WO2020082373A1 - 一种通信系统的切换方法和终端设备 - Google Patents

一种通信系统的切换方法和终端设备 Download PDF

Info

Publication number
WO2020082373A1
WO2020082373A1 PCT/CN2018/112219 CN2018112219W WO2020082373A1 WO 2020082373 A1 WO2020082373 A1 WO 2020082373A1 CN 2018112219 W CN2018112219 W CN 2018112219W WO 2020082373 A1 WO2020082373 A1 WO 2020082373A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication system
qos
terminal device
mobile phone
parameter set
Prior art date
Application number
PCT/CN2018/112219
Other languages
English (en)
French (fr)
Inventor
许浩维
黄建仁
龙星宇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18937670.0A priority Critical patent/EP3843459A4/en
Priority to PCT/CN2018/112219 priority patent/WO2020082373A1/zh
Priority to CN201880087012.9A priority patent/CN111615845B/zh
Priority to US17/285,636 priority patent/US20220232445A1/en
Publication of WO2020082373A1 publication Critical patent/WO2020082373A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0033Control or signalling for completing the hand-off for data sessions of end-to-end connection with transfer of context information
    • H04W36/0044Control or signalling for completing the hand-off for data sessions of end-to-end connection with transfer of context information of quality context information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
    • H04W36/322Reselection being triggered by specific parameters by location or mobility data, e.g. speed data by location data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/304Reselection being triggered by specific parameters by measured or perceived connection quality data due to measured or perceived resources with higher communication quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • the present application relates to the field of terminal technology, and in particular, to a switching method and terminal device of a communication system.
  • a terminal device supporting multiple communication standards refers to a terminal device having multiple wireless communication modules.
  • Each wireless communication module can transmit and receive wireless signals to realize data transmission functions, and the communication standard used by each communication module may be different.
  • the communication standard may be cellular mobile communication technology such as GSM, CDMA, LTE, etc., or wireless local area network communication technology such as Wi-Fi.
  • terminal devices that support multiple communication standards have the ability to transmit business data through different communication standards.
  • the terminal device needs to select one communication system from multiple communication systems and establish a connection with the communication system.
  • the terminal device selects the communication system as follows:
  • each communication system supports different communication standards. Assuming that the terminal device is currently connected to the access node AP1 of the communication system 1, the terminal device can detect the Qos value of AP1. When the terminal device determines that the Qos value of the currently connected AP1 is lower than the threshold, it terminates the connection with AP1 and connects with AP2 to detect the Qos value of AP2. If the Qos value of AP2 is higher than the threshold, the terminal device establishes a connection with AP2 for a long time.
  • the present application provides a switching method and terminal device of a communication system to solve the technical problem that the switching conditions of the terminal device switching communication system in the prior art are single and cannot meet the intelligent demand of the terminal device.
  • an embodiment of the present application provides a method for switching a communication system.
  • the method may be executed by a terminal device (such as a mobile phone or a tablet computer).
  • the method includes: a terminal device establishing a connection with a first communication system; the terminal device running a first application program; the terminal device acquiring a Qos value of a second communication system; the terminal device according to a preset policy and the first The Qos requirement of an application, to determine whether the Qos value of the second communication system can meet the Qos requirement of the first application; if the Qos value of the second communication system can satisfy the first application QoS requirements, the terminal device disconnects from the first communication system and establishes a connection with the second communication system.
  • the terminal device can choose to connect with different communication systems according to different application programs to meet the Qos requirements of each application program, the solution is more flexible, and the degree of intelligence is higher.
  • the terminal device determines whether the Qos value of the second communication system can meet the Qos of the first application program according to a preset policy and the Qos requirement of the first application program Before demand, the terminal device determines whether the preset condition is satisfied; wherein, the preset condition includes one or more of the following conditions: the value of OsS of the first communication system does not satisfy the value of the first application Demand; the value of OsS of the first communication system does not meet user needs; the current power consumption of the terminal device is greater than the preset power consumption.
  • the terminal device can determine whether the currently connected communication system meets the current service requirements, or user requirements, or whether the power consumption is high, to decide whether to switch other communication systems. In this way, frequent switching of the communication system can be avoided, and it helps to save power consumption.
  • the Qos value of the second communication system is better than the Qos value of the first communication system.
  • the Qos value of the communication system to be switched is better than the Qos value of the currently connected communication system, so that the terminal device can provide a better experience after switching the communication system, such as smoother video playback, etc. .
  • the Qos value of the second communication system is better than the Qos value of the first communication system, including: if the Qos includes a delay and / or a packet loss rate, the second The Qos value of the communication system is less than the Qos value of the first communication system; if the Qos includes throughput, the Qos value of the second communication system is greater than the Qos value of the first communication system.
  • Qos includes delay, packet loss rate, throughput, and so on.
  • Different applications have different requirements for latency, packet loss rate, and throughput.
  • the delay of the communication system determined by the terminal device to be switched is less than the delay of the currently connected communication system.
  • the application can be smoother Running helps to provide a better experience, such as smoother video playback.
  • the terminal device before the terminal device disconnects from the first communication system, the terminal device outputs first prompt information, and the first prompt information is used to prompt the user whether to disconnect and Connection of the first communication system; the terminal device receives an instruction that the user agrees to disconnect from the first communication system.
  • the terminal device may prompt the user whether to disconnect the currently connected communication system, provide the user with a choice, and help improve the user experience.
  • the terminal device determines whether the Qos value of the second communication system can meet the Qos requirement of the first application program according to a preset policy and the Qos requirement of the first application program Including: the terminal device judging whether the second communication system meets user habits; if satisfied, the terminal device judging whether the Qos value of the second communication system can meet the Qos requirement of the first application Or the terminal device determines whether the duration of use of the first application is greater than a preset duration; if so, the terminal device determines whether the value of Qos of the second communication system can meet the Qos of the first application demand.
  • the terminal device determines whether the Qos value of the communication system to be switched meets the current demand according to various methods, and the solution is more flexible and highly intelligent.
  • the terminal device acquiring the Qos value of the second communication system includes: the terminal device stores a correspondence between a geographic location and a Qos parameter set, where the Qos parameter set includes at least one The Qos value of the second communication system; the terminal device detects the current geographic location; the terminal device determines the Qos parameter set corresponding to the current geographic location according to the correspondence between the geographic location and the Qos parameter set; The terminal device selects the Qos value of the second communication system according to the determined Qos parameter set.
  • the terminal device is at different positions, and the obtained Qos value of each communication system is different. For example, the terminal device determines at least one second communication system according to the current geographic location information, and then selects a second communication system that meets the current service requirements. In this way, the terminal device can find the best communication system at different locations, and the solution is more flexible and highly intelligent.
  • the terminal device acquiring the Qos value of the second communication system includes: the terminal device stores a correspondence between a signal strength set and a Qos parameter set, where the Qos parameter set includes at least one The Qos value of the second communication system; the signal strength set includes the signal strength of at least one second communication system; and the Qos value of the Qos parameter set corresponds one-to-one with the signal strength in the signal strength set; The terminal device detects the current signal strength of the at least one second communication system to obtain a first signal strength set; the terminal device determines the first signal strength set according to the correspondence between the signal strength set and the Qos parameter set The Qos parameter set corresponding to the signal strength set; the terminal device selects the Qos value of the second communication system from the determined Qos parameter set.
  • the terminal device is at different positions, and the signal strength and Qos value of each communication system obtained are different.
  • the terminal device determines the value of Qos of the plurality of second communication systems according to the current signal strengths of the plurality of second communication systems, and then selects a second communication system that meets the current service requirements. In this way, the terminal device can find the best communication system at different locations, and the solution is more flexible and highly intelligent. More flexible and highly intelligent.
  • the terminal device displays an interface of the first application program; the terminal device and the second communication system After the connection is established, the terminal device displays second prompt information on the interface, and the second prompt information is used to prompt the user that the terminal device has accessed the second communication system.
  • the terminal device may prompt the user that the communication system has been switched, which helps to improve the user experience.
  • the terminal device displays an interface of the first application program; the interface includes an icon; when the icon is triggered, the terminal device according to a preset policy and the first The Qos requirement of an application, to determine whether the Qos value of the second communication system can meet the Qos requirement of the first application; after the terminal device establishes a connection with the second communication system, the terminal The device displays second prompt information on the interface, where the second prompt information is used to prompt the user that the terminal device has accessed the second communication system.
  • the user can manually trigger the terminal device to select an appropriate communication system.
  • the terminal device switches the communication system according to the user's trigger operation
  • the prompt is used to switch the communication system, which helps to improve the user experience.
  • the terminal device determines that the Qos value is in the first application according to the correspondence between the power consumption level and the Qos value
  • the establishment of the connection between the terminal device and the first communication system includes: A control parameter corresponding to a first power consumption gear in at least one power consumption gear controls the terminal device to connect with the first communication system; the first power consumption gear is in the at least one power consumption gear The gear with the lowest power consumption.
  • different power consumption levels correspond to different Qos values
  • the terminal device must have a Qos value within at least the range between the Qos requirement of the first application and the Qos value of the communication system to be switched
  • a power consumption gear a power consumption gear with relatively low power consumption is determined, and the power consumption gear is connected to the switched communication system. In this way, it helps to save power consumption of the terminal device.
  • the value of Qos in the embodiment of the present application includes at least one of delay, jitter, packet loss rate, and throughput.
  • Qos may be other parameters besides those listed above, which is not limited in the embodiments of the present application.
  • the terminal device selecting the Qos value of the second communication system from the determined Qos parameter set includes: the terminal device determining the Qos value of the second communication system: the determined Qos parameter set The Qos parameter set closest to the current time.
  • the terminal device since the Qos value of the communication system may change with time, the terminal device selects the Qos parameter set closest to the current time to improve accuracy.
  • an embodiment of the present application provides a terminal device, including one or more processors and one or more memories.
  • the one or more memories are used to store one or more computer programs; when the one or more computer programs stored in the one or more memories are executed by the one or more processors, the terminal can implement the first aspect Or any possible design method of the first aspect.
  • an embodiment of the present application further provides a terminal device, the terminal device includes a module / unit that executes the method of the first aspect or any one of the possible designs of the first aspect; these modules / units may be implemented by hardware Realization can also be achieved by hardware executing corresponding software.
  • a computer-readable storage medium is also provided in an embodiment of the present application.
  • the computer-readable storage medium includes a computer program.
  • the terminal executes the first aspect or the above-mentioned first On the one hand, any possible design method.
  • an embodiment of the present application further provides a computer program product that, when the computer program product runs on a terminal, causes the terminal to perform the first aspect or any of the possible designs of the first aspect above Method; or, when the computer program product runs on the terminal, the terminal is caused to perform the second aspect or any one of the possible design methods of the second aspect above.
  • FIG. 1 is a schematic structural diagram of a mobile phone according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of an application scenario provided by an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a method for selecting a communication system according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of an application scenario provided by an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of another method for selecting a communication system according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a classification process of a signal strength parameter set according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a classification process of a signal strength parameter set according to an embodiment of the present invention.
  • FIG. 8 is a schematic flowchart of updating a mapping relationship between a signal strength parameter and a Qos parameter set according to an embodiment of the present invention
  • FIG. 9 is a schematic diagram of a display interface of a mobile phone according to an embodiment of the invention.
  • FIG. 10 is a schematic diagram of a display interface of a mobile phone according to an embodiment of the present invention.
  • the communication standard involved in the embodiments of the present application that is, the network type, such as cellular mobile communication network or wireless local area network communication.
  • Cellular mobile communication networks such as GSM, CDMA, LTE, etc .
  • wireless local area network communication networks such as WiFi, 5GHz, WiFi, 2.4GHz.
  • the communication system involved in the embodiments of the present application specifically refers to a wireless communication system, for example, a wireless access point (such as a router) or a base station, and different communication systems may support different communication standards.
  • a wireless access point such as a router
  • the base station supports cellular mobile communication networks such as GSM, CDMA, and LTE
  • the wireless access point supports wireless local area network communication networks such as WiFi, 5GHz, and WiFi, 2.4GHz.
  • the Qos parameters involved in the embodiments of the present application may be used to indicate the network quality of the communication system.
  • Qos parameters can include latency (referred to as the time interval between making a trigger action and getting a response), jitter, and packet loss rate (Loss Rat, English abbreviation: LR) is a measure of packet switching (English full name: Packet Switching) , English abbreviation: PS) The core indicator of transmission quality. The higher the packet loss rate, the worse the PS transmission quality, the more severe the damage to the business, and even the unavailability of the business. , Throughput (the number of useful information transmitted to a specific destination per unit time (in bits)) and other types of parameters.
  • the size of the Qos parameter of a communication system is related to the access volume of the communication system. For example, when the access volume of the communication system is large, the Qos parameter of the communication system will decrease.
  • the signal strength parameters involved in the embodiments of the present application may be used to indicate the signal strength of the communication system.
  • Different communication systems have different signal strength parameters.
  • the signal strength parameter may be a received signal strength indicator (Received Signal Strength Indicator, RSSI).
  • RSSI Received Signal Strength Indicator
  • the signal strength parameter may be Reference Signal Received Power (Reference Signal Receiving Power, RSRP) or Reference Signal Received Quality (Reference Signal Receiving Quality, RSRQ), etc.
  • the aforementioned Qos parameter is different from the signal strength parameter.
  • the terminal device can simultaneously detect signal strength parameters of multiple nearby communication systems, but the terminal device can only detect Qos parameters of the currently connected communication system. If the terminal device wants to detect Qos parameters of other communication systems, it needs to disconnect from the currently connected communication system and establish a connection with other communication systems, and then detect Qos parameters of other communication systems.
  • the Qos parameter of the communication system is not necessarily large. Therefore, when the signal strength of the communication system is large, if the access volume of the communication system is large, the Qos parameter of the communication system is also small.
  • the terminal device may be a portable terminal device including functions such as a personal digital assistant and / or a music player, such as a mobile phone, a tablet computer, a wearable device (such as a smart watch) with wireless communication function .
  • portable terminal devices include, but are not limited to Or portable terminal devices of other operating systems.
  • the above portable terminal device may also be other portable terminal devices, such as a laptop with a touch-sensitive surface (for example, a touch panel) and the like.
  • the terminal device may not be a portable terminal device, but a desktop computer with a touch-sensitive surface (such as a touch panel).
  • a touch-sensitive surface such as a touch panel
  • terminal equipment supports multiple applications. For example, one or more of the following applications: drawing application, presentation application, word processing application, game application, phone application, video player application, music player application, email application, instant messaging application, photo management application, camera Applications, browser applications, calendar applications, clock applications, payment applications, health management applications, etc.
  • applications drawing application, presentation application, word processing application, game application, phone application, video player application, music player application, email application, instant messaging application, photo management application, camera Applications, browser applications, calendar applications, clock applications, payment applications, health management applications, etc.
  • instant messaging applications For example, SMS applications, MMS applications, various mailbox applications, WeChat, Tencent chat software (QQ), WhatsApp Messenger, Line Me, Instagram, KakaoTalk, Nail, etc. Users can send text, voice, pictures, video files, and various other files to other contacts through instant messaging applications.
  • FIG. 1 shows a schematic structural diagram of a mobile phone 100.
  • the mobile phone 100 may include a processor 110, an external memory interface 120, an internal memory 121, a universal serial bus (USB) interface 130, a charging management module 140, a power management module 141, a battery 142, an antenna 1, an antenna 2, Mobile communication module 150, wireless communication module 160, audio module 170, speaker 170A, receiver 170B, microphone 170C, headphone jack 170D, sensor module 180, key 190, motor 191, indicator 192, camera 193, display screen 194, and user Identification module (subscriber identification module, SIM) card interface 195 and so on.
  • SIM subscriber identification module
  • the sensor module 180 may include a pressure sensor 180A, a gyro sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity light sensor 180G, a fingerprint sensor 180H, a temperature sensor 180J, a touch sensor 180K, and ambient light Sensor 180L, bone conduction sensor 180M, etc.
  • the structure illustrated in the embodiment of the present invention does not constitute a specific limitation on the mobile phone 100.
  • the mobile phone 100 may include more or fewer components than shown, or combine some components, or split some components, or arrange different components.
  • the illustrated components can be implemented in hardware, software, or a combination of software and hardware.
  • the processor 110 may include one or more processing units.
  • the processor 110 may include an application processor (application processor, AP), a modem processor, a graphics processor (graphics processing unit, GPU), and an image signal processor. (image) signal processor (ISP), controller, memory, video codec, digital signal processor (DSP), baseband processor, and / or neural-network processing unit (NPU) Wait.
  • image image signal processor
  • ISP image signal processor
  • controller memory
  • video codec digital signal processor
  • DSP digital signal processor
  • NPU neural-network processing unit
  • different processing units may be independent devices, or may be integrated in one or more processors.
  • the controller may be the nerve center and command center of the mobile phone 100.
  • the controller can generate the operation control signal according to the instruction operation code and the timing signal to complete the control of fetching instructions and executing instructions.
  • the processor 110 may also be provided with a memory for storing instructions and data.
  • the memory in the processor 110 is a cache memory.
  • the memory may store instructions or data that the processor 110 has just used or recycled. If the processor 110 needs to use the instruction or data again, it can be directly called from the memory. The repeated access is avoided, and the waiting time of the processor 110 is reduced, thereby improving the efficiency of the system.
  • the wireless communication function of the mobile phone 100 can be realized by the antenna 1, the antenna 2, the mobile communication module 150, the wireless communication module 160, the modem processor and the baseband processor.
  • Antenna 1 and antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in the mobile phone 100 can be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve antenna utilization.
  • the antenna 1 can be multiplexed as a diversity antenna of a wireless local area network. In other embodiments, the antenna may be used in conjunction with a tuning switch.
  • the mobile communication module 150 can provide a wireless communication solution including 2G / 3G / 4G / 5G and the like applied to the mobile phone 100.
  • the mobile communication module 150 may include at least one filter, switch, power amplifier, low noise amplifier (LNA), and the like.
  • the mobile communication module 150 can receive the electromagnetic wave from the antenna 1, filter and amplify the received electromagnetic wave, and transmit it to the modem processor for demodulation.
  • the mobile communication module 150 can also amplify the signal modulated by the modulation and demodulation processor and convert it to electromagnetic wave radiation through the antenna 1.
  • at least part of the functional modules of the mobile communication module 150 may be provided in the processor 110.
  • at least part of the functional modules of the mobile communication module 150 and at least part of the modules of the processor 110 may be provided in the same device.
  • the modem processor may include a modulator and a demodulator.
  • the modulator is used to modulate the low-frequency baseband signal to be transmitted into a high-frequency signal.
  • the demodulator is used to demodulate the received electromagnetic wave signal into a low-frequency baseband signal.
  • the demodulator then transmits the demodulated low-frequency baseband signal to the baseband processor for processing.
  • the low-frequency baseband signal is processed by the baseband processor and then passed to the application processor.
  • the application processor outputs a sound signal through an audio device (not limited to a speaker 170A, a receiver 170B, etc.), or displays an image or video through a display screen 194.
  • the modem processor may be an independent device.
  • the modem processor may be independent of the processor 110, and may be set in the same device as the mobile communication module 150 or other functional modules.
  • the wireless communication module 160 can provide wireless local area networks (wireless local area networks, WLAN) (such as wireless fidelity (Wi-Fi) networks), Bluetooth (bluetooth, BT), and global navigation satellite systems that are applied to the mobile phone 100 (global navigation system (GNSS), frequency modulation (FM), near field communication (NFC), infrared technology (infrared, IR) and other wireless communication solutions.
  • the wireless communication module 160 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 160 receives the electromagnetic wave via the antenna 2, frequency-modulates and filters the electromagnetic wave signal, and sends the processed signal to the processor 110.
  • the wireless communication module 160 may also receive the signal to be transmitted from the processor 110, frequency-modulate it, amplify it, and convert it to electromagnetic waves through the antenna 2 to radiate it out.
  • the antenna 1 of the mobile phone 100 is coupled to the mobile communication module 150, and the antenna 2 is coupled to the wireless communication module 160 so that the mobile phone 100 can communicate with the network and other devices through wireless communication technology.
  • the wireless communication technology may include global mobile communication system (global system for mobile communications, GSM), general packet radio service (general packet radio service, GPRS), code division multiple access (code division multiple access, CDMA), broadband Wideband code division multiple access (WCDMA), time-division code division multiple access (TD-SCDMA), long-term evolution (LTE), BT, GNSS, WLAN, NFC , FM, and / or IR technology, etc.
  • the GNSS may include a global positioning system (GPS), a global navigation satellite system (GLONASS), a beidou navigation system (BDS), and a quasi-zenith satellite system (quasi -zenith satellite system (QZSS) and / or satellite-based augmentation system (SBAS).
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • BDS beidou navigation system
  • QZSS quasi-zenith satellite system
  • SBAS satellite-based augmentation system
  • the mobile phone 100 realizes a display function through a GPU, a display screen 194, and an application processor.
  • the GPU is a microprocessor for image processing, connecting the display screen 194 and the application processor.
  • the GPU is used to perform mathematical and geometric calculations, and is used for graphics rendering.
  • the processor 110 may include one or more GPUs that execute program instructions to generate or change display information.
  • the display screen 194 is used to display images, videos and the like.
  • the display screen 194 includes a display panel.
  • the mobile phone 100 may include 1 or N display screens 194, where N is a positive integer greater than 1.
  • the mobile phone 100 can realize a shooting function through an ISP, a camera 193, a video codec, a GPU, a display screen 194, an application processor, and the like.
  • the ISP processes the data fed back by the camera 193. For example, ISP can also optimize the image noise, brightness, and skin color.
  • the camera 193 is used to capture still images or videos.
  • the mobile phone 100 may include 1 or N cameras 193, where N is a positive integer greater than 1.
  • NPU is a neural-network (NN) computing processor.
  • NN neural-network
  • the NPU can realize applications such as intelligent recognition of the mobile phone 100, such as image recognition, face recognition, voice recognition, and text understanding.
  • the external memory interface 120 can be used to connect an external memory card, such as a Micro SD card, to expand the storage capacity of the mobile phone 100.
  • the external memory card communicates with the processor 110 through the external memory interface 120 to realize the data storage function. For example, save music, video and other files in an external memory card.
  • the internal memory 121 may be used to store computer executable program code, where the executable program code includes instructions.
  • the processor 110 executes instructions stored in the internal memory 121 to execute various functional applications and data processing of the mobile phone 100.
  • the internal memory 121 may include a storage program area and a storage data area.
  • the storage program area may store an operating system, at least one function required application programs (such as sound playback function, image playback function, etc.) and so on.
  • the storage data area may store data (such as audio data, phone book, etc.) created during the use of the mobile phone 100 and the like.
  • the internal memory 121 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, a universal flash memory (Universal Flash Storage (UFS), etc.
  • a non-volatile memory such as at least one magnetic disk storage device, a flash memory device, a universal flash memory (Universal Flash Storage (UFS), etc.
  • UFS Universal Flash Storage
  • the mobile phone 100 can realize audio functions through an audio module 170, a speaker 170A, a receiver 170B, a microphone 170C, a headphone interface 170D, and an application processor. For example, music playback, recording, etc.
  • the pressure sensor 180A is used to sense the pressure signal and can convert the pressure signal into an electrical signal.
  • the pressure sensor 180A may be provided on the display screen 194.
  • the mobile phone 100 detects the intensity of the touch operation according to the pressure sensor 180A.
  • the gyro sensor 180B may be used to determine the movement posture of the mobile phone 100.
  • the air pressure sensor 180C is used to measure air pressure.
  • the mobile phone 100 calculates the altitude using the air pressure value measured by the air pressure sensor 180C to assist positioning and navigation.
  • the magnetic sensor 180D includes a Hall sensor.
  • the mobile phone 100 can detect the opening and closing of the flip holster using the magnetic sensor 180D.
  • the acceleration sensor 180E can detect the magnitude of acceleration of the mobile phone 100 in various directions (generally three axes).
  • the distance sensor 180F is used to measure the distance.
  • the proximity light sensor 180G can detect infrared reflected light from nearby objects. When sufficient reflected light is detected, it can be determined that there is an object near the mobile phone 100.
  • the ambient light sensor 180L is used to sense the brightness of ambient light.
  • the fingerprint sensor 180H is used to collect fingerprints.
  • the mobile phone 100 can use the collected fingerprint characteristics to unlock a fingerprint, access an application lock, take a photo with a fingerprint, and answer a call with a fingerprint.
  • the temperature sensor 180J is used to detect the temperature.
  • Touch sensor 180K also known as "touch panel”.
  • the touch sensor 180K may be provided on the display screen 194, and the touch sensor 180K and the display screen 194 constitute a touch screen, also called a "touch screen”.
  • the touch sensor 180K is used to detect a touch operation acting on or near it.
  • the touch sensor can pass the detected touch operation to the application processor to determine the type of touch event.
  • the visual output related to the touch operation can be provided through the display screen 194.
  • the bone conduction sensor 180M can acquire vibration signals.
  • the key 190 includes a power-on key, a volume key, and the like.
  • the key 190 may be a mechanical key. It can also be a touch button.
  • the mobile phone 100 can receive key input and generate key signal input related to user settings and function control of the mobile phone 100.
  • the motor 191 may generate a vibration prompt.
  • the motor 191 can be used for vibration notification of incoming calls and can also be used for touch vibration feedback.
  • the indicator 192 may be an indicator light, which may be used to indicate a charging state, a power change, and may also be used to indicate a message, a missed call, a notification, and the like.
  • the SIM card interface 195 is used to connect a SIM card. The SIM card can be inserted into or removed from the SIM card interface 195 to achieve contact and separation with the mobile phone 100.
  • the charging management module 140 is used to receive charging input from the charger.
  • the power management module 141 is used to connect the battery 142, the charging management module 140 and the processor 110.
  • the power management module 141 receives input from the battery 142 and / or the charging management module 140, and supplies power to the processor 110, the internal memory 121, the external memory, the display screen 194, the camera 193, and the wireless communication module 160.
  • the power management module 141 can also be used to monitor battery capacity, battery cycle times, battery health status (leakage, impedance) and other parameters.
  • the mobile phone 100 when the mobile phone 100 switches the communication system, it needs to be disconnected from the currently connected communication system. After the mobile phone 100 switches to another communication system, it is detected whether the Qos value of the other communication system is greater than the current Qos value of the connected communication system. If it is larger, the mobile phone 100 is connected to another communication system. In this process, the currently running business of the mobile phone 100 will be affected.
  • the embodiments of the present application provide a method for switching a communication system, which can be applied to the mobile phone 100 shown in FIG. 1 or other electronic devices capable of performing communication services.
  • the Qos value of each communication system can be detected in the mobile phone 100 in advance and stored for use.
  • the mobile phone 100 stores the correspondence between the geographic location information and the Qos value of the communication system, or the correspondence between the signal strength of the communication system and the Qos value (these two correspondences can also include other parameters such as Time information, user habits, current applications, etc., so that the mobile phone 100 selects the most suitable communication system according to these parameters, which will be described later).
  • the mobile phone 100 obtains the QoS value of each communication system from other devices, for example, actively or passively obtains from other electronic devices through a wired or wireless communication protocol.
  • the mobile phone 100 can determine the Qos value of each communication system according to the geographic location or signal strength, and then the mobile phone 100 selects a communication system that can better meet the current business needs (the specific process will be described later), and Communication system connection. Therefore, in the communication system switching method provided by the embodiment of the present application, since the mobile phone 100 knows the Qos value of each communication system in advance, the mobile phone 100 can know which communication system's Qos without interrupting the currently connected communication system The value can better meet the current business needs. The mobile phone 100 can directly switch to the communication system without interrupting the currently connected communication system. After establishing a connection with another communication system, check whether the Qos value of the other communication system can meet the current Business requirements have little impact on current business operations.
  • the mobile phone 100 can detect (update) the Qos value of each communication system in real time, that is, learn the aforementioned two corresponding relationships.
  • Method 1 The mobile phone 100 can automatically learn to obtain the aforementioned two correspondences.
  • the mobile phone 100 starts learning when it is used for the first time (such as activation); or, the mobile phone 100 can periodically start learning; or, the mobile phone 100 starts learning when it detects that its position moves; or, the mobile phone 100 Start learning at second boot; or, the mobile phone 100 starts learning when it detects that the user is not currently operating the mobile phone; or, the mobile phone 100 can start within a preset time period (the mobile phone 100 is set at the factory, or is user-defined) Learn.
  • the mobile phone 100 is set at the factory, or is user-defined
  • the mobile phone 100 may comprehensively consider at least one of the foregoing multiple situations during the process of learning the foregoing two correspondences. For example, when the mobile phone 100 detects that its position moves, and the user is not currently operating the mobile phone 100, learning is started. Since the mobile phone 100 needs to establish a connection with each communication system to detect the Qos value of each communication system, the mobile phone 100 can be in different positions and be in "idle" (as much as possible) When the current business is affected), it is automatically connected to each communication system to detect the Qos value of each communication system.
  • Manner 2 The user actively triggers the mobile phone 100 to learn to obtain the aforementioned two correspondences.
  • an entry may be provided on the mobile phone 100, and the entry is used to trigger the mobile phone 100 to learn to obtain the aforementioned two correspondences.
  • the entrance (such as an icon) may be set in any interface of the mobile phone 100, such as a lock screen interface, a main interface, and an application program display interface. The user can actively trigger the mobile phone 100 to learn to obtain the aforementioned two correspondences according to his own needs.
  • the mobile phone 100 can passively or actively obtain two correspondences.
  • the specific process for the mobile phone 100 to obtain these two correspondences is described below. Because it involves two correspondences, the following first introduces the correspondence between the geographic location and the Qos value of the communication system, and then introduces the correspondence between the signal strength and the Qos value of the communication system.
  • the process of obtaining the correspondence between the geographic location information and the Qos value of each communication system by the mobile phone 100 is as follows:
  • FIG. 2 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • the application scenario includes three communication systems, corresponding to AP1, AP2, and LTE base stations (the three communication systems support different communication standards respectively).
  • the mobile phone detects the Qos parameters of the three communication systems at the location A to obtain the Qos parameter set 1 at the location A.
  • Qos parameter set 1 includes the respective Qos parameters of AP1, AP2, and LTE base station at location A.
  • the mobile phone 100 when it detects the Qos parameter of each communication system at the position A, it can establish a connection with a communication system corresponding to a different Qos parameter to detect the Qos parameter of each communication system. For example, at the position A, the mobile phone 100 first connects to AP1, detects the Qos parameter of AP1, and then disconnects from AP1, connects to AP2, and detects the Qos parameter of AP2.
  • the mobile phone detects the Qos parameters of the three communication systems at position B and position C, respectively, and obtains Qos parameter set 2 at position B and Qos parameter set 3 at position C.
  • the mobile phone stores the location A, location B, location C and Qos parameter sets 1-3 for use.
  • mobile phone 100 determines the appropriate Qos parameter in Qos parameter set 1 according to the preset strategy The communication system connection corresponding to the parameter.
  • the preset strategy may be that the mobile phone 100 selects the Qos parameter with the largest value in the Qos parameter set 1, or selects the appropriate Qos parameter in the Qos parameter set 1 according to the Qos requirements of the currently running application (for example, mobile phone 100 select the communication system whose Qos value is greater than the Qos requirement of the currently running application in the Qos parameter set 1); or, the mobile phone 100 selects the appropriate Qos parameter in the Qos parameter set 1 according to user habits; or, the mobile phone 100 selects the Qos parameter according to the price Select the appropriate Qos parameter in the parameter set 1 (for example, when the mobile phone 100 currently needs to consume a large amount of traffic to run the application, the mobile phone 100 selects AP1 or AP2 in the Qos parameter set 1 instead of LTE).
  • the specific content will be introduced later.
  • FIG. 3 is a schematic flowchart of a method for switching a communication system according to an embodiment of the present application. This method can be applied to the mobile phone or other electronic devices shown in FIG. 1 described above.
  • the mobile phone 100 is taken as an example for description, and the application scenario shown in FIG. 2 is taken as an example.
  • the flow of the method includes:
  • the mobile phone 100 acquires multiple Qos parameter sets, where each Qos parameter set corresponds to a location. For example, by detecting the Qos parameters of multiple communication systems at one location, a Qos parameter set is obtained, and the location is moved to obtain multiple Qos parameter sets, where each Qos parameter set corresponds to a location.
  • the Qos parameter may include various types of parameters such as delay, jitter, packet loss rate, and throughput.
  • the Qos parameter is throughput as an example.
  • the mobile phone 100 detects the Qos parameters such as throughput of the three communication systems at the location A (for example, the mobile phone 100 is at the location A, first connects to AP1, detects the Qos parameter of AP1, and then interrupt Connect with AP1, connect with AP2, detect the Qos parameter of AP2, and then disconnect the connection with AP2, connect with LTE, detect the Qos parameter of LTE).
  • the mobile phone 100 detects that the throughput of AP1 is 90 GB, the throughput of AP2 is 70 GB, and the throughput of the base station is 90 GB, that is, the mobile phone 100 obtains the Qos parameter set 1 (90 GB, 70 GB, 90 GB) at position A.
  • the mobile phone 100 can obtain the Qos parameter set 2 at the position B and the Qos parameter set 3 at the position C.
  • Table 1 shows the mapping relationship between the location information and the Qos parameter set.
  • the Qos value of each communication system in Table 1 may be detected by the mobile phone 100 in advance (for example, the mobile phone 100 has established a connection with a communication system corresponding to different Qos parameters before the current time to detect each communication Qos parameters of the system). Therefore, assuming that the mobile phone 100 is currently connected to AP1, if the mobile phone 100 needs to switch from AP1 to another communication system, there is no need to interrupt the connection with AP1, and then establish a connection with other communication systems to detect Qos parameters of other communication systems, only according to Table 1 The value of Qos recorded in other communication systems can be determined to determine which communication system to establish a connection with.
  • Table 1 is just an example, not a limitation on the mapping relationship between the position information and the Qos parameter set, and the position A, position B, or position C in Table 1 may be geographic coordinate information, such as latitude and longitude, or It is geographic location information, such as administrative area, street, house number, etc.
  • Table 1 can also contain collection time information, information about applications running at the time of collection, etc.
  • S302 The mobile phone 100 detects the current geographic location.
  • the mobile phone 100 may be located by one or more methods such as GPS, base station, WiFi hotspot, Bluetooth (iBacon), assisted GPS (assisted GPS, AGPS), and the like.
  • the mobile phone 100 determines a Qos parameter set corresponding to the geographical position from the plurality of Qos parameter sets according to the current geographical position, where the Qos parameter set includes Qos parameters of multiple communication systems.
  • the mobile phone 100 queries whether there is a position D in Table 1, and if it exists, it determines the Qos parameter set corresponding to the position D according to Table 1. If the mobile phone 100 does not find the location D in Table 1, the mobile phone 100 determines which of the location A, location B, or location C is closest to the location D. Assuming that location A is closest to location D, mobile phone 100 determines that the Qos parameter set corresponding to location D is Qos parameter set 1.
  • the mobile phone 100 determines which communication system has the largest Qos parameter value according to the Qos parameter set 1, and connects to the communication system with the largest Qos parameter value.
  • the Qos parameter set 1 (90GB, 70GB, 70GB) indicates that the Qos parameter of AP1 has the largest value, and the mobile phone 100 is connected to AP1.
  • Table 1 is just an example. In fact, when the mobile phone 100 detects the Qos parameter of each communication system, other factors may be considered. Several examples are listed below.
  • Example 1 Due to different time periods, the value of the Qos parameter of each communication system may be different. Taking AP1 as an example, during 10: 00-12: 00 in the evening, the access volume of AP1 is large, which leads to a low value of the Qos parameter of AP1; while in the morning from 6: 00-8: 00, AP1 access The smaller the amount, the higher the Qos parameter of AP1.
  • the mobile phone 100 can consider time information when detecting the Qos parameter of each communication system at a location. That is, the mobile phone 100 can count the Qos parameters of each communication system at a location at each time period. Taking the application scenario shown in FIG. 2 as an example, Table 2 shows the value of Qos of each communication system at each location at different time periods.
  • the mobile phone 100 determines whether the location D and the current time are 13:00 in Table 2, and inquires the location and time period corresponding to the location D in Table 2, if it exists, determines Qos corresponding to the location and time period The parameter set is sufficient. If the mobile phone 100 does not query the location D in Table 2, or does not query the time period including the current time, the mobile phone 100 determines which of the location A, location B, or location C is closest to the location D and determines the closest to the current time Time period. Assuming that location A is closest to location D and the closest time period to the current time is 10: 00-12: 00, the Qos parameter set corresponding to location D and the current time 13:00 is determined to be the Qos parameter set 1.1.
  • Example 2 The user may manually choose to establish a connection with a communication system according to his own needs.
  • the mobile phone 100 can record user operations.
  • Table 3 shows yet another example of location information and Qos parameter sets.
  • the mobile phone 10 detects that it is currently in position A, and the mobile phone 100 determines that the communication system selected by the user is AP2 according to Table 3, the mobile phone establishes a connection with AP2.
  • Table 1 may be user-defined, or may be self-learning by mobile phone.
  • Table 3 can also contain time information and information about the running applications. In order to make electronic equipment more complex and accurate matching.
  • the above Table 1, Table 2 or Table 3 may be updated.
  • the electronic device may update Table 1 in various ways.
  • the update conditions for updating the above tables may be preset in the device when the electronic device is shipped from the factory, or may allow the user to make settings and changes.
  • Method 1 The mobile phone can automatically update Table 1 at a certain period.
  • the mobile phone 100 needs to disconnect the currently connected communication system and establish a connection with other communication systems in order to detect Qos parameters of other communication systems. If the mobile phone is disconnected from the current communication system, it may cause the current business of the mobile phone to freeze. Therefore, the mobile phone 100 may automatically update Table 1 periodically within a preset time period, where the preset time period may be determined by the mobile phone 100 through self-learning or set by the user. For example, the user sets the mobile phone to update Table 1 at 2:00 every night.
  • the mobile phone 100 can update Table 1 when the user is not currently operating the mobile phone (for example, when the user is not currently operating the mobile phone, the mobile phone 100 can disconnect the currently connected communication system and establish a connection with other communication systems to detect other communications Qos parameters of the system).
  • the mobile phone 100 can also automatically update Table 1 according to preset conditions, that is, each time the mobile phone 100 establishes a connection with a communication system (probably a user manually connects), the mobile phone 100 detects the Qos parameter of the communication system and then updates Table 1.
  • Method 2 The user manually updates Table 1.
  • an entry (such as a switch control or a specific gesture, a voice instruction, a specific fingerprint, etc.) may be set on the mobile phone, and when the mobile phone detects the entry, such as when the switch control is triggered, update Table 1.
  • the switch control can be set in an app (such as setting app) in the mobile phone.
  • Method 3 When the mobile phone 100 determines that the correspondence table needs to be updated, for example, if the table 1 is determined to be inaccurate, the table 1 is updated, for example, when the user is detected to make a new choice, for example, when the mobile is moved to a new location, For example, a new communication system that can be connected is detected.
  • the mobile phone 100 detects that it is currently at the location A, determines the Qos parameter set 1 corresponding to the location A according to Table 1, and determines to connect to the AP1 according to the Qos parameter set 1. After the mobile phone 100 is connected to the AP1, the mobile phone 100 detects the Qos parameter of the AP1. If the detected Qos parameter set is smaller than the stored Qos parameter set 1 AP1 Qos parameter, it means that the stored AP1 Qos parameter is not accurate and the mobile phone 100 can be updated Table 1.
  • the mobile phone 100 selects an appropriate Qos parameter from the determined Qos parameter set according to a preset strategy, and establishes a connection with the communication system corresponding to the Qos parameter.
  • the mobile phone 100 selects suitable Qos parameters from the determined Qos parameter set according to a preset strategy, and there are multiple implementation manners.
  • Manner 1 After the mobile phone 100 determines the Qos parameter set, it can determine the communication system with the largest Qos parameter value in the Qos parameter set.
  • Manner 2 The mobile phone 100 can determine a communication system in the Qos parameter set that can meet the QoS requirements of the currently running application program. For example, the mobile phone 100 selects a communication system whose Qos value is greater than the requirements of the currently running application program.
  • Method 3 The mobile phone 100 selects a suitable communication system according to user habits. For example, when using a mobile phone 100 to watch a movie, a user often manually connects the mobile phone 100 to AP1. When the mobile phone 100 detects the currently playing movie, it automatically switches to connect to the AP1.
  • the mobile phone 100 may also consider other conditions. For example, the mobile phone 100 selects a suitable communication system based on information such as the duration of using the current application or the possibility of the user switching the current application. For example, the mobile phone 100 detects that the user opens an application with high QoS requirements, but detects that the application duration is less than a preset duration, such as less than 2 minutes, and then exits the application. At this time, the mobile phone 100 may No need to switch communication systems. Or, the mobile phone 100 detects that the user has only used a function in the application that does not have high QoS requirements.
  • the mobile phone 100 may not need to select a communication system with a large Qos value, and only selects the Qos value greater than or equal to the function
  • the Qos needs a communication system.
  • the mobile phone 100 can select a communication system with a relatively small value of Qos (such as time delay).
  • the mobile phone 100 can select a communication system with a relatively high value of Qos (such as time delay).
  • the mobile phone 100 can also be selected based on the cost of each communication system, the user's usage habits, etc.
  • the user is watching a video, but according to the user's historical usage habits / rest habits recorded by the mobile phone 100 (recorded by other APP), the user can only see It will be closed in a few minutes, so only choose the communication system with low cost that can guarantee the current video requirements, and do not switch to other communication systems with higher cost that can provide a higher viewing experience.
  • Mode 2 uses Mode 2 as an example to introduce the process of the mobile phone 100 selecting a communication system.
  • the mobile phone 100 stores a mapping relationship between an application program and Qos requirements.
  • Table 4 shows an example of the mapping relationship between application programs and Qos requirements (taking throughput as an example).
  • the Qos requirements of each application in Table 4 may be defined when each application is put on the shelf, or may be user-defined.
  • the mobile phone 100 is currently running Aiqi. According to Table 4, it is determined that Aiqi's Qos requirement is 80 GB. Assuming that the mobile phone is currently in position A, the mobile phone determines that the Qos parameter set corresponding to position A is Qos parameter set 1 according to Table 1. The mobile phone 100 determines a communication system whose Qos parameter value in the Qos parameter set 1 is greater than 80 GB, namely AP1. The mobile phone 100 establishes a connection with AP1.
  • the mobile phone 100 is currently running WeChat, and it is determined according to Table 4 that the Qos requirement of WeChat is 30 GB. Assuming that the mobile phone is currently in position A, the mobile phone determines that the Qos parameter set corresponding to position A is Qos parameter set 1 according to Table 3. The mobile phone 100 determines that there are two communication systems with a Qos parameter value greater than 30 GB in the Qos parameter set 1, namely AP1 and AP2. The mobile phone 100 can establish a connection with AP2 according to user selection.
  • the Qos parameter can also be delay, jitter, packet loss rate or packet error rate. That is, the QoS parameters in Table 1-4 may be one or more of these parameters.
  • streaming services and voice services that have high requirements for delay or jitter, and low requirements for packet loss rate or error packet rate.
  • streaming services such as audio or video playback services (such as music / video playback applications in mobile phone 100, education, fitness applications, etc.).
  • Voice services such as voice services on circuit-switched carriers (such as GSM voice services).
  • IP phones and video phones such as IP phone / video phone applications in the mobile phone 100.
  • the mobile phone 100 may select a communication system whose delay or jitter meets its requirements (for example, a communication system whose delay is greater than the delay requirement of the application).
  • the mobile phone 100 determines the Qos parameter set corresponding to the current geographic location according to the correspondence between the geographic location and the Qos parameter set (time delay), and then determines when the Qos parameter set A communication system with a delay greater than the time delay required for music playback, and is connected to the communication system.
  • interactive services and background services that have low requirements on delay or jitter, but have high requirements on packet loss rate.
  • interactive services such as terminal devices (such as mobile phones 100, people or other machines) and remote devices (such as remote servers) for online data interaction services, such as Web browsing, database retrieval, online games, etc. (such as mobile phones 100 Tools / dictionary / shopping / chat / game applications, etc.).
  • background services such as background E-mail reception, SMS, or receiving some files and database downloads (such as E-mail applications in mobile phone 100, etc.).
  • the mobile phone 100 may select a communication system whose packet loss rate meets its requirements (for example, a communication system whose packet loss rate is less than the application's packet loss rate requirement).
  • the mobile phone 100 determines the Qos parameter set corresponding to the current geographic location according to the correspondence between the geographic location and the Qos parameter (packet loss rate), and then determines the packet loss in the Qos parameter set A communication system with a rate less than the packet loss rate requirement of online games and connected to the communication system.
  • the mobile phone 100 can select a communication system in various ways. In practical applications, the mobile phone 100 may use one or more of the above-mentioned methods, or other methods in addition to the above-mentioned methods to select the communication system.
  • all or part of the steps in the embodiment shown in FIG. 3 may also be executed only when the conditions are met.
  • all or part of the steps shown in FIG. 2 (such as S302-S305) are performed once.
  • all or part of the steps shown in FIG. 3 are performed (Such as S302-S305). In this way, frequent switching can be avoided, and it can help to save the calculation amount and reduce the power consumption.
  • the mobile phone does not need to know the current location of the mobile phone, and can also determine that a suitable communication system is determined from multiple communication systems.
  • FIG. 4 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • the application scenario includes three communication systems, corresponding to AP1, AP2, and LTE base stations (the three communication systems support different communication standards respectively).
  • a certain position of the mobile phone 100 detects the signal strength parameters of the three communication systems, and the signal strength parameter set 1 at the position is obtained.
  • the mobile phone detects the signal strength parameters of the three communication systems at the other two locations to obtain two signal strength parameter sets, namely signal strength parameter set 2 and signal strength parameter set 3.
  • the mobile phone stores the signal strength parameter set 1-3 for use.
  • the mobile phone 100 may detect the Qos value of each communication system when detecting the signal strength of each communication system. For example, the mobile phone 100 detects the signal strength and Qos value of the currently connected AP1, and then interrupts the connection with AP1 and connects with AP2 to detect the signal strength and Qos value of AP2.
  • the mobile phone 100 since the mobile phone 100 detects the signal strength of each communication system, it is not necessary to establish a connection with each communication system, for example, the broadcast system of the communication system can be detected to detect the signal strength of the communication system. Therefore, the mobile phone 100 can detect the signal strength of each communication system and the Qos value of each communication system can be two independent processes.
  • the mobile phone 100 detects the signal strength of all communication systems at a certain position, and after obtaining the signal strength set, the Qos value of each communication system is detected. For example, the mobile phone 100 first detects the signal strength of AP1, AP2, and LTE to obtain a signal strength set. Then the mobile phone 100 connects to AP1, detects the Qos parameter of AP1, and then disconnects from AP1, connects to AP2, detects the Qos parameter of AP2, then disconnects from AP2, connects to LTE, detects the Qos parameter of LTE, and obtains the Qos parameter set. After the mobile phone 100 obtains the signal strength set and the Qos parameter set, a correspondence relationship between the signal strength set and the Qos parameter set (described below) can be established and stored for use.
  • a signal strength parameter set 4 is obtained.
  • the mobile phone can find the signal strength parameter set matching the signal strength parameter set 4 from the stored signal strength parameter sets 1-3. Assuming that the mobile phone 100 is matched and determines that the signal strength parameter set 1 matches the signal strength parameter set 4, then the mobile phone 100 determines that the signal strength parameter set 1 corresponds to the strength parameter set 1 according to the corresponding relationship between the signal strength parameter set 1 and the aforementioned signal strength set and Qos parameter set Qos parameter set, and then in the Qos parameter set, select a communication system according to a preset strategy and connect to the communication system.
  • This embodiment (the embodiment shown in FIG. 4) is different from the previous embodiment (the embodiment shown in FIG. 3).
  • the mobile phone 100 detects geographic location information and determines the Qos parameter set based on the geographic location information. Then determine the appropriate communication system. In this embodiment, the mobile phone 100 does not need to detect geographic location information, but determines the Qos parameter set according to the detected signal strength set, and then determines the appropriate communication system.
  • the mobile phone 100 can select the previous embodiment or the solution of this embodiment to implement the switching of the communication system, that is, the solutions of the two embodiments can be independently applied; or, when the mobile phone 100 can obtain the geographic location, the previous embodiment is adopted When the geographic location is not available, the solution of this embodiment is enabled.
  • FIG. 5 shows a flowchart of another communication system switching method provided by an embodiment of the present application. This method can be applied to the mobile phone 100 shown in FIG. 1 or other terminal devices. The following uses the mobile phone 100 as an example and the application scenario shown in FIG. 4 as an example. As shown in Figure 5, the flow of the method includes:
  • S501 The mobile phone 100 detects the signal strength parameter of each communication system in multiple communication systems at multiple positions to obtain a signal strength parameter set corresponding to each position, and then obtain multiple signal strength parameter sets.
  • the mobile phone 100 can detect the signal strength parameter sets of multiple communication systems each time it is started; or, the mobile phone can periodically detect the signal strength parameter sets of multiple communication systems; or, the mobile phone 100 can When actively triggering, the signal strength parameter set of multiple communication systems is detected. Since the signal strength of a communication system can be detected without establishing a connection with a communication system, the action of detecting signal strength parameters of multiple communication systems can be performed in various situations, for example, the user manually triggers or the device meets preset conditions ( For example, when it is idle, according to a fixed period, when a change in position is detected, the user switches applications, etc., it is automatically performed, and so on. Among them, there may be multiple signal strength parameters.
  • the signal strength parameter may be a received signal strength indicator (Received Signal Strength Indicator, RSSI).
  • RSSI Received Signal Strength Indicator
  • the signal strength parameter may be Reference Signal Received Power (Reference Signal Receiving Power, RSRP) or Reference Signal Received Quality (Reference Signal Receiving Quality, RSRQ), etc.
  • the multiple communication systems detected by the mobile phone 100 at each location may be communication systems within a preset distance of the mobile phone; or, multiple communication systems that the mobile phone has been connected to; or the mobile phone 100 can detect All communication systems.
  • the mobile phone 100 detects three signal strength parameter sets.
  • Each signal strength parameter set includes the signal strength of three communication systems.
  • the signal strength parameter set 1 includes the respective signal strength parameters of AP1, AP2, and the base station, wherein the RSSI of AP1 is 80db, the RSSI of AP2 is 70db; the RSRP of LTE is 85db, and the signal strength parameter set 1 is (80db, 70db, 85db).
  • Table 5 shows an example of the signal strength parameter set 1.
  • the Qos parameter may include one or more of various types of parameters such as delay, jitter, packet loss rate, and throughput. In this embodiment, the Qos parameter uses throughput as an example, and other details are not described again.
  • Table 5 may also include Qos parameter set 1 (the process of detecting the Qos parameters of AP1, AP2, and LTE by the mobile phone 100 was introduced earlier, and will not be repeated)
  • Set 1 includes Qos parameters for each communication system.
  • the mobile phone can collect other signal strength parameter sets, such as signal strength parameter set 2 and signal strength parameter set 3. Taking the signal strength parameter set 2 as an example, Table 6 shows an example of the signal strength parameter set 2.
  • the mobile phone 100 can store the signal strength parameter sets 1-3 and the Qos parameter set corresponding to each signal strength parameter set. Therefore, the mobile phone 100 does not need to detect the geographic location, but only needs to evaluate the quality of the communication system according to the current signal strength parameter, and directly switch to the predetermined target system when it is determined that the switching is required, which can reduce the time for switching the system and reduce the Business impact, improve switching efficiency and device intelligence.
  • Table 7 for an example of the mapping relationship between the signal strength parameter set and the Qos parameter set.
  • Signal strength parameter set Signal strength parameter value Qos parameter set Signal strength parameter set Signal strength parameter set Signal strength parameter set Signal strength parameter value Qos parameter set Signal strength parameter set Signal strength parameter set 1 (80db, 70db, 70db) (90GB, 70GB, 30GB) Signal strength parameter set 2 (70db, 60db, 75db) (50GB, 20GB, 60GB) Signal strength parameter set 3 (90db, 80db, 80db) (30GB, 50GB, 60GB)
  • S502 The mobile phone 100 determines a second signal strength parameter set that matches the first signal strength parameter set according to the currently collected first signal strength parameter set.
  • the first signal strength parameter set can be collected.
  • the mobile phone 100 matches the signal strength parameter set 1-3 in Table 7 according to the first signal strength parameter set, and determines a signal strength parameter set that matches the first signal strength parameter set. The process of matching the first signal parameter set with the stored signal strength parameter set 1-3 by the mobile phone 100 is described below.
  • the first signal strength parameter set collected by the mobile phone 100 is the signal strength parameter set 4 (75db, 70db, 80db).
  • the mobile phone 100 determines which signal strength parameter set 4 from the stored signal strength parameter set 1-3 is "closest" to the stored signal strength parameter set 1-3.
  • the "distance" between the two signal strength parameter sets here can be understood as the difference between the two corresponding signal strengths in the two signal strength parameter sets is the smallest.
  • the mobile phone 100 may determine the first difference between the signal strength of AP1 in the signal strength parameter set 4 and the signal strength of AP1 in the signal strength parameter set 1, and determine the signal strength and signal of AP2 in the signal strength parameter set 4.
  • the second difference of the signal strength of AP2 in the strength parameter set 1 determines the third difference of the signal strength of the LTE signal in the signal strength parameter set 4 and the signal strength of the LTE in the signal strength parameter set 1, and the mobile phone 100 sets the first difference , The second difference and the third difference are added to obtain a first sum, which is the "distance" between the signal strength parameter set 4 and the signal strength parameter set 1.
  • the mobile phone 100 can determine the "distance” between the signal strength parameter set 4 and the signal strength parameter set 2, and the "distance” between the signal strength parameter set 4 and the signal strength parameter set 3.
  • the mobile phone 100 may determine the signal strength parameter set closest to the "distance" signal strength parameter set 4.
  • S503 The mobile phone determines a Qos parameter set corresponding to the second signal strength parameter set according to the determined second signal strength parameter set.
  • the mobile phone 100 determines that the signal strength parameter set closest to the signal strength parameter set 4 "distance" is the signal strength parameter set 1, which is the second signal strength set.
  • the mobile phone 100 can determine the Qos parameter set corresponding to the signal strength parameter set 1, namely the Qos parameter set 1, according to Table 5.
  • the mobile phone 100 determines a suitable communication system according to the Qos parameter set 1, and establishes a connection with the communication system.
  • the mobile phone 100 can consider time information when collecting Qos parameters of each communication system at each location. Please continue to refer to FIG. 4, when the mobile phone 100 detects the Qos parameter of each communication system, it can also record time information, that is, in which time period the mobile phone 100 detects the Qos parameter of each communication system, please refer to Table 8 for details , Is the Qos parameter set of signal strength parameter set 1 in different time periods.
  • the first signal strength parameter set collected by the mobile phone 100 is the signal strength parameter set 4 (75db, 70db, 80db).
  • the mobile phone 100 determines that the signal distance set 1 is closest to the signal strength set 4 "distance", and determines that the current time is within the time period of 10: 00-12: 00. Therefore, the mobile phone 100 determines that the Qos parameter set is (90GB, 70GB, 30GB).
  • the mobile phone 100 determines the communication system with the largest Qos value, that is, the communication system with a Qos value of 90 GB, namely AP1, and the mobile phone 100 establishes a connection with AP1.
  • the user may manually choose to establish a connection with a communication system according to his own needs.
  • the mobile phone 100 can record user operations. Please refer to Table 9, which shows a mapping relationship between Qos parameter sets of another signal strength parameter set 1 in different time periods.
  • the first signal strength parameter set collected by the mobile phone 100 is the signal strength parameter set 4 (75db, 70db, 80db).
  • the mobile phone 100 determines that the signal distance set 1 is closest to the signal strength set 4 "distance", and determines that the current time is within the time period of 10: 00-12: 00. Therefore, the mobile phone 100 determines to establish a connection with AP1 according to the user's selection.
  • the mapping relationship may also include applications running in the mobile phone at the time of collection, including foreground and / or background applications; attributes of these applications, such as voice services, video services, and game services, may also be included. These are delay sensitive services, packet loss rate sensitive services, and throughput sensitive services.
  • the mobile phone 100 selects a suitable communication system from the determined Qos parameter set according to a preset strategy, and connects with the determined communication system.
  • the communication system with the largest Qos parameter value in the Qos parameter set may be determined and connected to the communication system; or, the mobile phone 100 may determine the Qos parameter according to the currently running application program.
  • the Qos parameter set a communication system that satisfies the Qos requirements is established and connected to the communication system; or a suitable communication system is determined according to user selection and connected to the communication system; or, the mobile phone 100 satisfies the requirements of the currently running application program.
  • the mobile phone 100 may select a suitable communication system according to one or more of the above methods and other methods set by the user.
  • the three signal strength parameter sets collected by the mobile phone 100 are taken as an example.
  • the signal strength of each communication system collected by the mobile phone 100 at different positions will be different, that is, the signal strength parameter set obtained by the mobile phone 100 at different positions is different. Therefore, the mobile phone 100 can store each signal strength parameter set, and then select a suitable communication system by the method shown in FIG. 5. Another embodiment is described below.
  • the signal strength parameter sets may be classified, and one signal strength may be selected from a plurality of signal strength parameter sets that are classified into one category
  • the parameter set is used as a signal intensity-like parameter set
  • the signal intensity set of the type is used to reflect the multiple signal intensity sets classified into one type, that is, a signal intensity parameter set of a type corresponds to a signal intensity parameter set of a type.
  • the mobile phone does not need to store multiple signal strength parameter sets, but only needs to store similar signal strength parameter sets, which helps to save memory.
  • all or part of the steps in the embodiment shown in FIG. 5 can also be executed only when the conditions are met.
  • all or part of the steps shown in FIG. 5 (such as S502-S505) are performed once.
  • all or part of the steps shown in FIG. 5 are performed (Such as S502-S505). In this way, frequent switching can be avoided, and it can help to save the calculation amount and reduce the power consumption.
  • FIG. 6 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • the mobile phone 100 has collected 12 signal strength parameter sets (12 black dots in FIG. 6).
  • the mobile phone 100 classifies these 12 signal strength parameter sets to obtain 3 types of signal strength parameter sets.
  • the mobile phone 100 classifies the signal strength parameter set 1-4 as the first type signal strength parameter set, classifies the signal strength parameter set 5-8 as the second type signal strength parameter set, and classifies the signal strength parameter set 9 -12 is classified as the third type of signal strength parameter set.
  • the mobile phone 100 determines that the "distance” between any two signal strength parameter sets in the signal strength parameter set 1-4 is less than the first preset distance, the mobile phone 100 classifies the signal strength parameter sets 1-4 into one category .
  • the mobile phone 100 determines that the "distance” between any two signal strength parameter sets in the signal strength parameter set 5-8 is less than the second preset distance, then the mobile phone 100 classifies the signal strength parameter sets 5-8 into one category.
  • the mobile phone 100 determines that the “distance” between any two signal strength parameter sets in the signal strength parameter set 9-12 is less than the third preset distance, and the mobile phone 100 classifies the signal strength parameter sets 9-12 into one category.
  • the mobile phone 100 After the mobile phone 100 classifies the signal strength parameter set 1-4 as the first type signal strength parameter set, it can select a signal strength parameter set from the signal strength parameter set 1-4 to represent the first type signal strength parameter set.
  • the selected signal strength parameter set is called quasi-signal strength parameter set 1.
  • the mobile phone 100 only needs to store the signal intensity parameter set 1, and does not need to store the intensity parameter set 1-4, saving resources. For example, the mobile phone 100 may randomly select a signal strength parameter set from the signal strength parameter set 1-4, or the mobile phone 100 takes the average value of the signal strength parameter set 1-4 to obtain a signal strength parameter set.
  • the mobile phone 100 may determine a class 2 signal strength parameter set 2 representing the second class signal strength parameter set, and determine a class 3 signal strength parameter set 3 of the third class signal strength parameter set.
  • the mobile phone 100 stores the determined three types of signal strength parameter sets for use. The subsequent process for the mobile phone 100 to use these three types of signal strength parameter sets is similar to the foregoing process, and will not be described in detail.
  • FIG. 7 taking an indoor floor plan of a house as an example.
  • the four wireless communication systems are: WIFI AP1, WIFI AP2, LTE, UMTS.
  • the four wireless communication systems are located at different locations in the house.
  • the mobile phone 100 can collect the signal strength parameters of each of the four communication systems at each location to obtain a signal strength parameter set, and then obtain multiple signal strength parameter sets, and each position corresponds to a signal strength parameter set, such as The black dots in Figure 7. Since the obtained signal strength parameter set has more black spots, the mobile phone 100 can determine multiple signal strength parameter sets to be classified.
  • the mobile phone 100 has collected a total of 1,000 signal strength parameter sets, that is, 1000 black spots.
  • the mobile phone 100 classifies these 1000 signal strength parameter sets.
  • the specific process is as follows: the mobile phone 100 determines from these 1000 signal strength parameter sets that the "distance" between the 300 signal strength parameter sets is less than the preset distance, then the mobile phone 100 classifies the 300 signal strength parameter sets as the first type of signal Strength parameter set.
  • the mobile phone 100 selects a signal strength parameter set from the 300 signal strength parameter sets to represent the first type of signal strength parameter set, and the selected signal strength parameter set is the class 1 signal strength parameter set 1.
  • the first type of signal strength parameter set is a plurality of signal strength parameter sets detected by the mobile phone 100 in the living room.
  • the mobile phone 100 determines the "distance" between 200 signal strength parameter sets.
  • the mobile phone 100 classifies the 200 signal strength parameter sets into the second type signal strength parameter set, and selects one signal strength parameter set from the 2000 signal strength parameter sets to represent the second type signal strength parameter set, and the selected signal strength
  • the parameter set is the quasi-signal strength parameter set 2.
  • the second type of signal strength parameter set is a plurality of signal strength parameter sets detected by the mobile phone 100 in the bedroom. The classification process of other types of signal strength parameter sets is similar and will not be described in detail.
  • the mobile phone 100 obtains five types of signal strength parameter sets, each type of signal strength parameter set corresponds to a type of signal strength parameter set, and each type of signal strength parameter set corresponds to a Qos parameter set.
  • FIG. 7 As an example to introduce the switching process between the communication systems of the mobile phone 100.
  • the mobile phone 100 acquires the first signal strength parameter set.
  • the mobile phone 100 determines which type of signal strength parameter set of the 5 types the first signal strength parameter set belongs to. Specifically, the mobile phone 100 can determine which type of signal strength parameter set and the "distance" between the first signal strength parameter set and the signal distance parameter set are smaller than the preset distance. If the "distance" between the first signal strength parameter set and the similar signal strength parameter set 1 is less than the preset distance, the mobile phone 100 determines that the first signal strength parameter set belongs to the first type signal strength parameter set. The mobile phone 100 determines the Qos parameter set 1 corresponding to the similar signal strength parameter set 1 according to the similar signal strength parameter set 1.
  • the mobile phone 100 Assuming that the Qos parameter set 1 determined by the mobile phone 100 indicates that the Qos parameter of AP1 has the highest value, the mobile phone 100 establishes a connection with AP1;
  • the Qos parameter set 1 determines a communication system whose Qos value is greater than the Qos requirement of WeChat, and establishes a connection with the communication system.
  • the mobile phone 100 When the user moves the mobile phone 100 from the living room to the bedroom, the mobile phone 100 detects that the current position has changed, and the mobile phone 100 can collect the second signal strength parameter set again. The mobile phone 100 again determines which type of signal strength parameter set of the 5 types the second signal strength parameter set belongs to. The mobile phone 100 determines that the second signal strength parameter set belongs to the second type of signal strength parameter set, then the mobile phone 100 determines the Qos parameter corresponding to the signal strength parameter set 2 of the second type based on the signal strength parameter set 2 of the second type Episode 2. The mobile phone 100 determines a communication system according to the Qos parameter set 2, and establishes a connection with the communication system.
  • the mobile phone 100 collects the first signal strength parameter set, when a change in the current position is detected, the second signal strength parameter set is collected again; or, the mobile phone 100 may collect the first signal strength parameter set After a preset time period, collect the second signal strength parameter set again; or, after the first signal strength parameter set is collected, the mobile phone 100 collects the second signal strength parameter set again under the user's initiative; or, the mobile phone 100 collects After reaching the first signal strength parameter set, if the currently running application is switched from the first application to the second application, the mobile phone 100 collects the second signal strength parameter set again.
  • the Qos parameter of the communication system may change with time and the change of the access point, and the signal strength parameter of the communication system will also change with time and the geographic location of the communication system (such as AP The position moves). Therefore, the mobile phone 100 can update the mapping relationship between the signal strength parameter set and the Qos parameter set. The mobile phone 100 may only update the signal strength parameter in the mapping relationship between the signal strength parameter set and the Qos parameter set, or may only update the Qos parameter set.
  • the mobile phone 100 can set the update cycle of the signal strength parameter and the update cycle of the Qos parameter set to be different. For example, the update period of the intensity parameter is set shorter, and the update period of the Qos parameter set is set longer. The process of updating the QoS parameter set in the mapping relationship between the signal strength parameter set and the Qos parameter set according to the mobile phone 100 is described below.
  • FIG. 8 is a schematic diagram of a process of updating a mapping relationship between a signal strength parameter set and a Qos parameter set provided by an embodiment of the present application. As shown in FIG. 8, the flow of the method includes:
  • S801 The mobile phone 100 updates the mapping relationship between the signal strength parameter set and the Qos parameter set.
  • the mobile phone 100 may have multiple triggering reasons to trigger the update of the mapping relationship between the signal strength parameter set and the Qos parameter set.
  • Method 2 The mobile phone 100 is automatically updated periodically;
  • Method 3 When the mobile phone 100 determines that the Qos parameter set is inaccurate according to the mapping relationship between the original signal strength parameter set and the Qos parameter set, the mobile phone 100 updates the signal strength parameter set Mapping relationship with Qos parameter set.
  • the flow of the method further includes:
  • S800a The mobile phone 100 switches to the target communication system.
  • the mobile phone 100 determines the appropriate communication system according to the aforementioned flow shown in FIG. 3 or FIG. 5, it is convenient for the communication system to connect, and the communication system is the target communication system.
  • the value of the Qos parameter of a communication system may be affected by access volume or other factors, so after the mobile phone 100 is connected to the target communication system, the value of the Qos parameter of the target communication system may not be as expected. Therefore, after the mobile phone 100 switches to the target communication system, it can detect the Qos parameter of the target communication system. If the mobile phone 100 detects that the Qos parameter value of the target communication system is less than the stored Qos parameter value of the target communication system, the mobile phone 100 may trigger the update of the mapping relationship between the signal strength parameter set and the Qos parameter set.
  • S800b The mobile phone 100 detects that the user manually switches the target communication system to another communication system.
  • the value of the Qos parameter of the target communication system may not be as expected.
  • the mobile phone 100 detects that the value of the Qos parameter of the target communication system is less than the stored value of the Qos parameter of the target communication system, resulting in a stuck or delayed service operation of the mobile phone 100.
  • the user may manually switch to another Communication Systems.
  • the mobile phone 100 can count the number of times the user manually switches the target communication system to another communication system after switching to the target communication system. If there are many times, it means that the Qos parameter value of the target communication system stored in the mobile phone 100 is not accurate, and the mobile phone 100 can update the mapping relationship between the signal strength parameter set and the Qos parameter set.
  • S800c The mobile phone 100 determines whether the number of times the user manually switches the target communication system to another communication system is greater than the preset number of times, if yes, execute S801; if not, execute S800a.
  • the flow of the method further includes:
  • S800d The mobile phone 100 determines that the set of similar signal strength parameters expires.
  • the mobile phone 100 may set the validity period for each Qos parameter set in the mapping relationship. Taking Table 5 as an example, the mobile phone 100 can set the validity period of the Qos parameter set 1 to 24 hours. When the mobile phone 100 detects that the validity period of the Qos parameter set 1 expires, the mobile phone 100 updates the mapping relationship between the signal strength parameter set and the Qos parameter set. Of course, the mobile phone 100 may update only the Qos parameter set 1, or all Qos parameter sets.
  • the flow of the method further includes:
  • S800e The mobile phone 100 detects that the user actively triggers the operation of updating the mapping relationship between the signal strength parameter set and the Qos parameter set.
  • a switch control can be set in the mobile phone 100.
  • the mobile phone 100 updates the mapping relationship between the signal strength parameter set and the Qos parameter set.
  • the switch control may be set in a certain app (such as setting an app).
  • the communication parameter may be a configuration parameter of an antenna in the mobile phone 100 (such as the antenna 2 in FIG. 1).
  • the antenna 2 of the mobile phone 100 a single-input single-output mode (SISO) or a multiple-input multiple-output mode (MIMO); or the mobile phone 100 currently supports a carrier (component carrier, CC) number.
  • SISO single-input single-output mode
  • MIMO multiple-input multiple-output mode
  • the setting of communication parameters of the mobile phone 100 determines the power consumption of the mobile phone 100.
  • the mobile phone 100 after determining a suitable communication system, the mobile phone 100 establishes a connection with the communication system.
  • the mobile phone 100 can reduce the power consumption of the mobile phone 100 as much as possible on the basis of satisfying the currently required Qos parameter values.
  • the mobile phone 100 may set multiple power consumption gears, and different communication parameter configurations, power consumption overheads, and Qos parameter values corresponding to each gear.
  • the mobile phone 100 may set multiple power consumption gears, and different communication parameter configurations, power consumption overheads, and Qos parameter values corresponding to each gear.
  • Table 9 for an example of the mapping relationship between the power consumption gear and the communication parameter provided by the embodiment of the present application.
  • Power consumption MIMO configuration CA configuration Power consumption Qos parameter value 0 SISO 1CC 1000w 30GB 1 2 * 2MIMO 1CC 1010w 40GB 2 4 * 4MIMO 1CC 1020w 50GB 3 SISO 2CC 1030w 80GB 4 2 * 2MIMO 2CC 1040w 90GB 5 4 * 4MIMO 2CC 1050w 100GB
  • the mobile phone 100 is currently running Aiqi. According to Table 4, it is determined that Aiqi's Qos requirement is 80 GB. Assuming that the mobile phone is currently in position A, the mobile phone determines that the Qos parameter set corresponding to position A is Qos parameter set 1 according to Table 1. The mobile phone 100 determines a communication system whose Qos parameter value in the Qos parameter set 1 is greater than 80 GB, namely AP1. In order to reduce the power consumption of the mobile phone 100 as much as possible. The mobile phone 100 can be set to a power consumption gear that can ensure that the Qos parameter value is 80 GB, that is, gear 3 is sufficient. At this time, the mobile phone 100 configures the antenna in SISO mode and the CA in 2CC.
  • the mobile phone 100 can detect whether the application program is running in the background. If the application is running in the background (for example, the mobile phone 100 is in a lock screen state, but the background download task is downloading), the mobile phone 100 may use a low power consumption gear. If the application is running in the foreground, the mobile phone 100 adopts the lowest power consumption level that is not lower than the value of the Qos parameter required by the application.
  • the mobile phone 100 can adjust the power consumption gear to the gear 1; when Aiyiqi is running at the foreground, the mobile phone 100 can adjust the power consumption gear to the gear 3 (Qi's The demand is 80GB).
  • Table 9 may be obtained by the mobile phone 100 according to self-learning, or may be user-defined, or determined by the designer based on experience. Table 9 can be automatically updated periodically; or when the user actively triggers the update.
  • the mobile phone 100 can update the mapping relationship between the signal strength parameter set and the Qos parameter set.
  • the mobile phone 100 can set the highest or higher gear when updating the mapping relationship between the signal strength parameter set and the Qos parameter set to ensure the detection of the Qos parameter Accuracy.
  • the method provided by the embodiments of the present application is introduced from the perspective of the client as an execution subject.
  • the client may include a hardware structure and / or a software module, and implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module. Whether one of the above functions is executed in a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application of the technical solution and design constraints.
  • the mobile phone 100 can be started all the time when it is turned on, or it can be started when the user actively triggers it.
  • the mobile phone 100 is currently making a video call, and an icon 901 is set in the video call interface.
  • the mobile phone 100 according to the scheme shown in FIG. 3 or FIG. 5 (for example, the mobile phone 100 can perform all the steps of FIG. 2 or FIG. 5; for another example, the mobile phone 100 has obtained the geographic location and For the corresponding relationship of the Qos parameter set, only S302-S304 in FIG. 3 may be executed; or, when the correspondence between the signal strength set and the Qos parameter set has been acquired by the mobile phone 100 before the current time, only S502 in FIG. 5 may be executed -S504), determine the Qos value that meets the current business requirements, and the mobile phone 100 switches to the communication system corresponding to the Qos value.
  • the mobile phone 100 may output a prompt to remind the user that the user has switched to the optimal communication system. For example, please continue to refer to (b) in FIG. 9. After detecting that the icon 901 is triggered, the mobile phone 100 displays a prompt message 902, which prompts the user to switch to HUAWEI-53C0.
  • the user when the user uses the icon 901 on the lock screen for the first time, the user can learn the role of the icon 901 through the prompt information 902 to reduce the user's learning burden on the mobile phone 100 and facilitate the user's operation.
  • the entrance (icon) on the video call interface of the mobile phone 100 is taken as an example.
  • the unlock interface of the mobile phone 100 or, another interface (such as the main interface and the movie playback interface) can also be set.
  • the mobile phone 100 displays a main interface, and an icon is added to the main interface (which may be displayed in the form of an icon, or may be displayed in a floating ball or other forms).
  • the mobile phone 100 displays an interface 1001 for movie playback, and a prompt message is displayed on the interface 1001, that is, “a better communication system is detected, whether to disconnect the current connection, and switch to XX communication System ", or” The current network quality is not good, whether to switch to XX network ", etc. If the user selects "Yes” 1002, the mobile phone 100 disconnects the currently connected communication system and switches to a better communication system. If the user selects "No” 1003, the mobile phone 100 does not switch the system, and remains connected to the current communication system.
  • the user can decide whether to switch the communication system. For example, the mobile phone 100 is currently connected to Wifi, and the mobile phone 100 plays movies. If the amount of Wifi access is large, the movie playback of the mobile phone 100 is stuck, and the mobile phone 100 prompts the user whether to switch to 4G. From the perspective of cost saving, the user can select “No”, that is, the mobile phone 100 continues to connect with the Wifi.
  • An embodiment of the present invention also provides a terminal device, including a processor and a memory.
  • the memory is used to store one or more computer programs; when the one or more computer programs stored in the memory are executed by the processor, the terminal can execute the method described in the method embodiments shown in FIG. 3, FIG. 5, and FIG. 8. All or part of the steps performed by the terminal. .
  • An embodiment of the present invention also provides a computer storage medium.
  • the storage medium may include a memory, and the memory may store a program.
  • the program When the program is executed, the terminal is executed as described above.
  • FIG. 3, FIG. 5, and FIG. All or part of the steps performed by the terminal described in the method embodiment shown in 8.
  • An embodiment of the present invention also provides a computer program product, which, when the computer program product runs on a terminal, causes the terminal to perform the method described in FIG. 3, FIG. 5, and FIG. 8 as described above. All or part of the steps performed by the terminal.
  • Computer-readable media includes computer storage media and communication media, where communication media includes any medium that facilitates transfer of a computer program from one place to another.
  • a storage medium may be any available medium that can be accessed by a computer.
  • computer-readable media may include RAM, ROM, electrically erasable programmable read-only memory (electrically erasable programmable read only memory, EEPROM), compact disc read-only (memory, CD- ROM) or other optical disk storage, magnetic disk storage medium or other magnetic storage device, or any other medium that can be used to carry or store a desired program code in the form of instructions or data structures and that can be accessed by a computer. Also. Any connection can become a computer-readable medium as appropriate.
  • disks and discs include compact discs (CDs), laser discs, optical discs, digital video discs (DVDs), floppy disks, and Blu-ray discs, where Disks usually copy data magnetically, while disks use lasers to copy data optically.
  • CDs compact discs
  • DVDs digital video discs
  • floppy disks floppy disks
  • Blu-ray discs where Disks usually copy data magnetically, while disks use lasers to copy data optically.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Telephone Function (AREA)

Abstract

一种通信系统的切换方法和终端设备。该方法包括:终端设备与第一通信系统建立连接;所述终端设备运行第一应用程序;所述终端设备获取第二通信系统的Qos取值;所述终端设备根据预设策略及所述第一应用程序的Qos需求,判断所述第二通信系统的Qos取值是否能够满足所述第一应用程序的Qos需求;若所述第二通信系统的Qos取值能够满足所述第一应用程序的Qos需求,则所述终端设备断开与所述第一通信系统的连接,建立与所述第二通信系统的连接。通过这种方式,终端设备可以根据当前运行的应用程序选择合适的通信系统,较为灵活、智能。

Description

一种通信系统的切换方法和终端设备 技术领域
本申请涉及终端技术领域,尤其涉及一种通信系统的切换方法和终端设备。
背景技术
随着无线通信技术的发展,越来越多的通信制式被广泛应用到各终端设备。支持多通信制式的终端设备,是指具有多个无线通信模块的终端设备,其每个无线通信模块可以通过收发无线信号实现数据的传输功能,并且每个通信模块所使用的通信制式可以不同。比如,通信制式可以是蜂窝移动通信技术例如GSM、CDMA、LTE等,也可以是无线局域网通信技术例如Wi-Fi。总之,支持多通信制式的终端设备,具有通过不同的通信制式传输业务数据的能力。
现实环境中,存在多个各自支持的不同通信制式的通信系统共存的场景。因此,终端设备需要从多个通信系统中选择一个通信系统,并与该通信系统建立连接。
现有技术中,终端设备选择通信系统的过程如下:
以三个通信系统为例,每个通信系统支持的通信制式不同。假设终端设备当前与通信系统一的接入节点AP1连接,终端设备可以检测AP1的Qos取值。当终端设备确定当前连接的AP1的Qos取值低于阈值门限时,中断与AP1的连接,与AP2连接,以检测AP2的Qos取值。若AP2的Qos取值高于该阈值门限,终端设备就较长时间与AP2建立连接。
由此可见,现有技术中,终端设备切换通信系统的过程中,只有在当前连接的通信系统的Qos取值低于阈值门限时,才寻找Qos取值高于所述阈值门限的其它通信系统。可见,现有技术中,通信系统的切换条件单一,无法满足终端设备智能化需求。
发明内容
本申请提供一种通信系统的切换方法和终端设备,用以解决现有技术中终端设备切换通信系统的切换条件单一,无法满足终端设备智能化需求的技术问题。
第一方面,本申请实施例提供一种通信系统的切换方法,该方法可以由终端设备(比如手机、平板电脑等)执行。该方法包括:终端设备与第一通信系统建立连接;所述终端设备运行第一应用程序;所述终端设备获取第二通信系统的Qos取值;所述终端设备根据预设策略及所述第一应用程序的Qos需求,判断所述第二通信系统的Qos取值是否能够满足所述第一应用程序的Qos需求;若所述第二通信系统的Qos取值能够满足所述第一应用程序的Qos需求,则所述终端设备断开与所述第一通信系统的连接,建立与所述第二通信系统的连接。
在本申请实施例中,终端设备可以根据不同的应用程序选择与不同的通信系统连接,以满足各个应用程序的Qos需求,方案较为灵活,智能化程度较高。
在一种可能的设计中,在所述终端设备根据预设策略及所述第一应用程序的Qos需求,判断所述第二通信系统的Qos取值是否能够满足所述第一应用程序的Qos需求之前,所述终端设备判断是否满足预设条件;其中,所述预设条件包括如下条件中的一个或多个:所述第一通信系统的OsS取值不满足所述第一应用程序的需求;所述第一通信系统的OsS取值不满足用户需求;所述终端设备当前的功耗大于预设功耗。
在本申请实施例中,终端设备可以判断当前连接的通信系统是否满足当前业务需求,或用户需求,或者是否功耗较高,来决定是否要切换其它通信系统。通过这种方式,可以避免通信系统的频繁切换,且有助于节省功耗。
在一种可能的设计中,所述第二通信系统的Qos取值优于第一通信系统的Qos取值。
在本申请实施例中,要切换的通信系统的Qos取值优于当前连接的通信系统的Qos取值,以使终端设备切换通信系统后,可以提供更良好的体验,比如视频播放更加流畅等。
在一种可能的设计中,所述第二通信系统的Qos取值优于第一通信系统的Qos取值,包括:若所述Qos包括时延和/或丢包率,则所述第二通信系统的Qos取值小于第一通信系统的Qos取值;若所述Qos包括吞吐量,则所述第二通信系统的Qos取值大于第一通信系统的Qos取值。
在本申请实施例中,Qos包括时延、丢包率、吞吐量等。不同的应用程序对时延、丢包率、吞吐量的要求不同。比如,对时延要求较高的应用程序,终端设备确定的要切换的通信系统的时延小于当前连接的通信系统的时延,这样的话,终端设备切换通信系统后,该应用程序可以更加流畅的运行,有助于提供更良好的体验,比如视频播放更加流畅。
在一种可能的设计中,在所述终端设备断开与所述第一通信系统的连接之前,所述终端设备输出第一提示信息,所述第一提示信息用于提示用户是否断开与所述第一通信系统的连接;所述终端设备接收到用户同意断开与所述第一通信系统连接的指示。
在本申请实施例中,终端设备可以提示用户是否断开当前连接的通信系统,为用户提供选择机会,有助于提高用户体验。
在一种可能的设计中,所述终端设备根据预设策略及所述第一应用程序的Qos需求,判断所述第二通信系统的Qos取值是否能够满足所述第一应用程序的Qos需求,包括:所述终端设备判断所述第二通信系统是否满足用户习惯;若满足,所述终端设备判断判断所述第二通信系统的Qos取值是否能够满足所述第一应用程序的Qos需求;或者所述终端设备判断所述第一应用程序的使用时长是否大于预设时长;若是,所述终端设备判断所述第二通信系统的Qos取值是否能够满足所述第一应用程序的Qos需求。
在本申请实施例中,终端设备根据多种方式判断要切换的通信系统的Qos取值是否满足当前的需求,方案较为灵活,智能化程度高。
在一种可能的设计中,所述终端设备获取第二通信系统的Qos取值,包括:所述终端设备中存储有地理位置和Qos参数集的对应关系,其中,Qos参数集中包括至少一个第二通信系统的Qos取值;所述终端设备检测当前的地理位置;所述终端设备根据所述地理位置与Qos参数集之间的对应关系,确定所述当前地理位置对应的Qos参数集;所述终端设备根据从确定出的Qos参数集中选择所述第二通信系统的Qos取值。
在本申请实施例中,终端设备在不同的位置处,得到的各个通信系统的Qos取值有差异。比如,终端设备根据当前的地理位置信息确定至少一个第二通信系统,然后从中选择一个满足当前业务需求的第二通信系统。通过这种方式,终端设备可以不同的位置处,都能找到最佳的通信系统,方案较为灵活,智能化程度高。
在一种可能的设计中,所述终端设备获取第二通信系统的Qos取值,包括:所述终端设备中存储有信号强度集和Qos参数集的对应关系,其中,Qos参数集中包括至少一个第二通信系统的Qos取值;所述信号强度集中包括至少一个第二通信系统的信号强度;且所述Qos参数集中的Qos取值与所述信号强度集中的信号强度一一对应;所述终端设备检测所述 至少一个第二通信系统的当前的信号强度,得到第一信号强度集;所述终端设备根据所述信号强度集和Qos参数集之间的对应关系,确定与所述第一信号强度集对应的Qos参数集;所述终端设备从确定出的Qos参数集中选择所述第二通信系统的Qos取值。
在本申请实施例中,终端设备在不同的位置处,得到的各个通信系统的信号强度和Qos取值均有差异。终端设备根据多个第二通信系统当前的信号强度确定多个第二通信系统的Qos取值,然后从中选择一个满足能够当前业务需求第二通信系统。这种方式下,终端设备可以不同的位置处,都能找到最佳的通信系统,方案较为灵活,智能化程度高。较为灵活,智能化程度高。
在一种可能的设计中,在所述终端设备与所述第一通信系统建立连接之前,所述终端设备显示所述第一应用程序的界面;在所述终端设备与所述第二通信系统建立连接之后,所述终端设备在所述界面中显示第二提示信息,所述第二提示信息用于提示用户所述终端设备已接入所述第二通信系统。
在本申请实施例中,终端设备切换通信系统后,可以提示用户已切换通信系统,有助于提高用户体验。
在一种可能的设计中,所述终端设备显示所述第一应用程序的界面;所述界面中包括一图标;当所述图标被触发时,所述终端设备根据预设策略及所述第一应用程序的Qos需求,判断所述第二通信系统的Qos取值是否能够满足所述第一应用程序的Qos需求;在所述终端设备与所述第二通信系统建立连接之后,所述终端设备在所述界面中显示第二提示信息,所述第二提示信息用于提示用户所述终端设备已接入所述第二通信系统。
在本申请实施例中,用户可以手动触发终端设备选择合适的通信系统,当终端设备根据用户的触发操作,切换通信系统后,提示用于已切换通信系统,有助于提升用户体验。
在一种可能的设计中,所述终端设备与第二通信系统建立连接之前,所述终端设备根据功耗档位和Qos取值之间的对应关系,确定Qos取值处于所述第一应用程序的Qos需求和所述第二通信系统的Qos取值的区间范围内的至少一个功耗档位;所述终端设备与所述第一通信系统建立连接,包括:所述终端设备根据所述至少一个功耗档位中的第一功耗档位对应的控制参数控制所述终端设备与所述第一通信系统连接;所述第一功耗档位为所述至少一个功耗档位中功耗最低的档位。
在本申请实施例中,不同的功耗档位对应不同的Qos取值,终端设备在Qos取值处于第一应用程序的Qos需求和要切换的通信系统的Qos取值的区间范围内的至少一个功耗档位中,确定功耗相对较低的一个功耗档位,并以该功耗档位与切换后的通信系统连接,通过这种方式,有助于节省终端设备的功耗。
在一种可能的设计中,本申请实施例中的Qos取值包含时延、抖动、丢包率、吞吐量中的至少一个。
当然,Qos除了上述列举的几种之外,还可以是其它参数,本申请实施例不限定。
在一种可能的设计中,所述终端设备从确定出的Qos参数集中选择所述第二通信系统的Qos取值包括:所述终端设备确定第二通信系统的Qos取值为:确定出的Qos参数集中与当前时间最接近的一个Qos参数集。
在本申请实施例中,由于通信系统的Qos取值可能随着时间发生变化,所以终端设备选择最接近当前时间的Qos参数集,提高准确性。
第二方面,本申请实施例提供一种终端设备,包括一个或多个处理器和一个或多个存 储器。其中,一个或多个存储器用于存储一个或多个计算机程序;当一个或多个存储器存储的一个或多个计算机程序被所述一个或多个处理器执行时,使得终端能够实现第一方面或者第一方面的任意一种可能的设计的方法。
第三方面,本申请实施例还提供了一种终端设备,所述终端设备包括执行第一方面或者第一方面的任意一种可能的设计的方法的模块/单元;这些模块/单元可以通过硬件实现,也可以通过硬件执行相应的软件实现。
第四方面,本申请实施例中还提供一种计算机可读存储介质,所述计算机可读存储介质包括计算机程序,当计算机程序在终端上运行时,使得所述终端执行第一方面或上述第一方面的任意一种可能的设计的方法。
第五方面,本申请实施例还提供一种包含计算机程序产品,当所述计算机程序产品在终端上运行时,使得所述终端执行第一方面或上述第一方面的任意一种可能的设计的方法;或者,当所述计算机程序产品在终端上运行时,使得所述终端执行第二方面或上述第二方面的任意一种可能的设计的方法。
附图说明
图1为本发明一实施例提供的一种手机的结构示意图;
图2为本发明一实施例提供的一种应用场景的示意图;
图3为本发明一实施例提供的一种通信系统的选择方法的流程示意图;
图4为本发明一实施例提供的一种应用场景的示意图;
图5为本发明一实施例提供的另一种通信系统的选择方法的流程示意图;
图6为本发明一实施例提供的一种信号强度参数集的归类过程的示意图;
图7为本发明一实施例提供的一种信号强度参数集的归类过程示意图;
图8为本发明一实施例提供的更新信号强度参数和Qos参数集的映射关系的流程示意图;
图9为本发明一实施例提供的手机的显示界面的示意图;
图10为本发明一实施例提供的手机的显示界面的示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
本申请实施例涉及的通信制式,即网络类型,例如蜂窝移动通信网络或无线局域网通信。蜂窝移动通信网络例如GSM制式、CDMA制式、LTE制式等;无线局域网通信网络例如WiFi 5GHz制式WiFi 2.4GHz制式。
本申请实施例涉及的通信系统特指无线通信系统,例如、无线接入点(例如路由器)或者基站,不同的通信系统可以支持不同的通信制式。比如,基站支持蜂窝移动通信网络例如GSM制式、CDMA制式、LTE制式等,无线接入点支持无线局域网通信网络例如WiFi 5GHz制式WiFi 2.4GHz制式等。
本申请实施例涉及的Qos参数,可以用于指示通信系统的网络质量。Qos参数可以包括时延Latency(是指做出触发动作与得到响应之间的时间间隔)、抖动jitter、丢包率(Loss Rat io,英文简称:LR)是衡量分组交换(英文全称:Packet Switching,英文简称: PS)传输质量的核心指标,丢包率越高,PS传输质量越差,对业务的损伤越严重,甚至业务不可用。、吞吐量throughput(单位时间传输到特定目的地的有用信息的数目(以bit为单位))等多种类型的参数。一个通信系统的Qos参数的大小与该通信系统的接入量相关。比如,当通信系统的接入量较大时,该通信系统的Qos参数会降低。
本申请实施例涉及的信号强度参数,可以用于指示通信系统的信号强度。不同的通信系统,信号强度参数不同。比如,通信系统是无线接入点时,信号强度参数可以是接收信号的强度指示(Received Signal Strength Indicator,RSSI)。通信系统是蜂窝通信系统时,信号强度参数可以是参考信号接收功率(Reference Signal Receiving Power,RSRP)或者参考信号接收质量(Reference Signal Receiving Quality,RSRQ)等。
需要说明的是,前述的Qos参数与信号强度参数不同。举例来说,终端设备可以同时检测附近的多个通信系统的信号强度参数,但是终端设备只能检测当前连接的通信系统的Qos参数。若终端设备要检测其它通信系统的Qos参数,需要与当前连接的通信系统断开连接,并与其它通信系统建立连接,然后检测其它通信系统的Qos参数。
另外,一个通信系统的信号强度较大时,该通信系统的Qos参数不一定较大。因此,通信系统的信号强度较大时,若该通信系统的接入量较大,那该通信系统的Qos参数也较小。
以下介绍终端设备、用于这样的终端设备的图形用户界面(graphical user interface,GUI)、和用于使用这样的终端设备的实施例。在本申请一些实施例中,终端设备可以是包含诸如个人数字助理和/或音乐播放器等功能的便携式终端设备,诸如手机、平板电脑、具备无线通讯功能的可穿戴设备(如智能手表)等。便携式终端设备的示例性实施例包括但不限于搭载
Figure PCTCN2018112219-appb-000001
或者其它操作系统的便携式终端设备。上述便携式终端设备也可以是其它便携式终端设备,诸如具有触敏表面(例如触控面板)的膝上型计算机(laptop)等。还应当理解的是,在本申请其他一些实施例中,上述终端设备也可以不是便携式终端设备,而是具有触敏表面(例如触控面板)的台式计算机。以下以终端设备是手机为例进行说明。
通常情况下,终端设备支持多种应用。比如以下应用中的一个或多个:绘图应用、演示应用、字处理应用、游戏应用、电话应用、视频播放器应用、音乐播放器应用、电子邮件应用、即时消息收发应用、照片管理应用、相机应用、浏览器应用、日历应用、时钟应用、支付应用和健康管理应用等。其中,即时消息收发应用可以有多种。比如短信应用、彩信应用、各种邮箱应用、微信、腾讯聊天软件(QQ)、WhatsApp Messenger、连我(Line)、照片分享(instagram)、Kakao Talk、钉钉等。用户通过即时消息收发应用,可以将文字、语音、图片、视频文件以及其他各种文件等信息发送给其他联系人。
以终端设备是手机为例,图1示出了手机100的结构示意图。
手机100可以包括处理器110,外部存储器接口120,内部存储器121,通用串行总线(universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,天线1,天线2,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,按键190,马达191,指示器192,摄像头193,显示屏194,以及用户标识模块(subscriber identification module,SIM)卡接口195等。其中传感器模块180可以包括压力传感器180A,陀螺仪传感器180B,气压传感器180C,磁传感器180D,加速度传感器180E,距离传感器180F,接近光传感器 180G,指纹传感器180H,温度传感器180J,触摸传感器180K,环境光传感器180L,骨传导传感器180M等。
可以理解的是,本发明实施例示意的结构并不构成对手机100的具体限定。在本申请另一些实施例中,手机100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,存储器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
其中,控制器可以是手机100的神经中枢和指挥中心。控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110中的存储器为高速缓冲存储器。该存储器可以保存处理器110刚用过或循环使用的指令或数据。如果处理器110需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了系统的效率。
手机100的无线通信功能可以通过天线1,天线2,移动通信模块150,无线通信模块160,调制解调处理器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。手机100中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块150可以提供应用在手机100上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块150还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块150的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器将解调得到的低频基带信号传送至基带处理器处理。低频基带信号经基带处理器处理后,被传递给应用处理器。应用处理器通过音频设备(不限于扬声器170A,受话器170B等)输出声音信号,或通过显示屏194显示图像或视频。在一些实施例中,调制解调处理器可以是独立的器件。在另一些实施例中,调制解调处理器可以独立于处理器110,与移动通信模块150或其他功能模块设置在同一个器件中。
无线通信模块160可以提供应用在手机100上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球 导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块160可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块160经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。
在一些实施例中,手机100的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得手机100可以通过无线通信技术与网络以及其他设备通信。所述无线通信技术可以包括全球移动通讯系统(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,和/或IR技术等。所述GNSS可以包括全球卫星定位系统(global positioning system,GPS),全球导航卫星系统(global navigation satellite system,GLONASS),北斗卫星导航系统(beidou navigation satellite system,BDS),准天顶卫星系统(quasi-zenith satellite system,QZSS)和/或星基增强系统(satellite based augmentation systems,SBAS)。
手机100通过GPU,显示屏194,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏194和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器110可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
显示屏194用于显示图像,视频等。显示屏194包括显示面板。在一些实施例中,手机100可以包括1个或N个显示屏194,N为大于1的正整数。
手机100可以通过ISP,摄像头193,视频编解码器,GPU,显示屏194以及应用处理器等实现拍摄功能。
ISP用于处理摄像头193反馈的数据。例如,ISP还可以对图像的噪点,亮度,肤色进行算法优化。摄像头193用于捕获静态图像或视频。在一些实施例中,手机100可以包括1个或N个摄像头193,N为大于1的正整数。
NPU为神经网络(neural-network,NN)计算处理器,通过借鉴生物神经网络结构,例如借鉴人脑神经元之间传递模式,对输入信息快速处理,还可以不断的自学习。通过NPU可以实现手机100的智能认知等应用,例如:图像识别,人脸识别,语音识别,文本理解等。
外部存储器接口120可以用于连接外部存储卡,例如Micro SD卡,实现扩展手机100的存储能力。外部存储卡通过外部存储器接口120与处理器110通信,实现数据存储功能。例如将音乐,视频等文件保存在外部存储卡中。
内部存储器121可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。处理器110通过运行存储在内部存储器121的指令,从而执行手机100的各种功能应用以及数据处理。内部存储器121可以包括存储程序区和存储数据区。其中,存储程序区可存储操作系统,至少一个功能所需的应用程序(比如声音播放功能,图像播放功能等)等。存储数据区可存储手机100使用过程中所创建的数据(比如音频数据,电话本等)等。此外,内部存储器121可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一 个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。
手机100可以通过音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,以及应用处理器等实现音频功能。例如音乐播放,录音等。
压力传感器180A用于感受压力信号,可以将压力信号转换成电信号。在一些实施例中,压力传感器180A可以设置于显示屏194。当有触摸操作作用于显示屏194,手机100根据压力传感器180A检测所述触摸操作强度。
陀螺仪传感器180B可以用于确定手机100的运动姿态。气压传感器180C用于测量气压。在一些实施例中,手机100通过气压传感器180C测得的气压值计算海拔高度,辅助定位和导航。
磁传感器180D包括霍尔传感器。手机100可以利用磁传感器180D检测翻盖皮套的开合。加速度传感器180E可检测手机100在各个方向上(一般为三轴)加速度的大小。距离传感器180F,用于测量距离。接近光传感器180G可以检测来自附近物体的红外反射光。当检测到充分的反射光时,可以确定手机100附近有物体。环境光传感器180L用于感知环境光亮度。指纹传感器180H用于采集指纹。手机100可以利用采集的指纹特性实现指纹解锁,访问应用锁,指纹拍照,指纹接听来电等。温度传感器180J用于检测温度。触摸传感器180K,也称“触控面板”。触摸传感器180K可以设置于显示屏194,由触摸传感器180K与显示屏194组成触摸屏,也称“触控屏”。触摸传感器180K用于检测作用于其上或附近的触摸操作。触摸传感器可以将检测到的触摸操作传递给应用处理器,以确定触摸事件类型。可以通过显示屏194提供与触摸操作相关的视觉输出。骨传导传感器180M可以获取振动信号。
按键190包括开机键,音量键等。按键190可以是机械按键。也可以是触摸式按键。手机100可以接收按键输入,产生与手机100的用户设置以及功能控制有关的键信号输入。
马达191可以产生振动提示。马达191可以用于来电振动提示,也可以用于触摸振动反馈。指示器192可以是指示灯,可以用于指示充电状态,电量变化,也可以用于指示消息,未接来电,通知等。SIM卡接口195用于连接SIM卡。SIM卡可以通过插入SIM卡接口195,或从SIM卡接口195拔出,实现和手机100的接触和分离。
充电管理模块140用于从充电器接收充电输入。电源管理模块141用于连接电池142,充电管理模块140与处理器110。电源管理模块141接收电池142和/或充电管理模块140的输入,为处理器110,内部存储器121,外部存储器,显示屏194,摄像头193,和无线通信模块160等供电。电源管理模块141还可以用于监测电池容量,电池循环次数,电池健康状态(漏电,阻抗)等参数。
如前述内容可知,现有技术中,手机100切换通信系统时,需要与当前连接的通信系统断开连接,手机100切换到其它通信系统后,检测其它通信系统的Qos取值是否大于所述当前连接的通信系统的Qos取值。若大于,手机100与其它通信系统连接。在这一过程中,手机100当前运行的业务会受到影响。
因此,本申请实施例提供一种通信系统的切换方法,该方法可以适用于图1所示的手机100或者其它能够进行通信业务的电子设备中。以手机100为例,该方法中,手机100中可以事先检测各个通信系统的Qos取值,存储以便使用。比如,手机100中存储有地理位置信息和通信系统的Qos取值的对应关系,或者,存储有通信系统的信号强度和Qos取值的对应关系(这两个对应关系中还可以包括其它参数比如时间信息、用户习惯、当前应 用等,以便手机100根据这些参数选择最合适的通信系统,具体将在后文介绍)。或者手机100从其他设备处获取各个通信系统的QoS取值,例如通过有线或无线通信协议,主动或被动的从其他电子设备处获取。这样的话,手机100可以根据地理位置或者信号强度,确定各个通信系统的Qos取值,然后手机100选择能够更好的满足当前业务需求的通信系统(具体过程将在后文介绍),并与该通信系统连接。因此,本申请实施例提供的通信系统的切换方法中,由于手机100事先知晓各个通信系统的Qos取值,所以手机100可以在不中断当前连接的通信系统的基础上,知道哪个通信系统的Qos取值能够更好的满足当前业务需求,手机100直接切换到该通信系统即可,无需中断当前连接的通信系统,与其它通信系统建立连接之后再检测其它通信系统的Qos取值是否能够满足当前业务需求,对当前运行业务的影响较小。
需要说明的是,如前述内容可知,各个通信系统的Qos取值是动态变化的(比如一个通信系统的接入量较大时,该通信系统的Qos取值降低)。因此,手机100可以实时的检测(更新)各个通信系统的Qos取值,即学习前述的两个对应关系。
方式一:手机100可以自动学习,得到前述的两个对应关系。
示例性的,手机100在第一次使用(比如激活)时,启动学习;或者,手机100可以周期性的启动学习;或者,手机100检测到自身位置移动时启动学习;或者,手机100在每次开机时启动学习;或者,手机100在检测到用户当前未操作手机时启动学习;或者,手机100可以在预设时间段内(手机100出厂时设置好的,或者是用户自定义的)启动学习。
可选的,手机100在学习前述的两个对应关系的过程中,可以综合考虑上述的多种情况的至少一种情况。比如,手机100检测到自身位置移动,且用户当前未操作手机100时,启动学习。由于手机100检测各个通信系统的Qos取值需要分别于每个通信系统建立连接,才能检测各个通信系统的Qos取值,所以手机100可以在不同的位置处,且处于“空闲”(尽可能不影响当前业务的情况下)时,自动与各个通信系统连接以检测各个通信系统的Qos取值。
方式二,用户主动触发手机100学习得到前述的两个对应关系。
举例来说,手机100上可以设置一入口,该入口用于触发手机100学习得到前述两个对应关系。该入口(比如图标)可以设置在手机100的任何界面中,比如锁屏界面、主界面、应用程序的显示界面中。用户可以根据自己的需求主动触发手机100学习得到前述两个对应关系。
前述介绍了手机100可以被动或者主动获得两个对应关系。下面介绍手机100得到这两个对应关系的具体过程。因为涉及到两个对应关系,下文先介绍地理位置和通信系统的Qos取值的对应关系,然后介绍信号强度和通信系统的Qos取值的对应关系。
手机100获取地理位置信息和各个通信系统的Qos取值的对应关系的过程如下:
请参见图2所示,为本申请实施例提供的一种应用场景的示意图。如图2所示,该应用场景中包括三个通信系统,分别对应AP1、AP2、LTE基站(三个通信系统分别支持不同的通信制式)。手机在位置A处检测三个通信系统各自的Qos参数,得到位置A处的Qos参数集合1。Qos参数集合1包括在位置A处AP1、AP2、LTE基站各自的Qos参数。
具体而言,手机100在位置A处检测各个通信系统的Qos参数时,可以分别与不同的Qos参数对应的通信系统建立连接,以检测各个通信系统的Qos参数。比如,手机100在 位置A处,先与AP1连接,检测AP1的Qos参数,然后中断与AP1的连接,与AP2连接,检测AP2的Qos参数。
同样的,手机在位置B和位置C处分别检测这三个通信系统的Qos参数,得到位置B处的Qos参数集合2和位置C处的Qos参数集3。手机存储位置A、位置B、位置C以及Qos参数集合1-3,以便使用。
假设手机检测到当前所处的位置比如位置D,若位置D与位置A之间的距离小于预设距离,手机100根据预设策略在Qos参数集合1中确定合适的Qos参数,并与该Qos参数对应的通信系统连接。其中,预设策略可以是手机100选择Qos参数集合1中取值最大的Qos参数,或者,根据手机100根据当前运行的应用的Qos需求在Qos参数集合1中选择合适的Qos参数(比如,手机100在Qos参数集合1中选择Qos取值大于当前运行应用的Qos需求的通信系统);或者,手机100根据用户习惯在Qos参数集合1中选择合适的Qos参数;或者,手机100根据价格在Qos参数集合1中选择合适的Qos参数(比如,手机100当前运行应用需要消耗的流量较大时,手机100在Qos参数集合1中选择AP1或AP2,而不选择LTE)等。具体内容,将在后文介绍。
请参见图3所示,为本申请实施例提供的通信系统的切换方法的流程示意图。该方法可以适用于前述图1所示的手机或其它电子设备中。在下文的介绍中,以手机100为例进行说明,且以图2所示的应用场景为例。如图3所示,该方法的流程包括:
S301:手机100获取多个Qos参数集合,其中每个Qos参数集合对应一个位置。例如通过在一个位置处检测多个通信系统的Qos参数,得到Qos参数集合,移动位置进而得到多个Qos参数集合,其中每个Qos参数集合对应一个位置。
在本申请实施例中,Qos参数可以包括时延、抖动、丢包率、吞吐量等多种类型的参数,下文的介绍中,以Qos参数是吞吐量为例。
请继续参见图2所示,手机100在位置A处检测到3个通信系统各自的Qos参数比如吞吐量(比如,手机100在位置A处,先与AP1连接,检测AP1的Qos参数,然后中断与AP1的连接,与AP2连接,检测AP2的Qos参数,然后中断与AP2的连接,与LTE连接,检测LTE的Qos参数)。假设手机100检测到AP1的吞吐量为90GB、AP2的吞吐量70GB、基站的吞吐量为90GB,即手机100得到位置A处的Qos参数集合1(90GB、70GB、90GB)。同样的,手机100可以得到位置B处的Qos参数集合2,且得到位置C处的Qos参数集合3。得请参见表1,示出了位置信息与Qos参数集合之间的映射关系。
表1
Figure PCTCN2018112219-appb-000002
需要说明的是,表1中的各个通信系统的Qos取值可以是手机100事先检测好的(比如手机100在当前时间之前,已分别与不同的Qos参数对应的通信系统建立连接,检测各个通信系统的Qos参数)。因此,假设手机100当前与AP1连接,若手机100需要从AP1切换到其它通信系统,无需中断与AP1的连接,然后与其它通信系统建立连接以检测其它 通信系统的Qos参数,只需要根据表1中记录的其它通信系统的Qos取值,确定与哪个通信系统建立连接即可。其中,表1只是一种示例,并不是对位置信息与Qos参数集合之间的映射关系的限定,且表1中的位置A、位置B或位置C可以是地理坐标信息,如经纬度,也可以是地理位置信息,如行政区域、街道、门牌号码等;另外,表1中还可以包含采集时间信息,采集时运行的应用的信息等。
S302:手机100检测当前所处的地理位置。
示例性的,同步骤S301中确定位置的方法,手机100可以通过GPS、基站,WiFi热点,蓝牙(iBacon),辅助GPS(assisted GPS,AGPS)等一种或多种方法定位。
S303:手机100根据当前所处的地理位置,从所述多个Qos参数集合中确定与所述地理位置对应的Qos参数集合,所述Qos参数集合包括多个通信系统的Qos参数。
作为一种示例,请继续参见图2所示,假设用户手机检测到当前的地理位置在位置D。手机100在表1中查询是否存在位置D,若存在,则根据表1确定与位置D对应的Qos参数集合即可。若手机100在表1中未查询到位置D,则手机100确定位置A、位置B或者位置C中哪个位置距离位置D最近。假设位置A距离位置D最近,则手机100确定与位置D对应的Qos参数集合即为Qos参数集合1。
手机100根据Qos参数集合1,确定哪个通信系统的Qos参数取值最大,就与Qos参数取值最大的通信系统连接。比如,Qos参数集合1(90GB、70GB、70GB)指示AP1的Qos参数取值最大,则手机100与AP1连接。
前述的表1只是一种举例,实际上,手机100在检测各个通信系统的Qos参数时,可以还考虑其它因素。下面分别列举几种示例。
示例一:由于不同时间段,每个通信系统的Qos参数的取值可能不同。以AP1为例,在晚上10:00-12:00期间,AP1接入量较大,导致AP1的Qos参数的取值较低;而在早上上6:00-8:00期间,AP1接入量较小,导致AP1的Qos参数的取值较高。
因此,手机100可以在检测一个位置处各个通信系统的Qos参数时,考虑时间信息。即手机100可以统计一个位置处在每个时间段各个通信系统的Qos参数。以图2所示的应用场景为例,表2示出了每个位置处在不同时间段各个通信系统的Qos取值。
表2
Figure PCTCN2018112219-appb-000003
举例来说,假设用户手机检测到当前的地理位置是位置D当前时间是13:00。手机100在表2中查询是否存在位置D以及当前时间13:00,并在表2中查询与位置D对应的位置和时间段,若存在,则确定与所述位置及时间段都对应的Qos参数集合即可。若手机100在表2中未查询到位置D,或者未查询到包含当前时间的时间段,则手机100确定位置A、位置B或者位置C中哪个位置距离位置D最近以及确定与当前时间最接近的时间段。假设位置A距离位置D最近,且与当前时间最接近的时间段是10:00-12:00,则确定 与位置D和当前时间13:00对应的Qos参数集合即为Qos参数集合1.1。
示例二,用户可能会根据自身需求手动选择与某个通信系统建立连接。手机100可以记录用户的操作。表3示出了位置信息与Qos参数集合的又一种示例。
表3
Figure PCTCN2018112219-appb-000004
举例来说,手机10检测到当前处于位置A,手机100根据表3确定用户选择的通信系统是AP2,则手机与AP2建立连接。
在本申请实施例中,上述的表1、表2或表3可以是用户自定义的,也可以是手机自学习的。当然表3同样可以包含时间信息以及处于运行中的应用的信息。以便电子设备做更加复杂和精准的匹配。
在本申请实施例中,上述的表1、表2或表3可以更新。以表1为例,电子设备更新表1的方式可以有多种。更新上述各个表的更新条件可以在电子设备出厂时预设在设备中,也可以允许用户进行设置和变更。
方式一:手机可以以一定周期自动更新表1。
如前述内容,手机100需要断开当前连接的通信系统,与其它通信系统建立连接,才能检测其它通信系统的Qos参数。若手机断开与当前通信系统的连接,可能会导致手机当前运行业务出现卡顿。因此,手机100可以在预设时间段内周期性的自动更新表1,其中,预设时间段可以是手机100自学习确定的,也可以是用户设置的。比如,用户设置手机于每天晚上2:00更新表1。再比如,手机100可以在用户当前未操作手机的情况下更新表1(比如,用户当前未操作手机时,手机100可以断开当前连接的通信系统,与其它通信系统建立连接,以检测其它通信系统的Qos参数)。再比如,手机100还可以按照预设条件自动更新表1,即每次当手机100与某个通信系统建立连接(可能是用户手动连接)后,手机100检测到通信系统的Qos参数,然后更新表1。
方式二:用户手动更新表1。
示例性的,手机上可以设置一个入口(比如开关控件或者特定手势,也可以是语音指令,特定指纹等等),当手机检测到该入口,如开关控件被触发时,更新表1。比如,该开关控件可以设置在手机中的某个app(比如设置app)中。
方式三:手机100在确定到需要更新对应关系表时进行更新,例如确定表1不准确的情况下,更新表1,例如检测到用户做出新的选择,例如检测到移动到新的位置,例如检测到有可连接的新通信系统等。
举例来说,手机100检测到当前处于位置A,根据表1确定与位置A对应的Qos参数集1,并根据该Qos参数集1确定与AP1连接。当手机100与AP1连接之后,手机100检测AP1的Qos参数,若检测到的Qos参数集合小于存储的Qos参数集1中AP1的Qos参数,说明存储的AP1的Qos参数不准确,手机100可以更新表1。
S304:手机100根据预设策略从确定出的Qos参数集合中选择合适的Qos参数,并与 该Qos参数对应的通信系统建立连接。
其中,手机100根据预设策略从确定出的Qos参数集合中选择合适的Qos参数有多种实现方式。方式一,手机100确定出Qos参数集合后,可以确定Qos参数集合中Qos参数取值最大的通信系统。方式二,手机100可以确定Qos参数集合中能够满足当前运行的应用程序的QoS需求的通信系统,比如手机100选择Qos取值大于当前运行的应用程序需求的通信系统。方式三,手机100根据用户习惯选择合适的通信系统。举例来说,用户在使用手机100观看电影时,经常手动将手机100与AP1连接,那么手机100检测当前播放电影时,自动切换到与AP1连接。
可选的,除了上述三种方式外,手机100还可以考虑其它条件。比如,手机100根据使用当前应用的时长,或用户切换当前应用的可能性等信息,选择合适的通信系统。举例来说,手机100检测到用户打开一个对QoS要求很高的应用程序,但检测到该应用程序的使用时长小于预设时长比如小于2分钟,然后就退出该应用程序,此时手机100可无需切换通信系统。或者,手机100检测到用户只使用了该应用程序中的一个对QoS要求不高的功能,此时,手机100可以无需选择Qos取值很大的通信系统,只选择Qos取值大于等于该功能的Qos需求的通信系统即可。比如,用户使用手机100中的微信应用时,若仅仅使用微信中的聊天(文字或图片的发送)时,手机100可以选择Qos(比如时延)取值相对较小的通信系统,若使用微信应用中的视频/语音通话时,手机100可以选择Qos(比如时延)取值相对较高的通信系统。手机100还可以结合各个通信系统的费用,用户的使用习惯等进行选择,例如用户在观看视频,但根据手机100(其他APP记录的)记录的用户的历史使用习惯/作息习惯可知用户只会看几分钟就会关闭,则只选择费用低的能保证当前视频需求的通信系统连接即可,而不切换到费用高的其他能提供更高观看体验的通信系统。
下面以方式二为例,介绍手机100选择通信系统的过程。
示例性的,手机100中存储有应用程序与Qos需求的映射关系。表4示出了应用程序与Qos需求(以吞吐量为例)之间的映射关系的一种示例。其中,表4中每个应用程序的Qos需求可以是每个应用程序上架时定义好的,或者是用户自定义的。
表4
应用程序 Qos需求
微信 30GB
电话 50GB
爱艺奇 80GB
举例来说,手机100当前正运行爱艺奇,根据表4确定爱艺奇的Qos需求是80GB。假设手机当前处于位置A,手机根据表1确定与位置A对应的Qos参数集合是Qos参数集合1。手机100确定Qos参数集合1中Qos参数取值大于80GB的通信系统,即AP1。手机100与AP1建立连接。
再例如,手机100当前正运行微信,根据表4确定微信的Qos需求是30GB。假设手机当前处于位置A,手机根据表3确定与位置A对应的Qos参数集合是Qos参数集合1。手机100确定Qos参数集合1中Qos参数取值大于30GB的通信系统有两个,即AP1和AP2。手机100可以根据用户选择,与AP2建立连接。
需要说明的是,上述的举例中(表1-表4中)仅是以Qos参数是吞吐量为例的,实际 上Qos参数还可以是时延、抖动、丢包率或错包率等,即表1-4中的QoS参数可以是这些参数中的一个或多个。
通常,不同的应用程序对时延、吞吐量、丢包率等要求不同。比如,对时延或抖动要求较高、对丢包率或错包率要求不高的流类业务(Streaming Class)和语音业务。其中,流类业务,比如音频或者视频播放业务(比如手机100中的音乐/视频播放应用、教育、健身类应用等)。语音业务,比如电路交换载体上的话音业务(例如GSM的话音业务)。再比如,IP电话和视频电话(比如手机100中的IP电话/视频电话类应用等)。对于这些应用,手机100可以选择时延或抖动满足其需求的通信系统(比如,选择时延大于该应用的时延需求的通信系统)。
举例来说,假设手机100当前运行音频播放应用,手机100根据地理位置和Qos参数集(时延)的对应关系,确定与当前的地理位置对应的Qos参数集,然后在该Qos参数集中确定时延大于音乐播放时延需求的通信系统,并与该通信系统连接。
再比如,对时延或抖动要求较低,但是对丢包率的较为要求很高的交互类业务和背景类业务。其中,交互类业务,比如终端设备(比如,手机100、人或其它机器)和远程设备(比如远程服务器)进行在线数据交互的业务,比如,Web浏览、数据库检索、网络游戏等(比如手机100中的工具/字典/购物/聊天/游戏类应用等)。其中,背景类业务,比如后台E-mail接收、SMS或者接收一些文件和数据库下载(比如手机100中的E-mail类应用等)。对于这些应用,手机100可以选择丢包率满足其需求的通信系统(比如,选择丢包率小于该应用的丢包率需求的通信系统)。
举例来说,假设手机100当前运行网络游戏,手机100根据地理位置和Qos参数(丢包率)的对应关系,确定与当前的地理位置对应的Qos参数集,然后在该Qos参数集中确定丢包率小于网络游戏的丢包率需求的通信系统,并与该通信系统连接。
通过以上举例可知,手机100可以有多种方式选择通信系统。在实际应用中,手机100可以采用上述几种方式中的一种或多种,或者除去上述几种方式之外的其它方式来选择通信系统。
需要说明的是,图3所示的实施例中的全部步骤或者部分步骤(比如S302-S305)可以一直执行。比如,只要手机100处于开机状态,就一直执行S302-S305。
当然,图3所示的实施例中的全部步骤或者部分步骤(比如S302-S305)也可以只在满足条件时执行。比如,当手机100检测到当前位置发生变化时,执行一次图2所示的全部或部分步骤(比如S302-S305)。再比如,当手机100检测到当前连接的通信系统的Qos不满足当前业务需求/用户需求,或者当前功耗较高(大于预设功耗)时,再执行图3所示的全部或部分步骤(比如S302-S305)。在这种方式,可以避免频繁切换,而且有助于节约计算量,降低功耗。
在上面的实施例中,介绍了手机从多个通信系统中确定一个合适的通信系统的几种方式,在这几种方式中,均需要知道手机当前所处的位置。下面介绍另一实施例,在该实施例中手机无需知道手机当前所处的位置,也可以确定从多个通信系统中确定出合适的通信系统。
请参见图4所示,为本申请实施例提供的一种应用场景的示意图。如图4所示,该应用场景中包括三个通信系统,分别对应AP1、AP2、LTE基站(三个通信系统分别支持不同的通信制式)。手机100某个位置处检测三个通信系统各自的信号强度参数,得到该位 置处的信号强度参数集1。同样的,手机在其它两个位置处分别检测这三个通信系统的信号强度参数,得到两个信号强度参数集,即信号强度参数集2和信号强度参数集3。手机存储信号强度参数集合1-3,以便使用。
可选的,手机100可以在检测每个通信系统的信号强度时,检测该通信系统的Qos取值。比如手机100检测当前连接的AP1的信号强度和Qos取值,然后中断与AP1的连接,与AP2连接,以检测AP2的信号强度和Qos取值。或者,由于手机100检测各个通信系统的信号强度时,无需与各个通信系统建立连接,比如可以检测通信系统的广播信息即可检测该通信系统的信号强度。因此,手机100可以检测各个通信系统的信号强度和检测各个通信系统的Qos取值可以是两个独立的过程。比如手机100在某个位置处检测到所有通信系统的信号强度,得到信号强度集之后,再检测各个通信系统的Qos取值。举例来说,手机100先检测AP1、AP2和LTE的信号强度,得到信号强度集。然后手机100与AP1连接,检测AP1的Qos参数,然后中断与AP1的连接,与AP2连接,检测AP2的Qos参数,然后中断与AP2的连接,与LTE连接,检测LTE的Qos参数,得到Qos参数集。手机100得到信号强度集和Qos参数集之后,可以建立信号强度集和Qos参数集的对应关系(下文介绍),存储以便使用。
假设手机100检测到各个通信系统当前的信号强度,得到一个信号强度参数集4。手机可以从存储的信号强度参数集1-3中寻找与信号强度参数集4相匹配的信号强度参数集。假设手机100经匹配,确定信号强度参数集1与信号强度参数集4匹配,那么手机100根据信号强度参数集1和前述的信号强度集和Qos参数集的对应关系,确定与强度参数集1对应的Qos参数集,然后在该Qos参数集中,根据预设策略选择通信系统,并与该通信系统连接。
其中,预设策略前面已经描述过,为了说明书的简洁,在此不重复赘述。
这个实施例(图4所示的实施例)与上一个实施例(图3所示实施例)不同,上一个实施例中,手机100检测地理位置信息,根据地理位置信息,确定Qos参数集,进而确定合适的通信系统。在这个实施例中,手机100无需检测地理位置信息,而是根据检测到的信号强度集确定Qos参数集,进而确定合适的通信系统。当然,手机100可以选择上一个实施例或者这个实施例的方案实现通信系统的切换,即这两个实施例的方案可以独立应用;或者,当手机100可以获得地理位置时,采用上一个实施例的方案,当无法获得地理位置时,启用这个实施例的方案。
图5示出了本申请实施例提供的另一种通信系统的切换方法的流程图。该方法可以适用于图1所示的手机100或其他终端设备中。下文以手机100为例,且以图4所示的应用场景为例。如图5所示,该方法的流程包括:
S501:手机100在多个位置处检测多个通信系统中每个通信系统的信号强度参数,得到每个位置对应的信号强度参数集,进而得到多个信号强度参数集。
在本申请实施例中,手机100可以在每次启动时检测多个通信系统的信号强度参数集;或者,手机可以周期性的检测多个通信系统的信号强度参数集;或者,手机可以在用户主动触发时,检测多个通信系统的信号强度参数集。由于无需与一个通信系统建立连接即可检测该通信系统的信号强度,检测多个通信系统的信号强度参数的动作可以在多种情况下进行,例如用户手动触发,或者在设备满足预设条件(例如闲时,按固定周期,在检测到位置变化,用户切换应用程序等)时自动进行等等。其中,信号强度参数可以有多种,比 如通信系统是无线接入点时,信号强度参数可以是接收信号的强度指示(Received Signal Strength Indicator,RSSI)。通信系统是蜂窝通信系统时,信号强度参数可以是参考信号接收功率(Reference Signal Receiving Power,RSRP)或者参考信号接收质量(Reference Signal Receiving Quality,RSRQ)等。
其中,手机100在每个位置处检测的多个通信系统可以是位于手机预设距离的范围内的通信系统;或者,是手机曾经连接过的多个通信系统;或者是手机100能够检测到的所有通信系统。
请继续参见图4所示,手机100检测到3个信号强度参数集。每个信号强度参数集包括三个通信系统的信号强度。以信号强度参数集1为例,信号强度参数集1包括AP1、AP2、基站各自的信号强度参数,其中,AP1的RSSI为80db,AP2的RSSI为70db;LTE的RSRP为85db,信号强度参数集1为(80db、70db、85db)。请参见表5,表5示出了信号强度参数集1的示例。其中Qos参数可以包含时延、抖动、丢包率、吞吐量等多种类型的参数中的一个或多个,本实施例中Qos参数以吞吐量为例,其他情况不再赘述。
表5
Figure PCTCN2018112219-appb-000005
如前述内容可知,信号强度参数和Qos参数不同,所以表5中还可以包括Qos参数集1(手机100检测AP1、AP2和LTE的Qos参数的过程在前面介绍过,不重复赘述),Qos参数集1中包括每个通信系统的Qos参数。
同样的,手机可以其它采集信号强度参数集,比如信号强度参数集2和信号强度参数集3。以信号强度参数集2为例,比如表6示出了信号强度参数集2的示例。
表6
Figure PCTCN2018112219-appb-000006
通过以上描述可知,手机100中可以存储信号强度参数集1-3,以及每个信号强度参数集对应的Qos参数集合。因此,手机100无需检测地理位置,只需要根据当前信号强度参数来进行通信系统的质量评估,并在确定需要切换时直接切换到预先确定好的目标系统,能减少切换系统的用时,减小对业务的影响,提高切换效率以及设备的智能性。具体的,请参见表7,为信号强度参数集与Qos参数集之间的映射关系的一种示例。
表7
信号强度参数集 信号强度参数取值 Qos参数集
信号强度参数集1 (80db、70db、70db) (90GB、70GB、30GB)
信号强度参数集2 (70db、60db、75db) (50GB、20GB、60GB)
信号强度参数集3 (90db、80db、80db) (30GB、50GB、60GB)
S502:手机100根据当前采集的第一信号强度参数集,确定与所述第一信号强度参数集匹配的第二信号强度参数集。
用户在使用手机100的过程中,比如,手机100启动一个应用时,可以采集到第一信号强度参数集。手机100根据第一信号强度参数集在表7中的信号强度参数集1-3进行匹配,确定出一个与第一信号强度参数集相匹配的信号强度参数集。下面介绍手机100将第一信号参数集与存储的信号强度参数集1-3进行匹配的过程。
请继续参见图4所示,假设手机100采集到的第一信号强度参数集为信号强度参数集4(75db、70db、80db)。手机100确定信号强度参数集4与存储的信号强度参数集1-3中哪个信号强度参数集“距离”最近。这里的两个信号强度参数集之间的“距离”,可以理解为,两个信号强度参数集中相对应的两个信号强度之间的差值最小。具体而言,手机100可以确定信号强度参数集4中AP1的信号强度与信号强度参数集1中AP1的信号强度之间的第一差值,确定信号强度参数集4中AP2的信号强度与信号强度参数集1中AP2的信号强度的第二差值,确定信号强度参数集4中LTE的信号强度与信号强度参数集1中LTE的信号强度的第三差值,手机100将第一差值、第二差值、第三差值相加,得到第一和,该第一和即信号强度参数集4与信号强度参数集1之间的“距离”。同样的,手机100可以确定信号强度参数集4与信号强度参数集2之间的“距离”,以及信号强度参数集4与信号强度参数集3之间的“距离”。手机100可以确定“距离”信号强度参数集4最近的信号强度参数集。
S503:手机根据确定出的第二信号强度参数集,确定与所述第二信号强度参数集对应的Qos参数集合。
假设手机100确定与信号强度参数集4“距离”最近的信号强度参数集是信号强度参数集1即第二信号强度集。手机100可以根据表5确定与信号强度参数集1对应的Qos参数集,即Qos参数集1。手机100根据Qos参数集1确定合适的通信系统,并与该通信系统建立连接。
作为一种示例,如前述内容可知,由于不同时间段每个通信系统的Qos取值可能不同。因此,手机100可以在采集每个位置处各个通信系统的Qos参数时,考虑时间信息。请继续参见图4所示,手机100在检测各个通信系统的Qos参数时,还可以记录时间信息,即手机100在哪一个时间段内检测各个通信系统的Qos参数,具体请参见表8所示,为信号强度参数集1在不同时间段下的Qos参数集。
表8
Figure PCTCN2018112219-appb-000007
举例来说,请继续参见图4所示,假设手机100采集到的第一信号强度参数集为信号强度参数集4(75db、70db、80db)。手机100确定与信号强度集4“距离”最近的是信号强度集1,且确定当前时间在10:00-12:00的时间段内。因此,手机100确定Qos参数集为(90GB、70GB、30GB)。手机100确定Qos取值最大的通信系统,即Qos取值为90GB的通信系统即AP1,手机100与AP1建立连接。
作为另一种示例,用户可能会根据自身需求手动选择与某个通信系统建立连接。手机100可以记录用户的操作。请参见表9,示出了另一种信号强度参数集1在不同时间段下的Qos参数集之间的映射关系。
表9
Figure PCTCN2018112219-appb-000008
举例来说,请继续参见图4所示,假设手机100采集到的第一信号强度参数集为信号强度参数集4(75db、70db、80db)。手机100确定与信号强度集4“距离”最近的是信号强度集1,且确定当前时间在10:00-12:00的时间段内。因此,手机100根据用户选择确定与AP1建立连接。可选的,映射关系中还可以包括采集时手机中运行的应用程序,包括前台和/或后台应用程序;还可以包括这些应用程序的属性,例如语音业务,视频业务,游戏业务等,也可以是时延敏感业务,丢包率敏感业务,吞吐量敏感业务之类。
S504:手机100根据预设策略从确定出的Qos参数集合中选择合适的通信系统,并与确定出的通信系统连接。
可选的,手机100确定Qos参数集合后,可以确定该Qos参数集合中Qos参数取值最大的通信系统,并与该通信系统连接;或者,手机100根据当前运行的应用程序的Qos需求,确定该Qos参数集合中满足该Qos需求的通信系统,并与该通信系统建立连接;或者根据用户选择确定合适的通信系统,并与该通信系统连接;或者,手机100从满足当前运行的应用程序的Qos需求的多个通信系统中选择资费最低的并与之建立连接。在实际应用中,手机100可以根据上述方式以及用户设置的其他方式中的一种或者多种方式来选择合适的通信系统。
在前述的实施例中,是以手机100采集到3个信号强度参数集为例的。在实际应用中,由于手机100在不同的位置处采集的各个通信系统的信号强度会有差异,即手机100在不同位置处,得到的信号强度参数集有差异。因此,手机100可以将每个信号强度参数集都存储下来,然后通过图5所示的方法选择合适的通信系统。下面介绍另一实施例,在该实施例中,手机100采集的信号强度参数集较多时,可以将信号强度参数集归类,从被归为一类的多个信号强度参数集中选择一个信号强度参数集作为类信号强度参数集,以该类信号强度集来反映所述被归为一类的多个信号强度集,即一类信号强度参数集对应一个类信号强度参数集。手机无需存储多个信号强度参数集,只需存储类信号强度参数集即可,有助于节省内存。
需要说明的是,图5所示的实施例中的全部步骤或者部分步骤(比如S502-S505)可以一直执行。比如,只要手机100处于开机状态,就一直执行S302-S305。
当然,图5所示的实施例中的全部步骤或者部分步骤(比如S502-S505)也可以只在满足条件时执行。比如,当手机100检测到当前位置发生变化时,执行一次图5所示的全部或部分步骤(比如S502-S505)。再比如,当手机100检测到当前连接的通信系统的Qos不满足当前业务需求/用户需求、或者当前功耗较高(大于预设功耗)时,再执行图5所示的全部或部分步骤(比如S502-S505)。在这种方式,可以避免频繁切换,而且有助于节约计算量,降低功耗。
请参见图6所示,为本申请实施例提供的一种应用场景的示意图。如图6所示,手机100采集了12个信号强度参数集(图6中的12个黑点)。手机100将这12个信号强度参数集分类,得到3类信号强度参数集。示例性的,手机100将信号强度参数集1-4归类为第一类信号强度参数集,将信号强度参数集5-8归类为第二类信号强度参数集,将信号强度参数集9-12归类为第三类信号强度参数集。
下面介绍手机100将12个信号强度参数集分类的过程。
示例性的,手机100确定信号强度参数集1-4中任意两个信号强度参数集之间的“距离”小于第一预设距离,则手机100将信号强度参数集1-4归为一类。手机100确定信号强度参数集5-8中任意两个信号强度参数集之间的“距离”小于第二预设距离,则手机100将信号强度参数集5-8归为一类。手机100确定信号强度参数集9-12中任意两个信号强度参数集之间的“距离”小于第三预设距离,则手机100将信号强度参数集9-12归为一类。
手机100将信号强度参数集1-4归类为第一类信号强度参数集后,可以从信号强度参数集1-4中选择一个信号强度参数集作以代表第一类信号强度参数集,被选择出的信号强度参数集被称为类信号强度参数集1。手机100只需存储类信号强度参数集1即可,无需存储强度参数集1-4,节省资源。比如,手机100可以从信号强度参数集1-4中随机选择一个信号强度参数集,或者,手机100取信号强度参数集1-4的平均值,得到一个信号强度参数集。同样的,手机100可以确定代表第二类信号强度参数集的类信号强度参数集2,确定第三类信号强度参数集的类信号强度参数集3。手机100将确定的3个类信号强度参数集存储下来,以便使用。后续手机100使用这个3个类信号强度参数集的过程,和前述过程类似,不多赘述。
举例来说,请参见图7,以一个房屋的室内户型图为例。该房屋内设置有4个无线通信系统。这4个无线通信系统分别为:WIFI AP1、WIFI AP2、LTE、UMTS。这4个无线通信系统分别位于房屋内的不同位置。
手机100可以在每个位置处采集这4个通信系统中每个通信系统的信号强度参数,得到信号强度参数集,进而得到多个信号强度参数集,每个位置对应一个信号强度参数集,如图7中的黑点。由于得到的信号强度参数集即黑点较多,手机100可以确定多个信号强度参数集归类。
具体而言,假设手机100室内总共采集到1000个信号强度参数集,即1000个黑点。手机100对这1000个信号强度参数集进行归类。具体过程为:手机100从这1000个信号强度参数集中确定有300个信号强度参数集之间的“距离”小于预设距离,则手机100将这300个信号强度参数集归为第一类信号强度参数集。手机100从这300信号强度参数集中选择一个信号强度参数集以代表第一类信号强度参数集,选择出的信号强度参数集即为 类信号强度参数集1。该第一类信号强度参数集即手机100在客厅检测到的多个信号强度参数集。
同样的,手机100从这1000个信号强度参数集中确定有200个信号强度参数集之间的“距离”。手机100将这200个信号强度参数集归为第二类信号强度参数集,并从这2000个信号强度参数集中选择一个信号强度参数集以代表第二类信号强度参数集,选择出的信号强度参数集即为类信号强度参数集2。该第二类信号强度参数集即手机100在卧室检测的到的多个信号强度参数集。其它类的信号强度参数集的归类过程类似,不多赘述。
如图7所示,手机100得到5类信号强度参数集,每一类信号强度参数集对应一个类信号强度参数集,而且每个类信号强度参数集对应一个Qos参数集。
下面继续以图7为例,介绍手机100通信系统之间的切换过程。
假设用户在客厅操作手机100。手机100采集到第一信号强度参数集。手机100确定该第一信号强度参数集属于5类中的哪一类信号强度参数集。具体而言,手机100可以判断第一信号强度参数集与哪一个类信号强度参数集之间的“距离”小于预设距离。若第一信号强度参数集与类信号强度参数集1之间的“距离”小于预设距离,则手机100确定第一信号强度参数集属于第一类信号强度参数集。手机100根据类信号强度参数集1,确定与所述类信号强度参数集1对应的Qos参数集1。假设手机100确定的Qos参数集1指示AP1的Qos参数取值最大,则手机100与AP1建立连接;或者手机100确定当前运行的应用程序是微信,根据表3确定微信的Qos需求,手机100根据Qos参数集1确定Qos取值大于微信的Qos需求的通信系统,并与该通信系统建立连接。
当用户携带手机100从客厅移步到卧室的过程中,手机100检测到当前的位置发生变化,手机100可以再次采集到第二信号强度参数集。手机100再次确定该第二信号强度参数集属于5类中的哪一类信号强度参数集。手机100确定第二信号强度参数集属于第二类信号强度参数集,则手机100根据第二类信号强度参数集的类信号强度参数集2,确定与该类信号强度参数集2对应的Qos参数集2。手机100根据该Qos参数集2,确定一个通信系统,并将该通信系统建立连接。
在上述举例中,手机100采集第一信号强度参数集后,当检测到当前的位置发生变化时,再次采集第二信号强度参数集;或者,手机100可以在采集到第一信号强度参数集后,经过预设时长,再次采集第二信号强度参数集;或者,手机100在采集到第一信号强度参数集后,在用户主动触发下,再次采集第二信号强度参数集;或者,手机100采集到第一信号强度参数集后,若当前运行的应用程序由第一应用程序切换为第二应用程序,则手机100再次采集第二信号强度参数集。
需要说明的是,如前述内容可知,通信系统的Qos参数可能随着时间、接入点的变化而变化,而且,通信系统的信号强度参数也会随着时间、通信系统的地理位置(比如AP的位置移动)的变化而变化。因此,手机100可以更新信号强度参数集和Qos参数集之间的映射关系。手机100可以只更新信号强度参数集和Qos参数集之间的映射关系中的信号强度参数,也可以只更新Qos参数集。
需要说明的是,信号强度参数的采集所消耗的功耗开销较小,而QoS参数的检测的所消耗的功耗开销较大。因此,手机100可以设置信号强度参数的更新周期和Qos参数集的更新周期不同。比如,强度参数的更新周期设置的较短,Qos参数集的更新周期设置的较长。下面介绍手机100根据更新信号强度参数集和Qos参数集之间的映射关系中的QoS 参数集的过程。
请参见图8所示,为本申请实施例提供的更新信号强度参数集和Qos参数集之间的映射关系的过程的示意图。如图8所示,所述方法的流程包括:
S801:手机100更新信号强度参数集和Qos参数集之间的映射关系。
在本申请实施例中,手机100可以有多种触发原因来触发更新信号强度参数集和Qos参数集之间的映射关系。方式一,用户主动触发更新。方式二,手机100周期性的自动更新;方式三,当手机100根据原信号强度参数集和Qos参数集之间的映射关系确定出的Qos参数集不准确时,手机100根据更新信号强度参数集和Qos参数集之间的映射关系。
以方式三为例,在S801之前,所述方法的流程还包括:
S800a:手机100切换到目标通信系统。
手机100根据前述的图3或图5所示的流程,确定合适的通信系统之后,便于该通信系统连接,该通信系统即目标通信系统。如前述内容可知,一个通信系统的Qos参数取值可能受到接入量或其他因素的影响,所以当手机100与目标通信系统连接之后,目标通信系统的Qos参数取值可能并不如预期。因此,手机100切换到目标通信系统后,可以检测目标通信系统的Qos参数。若手机100检测目标通信系统的Qos参数取值小于存储的该目标通信系统的Qos参数取值,则手机100可以触发更新信号强度参数集和Qos参数集之间的映射关系。
S800b:手机100检测到用户手动将目标通信系统切换成其它通信系统。
如前述内容可知,手机100切换到目标通信系统之后,目标通信系统的Qos参数取值可能并不如预期。比如,手机100检测目标通信系统的Qos参数取值小于存储的该目标通信系统的Qos参数取值,导致手机100运行业务出现卡顿或时延,这种情况下,用户也可能手动切换到其他通信系统。
手机100可以统计切换到目标通信系统后,用户手动将目标通信系统切换成其它通信系统的次数。若次数较多,说明手机100中存储的目标通信系统的Qos参数取值不准确,手机100可以更新信号强度参数集和Qos参数集之间的映射关系。
S800c:手机100判断用户手动将目标通信系统切换成其它通信系统的次数是否大于预设次数,若是,则执行S801;若否,则执行S800a。
以方式二为例,在S801之前,所述方法的流程还包括:
S800d:手机100确定类信号强度参数集到期。
示例性的,手机100在建立信号强度参数集和Qos参数集之间的映射关系时,可以为该映射关系中每个Qos参数集设置有效期。以表5为例,手机100可以设置Qos参数集1的有效期为24小时。当手机100检测到Qos参数集1的有效期到期时,手机100更新信号强度参数集和Qos参数集之间的映射关系。当然,手机100可以只更新Qos参数集1,也可以更新所有的Qos参数集。
以方式三为例,在S801之前,所述方法的流程还包括:
S800e:手机100检测到用户主动触发更新信号强度参数集和Qos参数集之间的映射关系的操作。
示例性的,手机100中可以设置一开关控件。当该开关控件被触发时,手机100更新信号强度参数集和Qos参数集之间的映射关系。所述开关控件可以是设置于某一个app(比如设置app)中。
需要说明的是,手机100自身通信参数的设置不同,会影响到检测到的Qos参数取值。(比如,手机100检测通信系统的Qos参数时,将手机100的通信参数上报通信系统,通信系统基于这种通信参数向手机100反馈报文,报文用于指示手机100与通信系统之间的链路的Qos参数)。其中,通信参数可以是手机100中的天线(比如图1中的天线2)的配置参数。比如,手机100的天线2是单输入单输出模式(single-input single-output,SISO)还是多输入多输出模式(multiple-input multiple-output,MIMO);或者手机100当前支持的是载波(component carrier,CC)个数。然而,手机100的通信参数的设置决定了手机100的功耗。
在本申请实施例中,手机100确定合适的通信系统后,与该通信系统建立连接。手机100可以在满足当前所需求的Qos参数取值的基础上,尽可能的降低手机100的功耗。
作为一种示例,手机100可以设置多个功耗档位,以及每个档位对应的不同的通信参数配置、功耗开销、Qos参数取值。示例性的,请参见表9,为本申请实施例提供的功耗档位与通信参数之间的映射关系的一种示例。
表9
功耗档位 MIMO配置 CA配置 功耗 Qos参数取值
0 SISO 1CC 1000w 30GB
1 2*2MIMO 1CC 1010w 40GB
2 4*4MIMO 1CC 1020w 50GB
3 SISO 2CC 1030w 80GB
4 2*2MIMO 2CC 1040w 90GB
5 4*4MIMO 2CC 1050w 100GB
举例来说,手机100当前正运行爱艺奇,根据表4确定爱艺奇的Qos需求是80GB。假设手机当前处于位置A,手机根据表1确定与位置A对应的Qos参数集合是Qos参数集合1。手机100确定Qos参数集合1中Qos参数取值大于80GB的通信系统,即AP1。为了尽可能的降低手机100的功耗。手机100可以设置能够保证Qos参数取值为80GB的功耗档位,即档位3即可。此时,手机100将天线配置为SISO模式,且CA配置为2CC。
再例如,手机100根据当前运行的应用程序确定一个通信系统后,手机100可以检测该应用程序是否在后台运行。若该应用程序在后台运行(比如,手机100处于锁屏状态,但后台下载任务在下载),手机100可以采用低功耗档位。若该应用程序在前台运行,手机100采用不低于该应用程序需求的Qos参数取值的最低功耗档位。比如,爱艺奇在后台运行,手机100可以将功耗档位调整为档位1,爱艺奇在前台运行时,手机100可以将功耗档位调整为档位3(爱艺奇的Qos需求是80GB)。
示例性的,表9可以是手机100根据自学习得到的,也可以是用户自定义的,或者设计人员根据经验确定的。表9可以周期性的自动更新;或者在用户主动触发更新时更新。
如前述内容可知,手机100可以更新信号强度参数集和Qos参数集之间的映射关系。为了尽可能的准确的检测各个通信系统的Qos参数取值,手机100可以在更新信号强度参数集和Qos参数集之间的映射关系时,设置为最高或较高档位,以保证Qos参数的检测的准确性。
本申请的各个实施方式可以任意进行组合,以实现不同的技术效果。
上述本申请提供的实施例中,从客户端作为执行主体的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,客户端可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
需要说明的是,本申请实施例提供的通信系统的切换功能(比如图3中的全部步骤或者部分步骤比如仅有S302-S304;或者图5中的全部步骤或者部分步骤比如仅有S502-S504)可以在手机100开机时就一直启动,也可以是用户主动触发时才启动。
作为一种示例,请参见9中的(a)所示,手机100当前在进行视频通话,在视频通话界面中设置一图标901。当图标901被触发时,手机100根据图3或者图5所示的方案(比如,手机100可以执行图2或图5的全部步骤;再比如,手机100在当前时间之前已经获取到地理位置和Qos参数集的对应关系时,可以只执行图3中的S302-S304;或者,手机100在当前时间之前已经获取到信号强度集和Qos参数集的对应关系时,可以只执行图5中的S502-S504),确定符合当前业务需求的Qos取值,手机100切换到该Qos取值对应的通信系统。
可选的,手机100切换到其它通信系统后,可以输出提示,以提示用户已切换到最优的通信系统。比如请继续参见图9中的(b)所示,手机100检测到图标901被触发后,显示提示信息902,提示信息902提示用户已切换到HUAWEI-53C0。
在这种方式中,当用户初次使用锁屏上的图标901时,可以通过提示信息902帮助用户学习该图标901的作用,减轻用户对手机100的学习负担,方便用户操作。
在图9中是以手机100的视频通话界面上设置入口(图标)为例的,实际上,手机100的解锁界面,或者,在其它界面(比如主界面、电影播放界面)中也可以设置一入口。比如手机100显示主界面,该主界面中添加一图标(可以以图标的形式显示,也可以以悬浮球或其它形式显示)。
作为另一种示例,请参见图10,手机100显示电影播放的界面1001,在该界面1001中显示提示信息,即“检测到更优的通信系统,是否断开当前连接,并切换到XX通信系统”,或者“当前网络质量不佳,是否切换到XX网络”等。若用户选择“是”1002,则手机100断开当前连接的通信系统,并切换到更优的通信系统。若用户选择“否”1003,则手机100不切换系统,保持与当前的通信系统连接。
在这种方式中,用户可以自己决定是否切换通信系统。比如,手机100当前连接的是Wifi,手机100播放电影。若该Wifi的接入量较大,导致手机100电影播放出现卡顿,手机100提示用户是否切换到4G。出于节省费用的角度,用户可以选择“否”,即手机100继续与该Wifi连接。
本发明实施例还提供一种终端设备,包括处理器和存储器。其中,存储器用于存储一个或多个计算机程序;当存储器存储的一个或多个计算机程序被处理器执行时,使得终端能够执行图3、图5和图8所示的方法实施例中记载的终端所执行的全部或部分步骤。。
本发明实施例还提供一种计算机存储介质,该存储介质可以包括存储器,该存储器可存储有程序,该程序被执行时,使得终端执行包括如前的执行如前的图3、图5和图8所示的方法实施例中记载的终端所执行的全部或部分步骤。
本发明实施例还提供一种包含计算机程序产品,当所述计算机程序产品在终端上运行 时,使得所述终端执行包括如前的图3、图5和图8所示的方法实施例中记载的终端所执行的全部或部分步骤。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请实施例可以用硬件实现,或固件实现,或它们的组合方式来实现。当使用软件实现时,可以将上述功能存储在计算机可读介质中或作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括RAM、ROM、电可擦可编程只读存储器(electrically erasable programmable read only memory,EEPROM)、只读光盘(compact disc read-Only memory,CD-ROM)或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。此外。任何连接可以适当的成为计算机可读介质。例如,如果软件是使用同轴电缆、光纤光缆、双绞线、数字用户线(digital subscriber line,DSL)或者诸如红外线、无线电和微波之类的无线技术从网站、服务器或者其他远程源传输的,那么同轴电缆、光纤光缆、双绞线、DSL或者诸如红外线、无线和微波之类的无线技术包括在所属介质的定影中。如本申请实施例所使用的,盘(disk)和碟(disc)包括压缩光碟(compact disc,CD)、激光碟、光碟、数字通用光碟(digital video disc,DVD)、软盘和蓝光光碟,其中盘通常磁性的复制数据,而碟则用激光来光学的复制数据。上面的组合也应当包括在计算机可读介质的保护范围之内。
总之,以上所述仅为本申请的实施例而已,并非用于限定本申请的保护范围。凡根据本申请的揭露,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (16)

  1. 一种通信系统的切换方法,其特征在于,所述方法包括:
    终端设备与第一通信系统建立连接;所述终端设备运行第一应用程序;
    所述终端设备获取第二通信系统的Qos取值;
    所述终端设备根据所述第一应用程序的Qos需求,确定所述第二通信系统的Qos取值是否能够满足所述第一应用程序的Qos需求;
    若所述第二通信系统的Qos取值能够满足所述第一应用程序的Qos需求,则所述终端设备断开与所述第一通信系统的连接,建立与所述第二通信系统的连接。
  2. 如权利要求1所述的方法,其特征在于,在所述终端设备根据所述第一应用程序的Qos需求,确定所述第二通信系统的Qos取值是否能够满足所述第一应用程序的Qos需求之前,所述方法还包括:
    所述终端设备确定满足预设条件;其中,所述预设条件包括如下条件中的一个或多个:
    所述第一通信系统的OsS取值不满足所述第一应用程序的需求;
    所述第一通信系统的OsS取值不满足用户需求;
    所述终端设备当前的功耗大于预设功耗。
  3. 如权利要求1或2所述的方法,其特征在于,在所述终端设备根据所述第一应用程序的Qos需求,确定所述第二通信系统的Qos取值是否能够满足所述第一应用程序的Qos需求之前,所述方法还包括:确定所述第二通信系统的Qos取值优于第一通信系统的Qos取值。
  4. 如权利要求3所述的方法,其特征在于,所述第二通信系统的Qos取值优于第一通信系统的Qos取值,包括:
    若所述Qos包括时延和/或丢包率,则所述第二通信系统的Qos取值小于第一通信系统的Qos取值;
    若所述Qos包括吞吐量,则所述第二通信系统的Qos取值大于第一通信系统的Qos取值。
  5. 如权利要求1-4任一所述的方法,其特征在于,在所述终端设备断开与所述第一通信系统的连接之前,所述方法还包括:
    所述终端设备输出第一提示信息,所述第一提示信息用于提示用户是否将当前连接切换成与所述第二通信系统的连接;
    所述终端设备接收用户同意切换的指示。
  6. 如权利要求1-5任一所述的方法,其特征在于,所述终端设备根据所述第一应用程序的Qos需求,确定所述第二通信系统的Qos取值是否能够满足所述第一应用程序的Qos需求,包括:
    所述终端设备判断所述第二通信系统是否满足用户习惯;
    若满足,所述终端设备判断所述第二通信系统的Qos取值是否能够满足所述第一应用程序的Qos需求;
    或者
    所述终端设备判断所述第一应用程序的使用时长是否大于预设时长;
    若是,所述终端设备判断所述第二通信系统的Qos取值是否能够满足所述第一应用程 序的Qos需求。
  7. 如权利要求1-6任一所述的方法,其特征在于,所述终端设备获取第二通信系统的Qos取值,包括:
    所述终端设备获取地理位置和Qos参数集的对应关系,其中,Qos参数集中包括至少一个第二通信系统的Qos取值;
    所述终端设备获取自身当前的地理位置;
    所述终端设备根据所述地理位置与Qos参数集之间的对应关系,确定与所述当前地理位置对应的Qos参数集;
    所述终端设备从确定出的Qos参数集中选择所述第二通信系统的Qos取值。
  8. 如权利要求1-6任一所述的方法,其特征在于,所述终端设备获取第二通信系统的Qos取值,包括:
    所述终端设备获取信号强度集和Qos参数集的对应关系,其中,Qos参数集中包括至少一个第二通信系统的Qos取值;所述信号强度集中包括至少一个第二通信系统的信号强度;且所述Qos参数集中的Qos取值与所述信号强度集中的信号强度一一对应;
    所述终端设备检测所述至少一个第二通信系统的当前的信号强度,得到第一信号强度集;
    所述终端设备根据所述信号强度集和Qos参数集之间的对应关系,确定与所述第一信号强度集对应的Qos参数集;
    所述终端设备从确定出的Qos参数集中选择所述第二通信系统的Qos取值。
  9. 如权利要求1-8任一所述的方法,其特征在于,在所述终端设备与所述第二通信系统建立连接之后,所述方法还包括:
    所述终端设备显示第二提示信息,所述第二提示信息用于提示用户所述终端设备已接入所述第二通信系统。
  10. 如权利要求1-8任一所述的方法,其特征在于,所述终端设备根据所述第一应用程序的Qos需求,确定所述第二通信系统的Qos取值是否能够满足所述第一应用程序的Qos需求,包括:
    响应于用户对预设控件的预设操作,所述终端设备根据所述第一应用程序的Qos需求,判断所述第二通信系统的Qos取值是否能够满足所述第一应用程序的Qos需求。
  11. 如权利要求1-10任一所述的方法,其特征在于,所述终端设备与第二通信系统建立连接之前,所述方法还包括:
    所述终端设备根据功耗档位和Qos取值之间的对应关系,确定Qos取值在所述第一应用程序的Qos需求和所述第二通信系统的Qos取值的区间范围内的至少一个功耗档位;
    所述终端设备与所述第二通信系统建立连接,包括:
    所述终端设备根据所述至少一个功耗档位中的第一功耗档位对应的控制参数控制所述终端设备与所述第二通信系统连接;所述第一功耗档位为所述至少一个功耗档位中功耗最低的档位。
  12. 如权利要求1-10任一所述的方法,其特征在于,所述Qos包含时延、抖动、丢包率、吞吐量中的至少一个。
  13. 如权利要求7或8所述的方法,其特征在于,所述终端设备从确定出的Qos参数集中选择所述第二通信系统的Qos取值包括:所述终端设备确定第二通信系统的Qos取值 为:确定出的Qos参数集中与当前时间最接近的一个Qos参数集。
  14. 一种终端设备,其特征在于,所述终端设备包括:一个或多个处理器和一个或多个存储器;
    其中,所述一个或多个存储器用于存储一个或多个计算机程序;
    当所述一个或多个存储器存储的一个或多个计算机程序被所述一个或多个处理器执行时,使得所述终端设备能够实现如权利要求1至13任一所述的方法。
  15. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括计算机程序,当计算机程序在终端设备上运行时,使得所述终端设备执行如权利要求1至13任一所述的方法。
  16. 一种计算机程序产品,其特征在于,当所述计算机程序产品被计算机执行时,使所述计算机执行如权利要求1~13任一项所述的方法。
PCT/CN2018/112219 2018-10-26 2018-10-26 一种通信系统的切换方法和终端设备 WO2020082373A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18937670.0A EP3843459A4 (en) 2018-10-26 2018-10-26 PROCEDURE FOR COMMUNICATION SYSTEM SWITCHING AND TERMINAL DEVICE
PCT/CN2018/112219 WO2020082373A1 (zh) 2018-10-26 2018-10-26 一种通信系统的切换方法和终端设备
CN201880087012.9A CN111615845B (zh) 2018-10-26 2018-10-26 一种通信系统的切换方法和终端设备
US17/285,636 US20220232445A1 (en) 2018-10-26 2018-10-26 Communications System Switching Method and Terminal Device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/112219 WO2020082373A1 (zh) 2018-10-26 2018-10-26 一种通信系统的切换方法和终端设备

Publications (1)

Publication Number Publication Date
WO2020082373A1 true WO2020082373A1 (zh) 2020-04-30

Family

ID=70331269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/112219 WO2020082373A1 (zh) 2018-10-26 2018-10-26 一种通信系统的切换方法和终端设备

Country Status (4)

Country Link
US (1) US20220232445A1 (zh)
EP (1) EP3843459A4 (zh)
CN (1) CN111615845B (zh)
WO (1) WO2020082373A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022110939A1 (zh) * 2020-11-27 2022-06-02 荣耀终端有限公司 一种设备推荐方法及电子设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11128549B1 (en) * 2020-07-13 2021-09-21 Massachusetts Mutual Life Insurance Company Routing for remote electronic devices
CN112995062B (zh) * 2021-02-07 2023-07-07 中国银联股份有限公司 一种数据传输方法及装置
CN114500367B (zh) * 2021-12-21 2023-10-24 联想(北京)有限公司 一种路径选择方法及电子设备
CN117597980A (zh) * 2022-06-14 2024-02-23 北京小米移动软件有限公司 网络切换方法及装置、存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101080089A (zh) * 2006-05-26 2007-11-28 株式会社日立制作所 移动终端的切换网络的控制方法、移动终端和系统
US20140112251A1 (en) * 2012-10-23 2014-04-24 Lg Electronics Inc. Method and apparatus for retransmitting mtc group message in wireless communication system
WO2017063485A1 (zh) * 2015-10-15 2017-04-20 华为技术有限公司 无线通信接入方法、装置、处理器和无线终端

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE436165T1 (de) * 2005-07-27 2009-07-15 Alcatel Lucent Verfahren zum auslösen eines handovers
KR100734907B1 (ko) * 2006-04-21 2007-07-03 한국정보통신대학교 산학협력단 이동 단말기의 핸드 오버 방법
FI20095966A0 (fi) * 2009-09-18 2009-09-18 Valtion Teknillinen Menetelmä tietoliikenneverkon valitsemiseksi käyttäen hyväksi palvelunlaadun mittauksia
EP3081034B1 (en) * 2013-12-03 2018-09-12 British Telecommunications public limited company Mobile handover
JP6352450B2 (ja) * 2014-03-27 2018-07-04 インテル アイピー コーポレイション 無線通信チャネルを選択する装置、システム及び方法
US9706469B2 (en) * 2014-06-03 2017-07-11 Intel Corporation Radio resource control (RRC) protocol for cell selection and traffic steering for integrated WLAN/3GPP radio access technologies
CN105897810A (zh) * 2015-01-26 2016-08-24 中国移动通信集团广东有限公司 数据发送、分析方法及装置、终端、监测设备及服务器
CN105517082B (zh) * 2015-11-28 2019-04-02 Oppo广东移动通信有限公司 一种通信终端中的网络制式处理方法、装置以及终端
CN105848233A (zh) * 2016-03-24 2016-08-10 广东欧珀移动通信有限公司 一种通信网络的切换方法及装置
US10070321B2 (en) * 2016-06-01 2018-09-04 Qualcomm Incorporated Method and apparatuses for suspending traffic in a frequency band
CN106413017B (zh) * 2016-09-18 2020-05-12 重庆邮电大学 异构网络中面向终端个性化服务的模糊垂直切换方法
CN108391298B (zh) * 2018-05-25 2020-12-25 金华市智甄通信设备有限公司 一种网络自动切换的系统及电子设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101080089A (zh) * 2006-05-26 2007-11-28 株式会社日立制作所 移动终端的切换网络的控制方法、移动终端和系统
US20140112251A1 (en) * 2012-10-23 2014-04-24 Lg Electronics Inc. Method and apparatus for retransmitting mtc group message in wireless communication system
WO2017063485A1 (zh) * 2015-10-15 2017-04-20 华为技术有限公司 无线通信接入方法、装置、处理器和无线终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3843459A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022110939A1 (zh) * 2020-11-27 2022-06-02 荣耀终端有限公司 一种设备推荐方法及电子设备

Also Published As

Publication number Publication date
EP3843459A1 (en) 2021-06-30
EP3843459A4 (en) 2021-09-29
CN111615845A (zh) 2020-09-01
US20220232445A1 (en) 2022-07-21
CN111615845B (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
WO2020082373A1 (zh) 一种通信系统的切换方法和终端设备
US11228970B2 (en) Method for transmitting and receiving signals in proximity network and electronic device thereof
EP3026979B1 (en) Electronic device, method for transmitting information and non-transitory computer-readable recording medium
WO2021037250A1 (zh) 一种无线局域网wlan网络接入方法及装置
CN111837425A (zh) 一种接入方法、接入装置及存储介质
WO2021115007A1 (zh) 一种网络切换方法及电子设备
CN110622123A (zh) 一种显示方法及装置
WO2019210754A1 (zh) 搜网控制方法、装置及移动终端
WO2021000923A1 (zh) 一种路由器配置方法、终端及路由器
KR102444897B1 (ko) 통신 연결을 형성하는 방법 및 장치
WO2020164256A1 (zh) 一种无线信号质量评估方法、电子设备及系统
JP2023509649A (ja) セル選択方法および装置
JP7234379B2 (ja) スマートホームデバイスによってネットワークにアクセスするための方法および関連するデバイス
WO2023065931A1 (zh) 一种电子设备的充电方法及电子设备
WO2021104115A1 (zh) 小区测量的方法、测量装置、终端设备、芯片及存储介质
WO2021027623A1 (zh) 一种设备能力发现方法及p2p设备
WO2021197071A1 (zh) 无线通信系统及方法
US11212767B2 (en) Network registration of terminal, and methods and apparatuses for transmission of network selection parameter
CN111901211A (zh) 控制方法、设备及存储介质
CN111935849A (zh) 信息处理方法、设备及存储介质
CN117768926A (zh) 多设备组网方法、装置、存储介质及电子设备
CN112565508B (zh) 处理方法及移动设备
WO2022135183A1 (zh) 设备控制方法、装置和电子设备
WO2022205254A1 (zh) 一种边缘配置服务器的确定方法及装置
WO2022067544A1 (zh) 一种无线通信方法、终端设备及网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18937670

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018937670

Country of ref document: EP

Effective date: 20210326

NENP Non-entry into the national phase

Ref country code: DE