WO2020082673A1 - 发票检验方法、装置、计算设备和存储介质 - Google Patents
发票检验方法、装置、计算设备和存储介质 Download PDFInfo
- Publication number
- WO2020082673A1 WO2020082673A1 PCT/CN2019/079039 CN2019079039W WO2020082673A1 WO 2020082673 A1 WO2020082673 A1 WO 2020082673A1 CN 2019079039 W CN2019079039 W CN 2019079039W WO 2020082673 A1 WO2020082673 A1 WO 2020082673A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- information
- inspected
- format
- invoice
- false
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07D—HANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
- G07D7/00—Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
- G07D7/20—Testing patterns thereon
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V30/00—Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
- G06V30/40—Document-oriented image-based pattern recognition
Definitions
- the present application relates to the field of data processing technology, and in particular to an invoice inspection method, device, computing device, and storage medium.
- the inventor of the present application realizes that when a user uses an invoice, there is no effective way to identify the authenticity of the invoice in real time, which leads to economic losses.
- a blacklist of companies that provide false invoices users cannot always query and use the blacklist.
- the blacklist cannot be updated in a timely and effective manner.
- the embodiments of the present application provide an invoice verification method, device, computing device, and storage medium that can verify the authenticity of an invoice in real time based on data analysis.
- an invoice inspection method including:
- the second information in the object to be inspected is extracted, and the second information is verified to generate a verification result.
- an invoice inspection device including:
- An identification module for receiving an inspection request and identifying the format of the object to be inspected in the inspection request
- a first inspection module configured to query a preset blacklist according to the object to be inspected and return a query result when identifying that the object to be inspected is in the first format; and / or,
- the second verification module is used for extracting the second information in the object to be verified when the object to be verified is in the second format, and verifying the second information to generate a verification result.
- a computing device which includes a memory and a processor.
- the memory stores computer-readable instructions.
- the processor causes the processor to execute the Describe the steps of the invoice inspection method.
- a non-volatile readable storage medium storing computer-readable instructions.
- the computer-readable instructions are executed by one or more processors, the one or more processors execute the above Describe the steps of the invoice inspection method.
- the above invoice inspection method, device, computing equipment and storage medium by first identifying the format of the object to be inspected, and querying the preset blacklist in the first format, and extracting the second information in the second format, and The second information is verified to obtain the verification result of the authenticity of the invoice.
- the second information is verified to obtain the verification result of the authenticity of the invoice.
- Fig. 1 is a flow chart showing an invoice verification method according to an exemplary embodiment
- FIG. 2 is a flowchart of a method for inspecting an object to be inspected in text format according to the embodiment corresponding to FIG. 1;
- FIG. 3 is a flowchart of a method for inspecting an object to be inspected in an image format according to the embodiment corresponding to FIG. 1;
- Fig. 4 is a block diagram of an invoice verification device according to an exemplary embodiment
- FIG. 5 is a block diagram of a first verification module in the invoice verification device according to the corresponding embodiment of FIG. 4;
- FIG. 6 is a block diagram of a second verification module in the invoice verification device according to the corresponding embodiment of FIG. 4;
- FIG. 7 is a block diagram of another invoice verification device according to the corresponding embodiment of FIG. 4;
- Fig. 8 is a block diagram of a computing device for implementing the above invoice verification method according to an exemplary embodiment
- Fig. 9 is a non-volatile readable storage medium for implementing the above invoice verification method according to an exemplary embodiment.
- Example embodiments will now be described more fully with reference to the drawings.
- the example embodiments can be implemented in various forms and should not be construed as being limited to the examples set forth herein; on the contrary, providing these embodiments makes the application more comprehensive and complete, and fully conveys the concept of the example embodiments For those skilled in the art.
- the described features, structures, or characteristics may be combined in one or more embodiments in any suitable manner.
- an invoice inspection method based on data analysis is first provided.
- the method may include the following steps:
- Step S101 Receive an inspection request and identify the format of the object to be inspected in the inspection request;
- Step S102 when identifying that the object to be inspected is in the first format, query a preset blacklist according to the object to be inspected and return the query result; and / or,
- Step S103 When identifying that the object to be inspected is in the second format, extract second information in the object to be inspected, and verify the second information to generate a verification result.
- Step S101 Receive an inspection request and identify the format of the object to be inspected in the inspection request.
- an interactive interface may be provided on the client so that the user can input the object to be inspected on the interactive interface and submit an inspection request for the object to be inspected to the server.
- the interactive interface may be a human-computer interactive interface of an independent program, or an interactive interface embedded in other programs, for example, presented in the form of a WeChat applet on the terminal.
- the format of the object to be inspected can be identified and judged first.
- the format of the object to be inspected may be a text format or an image format.
- the file format can be identified by the file format suffix of the object to be inspected.
- the object to be inspected may also be in a video format. At this time, one or more frames of the video can be intercepted and the image of the object to be inspected with the highest definition can be selected.
- Step S102 When identifying that the object to be inspected is in the first format, query a preset blacklist according to the object to be inspected and return a query result.
- the above-mentioned first format may be a text format.
- the above step S102 may include:
- Step S1021 Perform word segmentation processing on the object to be inspected to obtain keywords
- Step S1022 Query the preset blacklist according to the keywords to obtain the query result of the object to be inspected.
- the above text may be any one or any combination of Chinese, English, English abbreviations, and numbers used to identify the company name or number.
- the above blacklist may include information of multiple enterprises that have historically issued false invoices.
- the keyword to search in the preset blacklist before the invoice is issued or after the invoice has been inquired, the current invoicing enterprise is inquired in the blacklist, so that it can be known whether the enterprise has issued a false invoice.
- the historical record provides the user with a basis for judging whether the invoice is a false invoice.
- the keywords can be obtained as "Elephant Technology” or "Elephant”.
- the above keywords can be used to search and match the results in the blacklist, and the matching results of each keyword can be merged. Thereby generating query results. If the query result is not empty after retrieval, it means that the company has a history of issuing false invoices, and the current invoice may be a false invoice. So as to help users to make a preliminary judgment on the authenticity of invoice identification in real time. Then, the user can further verify the invoice to be issued or the invoice that has been issued.
- step S102 may further include:
- Step S1023-1 if the query result is empty, search the first database according to the keywords to obtain basic information of the target company corresponding to the keywords;
- the above-mentioned first database may be an official enterprise information database. If the search results in the blacklist are empty, it means that the company has no history of issuing false invoices. At this time, you can query and determine the detailed information of the enterprise corresponding to the keyword on the official website or search platform according to the keyword.
- the detailed information of the enterprise may include the complete name of the enterprise, the taxpayer identification number, and the social unified credit code.
- Step S1023-2 searching the second database according to the basic information of the target enterprise to obtain the credit information of the target enterprise;
- the above-mentioned second database may be an official enterprise credit information database.
- the enterprise's credit information can be pulled from the official platform or other professional platforms through the crawler algorithm.
- the above corporate credit information may include any one or any combination of any of the target company ’s historical proportion of false invoices, corporate untrustworthy records, corporate administrative punishment records, and abnormal business directory information.
- the historical proportion of false invoices issued by an enterprise can be calculated based on the total number of invoices issued by the enterprise and the number of false invoices.
- Step S1023-3 calculating the probability that the object to be checked is a false invoice according to the credit information and generating prompt information.
- the probability of the object to be checked being a false invoice can be calculated using the following formula:
- W is the probability of issuing false invoices
- X is the proportion of false invoices issued in history
- L is the number of corporate dishonest records
- A is the number of corporate administrative punishment records
- J is the information of the abnormal business directory
- Default weight is the probability of issuing false invoices
- the weight value in the above formula can be configured according to actual needs and specific conditions. Among them, for the business abnormality directory information J of the enterprise, if the enterprise is in the directory, it can be set to 1, if not, it is set to 0.
- the probability of the current invoice being a false invoice can be calculated. Provide effective data basis for users to verify the authenticity of invoices.
- the above method may further include:
- Step S103 When identifying that the object to be inspected is in the second format, extract second information in the object to be inspected, and verify the second information to generate a verification result.
- the above-mentioned second format may be an image format.
- the above-mentioned step S103 may include:
- Step S1031 identifying the object to be inspected in the second format and extracting the second information in the object to be inspected;
- Step S1032 using the invoice information identification model trained based on the labeled samples, to identify the second information in the object to be inspected to determine whether the second information in the object to be inspected includes false information.
- the object submitted by the user is a picture
- the above-mentioned second information may include: the name of the enterprise, tax number, billing amount, quantity, unit price, account, bar code, number, two-dimensional code, and any combination of seals.
- the preset invoice information identification model can be used to identify the second information and generate an identification result.
- the above training process of the invoice information identification model trained based on the labeled samples may include:
- Step S1030-1 identify the image of the false invoice, and extract the second information in the image of the false invoice;
- Step S1030-2 marking the false information in the second information in the image of the false invoice, and generating a training sample set
- Step S1030-3 use the training sample set to train a machine learning model to obtain the invoice information identification model.
- part of the existing normal invoices can also be collected, the correct information in the normal invoices can be marked, and training samples can be added at the same time. Then use the training sample set to train the machine learning model, so that the model can identify the false and erroneous information in the invoice, and then realize the authenticity of the invoice.
- part of the existing normal invoices can also be collected, the correct information in the normal invoices can be marked, and training samples can be added at the same time.
- the confidence of different information may also be set. For example, when two or three of the above-mentioned second information in the identification invoice are false or erroneous information, it is determined that the invoice is a false invoice.
- the above-mentioned invoice inspection method may further include:
- Step S201 Receive a blacklist modification request; wherein the blacklist modification request includes target information and modification credentials;
- Step S202 if the modified certificate meets the preset judgment rule, add the target information to the blacklist.
- blacklist of enterprises issuing false invoices
- users can submit a request to update the enterprise blacklist to the server according to the image of the false invoices and corresponding credential information such as enterprise information.
- credential information such as enterprise information.
- the server After verifying the invoice information, the server can update the enterprise blacklist and add the enterprise information to the blacklist.
- the above method in this exemplary embodiment recognizes the format of the device after receiving the object to be inspected, thereby realizing real-time identification of the invoice by the user.
- the method provided in the embodiments of the present application can separately inspect objects to be inspected in image format or text format. Or, when the object to be inspected contains text and images, the object to be inspected in text format and the object in image format can be simultaneously queried and verified, thereby providing more accurate inspection results.
- FIG. 4 is a block diagram of an invoice verification device according to an exemplary embodiment.
- the device may include: an identification module 410, a first verification module 420, and a second verification module 430. among them:
- the identification module 410 is configured to receive an inspection request and identify the format of the object to be inspected in the inspection request.
- the first verification module 420 is configured to, when identifying that the object to be inspected is in the first format, query a preset blacklist according to the object to be inspected and return the query result; and / or,
- the second verification module 430 is configured to extract the second information in the object to be inspected when the object to be inspected is in the second format, and verify the second information to generate a verification result.
- FIG. 5 is a block diagram of a first inspection module in the invoice inspection apparatus according to the embodiment corresponding to FIG. 4.
- the first inspection module 420 includes but is not limited to: a first acquisition module 421, The second acquisition module 422 and the calculation module 423.
- the first obtaining module 421 is configured to search the first database according to the keyword to obtain basic information of the target enterprise corresponding to the keyword when the query result is empty.
- the second acquisition module 422 is configured to search the second database according to the basic information of the target enterprise to acquire the credit information of the target enterprise.
- the calculation module 423 is configured to calculate the probability that the object to be checked is a false invoice according to the credit information and generate prompt information.
- FIG. 6 is a block diagram of a second verification module in the invoice verification device according to the embodiment corresponding to FIG. 4.
- the second verification module 430 includes but is not limited to: an extraction module 431, training samples Set generation module 432, model training module 433.
- the extraction module 431 is used to identify the image of the false invoice and extract the second information in the image of the false invoice.
- the training sample set generation module 432 is configured to mark false information in the second information in the image of the false invoice and generate a training sample set.
- a model training module 433 is used to train a machine learning model using the training sample set to obtain the invoice information identification model.
- FIG. 7 is a block diagram of another invoice verification device according to the embodiment corresponding to FIG. 4.
- the invoice verification device further includes, but is not limited to: a receiving module 710 and an adding module 720.
- the receiving module 710 is configured to receive a blacklist modification request, where the blacklist modification request includes target information and modification credentials.
- the adding module 720 is configured to add the target information to the blacklist when the modified credential meets a preset judgment rule.
- a computing device that performs all or part of the steps of any of the invoice verification methods shown above.
- the computing device includes:
- At least one processor At least one processor
- a memory communicatively connected to the at least one processor; wherein,
- the memory stores instructions executable by the at least one processor, and the instructions are executed by the at least one processor to enable the at least one processor to execute as shown in any one of the exemplary embodiments described above Invoice inspection method.
- the computing device 800 according to this embodiment of the present application is described below with reference to FIG. 8.
- the computing device 800 shown in FIG. 8 is just an example, and should not bring any limitation to the functions and usage scope of the embodiments of the present application.
- the computing device 800 is expressed in the form of a general-purpose computing device.
- the components of the computing device 800 may include, but are not limited to: the at least one processing unit 810, the at least one storage unit 820, and a bus 830 connecting different system components (including the storage unit 820 and the processing unit 810).
- the storage unit stores a program code
- the program code can be executed by the processing unit 810, so that the processing unit 810 executes various exemplary Implementation steps.
- the storage unit 820 may include a readable medium in the form of a volatile storage unit, such as a random access storage unit (RAM) 821 and / or a cache storage unit 822, and may further include a read-only storage unit (ROM) 823.
- RAM random access storage unit
- ROM read-only storage unit
- the storage unit 820 may further include a program / utility tool 824 having a set of (at least one) program modules 825.
- program modules 825 include but are not limited to: an operating system, one or more application programs, other program modules, and program data, Each of these examples or some combination may include an implementation of the network environment.
- the bus 830 may be one or more of several types of bus structures, including a storage unit bus or a storage unit controller, a peripheral bus, a graphics acceleration port, a processing unit, or a local area using any of a variety of bus structures bus.
- the computing device 800 may also communicate with one or more external devices 1000 (eg, keyboard, pointing device, Bluetooth device, etc.), and may also communicate with one or more devices that enable users to interact with the computing device 800, and / or This enables the computing device 800 to communicate with any device (eg, router, modem, etc.) that communicates with one or more other computing devices. Such communication may be performed through an input / output (I / O) interface 850.
- the computing device 800 can also communicate with one or more networks (such as a local area network (LAN), a wide area network (WAN), and / or a public network, such as the Internet) through a network adapter 860. As shown, the network adapter 860 communicates with other modules of the computing device 800 via the bus 830.
- LAN local area network
- WAN wide area network
- public network such as the Internet
- computing device 800 may be used in conjunction with the computing device 800, including but not limited to: microcode, device drivers, redundant processing units, external disk drive arrays, RAID systems, tape drives And data backup storage system.
- the example embodiments described herein can be implemented by software, or can be implemented by software in combination with necessary hardware. Therefore, the technical solution according to the embodiments of the present application can be embodied in the form of a software product, which can be stored in a non-volatile storage medium (which can be a CD-ROM, U disk, mobile hard disk, etc.) or on the network , Including several instructions to enable a computing device (which may be a personal computer, server, terminal device, or network device, etc.) to perform the method according to the embodiments of the present application.
- a computing device which may be a personal computer, server, terminal device, or network device, etc.
- a storage medium storing computer-readable instructions.
- the one or more processors execute the foregoing invoice verification method embodiment A step of.
- Fig. 9 is a non-volatile readable storage medium for implementing the above-mentioned invoice verification method according to an exemplary embodiment. As shown in FIG. 9, it includes a non-volatile readable storage medium 900 on which a computer program can be stored. A person of ordinary skill in the art may understand that all or part of the processes in the method of the foregoing embodiments may be completed by instructing relevant hardware through a computer program.
- the computer program may be stored in a computer-readable storage medium, When executed, it may include the processes of the foregoing method embodiments.
- the aforementioned storage medium may be a non-volatile storage medium such as a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM), or a random access memory (Random Access Memory, RAM), etc.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Artificial Intelligence (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
一种基于数据分析的发票检验方法、装置、计算设备和存储介质。所述方法包括:接收一检验请求,并识别所述检验请求中待检验对象的格式(S101);在识别所述待检验对象为第一格式时,根据所述待检验对象查询预设黑名单并返回查询结果(S102);或者在识别所述待检验对象为第二格式时,提取所述待检验对象中第二信息,并对所述第二信息进行校验以生成校验结果(S103)。能够实现对发票真伪的实时检验,并有效的保证发票检验结果的准确性。
Description
本申请基于并要求2018年10月23日申请的、申请号为CN 201811236992.2、名称为“发票检验方法及装置、存储介质、电子终端”的中国专利申请的优先权,其全部内容在此并入作为参考。
本申请涉及数据处理技术领域,特别是涉及发票检验方法、装置、计算设备和存储介质。
发票作为重要的经济活动凭证,十分重要。但存在部分商家提供虚假发票的情况。
本申请的发明人意识到,用户在使用发票时,并没有有效的办法对发票的真伪进行实时鉴别,从而导致自身蒙受经济损失。此外,虽然存在提供虚假发票企业的黑名单,但用户并不能随时对黑名单进行查询和使用。此外,该黑名单也并不能及时、有效的更新。
需要说明的是,在上述背景技术部分公开的信息仅用于加强对本申请的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本申请的实施例提供了一种基于数据分析的、可以实时检验发票真伪的发票检验方法、装置、计算设备和存储介质。
本申请的其他特性和优点将通过下面的详细描述变得显然,或部分地通过本申请的实践而习得。
第一方面,提供了一种发票检验方法,包括:
接收一检验请求,并识别所述检验请求中待检验对象的格式;
在识别所述待检验对象为第一格式时,根据所述待检验对象查询预设黑名单并返回查询结果;和/或,
在识别所述待检验对象为第二格式时,提取所述待检验对象中第二信息,并对所述第二信息进行校验以生成校验结果。
第二方面,提供了一种发票检验装置,包括:
识别模块,用于接收一检验请求,并识别所述检验请求中待检验对象的格式;
第一检验模块,用于在识别所述待检验对象为第一格式时,根据所述待检验对象查询预设黑名单并返回查询结果;和/或,
第二检验模块,用于在识别所述待检验对象为第二格式时,提取所述待检验对象中第二信息,并对所述第二信息进行校验以生成校验结果。
第三方面,提供了一种计算设备,包括存储器和处理器,所述存储器中存储有计算机可读指令,所述计算机可读指令被所述处理器执行时,使得所述处理器执行上述所述发票检验方法的步骤。
第四方面,提供了一种存储有计算机可读指令的非易失性可读存储介质,所述计算机可读指令被一个或多个处理器执行时,使得一个或多个处理器执行上述所述发票检验方法的步骤。
本申请的实施例提供的技术方案可以包括以下有益效果:
上述发票检验方法、装置、计算设备和存储介质,通过首先识别待检验对象的格式,并在第一个格式时向预设的黑名单查询,以及在第二格式时提取第二信息,并对第二信息进行校验,从而获取发票真伪的检验结果。从而实现对发票真伪的实时检验。进一步的,通过对不同类型数据使用不同的检验方法,可以对待开具的发票以及已经开具的发票分别进行检验,从而有效的保证发票检验结果的准确性。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本申请。
图1是根据一示例性实施例示出的一种发票检验方法的流程图;
图2是根据图1对应实施例示出的一种文本格式的待检验对象的检验方法的流程图;
图3是根据图1对应实施例示出的一种图像格式的待检验对象的检验方法的流程图;
图4是根据一示例性实施例示出的一种发票检验装置的框图;
图5是根据图4对应实施例示出的发票检验装置中第一检验模块的一种框图;
图6是根据图4对应实施例示出的发票检验装置中第二检验模块的一种框图;
图7是根据图4对应实施例示出的另一种发票检验装置的一种框图;
图8是根据一示例性实施例示出的一种用于实现上述发票检验方法的计算设备的框图;
图9是根据一示例性实施例示出的一种用于实现上述发票检验方法的非易失性可读存储介质。
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施方式使得本申请将更加全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施方式中。
此外,附图仅为本申请的示意性图解,并非一定是按比例绘制。图中相同的附图标记表示相同或类似的部分,因而将省略对它们的重复描述。附图中所示的一些方框图是功能实体,不一定必须与物理或逻辑上独立的实体相对应。可以采用软件形式来实现这些功能实体,或在一个或多个硬件模块或集成电路中实现这些功能实体,或在不同网络和/或处理器装置和/或微控制器装置中实现这些功能实体。
本示例实施方式中首先提供了一种基于数据分析的发票检验方法。参考图1中所示,该方法可以包括以下步骤:
步骤S101,接收一检验请求,并识别所述检验请求中待检验对象的格式;
步骤S102,在识别所述待检验对象为第一格式时,根据所述待检验对象查询预设黑名单并返回查询结果;和/或,
步骤S103,在识别所述待检验对象为第二格式时,提取所述待检验对象中第二信息,并对所述第二信息进行校验以生成校验结果。
通过上述的发票检验交互方法,一方面,通过首先识别待检验对象的格式,能够对多种形式的发票进行验证。另外,通过在识别为第一个格式时向预设的黑名单查询,以及在第二格式时提取第二信息,并对第二信息进行校验,获取发票真伪的检验结果。从而实现对发票真伪的实时检验。另一方面,通过对不同类型数据使用不同的检验方法,从而有效的保证发票检验结果的准确性。
下面,将参考附图及实施例对本示例实施方式中的上述方法的各个步骤进行更详细的说明。
步骤S101,接收一检验请求,并识别所述检验请求中待检验对象的格式。
本示例实施方式中,可以在客户端提供一交互界面,使用户可以在该交互界面输入待检验对象,并向服务器端提交针对该待检验对象的检验请求。该交互界面可以是一项独立程序的人机交互界面,也可以是内嵌在其他程序内的交互界面,例如以微信小程序的形式呈现在终端。
对于服务器端来说,在接收到该检验请求后,可以首先对待检验对象的格式进行识别和判断。具体来说,待检验对象的格式可以是文本格式或图像格式。可以通过待检验对象 的文件格式后缀对文件格式进行识别。
当然,在本申请的其他示例性实施例中,该待检验对象也可以是视频格式。此时,可以截取该视频中的一帧或多帧图像,并选取清晰度最高的待检验对象的图像。
步骤S102,在识别所述待检验对象为第一格式时,根据所述待检验对象查询预设黑名单并返回查询结果。
本示例实施方式中,上述的第一格式可以为文本格式。具体来说,在待检验对象为文本格式时,参考图2所示,上述的步骤S102可以包括:
步骤S1021,对所述待检验对象进行分词处理以获取关键词;
步骤S1022,根据所述关键词查询所述预设黑名单以获取所述待检验对象的查询结果。
具体来说,上述的文本可以是用于标识企业名称或编号的中文、英文、英文缩写以及数字中的任意一种或任意多种的组合。可以利用jieba分词或者其他分词工具对待检验对象进行分词处理,从而获取待检验对象对应目标企业的至少一个关键词。例如,在待检验对象为“广州小狐狸信息科技有限责任公司上海分公司”,则进行分词处理后可以获取其关键词为“小狐狸”、“小狐狸信息”等关键词。
上述的黑名单可以包括多个历史曾开具过虚假发票的企业的信息。通过利用该关键词在预设黑名单中进行检索,从而在开具发票之前或者在已开具发票之后,查询当前开具发票的企业是否在该黑名单中,从而可以获知该企业是否存在开具虚假发票的历史记录,进而为用户提供判断发票是否为虚假发票的依据。
举例来说,若用户提交的待检验对象为“大象科技有限责任公司北京分公司”。通过分词处理后可以获取关键词为“大象科技”或“大象”,此时便可以利用上述的关键词在黑名单中分别进行检索和匹配结果,并可以将各关键词的匹配结果合并从而生成查询结果。若检索后查询结果不为空,则说明该公司存在开具虚假发票的历史记录,则当前的发票存在是虚假发票的可能。从而帮助用户实现实时的对发票鉴别真伪做出初步判断。然后,用户还可以对待开具的发票或已经开具的发票进行进一步的校验。
基于上述内容,上述的步骤S102还可以包括:
步骤S1023-1,若所述查询结果为空,则根据所述关键词检索第一数据库以获取所述关键词对应的目标企业的基本信息;
本示例实施方式中,上述的第一数据库可以是官方的企业信息数据库。若在黑名单中的检索结果为空,则说明该企业不存在开具虚假发票的历史记录。此时便可以根据关键词在官方网站或检索平台查询并确定该关键词对应企业的详细信息。举例来说,企业的详细信息可以包括企业完整名称、纳税人识别号以及社会统一信用代码等。
步骤S1023-2,根据所述目标企业的基本信息检索第二数据库以获取所述目标企业的信用信息;
本示例实施方式中,上述的第二数据库可以是官方的企业信用信息数据库。在获取企业的基本信息后,便可以通过爬虫算法从官方平台或其他专业平台调拉取企业的信用信息。具体来说,上述的企业信用信息可以包括:目标企业的历史开具虚假发票比例、企业失信记录、企业行政处罚记录以及企业经营异常名录信息中的任一项或任意多项的组合。其中,企业的历史开具虚假发票比例可以根据企业开具发票的总数量和虚假发票的数量进行计算。
步骤S1023-3,根据所述信用信息计算所述待检验对象为虚假发票的概率并生成提示信息。
本示例实施方式中,在提取目标企业的信用信息后,便可以利用下式计算所述待检验对象为虚假发票的概率:
W=a1*X+a2*L+a3*A+a4*J
其中,W为开具虚假发票的概率;X为历史开具虚假发票比例、L为企业失信记录数 量、A为企业行政处罚记录数量、J为企业经营异常名录信息;a1、a2、a3、a4分别为预设权重。
具体来说,上式中的权重值可以根据实际需求及具体情况进行配置。其中,对于企业的经营异常名录信息J,若企业在该名录中则可以置1,不在则置0。
通过在官方数据库中提取企业的信用信息,并根据信用信息计算目标企业开具虚假发票的可能性,从而可以计算当前发票为虚假发票的概率。为用户鉴别发票的真伪提供有效的数据依据。
基于上述内容,进一步的,在本示例实施方式中,在对文本格式的待检验对象返回查询结果后,上述的方法还可以包括:
步骤S103,在识别所述待检验对象为第二格式时,提取所述待检验对象中第二信息,并对所述第二信息进行校验以生成校验结果。
本示例实施方式中,上述的第二格式可以为图像格式,参考图3所示,具体来说,上述的步骤S103可以包括:
步骤S1031,识别所述第二格式的所述待检验对象并提取所述待检验对象中的第二信息;
步骤S1032,利用基于标注样本训练过的发票信息鉴别模型,对所述待检验对象中的第二信息进行鉴别以确定所述待检验对象中的第二信息是否包括虚假信息。
在用户提交的待检验对象为图片时,可以首先利用OCR技术(光学字符识别)对图片进行识别,从而提取出发票的多项信息。具体来说,上述的第二信息可以包括:企业名称、税号、开票金额、数量、单价、科目、条码、编号、二维码以及印章中任意多项的组合。在获取各项信息后,可以利用预设的发票信息鉴别模型对第二信息进行鉴别,并生成鉴别结果。对于利用光学字符识别技术识别并提取图像中的文字为常规技术,本申请在此不做特殊限定。
举例而言,上述的基于标注样本训练过的发票信息鉴别模型的训练过程可以包括:
步骤S1030-1,识别虚假发票的图像,并提取所述虚假发票的图像中的第二信息;
步骤S1030-2,标记所述虚假发票的图像中的第二信息中的虚假信息,并生成训练样本集;
步骤S1030-3,使用所述训练样本集训练机器学习模型以获取所述发票信息鉴别模型。
在训练模型前,可以采集已有的虚假发票图像,并利用光学字符识别技术识别并提取虚假发票的企业名称、税号、开票金额、数量、单价、科目、条码、编号、二维码以及印章等信息,并对其中的一项或多项虚假、错误信息进行标注,从而获取训练样本集。当然,在本申请的其他示例性实施例中,还可以收集部分已有的正常发票,将正常发票中的正确信息进行标记,同时加入训练样本。然后利用该训练样本集训练该机器学习模型,从而使该模型能够识别发票中的虚假、错误信息,进而实现对发票真伪的鉴别。
当然,在本申请的其他示例性实施例中,还可以收集部分已有的正常发票,将正常发票中的正确信息进行标记,同时加入训练样本。
基于上述内容,在本申请的其他示例性实施例中,在利用发票信息鉴别模型识别虚假信息时,也可以设置不同信息的置信度。例如,在识别发票中的上述第二信息中,有两项或者三项为虚假、错误信息时,便判断该发票为虚假发票。
此外,在本示例性实施例中,上述的发票检验方法还可以包括:
步骤S201,接收黑名单修改请求;其中,所述黑名单修改请求包括目标信息及修改凭证;
步骤S202,若所述修改凭证符合预设判断规则则将所述目标信息添加至所述黑名单。
对于上述的开具虚假发票的企业黑名单,用户在被开具虚假发票后,可根据虚假发票的图像及对应的企业信息等凭证信息向服务器端提交更新企业黑名单的请求。服务器端在 验证发票信息后,便可以对企业黑名单进行更新,将该企业的信息增加至黑名单中。
综上所述,本示例性实施方式中的上述方法,通过在接收到待检对象后便对其器格式进行识别,从而实现用户对发票的实时识别。另外,通过首先识别待检验对象的格式,并在不同格式时采用不同的发票验证过程,从而保证了发票检验结果的准确性和有效性。此外,本申请实施例所提供的方法,可以分别对图像格式或文本格式的待检验对象分别进行检验。或者,在待检验对象包含文本和图像时,可以同时对文本格式的待检验对象和图像格式的待检验对象进行查询及校验,进而提供更加准确的检验结果。
需要说明的是,尽管在附图中以特定顺序描述了本申请中方法的各个步骤,但是,这并非要求或者暗示必须按照该特定顺序来执行这些步骤,或是必须执行全部所示的步骤才能实现期望的结果。附加的或备选的,可以省略某些步骤,将多个步骤合并为一个步骤执行,以及/或者将一个步骤分解为多个步骤执行等。另外,也易于理解的是,这些步骤可以是例如在多个模块/进程/线程中同步或异步执行。
进一步的,本示例实施方式中,还提供了一种基于数据分析的发票检验装置。图4是根据一示例性实施例示出的一种发票检验装置的框图。参考图4所示,该装置可以包括:识别模块410、第一检验模块420、以及第二检验模块430。其中:
识别模块410,用于接收一检验请求,并识别所述检验请求中待检验对象的格式。
第一检验模块420,用于在识别所述待检验对象为第一格式时,根据所述待检验对象查询预设黑名单并返回查询结果;和/或,
第二检验模块430,用于在识别所述待检验对象为第二格式时,提取所述待检验对象中第二信息,并对所述第二信息进行校验以生成校验结果。
可选的,如图5所示,图5是根据图4对应实施例示出的发票检验装置中第一检验模块的一种框图,第一检验模块420包括但不限于:第一获取模块421,第二获取模块422,计算模块423。
第一获取模块421,用于在所述查询结果为空时,根据所述关键词检索第一数据库以获取所述关键词对应的目标企业的基本信息。
第二获取模块422,用于根据所述目标企业的基本信息检索第二数据库以获取所述目标企业的信用信息。
计算模块423,用于根据所述信用信息计算所述待检验对象为虚假发票的概率并生成提示信息。
可选的,如图6所示,图6是根据图4对应实施例示出的发票检验装置中第二检验模块的一种框图,第二检验模块430包括但不限于:提取模块431,训练样本集生成模块432,模型训练模块433。
提取模块431,用于识别所述虚假发票的图像,并提取所述虚假发票的图像中的第二信息。
训练样本集生成模块432,用于标记所述虚假发票的图像中的第二信息中的虚假信息,并生成训练样本集。
模型训练模块433,用于使用所述训练样本集训练机器学习模型以获取所述发票信息鉴别模型。
可选的,图7是根据图4对应实施例示出的另一种发票检验装置的一种框图,该发票检验装置还包括但不限于:接收模块710,添加模块720。
接收模块710,用于接收黑名单修改请求,其中,所述黑名单修改请求包括目标信息及修改凭证。
添加模块720,用于在所述修改凭证符合预设判断规则时将所述目标信息添加至所述黑名单。
在一个实施例中,提出了一种计算设备,执行上述任一所示的发票检验方法的全部或 者部分步骤。该计算设备包括:
至少一个处理器;以及
与所述至少一个处理器通信连接的存储器;其中,
所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如上述任一个示例性实施例所示出的发票检验方法。
所属技术领域的技术人员能够理解,本申请的各个方面可以实现为系统、方法或程序产品。因此,本申请的各个方面可以具体实现为以下形式,即:完全的硬件实施方式、完全的软件实施方式(包括固件、微代码等),或硬件和软件方面结合的实施方式,这里可以统称为“电路”、“模块”或“系统”。
下面参照图8来描述根据本申请的这种实施方式的计算设备800。图8显示的计算设备800仅仅是一个示例,不应对本申请实施例的功能和使用范围带来任何限制。
如图8所示,计算设备800以通用计算设备的形式表现。计算设备800的组件可以包括但不限于:上述至少一个处理单元810、上述至少一个存储单元820、连接不同系统组件(包括存储单元820和处理单元810)的总线830。
其中,所述存储单元存储有程序代码,所述程序代码可以被所述处理单元810执行,使得所述处理单元810执行本说明书上述“实施例方法”部分中描述的根据本申请各种示例性实施方式的步骤。
存储单元820可以包括易失性存储单元形式的可读介质,例如随机存取存储单元(RAM)821和/或高速缓存存储单元822,还可以进一步包括只读存储单元(ROM)823。
存储单元820还可以包括具有一组(至少一个)程序模块825的程序/实用工具824,这样的程序模块825包括但不限于:操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。
总线830可以为表示几类总线结构中的一种或多种,包括存储单元总线或者存储单元控制器、外围总线、图形加速端口、处理单元或者使用多种总线结构中的任意总线结构的局域总线。
计算设备800也可以与一个或多个外部设备1000(例如键盘、指向设备、蓝牙设备等)通信,还可与一个或者多个使得用户能与该计算设备800交互的设备通信,和/或与使得该计算设备800能与一个或多个其它计算设备进行通信的任何设备(例如路由器、调制解调器等等)通信。这种通信可以通过输入/输出(I/O)接口850进行。并且,计算设备800还可以通过网络适配器860与一个或者多个网络(例如局域网(LAN),广域网(WAN)和/或公共网络,例如因特网)通信。如图所示,网络适配器860通过总线830与计算设备800的其它模块通信。应当明白,尽管图中未示出,可以结合计算设备800使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理单元、外部磁盘驱动阵列、RAID系统、磁带驱动器以及数据备份存储系统等。
通过以上的实施方式的描述,本领域的技术人员易于理解,这里描述的示例实施方式可以通过软件实现,也可以通过软件结合必要的硬件的方式来实现。因此,根据本申请实施方式的技术方案可以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性存储介质(可以是CD-ROM,U盘,移动硬盘等)中或网络上,包括若干指令以使得一台计算设备(可以是个人计算机、服务器、终端装置、或者网络设备等)执行根据本申请实施方式的方法。
在一个实施例中,提出了一种存储有计算机可读指令的存储介质,该计算机可读指令被一个或多个处理器执行时,使得一个或多个处理器执行上述发票检验方法实施例中的步骤。
图9是根据一示例性实施例示出的一种用于实现上述发票检验方法的非易失性可读 存储介质。如图9所示,包括非易失性可读存储介质900,其上可存储有计算机程序。本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,该计算机程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,前述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)等非易失性存储介质,或随机存储记忆体(Random Access Memory,RAM)等。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。
Claims (20)
- 一种发票检验方法,其特征在于,包括:接收检验请求,并识别所述检验请求中待检验对象的格式;在识别所述待检验对象为第一格式时,根据所述待检验对象查询预设黑名单并返回查询结果;和/或,在识别所述待检验对象为第二格式时,提取所述待检验对象中的第二信息,并对所述第二信息进行校验以生成校验结果。
- 根据权利要求1所述的方法,其特征在于,所述第一格式为文本格式;所述在识别所述待检验对象为第一格式时,根据所述待检验对象查询预设黑名单并返回查询结果包括:对所述待检验对象进行分词处理以获取关键词;根据所述关键词查询所述预设黑名单以获取所述待检验对象的查询结果。
- 根据权利要求2所述的方法,其特征在于,所述方法还包括:若所述查询结果为空,则根据所述关键词检索第一数据库以获取所述关键词对应的目标企业的基本信息;根据所述目标企业的基本信息检索第二数据库以获取所述目标企业的信用信息;根据所述信用信息计算所述待检验对象为虚假发票的概率并生成提示信息。
- 根据权利要求3所述的方法,其特征在于,所述信用信息包括所述目标企业的历史开具虚假发票比例、企业失信记录、企业行政处罚记录以及企业经营异常名录信息中的任一项或任意多项的组合;所述根据所述信用信息计算所述待检验对象为虚假发票的概率并生成提示信息包括:利用下式计算所述待检验对象为虚假发票的概率:W=a1*X+a2*L+a3*A+a4*J其中,X为历史开具虚假发票比例、L为企业失信记录数量、A为企业行政处罚记录数量、J为企业经营异常名录信息;a1、a2、a3、a4分别为预设权重。
- 根据权利要求1所述的方法,其特征在于,所述第二格式为图像格式;所述提取所述待检验对象中的第二信息,并对所述第二信息进行校验以生成校验结果包括:识别所述第二格式的所述待检验对象并提取所述待检验对象中的第二信息;利用基于标注样本训练过的发票信息鉴别模型,对所述待检验对象中的第二信息进行鉴别以确定所述待检验对象中的第二信息是否包括虚假信息。
- 根据权利要求5所述的方法,其特征在于,所述标注样本包括已标记的虚假发票;所述方法还包括:识别所述虚假发票的图像,并提取所述虚假发票的图像中的第二信息;标记所述虚假发票的图像中的第二信息中的虚假信息,并生成训练样本集;使用所述训练样本集训练机器学习模型以获取所述发票信息鉴别模型;其中,所述第二信息包括:企业名称、税号、开票金额、数量、单价、科目、条码、编号、二维码以及印章中任意多项的组合。
- 根据权利要求1所述的方法,其特征在于,所述方法还包括:接收黑名单修改请求;其中,所述黑名单修改请求包括目标信息及修改凭证;若所述修改凭证符合预设判断规则则将所述目标信息添加至所述黑名单。
- 一种发票检验装置,其特征在于,包括:识别模块,用于接收一检验请求,并识别所述检验请求中待检验对象的格式;第一检验模块,用于在识别所述待检验对象为第一格式时,根据所述待检验对象查询预设黑名单并返回查询结果;和/或,第二检验模块,用于在识别所述待检验对象为第二格式时,提取所述待检验对象中第二信息,并对所述第二信息进行校验以生成校验结果。
- 根据权利要求8所述的装置,其特征在于,所述第一格式为文本格式,所述第一检验模块被进一步用于:对所述待检验对象进行分词处理以获取关键词;根据所述关键词查询所述预设黑名单以获取所述待检验对象的查询结果。
- 根据权利要求9所述的装置,其特征在于,所述装置还包括:第一获取模块,用于在所述查询结果为空时,根据所述关键词检索第一数据库以获取所述关键词对应的目标企业的基本信息;第二获取模块,用于根据所述目标企业的基本信息检索第二数据库以获取所述目标企业的信用信息;计算模块,用于根据所述信用信息计算所述待检验对象为虚假发票的概率并生成提示信息。
- 根据权利要求10所述的装置,其特征在于,所述信用信息包括所述目标企业的历史开具虚假发票比例、企业失信记录、企业行政处罚记录以及企业经营异常名录信息中的任一项或任意多项的组合,所述计算模块被进一步用于:利用下式计算所述待检验对象为虚假发票的概率:W=a1*X+a2*L+a3*A+a4*J其中,X为历史开具虚假发票比例、L为企业失信记录数量、A为企业行政处罚记录数量、J为企业经营异常名录信息;a1、a2、a3、a4分别为预设权重。
- 根据权利要求8所述的装置,其特征在于,所述第二格式为图像格式,所述第二检验模块被进一步用于:识别所述第二格式的所述待检验对象并提取所述待检验对象中的第二信息;利用基于标注样本训练过的发票信息鉴别模型,对所述待检验对象中的第二信息进行鉴别以确定所述待检验对象中的第二信息是否包括虚假信息。
- 根据权利要求12所述的装置,其特征在于,所述标注样本包括已标记的虚假发票,所述装置还包括:提取模块,用于识别所述虚假发票的图像,并提取所述虚假发票的图像中的第二信息;训练样本集生成模块,用于标记所述虚假发票的图像中的第二信息中的虚假信息,并生成训练样本集;模型训练模块,用于使用所述训练样本集训练机器学习模型以获取所述发票信息鉴别模型;其中,所述第二信息包括:企业名称、税号、开票金额、数量、单价、科目、条码、编号、二维码以及印章中任意多项的组合。
- 根据权利要求8所述的装置,其特征在于,所述装置还包括:接收模块,用于接收黑名单修改请求,其中,所述黑名单修改请求包括目标信息及修改凭证;添加模块,用于在所述修改凭证符合预设判断规则时将所述目标信息添加至所述黑名单。
- 一种计算设备,包括存储器和处理器,所述存储器中存储有计算机可读指令,所述计算机可读指令被所述处理器执行时,使得所述处理器执行:接收检验请求,并识别所述检验请求中待检验对象的格式;在识别所述待检验对象为第一格式时,根据所述待检验对象查询预设黑名单并返回查询结果;和/或,在识别所述待检验对象为第二格式时,提取所述待检验对象中的第二信息,并对所述第二信息进行校验以生成校验结果。
- 根据权利要求15所述的计算设备,其特征在于,所述第一格式为文本格式;所述在识别所述待检验对象为第一格式时,根据所述待检验对象查询预设黑名单并返回查询结果包括:对所述待检验对象进行分词处理以获取关键词;根据所述关键词查询所述预设黑名单以获取所述待检验对象的查询结果。
- 根据权利要求16所述的计算设备,其特征在于,所述计算机可读指令被所述处理器执行时,使得所述处理器还执行:若所述查询结果为空,则根据所述关键词检索第一数据库以获取所述关键词对应的目标企业的基本信息;根据所述目标企业的基本信息检索第二数据库以获取所述目标企业的信用信息;根据所述信用信息计算所述待检验对象为虚假发票的概率并生成提示信息。
- 一种存储有计算机可读指令的非易失性可读存储介质,所述计算机可读指令被一个或多个处理器执行时,使得一个或多个处理器执行:接收检验请求,并识别所述检验请求中待检验对象的格式;在识别所述待检验对象为第一格式时,根据所述待检验对象查询预设黑名单并返回查询结果;和/或,在识别所述待检验对象为第二格式时,提取所述待检验对象中的第二信息,并对所述第二信息进行校验以生成校验结果。
- 根据权利要求18所述的非易失性可读存储介质,其特征在于,所述第一格式为文本格式,所述在识别所述待检验对象为第一格式时,根据所述待检验对象查询预设黑名单并返回查询结果包括:对所述待检验对象进行分词处理以获取关键词;根据所述关键词查询所述预设黑名单以获取所述待检验对象的查询结果。
- 根据权利要求19所述的非易失性可读存储介质,其特征在于,所述计算机可读指令被一个或多个处理器执行时,使得一个或多个处理器还执行:若所述查询结果为空,则根据所述关键词检索第一数据库以获取所述关键词对应的目标企业的基本信息;根据所述目标企业的基本信息检索第二数据库以获取所述目标企业的信用信息;根据所述信用信息计算所述待检验对象为虚假发票的概率并生成提示信息。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811236992.2 | 2018-10-23 | ||
CN201811236992.2A CN109637000B (zh) | 2018-10-23 | 2018-10-23 | 发票检验方法及装置、存储介质、电子终端 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020082673A1 true WO2020082673A1 (zh) | 2020-04-30 |
Family
ID=66066598
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/079039 WO2020082673A1 (zh) | 2018-10-23 | 2019-03-21 | 发票检验方法、装置、计算设备和存储介质 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109637000B (zh) |
WO (1) | WO2020082673A1 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111724241A (zh) * | 2020-06-05 | 2020-09-29 | 西安交通大学 | 基于动态边特征增强的图注意力网络的企业发票虚开检测方法 |
CN112181962A (zh) * | 2020-09-25 | 2021-01-05 | 中国建设银行股份有限公司 | 报表校验方法、装置、设备及存储介质 |
CN112365116A (zh) * | 2020-09-02 | 2021-02-12 | 税安科技(杭州)有限公司 | 一种数据风险分析方法及相关装置 |
CN112699873A (zh) * | 2020-12-30 | 2021-04-23 | 航天信息股份有限公司 | 一种基于ocr识别的采集发票数据的系统及方法 |
CN113239881A (zh) * | 2021-06-03 | 2021-08-10 | 上海中通吉网络技术有限公司 | 一种发票报销方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111178219A (zh) * | 2019-12-24 | 2020-05-19 | 泰康保险集团股份有限公司 | 票据识别管理方法、装置、存储介质及电子设备 |
CN112287828A (zh) * | 2020-10-29 | 2021-01-29 | 平安普惠企业管理有限公司 | 一种基于机器学习的财务报表生成方法及装置 |
CN114358659B (zh) * | 2022-03-10 | 2022-06-03 | 广东粤海集团企业服务有限公司 | 一种单据核验信息处理方法及系统 |
CN118503466A (zh) * | 2024-07-19 | 2024-08-16 | 武汉辰亚科技有限公司 | 一种基于深度学习的彩票中奖查询方法及装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140268250A1 (en) * | 2013-03-15 | 2014-09-18 | Mitek Systems, Inc. | Systems and methods for receipt-based mobile image capture |
CN106157100A (zh) * | 2016-08-17 | 2016-11-23 | 广州市力融计算机技术有限公司 | 改进合同发票管理水平和效能的系统和方法 |
CN106485243A (zh) * | 2016-10-31 | 2017-03-08 | 用友网络科技股份有限公司 | 一种票据识别纠错方法及装置 |
CN108242050A (zh) * | 2016-12-27 | 2018-07-03 | 航天信息股份有限公司 | 电子发票的处理方法及装置 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1213803A (zh) * | 1998-09-08 | 1999-04-14 | 周裕龙 | 一种票证防伪方法 |
CN2357368Y (zh) * | 1999-02-12 | 2000-01-05 | 北京科瑞奇技术开发有限公司 | 智能防伪金融pos机 |
US20020184152A1 (en) * | 1999-06-30 | 2002-12-05 | Martin David A. | Method and device for preventing check fraud |
CN1185601C (zh) * | 2002-08-27 | 2005-01-19 | 上海经达实业发展有限公司 | 通用道路收费系统 |
CN1489097A (zh) * | 2002-11-25 | 2004-04-14 | 华旭金卡股份有限公司 | 增值税(一般纳税人)信息管理系统 |
GB0408209D0 (en) * | 2004-04-13 | 2004-05-19 | Kalamazoo Security Print Ltd | Document authentication system and related methods |
CN103903171A (zh) * | 2014-04-02 | 2014-07-02 | 浪潮软件集团有限公司 | 一种交互式网络发票真伪查验方法 |
CN107862785A (zh) * | 2017-10-16 | 2018-03-30 | 深圳市中钞信达金融科技有限公司 | 票据鉴定方法及装置 |
CN107944738A (zh) * | 2017-12-07 | 2018-04-20 | 税友软件集团股份有限公司 | 一种税务信用积分计算方法及装置 |
CN108171863A (zh) * | 2017-12-28 | 2018-06-15 | 国网山东省电力公司蒙阴县供电公司 | 增值税发票的检验方法及装置 |
CN108446621A (zh) * | 2018-03-14 | 2018-08-24 | 平安科技(深圳)有限公司 | 票据识别方法、服务器及计算机可读存储介质 |
-
2018
- 2018-10-23 CN CN201811236992.2A patent/CN109637000B/zh active Active
-
2019
- 2019-03-21 WO PCT/CN2019/079039 patent/WO2020082673A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140268250A1 (en) * | 2013-03-15 | 2014-09-18 | Mitek Systems, Inc. | Systems and methods for receipt-based mobile image capture |
CN106157100A (zh) * | 2016-08-17 | 2016-11-23 | 广州市力融计算机技术有限公司 | 改进合同发票管理水平和效能的系统和方法 |
CN106485243A (zh) * | 2016-10-31 | 2017-03-08 | 用友网络科技股份有限公司 | 一种票据识别纠错方法及装置 |
CN108242050A (zh) * | 2016-12-27 | 2018-07-03 | 航天信息股份有限公司 | 电子发票的处理方法及装置 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111724241A (zh) * | 2020-06-05 | 2020-09-29 | 西安交通大学 | 基于动态边特征增强的图注意力网络的企业发票虚开检测方法 |
CN111724241B (zh) * | 2020-06-05 | 2024-03-29 | 西安交通大学 | 基于动态边特征的图注意力网络的企业发票虚开检测方法 |
CN112365116A (zh) * | 2020-09-02 | 2021-02-12 | 税安科技(杭州)有限公司 | 一种数据风险分析方法及相关装置 |
CN112181962A (zh) * | 2020-09-25 | 2021-01-05 | 中国建设银行股份有限公司 | 报表校验方法、装置、设备及存储介质 |
CN112699873A (zh) * | 2020-12-30 | 2021-04-23 | 航天信息股份有限公司 | 一种基于ocr识别的采集发票数据的系统及方法 |
CN113239881A (zh) * | 2021-06-03 | 2021-08-10 | 上海中通吉网络技术有限公司 | 一种发票报销方法 |
Also Published As
Publication number | Publication date |
---|---|
CN109637000B (zh) | 2021-12-28 |
CN109637000A (zh) | 2019-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020082673A1 (zh) | 发票检验方法、装置、计算设备和存储介质 | |
US11816544B2 (en) | Composite machine learning system for label prediction and training data collection | |
CN110765770B (zh) | 一种合同自动生成方法及装置 | |
US11972201B2 (en) | Facilitating auto-completion of electronic forms with hierarchical entity data models | |
US10402163B2 (en) | Intelligent data extraction | |
WO2021208696A1 (zh) | 用户意图分析方法、装置、电子设备及计算机存储介质 | |
CN113312461A (zh) | 基于自然语言处理的智能问答方法、装置、设备及介质 | |
CN109359113B (zh) | 纳税报表核对方法、装置及存储介质、服务器 | |
CN112463599B (zh) | 自动化测试方法、装置、计算机设备和存储介质 | |
CN103530312B (zh) | 使用多方面足迹的用户标识的方法和系统 | |
CN112182224A (zh) | 裁判文书摘要生成方法、装置、电子设备及可读存储介质 | |
AU2019204444A1 (en) | System and method for enrichment of ocr-extracted data | |
CN111506595B (zh) | 一种数据查询方法、系统及相关设备 | |
WO2023272862A1 (zh) | 基于网络行为数据的风控识别方法、装置、电子设备及介质 | |
CN112232088A (zh) | 合同条款风险智能识别方法、装置、电子设备及存储介质 | |
WO2023159771A1 (zh) | 基于rpa和ai的发票处理方法、装置、设备和介质 | |
CN115510188A (zh) | 文本关键词关联方法、装置、设备及存储介质 | |
CN113792138B (zh) | 报表生成方法、装置、电子设备及存储介质 | |
CN111738290B (zh) | 图像检测方法、模型构建和训练方法、装置、设备和介质 | |
CN110363498A (zh) | 一种团队招聘方法及系统 | |
CN114841663A (zh) | Gps设备安装质量的核验方法、装置、设备及存储介质 | |
CN107220255B (zh) | 地址信息处理方法及装置 | |
CN112416993A (zh) | 一种商标变更判断方法、系统、设备及可读存储介质 | |
CN112700322B (zh) | 订单抽样检测方法、装置、电子设备和存储介质 | |
CN116205596A (zh) | 一种财务报销数据处理方法、装置、电子设备及存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19877357 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 31/08/2021) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19877357 Country of ref document: EP Kind code of ref document: A1 |