种联轴器、传动机构和微型燃气轮机发电机组 |
CN209324521U (zh) * | 2018-10-21 | 2019-08-30 | 至玥腾风科技投资集团有限公司 | 微型燃气轮机发电机组和无人机 |
CN209324527U (zh) * | 2018-10-21 | 2019-08-30 | 至玥腾风科技投资集团有限公司 | 微型燃气轮机发电机组 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3759323A (en) * | 1971-11-18 | 1973-09-18 | Caterpillar Tractor Co | C-flow stacked plate heat exchanger |
GB1569566A (en) * | 1975-11-25 | 1980-06-18 | Holset Engineering Co | Bearing assembly |
JPH079247B2 (ja) * | 1988-06-07 | 1995-02-01 | 日産自動車株式会社 | 転がり軸受の制振装置 |
JPH0654962U (ja) * | 1992-12-28 | 1994-07-26 | エヌオーケー株式会社 | 密封装置 |
JP2001303964A (ja) * | 2000-04-24 | 2001-10-31 | Ishikawajima Harima Heavy Ind Co Ltd | ターボチャージャの軸受構造 |
JP2005171796A (ja) * | 2003-12-09 | 2005-06-30 | Koyo Seiko Co Ltd | ターボチャージャ用軸受装置 |
US7874164B2 (en) * | 2006-11-03 | 2011-01-25 | Pratt & Whitney Canada Corp. | Fuel nozzle flange with reduced heat transfer |
RU2403417C1 (ru) * | 2009-06-02 | 2010-11-10 | Открытое акционерное общество "Авиадвигатель" | Упругодемпферная опора газотурбинного двигателя |
DE102011007250A1 (de) * | 2011-04-13 | 2012-10-18 | Schaeffler Technologies AG & Co. KG | Turboladerkartusche mit gleitlager gestütztem Wälzlager |
CN103206455B (zh) * | 2012-01-17 | 2014-04-16 | 珠海格力电器股份有限公司 | 电机前轴承及包含该轴承的离心压缩机、制冷设备 |
US9683600B2 (en) * | 2013-09-16 | 2017-06-20 | Bret J. Park | Sleeve bearing for turbocharging device |
CN103982302B (zh) * | 2014-05-23 | 2016-02-17 | 中国航空动力机械研究所 | 用于燃气轮机发电机组的冷却机构及燃气轮机发电机组 |
JP2017009043A (ja) * | 2015-06-23 | 2017-01-12 | 株式会社荏原製作所 | 軸受装置およびポンプ |
CN105545956B (zh) * | 2016-03-04 | 2019-05-14 | 至玥腾风科技投资集团有限公司 | 一种电磁使能的主动式动压气体轴承 |
CN105587778A (zh) * | 2016-03-28 | 2016-05-18 | 北京缔森科技发展有限公司 | 一种搅拌联轴器 |
-
2018
- 2018-10-21 CN CN201811225761.1A patent/CN109026397A/zh active Pending
-
2019
- 2019-09-24 WO PCT/CN2019/107387 patent/WO2020082958A1/zh active Application Filing
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4708602A (en) * | 1985-05-30 | 1987-11-24 | Teledyne Industries, Inc. | Lubrication system for a turbocharger |
US4789253A (en) * | 1987-01-30 | 1988-12-06 | Bbc Brown Boveri Ag | Axially pre-tensioned rolling contact bearing arrangement |
JPH07224680A (ja) * | 1994-02-16 | 1995-08-22 | Mitsubishi Heavy Ind Ltd | 片持ち式主軸の軸受用潤滑装置 |
CN101100958A (zh) * | 2007-07-10 | 2008-01-09 | 刘天成 | 微型燃气轮机 |
CN201420603Y (zh) * | 2009-03-27 | 2010-03-10 | 上海同济南汇科技产业园有限公司 | 采用浮环球轴承的微型燃气轮机转子系统 |
CN109026397A (zh) * | 2018-10-21 | 2018-12-18 | 至玥腾风科技投资集团有限公司 | 轴承润滑系统和微型燃气轮机发电机组 |
CN109057968A (zh) * | 2018-10-21 | 2018-12-21 | 至玥腾风科技投资集团有限公司 | 微型燃气轮机发电机组 |
CN109296465A (zh) * | 2018-10-21 | 2019-02-01 | 至玥腾风科技投资集团有限公司 | 回热器、微型燃气轮机和微型燃气轮机发电机组 |
CN109296464A (zh) * | 2018-10-21 | 2019-02-01 | 至玥腾风科技投资集团有限公司 | 喷嘴密封结构和微型燃气轮机发电机组 |
CN109356720A (zh) * | 2018-10-21 | 2019-02-19 | 至玥腾风科技投资集团有限公司 | 微型燃气轮机发电机组和无人机 |
CN209244673U (zh) * | 2018-10-21 | 2019-08-13 | 至玥腾风科技投资集团有限公司 | 回热器、微型燃气轮机和微型燃气轮机发电机组 |
CN209244674U (zh) * | 2018-10-21 | 2019-08-13 | 至玥腾风科技投资集团有限公司 | 轴承润滑系统和微型燃气轮机发电机组 |
CN209324526U (zh) * | 2018-10-21 | 2019-08-30 | 至玥腾风科技投资集团有限公司 | 喷嘴密封结构和微型燃气轮机发电机组 |
CN209324885U (zh) * | 2018-10-21 | 2019-08-30 | 至玥腾风科技投资集团有限公司 | 一种联轴器、传动机构和微型燃气轮机发电机组 |
CN209324521U (zh) * | 2018-10-21 | 2019-08-30 | 至玥腾风科技投资集团有限公司 | 微型燃气轮机发电机组和无人机 |
CN209324527U (zh) * | 2018-10-21 | 2019-08-30 | 至玥腾风科技投资集团有限公司 | 微型燃气轮机发电机组 |
Also Published As
Publication number | Publication date |
---|---|
CN109026397A (zh) | 2018-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020082957A1 (zh) | 微型燃气轮机发电机组 | |
WO2020082959A1 (zh) | 回热器、微型燃气轮机和微型燃气轮机发电机组 | |
WO2020082958A1 (zh) | 轴承润滑系统和微型燃气轮机发电机组 | |
CN109296464B (zh) | 喷嘴密封结构和微型燃气轮机发电机组 | |
US9932848B2 (en) | Pressurized seal system for a power turbine unit | |
KR101951110B1 (ko) | 가스 터빈 | |
JP6029274B2 (ja) | シール組立体、及びこれを備えたガスタービン | |
CN109356720A (zh) | 微型燃气轮机发电机组和无人机 | |
CN209324527U (zh) | 微型燃气轮机发电机组 | |
CN108252908B (zh) | 一种自平衡湿式罗茨泵 | |
CN209244673U (zh) | 回热器、微型燃气轮机和微型燃气轮机发电机组 | |
CN209324526U (zh) | 喷嘴密封结构和微型燃气轮机发电机组 | |
CN209244674U (zh) | 轴承润滑系统和微型燃气轮机发电机组 | |
CN209324885U (zh) | 一种联轴器、传动机构和微型燃气轮机发电机组 | |
US7303371B2 (en) | Gas turbine having a sealing element between the vane ring and a vane carrier of the turbine | |
CN209324521U (zh) | 微型燃气轮机发电机组和无人机 | |
CN116464656A (zh) | 一种高性能电动增压器 | |
CN212615059U (zh) | 排气门座圈、气缸盖组件和发动机 | |
CN218733603U (zh) | 双电机和车辆 | |
CN112709636A (zh) | 一种燃气轮机发电机组及发电过程 | |
CN111677558A (zh) | 一种应用于燃气轮机滑油系统的蓖齿式密封机构 | |
CN114069916A (zh) | 一种组合式油冷电机系统 | |
CN217401025U (zh) | 节能环保型活塞环、发动机及车辆 | |
JP2008031870A (ja) | ガスタービンのシール構造 | |
CN221823888U (zh) | 一种汽轮机轴承箱的挡风片密封结构 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19877122 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 15.06.2021) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19877122 Country of ref document: EP Kind code of ref document: A1 |