WO2020082606A1 - 显示装置及其驱动方法 - Google Patents

显示装置及其驱动方法 Download PDF

Info

Publication number
WO2020082606A1
WO2020082606A1 PCT/CN2019/070204 CN2019070204W WO2020082606A1 WO 2020082606 A1 WO2020082606 A1 WO 2020082606A1 CN 2019070204 W CN2019070204 W CN 2019070204W WO 2020082606 A1 WO2020082606 A1 WO 2020082606A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
modulator
angle
polarization direction
electrode
Prior art date
Application number
PCT/CN2019/070204
Other languages
English (en)
French (fr)
Inventor
林明彦
Original Assignee
张家港康得新光电材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 张家港康得新光电材料有限公司 filed Critical 张家港康得新光电材料有限公司
Publication of WO2020082606A1 publication Critical patent/WO2020082606A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1323Arrangements for providing a switchable viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection

Definitions

  • the present disclosure relates to display technology, for example, to a display device and a driving method thereof.
  • FIG. 1 is a schematic diagram of a two-dimension (2D) and three-dimensional (3D) image switchable display device.
  • a 2D and 3D image can be switched display device (2D and 3D Image)
  • Switchable Display 10 generally uses a liquid crystal separation component (Liquid Crystal View Separator) 12, and the liquid crystal separation component 12 is disposed in front of a screen of the image display 11.
  • the image display 11 is a known flat panel display that can be known from liquid crystal, organic light emitting diode (Organic Light Emitting Diode, OLED), quantum dot (Quantum Dot, QD), micro-light emitting diode (micro-Light Emitting Diode, micro-LED) Posed.
  • a coordinate system XYZ is defined, where the XY plane is the image display surface, that is, the image display surface of the 2D and 3D image switchable display device 10 is parallel to the XY plane.
  • the X direction is the horizontal axis
  • the Y direction is the vertical axis
  • the Z direction is the visual axis.
  • the liquid crystal visual separation assembly 12 can be rendered in a light-transparent state, and the observer 13 can view a 2D picture to achieve the purpose of two-dimensional display with a wide viewing angle; driven by the external voltage V, the The liquid crystal visual separation component 12 can also present a state of visual separation, and the observer 13 can view a 3D image to achieve the purpose of three-dimensional display.
  • the liquid crystal visual separation component 12 can be composed of a liquid crystal parallax barrier component (Liquid Crystal Parallax Barrier Device), or a liquid crystal column array lens component (Liquid Crystal Lenticular Lens Array Device).
  • FIG. 2 is a schematic diagram of a switchable display device for 2D and anti-spy images.
  • Switchable Display 20 is generally adjustable using a single viewing angle
  • a liquid crystal component (Viewing angle controllable liquid crystal device) 22 and the viewing angle controllable liquid crystal component 22 is arranged in front of a video display 11 screen.
  • the liquid crystal element 22 can be in a transparent state, and the observer 13 can view a 2D picture with a wide viewing angle to achieve the purpose of two-dimensional display with a wide viewing angle; or through external Driven by voltage V, the viewing angle can be adjusted.
  • the liquid crystal device 22 can also display a narrow viewing angle.
  • the observer 13 can view a 2D image with a narrow viewing angle to achieve the purpose of two-dimensional display with a narrow viewing angle, so as to achieve anti-peeping image display .
  • FIG. 3 is a schematic diagram of a privacy image display.
  • the demand for privacy is in the horizontal direction.
  • the specific angle may be 45 °, for example.
  • the viewing angle can control the liquid crystal module 22, and according to different working principles (Working Principle), it can be divided into three types: light shielding method (Light Shielding Method), light scattering method (Light Scattering Method), and light absorption method (Light Absorption Method). Different viewing angles can control the liquid crystal components.
  • the present disclosure provides a display device and a driving method thereof to realize the mutual switching between a wide-view two-dimensional display, a narrow-view two-dimensional display, and a three-dimensional display, thereby enriching the functions of the display device.
  • a display device includes: a display panel; a light polarization direction modulator, located on the light exit side of the display panel, the light polarization direction modulator being configured to convert light emitted by the display panel into a preset polarization direction Linearly polarized light; and a light direction angle brightness modulator, located on the side of the light polarization direction modulator away from the display panel, the light direction angle brightness modulator is set to adjust the output through the light direction angle brightness modulator
  • the brightness of the linearly polarized light changes with the change of the exit angle, and the light direction angle brightness modulator is further configured to form a slit grating during three-dimensional display, so that the display device presents different display states; the display The status includes a wide-view two-dimensional display, a narrow-view two-dimensional display, and a three-dimensional display.
  • the wide-view two-dimensional display is a two-dimensional display with a viewing angle greater than or equal to a first preset angle
  • the narrow-view two-dimensional display is a viewing angle less than a second
  • the first preset angle is greater than the second preset angle
  • a driving method for a display device as described above includes: controlling the display panel to emit light; controlling the light polarization direction modulator to convert the light emitted from the display panel into linearly polarized light along a preset polarization direction; control The light direction angle brightness modulator adjusts the brightness of the linearly polarized light emitted through the light direction angle brightness modulator to change with the change of the exit angle, and adjusts the light direction angle brightness modulator during three-dimensional display Forming a slit grating so that the display device presents different display states; the display states include wide-view two-dimensional display, narrow-view two-dimensional display, and three-dimensional display, where the wide-view two-dimensional display is that the viewing angle is greater than or equal to the first In a two-dimensional display with a preset angle, the narrow-view two-dimensional display is a two-dimensional display with a viewing angle smaller than the second preset angle, and the first preset angle is greater than the second preset angle.
  • 1 is a schematic diagram of a switchable display device for 2D and 3D images
  • FIG. 2 is a schematic diagram of a switchable display device for 2D and anti-spy images
  • FIG. 3 is a schematic diagram of a kind of anti-peeping image display
  • FIG. 4 is a schematic diagram of a display device provided by an embodiment
  • FIG. 5 is a schematic diagram of another display device provided by an embodiment
  • FIG. 6 is a schematic diagram showing the relationship between the polarization direction of the light emitted from the light emitting surface of the display panel and the crystal axis of the half-wave plate according to an embodiment
  • FIG. 7 is a schematic diagram of a top structure of an upper electrode of a light direction angle brightness modulator provided by an embodiment
  • FIG. 8 is a schematic diagram of the display device shown in FIG. 5 to realize a wide-view two-dimensional display
  • FIG. 9 is a schematic diagram of the display device shown in FIG. 5 to achieve a narrow-view two-dimensional display
  • FIG. 10 is a schematic diagram of the display device shown in FIG. 5 to achieve three-dimensional display
  • 11a-11c are schematic diagrams of the principle that horizontally linearly polarized incident light can penetrate through a full viewing angle
  • 12a-12c are schematic diagrams showing the principle that horizontal linearly polarized incident light can penetrate through a narrow viewing angle
  • 13a to 13c are schematic diagrams of the principle that vertical linearly polarized incident light can be shielded at a full viewing angle
  • 14a-14c are schematic diagrams of the principle that vertical linearly polarized incident light can penetrate through a full viewing angle
  • 15 is a schematic flowchart of a driving method of a display device according to an embodiment.
  • FIG. 4 is a schematic diagram of a display device provided in this embodiment.
  • the display device 30 includes a display panel 31, a light polarization direction modulator 60 and a light direction angle brightness modulator 40.
  • the display panel 31 is configured to emit light, and the display panel 31 may be a liquid crystal display panel. Since the liquid crystal display panel is generally provided with two polarizing plates facing each other, the light emitted from the liquid crystal display panel is linearly polarized light.
  • the display panel may also be a display panel such as an organic light-emitting display panel, an electrophoretic display panel, or a quantum dot display panel whose outgoing light is not polarized light, and the outgoing light may be processed into linearly polarized light.
  • the light emitted from the display panel 31 is linearly polarized light.
  • the light polarization direction modulator 60 is located on the light exit side of the display panel 31 and is configured to convert the light emitted by the display panel 31 into linearly polarized light along a preset polarization direction.
  • the light direction angle brightness modulator 40 is located on the side of the light polarization direction modulator 60 away from the display panel 31, and is configured to adjust the brightness of the linearly polarized light emitted through the light direction angle brightness modulator 40 to vary with the change of the exit angle.
  • the angular brightness modulator 40 is further configured to form a slit grating during three-dimensional display, so that the display device 30 exhibits different display states.
  • Display status includes wide viewing angle two-dimensional display, narrow viewing angle two-dimensional display and three-dimensional display, wide viewing angle two-dimensional display is a two-dimensional display with a viewing angle greater than or equal to a first preset angle, and narrow viewing angle two-dimensional display is a viewing angle less than a second preset angle 2D display, the first preset angle is greater than the second preset angle.
  • the switchable display device for 2D and 3D images can only realize the mutual switching between the wide-angle two-dimensional display and the three-dimensional display
  • the switchable display device for 2D and privacy images can only realize the wide-angle two-dimensional display and the narrow angle of view Switching between two-dimensional displays, but unable to integrate the display of 2D, 3D and privacy images, to provide more applications and meet the needs of more consumers.
  • the display device provided in this embodiment can realize the mutual switching between the wide-view two-dimensional display, the narrow-view two-dimensional display and the three-dimensional display, which enriches the functions of the display device.
  • the display device provided in this embodiment includes a display panel, a light polarization direction modulator, and a light direction angle brightness modulator.
  • the light polarization direction modulator may set the light emitted by the display panel to polarized light along a preset polarization direction.
  • the preset polarization direction is along the X direction in the case of wide-angle two-dimensional display and narrow angle of view two-dimensional display, and the preset polarization direction is in the Y direction in the case of three-dimensional display.
  • the light direction angle brightness modulator can adjust the brightness without changing with the exit angle, thereby achieving a two-dimensional display with a wide viewing angle; the light direction angle brightness modulator can be adjusted The brightness decreases with the increase of the emission angle, thereby achieving a two-dimensional display with a narrow viewing angle; the light direction angle brightness modulator can also form a slit grating (ie, a parallax barrier), thereby achieving a three-dimensional display.
  • a slit grating ie, a parallax barrier
  • FIG. 5 is a schematic diagram of another display device provided by this embodiment.
  • two adjacent sides of the display panel 31 extend in the X direction and the Y direction, respectively, and the normal direction of the plane where the display panel 31 lies is along
  • the Z direction extends, the X direction, the Y direction, and the Z direction form a Cartesian coordinate system, and the line between the eyes of the observer 13 is parallel to the X direction.
  • the X-direction, Y-direction and Z-direction in the part of this embodiment are consistent with the X-direction, Y-direction and Z-direction in the background art.
  • the above X-direction, Y-direction and Z-direction are defined based on the actual use of the display device 30, that is, for the visual sense of the observer 13, the axis in the X direction is the horizontal axis and the axis in the Y direction is vertical.
  • the axis and the axis in the Z direction are visual axes.
  • the two-dimensional display with a wide viewing angle, the two-dimensional display with a narrow viewing angle, and the three-dimensional display all refer to the X direction and do not involve the change of the brightness in the Y direction.
  • a wide-view two-dimensional display, a narrow-view two-dimensional display, and a three-dimensional display can also be implemented in the Y direction as needed.
  • FIGS. 4 and 5 the Z direction arrow in FIG. 4 points from top to bottom, and the Z direction arrow in FIG. 5 points from bottom to top. Therefore, the positional relationship shown in FIGS. 4 and 5 is opposite.
  • the display panel 31 is not shown, and the display panel 31 is located below the light polarization direction modulator 60.
  • the light polarization direction modulator 60 includes a light polarization direction modulator lower substrate 61b, and a light polarization direction modulator lower substrate 62b located on the side of the light polarization direction modulator lower substrate 61b that is sequentially arranged on the side away from the display panel 31, and a light polarization direction modulator lower electrode 62b
  • the alignment direction of the alignment layer 63b under the light polarization direction modulator is perpendicular to the alignment direction of the alignment layer 63a on the light polarization direction modulator, and the alignment direction of the alignment layer 63b under the light polarization direction modulator is along the Y direction.
  • the light polarization direction modulator 60 may further include a light polarization direction modulator sealant 64, a polarization direction modulator sealant 64, a light polarization direction modulator upper substrate 61a and a light polarization direction modulator lower substrate 61b to form an enclosed space and seal the light polarization direction Modulator liquid crystal layer 65.
  • the light polarization direction modulator upper substrate 61a and the light polarization direction modulator lower substrate 61b may be formed of glass materials, and the light polarization direction modulator upper electrode 62a and the light polarization direction modulator lower electrode 62b may be formed of indium tin oxide
  • the alignment layer 63b under the light polarization direction modulator and the alignment layer 63a on the light polarization direction modulator may be formed of polyimide.
  • the light polarization direction modulator liquid crystal layer 65 includes twisted nematic liquid crystal molecules.
  • the long axis of the twisted nematic liquid crystal molecules in the liquid crystal layer 65 of the light polarization direction modulator near the alignment layer 63a on the light polarization direction modulator extends in the alignment direction (ie, X direction) of the alignment layer 63a on the light polarization direction modulator.
  • the long axis of the twisted nematic liquid crystal molecules in the light polarization direction modulator liquid crystal layer 65 near the alignment layer 63b under the light polarization direction modulator extends in the alignment direction (ie, Y direction) of the alignment layer 63b under the light polarization direction modulator.
  • the twisted nematic liquid crystal molecules in the liquid crystal layer 65 of the light polarization direction modulator have the characteristic of twisted rotation arranged by 90 °, and can rotate the polarization direction of the linearly polarized light by 90 °.
  • the light polarization direction modulator 60 further includes a half-wave plate 66.
  • the half-wave plate 66 is a birefringent crystal with a certain thickness. When normal incident light passes through, ordinary light (typ) light ( o light) and extra- meat light (e light) phase difference is equal to ⁇ or an odd multiple of ⁇ .
  • the half-wave plate 66 is located between the display panel 31 and the light polarization direction modulator liquid crystal layer 65, and the half-wave plate 66 is arranged to output linearly polarized light with a polarization direction along the Y direction.
  • FIG. 6 is a schematic diagram showing the relationship between the polarization direction of the light emitted from the light emitting surface of the display panel and the crystal axis of the half-wave plate provided in this embodiment.
  • the polarization direction of the light emitted from the light emitting surface of the display panel 31 (FIG. 6
  • the angle bisector of the solid-line double arrow) and the Y-direction are parallel to the crystal axis e-axis direction of the half-wave plate 66.
  • the angle between the polarization direction of the light emitted from the light emitting surface of the display panel 31 and the crystal axis e-axis direction is ⁇ , and the angle between the Y direction and the crystal axis e-axis direction is also ⁇ .
  • the polarization direction of the light emitted from the light emitting surface of the display panel 31 is rotated by the half-wave plate 66 by an angle 2 ⁇ , the polarization direction of the light emitted becomes the Y direction.
  • the half-wave plate 66 does not absorb any light incident on the half-wave plate 66, the utilization efficiency of the light is improved.
  • the half-wave plate 66 is located between the display panel 31 and the lower substrate 61 b of the light polarization direction modulator.
  • the light polarization direction modulator lower substrate 61b, the light polarization direction modulator lower electrode 62b, the light polarization direction modulator lower alignment layer 63b, the light polarization direction modulator liquid crystal layer 65, and the light polarization direction modulator may be formed first The alignment layer 63a, the light polarization direction modulator upper electrode 62a and the light polarization direction modulator upper substrate 61a, and then the half-wave plate 66 is pasted to the light polarization direction modulator lower substrate 61b away from the light polarization direction modulator liquid crystal layer 65 side.
  • the half-wave plate 66 may also be located between the lower substrate 61b of the light polarization direction modulator and the liquid crystal layer 65 of the light polarization direction modulator.
  • the position of the half-wave plate 66 is not limited as long as the half-wave plate 66 need only be located between the display panel 31 and the polarization direction modulator liquid crystal layer 65.
  • the light direction angle brightness modulator 40 includes a light direction angle brightness modulator lower substrate 41b, and a light direction angle brightness modulator lower substrate 41b is arranged side by side from the display panel 31
  • the light direction angle brightness modulator upper electrode 42a includes a plurality of first sub-electrodes 421a and a plurality of second sub-electrodes 422a.
  • the first sub-electrodes 421a and the second sub-electrodes 422a are alternately arranged along the X direction, and the first sub-electrodes 421a and the Both sub-electrodes 422a extend in the Y direction.
  • the alignment direction of the alignment layer 43b under the light direction angle brightness modulator is parallel to the alignment direction of the alignment layer 43a on the light direction angle brightness modulator, the alignment direction of the alignment layer 43b under the light direction angle brightness modulator is along the Y direction, the light direction angle brightness
  • the alignment direction of the alignment layer 43a on the modulator is also along the Y direction.
  • the light direction angle brightness modulator 40 may further include a light direction angle brightness modulator sealant 44, a light direction angle brightness modulator sealer 44, a light direction angle brightness modulator upper substrate 41a and a light direction angle brightness modulator lower substrate 41b to form a seal
  • the liquid crystal layer 45 of the light direction angle brightness modulator is sealed in space.
  • the light direction angle brightness modulator upper substrate 41a and the light direction angle brightness modulator lower substrate 41b may be formed of glass materials
  • the light direction angle brightness modulator upper electrode 42a and the light direction angle brightness modulator lower electrode 42b may be formed by Indium tin oxide is formed, and the alignment layer 43a on the light direction angle brightness modulator and the alignment layer 43b on the light direction angle brightness modulator may be formed of polyimide.
  • the light direction angle brightness modulator liquid crystal layer 45 includes a host material and a guest material, the host material includes nematic liquid crystal molecules, and the guest material includes dichroic dye molecules.
  • the dichroic dye molecules with different absorptions of visible light along the long axis direction and the short axis direction are taken as guests and dissolved in the main body of the aligned nematic liquid crystal molecules.
  • the dichroic dye molecules will be aligned in the same direction as the nematic liquid crystal molecules "guest-dependent".
  • the arrangement direction of the dichroic dye molecules will also change accordingly, that is, the absorption of incident light by the dichroic dye also changes.
  • the dichroic dye molecules are P-type dichroic dye molecules.
  • P-type dichroic dye molecules have the following optical effects on the linearly polarized incident light, depending on the angle between the linear polarization direction and the molecular long axis direction.
  • the linear polarization direction is at an angle of 0 ° to the molecular long axis direction, that is, when the linear polarization direction is parallel to the molecular long axis direction, the incident light can be completely absorbed.
  • the nematic liquid crystal molecules are positive liquid crystal molecules.
  • the long axis of the positive liquid crystal molecule rotates in the direction of the electric field.
  • FIG. 7 is a schematic top view of the upper electrode of the light direction angle brightness modulator provided in this embodiment.
  • the first sub-electrode 421a is connected to the first voltage line 421c
  • the second sub-electrode 422a is connected to the second Voltage line 422c.
  • the first voltage line 421c applies the same voltage value to all the first sub-electrodes 421a
  • the second voltage line 422c applies the same voltage value to all the second sub-electrodes 422a.
  • a plurality of first sub-electrodes 421a constitute a first comb structure
  • a plurality of second sub-electrodes 422a constitute a second comb structure.
  • the first sub-electrode 421a and the second sub-electrode 422a are arranged crosswise and electrically insulated from each other.
  • the first sub-electrode 421a constitutes a first comb structure
  • the second sub-electrode 422a constitutes a second comb structure.
  • the first sub-electrode 421a and the second sub-electrode 422a can fill each other ’s gaps , Which saves space overall.
  • the upper substrate 61 a of the light polarization direction modulator and the lower substrate 41 b of the light direction angle brightness modulator are bonded by an adhesive layer 50.
  • the adhesive layer 50 may be composed of photo-curable resin and thermosetting resin.
  • the difference between the refractive index of the glue layer 50 and the optical refractive index of the upper substrate 61a of the light polarization direction modulator is less than 0.1, and the difference between the refractive index of the glue layer 50 and the optical refractive index of the lower substrate 41b of the light direction angular brightness modulator is less than 0.1 .
  • the difference between the refractive index of the glue layer 50 and the optical refractive index of the upper substrate 61a of the light polarization direction modulator and the lower substrate 41b of the light direction angle brightness modulator is less than 0.1, so as to improve the light transmittance.
  • the glue layer 50, the upper substrate 61a of the light polarization direction modulator and the lower substrate 41b of the light direction angle brightness modulator can also be provided to have the same optical refractive index.
  • FIG. 8 is a schematic diagram of the display device shown in FIG. 5 to realize a wide-view two-dimensional display.
  • the voltage value applied to the lower electrode 62b of the light polarization direction modulator is V1
  • the upper electrode 62a of the light polarization direction modulator is applied.
  • the voltage value is V2
  • the voltage value applied to the lower electrode 42b of the light direction angle brightness modulator is V3
  • the voltage value applied to the first sub-electrode 421a is V41
  • the voltage value applied to the second sub-electrode 422a is V42.
  • the black dots in FIG. 8 represent linearly polarized light vibrating in the Y direction, and may also be referred to as vertically linearly polarized light.
  • the double-arrow solid line in FIG. 8 indicates linearly polarized light vibrating in the X direction, which may also be referred to as horizontal linearly polarized light, and the wide arrow in FIG. 8 indicates light emitted from the light emitting surface of the display panel 31.
  • the half wave plate 66 can be omitted; when the polarization direction of the light emitted from the light output surface of the display panel 31 is not along the Y direction, the half wave plate 66 is set to output the polarization direction along the Y direction Linearly polarized light.
  • the light incident on the liquid crystal layer 65 of the light polarization direction modulator near the light polarization direction modulator lower substrate 61b is vertically linearly polarized light.
  • V1 V2
  • the long axis of the twisted nematic liquid crystal molecules in the liquid crystal layer 65 of the light polarization direction modulator near the alignment layer 63a on the light polarization direction modulator extends in the alignment direction (ie, X direction) of the alignment layer 63a on the light polarization direction modulator.
  • the long axis of the twisted nematic liquid crystal molecules in the light polarization direction modulator liquid crystal layer 65 near the alignment layer 63b under the light polarization direction modulator extends in the alignment direction (ie, Y direction) of the alignment layer 63b under the light polarization direction modulator. Since no electric field acts on the liquid crystal layer 65 of the light polarization direction modulator, the twisted nematic liquid crystal molecules in the liquid crystal layer 65 of the light polarization direction have the characteristic of twisting and rotating by 90 ° and can rotate the polarization direction of the linearly polarized light by 90 °.
  • the input of the light polarization direction modulator liquid crystal layer 65 is vertical linearly polarized light 70a
  • the output of the light polarization direction modulator liquid crystal layer 65 is polarized light whose polarization direction is in the XZ plane (in the XZ plane, the observer ’s line of sight and sight
  • the angle between the axes is called the horizontal viewing angle.
  • the output of the liquid crystal layer 65 of the light polarization direction modulator is horizontally linearly polarized light.
  • FIG. 8 exemplarily uses horizontally polarized light as an example to explain) .
  • the horizontally linearly polarized light 70b is horizontally polarized light 70c after passing through the adhesive layer 50.
  • P-type dichroic dye molecules are aligned with nematic liquid crystal molecules, and the long axis of P-type dichroic dye molecules extends in the Y direction.
  • the horizontal linear polarized light is perpendicular to the long axis of the P-type dichroic dye molecule, and the horizontal linear polarized light can completely pass through.
  • ⁇ ⁇ 0 ° the polarization direction of the linearly polarized light incident on the light direction angle brightness modulator liquid crystal layer 45 is perpendicular to the long axis direction of the P-type dichroic dye molecule, and the horizontally linearly polarized light 70c can pass completely, that is, horizontally linearly polarized Light 70d. It can be seen that the brightness of the outgoing light does not change with the outgoing angle, thereby realizing a two-dimensional display with a wide viewing angle.
  • the input of the liquid crystal layer 65 of the light polarization direction modulator is vertical linearly polarized light 70a
  • the horizontally linearly polarized light 70b is horizontally polarized light 70c after passing through the adhesive layer 50.
  • the horizontal linearly polarized light 70c is perpendicular to the long axis direction of the P-type dichroic dye molecule, and the horizontal linearly polarized light 70c can completely pass through, that is, the horizontal linearly polarized light 70d.
  • FIG. 10 is a schematic diagram of the display device shown in FIG. 5 to achieve three-dimensional display, similar to FIG. 8 will not be repeated here, referring to FIGS. 5 and 10, when V1 ⁇ V2, the upper electrode 62a of the light polarization direction modulator and the light polarization An electric field exists between the lower electrode 62b of the directional modulator, and the long axis of the twisted nematic liquid crystal molecules in the liquid crystal layer 65 of the light polarization direction modulator extends in the Z direction. Since there is no twisted nematic, the polarization of the incident light will not be changed direction.
  • the input of the light polarization direction modulator liquid crystal layer 65 is vertical linearly polarized light 70a
  • the output of the liquid crystal layer 65 of the device is vertical linearly polarized light, and the vertical linearly polarized light is taken as an example in FIG. 10 for explanation and explanation).
  • the long axis of the P-type dichroic dye molecule between the lower electrode 42b and the first sub-electrode 421a of the light direction angle brightness modulator extends in the Y direction, and the vertical linearly polarized light and light
  • the direction of the long axis of the P-type dichroic dye molecule between the lower electrode 42b of the directional angle brightness modulator and the first sub-electrode 421a is parallel, and the linearly polarized light is completely absorbed.
  • the vertical linear polarized light is parallel to the long axis direction of the P-type dichroic dye molecule between the lower electrode 42b and the first sub-electrode 421a of the light direction angle brightness modulator, and the vertical linear polarized light is completely absorb.
  • the long axis of the P-type dichroic dye molecule between the lower electrode 42b and the second sub-electrode 422a of the light direction angle brightness modulator extends in the Z direction, and the vertical linearly polarized light and light
  • the long-axis direction of the P-type dichroic dye molecule between the directional angle brightness modulator lower electrode 42b and the second sub-electrode 422a is perpendicular to the light axis, and the P-type light emission between the lower electrode 42b and the second sub-electrode 422a
  • the dichroic dye molecules are completely transparent.
  • the vertical linear polarized light is perpendicular to the long axis of the P-type dichroic dye molecule between the lower electrode 42b and the second sub-electrode 422a of the light direction angle brightness modulator, and the light direction angle brightness modulator
  • the P-type dichroic dye molecules between the lower electrode 42b and the second sub-electrode 422a completely transmit light. Since the first sub-electrodes 421a and the second sub-electrodes 422a are alternately arranged in the X direction, alternate light shielding and light passage can be generated in the X direction, thereby forming a slit grating (ie, parallax barrier) to realize three-dimensional display.
  • V1 ⁇ V2, V41 ⁇ V3, and V42 V3
  • the lower electrode 62 b of the light polarization direction modulator and the lower electrode 42 b of the light direction angle brightness modulator are both grounded.
  • This embodiment also introduces the implementation principles of wide-view two-dimensional display, narrow-view two-dimensional display, and three-dimensional display.
  • FIGS. 11a-11c are schematic diagrams of the principle that horizontal linearly polarized incident light can penetrate through a full viewing angle.
  • the traveling direction of the incident light 20 is a line parallel to the Z direction Polarized light
  • the polarization direction of the linearly polarized light is any direction.
  • the linear polarizer 21 has a linearly polarized light passing axis 21a in the horizontal direction, and allows polarized light in the X direction to pass through.
  • the horizontally polarized linearly polarized light 20a advances parallel to the Z direction and has the characteristic of horizontal linear polarization.
  • the horizontal viewing angle ⁇ 0 ° is used for illustration.
  • FIG. 11b when the horizontal viewing angle ⁇ ⁇ 0 °, the angle of incident light changes, and the horizontally polarized linearly polarized light 20a changes accordingly.
  • the horizontally polarized linearly polarized light 20a lies in the XZ plane and the horizontal polarization
  • the polarization direction of the linearly polarized light 20a is perpendicular to the traveling direction of the incident light 20.
  • both of the long axis directions of the nematic liquid crystal molecules 23 and the dichroic dye molecules 24 extend in the Y direction. Therefore, regardless of the size of the horizontal viewing angle ⁇ , the long axis direction of the dichroic dye molecule 24 is perpendicular to the polarization direction of the horizontally polarized linearly polarized light 20a.
  • the horizontally polarized linearly polarized light 20a can output an outgoing light 20b without being absorbed . As shown in FIG. 11c, the brightness value of the outgoing light 20b is not 0, and the brightness of the outgoing light 20b does not change with the horizontal viewing angle ⁇ .
  • FIGS. 12a-12c are schematic diagrams of the principle that horizontal linearly polarized incident light can penetrate through a narrow viewing angle.
  • the traveling direction of the incident light 20 is a line parallel to the Z direction Polarized light
  • the polarization direction of the linearly polarized light is any direction.
  • the linear polarizer 21 has a linearly polarized light passing axis 21a in the horizontal direction and can pass polarized light in the X direction.
  • the horizontally polarized linearly polarized light 20a advances parallel to the Z direction and has the characteristic of horizontal linear polarization.
  • the horizontal viewing angle ⁇ 0 ° is used for illustration.
  • FIG. 12b when the horizontal viewing angle ⁇ ⁇ 0 °, the angle of incident light changes, and the horizontally polarized linearly polarized light 20a changes accordingly.
  • the horizontally polarized linearly polarized light 20a lies in the XZ plane and the horizontal polarization
  • the polarization direction of the linearly polarized light 20a is perpendicular to the traveling direction of the incident light 20.
  • FIGS. 13a to 13c are schematic diagrams of the principle that vertical linearly polarized incident light can be shielded at full viewing angle.
  • the traveling direction of the incident light 20 is a line parallel to the Z direction Polarized light
  • the polarization direction of the linearly polarized light is any direction.
  • the linearly polarized light passes through the function of the linear polarizer 21, it can output a vertically polarized linearly polarized light 20a.
  • the linear polarizer 21 has a linearly polarized light passing axis 21a in the vertical direction, and can pass polarized light in the Y direction.
  • the vertically polarized linearly polarized light 20a travels parallel to the Z direction and has the characteristics of vertically linearly polarized light.
  • the horizontal viewing angle ⁇ 0 ° is used for illustration.
  • the horizontal viewing angle ⁇ ⁇ 0 ° when the horizontal viewing angle ⁇ ⁇ 0 °, the angle of incident light changes, and the horizontally polarized linearly polarized light 20a changes accordingly.
  • the horizontally polarized linearly polarized light 20a lies in the XZ plane and the horizontal polarization
  • the polarization direction of the linearly polarized light 20a is perpendicular to the traveling direction of the incident light 20.
  • both of the long axis directions of the nematic liquid crystal molecules 23 and the dichroic dye molecules 24 extend in the Y direction. Therefore, regardless of the size of the horizontal viewing angle ⁇ , the long axis direction of the dichroic dye molecule 24 is parallel to the polarization direction of the vertically polarized linearly polarized light 20a, and the vertically polarized linearly polarized light 20a can be completely absorbed without light output. As shown in FIG. 13c, the brightness value of the outgoing light 20b is 0, and the brightness of the outgoing light 20b does not change with the horizontal viewing angle ⁇ .
  • FIGS. 14a-14c are schematic diagrams of the principle that vertical linearly polarized incident light can penetrate through a full viewing angle.
  • the traveling direction of the incident light 20 is parallel to the Z direction
  • the polarization direction of the linearly polarized light is any direction.
  • the linearly polarized light passes through the function of the linear polarizer 21, it can output a vertically polarized linearly polarized light 20a.
  • the linear polarizer 21 has a linearly polarized light passing axis 21a in the vertical direction, and can pass polarized light in the Y direction.
  • the vertically polarized linearly polarized light 20a travels parallel to the Z direction and has the characteristics of vertically linearly polarized light.
  • the horizontal viewing angle ⁇ 0 ° is used for illustration.
  • FIG. 14b when the horizontal viewing angle ⁇ ⁇ 0 °, the angle of incident light changes, and the horizontally polarized linearly polarized light 20a changes accordingly.
  • the horizontally polarized linearly polarized light 20a lies in the XZ plane and the horizontal polarization
  • the polarization direction of the linearly polarized light 20a is perpendicular to the traveling direction of the incident light 20.
  • the display device provided in this embodiment includes a display panel, a light polarization direction modulator, and a light direction angle brightness modulator.
  • the light polarization direction modulator may set the light emitted by the display panel to polarized light along a preset polarization direction.
  • the preset polarization direction is along the Y direction in the case of wide viewing angle two-dimensional display and narrow viewing angle two-dimensional display, and the preset polarization direction is along the X direction in the case of three-dimensional display.
  • the light direction angle brightness modulator can adjust the brightness without changing with the exit angle, thereby achieving a two-dimensional display with a wide viewing angle; the light direction angle brightness modulator can be adjusted The brightness decreases with the increase of the emission angle, thereby achieving a two-dimensional display with a narrow viewing angle; the light direction angle brightness modulator can also form a slit grating (ie, a parallax barrier), thereby achieving a three-dimensional display.
  • the display device provided in this embodiment can realize the mutual switching between the wide-view two-dimensional display, the narrow-view two-dimensional display and the three-dimensional display, which enriches the functions of the display device.
  • FIG. 15 is a schematic flowchart of a display device driving method according to an embodiment.
  • the driving method includes the following steps.
  • step 110 the display panel is controlled to emit light.
  • the display panel may be a liquid crystal display panel. Since the liquid crystal display panel is generally provided with two polarizing plates facing each other, the light emitted from the liquid crystal display panel is linearly polarized light.
  • the display panel may also be a display panel such as an organic light-emitting display panel, an electrophoretic display panel, or a quantum dot display panel whose outgoing light is not polarized light, and it may be treated as linearly polarized light. In other words, the light emitted from the display panel is linearly polarized light.
  • step 120 the light polarization direction modulator is controlled to convert the light emitted by the display panel into linearly polarized light along the preset polarization direction.
  • step 130 the light direction angle brightness modulator is controlled, the brightness of the linearly polarized light emitted through the light direction angle brightness modulator is adjusted to change with the change of the exit angle, and the light direction angle brightness modulator is formed during three-dimensional display.
  • the slit grating enables the display device to present different display states.
  • the display state includes a wide viewing angle two-dimensional display, a narrow viewing angle two-dimensional display and a three-dimensional display.
  • the wide viewing angle two-dimensional display is a two-dimensional display with a viewing angle greater than or equal to a first preset angle
  • the narrow viewing angle two-dimensional display is a viewing angle less than a second In a two-dimensional display with an angle, the first preset angle is greater than the second preset angle.
  • the two adjacent sides of the display panel extend in the X direction and the Y direction respectively, the normal direction of the plane where the display panel is located extends in the Z direction, and the X direction, the Y direction and the Z direction form a Cartesian coordinate system, and The line between the observer's eyes is parallel to the X direction;
  • the light polarization direction modulator includes the lower substrate of the light polarization direction modulator, and the light polarization direction modulations that are sequentially arranged on the side of the lower substrate of the light polarization direction modulator away from the display panel Lower electrode, optical polarization direction modulator lower alignment layer, optical polarization direction modulator liquid crystal layer, optical polarization direction modulator upper alignment layer, optical polarization direction modulator upper electrode and optical polarization direction modulator upper substrate; optical polarization direction modulator
  • the alignment direction of the lower alignment layer is perpendicular to the alignment direction of the alignment layer on the light polarization direction modulator, and the alignment direction of the alignment layer under the light polarization direction modulator
  • the first sub-electrodes and the second sub-electrodes are alternately arranged in the X direction, and the first sub-electrodes and the second sub-electrodes both extend in the Y direction, and the light direction
  • the alignment direction of the alignment layer under the angular brightness modulator is parallel to the alignment direction of the alignment layer on the light direction angular brightness modulator; the alignment direction of the alignment layer under the light direction angular brightness modulator is along the Y direction.
  • the driving method of the display device includes the following steps.
  • the second sub-electrode and the lower electrode of the light direction angle brightness modulator apply the same voltage value to control the light passing through the light direction angle brightness modulator to realize a two-dimensional display with a wide viewing angle.
  • the voltage value V1 applied to the lower electrode of the light polarization direction modulator, the voltage value V2 to the upper electrode of the light polarization direction modulator, and the voltage value V3 to the lower electrode of the light direction angular brightness modulator are the first sub-electrodes
  • the applied voltage value V41 is the applied voltage value V42 of the second sub-electrode.
  • the lower electrode of the light polarization direction modulator and the lower electrode of the light direction angle brightness modulator are both grounded.
  • the driving method of the display device provided in this embodiment includes the following steps.
  • the voltage value V1 applied to the lower electrode of the light polarization direction modulator, the voltage value V2 to the upper electrode of the light polarization direction modulator, and the voltage value V3 to the lower electrode of the light direction angular brightness modulator are the first sub-electrodes
  • the applied voltage value V41 is the applied voltage value V42 of the second sub-electrode.
  • the driving method of the display device provided in this embodiment can enable the display device to switch between a wide-view two-dimensional display, a narrow-view two-dimensional display, and a three-dimensional display, thereby enriching the functions of the display device.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

一种显示装置及其驱动方法,显示装置包括:显示面板;光偏振方向调制器,位于显示面板的出光侧,所述光偏振方向调制器设置为将显示面板发出的光转换为沿预设偏振方向的线偏振光;光方向角亮度调制器,位于光偏振方向调制器远离显示面板一侧,所述光方向角亮度调制器设置为调节经光方向角亮度调制器出射的线偏振光的亮度随出射角度的变化而变化,所述光方向角亮度调制器还设置为在三维显示时形成狭缝光栅,以使显示装置呈现不同的显示状态;显示状态包括广视角二维显示、窄视角二维显示和三维显示,广视角二维显示为视角大于等于第一预设角度的二维显示,窄视角二维显示为视角小于第二预设角度的二维显示,第一预设角度大于第二预设角度。

Description

显示装置及其驱动方法
本公开要求申请日为2018年10月26日、申请号为201811255191.0的中国专利申请的优先权,该申请的全部内容通过引用结合在本公开中。
技术领域
本公开涉及显示技术,例如涉及一种显示装置及其驱动方法。
背景技术
图1为一种二维(two-dimension,2D)与三维(three-dimensional,3D)影像可切换显示装置的示意图,如图1所示,2D与3D影像可切换显示装置(2D and 3D Image Switchable Display)10,一般是使用一液晶视景分离组件(Liquid Crystal View Separator)12,并将该液晶视景分离组件12设置在一影像显示器11的屏幕之前。其中,影像显示器11是可由液晶、有机发光二极管(Organic Light Emitting Diode,OLED)、量子点(Quantum Dot,QD)、微型发光二极管(micro-Light Emitting Diode,micro-LED)等已知的平面显示器所构成。为方便下文一致性的说明,定义一坐标系XYZ,其中,XY平面为影像显示面,即该2D与3D影像可切换显示装置10的影像显示面,平行于该XY面。另外,对于观察者13的视觉感官而言,X方向是水平轴、Y方向是垂直轴、Z方向是视轴。
通过外部电压V的驱动,该液晶视景分离组件12可呈现光透明的状态,观察者13可观看到一2D的画面,以达到广视角二维显示的目的;通过外部电压V的驱动,该液晶视景分离组件12也可以呈现视景分离的状态,观察者13可观看到一3D影像,以达到三维显示的目的。该液晶视景分离组件12,可由一液晶视差屏障组件(Liquid Crystal Parallax Barrier Device)、或一液晶柱状数组透镜组件(Liquid Crystal Lenticular Lens Array Device)所构成。
图2为一种2D与防窥影像可切换显示装置的示意图,如图2所示,对于2D与防窥影像可切换显示装置(2D and Privacy Image Switchable Display)20,一般是使用一视角可调控液晶组件(Viewing angle controllable Liquid Crystal Device)22,并将该视角可调控液晶组件22设置于一影像显示器11屏幕之前。另外,通过外部电压V的驱动,该视角可调控液晶组件22可呈现光透明的状态, 观察者13可观看到一具有广视角的2D画面,以达到广视角二维显示的目的;或通过外部电压V的驱动,该视角可调控液晶组件22也可以呈现窄视角的状态,观察者13可观看到一具有窄视角的2D画面,以达到窄视角二维显示的目的,从而实现防窥影像显示。
图3为一种防窥影像显示的示意图,参考图2和图3,对于防窥的需求是于水平方向上,当观察者13的视线13a与视轴Z的夹角θ大于特定角度时观看不到该影像显示器11所显示的影像,特定角度例如可以为45°。该视角可调控液晶组件22,根据不同的工作原理(Working Principle),可分为光遮蔽式(Light Shielding Method)、光散射式(Light Scattering Method)、与光吸收式(Light Absorption Method)等三种不同的视角可调控液晶组件。
发明内容
本公开提供一种显示装置及其驱动方法,以实现广视角二维显示、窄视角二维显示和三维显示之间的相互切换,丰富了显示装置的功能。
一种显示装置,包括:显示面板;光偏振方向调制器,位于所述显示面板的出光侧,所述光偏振方向调制器设置为将所述显示面板发出的光转换为沿预设偏振方向的线偏振光;以及光方向角亮度调制器,位于所述光偏振方向调制器远离所述显示面板一侧,所述光方向角亮度调制器设置为调节经所述光方向角亮度调制器出射的所述线偏振光的亮度随出射角度的变化而变化,所述光方向角亮度调制器还设置为在三维显示时形成狭缝光栅,以使所述显示装置呈现不同的显示状态;所述显示状态包括广视角二维显示、窄视角二维显示和三维显示,所述广视角二维显示为视角大于等于第一预设角度的二维显示,所述窄视角二维显示为视角小于第二预设角度的二维显示,所述第一预设角度大于所述第二预设角度。
一种如上所述的显示装置的驱动方法,包括:控制所述显示面板发光;控制所述光偏振方向调制器将所述显示面板发出的光转换为沿预设偏振方向的线偏振光;控制所述光方向角亮度调制器,调节经所述光方向角亮度调制器出射的所述线偏振光的亮度随出射角度的变化而变化,以及在三维显示时调节所述光方向角亮度调制器形成狭缝光栅,以使所述显示装置呈现不同的显示状态;所述显示状态包括广视角二维显示、窄视角二维显示和三维显示,所述广视角二维显示为视角大于等于第一预设角度的二维显示,所述窄视角二维显示为视 角小于所述第二预设角度的二维显示,所述第一预设角度大于所述第二预设角度。
附图说明
图1为一种2D与3D影像可切换显示装置的示意图;
图2为一种2D与防窥影像可切换显示装置的示意图;
图3为一种防窥影像显示的示意图;
图4为一实施例提供的一种显示装置的示意图;
图5为一实施例提供的另一种显示装置的示意图;
图6为一实施例提供的一种显示面板出光面出射光线的偏振方向与半波片的晶轴的关系示意图;
图7为一实施例提供的一种光方向角亮度调制器上电极的俯视结构示意图;
图8为图5中所示显示装置实现广视角二维显示的示意图;
图9为图5中所示显示装置实现窄视角二维显示的示意图;
图10为图5中所示显示装置实现三维显示的示意图;
图11a-图11c为水平线偏振入射光可以全视角穿透的原理示意图;
图12a-图12c为水平线偏振入射光可以窄视角穿透的原理示意图;
图13a-图13c为垂直线偏振入射光可全视角遮蔽的原理示意图;
图14a-图14c为垂直线偏振入射光可以全视角穿透的原理示意图;
图15为一实施例提供的显示装置的驱动方法的流程示意图。
具体实施方式
下面结合附图和实施例对本公开进行说明。图4为本实施例提供的一种显示装置的示意图,参考图4,显示装置30包括显示面板31、光偏振方向调制器60和光方向角亮度调制器40。显示面板31设置为发光显示,显示面板31可以为液晶显示面板,由于液晶显示面板一般设置有对置的两个偏振片,液晶显示面板的出射光为线偏振光。在其他实施例中,显示面板还可以为有机发光显示面板、电泳显示面板或量子点显示面板等出射光不是偏振光的显示面板,则可以将该出射光处理为线性偏振光。也就是说,显示面板31出射光为线偏振光。光偏振方向调制器60位于显示面板31的出光侧,设置为将显示面板31发出的光转换为沿预设偏振方向的线偏振光。光方向角亮度调制器40,位于光偏振方 向调制器60远离显示面板31一侧,设置为调节经光方向角亮度调制器40出射的线偏振光的亮度随出射角度的变化而变化,光方向角亮度调制器40还设置为在三维显示时形成狭缝光栅,以使显示装置30呈现不同的显示状态。显示状态包括广视角二维显示、窄视角二维显示和三维显示,广视角二维显示为视角大于等于第一预设角度的二维显示,窄视角二维显示为视角小于第二预设角度的二维显示,第一预设角度大于第二预设角度。
相关技术中,对于2D与3D影像可切换显示装置只能够实现广视角二维显示和三维显示之间的相互切换,2D与防窥影像可切换显示装置只能够实现广视角二维显示和窄视角二维显示之间的切换,但却无法整合2D、3D与防窥影像的显示,以提供更多的应用、并满足更多消费者的需求。本实施例提供的显示装置,可以实现广视角二维显示、窄视角二维显示和三维显示之间的相互切换,丰富了显示装置的功能。
本实施例提供的显示装置包括显示面板、光偏振方向调制器和光方向角亮度调制器,光偏振方向调制器可以将显示面板发出的光设置为沿预设偏振方向的偏振光,示例性地,该预设偏振方向在广视角二维显示和窄视角二维显示的情况下为沿X方向,该预设偏振方向在三维显示的情况下沿Y方向。按照预设偏振方向振动的线偏振光照射到光方向角亮度调制器后,光方向角亮度调制器可以调节亮度不随出射角度变化,从而实现广视角二维显示;光方向角亮度调制器可以调节亮度随出射角度的增大而减小,从而实现窄视角二维显示;光方向角亮度调制器也可以形成一狭缝光栅(即,视差屏障),从而实现三维显示。
图5为本实施例提供的另一种显示装置的示意图,参考图4和图5,显示面板31的两条邻边分别沿X方向和Y方向延伸,显示面板31所在平面的法线方向沿Z方向延伸,X方向、Y方向与Z方向构成笛卡尔坐标系,且观察者13的两眼之间的连线平行于X方向。本实施例部分的X方向、Y方向以及Z方向与背景技术中X方向、Y方向以及Z方向一致。上述X方向、Y方向以及Z方向的规定是以显示装置30的实际使用为依据进行的定义,即对于观察者13的视觉感官而言,X方向的轴是水平轴、Y方向的轴是垂直轴、Z方向的轴是视轴。宽视角二维显示、窄视角二维显示以及三维显示均指的是X方向上,不涉及Y方向上亮度的变化。在其他实施例中,也可以根据需要在Y方向上实现宽视角二维显示、窄视角二维显示以及三维显示。
参考图4和图5,其中,图4中Z方向箭头指向是从上到下,而图5中Z方向箭头指向是从下到上,因此图4和图5所示的位置关系相反,在图5中,显示面板31未示出,显示面板31位于光偏振方向调制器60的下方。光偏振方向调制器60包括光偏振方向调制器下基板61b,以及位于光偏振方向调制器下基板61b远离显示面板31一侧依次排列的光偏振方向调制器下电极62b、光偏振方向调制器下配向层63b、光偏振方向调制器液晶层65、光偏振方向调制器上配向层63a、光偏振方向调制器上电极62a和光偏振方向调制器上基板61a。光偏振方向调制器下配向层63b的配向方向与光偏振方向调制器上配向层63a的配向方向垂直,光偏振方向调制器下配向层63b的配向方向沿Y方向。光偏振方向调制器60还可以包括光偏振方向调制器框胶64,偏振方向调制器框胶64、光偏振方向调制器上基板61a和光偏振方向调制器下基板61b形成密闭空间并密封光偏振方向调制器液晶层65。在一实施例中,光偏振方向调制器上基板61a和光偏振方向调制器下基板61b可以由玻璃材料形成,光偏振方向调制器上电极62a和光偏振方向调制器下电极62b可以由氧化铟锡形成,光偏振方向调制器下配向层63b和光偏振方向调制器上配向层63a可以由聚酰亚胺形成。
在一实施例中,光偏振方向调制器液晶层65包括扭曲向列型液晶分子。光偏振方向调制器液晶层65中靠近光偏振方向调制器上配向层63a的扭曲向列型液晶分子的长轴,沿光偏振方向调制器上配向层63a的配向方向(即X方向)延伸。光偏振方向调制器液晶层65中靠近光偏振方向调制器下配向层63b的扭曲向列型液晶分子的长轴,沿光偏振方向调制器下配向层63b的配向方向(即Y方向)延伸。无电场作用于光偏振方向调制器液晶层65时,光偏振方向调制器液晶层65中的扭曲向列型液晶分子具有扭曲旋转90°排列的特征,并可以将线偏振光的偏振方向旋转90°。
在一实施例中,参考图5,光偏振方向调制器60还包括半波片66,半波片66为一定厚度的双折射晶体,当法向入射的光透过时,寻常(ordinaire)光(o光)和非常(extra-ordinaire)光(e光)之间的位相差等于π或π的奇数倍。半波片66位于显示面板31与光偏振方向调制器液晶层65之间,半波片66设置为输出偏振方向沿Y方向的线偏振光。
图6为本实施例提供的一种显示面板出光面出射光线的偏振方向与半波片的晶轴的关系示意图,参考图5和图6,显示面板31出光面出射光线的偏振方向(图6中实线双箭头所示)和Y方向(图6中虚线双箭头所示)的角平分线 与半波片66的晶轴e轴方向平行。显示面板31出光面出射光线的偏振方向与晶轴e轴方向的夹角为α,Y方向与晶轴e轴方向的夹角也为α。显示面板31出光面出射光线的偏振方向被半波片66旋转角度2α后,该出射光线的偏振方向变为沿Y方向。另外,由于半波片66对入射在半波片66上的光线无任何的吸收,提高了光线的利用效率。
在一实施例中,参考图4和图5,半波片66位于显示面板31与光偏振方向调制器下基板61b之间。示例性地,可以先形成光偏振方向调制器下基板61b、光偏振方向调制器下电极62b、光偏振方向调制器下配向层63b、光偏振方向调制器液晶层65、光偏振方向调制器上配向层63a、光偏振方向调制器上电极62a和光偏振方向调制器上基板61a,然后再将半波片66粘贴到光偏振方向调制器下基板61b远离光偏振方向调制器液晶层65一侧。在其他实施例中,半波片66还可以位于光偏振方向调制器下基板61b与光偏振方向调制器液晶层65之间,本实施例对于半波片66的位置不作限定,只要半波片66位于显示面板31与偏振方向调制器液晶层65之间即可。
在一实施例中,参考图4和图5,光方向角亮度调制器40包括光方向角亮度调制器下基板41b,以及位于光方向角亮度调制器下基板41b远离显示面板31一侧依次排列的光方向角亮度调制器下电极42b、光方向角亮度调制器下配向层43b、光方向角亮度调制器液晶层45、光方向角亮度调制器上配向层43a、光方向角亮度调制器上电极42a和光方向角亮度调制器上基板41a。光方向角亮度调制器上电极42a包括多个第一子电极421a和多个第二子电极422a,第一子电极421a与第二子电极422a沿X方向交替排列,第一子电极421a与第二子电极422a均沿Y方向延伸。光方向角亮度调制器下配向层43b的配向方向与光方向角亮度调制器上配向层43a的配向方向平行,光方向角亮度调制器下配向层43b的配向方向沿Y方向,光方向角亮度调制器上配向层43a的配向方向也沿Y方向。光方向角亮度调制器40还可以包括光方向角亮度调制器框胶44,光方向角亮度调制器框胶44、光方向角亮度调制器上基板41a和光方向角亮度调制器下基板41b形成密闭空间并密封光方向角亮度调制器液晶层45。在一实施例中,光方向角亮度调制器上基板41a和光方向角亮度调制器下基板41b可以由玻璃材料形成,光方向角亮度调制器上电极42a和光方向角亮度调制器下电极42b可以由氧化铟锡形成,光方向角亮度调制器上配向层43a和光方向角亮度调制器下配向层43b可以由聚酰亚胺形成。
在一实施例中,光方向角亮度调制器液晶层45包括主体材料和客体材料,主体材料包括向列型液晶分子,客体材料包括二色性染料分子。将沿长轴方向和短轴方向对可见光的吸收不同的二色性染料分子作为客体,溶于定向排列的向列液晶分子主体中。二色性染料分子将会“客随主变”地与向列型液晶分子同向排列。当作为主体的向列型液晶分子排列在电场作用下发生变化时,二色性染料分子排列方向也将随之而变化,即二色性染料对入射光的吸收也发生变化。
在一实施例中,二色性染料分子为P型二色性染料分子。P型二色性染料分子对于线偏振的入射光,根据该线偏振方向与分子长轴方向夹角的不同,具有以下的光学作用。
(1)该线偏振方向是与分子长轴方向的夹角为0°时,即当该线偏振方向是平行于分子长轴方向时,可完全吸收该入射光。
(2)该线偏振方向是与分子长轴方向的夹角为90°时,即该线偏振方向是垂直于分子长轴方向时,可让该入射光完全通过。
(3)该线偏振方向是与分子长轴方向的夹角为大于0°且小于90°时,可让该入射光部分通过。
在一实施例中,向列型液晶分子为正性液晶分子。正性液晶分子的长轴沿电场方向转动。
图7为本实施例提供的一种光方向角亮度调制器上电极的俯视结构示意图,参考图5和图7,第一子电极421a连接第一电压线421c,第二子电极422a连接第二电压线422c。通过第一电压线421c为所有的第一子电极421a施加相同的电压值,通过第二电压线422c为所有的第二子电极422a施加相同的电压值。
在一实施例中,参考图7,多个第一子电极421a构成第一梳状结构,多个第二子电极422a构成第二梳状结构。第一子电极421a与第二子电极422a交叉排布且相互电绝缘。将第一子电极421a构成第一梳状结构,以及将第二子电极422a构成第二梳状结构,如图7所示,第一子电极421a与第二子电极422a可以相互填补对方的空隙,从而整体上节省了空间。
在一实施例中,参考图5,光偏振方向调制器上基板61a与光方向角亮度调制器下基板41b之间通过胶合层50粘结。胶合层50可由光固化树脂、以及热固化树脂所构成。胶合层50的折射率与光偏振方向调制器上基板61a的光学折射率的差值小于0.1,胶合层50的折射率与光方向角亮度调制器下基板41b的光学折射率的差值小于0.1。由于相邻两种介质的折射率差值越大,在该相邻两 种界面之间的光的透射越弱反射越强;相邻两种介质的折射率差值越小,在该相邻两种界面之间的光的透射越强反射越弱。本实施例中,胶合层50的折射率与光偏振方向调制器上基板61a以及光方向角亮度调制器下基板41b的光学折射率的差值均小于0.1,以提高光线透过率。为了提高光线透过率,还可以设置胶合层50、光偏振方向调制器上基板61a以及光方向角亮度调制器下基板41b具有相同的光学折射率。
图8为图5中所示显示装置实现广视角二维显示的示意图,参考图5和图8,光偏振方向调制器下电极62b施加的电压值为V1,光偏振方向调制器上电极62a施加电压值为V2,光方向角亮度调制器下电极42b施加电压值为V3,第一子电极421a施加的电压值为V41,第二子电极422a施加的电压值为V42。图8中黑色圆点表示沿Y方向振动的线偏振光,也可以称之为垂直线偏振光。图8中双箭头实线表示沿X方向振动的线偏振光,也可以称之为水平线偏振光,图8中宽箭头表示显示面板31出光面出射的光线。显示面板31出光面出射光线的偏振方向沿Y方向时,可以省略半波片66;显示面板31出光面出射光线的偏振方向不沿Y方向时,半波片66设置为输出偏振方向沿Y方向的线偏振光。入射到光偏振方向调制器液晶层65靠近光偏振方向调制器下基板61b上的光线为垂直线偏振光。当V1=V2时,光偏振方向调制器上电极62a和光偏振方向调制器下电极62b之间无电场。光偏振方向调制器液晶层65中靠近光偏振方向调制器上配向层63a的扭曲向列型液晶分子的长轴,沿光偏振方向调制器上配向层63a的配向方向(即X方向)延伸。光偏振方向调制器液晶层65中靠近光偏振方向调制器下配向层63b的扭曲向列型液晶分子的长轴,沿光偏振方向调制器下配向层63b的配向方向(即Y方向)延伸。由于无电场作用于光偏振方向调制器液晶层65,光偏振方向调制器液晶层65中的扭曲向列型液晶分子具有扭曲旋转90°排列的特征,并可以将线偏振光的偏振方向旋转90°。即,光偏振方向调制器液晶层65的输入为垂直线偏振光70a,光偏振方向调制器液晶层65的输出为偏振方向位于XZ平面的偏振光(在XZ平面内,观察者的视线与视轴的夹角称为水平视角,水平视角θ满足θ=0°时,光偏振方向调制器液晶层65的输出为水平线偏振光,图8中示例性地以水平线偏振光为例进行解释说明)。该水平线偏振光70b通过胶合层50后为水平线偏振光70c。
当V41=V3,V42=V3时,光方向角亮度调制器下电极42b和第一子电极421a之间无电场,光方向角亮度调制器下电极42b和第二子电极422a之间无电场, 光方向角亮度调制器液晶层45中靠近光方向角亮度调制器下配向层43b的向列型液晶分子的长轴沿Y方向延伸,光方向角亮度调制器液晶层45中靠近光方向角亮度调制器上配向层43a的向列型液晶分子的长轴沿Y方向延伸。P型二色性染料分子跟随向列型液晶分子排列,P型二色性染料分子的长轴沿Y方向延伸。水平线偏振光与P型二色性染料分子的长轴方向垂直,水平线偏振光可以完全通过。θ≠0°时,入射到光方向角亮度调制器液晶层45的线偏振光的偏振方向与P型二色性染料分子的长轴方向垂直,水平线偏振光70c可以完全通过,即为水平线偏振光70d。由此可见,出射光的亮度不随出射角度变化,从而实现广视角二维显示。
图9为图5中所示显示装置实现窄视角二维显示的示意图,与图8类似之处在此不再赘述,参考图5和图9,当V1=V2时,光偏振方向调制器上电极62a和光偏振方向调制器下电极62b之间无电场,光偏振方向调制器液晶层65的输入为垂直线偏振光70a,光偏振方向调制器液晶层65的输出为偏振方向位于XZ平面的偏振光(水平视角θ满足θ=0°时,光偏振方向调制器液晶层65的输出为水平线偏振光,图9中示例性地以水平线偏振光为例进行解释说明)。该水平线偏振光70b通过胶合层50后为水平线偏振光70c。
当V41≠V3,V42≠V3时,光方向角亮度调制器下电极42b和第一子电极421a之间存在电场,光方向角亮度调制器下电极42b和第二子电极422a之间存在电场,光方向角亮度调制器液晶层45中的向列型液晶分子的长轴沿Z方向延伸,P型二色性染料分子跟随向列型液晶分子排列,P型二色性染料分子的长轴沿Z方向延伸。水平线偏振光70c与P型二色性染料分子的长轴方向垂直,水平线偏振光70c可以完全通过,即为水平线偏振光70d。θ≠0°时,入射到光方向角亮度调制器液晶层45的线偏振光的偏振方向与P型二色性染料分子的长轴方向存在一小于90°夹角,且该夹角随着视线与视轴的夹角θ的增大而减小,出射光水平线偏振光70d的亮度随出射角度的增大而减小,从而实现窄视角二维显示。
图10为图5中所示显示装置实现三维显示的示意图,与图8类似之处在此不再赘述,参考图5和图10,V1≠V2时,光偏振方向调制器上电极62a和光偏振方向调制器下电极62b之间存在电场,光偏振方向调制器液晶层65中的扭曲向列型液晶分子的长轴沿Z方向延伸,由于不存在扭曲向列,因此不会改变入射光的偏振方向。即,光偏振方向调制器液晶层65的输入为垂直线偏振光70a,光偏振方向调制器液晶层65的输出为垂直线偏振光70b(水平视角θ满足θ=0° 时,光偏振方向调制器液晶层65的输出为垂直线偏振光,图10中示例性地以垂直线偏振光为例进行解释说明)。
当V41=V3时,光方向角亮度调制器下电极42b和第一子电极421a之间无电场,光方向角亮度调制器下电极42b和第一子电极421a之间的向列型液晶分子的长轴沿Y方向延伸,由于宾客效应,光方向角亮度调制器下电极42b和第一子电极421a之间的P型二色性染料分子的长轴沿Y方向延伸,垂直线偏振光与光方向角亮度调制器下电极42b和第一子电极421a之间的P型二色性染料分子的长轴方向平行,垂直线偏振光完全被吸收。水平视角θ≠0°时,垂直线偏振光与光方向角亮度调制器下电极42b和第一子电极421a之间的P型二色性染料分子的长轴方向平行,垂直线偏振光完全被吸收。
当V42≠V3时,光方向角亮度调制器下电极42b和第二子电极422a之间存在电场,光方向角亮度调制器下电极42b和第二子电极422a之间的向列型液晶分子的长轴沿Z方向延伸,由于宾客效应,光方向角亮度调制器下电极42b和第二子电极422a之间的P型二色性染料分子的长轴沿Z方向延伸,垂直线偏振光与光方向角亮度调制器下电极42b和第二子电极422a之间的P型二色性染料分子的长轴方向垂直,光方向角亮度调制器下电极42b和第二子电极422a之间的P型二色性染料分子完全透光。水平视角θ≠0°时,垂直线偏振光与光方向角亮度调制器下电极42b和第二子电极422a之间的P型二色性染料分子的长轴方向垂直,光方向角亮度调制器下电极42b和第二子电极422a之间的P型二色性染料分子完全透光。由于第一子电极421a和第二子电极422a沿X方向交替排列,因此可以在X方向产生交替光遮蔽与光通过,从而形成一狭缝光栅(即视差屏障),实现三维显示。同样地,V1≠V2,V41≠V3,V42=V3时,也可以形成一狭缝光栅,从而实现三维显示,原理与V1≠V2,V41=V3,V42≠V3时类似。
在一实施例中,参考图5,光偏振方向调制器下电极62b与光方向角亮度调制器下电极42b均接地。
本实施例还对广视角二维显示、窄视角二维显示和三维显示的实现原理做以下介绍。
图11a-图11c为水平线偏振入射光可以全视角穿透的原理示意图,参考图11a-图11c,对于垂直于XY平面的入射光20,该入射光20的行进方向是平行于Z方向的线偏振光,该线偏振光的偏振方向为任意方向。该线偏振光通过线偏光片21的作用后,可输出一水平偏振的线偏振光20a。其中,该线偏光片21 具有水平方向的线偏振光通过轴21a,可让X方向偏振光通过。该水平偏振的线偏振光20a是平行于Z方向前进且具有水平线偏振的特性。图11a中以水平视角θ=0°进行示意。如图11b所示,水平视角θ≠0°时,由于入射光的角度发生了变化,水平偏振的线偏振光20a相应地发生变化,水平偏振的线偏振光20a位于XZ平面内,且水平偏振的线偏振光20a的偏振方向垂直于入射光20的行进方向。无外部电压驱动时,上导电层26和下导电层22之间无电场。根据上配向层的配向方向26a和下配向层的配向方向22a,该向列型液晶分子23与二色性染料分子24的长轴方向均都沿Y方向延伸。因此,无论水平视角θ的大小如何,二色性染料分子24的长轴方向均与水平偏振的线偏振光20a的偏振方向垂直,水平偏振的线偏振光20a可不被吸收而输出一出射光20b。如图11c所示,出射光20b的亮度值不为0,且出射光20b的亮度不随水平视角θ而改变。
图12a-图12c为水平线偏振入射光可以窄视角穿透的原理示意图,参考图11a-图11c,对于垂直于XY平面的入射光20,该入射光20的行进方向是平行于Z方向的线偏振光,该线偏振光的偏振方向为任意方向。该线偏振光通过线偏光片21的作用后,可输出一水平偏振的线偏振光20a。其中,该线偏光片21具有水平方向的线偏振光通过轴21a,可让X方向偏振光通过。该水平偏振的线偏振光20a是平行于Z方向前进且具有水平线偏振的特性。图12a中以水平视角θ=0°进行示意。如图12b所示,水平视角θ≠0°时,由于入射光的角度发生了变化,水平偏振的线偏振光20a相应地发生变化,水平偏振的线偏振光20a位于XZ平面内,且水平偏振的线偏振光20a的偏振方向垂直于入射光20的行进方向。存在外部电压驱动时,上导电层26和下导电层22之间存在电场,且该电场的方向是平行于Z方向。由于该电场的作用,向列型液晶分子23与二色性染料分子24的长轴方向均都沿Z方向延伸。二色性染料分子24的长轴方向均与水平偏振的线偏振光20a的偏振方向之间的夹角随着水平视角θ的增大而减小,因此光穿透率随着水平视角θ的增大而减小。如图12c所示,出射光20b的亮度值不为0,且出射光20b的亮度随者水平视角θ的增大而减小而改变。
图13a-图13c为垂直线偏振入射光可全视角遮蔽的原理示意图,参考图13a-图13c,对于垂直于XY平面的入射光20,该入射光20的行进方向是平行于Z方向的线偏振光,该线偏振光的偏振方向为任意方向。该线偏振光通过线偏光片21的作用后,可输出一垂直偏振的线偏振光20a。其中,该线偏光片21具有垂直方向的线偏振光通过轴21a,可让Y方向偏振光通过。该垂直偏振的线偏振 光20a是平行于Z方向前进且具有垂直线偏振的特性。图13a中以水平视角θ=0°进行示意。如图13b所示,水平视角θ≠0°时,由于入射光的角度发生了变化,水平偏振的线偏振光20a相应地发生变化,水平偏振的线偏振光20a位于XZ平面内,且水平偏振的线偏振光20a的偏振方向垂直于入射光20的行进方向。无外部电压驱动时,上导电层26和下导电层22之间无电场。根据上配向层的配向方向26a和下配向层的配向方向22a,该向列型液晶分子23与二色性染料分子24的长轴方向均都沿Y方向延伸。因此,无论水平视角θ的大小如何,二色性染料分子24的长轴方向均与垂直偏振的线偏振光20a的偏振方向平行,垂直偏振的线偏振光20a可被完全吸收而无光输出。如图13c所示,出射光20b的亮度值为0,且出射光20b的亮度不随水平视角θ而改变。
图14a-图14c为垂直线偏振入射光可以全视角穿透的原理示意图,参考图14a-图14c,对于垂直于XY平面的入射光20,该入射光20的行进方向是平行于Z方向的线偏振光,该线偏振光的偏振方向为任意方向。该线偏振光通过线偏光片21的作用后,可输出一垂直偏振的线偏振光20a。其中,该线偏光片21具有垂直方向的线偏振光通过轴21a,可让Y方向偏振光通过。该垂直偏振的线偏振光20a是平行于Z方向前进且具有垂直线偏振的特性。图14a中以水平视角θ=0°进行示意。如图14b所示,水平视角θ≠0°时,由于入射光的角度发生了变化,水平偏振的线偏振光20a相应地发生变化,水平偏振的线偏振光20a位于XZ平面内,且水平偏振的线偏振光20a的偏振方向垂直于入射光20的行进方向。存在外部电压驱动时,上导电层26和下导电层22之间存在电场,且该电场的方向是平行于Z方向。在该电场的作用下,向列型液晶分子23与二色性染料分子24的长轴方向均都沿Z方向延伸。因此,无论水平视角θ的大小如何,二色性染料分子24的长轴方向均与垂直偏振的线偏振光20a的偏振方向垂直,垂直偏振的线偏振光20a可不被吸收而输出。如图14c所示,出射光20b的亮度值不为0,且出射光20b的亮度不随水平视角θ而改变。
本实施例提供的显示装置包括显示面板、光偏振方向调制器和光方向角亮度调制器,光偏振方向调制器可以将显示面板发出的光设置为沿预设偏振方向的偏振光,示例性地,该预设偏振方向在广视角二维显示和窄视角二维显示的情况下为沿Y方向,该预设偏振方向在三维显示的情况下沿X方向。按照预设偏振方向振动的线偏振光照射到光方向角亮度调制器后,光方向角亮度调制器可以调节亮度不随出射角度变化,从而实现广视角二维显示;光方向角亮度调 制器可以调节亮度随出射角度的增大而减小,从而实现窄视角二维显示;光方向角亮度调制器也可以形成一狭缝光栅(即,视差屏障),从而实现三维显示。本实施例提供的显示装置,可以实现广视角二维显示、窄视角二维显示和三维显示之间的相互切换,丰富了显示装置的功能。
本实施例还提供一种显示装置的驱动方法,用于驱动上述实施例中的任一显示装置,图15为一实施例提供的显示装置的驱动方法的流程示意图,驱动方法包括以下步骤。
在步骤110中,控制显示面板发光。
其中,显示面板可以为液晶显示面板,由于液晶显示面板一般都设置有对置的两个偏振片,液晶显示面板的出射光为线偏振光。在其他实施例中,显示面板还可以为有机发光显示面板、电泳显示面板或量子点显示面板等出射光不是偏振光的显示面板,则可以将其处理为线性偏振光。也就是说,显示面板出射光为线偏振光。
在步骤120中,控制光偏振方向调制器将显示面板发出的光转换为沿预设偏振方向的线偏振光。
在步骤130中,控制光方向角亮度调制器,调节经光方向角亮度调制器出射的线偏振光的的亮度随出射角度的变化而变化,以及在三维显示时调节光方向角亮度调制器形成狭缝光栅,以使显示装置呈现不同的显示状态。
其中,显示状态包括广视角二维显示、窄视角二维显示和三维显示,广视角二维显示为视角大于等于第一预设角度的二维显示,窄视角二维显示为视角小于第二预设角度的二维显示,第一预设角度大于第二预设角度。
在一实施例中,显示面板的两条邻边分别沿X方向和Y方向延伸,显示面板所在平面的法线方向沿Z方向延伸,X方向、Y方向与Z方向构成笛卡尔坐标系,且观察者的两眼之间的连线平行于X方向;光偏振方向调制器包括光偏振方向调制器下基板,以及位于光偏振方向调制器下基板远离显示面板一侧依次排列的光偏振方向调制器下电极、光偏振方向调制器下配向层、光偏振方向调制器液晶层、光偏振方向调制器上配向层、光偏振方向调制器上电极和光偏振方向调制器上基板;光偏振方向调制器下配向层的配向方向与光偏振方向调制器上配向层的配向方向垂直,光偏振方向调制器下配向层的配向方向沿Y方向;光方向角亮度调制器包括光方向角亮度调制器下基板,以及位于光方向角亮度调制器下基板远离显示面板一侧依次排列的光方向角亮度调制器下电 极、光方向角亮度调制器下配向层、光方向角亮度调制器液晶层、光方向角亮度调制器上配向层、光方向角亮度调制器上电极和光方向角亮度调制器上基板;光方向角亮度调制器上电极包括多个第一子电极和多个第二子电极,第一子电极与第二子电极沿X方向交替排列,第一子电极与第二子电极均沿Y方向延伸,光方向角亮度调制器下配向层的配向方向与光方向角亮度调制器上配向层的配向方向平行;光方向角亮度调制器下配向层的配向方向沿Y方向。
在一实施例中,显示装置的驱动方法包括以下步骤。
为光偏振方向调制器下电极和光偏振方向调制器上电极施加相同的电压值,以控制光偏振方向调制器将显示面板发出的光转换为沿X方向的线偏振光;为第一子电极、第二子电极和光方向角亮度调制器下电极施加相同的电压值,控制经过光方向角亮度调制器后的光实现广视角二维显示。
为光偏振方向调制器下电极和光偏振方向调制器上电极施加相同的电压值,以控制光偏振方向调制器将显示面板发出的光转换为沿X方向的线偏振光;为第一子电极和第二子电极施加相同的电压值,为第一子电极和光方向角亮度调制器下电极施加不同的电压值,控制经过光方向角亮度调制器后的光实现窄视角二维显示。以及
为光偏振方向调制器下电极和光偏振方向调制器上电极施加不同的电压值,以控制光偏振方向调制器将显示面板发出的光转换为沿Y方向的线偏振光;为第一子电极和第二子电极中的一者施加与光方向角亮度调制器下电极相同的电压值,为第一子电极和第二子电极中另一者施加与光方向角亮度调制器下电极不同的电压值,控制经过光方向角亮度调制器后的光实现三维显示。
示例性地,为光偏振方向调制器下电极施加的电压值V1,为光偏振方向调制器上电极施加电压值V2,为光方向角亮度调制器下电极施加电压值V3,为第一子电极施加的电压值V41,为第二子电极施加的电压值V42。
本实施例提供的显示装置的驱动方法可以控制V1=V2,以控制所述光偏振方向调制器将所述显示面板发出的光转换为沿X方向的线偏振光;控制V41=V3,V42=V3,控制经过光方向角亮度调制器后的光实现广视角二维显示。
本实施例提供的显示装置的驱动方法可以控制V1=V2,以控制所述光偏振方向调制器将所述显示面板发出的光转换为沿X方向的线偏振光;控制V41≠V3,V42≠V3,控制经过光方向角亮度调制器后的光实现窄视角二维显示。
本实施例提供的显示装置的驱动方法可以控制V1≠V2,以控制所述光偏振 方向调制器将所述显示面板发出的光转换为沿所述Y方向的线偏振光;控制V41=V3,V42≠V3,或者,V1≠V2,V41≠V3,V42=V3,控制经过所述光方向角亮度调制器后的光实现三维显示。
在一实施例中,光偏振方向调制器下电极与光方向角亮度调制器下电极均接地。本实施例提供的显示装置的驱动方法包括以下步骤。
为光偏振方向调制器上电极施加零伏(0V)的电压值,以控制光偏振方向调制器将显示面板发出的光转换为沿X方向的线偏振光;为第一子电极和第二子电极均施加的0V电压值,以控制经过光方向角亮度调制器后的光实现广视角二维显示;为光偏振方向调制器上电极施加0V的电压值,以控制光偏振方向调制器将显示面板发出的光转换为沿X方向的线偏振光;为第一子电极和第二子电极均施加非零的电压值,以控制经过光方向角亮度调制器后的光实现窄视角二维显示;为光偏振方向调制器上电极施加非零的电压值,以控制光偏振方向调制器将显示面板发出的光转换为沿Y方向的线偏振光;为第一子电极和第二子电极中的一者施加非零的电压值,为第一子电极和第二子电极中的另一者施加0V的电压值,以控制经过光方向角亮度调制器后的光实现三维显示。
示例性地,为光偏振方向调制器下电极施加的电压值V1,为光偏振方向调制器上电极施加电压值V2,为光方向角亮度调制器下电极施加电压值V3,为第一子电极施加的电压值V41,为第二子电极施加的电压值V42。
本实施例提供的显示装置的驱动方法可以控制V1=V2=0,以控制光偏振方向调制器将显示面板发出的光转换为沿X方向的线偏振光;控制V41=V3=0,V42=V3=0(电压的单位为伏特,V),以控制经过光方向角亮度调制器后的光实现广视角二维显示。
本实施例提供的显示装置的驱动方法可以控制V1=V2=0,以控制光偏振方向调制器将显示面板发出的光转换为沿X方向的线偏振光;控制V3=0,V41≠0,V42≠0,以控制经过光方向角亮度调制器后的光实现窄视角二维显示。
本实施例提供的显示装置的驱动方法可以控制V1=0,V2≠0,以控制光偏振方向调制器将显示面板发出的光转换为沿所述Y方向的线偏振光;控制V3=0,V41=0,V42≠0,或者,V1=0,V2≠0,V3=0,V41≠0,V42=0,以控制经过光方向角亮度调制器后的光实现三维显示。
本实施例提供的显示装置的驱动方法,可以使显示装置实现广视角二维显示、窄视角二维显示和三维显示之间的相互切换,丰富了显示装置的功能。

Claims (17)

  1. 一种显示装置,包括:
    显示面板;
    光偏振方向调制器,位于所述显示面板的出光侧,所述光偏振方向调制器设置为将所述显示面板发出的光转换为沿预设偏振方向的线偏振光;
    光方向角亮度调制器,位于所述光偏振方向调制器远离所述显示面板一侧,所述光方向角亮度调制器设置为调节经所述光方向角亮度调制器出射的所述线偏振光的亮度随出射角度的变化而变化,所述光方向角亮度调制器还设置为在三维显示时形成狭缝光栅,以使所述显示装置呈现不同的显示状态;所述显示状态包括广视角二维显示、窄视角二维显示和三维显示,所述广视角二维显示为视角大于等于第一预设角度的二维显示,所述窄视角二维显示为视角小于第二预设角度的二维显示,所述第一预设角度大于所述第二预设角度。
  2. 根据权利要求1所述的显示装置,其中,所述显示面板的两条邻边分别沿X方向和Y方向延伸,所述显示面板所在平面的法线方向沿Z方向延伸,所述X方向、所述Y方向与所述Z方向构成笛卡尔坐标系;所述光偏振方向调制器包括光偏振方向调制器下基板,以及位于所述光偏振方向调制器下基板远离所述显示面板一侧依次排列的光偏振方向调制器下电极、光偏振方向调制器下配向层、光偏振方向调制器液晶层、光偏振方向调制器上配向层、光偏振方向调制器上电极和光偏振方向调制器上基板;
    所述光偏振方向调制器下配向层的配向方向与所述光偏振方向调制器上配向层的配向方向垂直,所述光偏振方向调制器下配向层的配向方向沿所述Y方向。
  3. 根据权利要求2所述的显示装置,其中,所述光偏振方向调制器液晶层包括扭曲向列型液晶分子。
  4. 根据权利要求2所述的显示装置,其中,所述光偏振方向调制器还包括半波片,所述半波片位于所述显示面板与所述光偏振方向调制器液晶层之间,所述半波片设置为输出偏振方向沿所述Y方向的线偏振光。
  5. 根据权利要求4所述的显示装置,其中,所述显示面板出光面出射光线的偏振方向和所述Y方向的角平分线与所述半波片的晶轴e轴方向平行。
  6. 根据权利要求4所述的显示装置,其中,所述半波片位于所述显示面板与所述光偏振方向调制器下基板之间。
  7. 根据权利要求2所述的显示装置,其中,所述光方向角亮度调制器包括光 方向角亮度调制器下基板,以及位于所述光方向角亮度调制器下基板远离所述显示面板一侧依次排列的光方向角亮度调制器下电极、光方向角亮度调制器下配向层、光方向角亮度调制器液晶层、光方向角亮度调制器上配向层、光方向角亮度调制器上电极和光方向角亮度调制器上基板;所述光方向角亮度调制器上电极包括多个第一子电极和多个第二子电极,所述第一子电极与所述第二子电极沿所述X方向交替排列,所述第一子电极与所述第二子电极均沿所述Y方向延伸,所述光方向角亮度调制器下配向层的配向方向与所述光方向角亮度调制器上配向层的配向方向平行;所述光方向角亮度调制器下配向层的配向方向沿所述Y方向。
  8. 根据权利要求7所述的显示装置,其中,所述光方向角亮度调制器液晶层包括主体材料和客体材料,所述主体材料包括向列型液晶分子,所述客体材料包括二色性染料分子。
  9. 根据权利要求8所述的显示装置,其中,所述二色性染料分子为P型二色性染料分子。
  10. 根据权利要求8所述的显示装置,其中,所述向列型液晶分子为正性液晶分子。
  11. 根据权利要求7所述的显示装置,其中,所述第一子电极连接第一电压线,所述第二子电极连接第二电压线。
  12. 根据权利要求11所述的显示装置,其中,多个所述第一子电极构成第一梳状结构,多个所述第二子电极构成第二梳状结构。
  13. 根据权利要求7所述的显示装置,其中,所述光偏振方向调制器上基板与所述光方向角亮度调制器下基板之间通过胶合层粘结;
    所述胶合层的折射率与所述光偏振方向调制器上基板的光学折射率的差值小于0.1,所述胶合层的折射率与所述光方向角亮度调制器下基板的光学折射率的差值小于0.1。
  14. 根据权利要求10所述的显示装置,其中,所述光偏振方向调制器下电极施加的电压值为V1,所述光偏振方向调制器上电极施加电压值为V2,所述光方向角亮度调制器下电极施加电压值为V3,所述第一子电极施加的电压值为V41,所述第二子电极施加的电压值为V42;
    当V1=V2,V41=V3,V42=V3时,所述显示面板发出的光经过所述光偏振方向调制器和所述光方向角亮度调制器后实现广视角二维显示;
    当V1=V2,V41≠V3,V42≠V3时,所述显示面板发出的光经过所述光偏振方向调制器和所述光方向角亮度调制器后实现窄视角二维显示;
    当V1≠V2,V41=V3,V42≠V3,或者,V1≠V2,V41≠V3,V42=V3时,所述显示面板发出的光经过所述光偏振方向调制器和所述光方向角亮度调制器后实现三维显示。
  15. 根据权利要求14所述的显示装置,其中,所述光偏振方向调制器下电极与所述光方向角亮度调制器下电极均接地。
  16. 一种如权利要求1-15任一项所述的显示装置的驱动方法,包括:
    控制所述显示面板发光;
    控制所述光偏振方向调制器将所述显示面板发出的光转换为沿预设偏振方向的线偏振光;
    控制所述光方向角亮度调制器,调节经所述光方向角亮度调制器出射的所述线偏振光的亮度随出射角度的变化而变化,以及在三维显示时调节所述光方向角亮度调制器形成狭缝光栅,以使所述显示装置呈现不同的显示状态;所述显示状态包括广视角二维显示、窄视角二维显示和三维显示,所述广视角二维显示为视角大于等于第一预设角度的二维显示,所述窄视角二维显示为视角小于所述第二预设角度的二维显示,所述第一预设角度大于所述第二预设角度。
  17. 根据权利要求16所述的驱动方法,其中,
    所述显示面板的两条邻边分别沿X方向和Y方向延伸,所述显示面板所在平面的法线方向沿Z方向延伸,所述X方向、所述Y方向与所述Z方向构成笛卡尔坐标系;所述光偏振方向调制器包括光偏振方向调制器下基板,以及位于所述光偏振方向调制器下基板远离所述显示面板一侧依次排列的光偏振方向调制器下电极、光偏振方向调制器下配向层、光偏振方向调制器液晶层、光偏振方向调制器上配向层、光偏振方向调制器上电极和光偏振方向调制器上基板;所述光偏振方向调制器下配向层的配向方向与所述光偏振方向调制器上配向层的配向方向垂直,所述光偏振方向调制器下配向层的配向方向沿所述Y方向;所述光方向角亮度调制器包括光方向角亮度调制器下基板,以及位于所述光方向角亮度调制器下基板远离所述显示面板一侧依次排列的光方向角亮度调制器下电极、光方向角亮度调制器下配向层、光方向角亮度调制器液晶层、光方向角亮度调制器上配向层、光方向角亮度调制器上电极和光方向角亮度调制器上基板;所述光方向角亮度调制器上电极包括多个第一子电极和多个第二子电极, 所述第一子电极与所述第二子电极沿所述X方向交替排列,所述第一子电极与所述第二子电极均沿所述Y方向延伸,所述光方向角亮度调制器下配向层的配向方向与所述光方向角亮度调制器上配向层的配向方向平行;所述光方向角亮度调制器下配向层的配向方向沿所述Y方向;
    为所述光偏振方向调制器下电极和所述光偏振方向调制器上电极施加相同的电压值,以控制所述光偏振方向调制器将所述显示面板发出的光转换为沿X方向的线偏振光;为所述第一子电极、所述第二子电极和所述光方向角亮度调制器下电极施加相同的电压值,控制经过所述光方向角亮度调制器后的光实现广视角二维显示;
    为所述光偏振方向调制器下电极和所述光偏振方向调制器上电极施加相同的电压值,以控制所述光偏振方向调制器将所述显示面板发出的光转换为沿X方向的线偏振光;为所述第一子电极和所述第二子电极施加相同的电压值,为所述第一子电极和所述光方向角亮度调制器下电极施加不同的电压值,控制经过所述光方向角亮度调制器后的光实现窄视角二维显示;
    为所述光偏振方向调制器下电极和所述光偏振方向调制器上电极施加不同的电压值,以控制所述光偏振方向调制器将显示面板发出的光转换为沿Y方向的线偏振光;为所述第一子电极和所述第二子电极中的一者施加与所述光方向角亮度调制器下电极相同的电压值,为所述第一子电极和所述第二子电极中另一者施加与所述光方向角亮度调制器下电极不同的电压值,控制经过所述光方向角亮度调制器后的光实现三维显示。
PCT/CN2019/070204 2018-10-26 2019-01-03 显示装置及其驱动方法 WO2020082606A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811255191.0A CN109343241B (zh) 2018-10-26 2018-10-26 一种显示装置及其驱动方法
CN201811255191.0 2018-10-26

Publications (1)

Publication Number Publication Date
WO2020082606A1 true WO2020082606A1 (zh) 2020-04-30

Family

ID=65310648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/070204 WO2020082606A1 (zh) 2018-10-26 2019-01-03 显示装置及其驱动方法

Country Status (2)

Country Link
CN (1) CN109343241B (zh)
WO (1) WO2020082606A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110166763B (zh) * 2019-06-25 2021-03-16 京东方科技集团股份有限公司 偏光结构、3d显示装置及3d显示系统
CN110412799B (zh) * 2019-06-26 2022-08-05 上海天马微电子有限公司 显示面板及其驱动方法和显示装置
CN212112044U (zh) * 2020-04-23 2020-12-08 中强光电股份有限公司 电控视角切换器及显示设备
CN115421336A (zh) * 2022-09-29 2022-12-02 厦门天马微电子有限公司 显示面板及显示方法、显示装置
CN115981059B (zh) * 2023-03-20 2023-06-23 惠科股份有限公司 液晶显示面板和液晶显示器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1938644A (zh) * 2004-04-03 2007-03-28 孙犁 用于2d和3d显示的双偏振光滤光器
US20080169997A1 (en) * 2007-01-16 2008-07-17 Kyung-Ho Choi Multi-dimensional image selectable display device
TW200900803A (en) * 2007-06-25 2009-01-01 Ind Tech Res Inst Three-dimensional (3D) image display and dual-mode image display
CN101419351A (zh) * 2007-10-24 2009-04-29 乐金显示有限公司 显示装置
CN101424808A (zh) * 2007-11-02 2009-05-06 乐金显示有限公司 使用电驱动液晶透镜的立体显示设备
TW201015204A (en) * 2008-10-09 2010-04-16 Au Optronics Corp Switchable two and three dimensional display
CN107290891A (zh) * 2017-05-25 2017-10-24 菏泽学院 视角连续可控显示器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4591150B2 (ja) * 2005-03-30 2010-12-01 エプソンイメージングデバイス株式会社 液晶表示装置
KR100732834B1 (ko) * 2005-12-28 2007-06-27 삼성에스디아이 주식회사 2차원 및 3차원 영상 선택 가능 디스플레이 장치
CN101477278A (zh) * 2008-12-31 2009-07-08 北京超多维科技有限公司 一种扭曲向列液晶盒及包含该液晶盒的装置
JP5732348B2 (ja) * 2011-08-12 2015-06-10 株式会社ジャパンディスプレイ 表示装置
CN205844670U (zh) * 2016-06-16 2016-12-28 昆山龙腾光电有限公司 多功能视角可控的液晶显示器
KR102577171B1 (ko) * 2016-10-31 2023-09-08 엘지디스플레이 주식회사 표시장치와 그의 구동방법
CN107247349B (zh) * 2017-05-25 2023-09-19 菏泽学院 一种多功能连续视角可控显示器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1938644A (zh) * 2004-04-03 2007-03-28 孙犁 用于2d和3d显示的双偏振光滤光器
US20080169997A1 (en) * 2007-01-16 2008-07-17 Kyung-Ho Choi Multi-dimensional image selectable display device
TW200900803A (en) * 2007-06-25 2009-01-01 Ind Tech Res Inst Three-dimensional (3D) image display and dual-mode image display
CN101419351A (zh) * 2007-10-24 2009-04-29 乐金显示有限公司 显示装置
CN101424808A (zh) * 2007-11-02 2009-05-06 乐金显示有限公司 使用电驱动液晶透镜的立体显示设备
TW201015204A (en) * 2008-10-09 2010-04-16 Au Optronics Corp Switchable two and three dimensional display
CN107290891A (zh) * 2017-05-25 2017-10-24 菏泽学院 视角连续可控显示器

Also Published As

Publication number Publication date
CN109343241B (zh) 2021-05-25
CN109343241A (zh) 2019-02-15

Similar Documents

Publication Publication Date Title
WO2020082606A1 (zh) 显示装置及其驱动方法
US20200041852A1 (en) Beam shaping device
US10527862B2 (en) Multiview display device
JP5906649B2 (ja) 表示装置
US9772503B2 (en) Autostereoscopic display device and method
US20160216540A1 (en) Display device and a driving method for the display device
WO2011125392A1 (ja) 表示装置および照明装置
WO2019205995A1 (zh) 显示设备、光学系统和虚拟现实头戴显示设备
US20100259819A1 (en) Auto-stereoscopic display device
EP2555532A2 (en) Display method, display device, electronic system, and lighting unit
US9497444B2 (en) Stereoscopic display device
CN103502882A (zh) 照明装置和显示单元
CN103728749A (zh) 显示器
WO2015190588A1 (ja) 液晶表示装置
KR20140017856A (ko) 하이브리드 액티브 리타더 패널 및 이를 구비하는 입체영상표시장치
WO2018076611A1 (en) Optical device and display method thereof
KR101269870B1 (ko) 액티브 리타드 패널 및 이를 구비하는 나노 액정층 기반의 입체영상 표시장치
KR100963872B1 (ko) 광시야각 확보가 가능한 입체구현용 액정표시기 패널을가지는 평면 및 입체 영상 겸용 표시장치
US20190103447A1 (en) Oled display panel and display device
KR20190025129A (ko) 입체영상 표시 장치
US12007588B2 (en) Liquid crystal display device and display device
US20220317472A1 (en) Liquid crystal display device and display device
KR101460415B1 (ko) 입체영상 표시 장치
US20230236435A1 (en) Stereoscopic image display device and a method of manufacturing the same
KR102607274B1 (ko) 액정 투명 디스플레이

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19875545

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19875545

Country of ref document: EP

Kind code of ref document: A1