WO2020082409A1 - 一种输配电网非迭代的分解协调动态调度方法 - Google Patents
一种输配电网非迭代的分解协调动态调度方法 Download PDFInfo
- Publication number
- WO2020082409A1 WO2020082409A1 PCT/CN2018/113461 CN2018113461W WO2020082409A1 WO 2020082409 A1 WO2020082409 A1 WO 2020082409A1 CN 2018113461 W CN2018113461 W CN 2018113461W WO 2020082409 A1 WO2020082409 A1 WO 2020082409A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- distribution network
- transmission
- power
- transmission grid
- grid
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/46—Controlling of the sharing of output between the generators, converters, or transformers
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/001—Methods to deal with contingencies, e.g. abnormalities, faults or failures
- H02J3/00125—Transmission line or load transient problems, e.g. overvoltage, resonance or self-excitation of inductive loads
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/007—Arrangements for selectively connecting the load or loads to one or several among a plurality of power lines or power sources
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/46—Controlling of the sharing of output between the generators, converters, or transformers
- H02J3/48—Controlling the sharing of the in-phase component
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2203/00—Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
- H02J2203/10—Power transmission or distribution systems management focussing at grid-level, e.g. load flow analysis, node profile computation, meshed network optimisation, active network management or spinning reserve management
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2203/00—Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
- H02J2203/20—Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/70—Smart grids as climate change mitigation technology in the energy generation sector
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/50—Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S40/00—Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
- Y04S40/20—Information technology specific aspects, e.g. CAD, simulation, modelling, system security
Definitions
- the feedback of this application relates to a non-iterative decomposition and coordination dynamic scheduling method for transmission and distribution networks, which belongs to the technical field of power system operation control.
- the applicant's patent with application number 201710087438.1 discloses a dynamic economic dispatch method for transmission and distribution network coordination based on multi-parameter programming. This method uses repeated iterations between transmission and distribution networks to perform transmission and distribution.
- the disadvantage of dynamic scheduling of grid coordination is that iterative iterations between transmission and distribution networks require continuous information interaction, which is highly dependent on communication between transmission and distribution networks, and the implementation of methods is susceptible to communication failures and blockages. influences.
- the purpose of feedback in this application is to propose a non-iterative decomposition and coordination dynamic scheduling method for transmission and distribution networks, to improve the existing scheduling method of transmission and distribution networks, without repeated iterations between transmission and distribution networks, to coordinate the dynamic scheduling of transmission and distribution
- the problem is solved and the global optimal solution is obtained through two limited information interactions between the transmission network and the distribution network.
- the non-iterative decomposition and coordination dynamic scheduling method for transmission and distribution network proposed by the feedback of this application includes the following steps:
- i is any node in the transmission grid or distribution network
- T represents the set of dynamic scheduling moments
- G represents the set of nodes where the generator set in the transmission grid or distribution network
- DIST represents the distribution network number set
- pg i, t represents the active power of the generator set connected to node i in the transmission grid or distribution network at the dynamic dispatch time t
- the superscript trans represents the transmission grid
- the superscript dist represents the distribution network with number k
- the function C i ( ⁇ ) Represents the generating cost function of the generator set connected to node i, which is expressed by a quadratic function as:
- a 0, i , a 1, i and a 2, i represent the constant term coefficient, the first term coefficient and the second term coefficient of the power generation cost of the generator set connected to the node i, the constant term coefficient, the first term coefficient and the The quadratic coefficient is the inherent parameter of the generator set;
- B represents the set of boundary nodes connecting the transmission grid and the distribution grid in the transmission grid
- D represents the set of load nodes in the transmission grid or distribution network
- PD i, t represents the load connected to the node i at the dynamic scheduling time t Predictive value
- n is the line number
- PL n is the transmission capacity of any line n in the transmission grid
- SF ni represents the transfer distribution factor from node i to line n
- the transfer distribution factor is the grid topology parameter, obtained from the grid dispatch center
- the rotation reserve constraints are:
- ru i, t and rd i, t are the rotation capacity of the generator set connected to the node i and the reserve capacity of the rotation down at the dynamic scheduling time t, respectively
- RU i and RD i are the power generation of the connection node i
- ⁇ t is the time interval of dynamic dispatch
- the value of the time interval is determined by the power dispatch demand
- PG i are the upper limit and the lower limit of active power of the generator set connected to node i, respectively
- SRU t and SRD t are the upward rotation reserve capacity requirement and downward rotation reserve capacity requirement of the transmission grid or distribution network, respectively;
- the constraint conditions for the climbing of the generator set in the transmission grid are:
- the active power constraints of the generator set in the transmission grid are:
- the constraint conditions of power flow in the distribution network are:
- i: i ⁇ j represents the set of head-end nodes whose end node is the branch of node j, p i ⁇ j, t represents the active power flow from node i to node j in the distribution network, l i ⁇ j , t represents the active power loss from node i to node j in the distribution network, Represents the active power input of node j in the distribution network, N dist, k represents the set of node numbers of the distribution network, and the active power input of node j And active power loss l i ⁇ j, t are calculated by the following two equations:
- PL i ⁇ j represents the transmission capacity of line i ⁇ j in the distribution network
- the active power constraints of the generator set in the distribution network are:
- the boundary constraint condition is the balance between the active power transmitted by the transmission network to the distribution network and the active power received by the distribution network during each dispatch period, expressed as:
- I (k) represents the node connected to the distribution network k in the transmission grid
- the function C trans () represents the objective function of the transmission grid
- the function Represents the objective function of distribution network k at the time t of dynamic dispatch
- X trans and Respectively represent the constraint set of transmission grid and distribution network k at dynamic dispatch time t
- Represents boundary constraints where Respectively, the transmission network variable coefficient, the distribution network variable coefficient and the constant coefficient in the dynamic scheduling time t of the distribution network k and the boundary conditions of the transmission grid are extracted from the constraint coefficients in the above step (1-2-3),
- the extraction method is: the constraints in step (1-2-3) are Corresponds to 2 lines in Neutral The corresponding columns are 1 and -1 in the two rows, and the rest are 0, Neutral The corresponding columns are -1 and 1 in the two rows, and the rest are 0, Is 0, DIST stands for the distribution network number set, and T stands for the dispatch period set
- each distribution network independently solves the distribution network cost function as follows:
- Matrix of quadratic coefficients Represents the constraint condition of the distribution network k at the dynamic dispatch time t and the boundary constraint condition of the distribution network k and the transmission grid, that is, the constraints in steps (1-2-2)-(1-2-3) Is the coefficient matrix of the variable of the distribution network k at the time t of dynamic dispatch, The coefficient matrix of the input power variable of the transmission network k from the transmission grid at the time t of dynamic dispatch, Is the constant term in the constraint;
- step (3-1-7) Upper bound of the sub-interval of power input from the transmission grid in the distribution network calculated in step (3-1-5) above The upper bound of the power input from the transmission grid in the distribution network calculated in the above step (3-1-2) To compare if Then the power sub-interval input from the transmission grid in the generated distribution network and the local cost function of the distribution grid in each sub-interval are transferred to the transmission grid, and step (3-2) is performed if Then increase u by 1 and return to step (3-1-4);
- the transmission grid calculates the dispatching strategy of the transmission grid according to the power sub-intervals input from the transmission grid in each dispatching period of the distribution grid in step (3-1) above;
- the physical meaning is the local optimal cost of the sub-interval of the distribution network after linearization
- the local cost function of the distribution network generated for step (3-1-6), Is the boundary of the sub-interval of power input from the transmission grid in the distribution network;
- CB v (p b ) is the local cost function of each distribution network corresponding to the above set C v in each dispatch period The sum of
- ( ⁇ x trans , ⁇ p b ) is the decreasing direction
- step (3-2-4) and step (3-3) for transmission and distribution networks respectively
- the dispatch plan component in is distributed to each power plant under its jurisdiction, and each power plant uses automatic control methods to track and execute the generator set according to the dispatch plan to achieve non-iterative decomposition and coordinated dynamic dispatch of the transmission and distribution network.
- the feedback method of the present application can solve the problem of coordinated dynamic scheduling of transmission and distribution networks in a non-iterative way of decomposition and coordination to ensure the information privacy security of transmission grid and distribution network operators.
- the proposed non-iterative decomposition and coordination algorithm does not require repeated iterations between transmission and distribution networks, and the optimal scheduling parameters can be obtained only through limited two information interactions, compared to the traditional synchronous type that requires iterative decomposition
- the coordination algorithm reduces the dependence on communication and the complexity of the algorithm, and has a higher stability of algorithm execution, which is more conducive to practical application.
- the non-iterative decomposition and coordination dynamic scheduling method for transmission and distribution network proposed by the feedback of this application includes the following steps:
- i is any node in the transmission grid or distribution network
- T represents the set of dynamic scheduling moments
- G represents the set of nodes where the generator set in the transmission grid or distribution network
- DIST represents the distribution network number set
- pg i, t represents the active power of the generator set connected to node i in the transmission grid or distribution network at the dynamic dispatch time t
- the superscript trans represents the transmission grid
- the superscript dist represents the distribution network with number k
- the function C i ( ⁇ ) Represents the generating cost function of the generator set connected to node i, which is expressed by a quadratic function as:
- a 0, i , a 1, i and a 2, i represent the constant term coefficient, the first term coefficient and the second term coefficient of the power generation cost of the generator set connected to the node i, the constant term coefficient, the first term coefficient and the The quadratic coefficient is the inherent parameter of the generator set, which can be obtained from the generator nameplate;
- B represents the set of boundary nodes connecting the transmission grid and the distribution grid in the transmission grid
- D represents the set of load nodes in the transmission grid or distribution network
- PD i, t represents the load connected to the node i at the dynamic scheduling time t Predictive value
- n is the line number
- PL n is the transmission capacity of any line n in the transmission grid
- SF ni represents the transfer distribution factor from node i to line n
- the transfer distribution factor is the grid topology parameter, obtained from the grid dispatch center
- the rotation reserve constraints are:
- ru i, t and rd i, t are the rotation capacity of the generator set connected to the node i and the reserve capacity of the rotation down at the dynamic scheduling time t, respectively
- RU i and RD i are the power generation of the connection node i
- ⁇ t is the time interval of dynamic dispatch
- the value of the time interval is determined by the power dispatch demand
- the value is 1 hour or 15 minutes
- PG i are the upper limit and the lower limit of active power of the generator set connected to node i, respectively
- SRU t and SRD t are the upward rotation reserve capacity requirement and downward rotation reserve capacity requirement of the transmission grid or distribution network, respectively;
- the constraint conditions for the climbing of the generator set in the transmission grid are:
- the active power constraints of the generator set in the transmission grid are:
- the constraint conditions of power flow in the distribution network are:
- i: i ⁇ j represents the set of head-end nodes whose end node is the branch of node j, p i ⁇ j, t represents the active power flow from node i to node j in the distribution network, l i ⁇ j , t represents the active power loss from node i to node j in the distribution network, Represents the active power input of node j in the distribution network, N dist, k represents the set of node numbers of the distribution network, and the active power input of node j And active power loss l i ⁇ j, t are calculated by the following two equations:
- PL i ⁇ j represents the transmission capacity of line i ⁇ j in the distribution network
- the active power constraints of the generator set in the distribution network are:
- the boundary constraint condition is the balance between the active power transmitted by the transmission network to the distribution network and the active power received by the distribution network during each dispatch period, expressed as:
- I (k) represents the node connected to the distribution network k in the transmission grid
- the function C trans () represents the objective function of the transmission grid
- the function Represents the objective function of distribution network k at the time t of dynamic dispatch
- X trans and Respectively represent the constraint set of transmission grid and distribution network k at dynamic dispatch time t
- Represents boundary constraints where Respectively, the transmission network variable coefficient, the distribution network variable coefficient and the constant coefficient in the dynamic scheduling time t of the distribution network k and the boundary conditions of the transmission grid are extracted from the constraint coefficients in the above step (1-2-3),
- the extraction method is: the constraints in step (1-2-3) are Corresponds to 2 lines in Neutral The corresponding columns are 1 and -1 in the two rows, and the rest are 0, Neutral The corresponding columns are -1 and 1 in the two rows, and the rest are 0, Is 0, DIST stands for the distribution network number set, and T stands for the dispatch period set;
- step (3) Solve the matrix-based dynamic scheduling model of transmission and distribution network coordination obtained in step (2) above.
- the specific steps are as follows:
- each distribution network independently solves the distribution network cost function as follows:
- Matrix of quadratic coefficients Represents the constraint condition of the distribution network k at the dynamic dispatch time t and the boundary constraint condition of the distribution network k and the transmission grid, that is, the constraint conditions in steps (1-2-2)-(1-2-3), where Is the coefficient matrix of the variable of the distribution network k at the time t of dynamic dispatch, The coefficient matrix of the input power variable of the transmission network k from the transmission grid at the time t of dynamic dispatch, Is the constant term in the constraint;
- step (3-1-7) Upper bound of the sub-interval of power input from the transmission grid in the distribution network calculated in step (3-1-5) above The upper bound of the power input from the transmission grid in the distribution network calculated in the above step (3-1-2) To compare if Then the power sub-interval input from the transmission grid in the generated distribution network and the local cost function of the distribution grid in each sub-interval are transferred to the transmission grid, and step (3-2) is performed Then increase u by 1 and return to step (3-1-4);
- the transmission grid calculates the dispatching strategy of the transmission grid according to the power sub-intervals input from the transmission grid in each dispatching period of the distribution grid in step (3-1) above;
- the physical meaning is the local optimal cost of the sub-interval of the distribution network after linearization
- the local cost function of the distribution network generated for step (3-1-6), Is the boundary of the sub-interval of power input from the transmission grid in the distribution network;
- CB v (p b ) is the local cost function of each distribution network corresponding to the above set C v in each dispatch period The sum of
- ( ⁇ x trans , ⁇ p b ) is the decreasing direction
- step (3-2-4) and step (3-3) for transmission and distribution networks respectively
- the dispatch plan component in is distributed to each power plant under its jurisdiction, and each power plant uses automatic control methods to track and execute the generator set according to the dispatch plan to achieve non-iterative decomposition and coordinated dynamic dispatch of the transmission and distribution network.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
本申请反馈涉及一种输配电网非迭代的分解协调动态调度方法,属于电力系统运行技术领域。本方法整合了输电网和配电网的动态调度模型,并将输配电网协同的动态调度模型以矩阵的形式表示。针对矩阵形式的输配协同动态调度模型,各个配电网计算局部最优成本关于边界注入功率的函数,传递给输电网,输电网结合各个配电网的局部最优成本函数进行全局优化,下发优化得到的各个配电网边界注入功率,再由各个配电网进行独立调度。本申请反馈方法不需要输电网和配电网之间的反复迭代,采用异步式架构,低了对通信的依赖与算法复杂性,有着较高的算法执行稳定性,利于实际应用。
Description
相关申请的交叉引用
本申请要求清华大学于2018年10月22日提交的、发明名称为“一种输配电网非迭代的分解协调动态调度方法”的、中国专利申请号“201811227076.2”的优先权。
本申请反馈涉及一种输配电网非迭代的分解协调动态调度方法,属于电力系统运行控制技术领域。
分布式电源与主动配电网的发展对电网运行带来了诸多挑战,输电网和配电网协同的调度成为了发展趋势。由于输电网和配电网分别属于独立的运营商管理,输电网和配电网协同的调度难以集中式开展,因此,需要发展输配电网分解协调动态调度方法。已有的大部分输配电网分解协调动态调度方法需要输电网和配电网之间的反复信息交互迭代,属于同步式分解协调方法。异步式分解协调动态调度方法的优点在于不需要输配电网之间的迭代,对信息交互与通信依赖较小。
本申请人提出的申请号为201710087438.1的专利,公开了一种基于多参数规划的输配电网协调的动态经济调度方法,该方法采用输电网和配电网之间反复迭代的形式来进行输配电网协调的动态调度,其缺点在于,输配电网之间的反复迭代需要持续的信息交互,对输电网和配电网之间通信的依赖性很高,方法的执行易受到通信故障、阻塞等影响。
发明内容
本申请反馈的目的是提出一种输配电网非迭代的分解协调动态调度方法,对已有的输配电网的调度方法进行改进,无需输配电网之间的反复迭代,将输配协调动态调度问题分解求解,通过输电网和配电网间两次有限的信息交互来获得全局最优解。
本申请反馈提出的输配电网非迭代的分解协调动态调度方法,包括以下步骤:
(1)建立一个输配电网协调的动态调度模型,该模型由目标函数和约束条件构成,包括:
(1-1)动态调度模型的目标函数:
以输电网和配电网的总发电成本为动态调度的目标函数为:
上式中,i为输电网或配电网中的任意节点,T代表动态调度时刻集合,G代表输电网或配电网中发电机组所在节点集合,DIST代表配电网编号集合,pg
i,t代表输电网或配电网中连接节点i的发电机组在动态调度时刻t的有功功率,上标
trans代表输电网,上标
dist,k代表编号为k的配电网,函数C
i(·)代表连接节点i的发电机组的发电成本函数,该成本函数用二次函数表示为:
上式中,a
0,i、a
1,i和a
2,i分别代表连接节点i的发电机组的发电成本常数项系数、一次项系数和二次项系数,常数项系数、一次项系数和二次项系数为发电机组固有参数;
(1-2)动态调度模型的约束条件,包括:
(1-2-1)输电网模型约束条件,
其中的有功功率平衡约束条件为:
上式中,B代表输电网中的输电网与配电网相互连接的边界节点集合,
代表在动态调度时刻t,输电网从边界节点i传送到配电网的有功功率,D代表输电网或配电网中负荷节点集合,PD
i,t代表在动态调度时刻t连接节点i的负荷预测值;
其中的输电网中线路传输容量的约束条件为:
上式中,n为线路编号,PL
n表示输电网中任意线路n的传输容量,SF
n-i代表节点i到线路n的转移分布因子,转移分布因子为电网拓扑参数,从电网调度中心获取,L是输电网中所有线路编号的集合;
其中的旋转备用约束条件为:
上式中,ru
i,t和rd
i,t分别为在动态调度时刻t,连接节点i的发电机组向上旋转备用容量和向下旋转备用容量,RU
i和RD
i分别为连接节点i的发电机组向上爬坡速率和向下爬坡速率,Δt为动态调度的时间间隔,时间间隔的取值由电力调度需求确定,
和
PG
i分别为连接节点i的发电机组的有功功率上限和有功功率下限,SRU
t和SRD
t分别为输电网或配电网的向上旋转备用的容量需求和向下旋转备用的容量需求;
其中的输电网中发电机组的爬坡约束条件为:
其中的输电网中发电机组的有功功率约束条件为:
(1-2-2)配电网模型约束条件:
其中的配电网潮流约束条件为:
上式中,i:i→j表示末端节点为节点j的支路的首端节点集合,p
i→j,t表示配电网中,节点i向节点j的有功功率潮流,l
i→j,t表示配电网中节点i向节点j的有功功率损耗,
表示配电网中节点j的有功功率输入,N
dist,k表示配电网节点编号集合,节点j的有功功率输入
和有功功率损耗l
i→j,t分别通过下面两式计算:
上式中,
为输电网向配电网k在动态调度时刻t的传输功率,
和
分别表示配电网中从节点i→节点j线路上的有功功率潮流展开点和无功功率潮流展开点,
表示节点i的电压展开点,上述各展开点从电网调度中心的历史相近负荷水平下线路对应的运行数据中选取,R
i→j表示线路i→j的电阻;
其中的配电网线路传输容量约束条件为:
上式中,PL
i→j表示配电网中线路i→j的传输容量;
其中的配电网中发电机组有功功率约束条件为:
(1-2-3)输电网与配电网模型连接的边界约束条件:
边界约束条件即在每个调度时段输电网向配电网传输的有功功率与配电网接收的有功功率之间的平衡,表示为:
上式中,I(k)表示输电网中与配电网k相连的节点;
(2)将上述步骤(1)建立的输配电网协调的动态调度模型转化为矩阵形式,将输配电网协调的动态调度模型中的输电网模型变量记为向量x
trans,配电网k在动态调度时刻t的变量记为向量
则输配电网协调的动态调度模型的矩阵形式如下:
满足:
x
trans∈X
trans
上式中,函数C
trans()表示输电网的目标函数,函数
表示配电网k在动态调度时刻t的目标函数,X
trans和
分别表示输电网和配电网k在动态调度时刻t的约束集合,
表示边界约束条件,其中的
分别为配电网k在动态调度时刻t与输电网边界条件中的输电网变量系数、配电网变量系数和常量系数,由上述步骤(1-2-3)中的约束系数中提取得到,提取方法为:步骤(1-2-3)中的约束在
中对应2行,
中与
相对应的列在两行中分别为1和-1,其余为0,
中与
相对应的列在两行中分别为-1和1,其余为0,
为0,DIST代表配电网编号集合,T代表调度时段集合;
(3)求解上述步骤(2)得到的矩阵形式的输配电网协调的动态调度模型,具体步骤 如下:
(3-1)在配电网侧,由每个配电网独立求解配电网的成本函数,步骤如下:
(3-1-1)将配电网单时段调度问题表示为以下优化问题:
上式中,
为步骤(1-1)中的目标函数中配电网项
的二次系数矩阵,
表示配电网k在动态调度时刻t的约束条件以及配电网k和输电网的边界约束条件,即步骤(1-2-2)-(1-2-3)中的约束条件,其中
为配电网k在动态调度时刻t的变量的系数矩阵,
配电网k在动态调度时刻t从输电网的输入功率变量的系数矩阵,
为约束条件中的常数项;
(3-1-4)取微小偏移量e=1×10
-3,令
将
代入上述步骤(3-1-1)的优化问题中,对步骤(3-1-1)的优化问题中的约束条件进行判断,将起作用的约束,即最优解处不等式
中两侧相等的行用下标()
A表示,将不起作用约束,即最优解处不等式
中两侧不相等的行用下标()
I表示;
满足:
上式中:
(3-1-7)将上述步骤(3-1-5)计算得到的配电网中从输电网输入的功率子区间上界
与上述步骤(3-1-2)计算得到的配电网中从输电网输入的功率上界
进行比较,若
则将生成的配电网中从输电网输入的功率子区间与每个子区间的配电网局部成本函数传给输电网,并进行步骤(3-2),若
则将u增加1,返回步骤(3-1-4);
(3-2)输电网根据上述步骤(3-1)的配电网在每个调度时段中从输电网输入的功率子区间,计算得到输电网的调度策略;
(3-2-1)初始化时,设定求解步数v初始化为1,求解下述优化问题,并将优化问题的最优解记为
其中向量
由所有配电网在每一个调度时段的注入功率
组成,向量
对应下述优化问题中向量x
trans在最优解处的取值:
minC
trans(x
trans)+CB
v(p
b)
满足:Dx
trans+Ep
b≤f
p
b∈C
v
||Δx
trans||
∞≤e,||Δp
b||
∞≤e
将v增加1,返回步骤(3-2-2);
(4)输电网和配电网分别将步骤(3-2-4)、步骤(3-3)计算得到的最优解
中的调度计划分量下发至所管辖的各个电厂,各个电厂依据调度计划对发电机组采用自动控制方法追踪执行,实现输配电网非迭代的分解协调动态调度。
本申请反馈提出的输配电网非迭代的分解协调动态调度方法,其优点是:
本申请反馈方法能够将输配电网协同动态调度问题以分解协调的非迭代方式进行求解,保障输电网和配电网运营商各自的信息隐私安全。同时所提出的非迭代的分解协调算法无需要输电网和配电网之间的反复迭代,仅通过有限的两次信息交互即可获得最优调度参数,相比于传统同步式需要迭代的分解协调算法,降低了对通信的依赖与算法复杂性,有较高的算法执行稳定性,更利于实际应用。
本申请反馈提出的输配电网非迭代的分解协调动态调度方法,包括以下步骤:
(1)建立一个输配电网协调的动态调度模型,该模型由目标函数和约束条件构成,包括:
(1-1)动态调度模型的目标函数:
以输电网和配电网的总发电成本为动态调度的目标函数为:
上式中,i为输电网或配电网中的任意节点,T代表动态调度时刻集合,G代表输电网或配电网中发电机组所在节点集合,DIST代表配电网编号集合,pg
i,t代表输电网或配电网中连接节点i的发电机组在动态调度时刻t的有功功率,上标
trans代表输电网,上标
dist,k代表编号为k的配电网,函数C
i(·)代表连接节点i的发电机组的发电成本函数,该成本函数用二次函数表示为:
上式中,a
0,i、a
1,i和a
2,i分别代表连接节点i的发电机组的发电成本常数项系数、一次项系数和二次项系数,常数项系数、一次项系数和二次项系数为发电机组固有参数,可以从发电机铭牌获取;
(1-2)动态调度模型的约束条件,包括:
(1-2-1)输电网模型约束条件,
其中的有功功率平衡约束条件为:
上式中,B代表输电网中的输电网与配电网相互连接的边界节点集合,
代表在动态调度时刻t,输电网从边界节点i传送到配电网的有功功率,D代表输电网或配电网中负荷节点集合,PD
i,t代表在动态调度时刻t连接节点i的负荷预测值;
其中的输电网中线路传输容量的约束条件为:
上式中,n为线路编号,PL
n表示输电网中任意线路n的传输容量,SF
n-i代表节点i到线路n的转移分布因子,转移分布因子为电网拓扑参数,从电网调度中心获取,L是输电网中所有线路编号的集合;
其中的旋转备用约束条件为:
上式中,ru
i,t和rd
i,t分别为在动态调度时刻t,连接节点i的发电机组向上旋转备用容量和向下旋转备用容量,RU
i和RD
i分别为连接节点i的发电机组向上爬坡速率和向下爬坡速率,Δt为动态调度的时间间隔,时间间隔的取值由电力调度需求确定,取值为1小时或15分钟,
和
PG
i分别为连接节点i的发电机组的有功功率上限和有功功率下限,SRU
t和SRD
t分别为输电网或配电网的向上旋转备用的容量需求和向下旋转备用的容量需求;
其中的输电网中发电机组的爬坡约束条件为:
其中的输电网中发电机组的有功功率约束条件为:
(1-2-2)配电网模型约束条件:
其中的配电网潮流约束条件为:
上式中,i:i→j表示末端节点为节点j的支路的首端节点集合,p
i→j,t表示配电网中,节点i向节点j的有功功率潮流,l
i→j,t表示配电网中节点i向节点j的有功功率损耗,
表示配电网中节点j的有功功率输入,N
dist,k表示配电网节点编号集合,节点j的有功功率输入
和有功功率损耗l
i→j,t分别通过下面两式计算:
上式中,
为输电网向配电网k在动态调度时刻t的传输功率,
和
分别表示配电网中从节点i→节点j线路上的有功功率潮流展开点和无功功率潮流展开点,
表示节点i的电压展开点,上述各展开点从电网调度中心的历史相近负荷水平下线路对应的运行数据中选取,R
i→j表示线路i→j的电阻;
其中的配电网线路传输容量约束条件为:
上式中,PL
i→j表示配电网中线路i→j的传输容量;
其中的配电网中发电机组有功功率约束条件为:
(1-2-3)输电网与配电网模型连接的边界约束条件:
边界约束条件即在每个调度时段输电网向配电网传输的有功功率与配电网接收的有功功率之间的平衡,表示为:
上式中,I(k)表示输电网中与配电网k相连的节点;
(2)将上述步骤(1)建立的输配电网协调的动态调度模型转化为矩阵形式,将输配电网协调的动态调度模型中的输电网模型变量记为向量x
trans,配电网k在动态调度时刻t的变量记为向量
则输配电网协调的动态调度模型的矩阵形式如下:
满足:
x
trans∈X
trans
上式中,函数C
trans()表示输电网的目标函数,函数
表示配电网k在动态调度时刻t的目标函数,X
trans和
分别表示输电网和配电网k在动态调度时刻t的约束集合,
表示边界约束条件,其中的
分别为配电网k在动态调度时刻t与输电网边界条件中的输电网变量系数、配电网变量系数和常量系数,由上述步骤(1-2-3)中的约束系数中提取得到,提取方法为:步骤(1-2-3)中的约束在
中对应2行,
中与
相对应的列在两行中分别为1和-1,其余为0,
中与
相对应的列在两行中分别为-1和1,其余为0,
为0,DIST代表配电网编号集合,T代表调度时段集合;
(3)求解上述步骤(2)得到的矩阵形式的输配电网协调的动态调度模型,具体步骤如下:
(3-1)在配电网侧,由每个配电网独立求解配电网的成本函数,步骤如下:
(3-1-1)将配电网单时段调度问题表示为以下优化问题:
上式中,
为步骤(1-1)中的目标函数中配电网项
的二次系数矩阵,
表示配电网k在动态调度时刻t的约束条件以及配电网k和输电网的边界约束条件,即步骤(1-2-2)-(1-2-3)中的约束条件,其中
为配电网k在 动态调度时刻t的变量的系数矩阵,
配电网k在动态调度时刻t从输电网的输入功率变量的系数矩阵,
为约束条件中的常数项;
(3-1-4)取微小偏移量e=1×10
-3,令
将
代入上述步骤(3-1-1)的优化问题中,基于优化结果中每一个约束是否起作用,对步骤(3-1-1)的优化问题中的约束条件进行判断,其中每一行分类为起作用约束和不起作用约束,将起作用的约束,即最优解处不等式
中两侧相等的行用下标()
A表示,将不起作用约束,即最优解处不等式
中两侧不相等的行用下标()
I表示;
满足:
上式中:
(3-1-7)将上述步骤(3-1-5)计算得到的配电网中从输电网输入的功率子区间上界
与上述步骤(3-1-2)计算得到的配电网中从输电网输入的功率上界
进行比较,若
则将生成的配电网中从输电网输入的功率子区间与每个子区间的配电网局部成本函数传给输电网,并进行步骤(3-2),若
则将u增加1,返回步骤(3-1-4);
(3-2)输电网根据上述步骤(3-1)的配电网在每个调度时段中从输电网输入的功率子区间,计算得到输电网的调度策略;
(3-2-1)初始化时,设定求解步数v初始化为1,求解下述优化问题,并将优化问题的最优解记为
其中向量
由所有配电网在每一个调度时段的注入功率
组成,向量
对应下述优化问题中向量x
trans在最优解处的取值:
满足:Dx
trans+Ep
b≤f
p
b∈C
v
||Δx
trans||
∞≤e,||Δp
b||
∞≤e
将v增加1,返回步骤(3-2-2);
Claims (1)
- 一种输配电网非迭代的分解协调动态调度方法,其特征在于该方法包括以下步骤:(1)建立一个输配电网协调的动态调度模型,该模型由目标函数和约束条件构成,包括:(1-1)动态调度模型的目标函数:以输电网和配电网的总发电成本为动态调度的目标函数为:上式中,i为输电网或配电网中的任意节点,T代表动态调度时刻集合,G代表输电网或配电网中发电机组所在节点集合,DIST代表配电网编号集合,pg i,t代表输电网或配电网中连接节点i的发电机组在动态调度时刻t的有功功率,上标 trans代表输电网,上标 dist,k代表编号为k的配电网,函数C i(·)代表连接节点i的发电机组的发电成本函数,该成本函数用二次函数表示为:上式中,a 0,i、a 1,i和a 2,i分别代表连接节点i的发电机组的发电成本常数项系数、一次项系数和二次项系数,常数项系数、一次项系数和二次项系数为发电机组固有参数;(1-2)动态调度模型的约束条件,包括:(1-2-1)输电网模型约束条件,其中的有功功率平衡约束条件为:上式中,B代表输电网中的输电网与配电网相互连接的边界节点集合, 代表在动态调度时刻t,输电网从边界节点i传送到配电网的有功功率,D代表输电网或配电网中负荷节点集合,PD i,t代表在动态调度时刻t连接节点i的负荷预测值;其中的输电网中线路传输容量的约束条件为:上式中,n为线路编号,PL n表示输电网中任意线路n的传输容量,SF n-i代表节点i到 线路n的转移分布因子,转移分布因子为电网拓扑参数,从电网调度中心获取,L是输电网中所有线路编号的集合;其中的旋转备用约束条件为:上式中,ru i,t和rd i,t分别为在动态调度时刻t,连接节点i的发电机组向上旋转备用容量和向下旋转备用容量,RU i和RD i分别为连接节点i的发电机组向上爬坡速率和向下爬坡速率,Δt为动态调度的时间间隔,时间间隔的取值由电力调度需求确定, 和 PG i分别为连接节点i的发电机组的有功功率上限和有功功率下限,SRU t和SRD t分别为输电网或配电网的向上旋转备用的容量需求和向下旋转备用的容量需求;其中的输电网中发电机组的爬坡约束条件为:其中的输电网中发电机组的有功功率约束条件为:(1-2-2)配电网模型约束条件:其中的配电网潮流约束条件为:上式中,i:i→j表示末端节点为节点j的支路的首端节点集合,p i→j,t表示配电网中,节点i向节点j的有功功率潮流,l i→j,t表示配电网中节点i向节点j的有功功率损耗, 表示配电网中节点j的有功功率输入,N dist,k表示配电网节点编号集合,节点j的有功功率输入 和有功功率损耗l i→j,t分别通过下面两式计算:上式中, 为输电网向配电网k在动态调度时刻t的传输功率, 和 分别表示配电网中从节点i→节点j线路上的有功功率潮流展开点和无功功率潮流展开点, 表示节点i的电压展开点,上述各展开点从电网调度中心的历史相近负荷水平下线路对应的运行数据中选取,R i→j表示线路i→j的电阻;其中的配电网线路传输容量约束条件为:上式中,PL i→j表示配电网中线路i→j的传输容量;其中的配电网中发电机组有功功率约束条件为:(1-2-3)输电网与配电网模型连接的边界约束条件:边界约束条件即在每个调度时段输电网向配电网传输的有功功率与配电网接收的有功功率之间的平衡,表示为:上式中,I(k)表示输电网中与配电网k相连的节点;(2)将上述步骤(1)建立的输配电网协调的动态调度模型转化为矩阵形式,将输配电网协调的动态调度模型中的输电网模型变量记为向量x trans,配电网k在动态调度时刻t的变量记为向量 则输配电网协调的动态调度模型的矩阵形式如下:满足:x trans∈X trans上式中,函数C trans()表示输电网的目标函数,函数 表示配电网k在动态调度时刻t的目标函数,X trans和 分别表示输电网和配电网k在动态调度时刻t的约束集合, 表示边界约束条件,其中的 分别为配电网k在动态调度时刻t与输电网边界条件中的输电网变量系数、配电网变量系数和常量系数,由上述步骤(1-2-3)中的约束系数中提取得到,提取方法为:步骤(1-2-3)中的约束在 中对应2行, 中与 相对应的列在两行中分别为1和-1,其余为0, 中与 相对应的列在两行中分别为-1和1,其余为0, 为0,DIST代表配电网编号集合,T代表调度时段集合;(3)求解上述步骤(2)得到的矩阵形式的输配电网协调的动态调度模型,具体步骤如下:(3-1)在配电网侧,由每个配电网独立求解配电网的成本函数,步骤如下:(3-1-1)将配电网单时段调度问题表示为以下优化问题:上式中, 为步骤(1-1)中的目标函数中配电网项 的二次系数矩阵, 表示配电网k在动态调度时刻t的约束条件以及配电网k和输电网的边界约束条件,即步骤(1-2-2)-(1-2-3)中的约束条件,其中 为配电网k在动态调度时刻t的变量的系数矩阵, 配电网k在动态调度时刻t从输电网的输入功率变量的系数矩阵, 为约束条件中的常数项;(3-1-4)取微小偏移量e=1×10 -3,令 将 代入上述步骤(3-1-1) 的优化问题中,对步骤(3-1-1)的优化问题中的约束条件进行判断,将起作用的约束,即最优解处不等式 中两侧相等的行用下标() A表示,将不起作用约束,即最优解处不等式 中两侧不相等的行用下标() I表示;满足:上式中:(3-1-7)将上述步骤(3-1-5)计算得到的配电网中从输电网输入的功率子区间上界 与上述步骤(3-1-2)计算得到的配电网中从输电网输入的功率上界 进行比较,若 则将生成的配电网中从输电网输入的功率子区间与每个子区间的配电网局部成本函数传给输电网,并进行步骤(3-2),若 则将u增加1,返回步骤(3-1-4);(3-2)输电网根据上述步骤(3-1)的配电网在每个调度时段中从输电网输入的功率子区间,计算得到输电网的调度策略;(3-2-1)初始化时,设定求解步数v初始化为1,求解下述优化问题,并将优化问题的最优解记为 其中向量 由所有配电网在每一个调度时段的注入功率 组成,向量 对应下述优化问题中向量x trans在最优解处的取值:min C trans(x trans)+CB v(p b)满足:Dx trans+Ep b≤fp b∈C v||Δx trans|| ∞≤e,||Δp b|| ∞≤e将v增加1,返回步骤(3-2-2);
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/736,313 US11239658B2 (en) | 2018-10-22 | 2020-01-07 | Dispatching method and device for integrated transmission and distribution network |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811227076.2 | 2018-10-22 | ||
CN201811227076.2A CN109193805B (zh) | 2018-10-22 | 2018-10-22 | 一种输配电网非迭代的分解协调动态调度方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/736,313 Continuation US11239658B2 (en) | 2018-10-22 | 2020-01-07 | Dispatching method and device for integrated transmission and distribution network |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020082409A1 true WO2020082409A1 (zh) | 2020-04-30 |
Family
ID=64946008
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/113461 WO2020082409A1 (zh) | 2018-10-22 | 2018-11-01 | 一种输配电网非迭代的分解协调动态调度方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11239658B2 (zh) |
CN (1) | CN109193805B (zh) |
WO (1) | WO2020082409A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113644682A (zh) * | 2021-07-14 | 2021-11-12 | 国网河北省电力有限公司电力科学研究院 | 高渗透有源配电网多台区协同管控方法、装置和终端设备 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110880758B (zh) * | 2019-11-22 | 2021-01-01 | 清华大学 | 电力系统中输电网与配电网的分解协调最优潮流控制方法 |
CN111654025B (zh) * | 2020-06-12 | 2021-10-08 | 国网河北省电力有限公司经济技术研究院 | 考虑配网间互联的输配一体化协调调度方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016074187A1 (en) * | 2014-11-13 | 2016-05-19 | The University Of Hong Kong | Fast generation adjustment algorithm for energy management system |
CN106953358A (zh) * | 2017-04-20 | 2017-07-14 | 国网江西省电力公司电力科学研究院 | 一种主动配电网优化调度策略确定方法 |
CN107069706A (zh) * | 2017-02-17 | 2017-08-18 | 清华大学 | 一种基于多参数规划的输配电网协调的动态经济调度方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7085660B2 (en) * | 2003-05-13 | 2006-08-01 | Siemens Power Transmission & Distribution, Inc. | Energy management system in a power and distribution system |
US20130338843A1 (en) * | 2012-06-18 | 2013-12-19 | Reza Iravani | Systems, methods and controllers for control of power distribution devices and systems |
CN107482633B (zh) * | 2017-08-22 | 2020-03-31 | 东南大学 | 一种适用于辐射状配电网的非迭代区间潮流算法 |
-
2018
- 2018-10-22 CN CN201811227076.2A patent/CN109193805B/zh active Active
- 2018-11-01 WO PCT/CN2018/113461 patent/WO2020082409A1/zh active Application Filing
-
2020
- 2020-01-07 US US16/736,313 patent/US11239658B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016074187A1 (en) * | 2014-11-13 | 2016-05-19 | The University Of Hong Kong | Fast generation adjustment algorithm for energy management system |
CN107069706A (zh) * | 2017-02-17 | 2017-08-18 | 清华大学 | 一种基于多参数规划的输配电网协调的动态经济调度方法 |
CN106953358A (zh) * | 2017-04-20 | 2017-07-14 | 国网江西省电力公司电力科学研究院 | 一种主动配电网优化调度策略确定方法 |
Non-Patent Citations (1)
Title |
---|
YU, LIJIE ET AL.: "Study on Optimal Dispatching of Flexible DC Distribution Networks", PRECISE MANUFACTURING & AUTOMATION, no. 1, 25 February 2018 (2018-02-25) * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113644682A (zh) * | 2021-07-14 | 2021-11-12 | 国网河北省电力有限公司电力科学研究院 | 高渗透有源配电网多台区协同管控方法、装置和终端设备 |
CN113644682B (zh) * | 2021-07-14 | 2023-08-25 | 国网河北省电力有限公司电力科学研究院 | 高渗透有源配电网多台区协同管控方法、装置和终端设备 |
Also Published As
Publication number | Publication date |
---|---|
CN109193805A (zh) | 2019-01-11 |
US11239658B2 (en) | 2022-02-01 |
CN109193805B (zh) | 2021-05-07 |
US20200144819A1 (en) | 2020-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107069706B (zh) | 一种基于多参数规划的输配电网协调的动态经济调度方法 | |
WO2020082409A1 (zh) | 一种输配电网非迭代的分解协调动态调度方法 | |
CN112003277B (zh) | 一种输配协同负荷恢复优化控制方法及系统 | |
CN111342452B (zh) | 一种多区域电气综合能源系统能量与备用分散式调度方法 | |
CN109474017A (zh) | 一种配电网实时分布式经济调度方法 | |
CN106208075B (zh) | 基于修正广义Benders分解的多区域分解协调动态经济调度方法 | |
CN110266038A (zh) | 一种多虚拟电厂分布式协调调控方法 | |
CN110232475B (zh) | 一种分布式输电网配电网协同经济调度方法 | |
CN101141064A (zh) | 通过交换边界节点状态和网损信息完成分布式潮流分析的方法 | |
CN101938416A (zh) | 一种基于动态重配置虚拟资源的云计算资源调度方法 | |
CN107332286A (zh) | 一种含储热的热电联产与风电协调调度方法 | |
CN106786753A (zh) | 多用户的区域能源互联网的系统及其调节方法 | |
CN113054688B (zh) | 考虑不确定性的可再生能源集群出力分布式协调控制方法 | |
CN109787251A (zh) | 一种集群温控负荷聚合模型、系统参数辨识及反推控制方法 | |
CN110535936A (zh) | 一种基于深度学习的能量高效雾计算迁移方法 | |
CN103488837B (zh) | 一种基于厂站地理信息的电网网架图自动布局方法 | |
CN109347141A (zh) | 一种双馈风力发电系统网侧终端滑模控制器设计方法 | |
CN110867907A (zh) | 一种基于多类型发电资源同质化的电力系统调度方法 | |
CN109347139A (zh) | 一种配电网中分布式电源最大准入容量优化配置方法 | |
CN115271453A (zh) | 一种城市原水供水调配路径识别方法、系统及可存储介质 | |
CN118399396A (zh) | 电力系统可用输电容量计算方法、装置、介质及设备 | |
WO2020244049A1 (zh) | 基于过渡矩阵的泛在电力物联网分布式经济调度方法 | |
Wang et al. | A robust reserve scheduling method considering asymmetrical wind power distribution | |
CN106786812B (zh) | 虚拟发电厂分布式无功补偿系统及其补偿方法 | |
CN116993022A (zh) | 一种机组检修和水电电量的调配方法和装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18938026 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18938026 Country of ref document: EP Kind code of ref document: A1 |