WO2020082270A1 - 一种成像方法以及成像系统 - Google Patents

一种成像方法以及成像系统 Download PDF

Info

Publication number
WO2020082270A1
WO2020082270A1 PCT/CN2018/111692 CN2018111692W WO2020082270A1 WO 2020082270 A1 WO2020082270 A1 WO 2020082270A1 CN 2018111692 W CN2018111692 W CN 2018111692W WO 2020082270 A1 WO2020082270 A1 WO 2020082270A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
pixel
target
pixel value
photoacoustic
Prior art date
Application number
PCT/CN2018/111692
Other languages
English (en)
French (fr)
Inventor
杨萌
李建初
姜玉新
杨芳
陈志杰
朱磊
Original Assignee
中国医学科学院北京协和医院
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国医学科学院北京协和医院, 深圳迈瑞生物医疗电子股份有限公司 filed Critical 中国医学科学院北京协和医院
Priority to PCT/CN2018/111692 priority Critical patent/WO2020082270A1/zh
Priority to CN201880055953.4A priority patent/CN111432730A/zh
Publication of WO2020082270A1 publication Critical patent/WO2020082270A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves

Definitions

  • This application relates to the field of medical devices, in particular to an imaging method and imaging system.
  • Photoacoustic imaging is a new type of biomedical imaging technology.
  • the principle of PAI is based on the photoacoustic effect.
  • biological tissues are irradiated with short pulses of laser light, for example, on the order of nanoseconds (ns)
  • Substances with strong optical absorption properties, such as blood will cause local heating and thermal expansion after absorbing light energy, thereby generating photoacoustic signals and propagating outward.
  • the photoacoustic signal generated by the biological tissue irradiated by the short pulse laser can be detected by the ultrasonic probe, and the photoacoustic signal is detected, and the corresponding reconstruction algorithm can be used to reconstruct the absorber, that is, the position of the substance with strong optical absorption characteristics And shape.
  • Photoacoustic imaging combines the advantages of optics and ultrasound. It has unique advantages in early diagnosis and prognosis evaluation of some major diseases. It is a new imaging technology with huge clinical and industrial prospects. Limited by the ability of light to penetrate biological tissues, the application of photoacoustic imaging focuses on some shallow organs. Photoacoustic imaging reflects the functional information of organisms, while traditional ultrasound imaging reflects the structural information of organisms, effectively combining the two, that is, photoacoustic-ultrasonic dual-mode imaging overcomes the shortcomings of single-mode imaging. Can provide more comprehensive organizational structure and functional information.
  • photoacoustic-ultrasound dual-modality imaging is displayed in two or more frames.
  • Grayscale images provide tissue structural information for other imaging modalities, play a role in positioning and guiding, and are essential for display.
  • the displayed image may include an ultrasound grayscale image fused with a color Doppler flow image (CDFI), and an ultrasound grayscale image fused with a photoacoustic image. Due to the limitation of the ultrasonic display screen, when two or more images are displayed, the clarity of each image will be reduced. Therefore, how to clearly display the photoacoustic-ultrasound dual-mode imaging has become an urgent problem to be solved.
  • CDFI color Doppler flow image
  • the present application provides an imaging method and imaging system for clearly displaying photoacoustic-ultrasound dual-mode imaging.
  • a first aspect of an embodiment of the present application provides an imaging method, including: transmitting ultrasonic waves to a target tissue, and receiving ultrasonic echoes returned from the target tissue; emitting laser light to the target tissue, and receiving from the target tissue The returned photoacoustic signal; acquiring the grayscale image and color Doppler image of the target tissue according to the ultrasonic echo signal; acquiring the photoacoustic image of the target tissue according to the photoacoustic signal; converting the photoacoustic The image and the color Doppler image are fused with the grayscale image to obtain a fused image of the target tissue.
  • a second aspect of an embodiment of the present application provides an imaging system, including: a laser, a probe, a transmitting circuit, a receiving circuit, and a processor;
  • the laser is used to generate laser light irradiating the target tissue, the laser light is coupled to the probe through an optical fiber bundle, and emits the laser light to the target tissue through the probe.
  • the receiving circuit is used to control the probe to receive the photoacoustic signal returned from the target tissue.
  • the transmitting circuit is also used to control the probe to transmit the ultrasonic wave to the target tissue;
  • the receiving circuit is also used to control the probe to receive the ultrasonic echo signal returned from the target tissue.
  • the processor is used to generate a control signal and send it to the laser to control the laser to generate the laser.
  • the processor is also used to obtain the grayscale image and the color Doppler image of the target tissue according to the ultrasonic echo signal; to obtain the photoacoustic image of the target tissue according to the photoacoustic signal; the photoacoustic image and the color
  • the Pühler image is fused with the grayscale image to obtain a fused image of the target tissue.
  • a third aspect of the embodiments of the present application provides a computer-readable storage medium, in which instructions are stored in a computer-readable storage medium, which when executed on a computer, causes the computer to execute the imaging method provided in the first aspect.
  • ultrasound waves are transmitted to target tissues, and ultrasound echo signals are received to obtain gray-scale images and color Doppler images. It also emits laser light to the target tissue and receives photoacoustic signals to obtain photoacoustic images. Based on the grayscale image, the color Doppler image and the photoacoustic image are superimposed to obtain a fusion image. Therefore, the obtained fusion image can display the content of the grayscale image, the photoacoustic image, and the color Doppler image through only one image. Compared with displaying multiple images on the same ultrasound display screen, the present application can improve the display The sharpness of the image can show the photoacoustic-ultrasound dual-mode imaging more clearly. Improve the operator's observation accuracy of the tissue in the fusion image.
  • FIG. 1 is a schematic structural block diagram of a possible imaging system provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of an application scenario of a possible ultrasound imaging method provided by an embodiment of the present application
  • FIG. 3 is a flowchart of a possible imaging method provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a possible probe provided by an embodiment of the present application.
  • the present application provides an imaging method and imaging system for clearly displaying photoacoustic-ultrasound dual-mode imaging.
  • FIG. 1 is a schematic structural block diagram of an imaging system 10 in an embodiment of the present application.
  • the imaging system 10 may include a transmission circuit 101, a transmission / reception selection switch 102, a reception circuit 103, a processor 105, a display 106, a memory 107, a probe 110, and a laser 120.
  • the imaging system 10 may also include other devices or devices not shown in the figure.
  • the transmitting circuit 101 can excite the probe 110 to transmit ultrasonic waves to the target tissue.
  • the receiving circuit 103 may receive the ultrasonic echo returned from the target tissue through the probe 110, thereby obtaining ultrasonic echo signals / data.
  • the ultrasonic echo signal / data is directly or through a beam synthesis circuit for beam synthesis processing, and then sent to the processor 105.
  • the processor 105 processes the ultrasound echo signal / data to obtain an ultrasound image of the target tissue.
  • the ultrasound image obtained by the processor 105 may be stored in the memory 107.
  • the laser 120 can generate laser light and emit laser light to the target tissue through the probe 110.
  • the receiving circuit 103 can also receive the photoacoustic signal / data returned by the target tissue under the excitation of the laser through the probe 110.
  • the photoacoustic signal / data is sent to the processor 105 directly or after processing, and the processor processes the photoacoustic signal / data to obtain a photoacoustic image of the target tissue.
  • the aforementioned ultrasound image and photoacoustic image may be displayed on the display 106.
  • the laser 120 may be connected to the transmission / reception selection switch 102, and the transmission / reception selection switch 102 controls the emission of laser light, or the laser 120 may be directly connected to the probe 110 through an optical transmission tool.
  • the optical fiber bundle is coupled upward, and the laser beam is transmitted to both sides of the acoustic head of the probe 110 by the optical fiber bundle, and the target tissue is irradiated by back-illumination.
  • the probe 110 may specifically include an ultrasound transducer, and the ultrasound transducer has a function of transmitting and receiving signals, which can ensure gray-scale imaging and Doppler hemorrhage imaging.
  • the aforementioned display 106 of the imaging system may be a touch screen, a liquid crystal display, etc., or an independent display device such as a liquid crystal display, a television, etc., which is independent of the imaging system, or a mobile phone , Tablet computers and other electronic devices, etc.
  • the memory 107 of the aforementioned imaging system may be a flash memory card, a solid-state memory, a hard disk, or the like.
  • a computer-readable storage medium stores a plurality of program instructions. After the plurality of program instructions are called and executed by the processor 105, various implementations of the present application can be performed. Some or all of the steps in the ultrasound imaging method in the example or any combination of the steps therein.
  • the computer-readable storage medium may be the memory 107, which may be a non-volatile storage medium such as a flash memory card, solid state memory, or hard disk.
  • the processor 105 of the aforementioned imaging system may be implemented by software, hardware, firmware, or a combination thereof, and may use circuits, single or multiple application specific integrated circuits (application specific integrated circuits (ASIC), single or Multiple general-purpose integrated circuits, single or multiple microprocessors, single or multiple programmable logic devices, or a combination of the aforementioned circuits or devices, or other suitable circuits or devices, so that the processor 105 can execute the application The corresponding steps of the imaging method in each embodiment.
  • ASIC application specific integrated circuits
  • the imaging method provided in this embodiment of the present application can be applied to the following application scenarios: for example, for specific application scenarios, refer to FIG. 2.
  • the operator scans the probe 110 on the target tissue 201, emits laser light from the probe, and receives the returned photoacoustic signal, emits ultrasonic waves from the probe, and receives ultrasonic echo signals.
  • the operator can see the organization structure and the like through the display 106.
  • an imaging method provided by an embodiment of the present application the imaging method may be applied to the imaging system shown in FIG. 1, the imaging method embodiment includes:
  • the probe 110 transmits ultrasonic waves to the target tissue, receives the ultrasonic echo returned from the target tissue, and converts the ultrasonic echo into an ultrasonic echo signal.
  • the received ultrasound echo signal may also be different.
  • the ultrasonic echo signal can be understood as the aforementioned ultrasonic echo signal / data.
  • the processor 105 may control the transmission / reception selection switch 102 to be turned on, and control the transmission circuit 101 to transmit ultrasonic waves to the target tissue through the probe 110 and receive ultrasonic waves through the probe 110 Wave, and transmitted to the receiving circuit 103, that is, it can be understood that the receiving circuit 103 can receive the ultrasonic echo returned from the target tissue through the probe 110, thereby obtaining an ultrasonic echo signal.
  • the probe 110 may emit laser light to the target tissue, and then receive the photoacoustic signal generated by the target tissue under laser excitation. Depending on the target organization, the received photoacoustic signal may also be different.
  • the laser is coupled to the probe through the fiber bundle, and then the probe 110 emits the laser to the target tissue. After the tissue in the target tissue absorbs the light energy, it will cause temperature rise and thermal expansion, thereby generating a photoacoustic signal to propagate outward, and the corresponding photoacoustic signal is detected by the probe 110.
  • the laser 120 may receive a control signal sent by the processor 105, and the control signal may include the frequency and timing of the generated laser.
  • the laser 120 generates the laser according to the control signal and is coupled to the probe through the fiber bundle 110, and send the laser to the target tissue.
  • the laser 120 may send a feedback signal to the processor 105, and the feedback signal may include the actual sending time of the laser.
  • the processor 105 determines the received photoacoustic signal according to a preset algorithm. The interval is long, and the probe 110 is controlled to receive the photoacoustic signal.
  • the laser and the ultrasound are not sent at the same time.
  • the laser may be sent first, or the ultrasound may be sent first, that is, step 301 or step 302 may be performed first, which can be adjusted according to the actual application scenario. Not limited.
  • the processor 105 can control the transmission / reception selection switch 102 to be turned on, and control the transmission circuit 101 to transmit ultrasonic waves to the target tissue through the probe 110 and receive ultrasonic waves through the probe 110 Wave, and transmitted to the receiving circuit 103, that is, it can be understood that the receiving circuit 103 can receive the ultrasonic echo returned from the target tissue through the probe 110, thereby obtaining an ultrasonic echo signal.
  • an optical fiber bundle is coupled to the ultrasound array probe, and the optical fiber bundle is used to conduct laser light to both sides of the probe 110 to irradiate the target tissue in a back-illuminated manner.
  • the probe 110 includes an ultrasonic transducer.
  • the ultrasonic transducer has the function of transmitting and receiving signals. On the basis of ensuring the traditional ultrasonic image and Doppler blood flow imaging, it also has a large frequency bandwidth and high sensitivity. Improves the ability to detect photoacoustic signals, even weak signals can be detected.
  • the grayscale image and the color Doppler image of the target tissue are obtained according to the ultrasonic echo signal.
  • the noise in the ultrasonic signal may be removed.
  • the ultrasonic echo signal is subjected to beam synthesis processing by a beam synthesis circuit, and then transmitted to the processor 105, and the processor 105 processes the ultrasonic echo signal to obtain an ultrasound image of the target tissue.
  • the ultrasound image is a grayscale image, which can reflect the structural information of the target tissue.
  • the grayscale image and the color Doppler image after the grayscale image and the color Doppler image are obtained, they can be displayed on the display 106 in real time.
  • the order of acquiring the grayscale image and the color Doppler image is not limited, and the grayscale image may be acquired first, or the color Doppler image may be acquired first, depending on the actual application. Scene adjustment is not limited here.
  • the noise in the photoacoustic signal may be removed, and then image reconstruction processing such as beam synthesis processing may be performed to obtain a photoacoustic image of the target tissue.
  • image reconstruction processing such as beam synthesis processing may be performed to obtain a photoacoustic image of the target tissue.
  • the ultrasound image is a grayscale image, which can reflect the structural information of the target tissue in the target tissue, and the photoacoustic image can reflect the functional information of the tissue in the target tissue.
  • the order of acquiring the photoacoustic image and the ultrasound image is not limited.
  • the ultrasound image that is, the grayscale image and the color Doppler image, may obtain the photoacoustic image first or the ultrasound first.
  • the image can be adjusted according to the actual application scenario, which is not limited here.
  • the photoacoustic image and the color Doppler image can be fused into the grayscale image to obtain a fused image of the target tissue.
  • the obtained fusion image can display the content of gray-scale image, photoacoustic image and color Doppler image through only one image.
  • the present application can improve the displayed image Clarity can display the photoacoustic-ultrasound dual-mode imaging more clearly. Improve the operator's observation accuracy of the tissue in the fusion image.
  • the embodiments of the present application can display grayscale images and photoacoustic images simultaneously through one frame of image Compared with the information included in the color Doppler image and the like, at the same resolution of the display, the fusion image provided by the embodiment of the present application can reflect the functional information of the target organization more clearly than displaying multiple frames of images at the same time And structural information to improve the operator's observation accuracy of the tissue in the fusion image.
  • the number of pixels of the photoacoustic image, the number of pixels of the color Doppler image, and the number of pixels of the grayscale image are determined . At least one of the number of pixels of the photoacoustic image, the number of pixels of the color Doppler image, and the number of pixels of the grayscale image is adjusted to a preset number of pixels by interpolation. Among them, the number of pixels of all photoacoustic images or part of photoacoustic images may be adjusted, or the number of pixels of all color Doppler images or part of color Doppler images may be adjusted, or all grayscale images may be adjusted.
  • the pixel number of some grayscale images can be adjusted, which is not specifically limited here.
  • a gray with a preset number of pixels is generated At least one of the first-order image, the color Doppler image, and the photoacoustic image with a preset number of pixels, for example, when generating a color Doppler image and a gray-scale image through an ultrasonic echo signal, a color Doppler with a preset number of pixels
  • a Leo image and a grayscale image are generated with a preset number of pixels.
  • the acquired grayscale image is W B ⁇ H B
  • the color Doppler image has a pixel number W C ⁇ H C
  • the photoacoustic image has a pixel number W PA ⁇ H PA . If it is determined that the number of pixels of the fused image is W F ⁇ H F , then the number of pixels of the photoacoustic image, color Doppler image, and grayscale image can be adjusted to W F ⁇ H F.
  • the photoacoustic image can be a color Doppler image that generates a preset number of pixels for all or part of the color Doppler image, or a grayscale image that generates a preset number of pixels for all or part of the grayscale image, or it can be for all Or part of the photoacoustic image generates a photoacoustic image with a preset number of pixels, which is not specifically limited here.
  • the number of pixels of the photoacoustic image, the color Doppler image, and the grayscale image can be adjusted by interpolation. That is, according to a certain calculation method, a new pixel is generated and inserted into the gap adjacent to the pixel, so as to increase the number of pixels.
  • the specific step of fusing the photoacoustic image and the color Doppler image into the grayscale image may be that the pixel values of each pixel in the photoacoustic image and the color Doppler image are superimposed to the pixels corresponding to the grayscale image in a preset manner Click to get the fused image.
  • the first target pixel is any pixel in the photoacoustic image
  • the second target pixel is the pixel corresponding to the first target pixel in the color Doppler image
  • the third target pixel is a pixel corresponding to the first target pixel in the grayscale image
  • the fourth target pixel is the pixel corresponding to the first target pixel in the fusion image.
  • the first threshold and the second threshold can be determined according to requirements. When the pixel value of the first target pixel is less than the first threshold, and the pixel value of the second target pixel is less than the second threshold, the pixel value of the corresponding third target pixel in the grayscale image is taken as the fourth target pixel Pixel value.
  • the pixel value of the second target pixel is taken as the pixel value of the fourth target pixel.
  • the pixel value of the first target pixel is not less than the first threshold, and the pixel value of the second target pixel is less than the second threshold, the pixel value of the first target pixel is taken as the pixel value of the fourth target pixel.
  • the system may select one of the first target pixel or the second target pixel by default
  • the pixel value of is taken as the pixel value of the fourth target pixel, or the pixel value of one of the first target pixel or the second target pixel selected by the operator as the pixel value of the fourth target pixel.
  • the photoacoustic image can reflect the functional information of the target tissue, for example, the photoacoustic image can display the position and shape of the blood vessel.
  • the pixel value of each pixel can reflect the intensity of the function information. If the pixel value of one of the pixels is lower than the first threshold, it means that the pixel does not reflect the function information.
  • the color Doppler image can reflect the direction and velocity of the blood flow of the target tissue.
  • the pixel value of each pixel in the color Doppler image can reflect the blood flow velocity. If the pixel value of one pixel is lower than the second threshold, the blood flow velocity represented by the pixel is too low, which can be understood as that the pixel has no blood vessel.
  • the intensity of the first target pixel in the photoacoustic image is too low, It may represent that there is no blood vessel at the first target pixel point and no blood flow at the second target pixel point. Therefore, when the first target pixel point and the corresponding second target pixel point have neither blood vessel function nor blood flow velocity, it can be understood that there is no blood vessel or blood flow here. Therefore, the grayscale image
  • the pixel value of the corresponding third target pixel is taken as the pixel value of the corresponding fourth target pixel of the fused image. That is, when one of the pixels has neither blood vessel structure nor blood flow, the pixel value of the corresponding pixel in the fused image can be obtained based on the grayscale image.
  • the pixel value of the first target pixel is less than the first threshold, and the pixel value of the second target pixel is not less than the second threshold, it can be understood that the intensity of the first target pixel in the photoacoustic image is too low, which can represent There is no blood vessel at the first target pixel, and the pixel value of the second target pixel represents the blood flow velocity. Therefore, when the pixel value of the second target pixel is higher than the second threshold, it can reflect the blood flow velocity.
  • the pixel value of the second target pixel can be used as the pixel value of the fourth target pixel.
  • the pixel value of the first target pixel is not less than the first threshold, and the pixel value of the second target pixel is less than the second threshold, it can be understood that the pixel value of the first target pixel reflects a large intensity, which can represent the first There is a blood vessel at one target pixel, and the second target pixel reflects no blood flow velocity. Therefore, the pixel value of the first target pixel can be used as the pixel value of the fourth target pixel.
  • the processor may receive selection information input by the operator, and the selection information may include one of the first target pixel or the second target pixel.
  • the aforementioned pixel value may also be a value that can reflect the amplitude of the target pixel point, such as a gray value or a brightness value.
  • the operator may select a fusion method for fusing the photoacoustic image and the color Doppler image into the grayscale image.
  • the processor receives control information for the photoacoustic image, the color Doppler image, and the gray-scale image.
  • the control information includes fusion weights, that is, the weight values occupied by each image when the fusion image is performed. According to the fusion weight, the ratio of the pixel value of each pixel in the photoacoustic image and the pixel value of each pixel in the color Doppler image in the fusion image can be determined, and the fusion image can be obtained.
  • the operator can set the weight ratio of the pixel value of each pixel in the photoacoustic image to the pixel value of each pixel in the color Doppler image to 1: 1. Then, when the fusion image is fused, each The pixel value of a pixel can be obtained from the average value of the pixel value of each pixel in the photoacoustic image and the pixel value of each pixel in the color Doppler image.
  • the color atlas of the photoacoustic image is different from the color atlas of the color Doppler image. Therefore, the position and shape of the blood vessel displayed in the fused image after fusion, the direction and velocity of blood flow, etc.
  • the information can also be different color atlases, that is, the colors displayed are different.
  • the photo-acoustic image and the color Doppler image can use a color map with a large visual difference to better distinguish the information included in the photo-acoustic image from the information included in the color Doppler image.
  • the embodiments of the present application can clearly distinguish the position and shape of the blood vessel, the blood flow direction and the speed and other information by displaying different colors, so that the operator can more accurately observe the information of the target tissue.
  • the color atlas of the grayscale image is different from the color atlas of the photoacoustic image and the color atlas of the color Doppler image, that is, the color atlas of the grayscale image is different from the color atlas of the photoacoustic image
  • the color atlas of Doppler images are different, so that they can distinguish their respective image features.
  • the color atlas of the grayscale image is a color atlas obtained by pseudo-color.
  • the color atlas of the gray-scale image can be a color atlas obtained after processing in other ways than pseudo-color.
  • the gray-scale image can also be the most original black and white image without pseudo-color processing, which is not specifically limited here.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a division of logical functions.
  • there may be other divisions for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units are integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or software function unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the technical solution of the present application may be essentially or part of the contribution to the existing technology or all or part of the technical solution may be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including several instructions to enable a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in the embodiments of the present application.
  • the foregoing storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disks or optical disks and other media that can store program codes .
  • the target tissue may be the face, spine, heart, uterus, or pelvic floor, or other parts of the human tissue, such as the brain, bones, liver, or kidney. Be limited.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种成像方法以及成像系统(10),用于清楚地显示光声‐超声双模态的成像。成像方法包括:向目标组织(201)发射超声波,并接收从目标组织(201)返回的超声回波,获得超声回波信号(301);向目标组织(201)发射激光,并接收从目标组织(201)返回的光声信号(302);根据超声回波信号获取目标组织(201)的灰阶图像与彩色多普勒图像(303);根据光声信号获取目标组织(201)的光声图像(304);将光声图像和彩色多普勒图像与灰阶图像融合,以得到目标组织(201)的融合图像(305)。

Description

一种成像方法以及成像系统 技术领域
本申请涉及医疗器械领域,尤其涉及一种成像方法以及成像系统。
背景技术
光声成像(Photoacoustic Imaging,PAI)是新型的生物医疗成像技术,PAI的原理是基于光声效应,当生物组织受到短脉冲的激光照射时,例如,纳秒(ns)量级,生物组织中具有强光学吸收特性的物质,例如血液,在吸收光能量后,将引起局部升温和热膨胀,从而产生光声信号,并向外传播。可以通过超声探头检测到受短脉冲的激光照射后的生物组织产生的光声信号,探测到光声信号,利用相应的重建算法,即可重建吸收体,即具有强光学吸收特性的物质的位置和形态。光声成像结合了光学和超声的有点,对一些重大疾病的早期诊断与预后评估有独特的优势,是具有巨大临床和产业前景的新型影像技术。受限于光在生物组织中的穿透能力,光声成像应用重点集中于一些浅层的器官。光声成像体现了生物体的功能信息,而传统的超声成像反应了生物体的结构信息,将二者有效地结合起来,即光声-超声双模态成像克服了单一模态成像的不足,能够提供更全面的组织结构和功能信息。
通常,光声-超声双模态成像都采用双幅或多幅等方式显示,灰阶图像为其他成像模态提供组织的结构信息,起到定位和引导的作用,在显示上是必不可少。例如,显示的图像可以包括一幅超声灰阶图像融合彩色多普勒血流图像(color Doppler flow image,CDFI),一幅超声灰阶图像融合光声图像的结果。而受超声显示屏的限制,当双幅或多幅图像显示时,将降低每幅图像的清晰度。因此,如何清楚地显示光声-超声双模态的成像成为亟待解决的问题。
发明内容
本申请提供一种成像方法以及成像系统,用于清楚地显示光声-超声双模态的成像。
本申请实施例的第一方面提供一种成像方法,包括:向目标组织发射超声波,并接收从所述目标组织返回的超声回波;向所述目标组织发射激光,并接 收从所述目标组织返回的光声信号;根据所述超声回波信号获取所述目标组织的灰阶图像与彩色多普勒图像;根据所述光声信号获取所述目标组织的光声图像;将所述光声图像和所述彩色多普勒图像与所述灰阶图像融合,以得到所述目标组织的融合图像。
本申请实施例的第二方面提供一种成像系统,包括:激光器、探头、发射电路、接收电路以及处理器;
该激光器用于产生照射目标组织的激光,该激光通过光纤束耦合至该探头,并通过该探头向该目标组织发射该激光。
该接收电路用于控制该探头接收从该目标组织返回的光声信号。
该发射电路还用于控制该探头向目标组织发射该超声波;
该接收电路还用于控制该探头接收从该目标组织返回的超声回波信号。
该处理器用于生成控制信号,并发送至该激光器,以控制该激光器产生该激光。
该处理器还用于根据该超声回波信号获取该目标组织的灰阶图像与彩色多普勒图像;根据该光声信号获取该目标组织的光声图像;将该光声图像和该彩色多普勒图像与该灰阶图像融合,以得到该目标组织的融合图像。
本申请实施例的第三方面提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面提供的成像方法。
在本申请中,向目标组织发射超声波,并接收超声回波信号,以得到灰阶图像与彩色多普勒图像。还向目标组织发射激光,并接收光声信号,以得到光声图像。并将以灰阶图像为基础,叠加彩色多普勒图像与光声图像,得到融合图像。因此,得到的融合图像可以仅通过一幅图像即可显示灰阶图像、光声图像与彩色多普勒图像的内容,相对于在同一超声显示屏上显示多幅图像,本申请可以提高显示的图像的清晰度,可以更清楚地显示光声-超声双模态的成像。提高操作人员对融合图像中组织的观察准确性。
附图说明
图1为本申请实施例提供的一种可能的成像系统的结构框图示意图;
图2为本申请实施例提供的一种可能的超声成像方法的应用场景示意图;
图3为本申请实施例提供的一种可能的成像方法的流程图;
图4为本申请实施例提供的一种可能的探头示意图。
具体实施方式
本申请提供一种成像方法以及成像系统,用于清楚地显示光声-超声双模态的成像。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
图1为本申请实施例中的成像系统10的结构框图示意图。该成像系统10可以包括发射电路101、发射/接收选择开关102、接收电路103、处理器105、显示器106、存储器107、探头110以及激光器120。当然,该成像系统10还可以包括其他图中未示出的设备或器件等。
发射电路101可以激励探头110向目标组织发射超声波。在探头110发射超声波后,接收电路103可以通过探头110接收从目标组织返回的超声回波,从而获得超声回波信号/数据。该超声回波信号/数据直接或经过波束合成电路进行波束合成处理后,送入处理器105。处理器105对该超声回波信号/数据进行处理,以获得目标组织的超声图像。处理器105获得的超声图像可以存储于存储器107中。激光器120可以产生激光,并通过探头110向目标组织发射激光。在探头110发射激光后,接收电路103还可以通过探头110接收目标组织在激光的激励下返回的光声信号/数据。该光声信号/数据直接或经过处理后送入处理器105,处理器对该光声信号/数据进行处理,以得到目标组织的光声图像。前述的超声图像与光声图像可以在显示器106上显示。
本申请的一个实施例中,激光器120可以是与发射/接收选择开关102连接,由发射/接收选择开关102控制发射激光,也可以是激光器120直接通过光传导工具连接到探头110,在探头110上耦合光纤束,利用光纤束将激光传导至探头110的声头的两侧,采用背向式打光的方式对目标组织进行照射。
本申请的一个实施例中,探头110上具体可以包括超声换能器,超声换能器具有发射和接收信号的功能,可以保障灰阶成像与多普勒流血成像。
本申请的一个实施例中,前述的成像系统的显示器106可为触摸显示屏、液晶显示屏等,也可以是独立于成像系统之外的液晶显示器、电视机等独立显示设备,也可为手机、平板电脑等电子设备上的显示屏,等等。
本申请的一个实施例中,前述的成像系统的存储器107可为闪存卡、固态存储器、硬盘等。
本申请的一个实施例中,还提供一种计算机可读存储介质,该计算机可读存储介质存储有多条程序指令,该多条程序指令被处理器105调用执行后,可执行本申请各个实施例中的超声成像方法中的部分步骤或全部步骤或其中步骤的任意组合。
本申请的一个实施例中,该计算机可读存储介质可为存储器107,其可以是闪存卡、固态存储器、硬盘等非易失性存储介质。
本申请的一个实施例中,前述的成像系统的处理器105可以通过软件、硬件、固件或者其组合实现,可以使用电路、单个或多个专用集成电路(application specific integrated circuits,ASIC)、单个或多个通用集成电路、单个或多个微处理器、单个或多个可编程逻辑器件、或者前述电路或器件的组合、或者其他适合的电路或器件,从而使得该处理器105可以执行本申请的各个实施例中的成像方法的相应步骤。
下面基于前述的成像系统,对本申请中的成像方法进行详细描述。
需要说明的是,结合图1所示的成像系统的结构框图示意图,本申请实施例提供的成像方法可应用于如下应用场景:示例性地,具体应用场景可以参阅图2。操作人员将探头110在目标组织201进行扫描,从探头发射激光,并接收返回的光声信号,从探头发射超声波,并接收超声回波信号。操作人员可以通过显示器106看到组织结构等。
基于此,请参阅图3,本申请实施例提供的一种成像方法,该成像方法可以应用于前述图1所示的成像系统,该成像方法实施例包括:
301、向目标组织发射超声波,并接收从目标组织返回的超声回波,获得超声回波信号。
通过探头110向目标组织发射超声波,并接收从目标组织返回的超声回波,并将该超声回波转换成超声回波信号。根据目标组织的不同,接收到的超声回波信号也可能不同。超声回波信号可以理解为前述的超声回波信号/数据。
本申请的一个实施例中,如图4所示,具体可以是处理器105控制打开发射/接收选择开关102,并控制发射电路101通过探头110向目标组织发射超声波,并通过探头110接收超声回波,并传送至接收电路103,即可以理解为接收电路103可以通过探头110接收从目标组织返回的超声回波,从而获得超声回波信号。
302、向目标组织发射激光,并接收从目标组织返回的光声信号。
可以通过探头110向目标组织发射激光,然后接收目标组织在激光激励下产生的光声信号。根据目标组织的不同,接收到的光声信号也可能不同。
具体地,激光通过光纤束耦合至探头,然后由探头110向目标组织发射激光。当目标组织中的组织吸收光能量之后,将引起升温和热膨胀,从而产生光声信号向外传播,由探头110检测得到对应的光声信号。
本申请的一个实施例中,激光器120可以接收处理器105发送的控制信号,该控制信号可以包括产生的激光的频率、时序等,激光器120根据该控制信号产生激光,并通过光纤束耦合至探头110,并向目标组织发送该激光。
本申请的一个实施例中,激光器120在产生激光后,可以向处理器105发送反馈信号,该反馈信号中可以包括激光实际的发送时间,处理器105根据预置的算法确定接收光声信号的间隔时长,并控制探头110接收光声信号。
需要说明的是,激光与超声波不同时发送,可以是先发送激光,也可以是先发送超声波,即可以是先执行步骤301,也可以先执行步骤302,具体可以根据实际应用场景调整,此处不作限定。
本申请的一个实施例中,如图5所示,具体可以是处理器105控制打开发射/接收选择开关102,并控制发射电路101通过探头110向目标组织发射超声波, 并通过探头110接收超声回波,并传送至接收电路103,即可以理解为接收电路103可以通过探头110接收从目标组织返回的超声回波,从而获得超声回波信号。
本申请的一个实施例中,在超声阵列探头上耦合光纤束,利用光纤束将激光传导至探头110的两侧采用背向式打光的方式对目标组织进行照射。且探头110中包括超声换能器,超声换能器具有发射和接收信号的功能,在保证了传统的超声图像与多普勒血流成像的基础上,同时具有较大频率带宽以及高灵敏度,提升了对光声信号的检测能力,即使微弱的信号也能检测到。
303、根据超声回波信号获取目标组织的灰阶图像与彩色多普勒图像。
在接收到从目标组织返回的超声回波信号后,根据该超声回波信号获取目标组织的灰阶图像与彩色多普勒图像。
具体地,在接收到超声回波信号后,可以去除超声信号中的噪声。超声回波信号经过波束合成电路进行波束合成处理后,传输至处理器105,处理器105对该超声回波信号进行处理,以获得目标组织的超声图像。通常,超声图像为灰度图像,可以体现目标组织的结构信息。
在本申请的一个实施例中,在得到灰阶图像与彩色多普勒图像后,可以在显示器106中实时显示。
需要说明的是,在本申请实施例中,对获取灰阶图像与彩色多普勒图像的顺序不作限定,可以先获取灰阶图像,也可以先获取彩色多普勒图像,具体可以根据实际应用场景调整,此处不作限定。
304、根据光声信号获取目标组织的光声图像。
在获取光声信号后,也可以是去除光声信号中的噪声,然后可以波束合成处理等图像重建处理,以获得目标组织的光声图像。通常,超声图像为灰度图像,可以体现目标组织内的目标组织的结构信息,光声图像可以体现目标组织内的组织的功能信息。
需要说明的是,在本申请实施例中,对获取光声图像与超声图像的顺序不作限定,超声图像即灰阶图像与彩色多普勒图像,可以先获取光声图像,也可以先获取超声图像,具体可以根据实际应用场景调整,此处不作限定。
305、将光声图像和彩色多普勒图像与灰阶图像融合,以得到目标组织的融合图像。
在得到光声图像、彩色多普勒图像与灰阶图像后,以灰阶图像为基础,将光声图像和彩色多普勒图像融合至灰阶图像中,以得到目标组织的融合图像。
因此,在本申请实施例中,可以将光声图像和彩色多普勒图像融合至灰阶图像中,得到目标组织的融合图像。得到的融合图像可以仅通过一幅图像即可显示灰阶图像、光声图像与彩色多普勒图像的内容,相对于在同一超声显示屏上显示多幅图像,本申请可以提高显示的图像的清晰度,可以更清楚地显示光声-超声双模态的成像。提高操作人员对融合图像中组织的观察准确性。具体地,相对于在同一显示器上同时显示多帧图像,即灰阶图像、光声图像与彩色多普勒图像等,本申请实施例可以通过一帧图像,同时显示灰阶图像、光声图像与彩色多普勒图像等所包括的信息,在相同的显示器的分辨率的情况下,本申请实施例提供的融合图像,相对于同时显示多帧图像,可以更清晰地反映目标组织的功能信息与结构信息,提高操作人员对融合图像中组织的观察准确性。
在本申请的一个实施例中,在将光声图像和彩色多普勒图像融合至灰阶图像之前,确定光声图像的像素数、彩色多普勒图像的像素数与灰阶图像的像素数,将光声图像的像素数、彩色多普勒图像的像素数与灰阶图像的像素数中的至少一个通过插值的方式调整至预设像素数。其中,可以针对全部光声图像或者部分光声图像的像素数进行调整,也可以是针对全部彩色多普勒图像或者部分彩色多普勒图像的像素数进行调整,还可以是针对全部灰阶图像或者部分灰阶图像的像素数进行调整,此处不做具体限定。或者根据所述超声回波信号获取所述目标组织的灰阶图像与彩色多普勒图像时,在根据所述光声信号获取所述目标组织的光声图像时,生成预设像素数的灰阶图像与彩色多普勒图像以及预设像素数的光声图像中的至少一个,例如在通过超声回波信号生成彩色多普勒图像与灰阶图像时,生成预设像素数的彩色多普勒图像与灰阶图像,在通过光声信号生成光声图像时,生成预设像素数的光声图像。例如,若获取的灰阶图像分别率为W B×H B,彩色多普勒图像的像素数为W C×H C,光声图像的像素数为W PA×H PA。若确定融合图像的像素数为W F×H F,那么可以将光声图像、彩 色多普勒图像与灰阶图像的像素数都调整为W F×H F。当然,可以是针对全部或者部分彩色多普勒图像生成预设像素数的彩色多普勒图像,也可以是针对全部或者部分灰阶图像生成预设像素数的灰阶图像,也可以是针对全部或者部分光声图像生成预设像素数的光声图像,此处不做具体限定。具体地,可以将光声图像、彩色多普勒图像与灰阶图像的像素数通过插值法调整。即依照一定的运算方式进行计算,产生出新的像素点,并将其插入到像素邻近的空隙处,从而实现增大像素数的目的。
将光声图像和彩色多普勒图像融合至灰阶图像具体步骤可以是,将光声图像与彩色多普勒图像中每个像素点的像素值按照预置方式叠加至灰阶图像对应的像素点中,以得到该融合图像。
更进一步地,在本申请的一个实施例中,第一目标像素点是光声图像中任一像素点,第二目标像素点是彩色多普勒图像中与该第一目标像素点对应的像素点,第三目标像素点是灰阶图像中与第一目标像素点对应的像素点,第四目标像素点是融合图像中与第一目标像素点对应的像素点。可以根据需求确定第一阈值与第二阈值。当第一目标像素点的像素值小于第一阈值,且第二目标像素点的像素值小于第二阈值时,将灰阶图像中对应的第三目标像素点的像素值作为第四目标像素点的像素值。当第一目标像素点的像素值小于第一阈值,且第二目标像素点的像素值不小于第二阈值,则将第二目标像素点的像素值作为第四目标像素点的像素值。当第一目标像素点的像素值不小于第一阈值,且第二目标像素点的像素值小于第二阈值时,将第一目标像素点的像素值作为第四目标像素点的像素值。当第一目标像素点的像素值不小于第一阈值,且第二目标像素点的像素值不小于第二阈值时,则可以系统默认选择第一目标像素点或第二目标像素点其中之一的像素值作为第四目标像素点的像素值,也可以是由操作人员选择以第一目标像素点或第二目标像素点中的其中一个的像素值作为第四目标像素点的像素值。
通常,光声图像可以反映目标组织的功能信息,例如,光声图像可以显示血管的位置与形态。每个像素点的像素值可以反映功能信息的强度。若其中一个像素点的像素值低于第一阈值,则代表该像素点并不能反映功能信息。彩色多普勒图像可以反映目标组织的血流的方向以及流速。彩色多普勒图像中的每 个像素点的像素值可以反映血流速度。若其中一个像素点的像素值低于第二阈值,则该像素点代表的血流速度过低,可以理解为该像素点并无血管。
因此,可以理解为,当第一目标像素点的像素值小于第一阈值,且第二目标像素点的像素值小于第二阈值时,光声图像中的第一目标像素点的强度过低,可以代表该第一目标像素点处并无血管,第二目标像素点并无血流。因此,当第一目标像素点与对应的第二目标像素点出既无血管功能,也无血流速度,可以理解为此处并无血管,也无血流,因此,可以以灰阶图像中对应的第三目标像素点的像素值作为融合图像的对应的第四目标像素点的像素值。即当其中一个像素点既无血管结构,也无血流时,可以以灰阶图像为基础得到融合图像中对应的像素点的像素值。
当第一目标像素点的像素值小于第一阈值,且第二目标像素点的像素值不小于第二阈值,则可以理解为光声图像中的第一目标像素点的强度过低,可以代表该第一目标像素点处并无血管,而第二目标像素点的像素值代表血流速度,因此,第二目标像素点的像素值高于第二阈值时,可以反映血流速度,此时可以以第二目标像素点的像素值作为第四目标像素点的像素值。
当第一目标像素点的像素值不小于第一阈值,且第二目标像素点的像素值小于第二阈值时,可以理解为第一目标像素点的像素值反映的强度大,可以代表该第一目标像素点处有血管,第二目标像素点的反映并无血流速度,因此,可以以第一目标像素点的像素值作为第四目标像素点的像素值。
当第一目标像素点的像素值不小于第一阈值,且第二目标像素点的像素值不小于第二阈值时,可以理解为第一目标像素点的像素值反映的强度大,第一目标像素点处有血管,且第二目标像素点的像素值反映有血流速度,因此,可以以第一目标像素点或第二目标像素点中任一个像素点的像素值作为第四目标像素点的像素值,或由操作人员选择第一目标像素点或第二目标像素点中的其中一个像素点的像素值作为第四目标像素点的像素值。具体可以是处理器接收操作人员输入的选择信息,该选择信息中可以包括第一目标像素点或第二目标像素点中的其中一个。
需要说明是,前述的像素值还可以是灰度值、亮度值等可以反映目标像素点的幅值的值。
此外,在本申请的一个实施例中,可以是由操作人员选择对光声图像和彩色多普勒图像融合至灰阶图像中融合方式。处理器接收对光声图像,彩色多普勒图像以及灰阶图像的控制信息,该控制信息中包括融合权重,即在进行融合图像时,各个图像所占的权重值。根据该融合权重,可以确定光声图像中每个像素点的像素值与彩色多普勒图像中每个像素点的像素值在融合图像中所占的比例,并得到该融合图像。例如,操作人员可以设置光声图像中每个像素点的像素值与彩色多普勒图像中每个像素点的像素值的权重比为1:1,那么,在融合得到融合图像时,每个像素点的像素值可以由光声图像中每个像素点的像素值与彩色多普勒图像中每个像素点的像素值的平均值得到。
在本申请的一个实施例中,光声图像的彩色图谱与彩色多普勒图像的彩色图谱不相同,因此,融合后的融合图像所显示的血管的位置与形态,与血流方向与速度等信息,也可以是不同的彩色图谱,即显示的色彩不同。通常,光声图像与彩色多普勒图像可以采用视觉上相差较大的彩色图谱,以更好地区分光声图像所包括的信息与彩色多普勒图像所包括的信息。因此,本申请实施例可以通过显示不同的色彩对血管的位置与形态,与血流方向与速度等信息进行明显的区分,使操作人员可以更准确地观察目标组织的信息。在一些可能的实现方式中,灰阶图像的彩色图谱与光声图像的彩色图谱以及彩色多普勒图像的彩色图谱不相同,即该灰阶图像的彩色图谱与光声图像的彩色图谱以及彩色多普勒图像的彩色图谱均不相同,这样更能区别各自的图像特征。其中,灰阶图像的彩色图谱是通过伪彩后得到的彩色图谱。当然,灰阶图像的彩色图谱是可以是伪彩以外的其他方式处理后得到的彩色图谱,该灰阶图像也可以是最原始的黑白图像,没有经过伪彩处理,此处不做具体限定。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
需要说明的是,实际应用中,该目标组织可以为面部、脊柱、心脏、子宫或者盆底等,也可以是人体组织的其他部位,如脑部、骨骼、肝脏或者肾脏等,具体此处不做限定。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (14)

  1. 一种成像方法,其特征在于,包括:
    向目标组织发射超声波,并接收从所述目标组织返回的超声回波,获得超声回波信号;
    向所述目标组织发射激光,并接收从所述目标组织返回的光声信号;
    根据所述超声回波信号获取所述目标组织的灰阶图像与彩色多普勒图像;
    根据所述光声信号获取所述目标组织的光声图像;
    将所述光声图像和所述彩色多普勒图像与所述灰阶图像融合,以得到所述目标组织的融合图像。
  2. 根据权利要求1所述的方法,其特征在于,所述将所述光声图像和所述彩色多普勒图像与所述灰阶图像融合,以得到所述目标组织的融合图像之前,所述方法还包括:
    确定所述光声图像的像素数、所述彩色多普勒图像的像素数与所述灰阶图像的像素数;将所述光声图像的像素数、所述彩色多普勒图像的像素数与所述灰阶图像的像素数中的至少一个通过插值的方式调整至预设像素数;
    或者,在根据所述超声回波信号获取所述目标组织的灰阶图像与彩色多普勒图像时,在根据所述光声信号获取所述目标组织的光声图像时,生成预设像素数的灰阶图像与彩色多普勒图像以及预设像素数的光声图像中的至少一个。
  3. 根据权利要求1或2所述的方法,其特征在于,所述将所述光声图像和所述彩色多普勒图像与所述灰阶图像融合,以得到所述目标组织的融合图像,包括:
    将所述光声图像与所述彩色多普勒图像中每个像素点的像素值按照预置方式叠加至所述灰阶图像的对应像素点中,以得到所述融合图像。
  4. 根据权利要求3所述的方法,其特征在于,所述将所述光声图像与所述彩色多普勒图像中每个像素点的像素值按照预置方式叠加至所述灰阶图像的对应像素点中,以得到所述融合图像,包括:
    当所述光声图像中的第一目标像素点的像素值小于第一阈值,且所述彩色多普勒图像中与所述第一目标像素点对应的第二目标像素点的像素值小于第二阈值时,则将所述灰阶图像中对应的第三目标像素点的像素值,作为所述融 合图像中对应的第四目标像素点的像素值,所述第一目标像素点为所述光声图像中任一像素点;
    或,
    当第一目标像素点的像素值小于所述第一阈值,且所述第二目标像素点的像素值不小于所述第二阈值时,将所述第二目标像素点的像素值作为所述第四目标像素点的像素值,所述第一目标像素点为所述光声图像中任一像素点;
    或,
    当第一目标像素点的像素值不小于所述第一阈值,且所述第二目标像素点的像素值小于所述第二阈值时,将所述第一目标像素点的像素值作为所述第四目标像素点的像素值,所述第一目标像素点为所述光声图像中任一像素点;
    或,
    当第一目标像素点的像素值不小于所述第一阈值,且所述第二目标像素点的像素值不小于所述第二阈值时,则将所述第二目标像素点的像素值作为所述第四目标像素点的像素值或将所述第一目标像素点的像素值作为所述第四目标像素点的像素值,或将按照系统预置权重将对所述第一目标像素点的像素值与所述第二目标像素点的像素值进行计算,得到目标像素值,并将所述目标像素值作为所述第四目标像素点的像素值,所述第一目标像素点为所述光声图像中任一像素点。
  5. 根据权利要求3所述的方法,其特征在于,所述将所述光声图像与所述彩色多普勒图像中每个像素点的像素值按照预置方式叠加至所述灰阶图像的对应像素点中,以得到所述融合图像,包括:
    接收对所述光声图像,所述彩色多普勒图像以及所述灰阶图像的控制信息,所述控制信息中包括融合权重;
    根据所述融合权重以及所述光声图像中每个像素点的像素值与所述彩色多普勒图像中每个像素点的像素值计算所述融合图像中每个像素点的像素值,以得到所述融合图像。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于,所述光声图像的彩色图谱与所述彩色多普勒图像的彩色图谱不相同。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,所述灰阶图像 的彩色图谱与所述光声图像的彩色图谱以及所述彩色多普勒图像的彩色图谱不相同,其中,所述灰阶图像的彩色图谱是通过伪彩后得到的彩色图谱。
  8. 一种成像系统,其特征在于,包括:激光器、探头、发射电路、接收电路以及处理器;
    所述激光器用于产生照射目标组织的激光,所述激光通过光纤束耦合至所述探头,并通过所述探头向所述目标组织发射所述激光;
    所述接收电路用于控制所述探头接收从所述目标组织返回的光声信号;
    所述发射电路还用于控制所述探头向目标组织发射所述超声波;
    所述接收电路还用于控制所述探头接收从所述目标组织返回的超声回波,获得超声回波信号;
    所述处理器用于生成控制信号,并发送至所述激光器,以控制所述激光器产生所述激光;
    所述处理器还用于根据所述超声回波信号获取所述目标组织的灰阶图像与彩色多普勒图像;根据所述光声信号获取所述目标组织的光声图像;将所述光声图像和所述彩色多普勒图像与所述灰阶图像融合,以得到所述目标组织的融合图像。
  9. 根据权利要求8所述的成像系统,其特征在于,所述处理器还用于确定所述光声图像的像素数、所述彩色多普勒图像的像素数与所述灰阶图像的像素数;将所述光声图像的像素数、所述彩色多普勒图像的像素数与所述灰阶图像的像素数中的至少一个通过插值的方式调整至预设像素数;
    或者,所述处理器还用于在根据所述超声回波信号获取所述目标组织的灰阶图像与彩色多普勒图像时,在根据所述光声信号获取所述目标组织的光声图像时,生成预设像素数的灰阶图像与彩色多普勒图像以及预设像素数的光声图像中的至少一个。
  10. 根据权利要求8或9所述的成像系统,其特征在于,
    所述处理器,具体用于将所述光声图像与所述彩色多普勒图像中每个像素点的像素值按照预置方式叠加至所述灰阶图像的对应像素点中,以得到所述融合图像。
  11. 根据权利要求10所述的成像系统,其特征在于,所述处理器,具体 用于:
    当所述光声图像中的第一目标像素点的像素值小于第一阈值,且所述彩色多普勒图像中与所述第一目标像素点对应的第二目标像素点的像素值小于第二阈值时,则将所述灰阶图像中对应的第三目标像素点的像素值,作为所述融合图像中对应的第四目标像素点的像素值,所述第一目标像素点为所述光声图像中任一像素点;
    或,
    当第一目标像素点的像素值小于所述第一阈值,且所述第二目标像素点的像素值不小于所述第二阈值时,将所述第二目标像素点的像素值作为所述第四目标像素点的像素值,所述第一目标像素点为所述光声图像中任一像素点;
    或,
    当第一目标像素点的像素值不小于所述第一阈值,且所述第二目标像素点的像素值小于所述第二阈值时,将所述第一目标像素点的像素值作为所述第四目标像素点的像素值,所述第一目标像素点为所述光声图像中任一像素点;
    或,
    当第一目标像素点的像素值不小于所述第一阈值,且所述第二目标像素点的像素值不小于所述第二阈值时,则将所述第二目标像素点的像素值作为所述第四目标像素点的像素值或将所述第一目标像素点的像素值作为所述第四目标像素点的像素值,或将按照系统预置权重将对所述第一目标像素点的像素值与所述第二目标像素点的像素值进行计算,得到目标像素值,并将所述目标像素值作为所述第四目标像素点的像素值,所述第一目标像素点为所述光声图像中任一像素点。
  12. 根据权利要求10所述的成像系统,其特征在于,所述处理器,具体用于:
    接收对所述光声图像,所述彩色多普勒图像以及所述灰阶图像的控制信息,所述控制信息中包括融合权重;
    根据所述融合权重以及所述光声图像中每个像素点的像素值与所述彩色多普勒图像中每个像素点的像素值计算所述融合图像中每个像素点的像素值,以得到所述融合图像。
  13. 根据权利要求8-12所述的成像系统,其特征在于,所述光声图像的彩色图谱与所述彩色多普勒图像的彩色图谱不相同。
  14. 根据权利要求8-13所述的成像系统,其特征在于,所述灰阶图像的彩色图谱与所述光声图像的彩色图谱以及所述彩色多普勒图像的彩色图谱不相同,其中,所述灰阶图像的彩色图谱是通过伪彩后得到的彩色图谱。
PCT/CN2018/111692 2018-10-24 2018-10-24 一种成像方法以及成像系统 WO2020082270A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/111692 WO2020082270A1 (zh) 2018-10-24 2018-10-24 一种成像方法以及成像系统
CN201880055953.4A CN111432730A (zh) 2018-10-24 2018-10-24 一种成像方法以及成像系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/111692 WO2020082270A1 (zh) 2018-10-24 2018-10-24 一种成像方法以及成像系统

Publications (1)

Publication Number Publication Date
WO2020082270A1 true WO2020082270A1 (zh) 2020-04-30

Family

ID=70330838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/111692 WO2020082270A1 (zh) 2018-10-24 2018-10-24 一种成像方法以及成像系统

Country Status (2)

Country Link
CN (1) CN111432730A (zh)
WO (1) WO2020082270A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112741651B (zh) * 2020-12-25 2022-11-25 上海交通大学烟台信息技术研究院 一种内窥镜超声影像的处理方法及系统
CN113367660B (zh) * 2021-06-09 2022-11-25 东北大学秦皇岛分校 一种光声多普勒流速测量装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101563035A (zh) * 2006-12-19 2009-10-21 皇家飞利浦电子股份有限公司 组合光声和超声成像系统
CN102240213A (zh) * 2010-05-12 2011-11-16 国立清华大学 钙化点成像方法及系统
CN104771136A (zh) * 2014-01-14 2015-07-15 三星麦迪森株式会社 光声设备和操作所述光声设备的方法
CN105832299A (zh) * 2012-12-28 2016-08-10 佳能株式会社 被检体信息获取装置和被检体信息获取方法
CN107223035A (zh) * 2017-01-23 2017-09-29 深圳迈瑞生物医疗电子股份有限公司 一种成像系统、方法及超声成像系统
WO2018008439A1 (en) * 2016-07-08 2018-01-11 Canon Kabushiki Kaisha Apparatus, method and program for displaying ultrasound image and photoacoustic image

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5719242B2 (ja) * 2011-06-27 2015-05-13 富士フイルム株式会社 ドプラ画像表示方法および装置
JP6482686B2 (ja) * 2016-02-05 2019-03-13 富士フイルム株式会社 光音響画像生成システム、装置、及び方法
WO2017145988A1 (ja) * 2016-02-22 2017-08-31 富士フイルム株式会社 音響波画像の表示装置および表示方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101563035A (zh) * 2006-12-19 2009-10-21 皇家飞利浦电子股份有限公司 组合光声和超声成像系统
CN102240213A (zh) * 2010-05-12 2011-11-16 国立清华大学 钙化点成像方法及系统
CN105832299A (zh) * 2012-12-28 2016-08-10 佳能株式会社 被检体信息获取装置和被检体信息获取方法
CN104771136A (zh) * 2014-01-14 2015-07-15 三星麦迪森株式会社 光声设备和操作所述光声设备的方法
WO2018008439A1 (en) * 2016-07-08 2018-01-11 Canon Kabushiki Kaisha Apparatus, method and program for displaying ultrasound image and photoacoustic image
CN107223035A (zh) * 2017-01-23 2017-09-29 深圳迈瑞生物医疗电子股份有限公司 一种成像系统、方法及超声成像系统

Also Published As

Publication number Publication date
CN111432730A (zh) 2020-07-17

Similar Documents

Publication Publication Date Title
US10631830B2 (en) Combined photoacoustic and ultrasound imaging system
CN108882914B (zh) 超声造影成像方法及超声成像系统
KR101860190B1 (ko) 초음파 진단 장치 및 그 제어 프로그램
FR3003154A1 (fr) Estimation de la fraction de matieres grasses en utilisant des ultrasons partir d'une propagation d'onde de cisaillement
JP2007007402A (ja) カラーフロー映像をディスプレイする方法及び超音波診断システム
JP2010051798A (ja) 適応的カラードップラーモード遂行方法及びそのための超音波診断システム
WO2020113397A1 (zh) 一种超声成像方法以及超声成像系统
JP2004202229A (ja) 造影剤時間強度曲線分析のための方法及び装置
WO2020082270A1 (zh) 一种成像方法以及成像系统
KR102524068B1 (ko) 초음파 진단 장치, 초음파 프로브 및 그 제어 방법
WO2020082269A1 (zh) 一种成像方法以及成像系统
JP2023506861A (ja) 胎盤を評価するためのシステム及び方法
US20200113437A1 (en) Systems and methods for multi-modality imaging
JP5489178B2 (ja) 超音波診断装置
US9591970B2 (en) Method, apparatus, and system for generating diagnostic image using photoacoustic material
WO2020082265A1 (zh) 一种成像方法以及成像系统
CN112638270B (zh) 一种多工模式下的超声成像方法和超声成像系统
JP5871913B2 (ja) カラー再構成映像を提供する超音波システムおよび方法
JP2011101729A (ja) 超音波診断装置
US11965960B2 (en) Ultrasound imaging apparatus and control method thereof
JP3712510B2 (ja) 超音波診断装置
JP5485418B2 (ja) 超音波診断装置
JP2013244138A (ja) 超音波診断装置および音速表示方法
KR20080044393A (ko) 초음파 영상을 형성하는 초음파 시스템
US20160278741A1 (en) Apparatus and method of measuring elasticity using ultrasound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18938151

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18938151

Country of ref document: EP

Kind code of ref document: A1