WO2020080516A1 - Apparatus for analyzing change in physical property near solid-liquid interface and method for analyzing change in physical property near solid-liquid interface - Google Patents

Apparatus for analyzing change in physical property near solid-liquid interface and method for analyzing change in physical property near solid-liquid interface Download PDF

Info

Publication number
WO2020080516A1
WO2020080516A1 PCT/JP2019/041072 JP2019041072W WO2020080516A1 WO 2020080516 A1 WO2020080516 A1 WO 2020080516A1 JP 2019041072 W JP2019041072 W JP 2019041072W WO 2020080516 A1 WO2020080516 A1 WO 2020080516A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
liquid interface
motion state
liquid
physical property
Prior art date
Application number
PCT/JP2019/041072
Other languages
French (fr)
Japanese (ja)
Inventor
晃宜 橘田
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to JP2020553335A priority Critical patent/JP7432241B2/en
Publication of WO2020080516A1 publication Critical patent/WO2020080516A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N13/00Investigating surface or boundary effects, e.g. wetting power; Investigating diffusion effects; Analysing materials by determining surface, boundary, or diffusion effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q30/00Auxiliary means serving to assist or improve the scanning probe techniques or apparatus, e.g. display or data processing devices
    • G01Q30/08Means for establishing or regulating a desired environmental condition within a sample chamber
    • G01Q30/12Fluid environment
    • G01Q30/14Liquid environment

Definitions

  • the present invention relates to a technique for analyzing changes in physical properties that occur near the solid-liquid interface. More specifically, the present invention relates to a physical property change analyzer near a solid-liquid interface and a method for analyzing a physical property change near a solid-liquid interface.
  • the state of the electrolytic solution is greatly affected by device operation and device performance.
  • the substance concentration method of the electrolytic solution general-purpose methods such as a solution titration method, a precipitation method, an ion chromatography method, an electrochemical measurement method, and an absorption spectroscopy method have been established. It is assumed to be homogeneous.
  • a scanning method using an atomic force microscope is known as a method for analyzing an interface (solid-liquid interface) between a solid and a liquid.
  • an atomic force microscope moves a small leaf spring called a cantilever up and down to move inside a solid-liquid interface, and traces the surface of the solid with the cantilever to image the unevenness information. It is a thing.
  • Non-patent document 1 In recent years, not only imaging using solid-state surface roughness information using an atomic force microscope, but also a method of quantifying material properties at the solid-liquid interface and mapping the quantitative information to the solid surface for imaging are also known. (Non-patent document 1).
  • the physical properties of the liquid near the interface between the solid and the liquid change due to the chemical reaction between the solid and the liquid.
  • concentration of the electrolytic solution in the vicinity of the electrodes changes extremely locally due to an electrochemical reaction.
  • Such an electrochemical interface is an important place to support the operation of various electrochemical devices such as batteries, capacitors and biosensors, and the chemical reaction processes of materials such as electrolytic refining, plating and catalytic reaction. ing.
  • understanding such local changes over time that is, operand measurement, which directly measures the production environment of the debass or the reaction environment of the material, enables a correct understanding of the device operation or the material reaction process. , Is important in improving its performance and / or efficiency.
  • the conventional electrolyte concentration measurement methods are based on the assumption that the entire electrolyte is homogeneous, so it is not possible to measure locally different substance concentrations in the vicinity of the electrochemical interface.
  • the atomic force microscope is a device specially configured for imaging, , It is not configured to measure local concentration changes in the vicinity of the electrochemical interface over time.
  • the image to be obtained with the atomic force microscope is a two-dimensional collection of information mapped for each coordinate. That is, basically only one kind of information is recorded in one coordinate (rest position) in the atomic force microscope. For this reason, since it is not assumed that different states are measured with time in one coordinate, the atomic force microscope does not have such a function specialized for measuring different states with time. .
  • the configuration of the atomic force microscope is schematically shown in Fig. 7. Since the atomic force microscope is based on a design concept specialized for imaging, it is fundamental and indispensable to control the motion state of the cantilever in the process of two-dimensional scanning. Therefore, for example, in the scan mode in which surface irregularities are recorded and imaged, feedback control is always performed so that the motion state of the cantilever is stable and constant with respect to variations in the height direction (for example, feedback in FIG. Control unit). In the scan mode (force curve mapping), which acquires the physical property information of the surface in two dimensions and images it, two-dimensional imaging is performed based on changes in the motion state of the cantilever.
  • the scan mode force curve mapping
  • the motion state is controlled to a certain degree so that the motion state (motion state at the stationary position where the two-dimensional scanning is stopped) becomes constant (motion state correction unit in FIG. 7). That is, the difference in the surface physical properties at each x, y coordinate point of the two-dimensional mapping is recorded by the deviation between the motion state measured at each coordinate value and the motion state at the basic stationary position, so at the basic stationary position. Automatic correction needs to be performed so that the motion state is always constant.
  • an object of the present invention is to provide an apparatus and method capable of analyzing a change in physical properties of a liquid in the vicinity of a solid-liquid interface over time.
  • the present inventor has arranged a vibrator in the vicinity of a solid-liquid interface to vibrate it, while controlling liquid physical properties in the vicinity of the solid-liquid interface, and at the same time provides control information on the liquid physical properties and the motion state of the vibrator. It was found that the change in physical properties of the liquid near the solid-liquid interface can be analyzed over time by recording in time series. The present invention has been completed by further studies based on this finding.
  • Item 1 A vibrator A arranged in a liquid forming a solid-liquid interface, An excitation unit B for vibrating the vibrator, A physical property control unit C for controlling the physical properties of the liquid in the vicinity of the solid-liquid interface, A motion state analysis unit D that analyzes the motion state of the oscillator A; A time-series recording unit E that records the control information by the physical property control unit C and the motion state obtained by the motion state analysis unit in time series, An apparatus for analyzing changes in physical properties near the solid-liquid interface, including Item 2.
  • the time series recording unit E further records displacement information of the vibrator A and / or vibration direction position information of the vibrator in time series, Item 2.
  • the physical property change analysis apparatus analyzes the motion state from the displacement information and / or the vibration direction position information.
  • Item 3. It further includes a physical property deriving unit F that derives physical properties from the motion state obtained by the motion state analysis unit D, and an output unit G that outputs a temporal change of the control information in association with the temporal change of the physical property.
  • Item 1. The physical property change analysis device according to item 1 or 2.
  • Item 4. 4.
  • the physical property change analysis apparatus according to any one of Items 1 to 3, wherein the vibrator A is a cantilever having no probe at its free end.
  • Item 5. Item 5.
  • the physical property change analyzer near the solid-liquid interface according to any one of Items 1 to 4, wherein the vibrator A does not have a through hole penetrating in the vibration direction.
  • Item 6. Item 6.
  • the physical property change analysis apparatus in the vicinity of the solid-liquid interface according to any one of Items 1 to 5, further comprising a cell containing the solid-liquid interface.
  • Item 7. Item 7.
  • An exciting step of vibrating a vibrator arranged in a liquid forming a solid-liquid interface A physical property control step of controlling the liquid physical properties in the vicinity of the solid-liquid interface, A motion state analysis step of analyzing the motion state of the oscillator; A time-series recording step of obtaining control information in the physical property control step and the motion state obtained in the motion state analysis step in a state recorded in time series, A method for analyzing changes in physical properties near the solid-liquid interface, including.
  • Item 9 Further comprising a preliminary information time series recording step of recording displacement information of the vibrator and / or vibration direction position information of the vibrator in time series, 9.
  • the change of physical properties in the vicinity of the solid-liquid interface according to item 8 is analyzed, in which the motion state is analyzed from the displacement information and / or the vibration direction position information recorded in the preliminary information time series recording step. How to parse.
  • Item 10. The method for analyzing a change in physical properties in the vicinity of a solid-liquid interface according to Item 8 or 9, wherein the motion state is obtained as an energy dissipation value or a resonance angular frequency in the motion information analysis step.
  • Item 11. Item 11. The method for analyzing a change in physical properties in the vicinity of a solid-liquid interface according to any one of Items 8 to 10, wherein the oscillator is vibrated with a triangular wave.
  • the method for analyzing physical property change in the vicinity of a solid-liquid interface according to any one of Items 8 to 11, wherein the solid-liquid interface is an electrochemical interface, and the control information is current and voltage information.
  • Item 13 In order to analyze the physical properties near the solid-liquid interface, the computer A procedure for analyzing the motion state of an oscillator arranged in a liquid that forms a solid-liquid interface, A procedure for recording the motion state and control information relating to control of liquid physical properties in the vicinity of the solid-liquid interface in time series, A program for analyzing the physical properties near the solid-liquid interface for executing Item 14.
  • the computer A step of analyzing a motion state of an oscillator arranged in a liquid forming a solid-liquid interface and moving along the solid-liquid interface; A step of obtaining a two-dimensional mapping image in which the position of the moving oscillator and the motion state of the oscillator at the position correspond to each other; A procedure of obtaining an average value of the motion state at each of predetermined moving distances equally divided from the total moving distance of the oscillator; A procedure of converting each of the average values of the motion state into a time series of movement of the oscillator, A procedure of recording the average value of the motion state and control information regarding control of liquid physical properties near the solid-liquid interface in time series, A program for analyzing the physical properties near the solid-liquid interface for executing
  • an apparatus and method capable of analyzing changes in physical properties of a liquid in the vicinity of a solid-liquid interface over time.
  • FIG. 6 is a schematic diagram illustrating a difference in vibration mode of a vibrator due to a difference in concentration near a solid-liquid interface. It is a schematic diagram explaining the difference in the vibration mode of a vibrator by the difference in the lithium concentration near the electrochemical interface. The difference in the change of the position, acceleration and velocity of the vibrator due to the difference of the vibration wave of the vibrator is shown.
  • FIG. 5 is a schematic diagram illustrating a method of analyzing a change in physical properties near a solid-liquid interface in Examples. It is a result of the analysis method of the physical property change in the vicinity of the solid-liquid interface obtained in the example. It is a block diagram which shows an atomic force microscope.
  • the physical property change analyzer near the solid-liquid interface of the present invention is an apparatus for analyzing a physical property change locally occurring in the vicinity of the solid-liquid interface, and the motion state of a vibrator vibrated in a solution near the solid-liquid interface is fixed.
  • the physical properties near the solid-liquid interface can be recorded. Analyze changes.
  • FIG. 1 is a block diagram showing an example of the physical property change analysis apparatus of the present invention near the solid-liquid interface.
  • the physical property change analysis apparatus near the solid-liquid interface includes a vibrator A, an excitation unit B (vibrator excitation unit B in the figure), a physical property control unit C (a solid-liquid interface physical property control unit in the drawing). C), a motion state analysis unit D, and a time series recording unit E are included.
  • the physical property change analyzing apparatus in the vicinity of the solid-liquid interface of the present invention includes a cell that accommodates the solid-liquid interface, a displacement detection unit, a vibrator drive unit, a vibration wave generation unit, a physical property derivation unit F, an output unit G, and the like. You can
  • the solid-liquid interface to be analyzed by the physical property change analyzer near the solid-liquid interface of the present invention is not limited as long as it is an interface where the solution physical properties locally change near the interface between the solid and the liquid.
  • the physical properties of the solution may be any physical properties such that the solution resistance received by the vibrator, which will be described later, changes due to the change, and usually includes viscosity and density. Therefore, as the physical property change in the present invention, the liquid viscosity and / or density change due to the substance concentration change in the liquid, the liquid viscosity and / or density change due to the density change of the liquid, and the liquid change due to the temperature change of the liquid Viscosity and / or density change and the like can be mentioned.
  • the solid-liquid interface that locally causes such a change in the physical properties of the solution examples include an electrochemical interface, a catalytic chemical interface, and a thermal interface.
  • the vicinity of the solid-liquid interface may be a local range in which a change in the physical properties of the liquid occurs, and for example, in the case of an electrochemical interface, it may be a range corresponding to the diffusion layer.
  • a more specific range near the solid-liquid interface is, for example, a position within a range of 0 to 300 ⁇ m, preferably 0 to 100 ⁇ m from the solid surface.
  • An electrochemical interface changes the physical properties of a liquid near the surface of a solid by an electrochemical reaction. Specifically, it is composed of an electrode (solid) and an electrolytic solution (liquid).
  • electrochemical devices having an electrochemical interface include batteries, capacitors, biosensors, and the like, and electrochemical materials involved in the electrochemical interface include electrolytic refining materials, plating materials, and the like. . That is, when an electrochemical interface is an analysis target in the present invention, it is possible to perform operand measurement in the actual environment of these electrochemical devices or the reaction environment of electrochemical materials.
  • the catalytic chemical interface changes the physical properties of the liquid near the surface of the solid by a catalytic reaction. Specifically, it is composed of a heterogeneous catalyst (solid) and a reaction liquid (liquid).
  • a heterogeneous catalyst is a photocatalyst or the like. That is, in the present invention, when the catalytic chemical interface is an analysis target, it is possible to perform operand measurement in the reaction environment of such a heterogeneous catalyst.
  • the thermal interface changes the physical properties of the liquid near the surface of the solid due to temperature changes, and is composed of, for example, a temperature changing member (solid) and liquid.
  • a thermoelectric device etc. are mentioned as an example of the device which has a temperature change member. That is, in the present invention, when the thermal interface is the analysis target, the operand measurement in the actual operating environment of such a device becomes possible.
  • the present invention it is possible to analyze a change in physical property at a fixed position (one coordinate) in a solid-liquid interface, and therefore, an electrochemical liquid reaction between solid and liquid or a catalytic reaction or solid-liquid reaction that causes a change in physical property of a liquid.
  • the thermal change of may be homogeneous over the solid surface, but need not be, and may be non-uniform.
  • analyze the non-uniformity of the above-mentioned reaction or change on the solid surface by individually analyzing changes in physical properties at various fixed positions within the solid-liquid interface. You can also
  • the solid-liquid interface is housed in the cell (that is, the solid and liquid constituting the solid-liquid interface are housed in the cell) and is subjected to analysis using a physical property change analyzer near the solid-liquid interface. .
  • the specific configuration of the cell is appropriately designed depending on the type of solid-liquid interface.
  • the cell may be the device as described above or the reaction vessel itself.
  • the cell may be appropriately prepared by the user, or may be included in the physical property change analyzer near the solid-liquid interface of the present invention.
  • the solid and liquid to be contained in the cell may be appropriately prepared by the user, or the solid forming the solid-liquid interface in advance. Either the liquid or the liquid is contained, and the user may prepare the other.
  • the cell may be a closed type or an open type.
  • a closed cell is more preferable when analyzing the interface between a volatile liquid and a solid, but a closed cell is used when analyzing the interface between a non-volatile liquid and a solid. It may be either open type or open type.
  • the vibrator is a minute member that is arranged in the vicinity of the solid-liquid interface in the cell and is vibrated in the perspective direction with respect to the solid-liquid interface.
  • the oscillator may be one that receives the resistance of the solution and changes its displacement and / or motion state in response to changes in the physical properties of the solution.
  • An arbitrary shape such as a needle-shaped member is used.
  • a preferable example is a plate-shaped cantilever (cantilever) as illustrated.
  • the cantilever for example, a cantilever used in an atomic force microscope can be used, but as described below, the present invention utilizes the change over time in the liquid resistance of the oscillator at a specific location within the solid-liquid interface, and thus the cantilever is used. It is preferable not to have a probe, which is indispensable in a normal atomic force microscope, at the free end. Further, in order to reduce the in-liquid resistance with an atomic force microscope, the cantilever is preferably different from that having a through hole penetrating in the vibration direction thereof. To facilitate detection, it is more preferable not to have a through hole that penetrates in the vibration direction.
  • the vibrator is controlled during physical property control and while detecting displacement information, except that the vibrator is vibrated by an excitation unit described later.
  • the proximal end is designed to be immobile.
  • Excitation part B An exciting part is provided at the base end (fixed end) of the oscillator, and the exciter vibrates the oscillator in the perspective direction with respect to the solid-liquid interface.
  • the vibrator may vibrate so as to receive the solution resistance. Therefore, the vibration of the oscillator may be any vibration as long as its free end is in a direction including at least the perspective direction with respect to the solid-liquid interface, and is not limited to reciprocating vibration only in the vertical direction with respect to the solid-liquid interface.
  • the excitation unit constitutes an excitation unit together with the vibration wave generation unit and the oscillator drive unit, and excites the oscillator by a known mechanism.
  • the vibration wave generation unit generates a waveform such as a triangular wave or a sine wave (preferably a triangular wave), and vibrates the vibrator with a predetermined waveform via the vibrator drive unit.
  • the vibrator driving unit supplies a control signal regarding the displacement amount and / or the vibration amount to the excitation unit to vibrate the vibrator.
  • the excitation unit can be composed of a piezo element and the vibrator drive unit can be composed of a piezo driver.
  • a mechanism for exciting the vibrator a laser light exciting mechanism, a thermal exciting mechanism, a tuning-fork type crystal vibrating mechanism, and the like can be cited, and an exciting unit corresponding to each mechanism can be appropriately configured.
  • the information about the control performed by the vibrator drive unit can be regarded as information corresponding to the vibration direction position information (position information in the figure) of the vibrator, and the control information, that is, the vibration direction position information, will be described later. Can be recorded as a history in the time series recording unit.
  • the vibration direction here means the direction perpendicular to the solid-liquid interface.
  • the position (position in the vibration direction) means the position of the free end of the vibrator during vibration.
  • the vibration width of the vibrator in the vibration direction is, for example, 1 to 300 nm.
  • the vibration width of the oscillator In an atomic force microscope, it is necessary to scan the solid surface, and the vibration width of the oscillator must be 50 nm or more in order to stabilize the probe movement.
  • the vibration width of the oscillator is considered. Is preferably 40 nm or less, more preferably 30 nm or less.
  • the lower limit of the vibration width of the vibrator is preferably 10 nm or more from the viewpoint of more preferably detecting a change in resistance in liquid. Therefore, the preferable range of the vibration width of the vibrator is, for example, 1 to 40 nm, 10 to 40 nm, 1 to 30 nm, and 10 to 30 nm.
  • the vibration speed may be 100 times or more per second.
  • the displacement and / or motion state of the vibrating oscillator changes according to changes in physical properties near the solid-liquid interface.
  • the physical property control unit controls the physical properties of the liquid in the vicinity of the solid-liquid interface.
  • the physical property control unit directly controls the solid that forms the solid-liquid interface, and changes the physical properties of the liquid in the vicinity of the solid-liquid interface with the control.
  • the physical property control unit is appropriately designed according to the type of solid-liquid interface.
  • the solid at the solid-liquid interface is electrically controlled (for example, an electrochemical interface and a thermal interface)
  • a mechanism capable of adjusting current and voltage can be used as the physical property control unit
  • the solid at the solid-liquid interface is photochemically controlled (for example, a catalytic chemical interface)
  • a mechanism capable of adjusting the light intensity can be used as the physical property control unit.
  • Information relating to the control performed by the physical property control unit is once recorded as a control history in “1-9. Time-series recording unit E” described later.
  • the control level of the physical properties to be controlled (for example, the level of current and voltage for the electrochemical interface or the thermal interface; the level of light intensity for the photochemical interface) is not particularly limited. According to the present invention, it is possible to analyze the change in the physical properties in the vicinity of the solid-liquid interface with excellent accuracy, and thus it is possible to accurately analyze the change in the physical properties due to a slight control level.
  • a slight control level for example, an absolute value of the current density with respect to the electrochemical interface is 0.2 mAcm ⁇ 2 or less. On the other hand, as will be described later in “1-7.
  • the solid-liquid interface of Feedback control is always necessary for atomic force microscopes because there is no circuit for feedback control so that the displacement of the cantilever is stable and constant with respect to fluctuations in the height direction (direction perpendicular to the solid-liquid interface).
  • the control level eg bring great cantilever displacement as acts, 0.2MAcm -2 greater as the absolute value of the current density for an electrochemical interface, preferably 2MAcm -2 or more, or more preferably 5MAcm -2 or more .
  • the change in physical properties due to the control level is captured as it is and analyzed.
  • the upper limit of the range of the absolute value of the current density is not particularly limited, for example 12MAcm -2 or less, preferably 10MAcm -2 or less, or more preferably 8MAcm -2 or less.
  • specific examples of the range of the absolute value of the current density include 0.2 mAcm -2 to 12 mAcm -2 or less, 0.2 mAcm -2 to 10 mAcm -2 or less, and 0.2 mAcm -2 to 8 mAcm -2 or less.
  • the displacement detection unit is composed of a light source, a detector, a preamplifier, etc., and the light (laser light) emitted from the light source (for example, laser light source) is reflected on the back surface of the vibrator, and the reflected light is The light enters the detector, is converted into displacement information (displacement signal) indicating displacement (deflection) of the vibrator by the detector, and the displacement information (displacement signal) is amplified by the preamplifier and then used for analysis of the motion state.
  • This displacement information can be temporarily recorded in “1-9. Time-series recording unit E described later”.
  • the displacement detection unit is not limited to the optical lever type shown in the figure, but may be configured by a displacement self-detection type detection mechanism, for example.
  • a detector for example, a piezoresistive sensor, a piezoelectric thin film sensor, etc.
  • the displacement self-detection method is preferable in that the detection mechanism can be simplified, and that the cell can be hermetically sealed together with the detector and that the measurement stability is excellent.
  • a circuit for example, a feedback control unit in FIG. 7 for feedback control is provided so that the displacement of the cantilever is stable and constant with respect to fluctuations in the height direction of the solid-liquid interface (direction perpendicular to the solid-liquid interface). Not not.
  • the motion state analysis unit uses the vibration direction position information in the vibrator drive unit and / or the displacement information in the displacement detection unit, preferably the vibration direction position information and / or displacement information recorded in the time series recording unit described later. , Analyze the motion state of the oscillator.
  • the motion referred to here is a vibration phenomenon that can be grasped by a physical quantity that can quantify the vibration of the vibrator (for example, resonance angular frequency, energy consumed in one vibration of the vibrator, etc.), and its state
  • the (movement state) is specifically represented by a quantitative value such as a resonance angular frequency and an energy dissipation value.
  • the motion state analysis unit may be equipped with an algorithm that can analyze the motion state of the oscillator using the vibration direction position information and / or displacement information. Since the method of analyzing the motion state is not particularly limited, it is possible to implement an algorithm based on a known method. Examples of methods for analyzing the motion state include vibration response analysis and energy dissipation analysis.
  • the motion state analysis unit uses the vibration direction position information by the vibrator drive unit as the vibration amplitude information, or the displacement information of the vibrator (specifically, Specifically, the vibration amplitude information estimated from the position deviation of the light receiving spot of the optical lever is used, and the vibration amplitude of the vibrator becomes maximum with respect to the excitation frequency (resonance state), that is, the resonance angular frequency. Is obtained as information on the motion state.
  • a feedback control unit that performs feedback from the motion state analysis unit to the oscillator drive unit by using the maximum value of the amplitude as a clue is provided. Enables to track the resonance angular frequency which changes with time.
  • the motion state analysis unit determines the energy in each cycle from the force curve for each cycle of the oscillator obtained from the displacement information and the vibration direction position information.
  • the consumption amount that is, the energy dissipation value is obtained as the information of the motion state.
  • the obtained motion state (for example, resonance angular frequency, energy dissipation value, etc.) is recorded in "1-9.
  • Time series recording unit E described later.
  • the time-series recording unit records information in time series, and is composed of an arbitrary recording medium (storage medium). It is preferably composed of a non-volatile recording medium such as a hard disk.
  • the time-series recording unit records at least information on the motion state (for example, resonance angular frequency, energy dissipation value, etc.) acquired by the motion-state analyzing unit and control information by the physical property control unit in time series. Recording in time series means recording the acquired information in association with a time element. That is, a data set in which the acquired information is synchronized with the control history by the physical property control unit is obtained. Thereby, the change in the exercise state is recorded over time in a state associated with the control information that caused the change.
  • the motion state of the oscillator at the different position is recorded in time series over the multiple oscillations of the oscillator.
  • the recording rate is, for example, such a degree that 50 to 2000 pieces of motion state information can be recorded per second at a stationary position (one coordinate) in the solid-liquid interface.
  • the vibration direction position information in the vibrator drive section and / or the displacement information in the displacement detection section in the time series recording section in the same time series as the preliminary information. That is, a data set in which the history of vibration direction position information and / or the change over time of displacement information are associated with time elements is stocked in the sequence recording unit, and the vibration direction position information and / or displacement information is used in the motion state analysis unit. You can leave it ready.
  • the motion state of the oscillator at the fixed position in the solid-liquid interface (one coordinate in the solid-liquid interface) is recorded in time series over the multiple oscillations of the oscillator. Therefore, for example, when force curve measurement is performed from displacement information and vibration direction position information and used for motion state analysis, n points of displacement information and position information are required in the force curve for one vibration of the oscillator, and When the force curve is measured m times per second, n ⁇ m sets of displacement information-position information combinations per second at one coordinate can be recorded as preliminary information. From the preliminary information, the motion state analysis unit can obtain m motion state information per second at one coordinate, and the time series recording unit can record m motion state information per second.
  • the time-series recording unit can also record time-series information of physical properties obtained by the physical property deriving unit described later.
  • the physical property deriving unit derives the actual physical property of the solution from the information on the motion state of the oscillator obtained by the time series recording unit.
  • the physical property deriving unit only needs to implement an algorithm that can derive the physical properties of the solution from the information on the motion state.
  • the method of deriving the solution physical properties is not particularly limited, and can be appropriately determined according to the type of the motion state analysis method used. For example, it is possible to derive a solution physical property by automatically creating a basic data set showing information on the motion state in various physical properties of the solution and automatically searching for the solution physical property corresponding to the acquired motion information quantitatively. it can.
  • the output unit can display the relationship between time and motion state or the relationship between time and specific solution physical properties in an arbitrary format corresponding to the physical property control information.
  • the output format is not particularly limited as long as it can recognize the change in the solution physical properties associated with the physical property control information.
  • the motion state or specific solution physical properties and control information are developed in parallel axes with respect to the time axis. Examples include graph formats.
  • the oscillator is moved by feedback in the vertical direction of the solid-liquid interface during measurement (the movement does not include vertical movement due to vibration). It has no function. Therefore, in the physical property change analyzer near the solid-liquid interface of the present invention, the z-direction moving means controlled by the scanner and the feedback circuit, which is included in the atomic force microscope as an essential component, scans in the xy plane during measurement. Is not provided.
  • a means for moving the oscillator in a direction perpendicular to the solid-liquid interface and an inward direction of the solid-liquid interface for the purpose of bringing the oscillator close to the solid-liquid interface and selecting a measurement point of the oscillator in the solid-liquid interface. May be provided. Examples of such moving means include a driving device such as a manual screw system, a motor drive system, and a piezoelectric element (piezo) system.
  • the method of analyzing the physical property change near the solid-liquid interface of the present invention is that the motion state of the oscillator vibrated in the solution near the solid-liquid interface changes with time along with the physical property change near the solid-liquid interface. This is a method of analyzing the physical property change in the vicinity of the solid-liquid interface by utilizing the time-series recording of the temporal change of the motion state together with the physical property control information in the vicinity of the solid-liquid interface.
  • the method for analyzing the physical property change near the solid-liquid interface of the present invention includes an excitation step, a physical property control step, a motion state analysis step, and a time series recording step.
  • the method of analyzing the physical property change in the vicinity of the solid-liquid interface of the present invention can be carried out using the physical property change analyzer in the vicinity of the solid-liquid interface described in "1. Physical property change analyzer in the vicinity of solid-liquid interface”. .
  • the vibrator arranged in the liquid forming the solid-liquid interface is vibrated.
  • the excitation step can be performed by using the excitation unit (and an excitation unit including the same) for the oscillator in the above-described physical property change analysis apparatus near the solid-liquid interface.
  • the details of the specific mode for vibrating is as described in "1-2. Solid-liquid interface” to "1-5. Excitation section B".
  • Displacement detection process The displacement caused by the vibration of the vibrator is detected using a mechanism that detects the displacement (displacement detection step).
  • the mechanism for detecting the displacement is not particularly limited, but as described in the above “1-7. Displacement detection unit”, the optical leverage method, the displacement self-detection method and the like can be mentioned.
  • Motion state analysis process In the motion state analysis step, the motion state of the oscillator is analyzed.
  • the motion state analysis step can be performed by the motion state analysis unit described in “1-8.
  • Motion state analysis unit D in the physical property change analysis apparatus near the solid-liquid interface, and is used as a method for analyzing the motion state. Is not particularly limited as long as it is a method that can evaluate the change of the motion state caused by the change of the physical property by using the displacement information of the vibrator and / or the position information of the vibration direction.
  • the vibrator when a vibrator is vibrated with a vibration amplitude of about 100 nm in a solution near the solid-liquid interface, the vibrator receives liquid resistance that depends on the physical properties (eg concentration) of the solution. For example, when the substance concentration of the liquid is the reference concentration, the deflection (displacement) of the vibrator during vibration is about the amount shown in FIG. 2A, whereas the substance concentration of the liquid is as shown in FIG. 2B. Becomes higher, the vibrator receives a higher solution resistance, so that it flexes more, and as shown in FIG. 2 (c), when the substance concentration of the liquid becomes lower, the solution resistance received by the vibrator becomes smaller. Deflection is also small.
  • Fig. 3 shows the case where the solid-liquid interface is an electrochemical interface composed of a metal lithium / electrolyte system.
  • the lithium ion concentration near the solid-liquid interface is almost equal to the lithium ion concentration in the entire electrolytic solution.
  • FIG. 3B in the case of discharging (dissolution process), the lithium ion concentration near the solid-liquid interface locally rises and the oscillator receives a higher solution resistance. Bend larger.
  • FIG. 3C when charging (electrodeposition process), the concentration of lithium ions near the solid-liquid interface is locally reduced, and the solution resistance received by the vibrator is reduced. Also becomes smaller. This makes it possible to follow changes in the lithium ion concentration during the operation of the device having the electrical interface.
  • vibration response analysis or energy dissipation analysis, for example.
  • the vibration direction position information from the vibrator drive unit is used as the vibration amplitude information, or the vibration estimated from the displacement information of the vibrator (specifically, the size of the positional deviation of the light receiving spot of the optical lever).
  • the amplitude information the state where the vibration amplitude of the oscillator is maximum with respect to the excitation frequency (resonance state), that is, the resonance angular frequency is obtained as the information of the motion state.
  • the motion state of the oscillator in the solution is always affected by the liquid resistance.
  • the liquid resistance includes two types, viscous resistance due to its viscosity ⁇ (Pa ⁇ s) and mass inertia resistance due to its weight density ⁇ (g ⁇ cm ⁇ 3 ).
  • viscosity
  • g ⁇ cm ⁇ 3 mass inertia resistance due to its weight density
  • the magnitude of the liquid resistance actually received by the oscillator also depends on its shape, it is possible to analyze the motion state by assuming a specific shape.
  • a resonance angular frequency in a liquid hereinafter, a solution will be described as an example
  • a vibrator hereinafter, a cantilever will be described as an example
  • ⁇ 0 is a resonance angular frequency (s ⁇ 1 ) of the cantilever in vacuum
  • K is an intrinsic constant determined by the shape of the cantilever.
  • the resonance angular frequency in the solution changes depending on the viscosity ⁇ and the weight density ⁇ of the solution. It has also been reported that the viscosity and the weight density of a solution generally change depending on the concentration of the solution. Therefore, by recording the change in the resonance angular frequency of the cantilever, it becomes possible to investigate the change in the solution concentration near the solid-liquid interface.
  • the vibration response analysis method is a method similar to the general vibration viscosity measurement method, and is preferable in terms of simplification of the device configuration.
  • the energy consumption in each cycle is obtained as motion state information from the force curve for each cycle of the oscillator obtained from the displacement information and the vibration direction position information.
  • a vibrator hereinafter, a cantilever is taken as an example and described
  • the cantilever is divided into a process in which the cantilever approaches a solid surface and a process in which the cantilever moves away from the solid surface.
  • Liquid hereinafter, a solution will be described as an example. It receives a force depending on the resistance. It has been reported that the magnitude F of the solution drag force exerted on the cantilever in the process of such movement can be approximately expressed by the following equation (2).
  • the coefficients A and B are constants depending on the shape of the cantilever and experimental conditions, and ⁇ is the angular frequency of excitation.
  • the resistance of a solution correlates with the weight density and viscosity of the solution. Therefore, the force applied to the cantilever in the solution changes depending on the solution concentration.
  • the magnitude of the resistance force also changes depending on the magnitude of the velocity (dz / dt) and acceleration (d 2 z / dt 2 ) of the cantilever oscillating in the vertical direction. It is usually difficult to calculate the solution concentration using the size itself. Therefore, it is possible to evaluate the change in the solution concentration by using the energy dissipation value W obtained by integrating the magnitude of the force received by the cantilever over one cycle of the vertical movement shown in the formula (3) as an index.
  • the energy dissipation value W depends on the viscosity ⁇ and the weight density ⁇ . Since these values change depending on the concentration of the solution, it is possible to investigate the change in the concentration of the solution by recording the energy dissipation value in one cycle of the cantilever.
  • the energy dissipation analysis method the energy consumption in one cycle above and below the cantilever is obtained, so one energy dissipation value can be obtained from information for one cycle of cantilever movement. Therefore, the energy dissipation analysis method is preferable because the time resolution of measurement is extremely high.
  • the oscillatory wave that excites the oscillator is preferably a triangular wave rather than a sine wave used in a normal atomic force microscope.
  • both the velocity term and the acceleration term in equation (3) must be dealt with.
  • the acceleration term (d 2 z / dt 2 ) in equation (3) becomes zero.
  • FIG. 4 shows a comparison of changes over time in velocity and acceleration components when excitation is performed with a sine wave and a triangular wave.
  • sine wave excitation only the phase change occurs, whereas in the case of triangular wave, the velocity component is constant and the acceleration component is 0. Therefore, the equation of the energy dissipation value W can be simplified as shown in the following equation (4).
  • the energy dissipation value is proportional to the square root of the product of solution viscosity and weight density. Since the concentration of the solution is uniquely determined from the product of the viscosity and the weight density of the solution, it is possible to analyze the concentration of the solution more directly by using the equation (4). In the actual measurement, the energy dissipation measurement is performed at the solid-liquid interface in the uncontrolled state, and the device constant C on the measurement can be determined in advance from the obtained value.
  • the analysis of the motion state may be performed in real time as soon as the displacement information and / or the vibration direction position information of the vibrator is acquired, or the displacement information and / or the vibration direction position information of the vibrator may be temporarily recorded in time series as preliminary information. May be recorded in step (preliminary information time-series recording step) and the stocked preliminary information may be used to perform post-processing analysis of the exercise state.
  • the preliminary information time-series recording step can be performed in the time-series recording section described in “1-9. Time-series recording section E” in the physical property change analysis apparatus near the solid-liquid interface.
  • Time-series recording process In the time series recording step, the control information in the physical property control step and the motion state obtained in the motion state analysis step are obtained in a time series recorded state.
  • the time-series recording step can be performed in the time-series recording unit described in “1-9.
  • Recording in time series means recording the acquired information in association with a time element.
  • the acquired information can be obtained in the form of a data set synchronized with the control history of the physical property control process. This allows a change in the exercise state to be recorded over time in a state associated with the control information that caused the change.
  • the motion state of the oscillator at a fixed position (one coordinate in the solid-liquid interface) is recorded in time series over multiple oscillations of the oscillator.
  • the recording rate may be, for example, a level at which 50 to 2000 pieces, preferably 200 to 2000 pieces, of movement state information can be recorded per second at one coordinate in the solid-liquid interface.
  • the method for analyzing the change in physical properties in the vicinity of the solid-liquid interface of the present invention further includes the step of deriving the actual solution physical properties from the information on the motion state of the oscillator obtained in the time series recording unit (physical property deriving step). Good.
  • the physical property derivation step can be performed by the physical property derivation unit described in “1-10.
  • Physical property derivation unit F of the physical property change analysis apparatus near the solid-liquid interface.
  • the example of the method for deriving the solution physical properties is as described above.
  • the physical properties of the obtained solution are also recorded in time series.
  • a program is a computer program that causes a computer to execute each procedure. Therefore, when the method of analyzing the physical property change in the vicinity of the solid-liquid interface is executed based on the program, the arithmetic unit and the control unit included in the computer execute the respective procedures, and therefore perform arithmetic and control based on the program.
  • the storage device included in the computer stores the data used for the processing based on the program in order to execute each processing.
  • the program can be recorded in a computer-readable recording medium and distributed.
  • the recording medium is a medium such as a magnetic tape, a flash memory, an optical disc, a magneto-optical disc or a magnetic disc. Further, the recording medium may be an auxiliary storage device or the like. Further, the program can be distributed through a telecommunication line.
  • a program for analyzing physical properties near a solid-liquid interface is a computer program for analyzing physical properties near a solid-liquid interface; a procedure for analyzing a motion state of an oscillator arranged in a liquid forming the solid-liquid interface. (S11); a program (program 1) for executing the above-mentioned motion state and a procedure (s12) of recording the above-mentioned motion state and control information relating to the control of liquid physical properties in the vicinity of the solid-liquid interface in time series. .
  • the physical property analysis program (program 1) near the solid-liquid interface of the present invention may be installed in the above-mentioned “1.
  • Physical property change analysis device near solid-liquid interface For example, the computer that executes the program for analyzing the physical properties in the vicinity of the solid-liquid interface of the present invention may constitute a part of the above-mentioned “1. More specifically, the procedure (s11) is executed by the above “1-8. Motion state analysis unit D”, and the procedure (s12) is executed by the above “1-9. Time series recording unit E”. Can be made.
  • the program for analyzing the physical properties near the solid-liquid interface of the present invention is arranged in a liquid constituting the solid-liquid interface in a computer in order to analyze the physical properties near the solid-liquid interface.
  • the above procedure (s21) and (s22) can be executed by a computer installed in the atomic force microscope.
  • the above procedure (s23) to (s25) can be appropriately selected and executed by those skilled in the art from the arithmetic device, the control device, and the storage device included in the computer.
  • the automatic correction function (the function that automatically corrects the motion state of the cantilever) implemented in the atomic force microscope must not be operated, so only under conditions limited to the range where the automatic correction function does not operate. Can be run.
  • a limited condition for example, in the case of a condition for an electrochemical interface, the change in the concentration of the electrolyte determined by the product of the current density and the conduction time is the limit value at which the automatic correction of the atomic force microscope operates.
  • the absolute value of the current density is 0.2 mAcm ⁇ 2 or less).
  • the program 2 needs to acquire a two-dimensional mapping image once in the above procedure (s22).
  • the recording rate must be sufficiently low in order to acquire data stably while scanning.
  • the recording rate is, for example, 2 to 9 times, preferably 2 to 4 times per second.
  • the electrochemical liquid reaction between solid and liquid or the catalytic reaction or the thermal change on the solid that causes the change in the physical properties of the liquid is caused by the entire solid surface. And should be as homogeneous as possible.
  • Electrode Lithium metal
  • Electrolyte 1M lithium bistrifluoromethanesulfonylamide (LiTFSA) in tetraglyme (G4)
  • the time-dependent measurement of changes in the concentration of the electrolytic solution near the electrochemical field is performed by switching the current applied to the battery in a stepwise manner (the cell voltage is determined according to the control current value) while using an atomic force microscope (iCON (Bruker). )) was used to temporarily obtain a two-dimensional image of the energy dissipation value (FIG. 5 (a)), and then the two-dimensional image was reconstructed as a temporal recording (FIG. 5 (b)). .
  • the details are shown below.
  • the measurement mode of the atomic force microscope was Peak Force Tapping (exciting the cantilever at high speed), the excitation wave was a sine wave, the force curve measurement frequency was 2 kHz, and the cantilever amplitude width was 100 nm.
  • PeakForce Tapping is a method of recording the change in force while moving the cantilever closer to or farther from the electrode (that is, scanning the electrode surface while periodically performing force curve measurement (force curve mapping)).
  • the atomic force microscope has a function to record the energy dissipation value for each xy coordinate data point in the force curve mapping mode. Thereby, the two-dimensional spatial information (FIG. 5A) of the energy dissipation value in one image was obtained.
  • This two-dimensional image has 1024 ⁇ 1024 pixels (pxl), and energy dissipation values W 1 to W 1048576 are recorded for each pixel.
  • the atomic force microscope does not have a function of recording energy dissipation values in time series.
  • the energy dissipation values recorded in one line are averaged (that is, the energy dissipation data information for one second is averaged) in the process of analysis, and the line scan is performed. Similar averaging was repeated in the direction perpendicular to the direction to create a data profile. Specifically, the average value of the energy dissipation values of the first line (AVG (W 1 to 1024 )) is obtained as the energy dissipation value of the first second (W T1 ), and the same operation is performed for each raster line. Similarly repeated, to give to a mean value of the energy dissipation values for 1024 line (AVG (W 1047553 ⁇ 1048576) ) 1024 th second energy dissipation value is (W T1024).
  • the time resolution is limited by the raster scan speed.
  • the two-dimensional scanning is inevitable due to the use of the atomic force microscope, if the scanning speed is too fast, the change in physical properties according to the present invention cannot be accurately captured, and therefore stable while performing the two-dimensional scanning.
  • the upper limit of the scanning speed was set to about 1 line / 2 Hz.
  • the time resolution was intentionally limited to 0.5 seconds.
  • the magnitude of the fluctuation of the current applied to the battery can change the concentration of the electrolyte near the electrochemical interface to the extent that the motion state of the cantilever changes.
  • the size of the cantilever should be within the range that does not operate the automatic correction function (function that automatically corrects the motion state of the cantilever) mounted on the atomic force microscope. Is sufficiently small, specifically, the absolute value of the current density is limited to 0.2 mAcm ⁇ 2 or less.
  • the analysis method of the present invention was carried out by utilizing the function of the atomic force microscope, it was inevitable that the xy scan function mounted on the atomic force microscope had to be operated, and it was 500 nm. Scanning was performed in the range of ⁇ 500 nm to obtain the image in FIG.
  • an electrode with a homogeneous lithium reaction was used, which enables time-dependent analysis of changes in physical properties even in the scan range.
  • the xy scanning function implemented in the atomic force microscope is excluded from the present invention. Needless to say, it is desirable to measure at a stationary position that does not disturb the solution near the solid-liquid interface by using the physical property change analysis device near the solid-liquid interface.
  • the data shown in FIG. 5 (a), which is not obtained by the analysis method of the present invention, is acquired in advance because the analysis method of the present invention is performed by utilizing the function of the atomic force microscope. After that, it was converted into the data shown in FIG. 5B and recorded.
  • the analysis method of the present invention is carried out using the physical property change analyzer near the solid-liquid interface of the present invention, the data of FIG. 5A is not acquired but the data of FIG. 6B is acquired.
  • Figure 6 shows the analysis results.
  • the lower part of FIG. 6 shows the change over time of the cell voltage when the dissolution and precipitation of lithium are repeated by applying a constant current
  • the upper part shows the change over time of energy dissipation in synchronization with the change over time of the cell voltage.
  • the dissipation energy decreases in correlation with the start of lithium deposition.
  • the decrease in dissipated energy indicates that the solution resistance experienced by the cantilevers was decreased. That is, it is shown that the lithium deposition reaction reduced the lithium ion concentration near the electrochemical interface (see FIG. 3C).
  • the cell voltage is raised and the dissolution of lithium is started, it is understood that the value of the dissipated energy increases, and the magnitude of the solution resistance received by the cantilever increases (see FIG. 3 (b)). ing. That is, it is shown that the lithium ion concentration near the electrochemical interface was increased by the lithium dissolution reaction.
  • Fig. 6 representative force curves at each point (open circuit state, molten state, electrodeposition state) are also shown.
  • the force curve obtained at the maximum value of the dissipated energy waveform receives an upward force in the approach (approach), that is, the direction that moves the cantilever closer to the sample (moves downward), and moves the retract, that is, the cantilever away from the sample (upward). It can be read that a downward force is applied in the direction (moving to). This means that the cantilever is moving under solution resistance larger than that in the standard state.
  • the force curve obtained at the minimum value of the dissipated energy waveform shows that the relationship between the approach and the force in the retract is the opposite of the above.
  • the change in the motion state of the cantilever due to the change in the concentration of the electrolytic solution is intentionally corrected by the automatic correction function (cantilever) implemented in the atomic force microscope.
  • the current condition was controlled so that it was within the range in which the function of automatically correcting the motion state (1) was not operated. That is, according to the analysis method of the present invention, even if the concentration change in the vicinity of the electrochemical interface is so small as not to control the automatic correction function, the change in physical properties in the vicinity of the interface can be analyzed over time.
  • the analysis method of the present invention can similarly analyze with time even if larger physical property changes occur near various solid-liquid interfaces.

Landscapes

  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

The purpose of the present invention is to provide an apparatus and a method capable of analyzing a change over time in the physical properties of liquid near a solid-liquid interface. This apparatus for analyzing a change in physical properties near a solid-liquid interface comprises: a vibrator disposed in liquid that forms a solid-liquid interface; a physical property control unit which controls the physical properties of liquid near the solid-liquid interface; an excitation unit which vibrates the vibrator; a motion state analysis unit which analyzes a motion state of the vibrator; and a time-series recording unit which records, in time series, control information obtained by the physical property control unit and the motion state obtained by the motion state analysis unit.

Description

固液界面近傍の物性変化解析装置及び固液界面近傍の物性変化を解析する方法Apparatus for analyzing physical property change near solid-liquid interface and method for analyzing change in physical property near solid-liquid interface
 本発明は、固液界面近傍において生じる物性変化を解析する技術に関する。より具体的には、本発明は、固液界面近傍の物性変化解析装置及び固液界面近傍の物性変化を解析する方法に関する。 The present invention relates to a technique for analyzing changes in physical properties that occur near the solid-liquid interface. More specifically, the present invention relates to a physical property change analyzer near a solid-liquid interface and a method for analyzing a physical property change near a solid-liquid interface.
 電極と電解液とを含んで構成される電気化学デバイスにおいて、電解液の状態はデバイス動作及びデバイス性能に大きく影響される。特に、電解液の物質濃度の把握は重要である。これまで、電解液の物質濃度法として、溶液滴定法、沈殿法、イオンクロマトグラフ法、電気化学測定法、吸光分光法等の汎用法が確立されているが、これらの方法は電解液全体が均質であることが前提となっている。 In an electrochemical device that includes an electrode and an electrolytic solution, the state of the electrolytic solution is greatly affected by device operation and device performance. In particular, it is important to understand the substance concentration of the electrolytic solution. So far, as the substance concentration method of the electrolytic solution, general-purpose methods such as a solution titration method, a precipitation method, an ion chromatography method, an electrochemical measurement method, and an absorption spectroscopy method have been established. It is assumed to be homogeneous.
 一方、固体と液体との間の界面(固液界面)を解析する方法として、原子間力顕微鏡を用いた走査法が知られている。原子間力顕微鏡は、例えば図7に示すように、カンチレバーと呼ばれる微小な板バネを上下に振動させながら固液界面内を移動させ、カンチレバーで固体表面をなぞることでその凹凸情報を画像化するものである。 On the other hand, a scanning method using an atomic force microscope is known as a method for analyzing an interface (solid-liquid interface) between a solid and a liquid. As shown in FIG. 7, for example, an atomic force microscope moves a small leaf spring called a cantilever up and down to move inside a solid-liquid interface, and traces the surface of the solid with the cantilever to image the unevenness information. It is a thing.
 近年では、原子間力顕微鏡を用いて、固体表面の凹凸情報による画像化だけでなく、固液界面における材料特性を定量し、定量情報を固体表面にマッピングすることで画像化する方法も知られている(非特許文献1)。 In recent years, not only imaging using solid-state surface roughness information using an atomic force microscope, but also a method of quantifying material properties at the solid-liquid interface and mapping the quantitative information to the solid surface for imaging are also known. (Non-patent document 1).
 固体と液体との界面近傍の液体は、固体と液体との間の化学反応等に伴ってその物性が変化する。例えば、固体が電極で構成され、液体が電解液で構成された電気化学的界面では、電気化学反応によって電極近傍の電解液濃度が局所的に極端に変化する。このような電気化学的界面は、電池、キャパシタ、バイオセンサ等の各種電気化学デバイスの動作、及び、電解精錬、メッキ、触媒反応等の材料の化学的反応プロセスを支える上で重要な場となっている。そして、このような局所的な変化を経時的に把握すること、つまり、デバスの実動環境または材料の反応環境を直接的に計測するオペランド計測は、デバイスの動作又は材料反応プロセスを正しく理解し、その性能及び/又は効率を向上させる上で重要である。 The physical properties of the liquid near the interface between the solid and the liquid change due to the chemical reaction between the solid and the liquid. For example, at an electrochemical interface where a solid is composed of electrodes and a liquid is composed of an electrolytic solution, the concentration of the electrolytic solution in the vicinity of the electrodes changes extremely locally due to an electrochemical reaction. Such an electrochemical interface is an important place to support the operation of various electrochemical devices such as batteries, capacitors and biosensors, and the chemical reaction processes of materials such as electrolytic refining, plating and catalytic reaction. ing. In addition, understanding such local changes over time, that is, operand measurement, which directly measures the production environment of the debass or the reaction environment of the material, enables a correct understanding of the device operation or the material reaction process. , Is important in improving its performance and / or efficiency.
 しかしながら、これまでの電解液濃度測定法は、電解液全体が均質であることが前提となっているため、電気化学的界面近傍で局所的に異なる物質濃度を狙って測定することはできない。 However, the conventional electrolyte concentration measurement methods are based on the assumption that the entire electrolyte is homogeneous, so it is not possible to measure locally different substance concentrations in the vicinity of the electrochemical interface.
 一方、原子間力顕微鏡を用いることで、電気化学的界面近傍における局所的な濃度を測定することは可能であるが、そもそも原子間力顕微鏡は画像化に特化して構成された装置であるため、電気化学的界面近傍における局所的な濃度の変化を経時的に測定するようには構成されていない。 On the other hand, it is possible to measure the local concentration in the vicinity of the electrochemical interface by using the atomic force microscope, but since the atomic force microscope is a device specially configured for imaging, , It is not configured to measure local concentration changes in the vicinity of the electrochemical interface over time.
 原子間力顕微鏡で得るべき画像は、座標ごとにマッピングされた情報の二次元的な集合体である。つまり、原子間力顕微鏡には基本的に1座標(静止位置)あたり1種の情報しか記録されない。このため、1座標において時間ごとに異なる状態を測定することは前提として存在しないため、原子間力顕微鏡にはそのように時間ごとに異なる状態を測定することに特化させた機能は備わっていない。 The image to be obtained with the atomic force microscope is a two-dimensional collection of information mapped for each coordinate. That is, basically only one kind of information is recorded in one coordinate (rest position) in the atomic force microscope. For this reason, since it is not assumed that different states are measured with time in one coordinate, the atomic force microscope does not have such a function specialized for measuring different states with time. .
 原子間力顕微鏡の構成を図7に模式的に示す。原子間力顕微鏡は画像化に特化した設計思想に基づいているため、二次元スキャンの過程においてカンチレバーの運動状態が制御されることが基礎的且つ不可欠となっている。したがって、例えば表面の凹凸を記録して画像化するスキャンモードでは、高さ方向の変動に対して、カンチレバーの運動状態が安定且つ一定となるように常にフィードバック制御される(例えば、図7におけるフィードバック制御部)。また、表面の物性情報を二次元で取得して画像化するスキャンモード(フォースカーブマッピング)では、カンチレバーの運動状態の変化を基に二次元画像化を行うが、この場合でもカンチレバー自体の基本的な運動状態 (二次元スキャンを止めた静止位置における運動状態)が一定となるようにある程度の運動状態の制御がなされる(図7における運動状態補正部)。すなわち二次元マッピングの各 x, y 座標点における表面物性の差異は、各座標値で測定された運動状態と、基本静止位置における運動状態との間の偏差によって記録されるため、基本静止位置における運動状態が常に一定となるように自動補正がなされる必要がある。 The configuration of the atomic force microscope is schematically shown in Fig. 7. Since the atomic force microscope is based on a design concept specialized for imaging, it is fundamental and indispensable to control the motion state of the cantilever in the process of two-dimensional scanning. Therefore, for example, in the scan mode in which surface irregularities are recorded and imaged, feedback control is always performed so that the motion state of the cantilever is stable and constant with respect to variations in the height direction (for example, feedback in FIG. Control unit). In the scan mode (force curve mapping), which acquires the physical property information of the surface in two dimensions and images it, two-dimensional imaging is performed based on changes in the motion state of the cantilever. The motion state is controlled to a certain degree so that the motion state (motion state at the stationary position where the two-dimensional scanning is stopped) becomes constant (motion state correction unit in FIG. 7). That is, the difference in the surface physical properties at each x, y coordinate point of the two-dimensional mapping is recorded by the deviation between the motion state measured at each coordinate value and the motion state at the basic stationary position, so at the basic stationary position. Automatic correction needs to be performed so that the motion state is always constant.
 上記のように、二次元スキャンを目的とした原子間力顕微鏡では、何れのスキャンモードにおいても、スキャン静止状態におけるカンチレバーの運動状態が常に一定となるようにフィードバック制御および自動補正による制御がなされている。つまり、基本静止位置におけるカンチレバーの運動状態が、固液界面における液体物性の経時的変化によって時系列で変調を受ける場合は、カンチレバーの基準運動状態を人為的に一定にする動作機構が発生し、その運動状態が常に補正され続ける。したがって、二次元画像化を目的とした原子間力顕微鏡では、その目的上不可欠な設計のため、静止位置における時系列の運動状態変化を記録し続けることは極めて困難であり、固液界面における液体物性の変化が大きいほど時系列での運動状態変化の記録は不可能となる。 As described above, in the atomic force microscope for two-dimensional scanning, feedback control and automatic correction control are performed so that the motion state of the cantilever in the scan stationary state is always constant in any scan mode. There is. In other words, if the motional state of the cantilever at the basic rest position is time-sequentially modulated by the change in liquid physical properties at the solid-liquid interface, an operating mechanism that artificially makes the reference motional state of the cantilever occur, The motion state is constantly corrected. Therefore, in an atomic force microscope for two-dimensional imaging, it is extremely difficult to keep track of time-series motion state changes at a stationary position because of the design essential for that purpose. The larger the change in physical properties, the more difficult it becomes to record changes in movement status in time series.
 そこで、本発明の目的は、固液界面近傍における液体の物性変化を経時的に解析できる装置及び方法を提供することにある。 Therefore, an object of the present invention is to provide an apparatus and method capable of analyzing a change in physical properties of a liquid in the vicinity of a solid-liquid interface over time.
 本発明者は鋭意検討の結果、固液界面近傍に振動子を配して振動させる一方で、固液界面近傍の液体物性を制御するとともに、液体物性の制御情報と振動子の運動状態とを時系列で記録することによって、固液界面近傍における液体の物性変化を経時的に解析できることを見出した。本発明は、この知見に基づいてさらに検討を重ねることにより完成したものである。 As a result of diligent study, the present inventor has arranged a vibrator in the vicinity of a solid-liquid interface to vibrate it, while controlling liquid physical properties in the vicinity of the solid-liquid interface, and at the same time provides control information on the liquid physical properties and the motion state of the vibrator. It was found that the change in physical properties of the liquid near the solid-liquid interface can be analyzed over time by recording in time series. The present invention has been completed by further studies based on this finding.
 即ち、本発明は、下記に掲げる態様の発明を提供する。
項1. 固液界面を構成する液体中に配置される振動子Aと、
 前記振動子を振動させる励振部Bと、
 前記固液界面近傍の液体物性を制御する物性制御部Cと、
 前記振動子Aの運動状態を解析する運動状態解析部Dと、
 前記物性制御部Cによる制御情報と前記運動状態解析部で得られた運動状態とを時系列で記録する時系列記録部Eと、
を含む、固液界面近傍の物性変化解析装置。
項2. 前記時系列記録部Eが、更に、前記振動子Aの変位情報及び/又は前記振動子の振動方向位置情報を時系列で記録し、
 前記運動状態解析部Dが、前記変位情報及び/又は前記振動方向位置情報から前記運動状態を解析する、項1に記載の固液界面近傍の物性変化解析装置。
項3. 前記運動状態解析部Dで得られた前記運動状態から物性を導出する物性導出部Fと、前記制御情報の経時変化を前記物性の経時変化に対応させて出力する出力部Gとをさらに含む、項1又は2に記載の物性変化解析装置。
項4. 前記振動子Aが、自由端に探針を有しないカンチレバーである、項1~3のいずれかに記載の固液界面近傍の物性変化解析装置。
項5. 前記振動子Aが、前記振動方向に貫通する貫通孔を有していない、項1~4のいずれかに記載の固液界面近傍の物性変化解析装置。
項6. 前記固液界面を収容するセルをさらに含む、項1~5のいずれかに記載の固液界面近傍の物性変化解析装置。
項7. 前記固液界面が電気化学的界面であり、前記制御情報が電流及び電圧の情報である、項1~6のいずれかに記載の固液界面近傍の物性変化解析装置。
項8. 固液界面を構成する液体中に配置された振動子を振動させる励振工程と、
 前記固液界面近傍の液体物性の制御を行う物性制御工程と、
 前記振動子の運動状態を解析する運動状態解析工程と、
 前記物性制御工程における制御情報と前記運動状態解析工程で得られた運動状態とを時系列で記録された状態で得る時系列記録工程と、
を含む、固液界面近傍の物性変化を解析する方法。
項9. 前記振動子の変位情報及び/又は前記振動子の振動方向位置情報を時系列で記録する予備情報時系列記録工程をさらに含み、
 前記運動状態解析工程において、前記運動状態を、予備情報時系列記録工程で記録された前記変位情報及び/又は前記振動方向位置情報から解析する、項8に記載の固液界面近傍の物性変化を解析する方法。
項10. 前記運動情報解析工程において、前記運動状態をエネルギー散逸値又は共振角振動数として得る、項8又は9に記載の固液界面近傍の物性変化を解析する方法。
項11. 前記振動子を三角波で振動させる、項8~10のいずれかに記載の固液界面近傍の物性変化を解析する方法。
項12. 前記固液界面が電気化学的界面であり、前記制御情報が電流及び電圧の情報である、項8~11のいずれかに記載の固液界面近傍の物性変化を解析する方法。
項13. 固液界面近傍の物性を解析させるために、コンピュータに、
 固液界面を構成する液体中に配置された振動子の運動状態を解析する手順と、
 前記運動状態と、前記固液界面近傍の液性物性の制御に関する制御情報とを、時系列で記録する手順と、
を実行させるための、固液界面近傍の物性の解析プログラム。
項14. 固液界面近傍の物性を解析させるために、コンピュータに、
 固液界面を構成する液体中に配置され且つ前記固液界面に沿って移動する振動子の運動状態を解析する手順と、
 移動する前記振動子の位置と、前記位置における前記振動子の前記運動状態とが対応する二次元マッピング像を取得する手順と、
 前記振動子の総移動距離から等分割された所定の移動距離の各々における前記運動状態の平均値を取得する手順と、
 前記運動状態の平均値の各々を前記振動子の移動の時系列に変換する手順と、
 前記運動状態の平均値と、前記固液界面近傍の液性物性の制御に関する制御情報とを、時系列で記録する手順と、
を実行させるための、固液界面近傍の物性の解析プログラム。
That is, the present invention provides the inventions of the following modes.
Item 1. A vibrator A arranged in a liquid forming a solid-liquid interface,
An excitation unit B for vibrating the vibrator,
A physical property control unit C for controlling the physical properties of the liquid in the vicinity of the solid-liquid interface,
A motion state analysis unit D that analyzes the motion state of the oscillator A;
A time-series recording unit E that records the control information by the physical property control unit C and the motion state obtained by the motion state analysis unit in time series,
An apparatus for analyzing changes in physical properties near the solid-liquid interface, including
Item 2. The time series recording unit E further records displacement information of the vibrator A and / or vibration direction position information of the vibrator in time series,
Item 2. The physical property change analysis apparatus according to Item 1, wherein the motion state analysis unit D analyzes the motion state from the displacement information and / or the vibration direction position information.
Item 3. It further includes a physical property deriving unit F that derives physical properties from the motion state obtained by the motion state analysis unit D, and an output unit G that outputs a temporal change of the control information in association with the temporal change of the physical property. Item 1. The physical property change analysis device according to item 1 or 2.
Item 4. 4. The physical property change analysis apparatus according to any one of Items 1 to 3, wherein the vibrator A is a cantilever having no probe at its free end.
Item 5. Item 5. The physical property change analyzer near the solid-liquid interface according to any one of Items 1 to 4, wherein the vibrator A does not have a through hole penetrating in the vibration direction.
Item 6. Item 6. The physical property change analysis apparatus in the vicinity of the solid-liquid interface according to any one of Items 1 to 5, further comprising a cell containing the solid-liquid interface.
Item 7. Item 7. The physical property change analyzer near the solid-liquid interface according to any one of Items 1 to 6, wherein the solid-liquid interface is an electrochemical interface, and the control information is current and voltage information.
Item 8. An exciting step of vibrating a vibrator arranged in a liquid forming a solid-liquid interface,
A physical property control step of controlling the liquid physical properties in the vicinity of the solid-liquid interface,
A motion state analysis step of analyzing the motion state of the oscillator;
A time-series recording step of obtaining control information in the physical property control step and the motion state obtained in the motion state analysis step in a state recorded in time series,
A method for analyzing changes in physical properties near the solid-liquid interface, including.
Item 9. Further comprising a preliminary information time series recording step of recording displacement information of the vibrator and / or vibration direction position information of the vibrator in time series,
9. In the motion state analysis step, the change of physical properties in the vicinity of the solid-liquid interface according to item 8 is analyzed, in which the motion state is analyzed from the displacement information and / or the vibration direction position information recorded in the preliminary information time series recording step. How to parse.
Item 10. 10. The method for analyzing a change in physical properties in the vicinity of a solid-liquid interface according to Item 8 or 9, wherein the motion state is obtained as an energy dissipation value or a resonance angular frequency in the motion information analysis step.
Item 11. Item 11. The method for analyzing a change in physical properties in the vicinity of a solid-liquid interface according to any one of Items 8 to 10, wherein the oscillator is vibrated with a triangular wave.
Item 12. 12. The method for analyzing physical property change in the vicinity of a solid-liquid interface according to any one of Items 8 to 11, wherein the solid-liquid interface is an electrochemical interface, and the control information is current and voltage information.
Item 13. In order to analyze the physical properties near the solid-liquid interface, the computer
A procedure for analyzing the motion state of an oscillator arranged in a liquid that forms a solid-liquid interface,
A procedure for recording the motion state and control information relating to control of liquid physical properties in the vicinity of the solid-liquid interface in time series,
A program for analyzing the physical properties near the solid-liquid interface for executing
Item 14. In order to analyze the physical properties near the solid-liquid interface, the computer
A step of analyzing a motion state of an oscillator arranged in a liquid forming a solid-liquid interface and moving along the solid-liquid interface;
A step of obtaining a two-dimensional mapping image in which the position of the moving oscillator and the motion state of the oscillator at the position correspond to each other;
A procedure of obtaining an average value of the motion state at each of predetermined moving distances equally divided from the total moving distance of the oscillator;
A procedure of converting each of the average values of the motion state into a time series of movement of the oscillator,
A procedure of recording the average value of the motion state and control information regarding control of liquid physical properties near the solid-liquid interface in time series,
A program for analyzing the physical properties near the solid-liquid interface for executing
 本発明によれば、固液界面近傍における液体の物性変化を経時的に解析できる装置及び方法が提供される。 According to the present invention, there is provided an apparatus and method capable of analyzing changes in physical properties of a liquid in the vicinity of a solid-liquid interface over time.
本発明の固液界面近傍の物性変化解析装置の一例を示すブロック図である。It is a block diagram which shows an example of the physical-property change analysis apparatus of solid-liquid interface vicinity of this invention. 固液界面近傍の濃度の違いによる振動子の振動態様の違いを説明する模式図である。FIG. 6 is a schematic diagram illustrating a difference in vibration mode of a vibrator due to a difference in concentration near a solid-liquid interface. 電気化学的界面近傍のリチウム濃度の違いによる振動子の振動態様の違いを説明する模式図である。It is a schematic diagram explaining the difference in the vibration mode of a vibrator by the difference in the lithium concentration near the electrochemical interface. 振動子の振動波の違いによる振動子の位置、加速度及び速度の変化の違いを示す。The difference in the change of the position, acceleration and velocity of the vibrator due to the difference of the vibration wave of the vibrator is shown. 実施例における固液界面近傍の物性変化の解析方法を説明する模式図である。FIG. 5 is a schematic diagram illustrating a method of analyzing a change in physical properties near a solid-liquid interface in Examples. 実施例で得られた固液界面近傍の物性変化の解析方法の結果である。It is a result of the analysis method of the physical property change in the vicinity of the solid-liquid interface obtained in the example. 原子間力顕微鏡を示すブロック図である。It is a block diagram which shows an atomic force microscope.
[1.固液界面近傍の物性変化解析装置]
 本発明の固液界面近傍の物性変化解析装置は、固液界面近傍において局所的に生じる物性変化を解析する装置であり、固液界面近傍の溶液中で振動させた振動子の運動状態が固液界面近傍の物性変化に伴って経時的に変化することを利用し、当該運動状態の経時的変化を固液界面近傍の物性制御情報とともに時系列で記録することによって、固液界面近傍の物性変化を解析する。
[1. Physical property change analyzer near solid-liquid interface]
The physical property change analyzer near the solid-liquid interface of the present invention is an apparatus for analyzing a physical property change locally occurring in the vicinity of the solid-liquid interface, and the motion state of a vibrator vibrated in a solution near the solid-liquid interface is fixed. By taking advantage of the fact that it changes over time with changes in the physical properties near the liquid interface, by recording the changes over time in the motion state together with the physical property control information near the solid-liquid interface in a time series, the physical properties near the solid-liquid interface can be recorded. Analyze changes.
[1-1.基本構成]
 図1に、本発明の固液界面近傍の物性変化解析装置の一例を示すブロック図を示す。図1に示すように、固液界面近傍の物性変化解析装置は、振動子A、励振部B(図中の振動子励振部B)、物性制御部C(図中の固液界面物性制御部C)、運動状態解析部D、及び時系列記録部Eを含む。また、本発明の固液界面近傍の物性変化解析装置は、固液界面を収容するセル、変位検出部、振動子駆動部、振動波生成部、物性導出部F、出力部G等を含むことができる。
[1-1. Basic configuration]
FIG. 1 is a block diagram showing an example of the physical property change analysis apparatus of the present invention near the solid-liquid interface. As shown in FIG. 1, the physical property change analysis apparatus near the solid-liquid interface includes a vibrator A, an excitation unit B (vibrator excitation unit B in the figure), a physical property control unit C (a solid-liquid interface physical property control unit in the drawing). C), a motion state analysis unit D, and a time series recording unit E are included. Further, the physical property change analyzing apparatus in the vicinity of the solid-liquid interface of the present invention includes a cell that accommodates the solid-liquid interface, a displacement detection unit, a vibrator drive unit, a vibration wave generation unit, a physical property derivation unit F, an output unit G, and the like. You can
[1-2.固液界面]
 本発明の固液界面近傍の物性変化解析装置の解析対象となる固液界面としては、固体と液体との界面近傍で局所的に溶液物性が変化する界面であれば何ら制限されない。当該溶液物性としては、その変化によって後述の振動子が受ける溶液抵抗が変化する物性であればよく、通常、粘度及び密度が挙げられる。従って、本発明における物性変化としては、液体中の物質濃度変化に伴う液体の粘度及び/又は密度変化、液体の密度変化に伴う液体の粘度及び/又は密度変化、液体の温度変化に伴う液体の粘度及び/又は密度変化等が挙げられる。このような溶液物性変化を局所的に生じる固液界面としては、電気化学的界面、触媒化学的界面、熱的界面等が挙げられる。また、固液界面近傍とは、液体の物性変化が生じる局所的な範囲であればよく、例えば電気化学的界面の場合は拡散層に相当する範囲であればよい。固液界面近傍のより具体的な範囲としては、例えば固体表面から0~300μm、好ましくは0~100μmの範囲内における場所をいう。
[1-2. Solid-liquid interface]
The solid-liquid interface to be analyzed by the physical property change analyzer near the solid-liquid interface of the present invention is not limited as long as it is an interface where the solution physical properties locally change near the interface between the solid and the liquid. The physical properties of the solution may be any physical properties such that the solution resistance received by the vibrator, which will be described later, changes due to the change, and usually includes viscosity and density. Therefore, as the physical property change in the present invention, the liquid viscosity and / or density change due to the substance concentration change in the liquid, the liquid viscosity and / or density change due to the density change of the liquid, and the liquid change due to the temperature change of the liquid Viscosity and / or density change and the like can be mentioned. Examples of the solid-liquid interface that locally causes such a change in the physical properties of the solution include an electrochemical interface, a catalytic chemical interface, and a thermal interface. Further, the vicinity of the solid-liquid interface may be a local range in which a change in the physical properties of the liquid occurs, and for example, in the case of an electrochemical interface, it may be a range corresponding to the diffusion layer. A more specific range near the solid-liquid interface is, for example, a position within a range of 0 to 300 μm, preferably 0 to 100 μm from the solid surface.
 電気化学的界面は、電気化学的反応によって固体表面近傍の液体物性を変化させるものであり、具体的には、電極(固体)及び電解液(液体)で構成される。電気化学的界面を有する電気化学的デバイスの例としては、電池、キャパシタ、バイオセンサ等が挙げられ、電気化学的界面が関与する電気化学的材料としては、電解精錬材料、メッキ材料等が挙げられる。つまり、本発明で電気化学的界面を解析対象とする場合、これら電気化学的デバイスの実動環境または電気化学的材料の反応環境におけるオペランド計測を可能とする。 An electrochemical interface changes the physical properties of a liquid near the surface of a solid by an electrochemical reaction. Specifically, it is composed of an electrode (solid) and an electrolytic solution (liquid). Examples of electrochemical devices having an electrochemical interface include batteries, capacitors, biosensors, and the like, and electrochemical materials involved in the electrochemical interface include electrolytic refining materials, plating materials, and the like. . That is, when an electrochemical interface is an analysis target in the present invention, it is possible to perform operand measurement in the actual environment of these electrochemical devices or the reaction environment of electrochemical materials.
 触媒化学的界面は、触媒反応によって固体表面近傍の液体物性を変化させるものであり、具体的には、不均質系触媒(固体)及び反応液(液体)で構成される。不均質系触媒のより具体的な例としては、光触媒等が挙げられる。つまり、本発明で触媒化学的界面を解析対象とする場合、このような不均質系触媒の反応環境におけるオペランド計測を可能とする。 The catalytic chemical interface changes the physical properties of the liquid near the surface of the solid by a catalytic reaction. Specifically, it is composed of a heterogeneous catalyst (solid) and a reaction liquid (liquid). A more specific example of the heterogeneous catalyst is a photocatalyst or the like. That is, in the present invention, when the catalytic chemical interface is an analysis target, it is possible to perform operand measurement in the reaction environment of such a heterogeneous catalyst.
 熱的界面は、温度変化によって固体表面近傍の液体物性を変化させるものであり、例えば、変温部材(固体)及び液体で構成される。変温部材を有するデバイスの例としては、熱電装置等が挙げられる。つまり、本発明で熱的界面を解析対象とする場合、このようなデバイスの実動環境におけるオペランド計測を可能とする。 The thermal interface changes the physical properties of the liquid near the surface of the solid due to temperature changes, and is composed of, for example, a temperature changing member (solid) and liquid. A thermoelectric device etc. are mentioned as an example of the device which has a temperature change member. That is, in the present invention, when the thermal interface is the analysis target, the operand measurement in the actual operating environment of such a device becomes possible.
 本発明によれば、固液界面内の固定位置(1座標)における物性の変化を解析することができるため、液体の物性変化を生じさせる固液間の電化学液反応又は触媒反応若しくは固体上の熱的変化は、固体表面全体で均質であってもよいがその必要はなく、不均一であってもよい。固体表面全体で上記反応又は変化が不均一である場合、固液界面内の様々な固定位置において個々に物性変化を解析することによって、固体表面における上記反応又は変化の不均一性を解析することもできる。 According to the present invention, it is possible to analyze a change in physical property at a fixed position (one coordinate) in a solid-liquid interface, and therefore, an electrochemical liquid reaction between solid and liquid or a catalytic reaction or solid-liquid reaction that causes a change in physical property of a liquid. The thermal change of may be homogeneous over the solid surface, but need not be, and may be non-uniform. When the above-mentioned reaction or change is non-uniform over the entire solid surface, analyze the non-uniformity of the above-mentioned reaction or change on the solid surface by individually analyzing changes in physical properties at various fixed positions within the solid-liquid interface. You can also
[1-3.セル]
 固液界面は、セル内に収容されて(つまり、固液界面を構成する固体と液体とがセル内に収容されて)、固液界面近傍の物性変化解析装置を用いた解析に供される。セルの具体的な構成は、固液界面の種類によって適宜設計される。セルは、上述のようなデバイス又は反応容器そのものであってもよい。
[1-3. cell]
The solid-liquid interface is housed in the cell (that is, the solid and liquid constituting the solid-liquid interface are housed in the cell) and is subjected to analysis using a physical property change analyzer near the solid-liquid interface. . The specific configuration of the cell is appropriately designed depending on the type of solid-liquid interface. The cell may be the device as described above or the reaction vessel itself.
 当該セルは、ユーザが適宜用意してもよいし、本発明の固液界面近傍の物性変化解析装置に含まれていてもよい。当該セルが本発明の固液界面近傍の物性変化解析装置に含まれている場合、セル内に収容すべき固体及び液体はユーザが適宜用意してもよいし、予め固液界面を構成する固体及び液体のいずれか一方が収容されており、いずれか他方をユーザが用意してもよい。 The cell may be appropriately prepared by the user, or may be included in the physical property change analyzer near the solid-liquid interface of the present invention. When the cell is included in the physical property change analyzer near the solid-liquid interface of the present invention, the solid and liquid to be contained in the cell may be appropriately prepared by the user, or the solid forming the solid-liquid interface in advance. Either the liquid or the liquid is contained, and the user may prepare the other.
 セルは、密閉型であってもよいし開放型であってもよい。揮発性の液体と固体との間の界面を解析対象とする場合は密閉型のセルであることがより好ましいが、不揮発性の液体と固体との間の界面を解析対象とする場合は密閉型及び開放型のいずれでも構わない。 The cell may be a closed type or an open type. A closed cell is more preferable when analyzing the interface between a volatile liquid and a solid, but a closed cell is used when analyzing the interface between a non-volatile liquid and a solid. It may be either open type or open type.
[1-4.振動子A]
 振動子は、セル内の、固液界面の近傍に配せられ、固液界面に対して遠近方向に振動させられる微小な部材である。振動子は、溶液の抵抗を受け、且つ溶液の物性変化に応じて変位及び/又は運動状態が変化するものであればよく、たとえば、板状部材、円板状部材、先端に球体が結合した針状部材等、任意の形状のものが用いられる。好ましい例として、図示されるような板状の片持ち梁(カンチレバー)が挙げられる。カンチレバーとしては、例えば原子間力顕微鏡で用いられるカンチレバーを用いることもできるが、後述のとおり、本発明は固液界面内の特定箇所における振動子の液中抵抗の経時変化を利用するため、カンチレバーの自由端には、通常の原子間力顕微鏡で必須となる探針を有しないことが好ましい。また、原子間力顕微鏡で液中抵抗を低減させるためにカンチレバーに、その振動方向に貫通する貫通孔を有することが好ましいこととは異なり、本発明における振動子は、液中抵抗の変化をより検出しやすくするため、振動方向に貫通する貫通孔を有していないことがより好ましい。
[1-4. Transducer A]
The vibrator is a minute member that is arranged in the vicinity of the solid-liquid interface in the cell and is vibrated in the perspective direction with respect to the solid-liquid interface. The oscillator may be one that receives the resistance of the solution and changes its displacement and / or motion state in response to changes in the physical properties of the solution. For example, a plate-shaped member, a disk-shaped member, or a spherical body bonded to the tip of the member. An arbitrary shape such as a needle-shaped member is used. A preferable example is a plate-shaped cantilever (cantilever) as illustrated. As the cantilever, for example, a cantilever used in an atomic force microscope can be used, but as described below, the present invention utilizes the change over time in the liquid resistance of the oscillator at a specific location within the solid-liquid interface, and thus the cantilever is used. It is preferable not to have a probe, which is indispensable in a normal atomic force microscope, at the free end. Further, in order to reduce the in-liquid resistance with an atomic force microscope, the cantilever is preferably different from that having a through hole penetrating in the vibration direction thereof. To facilitate detection, it is more preferable not to have a through hole that penetrates in the vibration direction.
 なお、本発明の固液界面近傍の物性変化解析装置では、振動子は、後述の励振部によって振動させられることを除き、物性制御を行っている間及び変位情報を検出している間においてその基端部は動かされないように設計される。 In the physical property change analysis apparatus of the present invention near the solid-liquid interface, the vibrator is controlled during physical property control and while detecting displacement information, except that the vibrator is vibrated by an excitation unit described later. The proximal end is designed to be immobile.
[1-5.励振部B]
 振動子の基端部(固定端)には励振部が設けられており、励振部は、振動子を固液界面に対して遠近方向に振動させる。本発明においては、振動子は溶液抵抗を受けるように振動すればよい。このため、振動子の振動は、その自由端が固液界面に対して少なくとも遠近方向を含む方向への振動であればよく、固液界面に対する垂直方向のみの往復振動に限らず、例えばねじれ振動であってもよい。励振部は、振動波生成部及び振動子駆動部等と共に励振ユニットを構成し、公知の機構によって振動子を励振させる。
[1-5. Excitation part B]
An exciting part is provided at the base end (fixed end) of the oscillator, and the exciter vibrates the oscillator in the perspective direction with respect to the solid-liquid interface. In the present invention, the vibrator may vibrate so as to receive the solution resistance. Therefore, the vibration of the oscillator may be any vibration as long as its free end is in a direction including at least the perspective direction with respect to the solid-liquid interface, and is not limited to reciprocating vibration only in the vertical direction with respect to the solid-liquid interface. May be The excitation unit constitutes an excitation unit together with the vibration wave generation unit and the oscillator drive unit, and excites the oscillator by a known mechanism.
 振動波生成部は、三角波、正弦波等の波形(好ましくは三角波)を発生させ、振動子駆動部を介して振動子を所定波形で振動させる。振動子駆動部は励振部に対して変位量及び/又は振動量に関する制御信号を供給し、振動子を振動させる。例えばピエゾ励振機構によって振動子を励振させる場合、励振部はピエゾ素子で構成され、振動子駆動部はピエゾドライバで構成することができる。他にも、振動子を励振させる機構として、レーザー光励振機構、熱励振機構、音叉型水晶振発振機構等が挙げられ、それぞれの機構に応じた励振ユニットが適宜構成されうる。振動子駆動部で行われた制御に関する情報は、振動子の振動方向位置情報(図中の位置情報)に対応する情報としてみなすことができ、その制御情報つまり振動方向位置情報は、一旦、後述の時系列記録部に履歴として記録されることができる。なお、ここでいう振動方向とは固液界面に対する垂直方向を意味する。また、位置(振動方向位置)とは振動中の振動子の自由端の位置を意味する。振動子の振動方向の振動幅としては例えば1~300nmが挙げられる。例えば原子間力顕微鏡では固体表面をスキャンする必要上、探針運動を安定させるために振動子の振動幅を50nm以上とる必要があるが、振動子の振動幅が大きいほど固液界面近傍の溶液に擾乱が生じやすくなる傾向となるため、本発明の固液界面近傍の物性変化解析装置では、固液界面近傍の局所的な物性に関して真の様相を捉えることに鑑みると、振動子の振動幅としては好ましくは40nm以下、より好ましくは30nm以下が挙げられる。振動子の振動幅の下限としては、液中抵抗の変化をより好ましく検知する観点から、好ましくは10nm以上が挙げられる。従って振動子の好ましい振動幅の具体的な範囲としては、1~40nm、10~40nm、1~30nm、10~30nmが挙げられる。振動速度としては、1秒間に100回以上が挙げられる。 The vibration wave generation unit generates a waveform such as a triangular wave or a sine wave (preferably a triangular wave), and vibrates the vibrator with a predetermined waveform via the vibrator drive unit. The vibrator driving unit supplies a control signal regarding the displacement amount and / or the vibration amount to the excitation unit to vibrate the vibrator. For example, when a vibrator is excited by a piezo-excitation mechanism, the excitation unit can be composed of a piezo element and the vibrator drive unit can be composed of a piezo driver. In addition, as a mechanism for exciting the vibrator, a laser light exciting mechanism, a thermal exciting mechanism, a tuning-fork type crystal vibrating mechanism, and the like can be cited, and an exciting unit corresponding to each mechanism can be appropriately configured. The information about the control performed by the vibrator drive unit can be regarded as information corresponding to the vibration direction position information (position information in the figure) of the vibrator, and the control information, that is, the vibration direction position information, will be described later. Can be recorded as a history in the time series recording unit. The vibration direction here means the direction perpendicular to the solid-liquid interface. Further, the position (position in the vibration direction) means the position of the free end of the vibrator during vibration. The vibration width of the vibrator in the vibration direction is, for example, 1 to 300 nm. For example, in an atomic force microscope, it is necessary to scan the solid surface, and the vibration width of the oscillator must be 50 nm or more in order to stabilize the probe movement. However, the larger the vibration width of the oscillator is, the solution near the solid-liquid interface becomes larger. In the physical property change analyzer near the solid-liquid interface of the present invention, since the disturbance tends to occur easily, in consideration of capturing a true aspect regarding the local physical properties near the solid-liquid interface, the vibration width of the oscillator is considered. Is preferably 40 nm or less, more preferably 30 nm or less. The lower limit of the vibration width of the vibrator is preferably 10 nm or more from the viewpoint of more preferably detecting a change in resistance in liquid. Therefore, the preferable range of the vibration width of the vibrator is, for example, 1 to 40 nm, 10 to 40 nm, 1 to 30 nm, and 10 to 30 nm. The vibration speed may be 100 times or more per second.
[1-6.物性制御部C]
 振動している振動子の変位及び/又は運動状態は、固液界面近傍の物性変化に応じて変化する。固液界面近傍の液体物性の制御は、物性制御部によって行う。物性制御部は、直接的には固液界面を構成する固体に対して制御を行い、それに付随して固液界面近傍の液体物性を変化させる。物性制御部は、固液界面の種類に応じて適宜設計される。例えば、固液界面における固体が電気的に制御されるものである場合(例えば、電気化学的界面及び熱的界面等)は、物性制御部として電流及び電圧を調整できる機構を用いることができ、固液界面における固体が光化学的に制御されるものである場合(例えば、触媒化学的界面等)は、物性制御部として光強度を調整できる機構を用いることができる。物性制御部で行われた制御に関する情報は、一旦、後述の「1-9.時系列記録部E」で制御履歴として記録される。
[1-6. Physical property control section C]
The displacement and / or motion state of the vibrating oscillator changes according to changes in physical properties near the solid-liquid interface. The physical property control unit controls the physical properties of the liquid in the vicinity of the solid-liquid interface. The physical property control unit directly controls the solid that forms the solid-liquid interface, and changes the physical properties of the liquid in the vicinity of the solid-liquid interface with the control. The physical property control unit is appropriately designed according to the type of solid-liquid interface. For example, when the solid at the solid-liquid interface is electrically controlled (for example, an electrochemical interface and a thermal interface), a mechanism capable of adjusting current and voltage can be used as the physical property control unit, When the solid at the solid-liquid interface is photochemically controlled (for example, a catalytic chemical interface), a mechanism capable of adjusting the light intensity can be used as the physical property control unit. Information relating to the control performed by the physical property control unit is once recorded as a control history in “1-9. Time-series recording unit E” described later.
 制御すべき物性の制御レベル(例えば、電気化学的界面又は熱的界面に対する電流及び電圧のレベル;光化学的界面に対する光強度のレベル)としては特に限定されない。本発明によれば優れた精度で固液界面近傍の物性変化を解析することができるため、わずかな制御レベルによる物性変化も精度良く解析できる。わずかな制御レベルとしては、例えば電気化学的界面に対する電流密度の絶対値として0.2mAcm-2以下が挙げられる。一方で、後述の「1-7.変位検出部」で述べるとおり、本発明の固液界面近傍の物性変化解析装置においては、原子間力顕微鏡に必須構成として実装されている、固液界面の高さ方向(固液界面に対して垂直の方向)の変動に対してカンチレバーの変位が安定且つ一定となるようにフィードバック制御する回路が備わっていないため、原子間力顕微鏡であれば必ずフィードバック制御が働くような大きなカンチレバー変位をもたらす制御レベル(例として、電気化学的界面に対する電流密度の絶対値として0.2mAcm-2超、好ましくは2mAcm-2以上、より好ましくは5mAcm-2以上が挙げられる。)であっても、当該制御レベルによる物性変化をそのまま捉えて解析する。上記の電流密度の絶対値の範囲の上限としては特に限定されないが、例えば12mAcm-2以下、好ましくは10mAcm-2以下、より好ましくは8mAcm-2以下が挙げられる。この場合の具体的な電流密度の絶対値の範囲の例としては、0.2mAcm-2超12mAcm-2以下、0.2mAcm-2超10mAcm-2以下、0.2mAcm-2超8mAcm-2以下、2mAcm-2~12mAcm-2、2mAcm-2~10mAcm-2、2mAcm-2~8mAcm-2、4mAcm-2~12mAcm-2、4mAcm-2~10mAcm-2、4mAcm-2~8mAcm-2が挙げられる。 The control level of the physical properties to be controlled (for example, the level of current and voltage for the electrochemical interface or the thermal interface; the level of light intensity for the photochemical interface) is not particularly limited. According to the present invention, it is possible to analyze the change in the physical properties in the vicinity of the solid-liquid interface with excellent accuracy, and thus it is possible to accurately analyze the change in the physical properties due to a slight control level. As a slight control level, for example, an absolute value of the current density with respect to the electrochemical interface is 0.2 mAcm −2 or less. On the other hand, as will be described later in “1-7. Displacement detection unit”, in the physical property change analyzer near the solid-liquid interface of the present invention, the solid-liquid interface of Feedback control is always necessary for atomic force microscopes because there is no circuit for feedback control so that the displacement of the cantilever is stable and constant with respect to fluctuations in the height direction (direction perpendicular to the solid-liquid interface). as the control level (eg bring great cantilever displacement as acts, 0.2MAcm -2 greater as the absolute value of the current density for an electrochemical interface, preferably 2MAcm -2 or more, or more preferably 5MAcm -2 or more .), The change in physical properties due to the control level is captured as it is and analyzed. The upper limit of the range of the absolute value of the current density is not particularly limited, for example 12MAcm -2 or less, preferably 10MAcm -2 or less, or more preferably 8MAcm -2 or less. In this case, specific examples of the range of the absolute value of the current density include 0.2 mAcm -2 to 12 mAcm -2 or less, 0.2 mAcm -2 to 10 mAcm -2 or less, and 0.2 mAcm -2 to 8 mAcm -2 or less. 2mAcm -2 to 12mAcm -2 , 2mAcm -2 to 10mAcm -2 , 2mAcm -2 to 8mAcm -2 , 4mAcm -2 to 12mAcm -2 , 4mAcm -2 to 10mAcm -2 , 4mAcm -2 to 8mAcm -2 To be
 つまり、本発明によれば、原子間力顕微鏡であれば必ずフィードバック制御が働くレベルの制御レベルを含む、幅広いレベルで制御される固液界面近傍の液体物性を解析することができる。 That is, according to the present invention, it is possible to analyze liquid physical properties in the vicinity of a solid-liquid interface controlled at a wide range including a control level at which feedback control always works in an atomic force microscope.
[1-7.変位検出部]
 振動子の振動による変位は、変位検出部によって検出される。図示された態様では、光梃子方式の検出機構を示している。光梃子方式の場合、変位検出部は、光源、検出器及びプリアンプ等で構成され、光源(例えばレーザ光源)から出射された光(レーザ光)が振動子の背面で反射し、その反射光が検出器に入射し、検出器で振動子の変位(たわみ)を示す変位情報(変位信号)に変換され、変位情報(変位信号)がプリアンプで増幅された後に運動状態の解析に用いられる。この変位情報は、一旦、「1-9.後述の時系列記録部E」に記録されることができる。
[1-7. Displacement detector]
The displacement due to the vibration of the vibrator is detected by the displacement detector. The illustrated embodiment shows an optical lever type detection mechanism. In the case of the optical leverage method, the displacement detection unit is composed of a light source, a detector, a preamplifier, etc., and the light (laser light) emitted from the light source (for example, laser light source) is reflected on the back surface of the vibrator, and the reflected light is The light enters the detector, is converted into displacement information (displacement signal) indicating displacement (deflection) of the vibrator by the detector, and the displacement information (displacement signal) is amplified by the preamplifier and then used for analysis of the motion state. This displacement information can be temporarily recorded in “1-9. Time-series recording unit E described later”.
 変位検出部は、図示された光梃子方式に限らず、例えば変位自己検知方式の検出機構により構成されていてもよい。変位自己検知方式では、振動子の基端部に検出器(例えばピエゾ抵抗センサ、圧電薄膜センサ等)が取り付けられて構成されており、この検出器は、振動子の変位(たわみ)によって振動子基端部に生じる圧力を検知して変位情報(変位信号)に変換する。変位自己検知方式は、検出機構を簡素化できる点、及び検出器ごとセルに密閉することができるため測定安定性に優れる点等で好ましい。 The displacement detection unit is not limited to the optical lever type shown in the figure, but may be configured by a displacement self-detection type detection mechanism, for example. In the displacement self-detection method, a detector (for example, a piezoresistive sensor, a piezoelectric thin film sensor, etc.) is attached to the base end part of the vibrator, and this detector detects the vibrator by the displacement (deflection) of the vibrator. The pressure generated at the base end is detected and converted into displacement information (displacement signal). The displacement self-detection method is preferable in that the detection mechanism can be simplified, and that the cell can be hermetically sealed together with the detector and that the measurement stability is excellent.
 なお、本発明の固液界面近傍の物性変化解析装置においては、振動子の変位の経時的変化に関する情報を取得することが必須であるため、原子間力顕微鏡に必須構成として実装されている、固液界面の高さ方向(固液界面に対して垂直の方向)の変動に対してカンチレバーの変位が安定且つ一定となるようにフィードバック制御する回路(例えば、図7におけるフィードバック制御部)は備わっていない。 Incidentally, in the physical property change analyzer near the solid-liquid interface of the present invention, since it is essential to obtain information about the change over time of the displacement of the oscillator, it is mounted as an essential component in the atomic force microscope, A circuit (for example, a feedback control unit in FIG. 7) for feedback control is provided so that the displacement of the cantilever is stable and constant with respect to fluctuations in the height direction of the solid-liquid interface (direction perpendicular to the solid-liquid interface). Not not.
[1-8.運動状態解析部D]
 運動状態解析部では、振動子駆動部における振動方向位置情報及び/又は変位検出部における変位情報、好ましくは後述の時系列記録部に記録された振動方向位置情報及び/又は変位情報を利用して、振動子の運動状態を解析する。なお、ここで言う運動とは、振動子の振動を定量化可能な物理量(例えば、共振角振動数、振動子の一回振動において消費されるエネルギー等)によって把握できる振動現象をいい、その状態(運動状態)は、具体的には、共振角振動数、エネルギー散逸値等の定量値で表されるものである。
[1-8. Motion state analysis part D]
The motion state analysis unit uses the vibration direction position information in the vibrator drive unit and / or the displacement information in the displacement detection unit, preferably the vibration direction position information and / or displacement information recorded in the time series recording unit described later. , Analyze the motion state of the oscillator. The motion referred to here is a vibration phenomenon that can be grasped by a physical quantity that can quantify the vibration of the vibrator (for example, resonance angular frequency, energy consumed in one vibration of the vibrator, etc.), and its state The (movement state) is specifically represented by a quantitative value such as a resonance angular frequency and an energy dissipation value.
 運動状態解析部は、振動方向位置情報及び/又は変位情報を利用して振動子の運動状態を解析できるアルゴリズムを実装していればよい。運動状態を解析する手法としては特に限定されないため公知の手法に基づいたアルゴリズムを実装させることができる。運動状態を解析する手法としては、例えば、振動応答解析又はエネルギー散逸解析が挙げられる。 The motion state analysis unit may be equipped with an algorithm that can analyze the motion state of the oscillator using the vibration direction position information and / or displacement information. Since the method of analyzing the motion state is not particularly limited, it is possible to implement an algorithm based on a known method. Examples of methods for analyzing the motion state include vibration response analysis and energy dissipation analysis.
 運動状態解析部が振動応答解析に基づくアルゴリズムを実装している場合、運動状態解析部は、振動子駆動部による振動方向位置情報を振動振幅情報として利用し、あるいは、振動子の変位情報(具体的には光梃子の受光スポットの位置ずれの大きさ)から見積もった振動振幅情報を利用し、加振周波数に対して振動子の振動振幅が最大となる状態(共振状態)つまり共振角振動数を運動状態の情報として得る。そして、この場合における本発明の固液界面近傍の物性変化解析装置においては、運動状態解析部から振動子駆動部へ、振幅値の最大値を手掛かりにフィードバックを行うフィードバック制御部が設けられ、これによって、時間に伴い変化する共振角振動数を追跡できるようにする。 When the motion state analysis unit implements the algorithm based on the vibration response analysis, the motion state analysis unit uses the vibration direction position information by the vibrator drive unit as the vibration amplitude information, or the displacement information of the vibrator (specifically, Specifically, the vibration amplitude information estimated from the position deviation of the light receiving spot of the optical lever is used, and the vibration amplitude of the vibrator becomes maximum with respect to the excitation frequency (resonance state), that is, the resonance angular frequency. Is obtained as information on the motion state. Then, in this case, in the physical property change analyzer near the solid-liquid interface of the present invention, a feedback control unit that performs feedback from the motion state analysis unit to the oscillator drive unit by using the maximum value of the amplitude as a clue is provided. Enables to track the resonance angular frequency which changes with time.
 運動状態解析部がエネルギー散逸解析に基づくアルゴリズムを実装している場合、運動状態解析部は、変位情報と振動方向位置情報とから得られる振動子の周期ごとのフォースカーブから、それぞれの周期におけるエネルギー消費量つまりエネルギー散逸値を運動状態の情報として得る。 When the motion state analysis unit implements an algorithm based on energy dissipation analysis, the motion state analysis unit determines the energy in each cycle from the force curve for each cycle of the oscillator obtained from the displacement information and the vibration direction position information. The consumption amount, that is, the energy dissipation value is obtained as the information of the motion state.
 得られた運動状態(例えば、共振角振動数、エネルギー散逸値等)は、後述の「1-9.時系列記録部E」に記録される。 The obtained motion state (for example, resonance angular frequency, energy dissipation value, etc.) is recorded in "1-9. Time series recording unit E" described later.
 なお、本発明の固液界面近傍の物性変化解析装置では、固液界面の制御中における振動子の運動状態の変化を捉える必要があるため、原子間力顕微鏡に必須構成として実装されている、運動状態解析部で得られた運動状態が所定以上になると補正する回路(例えば、図7における運動状態補正部)は備わっていない。 Incidentally, in the physical property change analysis apparatus in the vicinity of the solid-liquid interface of the present invention, it is necessary to capture the change in the motion state of the oscillator during the control of the solid-liquid interface. A circuit (for example, the motion state correction unit in FIG. 7) that corrects when the motion state obtained by the motion state analysis unit exceeds a predetermined level is not provided.
[1-9.時系列記録部E]
 時系列記録部は、情報を時系列で記録するものであって、任意の記録媒体(記憶媒体)で構成される。好ましくは、ハードディスク等の不揮発性記録媒体で構成される。時系列記録部では、少なくとも、運動状態解析部で取得した運動状態(例えば、共振角振動数、エネルギー散逸値等)の情報と、物性制御部による制御情報とを、時系列で記録する。時系列で記録するとは、取得した情報を、時間要素に紐付けて記録することをいう。つまり、取得した情報が、物性制御部による制御履歴と同期したデータセットを得る。これによって、運動状態の変化が、当該変化を生じさせた制御情報と関連づけられた状態で経時的に記録される。
[1-9. Time series recording section E]
The time-series recording unit records information in time series, and is composed of an arbitrary recording medium (storage medium). It is preferably composed of a non-volatile recording medium such as a hard disk. The time-series recording unit records at least information on the motion state (for example, resonance angular frequency, energy dissipation value, etc.) acquired by the motion-state analyzing unit and control information by the physical property control unit in time series. Recording in time series means recording the acquired information in association with a time element. That is, a data set in which the acquired information is synchronized with the control history by the physical property control unit is obtained. Thereby, the change in the exercise state is recorded over time in a state associated with the control information that caused the change.
 なお、本発明の固液界面近傍の物性変化解析装置では、固液界面の制御中における振動子の運動状態の変化を捉える必要があるため、時系列記録部では、固液界面内の固定された位置(固液界面内の1座標)における振動子の運動状態を、振動子の複数回振動に亘って時系列で記録する。記録レートとしては、例えば固液界面内の静止位置(1座標)において1秒当たり50~2000個の運動状態の情報を記録できる程度が挙げられる。 In the physical property change analyzer near the solid-liquid interface of the present invention, it is necessary to capture the change in the motion state of the oscillator during the control of the solid-liquid interface. The motion state of the oscillator at the different position (one coordinate in the solid-liquid interface) is recorded in time series over the multiple oscillations of the oscillator. The recording rate is, for example, such a degree that 50 to 2000 pieces of motion state information can be recorded per second at a stationary position (one coordinate) in the solid-liquid interface.
 時系列記録部には、上記の情報の他にも、振動子駆動部における振動方向位置情報、及び/又は変位検出部における変位情報も予備情報として同様に時系列で記録することが好ましい。つまり、振動方向位置情報の履歴及び/又は変位情報の経時変化を時間要素と紐付けたデータセットを系列記録部でストックし、それら振動方向位置情報及び/又は変位情報を運動状態解析部で利用できるようにしておくことができる。 In addition to the above information, it is preferable to record the vibration direction position information in the vibrator drive section and / or the displacement information in the displacement detection section in the time series recording section in the same time series as the preliminary information. That is, a data set in which the history of vibration direction position information and / or the change over time of displacement information are associated with time elements is stocked in the sequence recording unit, and the vibration direction position information and / or displacement information is used in the motion state analysis unit. You can leave it ready.
 上述のように、時系列記録部では、固液界面内の固定された位置(固液界面内の1座標)における振動子の運動状態を、振動子の複数回振動に亘って時系列で記録するため、例えば変位情報と振動方向位置情報とからフォースカーブ測定を行って運動状態解析に用いる場合、振動子の一回振動分のフォースカーブに変位情報と位置情報とをn点必要とし、且つ1秒にm回のフォースカーブを測定するとすると、1座標において1秒当たりn×mセットの変位情報-位置情報の組み合わせを予備情報として記録することができる。予備情報から、運動状態解析部において1座標における1秒当たりm個の運動状態の情報を得て、時系列記録部で1秒当たりm個の運動状態の情報を記録することができる。 As described above, in the time-series recording unit, the motion state of the oscillator at the fixed position in the solid-liquid interface (one coordinate in the solid-liquid interface) is recorded in time series over the multiple oscillations of the oscillator. Therefore, for example, when force curve measurement is performed from displacement information and vibration direction position information and used for motion state analysis, n points of displacement information and position information are required in the force curve for one vibration of the oscillator, and When the force curve is measured m times per second, n × m sets of displacement information-position information combinations per second at one coordinate can be recorded as preliminary information. From the preliminary information, the motion state analysis unit can obtain m motion state information per second at one coordinate, and the time series recording unit can record m motion state information per second.
 なお、時系列記録部には、上述の情報の他に、後述の物性導出部で得られた物性の情報も同様に時系列で記録することもできる。 Note that, in addition to the above-mentioned information, the time-series recording unit can also record time-series information of physical properties obtained by the physical property deriving unit described later.
[1-10.物性導出部F]
 物性導出部は、時系列記録部で得られた振動子の運動状態の情報から、実際の溶液物性を導出する。物性導出部は、運動状態の情報から溶液物性を導出できるアルゴリズムを実装していればよい。溶液物性を導出する手法としては特に限定されず、用いた運動状態の解析手法の種類に応じて適宜決定することができる。例えば、種々の溶液物性における運動状態の情報を示す基礎データセットを予め作成しておき、検量的に、取得した運動情報からそれに対応する溶液物性を自動検索することで溶液物性を導出することができる。
[1-10. Physical property derivation part F]
The physical property deriving unit derives the actual physical property of the solution from the information on the motion state of the oscillator obtained by the time series recording unit. The physical property deriving unit only needs to implement an algorithm that can derive the physical properties of the solution from the information on the motion state. The method of deriving the solution physical properties is not particularly limited, and can be appropriately determined according to the type of the motion state analysis method used. For example, it is possible to derive a solution physical property by automatically creating a basic data set showing information on the motion state in various physical properties of the solution and automatically searching for the solution physical property corresponding to the acquired motion information quantitatively. it can.
[1-11.出力部G]
 出力部では、時間と運動状態との関係、又は時間と具体的な溶液物性との関係を、物性制御情報に対応させた任意の形式で表示することができる。出力形式は、物性制御情報に伴う溶液物性の変化を認識できるものであれば特に限定されないが、例えば、時間軸に対して運動状態又は具体的な溶液物性と制御情報とを並列軸で展開したグラフの形式等が挙げられる。
[1-11. Output part G]
The output unit can display the relationship between time and motion state or the relationship between time and specific solution physical properties in an arbitrary format corresponding to the physical property control information. The output format is not particularly limited as long as it can recognize the change in the solution physical properties associated with the physical property control information. For example, the motion state or specific solution physical properties and control information are developed in parallel axes with respect to the time axis. Examples include graph formats.
[1-12.その他]
 本発明の固液界面近傍の物性変化解析装置では、固液界面の制御中における振動子の運動状態の変化を捉える必要があるため、固液界面内の固定された位置(固液界面内の1座標)における振動子の運動状態を、振動子の複数回振動に亘って時系列で記録できればよい。このため、測定中に固液界面内で振動子を移動させる機能は必要ない。測定中に振動子が固液界面内で移動すれば界面近傍の溶液に擾乱が生じるため、固液界面近傍の物性に関して真の様相を捉えることに鑑みると、測定中に固液界面内で振動子を移動させないことが重要である。さらに、固液界面における反応箇所と未反応箇所との見極めの観点からも、振動子の直下で反応が起こっているか否かを捉えるために測定中に固液界面内で振動子を移動させないことは重要である。
[1-12. Other]
In the physical property change analyzer near the solid-liquid interface of the present invention, since it is necessary to capture the change in the motion state of the oscillator during the control of the solid-liquid interface, a fixed position within the solid-liquid interface ( It suffices if the motion state of the vibrator at one coordinate) can be recorded in time series over a plurality of vibrations of the vibrator. Therefore, the function of moving the oscillator within the solid-liquid interface during measurement is not necessary. If the oscillator moves inside the solid-liquid interface during measurement, the solution near the interface will be disturbed, so considering the true aspect of the physical properties near the solid-liquid interface, the vibration inside the solid-liquid interface during measurement will occur. It is important not to move the child. In addition, from the viewpoint of identifying the reaction site and the unreacted site on the solid-liquid interface, do not move the oscillator inside the solid-liquid interface during measurement in order to determine whether or not the reaction is occurring just below the oscillator. Is important.
 また、上述の「1-7.変位検出部」で述べたように、測定中に固液界面の垂直方向に振動子をフィードバックによって移動(当該移動には、振動による上下動は含まない)させる機能もない。従って、本発明の固液界面近傍の物性変化解析装置では、原子間力顕微鏡に必須構成として備わっている、測定中のxy面内を走査するスキャナ及びフィードバック回路に制御されたz方向の移動手段は備わっていない。しかしながら、固液界面に振動子を接近させたり、固液界面内で振動子の測定箇所を選択したりする目的で、固液界面に対する垂直方向及び固液界面内方向に振動子を移動させる手段は備えられていてよい。このような移動手段としては、手動ネジ方式、モータドライブ方式、圧電素子(ピエゾ)方式等の駆動装置が挙げられる。 Further, as described in the above “1-7. Displacement detection unit”, the oscillator is moved by feedback in the vertical direction of the solid-liquid interface during measurement (the movement does not include vertical movement due to vibration). It has no function. Therefore, in the physical property change analyzer near the solid-liquid interface of the present invention, the z-direction moving means controlled by the scanner and the feedback circuit, which is included in the atomic force microscope as an essential component, scans in the xy plane during measurement. Is not provided. However, a means for moving the oscillator in a direction perpendicular to the solid-liquid interface and an inward direction of the solid-liquid interface for the purpose of bringing the oscillator close to the solid-liquid interface and selecting a measurement point of the oscillator in the solid-liquid interface. May be provided. Examples of such moving means include a driving device such as a manual screw system, a motor drive system, and a piezoelectric element (piezo) system.
[2.固液界面近傍の物性変化を解析する方法]
 本発明の固液界面近傍の物性変化を解析する方法は、固液界面近傍の溶液中で振動させた振動子の運動状態が固液界面近傍の物性変化に伴って経時的に変化することを利用し、当該運動状態の経時的変化を固液界面近傍の物性制御情報とともに時系列で記録することによって、固液界面近傍の物性変化を解析する方法である。
[2. Method to analyze changes in physical properties near solid-liquid interface]
The method of analyzing the physical property change near the solid-liquid interface of the present invention is that the motion state of the oscillator vibrated in the solution near the solid-liquid interface changes with time along with the physical property change near the solid-liquid interface. This is a method of analyzing the physical property change in the vicinity of the solid-liquid interface by utilizing the time-series recording of the temporal change of the motion state together with the physical property control information in the vicinity of the solid-liquid interface.
[2-1.基本工程]
 本発明の固液界面近傍の物性変化を解析する方法は、励振工程と、物性制御工程と、運動状態解析工程と、時系列記録工程とを含む。本発明の固液界面近傍の物性変化を解析する方法は、上述「1.固液界面近傍の物性変化解析装置」に記載の固液界面近傍の物性変化解析装置を用いて実施することができる。
[2-1. Basic process]
The method for analyzing the physical property change near the solid-liquid interface of the present invention includes an excitation step, a physical property control step, a motion state analysis step, and a time series recording step. The method of analyzing the physical property change in the vicinity of the solid-liquid interface of the present invention can be carried out using the physical property change analyzer in the vicinity of the solid-liquid interface described in "1. Physical property change analyzer in the vicinity of solid-liquid interface". .
[2-2.励振工程]
 励振工程では、固液界面を構成する液体中に配置された振動子を振動させる。励振工程は、上述の固液界面近傍の物性変化解析装置において、振動子に対して励振部(及びそれを含む励振ユニット)を用いて行うことができ、固液界面、振動子、及び振動子を振動させる具体的態様の詳細は上述「1-2.固液界面」~「1-5.励振部B」に記載の通りである。
[2-2. Excitation process]
In the excitation step, the vibrator arranged in the liquid forming the solid-liquid interface is vibrated. The excitation step can be performed by using the excitation unit (and an excitation unit including the same) for the oscillator in the above-described physical property change analysis apparatus near the solid-liquid interface. The details of the specific mode for vibrating is as described in "1-2. Solid-liquid interface" to "1-5. Excitation section B".
[2-3.物性制御工程]
 物性制御工程では、固液界面近傍の液体物性の制御を行う。液体物性の制御の具体的態様は上述「1-6.物性制御部C」に記載の通りである。また、後述の「2-5.運動状態解析工程」における「エネルギー散逸解析」で述べるように、解析の簡素化の観点から、振動子を励起する振動波は、通常の原子間力顕微鏡で採用されている正弦波よりも三角波の方が好ましい。
[2-3. Physical property control process]
In the physical property control step, liquid physical properties near the solid-liquid interface are controlled. The specific mode of controlling the physical properties of the liquid is as described in the above “1-6. Physical property control section C”. In addition, as described in “Energy dissipation analysis” in “2-5. Motion state analysis process” to be described later, from the viewpoint of simplification of analysis, the vibration wave that excites the oscillator is adopted in a normal atomic force microscope. The triangular wave is preferable to the sine wave that is used.
[2-4.変位検出工程]
 振動子の振動による変位は、変位を検出する機構を用いて検出される(変位検出工程)。変位を検出する機構としては特に限定されないが、上述「1-7.変位検出部」で述べたように、光梃子方式及び変位自己検知方式等が挙げられる。なお、本発明の固液界面近傍の物性変化を解析する方法においては、振動子の変位の経時的変化に関する情報を取得することが必須であるため、通常の原子間力顕微鏡を用いた解析法で必須となる、固液界面の高さ方向(固液界面に対して垂直の方向)の変動に対してカンチレバーの変位が安定且つ一定となるようにフィードバック制御する工程は含まれない。
[2-4. Displacement detection process]
The displacement caused by the vibration of the vibrator is detected using a mechanism that detects the displacement (displacement detection step). The mechanism for detecting the displacement is not particularly limited, but as described in the above “1-7. Displacement detection unit”, the optical leverage method, the displacement self-detection method and the like can be mentioned. Incidentally, in the method of analyzing the physical property change in the vicinity of the solid-liquid interface of the present invention, since it is essential to obtain information on the change over time of the displacement of the oscillator, an analysis method using a normal atomic force microscope The step of performing feedback control, which is indispensable so that the displacement of the cantilever is stable and constant with respect to the variation in the height direction of the solid-liquid interface (direction perpendicular to the solid-liquid interface) is not included.
[2-5.運動状態解析工程]
 運動状態解析工程では、振動子の運動状態を解析する。運動状態解析工程は、上述の固液界面近傍の物性変化解析装置において、「1-8.運動状態解析部D」に記載した運動状態解析部によって行うことができ、運動状態を解析する手法としては、振動子の変位情報及び/又は振動方向位置情報を利用して物性変化によって生じる運動状態の変化を評価できる手法であれば特に限定されない。
[2-5. Motion state analysis process]
In the motion state analysis step, the motion state of the oscillator is analyzed. The motion state analysis step can be performed by the motion state analysis unit described in “1-8. Motion state analysis unit D” in the physical property change analysis apparatus near the solid-liquid interface, and is used as a method for analyzing the motion state. Is not particularly limited as long as it is a method that can evaluate the change of the motion state caused by the change of the physical property by using the displacement information of the vibrator and / or the position information of the vibration direction.
 図2に模式的に示すように、固液界面近傍の溶液中で100nm程度の振動振幅で振動子を振動させると、振動子は、溶液の物性(例えば濃度)に依存した液体抵抗を受ける。例えば液体の物質濃度が基準濃度である場合、振動子の振動中のたわみ(変位)は図2(a)に示す程度であることに対し、図2(b)に示すように液体の物質濃度がより高濃度となると、振動子はより高い溶液抵抗を受けるためより大きくたわみ、図2(c)に示すように液体の物質濃度がより低濃度となると、振動子が受ける溶液抵抗は小さくなるためたわみも小さくなる。 As shown schematically in FIG. 2, when a vibrator is vibrated with a vibration amplitude of about 100 nm in a solution near the solid-liquid interface, the vibrator receives liquid resistance that depends on the physical properties (eg concentration) of the solution. For example, when the substance concentration of the liquid is the reference concentration, the deflection (displacement) of the vibrator during vibration is about the amount shown in FIG. 2A, whereas the substance concentration of the liquid is as shown in FIG. 2B. Becomes higher, the vibrator receives a higher solution resistance, so that it flexes more, and as shown in FIG. 2 (c), when the substance concentration of the liquid becomes lower, the solution resistance received by the vibrator becomes smaller. Deflection is also small.
 より具体的な例として、固液界面が金属リチウム/電解液系で構成される電気化学的界面である場合を図3に示す。図3(a)に示すように、電流がゼロである場合(開回路状態)においては、固液界面近傍のリチウムイオン濃度は電解液全体におけるリチウムイオン濃度とほぼ等しい。これに対し、図3(b)に示すように、放電を行った場合(溶解過程)は、固液界面近傍のリチウムイオン濃度が局所的に上昇し、振動子はより高い溶液抵抗を受けるためより大きくたわむ。また、図3(c)に示すように、充電を行った場合(電析過程)は、固液界面近傍のリチウムイオン濃度が局所的に低下し、振動子が受ける溶液抵抗は小さくなるためたわみも小さくなる。これによって、当該電気学的界面を有するデバイスの動作中におけるリチウムイオン濃度の変化を追うことが可能になる。 As a more specific example, Fig. 3 shows the case where the solid-liquid interface is an electrochemical interface composed of a metal lithium / electrolyte system. As shown in FIG. 3A, when the current is zero (open circuit state), the lithium ion concentration near the solid-liquid interface is almost equal to the lithium ion concentration in the entire electrolytic solution. On the other hand, as shown in FIG. 3B, in the case of discharging (dissolution process), the lithium ion concentration near the solid-liquid interface locally rises and the oscillator receives a higher solution resistance. Bend larger. In addition, as shown in FIG. 3C, when charging (electrodeposition process), the concentration of lithium ions near the solid-liquid interface is locally reduced, and the solution resistance received by the vibrator is reduced. Also becomes smaller. This makes it possible to follow changes in the lithium ion concentration during the operation of the device having the electrical interface.
 振動子の運動状態を解析する具体的な手法としては、例えば、振動応答解析又はエネルギー散逸解析が挙げられる。 As specific methods for analyzing the motion state of the oscillator, there are vibration response analysis or energy dissipation analysis, for example.
(振動応答解析)
 振動応答解析では、振動子駆動部による振動方向位置情報を振動振幅情報として利用し、あるいは、振動子の変位情報(具体的には光梃子の受光スポットの位置ずれの大きさ)から見積もった振動振幅情報を利用し、加振周波数に対して振動子の振動振幅が最大となる状態(共振状態)つまり共振角振動数を運動状態の情報として得る。上述のとおり、溶液中での振動子の運動状態は、常に液体抵抗に影響される。ここで液体抵抗には、その粘度η(Pa・s)による粘性抵抗と重量密度ρ(g・cm-3)による質量慣性抵抗との二種類が含まれる。実際に振動子ーが受ける液体抵抗の大きさは、その形状にも依存するが、特定の形状を仮定することで、運動状態の解析を行うことが可能である。例えば、正弦波振動で強制的に励振された振動子(以下、例としてカンチレバーを挙げて説明する。)の、液体(以下、例として溶液を挙げて説明する。)中における共振角振動数は以下の式(1)で表現されることが報告されている。
(Vibration response analysis)
In the vibration response analysis, the vibration direction position information from the vibrator drive unit is used as the vibration amplitude information, or the vibration estimated from the displacement information of the vibrator (specifically, the size of the positional deviation of the light receiving spot of the optical lever). Using the amplitude information, the state where the vibration amplitude of the oscillator is maximum with respect to the excitation frequency (resonance state), that is, the resonance angular frequency is obtained as the information of the motion state. As described above, the motion state of the oscillator in the solution is always affected by the liquid resistance. Here, the liquid resistance includes two types, viscous resistance due to its viscosity η (Pa · s) and mass inertia resistance due to its weight density ρ (g · cm −3 ). Although the magnitude of the liquid resistance actually received by the oscillator also depends on its shape, it is possible to analyze the motion state by assuming a specific shape. For example, a resonance angular frequency in a liquid (hereinafter, a solution will be described as an example) of a vibrator (hereinafter, a cantilever will be described as an example) that is forcibly excited by sinusoidal vibration is It is reported to be expressed by the following formula (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、ω0は真空中におけるカンチレバーの共振角振動数(s-1)、Kはカンチレバーの形状によって決まる固有定数である。式(1)に示されるとおり、溶液中の共振角振動数は溶液の粘度ηと重量密度ρに依存して変化する。また、溶液の粘度と重量密度とは、一般に溶液の濃度に依存して変化することも報告されている。従って、カンチレバーの共振角振動数の変化を記録することで、固液界面近傍における溶液濃度の変化を調査することが可能になる。 Here, ω 0 is a resonance angular frequency (s −1 ) of the cantilever in vacuum, and K is an intrinsic constant determined by the shape of the cantilever. As shown in the equation (1), the resonance angular frequency in the solution changes depending on the viscosity η and the weight density ρ of the solution. It has also been reported that the viscosity and the weight density of a solution generally change depending on the concentration of the solution. Therefore, by recording the change in the resonance angular frequency of the cantilever, it becomes possible to investigate the change in the solution concentration near the solid-liquid interface.
 振動応答解析法は、一般的な振動粘度測定法と類似した手法であり、装置構成の簡素化の点で好ましい。 The vibration response analysis method is a method similar to the general vibration viscosity measurement method, and is preferable in terms of simplification of the device configuration.
(エネルギー散逸解析)
 エネルギー散逸解析では、変位情報と振動方向位置情報とから得られる振動子の周期ごとのフォースカーブから、それぞれの周期におけるエネルギー消費量つまりエネルギー散逸値を運動状態の情報として得る。固液界面において振動子(以下、例としてカンチレバーを挙げて説明する。)を周期的に振動させた場合、カンチレバーが固体表面に近づく動作と固体表面から遠ざかる動作との過程それぞれで、カンチレバーは、液体(以下、例として溶液を挙げて説明する。)抵抗に依存した力を受ける。このような運動の過程で、カンチレバーが受ける溶液抗力の大きさFは以下の式(2)で近似的に表現できることが報告されている。
(Energy dissipation analysis)
In the energy dissipation analysis, the energy consumption in each cycle, that is, the energy dissipation value, is obtained as motion state information from the force curve for each cycle of the oscillator obtained from the displacement information and the vibration direction position information. When a vibrator (hereinafter, a cantilever is taken as an example and described) is periodically vibrated at a solid-liquid interface, the cantilever is divided into a process in which the cantilever approaches a solid surface and a process in which the cantilever moves away from the solid surface. Liquid (Hereinafter, a solution will be described as an example.) It receives a force depending on the resistance. It has been reported that the magnitude F of the solution drag force exerted on the cantilever in the process of such movement can be approximately expressed by the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、係数A及びBはカンチレバーの形状や実験条件に依存する定数、ωは励振の角振動数である。式(2)に示されるとおり、溶液の抵抗力は、溶液の重量密度と粘度とに相関する。従って、溶液中でカンチレバーの受ける力は、その溶液濃度に依存して変化する。一方で、抵抗力の大きさは、カンチレバーが上下方向に振動する速度(dz/dt)と加速度(d2z/dt2)の大きさによっても変化するため、瞬間的に計測された力の大きさそのものを用いて溶液濃度を算定するのは通常困難である。このため、式(3)に示す、カンチレバーの受けた力の大きさを上下運動の一周期にわたって積分したエネルギー散逸値Wを指標として溶液濃度の変化を評価することができる。 Here, the coefficients A and B are constants depending on the shape of the cantilever and experimental conditions, and ω is the angular frequency of excitation. As shown in equation (2), the resistance of a solution correlates with the weight density and viscosity of the solution. Therefore, the force applied to the cantilever in the solution changes depending on the solution concentration. On the other hand, the magnitude of the resistance force also changes depending on the magnitude of the velocity (dz / dt) and acceleration (d 2 z / dt 2 ) of the cantilever oscillating in the vertical direction. It is usually difficult to calculate the solution concentration using the size itself. Therefore, it is possible to evaluate the change in the solution concentration by using the energy dissipation value W obtained by integrating the magnitude of the force received by the cantilever over one cycle of the vertical movement shown in the formula (3) as an index.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 時間依存の項は一周期で積分することで、すべて定数となる。従って、エネルギー散逸値Wは粘度ηと重量密度ρとに依存する。これらの値は溶液の濃度に応じて変化するため、カンチレバーの一周期におけるエネルギー散逸値を記録することで、溶液濃度の変化を調査することが可能になる。 -Time-dependent terms are all constants by integrating in one cycle. Therefore, the energy dissipation value W depends on the viscosity η and the weight density ρ. Since these values change depending on the concentration of the solution, it is possible to investigate the change in the concentration of the solution by recording the energy dissipation value in one cycle of the cantilever.
 エネルギー散逸解析法では、カンチレバーの上下一周期におけるエネルギー消費量を求めるため、一個のエネルギー散逸値はカンチレバーの運動一周期分の情報から得ることができる。従って、エネルギー散逸解析法は測定の時間分解能が極めて高い点で好ましい。 In the energy dissipation analysis method, the energy consumption in one cycle above and below the cantilever is obtained, so one energy dissipation value can be obtained from information for one cycle of cantilever movement. Therefore, the energy dissipation analysis method is preferable because the time resolution of measurement is extremely high.
 なお、以下に説明するように、解析の簡素化の観点から、振動子を励起する振動波は、通常の原子間力顕微鏡で採用されている正弦波よりも三角波の方が好ましい。カンチレバーを正弦波振動で励起する場合、式(3)における速度項と加速度項との両方を取り扱わなければならない。一方、カンチレバーを三角波で励振させた場合、式(3)の加速度項(d2z/dt2)が0となる。図4に、正弦波と三角波で励振した場合の、速度と加速度成分の時間変化を比較して示す。正弦波励振の場合は位相変化だけが起こることに対して、三角波の場合は、速度成分は定数に、加速度成分は0になる。従って、エネルギー散逸値Wの式は以下の式(4)に示すように単純化することができる。 As described below, from the viewpoint of simplification of analysis, the oscillatory wave that excites the oscillator is preferably a triangular wave rather than a sine wave used in a normal atomic force microscope. When exciting the cantilever with sinusoidal vibration, both the velocity term and the acceleration term in equation (3) must be dealt with. On the other hand, when the cantilever is excited by a triangular wave, the acceleration term (d 2 z / dt 2 ) in equation (3) becomes zero. FIG. 4 shows a comparison of changes over time in velocity and acceleration components when excitation is performed with a sine wave and a triangular wave. In the case of sine wave excitation, only the phase change occurs, whereas in the case of triangular wave, the velocity component is constant and the acceleration component is 0. Therefore, the equation of the energy dissipation value W can be simplified as shown in the following equation (4).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 Cはカンチレバーの形状や測定条件に依存した定数である。固液界面近傍の液体物性の制御中においてこれらの条件が変化しなければ、エネルギー散逸値は溶液の粘度と重量密度の積の平方根に比例する。溶液の粘度と重量密度の積から溶液の濃度は一義的に決まるため、式(4)を用いることで、溶液の濃度をより直接的に解析することが可能となる。実際の測定では無制御状態の固液体界面においてエネルギー散逸測定を行い、得られた値から測定上の装置定数Cをあらかじめ決定しておくことができる。 C is a constant that depends on the shape of the cantilever and the measurement conditions. If these conditions do not change during the control of liquid properties near the solid-liquid interface, the energy dissipation value is proportional to the square root of the product of solution viscosity and weight density. Since the concentration of the solution is uniquely determined from the product of the viscosity and the weight density of the solution, it is possible to analyze the concentration of the solution more directly by using the equation (4). In the actual measurement, the energy dissipation measurement is performed at the solid-liquid interface in the uncontrolled state, and the device constant C on the measurement can be determined in advance from the obtained value.
(予備情報時系列記録工程)
 運動状態の解析は、振動子の変位情報及び/又は振動方向位置情報を取得次第リアルタイムで行ってもよいし、振動子の変位情報及び/又は振動方向位置情報を一旦予備情報として時系列で記録で記録し(予備情報時系列記録工程)、ストックされた予備情報を利用して、運動状態の解析を後処理で行ってもよい。予備情報時系列記録工程は、上述の固液界面近傍の物性変化解析装置における「1-9.時系列記録部E」に記載した時系列記録部において行うことができる。
(Preliminary information time series recording process)
The analysis of the motion state may be performed in real time as soon as the displacement information and / or the vibration direction position information of the vibrator is acquired, or the displacement information and / or the vibration direction position information of the vibrator may be temporarily recorded in time series as preliminary information. May be recorded in step (preliminary information time-series recording step) and the stocked preliminary information may be used to perform post-processing analysis of the exercise state. The preliminary information time-series recording step can be performed in the time-series recording section described in “1-9. Time-series recording section E” in the physical property change analysis apparatus near the solid-liquid interface.
 なお、本発明の固液界面近傍の物性変化を解析する方法では、固液界面の制御中における振動子の運動状態の変化を捉える必要があるため、通常の原子間力顕微鏡を用いた解析方法において必須となる、運動状態解析工程で得られた運動状態が所定以上になると補正する工程は含まれない。 In the method for analyzing the physical property change in the vicinity of the solid-liquid interface of the present invention, it is necessary to capture the change in the motion state of the oscillator during the control of the solid-liquid interface. Therefore, an analysis method using a normal atomic force microscope The step of correcting when the exercise state obtained in the exercise state analysis step becomes a predetermined value or more, which is indispensable for the above, is not included.
[2-6.時系列記録工程]
 時系列記録工程では、物性制御工程における制御情報と運動状態解析工程で得られた運動状態とを、時系列で記録された状態で得る。時系列記録工程は、上述の固液界面近傍の物性変化解析装置における「1-9.時系列記録部E」に記載した時系列記録部において行うことができる。時系列で記録するとは、取得した情報を、時間要素に紐付けて記録することをいう。例えば、取得した情報を、物性制御工程による制御履歴と同期したデータセットの態様で得ることができる。これによって、運動状態の変化が、当該変化を生じさせた制御情報と関連づけられた状態で経時的に記録することができる。
[2-6. Time-series recording process]
In the time series recording step, the control information in the physical property control step and the motion state obtained in the motion state analysis step are obtained in a time series recorded state. The time-series recording step can be performed in the time-series recording unit described in “1-9. Time-series recording unit E” in the physical property change analysis apparatus near the solid-liquid interface. Recording in time series means recording the acquired information in association with a time element. For example, the acquired information can be obtained in the form of a data set synchronized with the control history of the physical property control process. This allows a change in the exercise state to be recorded over time in a state associated with the control information that caused the change.
 なお、本発明の固液界面近傍の物性変化を解析する方法では、固液界面の制御中における振動子の運動状態の変化を捉える必要があるため、時系列記録工程では、固液界面内の固定された位置(固液界面内の1座標)における振動子の運動状態を、振動子の複数回振動に亘って時系列で記録する。記録レートとしては、例えば固液界面内の1座標において1秒当たり50~2000個、好ましくは200~2000個の運動状態の情報を記録できる程度が挙げられる。 In the method of analyzing the physical property change in the vicinity of the solid-liquid interface of the present invention, it is necessary to capture the change in the motion state of the oscillator during the control of the solid-liquid interface. The motion state of the oscillator at a fixed position (one coordinate in the solid-liquid interface) is recorded in time series over multiple oscillations of the oscillator. The recording rate may be, for example, a level at which 50 to 2000 pieces, preferably 200 to 2000 pieces, of movement state information can be recorded per second at one coordinate in the solid-liquid interface.
 また、上述の予備情報時系列記録工程を予め行う場合であって、変位情報と振動方向位置情報とからフォースカーブ測定を行って運動状態解析に用いる場合、振動子の一回振動分のフォースカーブに変位情報と位置情報とをn点必要とし、且つ1秒にm回のフォースカーブを測定するとすると、1座標において1秒当たりn×mセットの変位情報-位置情報の組み合わせを予備情報として記録することができる。予備情報から、運動状態解析部において1座標における1秒当たりm個の運動状態の情報を得て、時系列記録部で1秒当たりm個の運動状態の情報を記録することができる。 In the case where the above-mentioned preliminary information time-series recording process is performed in advance, when force curve measurement is performed from displacement information and vibration direction position information for use in motion state analysis, a force curve for one vibration of the vibrator is obtained. When n points of displacement information and position information are required for measurement and a force curve is measured m times per second, n × m sets of displacement information-position information combinations per second at one coordinate are recorded as preliminary information. can do. From the preliminary information, the motion state analysis unit can obtain m motion state information per second at one coordinate, and the time series recording unit can record m motion state information per second.
[2-7.物性導出工程]
 本発明の固液界面近傍の物性変化を解析する方法では、時系列記録部で得られた振動子の運動状態の情報から、実際の溶液物性を導出する工程(物性導出工程)をさらに含んでよい。物性導出工程は、上述の固液界面近傍の物性変化解析装置の「1-10.物性導出部F」に記載した物性導出部によって行うことができる。溶液物性を導出する手法の例としては上述の通りである。また、得られた溶液物性も時系列で記録される。
[2-7. Physical property derivation process]
The method for analyzing the change in physical properties in the vicinity of the solid-liquid interface of the present invention further includes the step of deriving the actual solution physical properties from the information on the motion state of the oscillator obtained in the time series recording unit (physical property deriving step). Good. The physical property derivation step can be performed by the physical property derivation unit described in “1-10. Physical property derivation unit F” of the physical property change analysis apparatus near the solid-liquid interface. The example of the method for deriving the solution physical properties is as described above. The physical properties of the obtained solution are also recorded in time series.
[2-8.出力工程]
 本発明の固液界面近傍の物性変化を解析する方法では、時間と運動状態との関係、又は時間と具体的な溶液物性との関係を、物性制御情報に対応させた任意の形式で表示する工程(出力工程)をさらに含んでよい。出力工程は、上述の固液界面近傍の物性変化解析装置の「1-11.出力部G」に記載した出力部によって行うことができる。出力形式の例としては上述の通りである。
[2-8. Output process]
In the method for analyzing the physical property change in the vicinity of the solid-liquid interface of the present invention, the relationship between time and motion state or the relationship between time and specific solution physical property is displayed in an arbitrary format corresponding to physical property control information. It may further include a step (output step). The output step can be performed by the output unit described in “1-11. Output unit G” of the physical property change analysis apparatus near the solid-liquid interface. An example of the output format is as described above.
[3.固液界面近傍の物性の解析プログラム]
 上述の本発明の固液界面近傍の物性変化を解析する方法は、プログラムによって実現されてもよい。
[3. Analysis program for physical properties near solid-liquid interface]
The above-described method of analyzing changes in physical properties in the vicinity of the solid-liquid interface of the present invention may be realized by a program.
 プログラムは、コンピュータに各手順を実行させるためのコンピュータプログラムである。従って、プログラムに基づいて固液界面近傍の物性変化を解析する方法が実行されると、コンピュータが有する演算装置及び制御装置は、各手順を実行するため、プログラムに基づいて演算及び制御を行う。また、コンピュータが有する記憶装置は、各処理を実行するため、プログラムに基づいて、処理に用いられるデータを記憶する。 A program is a computer program that causes a computer to execute each procedure. Therefore, when the method of analyzing the physical property change in the vicinity of the solid-liquid interface is executed based on the program, the arithmetic unit and the control unit included in the computer execute the respective procedures, and therefore perform arithmetic and control based on the program. In addition, the storage device included in the computer stores the data used for the processing based on the program in order to execute each processing.
 また、プログラムは、コンピュータが読み取り可能な記録媒体に記録されて頒布することができる。なお、記録媒体は、磁気テープ、フラッシュメモリ、光ディスク、光磁気ディスク又は磁気ディスク等のメディアである。また、記録媒体は、補助記憶装置等でもよい。さらに、プログラムは、電気通信回線を通じて頒布することもできる。 Also, the program can be recorded in a computer-readable recording medium and distributed. The recording medium is a medium such as a magnetic tape, a flash memory, an optical disc, a magneto-optical disc or a magnetic disc. Further, the recording medium may be an auxiliary storage device or the like. Further, the program can be distributed through a telecommunication line.
[3-1.プログラム1]
 本発明の固液界面近傍の物性の解析プログラムは、固液界面近傍の物性を解析させるために、コンピュータに;固液界面を構成する液体中に配置された振動子の運動状態を解析する手順(s11)と;前記運動状態と、前記固液界面近傍の液性物性の制御に関する制御情報とを、時系列で記録する手順(s12)と;を実行させるためのプログラム(プログラム1)である。
[3-1. Program 1]
A program for analyzing physical properties near a solid-liquid interface according to the present invention is a computer program for analyzing physical properties near a solid-liquid interface; a procedure for analyzing a motion state of an oscillator arranged in a liquid forming the solid-liquid interface. (S11); a program (program 1) for executing the above-mentioned motion state and a procedure (s12) of recording the above-mentioned motion state and control information relating to the control of liquid physical properties in the vicinity of the solid-liquid interface in time series. .
 本発明の固液界面近傍の物性の解析プログラム(プログラム1)は、上記「1.固液界面近傍の物性変化解析装置」に実装されていてよい。例えば、本発明の固液界面近傍の物性の解析プログラムを実行するコンピュータは、上記「1.固液界面近傍の物性変化解析装置」の一部を構成していてよい。より具体的には、上記手順(s11)は、上記「1-8.運動状態解析部D」に実行させ、前記手順(s12)は、上記「1-9.時系列記録部E」に実行させることができる。 The physical property analysis program (program 1) near the solid-liquid interface of the present invention may be installed in the above-mentioned “1. Physical property change analysis device near solid-liquid interface”. For example, the computer that executes the program for analyzing the physical properties in the vicinity of the solid-liquid interface of the present invention may constitute a part of the above-mentioned “1. More specifically, the procedure (s11) is executed by the above “1-8. Motion state analysis unit D”, and the procedure (s12) is executed by the above “1-9. Time series recording unit E”. Can be made.
[3-2.プログラム2]
 また、本発明の固液界面近傍の物性の解析プログラムは、上記プログラム1の他、固液界面近傍の物性を解析させるために、コンピュータに;固液界面を構成する液体中に配置され且つ前記固液界面に沿って移動する振動子の運動状態を解析する手順(s21)と;移動する前記振動子の位置と、前記位置における前記振動子の前記運動状態とが対応する二次元マッピング像を取得する手順(s22)と;前記振動子の総移動距離から等分割された所定の移動距離の各々における前記運動状態の平均値を取得する手順(s23)と;前記運動状態の平均値の各々を前記振動子の移動の時系列に変換する手順(s24)と;前記運動状態の平均値と、前記固液界面近傍の液性物性の制御に関する制御情報とを、時系列で記録する手順(s25)と;を実行させるためのプログラム(プログラム2)であってもよい。
[3-2. Program 2]
In addition to the program 1, the program for analyzing the physical properties near the solid-liquid interface of the present invention is arranged in a liquid constituting the solid-liquid interface in a computer in order to analyze the physical properties near the solid-liquid interface. A step (s21) of analyzing the motion state of the oscillator moving along the solid-liquid interface; and a two-dimensional mapping image in which the position of the oscillator moving and the motion state of the oscillator at the position correspond to each other. A step (s22) of acquiring; a step (s23) of acquiring an average value of the motion state at each of predetermined moving distances equally divided from the total moving distance of the vibrator; In a time series of the movement of the oscillator (s24); and a step of recording in time series the average value of the motion state and the control information regarding the control of the liquid property near the solid-liquid interface ( s25) ; May be a program for causing the execution (program 2).
 本発明の固液界面近傍の物性の解析プログラム(プログラム2)は、上記手順(s21)及び上記(s22)を、原子間力顕微鏡に実装されているコンピュータに実行させることもできる。上記手順(s23)~上記手順(s25)は、コンピュータが有する演算装置、制御装置、及び記憶装置から当業者が適宜選択して実行させることができる。 In the physical property analysis program (program 2) near the solid-liquid interface of the present invention, the above procedure (s21) and (s22) can be executed by a computer installed in the atomic force microscope. The above procedure (s23) to (s25) can be appropriately selected and executed by those skilled in the art from the arithmetic device, the control device, and the storage device included in the computer.
 但し、プログラム2を原子間力顕微鏡に実装されているコンピュータに実行させる場合、原子間力顕微鏡を、その本来の目的を果たさないよう特殊な条件で使う必要がある。例えば、原子間力顕微鏡に実装されている自動補正機能(カンチレバーの運動状態を自動補正する機能)を動作させてはならないため、当該自動補正機能が動作しない範囲内に制限された条件下でのみ実行させることができる。そのような制限された条件としては、例えば電気化学的界面に対する条件の場合、電流密度と通電時間の積で決定される電解液の濃度変化が、原子間力顕微鏡の自動補正が動作する限界値を下回る条件(一例として、電流密度の絶対値として0.2mAcm-2以下)が挙げられる。 However, when the program 2 is executed by a computer installed in the atomic force microscope, it is necessary to use the atomic force microscope under special conditions so as not to fulfill its original purpose. For example, the automatic correction function (the function that automatically corrects the motion state of the cantilever) implemented in the atomic force microscope must not be operated, so only under conditions limited to the range where the automatic correction function does not operate. Can be run. As such a limited condition, for example, in the case of a condition for an electrochemical interface, the change in the concentration of the electrolyte determined by the product of the current density and the conduction time is the limit value at which the automatic correction of the atomic force microscope operates. Below (for example, the absolute value of the current density is 0.2 mAcm −2 or less).
 また、プログラム2では、固液界面内の固定位置(1座標)における物性の変化を解析するプログラム1とは異なり、上記手順(s22)で一旦二次元マッピング像を取得する必要性から、二次元スキャンを行いつつ安定にデータを取得するために、記録レートを十分低くする必要がある。例えば、記録レートとしては、1秒に例えば2~9回、好ましくは2~4回が挙げられる。更に、上記手順(s22)で一旦二次元マッピング像を取得する必要性から、液体の物性変化を生じさせる固液間の電化学液反応又は触媒反応若しくは固体上の熱的変化は、固体表面全体で可能な限り均質である必要がある。 Further, unlike the program 1 that analyzes changes in physical properties at a fixed position (1 coordinate) in the solid-liquid interface, the program 2 needs to acquire a two-dimensional mapping image once in the above procedure (s22). The recording rate must be sufficiently low in order to acquire data stably while scanning. For example, the recording rate is, for example, 2 to 9 times, preferably 2 to 4 times per second. Further, since it is necessary to obtain a two-dimensional mapping image once in the above step (s22), the electrochemical liquid reaction between solid and liquid or the catalytic reaction or the thermal change on the solid that causes the change in the physical properties of the liquid is caused by the entire solid surface. And should be as homogeneous as possible.
 以下、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
[試験例1]
 本試験例では、金属リチウム電池のモデル電気化学界面において、電池動作中における電気化学的界面近傍の電解液濃度変化を経時的に測定した。
[Test Example 1]
In this test example, at the model electrochemical interface of the metal lithium battery, changes in the concentration of the electrolytic solution near the electrochemical interface during the operation of the battery were measured over time.
 電気化学的界面の構成は以下の通りである。
  電極:金属リチウム
  電解液:テトラグリム(G4)中、1Mリチウムビストリフルオロメタンスルホニルアミド(LiTFSA)
The structure of the electrochemical interface is as follows.
Electrode: Lithium metal Electrolyte: 1M lithium bistrifluoromethanesulfonylamide (LiTFSA) in tetraglyme (G4)
 電気化学界的面近傍の電解液濃度変化の経時的測定は、電池に印加する電流をステップ状に切り替える(制御電流値に応じてセルの電圧が決まる)一方、原子間力顕微鏡(iCON(Bruker))のフォースカーブマッピングモードを用いて一旦エネルギー散逸値の二次元画像を取得し(図5(a))、その後、二次元画像を経時的記録(図5(b))として構築しなおした。以下にその詳細を示す。 The time-dependent measurement of changes in the concentration of the electrolytic solution near the electrochemical field is performed by switching the current applied to the battery in a stepwise manner (the cell voltage is determined according to the control current value) while using an atomic force microscope (iCON (Bruker). )) Was used to temporarily obtain a two-dimensional image of the energy dissipation value (FIG. 5 (a)), and then the two-dimensional image was reconstructed as a temporal recording (FIG. 5 (b)). . The details are shown below.
 原子間力顕微鏡の測定モードはPeakForce Tapping(カンチレバーを高速で励振)、励振波は正弦波、フォースカーブ測定の周波数は2kHz、カンチレバーの振幅幅は100nmであった。PeakForce Tappingは、カンチレバーを電極に近づけたり遠ざけたりしながら力の変化を記録する(すなわちフォースカーブ測定を周期的に行いながら電極表面を走査(フォースカーブマッピング)する)手法である。原子間力顕微鏡には、フォースカーブマッピングモードにおいて、xy座標データ点ごとのエネルギー散逸値を記録する機能が備わっている。これによって、一枚の画像中のエネルギー散逸値の二次元空間情報(図5(a))を得た。この二次元画像は、1024×1024ピクセル(pxl)であり、ピクセルごとにエネルギー散逸値W1~W1048576が記録されている。 The measurement mode of the atomic force microscope was Peak Force Tapping (exciting the cantilever at high speed), the excitation wave was a sine wave, the force curve measurement frequency was 2 kHz, and the cantilever amplitude width was 100 nm. PeakForce Tapping is a method of recording the change in force while moving the cantilever closer to or farther from the electrode (that is, scanning the electrode surface while periodically performing force curve measurement (force curve mapping)). The atomic force microscope has a function to record the energy dissipation value for each xy coordinate data point in the force curve mapping mode. Thereby, the two-dimensional spatial information (FIG. 5A) of the energy dissipation value in one image was obtained. This two-dimensional image has 1024 × 1024 pixels (pxl), and energy dissipation values W 1 to W 1048576 are recorded for each pixel.
 一方、原子間力顕微鏡にはエネルギー散逸値を時系列で記録する機能は備わっていない。本発明の固液界面近傍の物性変化を解析する方法を実施するため、敢えて、二次元画像記録を時間記録に焼きなおす処理を施した。具体的には、まず、1024×1024ピクセルの二次元画像(図5(a))を、1ライン/1Hz、すなわち1秒に1ラインずつの速さでラスタースキャンした。こうすることで、ラインスキャン方向の直角方向に、1024×1=1024秒間のエネルギー散逸値の変化を記録した。エネルギー散逸値の出力には画像の位置情報は必要ないので、解析の過程では、1ラインで記録されたエネルギー散逸値を平均化し(すなわち1秒間のエネルギー散逸データ情報を平均化し)、さらにラインスキャン方向の直角方向に同様の平均化を繰り返し、データプロファイルを作成した。具体的には、1ライン目のエネルギー散逸値の平均値(AVG(W11024))を1秒目のエネルギー散逸値(WT1)として得て、これと同じ操作を各ラスターライン毎に同様に繰り返し、1024ライン目のエネルギー散逸値の平均値(AVG(W10475531048576))である1024秒目のエネルギー散逸値(WT1024)まで得た。 On the other hand, the atomic force microscope does not have a function of recording energy dissipation values in time series. In order to carry out the method of analyzing the physical property change in the vicinity of the solid-liquid interface of the present invention, a process of reprinting the two-dimensional image recording to the time recording was intentionally performed. Specifically, first, a two-dimensional image of 1024 × 1024 pixels (FIG. 5A) was raster-scanned at a speed of 1 line / 1 Hz, that is, 1 line per second. By doing so, the change in energy dissipation value during 1024 × 1 = 1024 seconds was recorded in the direction perpendicular to the line scan direction. Since the position information of the image is not necessary to output the energy dissipation value, the energy dissipation values recorded in one line are averaged (that is, the energy dissipation data information for one second is averaged) in the process of analysis, and the line scan is performed. Similar averaging was repeated in the direction perpendicular to the direction to create a data profile. Specifically, the average value of the energy dissipation values of the first line (AVG (W 1 to 1024 )) is obtained as the energy dissipation value of the first second (W T1 ), and the same operation is performed for each raster line. Similarly repeated, to give to a mean value of the energy dissipation values for 1024 line (AVG (W 1047553 ~ 1048576) ) 1024 th second energy dissipation value is (W T1024).
 これによって得られた、1秒(T(sec))ごとのエネルギー散逸値(W(eV))の時系列データの1024秒間分を、電気化学測定装置の電流(I(mA・cm-2))及び電圧(E(mV))の制御履歴と共に記録した(図5(b))。このデータセットをグラフ形式で出力することで、電気化学動作に伴うエネルギー散逸値の変化を表示した(後述図6)。 The time-series data of the energy dissipation value (W (eV)) every 1 second (T (sec)) obtained by this, for 1024 seconds, was converted into the current (I (mA · cm -2 )) of the electrochemical measuring device. ) And the voltage (E (mV)) control history (FIG. 5B). By outputting this data set in the form of a graph, changes in the energy dissipation value accompanying the electrochemical operation were displayed (FIG. 6 described later).
 このようにAFMを用いて時系列データを記録する場合、その時間分解能はラスタースキャンの速度で律速されてしまう。本試験例では、原子間力顕微鏡を用いる都合上二次元スキャンが避けられない一方で、スキャン速度が速すぎると本願発明による物性変化を正確にとらえることができないため、二次元スキャンを行いつつ安定にデータを取得するために、1ライン/2Hz程度までをスキャン速度の上限とした。その結果、時間分解能は敢えて0.5秒に制限した。 When recording time series data using AFM in this way, the time resolution is limited by the raster scan speed. In this test example, while the two-dimensional scanning is inevitable due to the use of the atomic force microscope, if the scanning speed is too fast, the change in physical properties according to the present invention cannot be accurately captured, and therefore stable while performing the two-dimensional scanning. In order to obtain the data, the upper limit of the scanning speed was set to about 1 line / 2 Hz. As a result, the time resolution was intentionally limited to 0.5 seconds.
 なお、本試験例では、本発明の解析方法を実施するため、電池に印加する電流の変動の大きさは、カンチレバーの運動状態が変化する程度に電気化学界面近傍の電解液濃度を変化させられる大きさとするとともに、電解液濃度変化に伴うカンチレバーの運動状態の変化が、原子間力顕微鏡に実装されている自動補正機能(カンチレバーの運動状態を自動補正する機能)を動作させない範囲内に収まるように十分小さく、具体的には電流密度の絶対値として0.2mAcm-2以下に制限した。 In this test example, since the analysis method of the present invention is carried out, the magnitude of the fluctuation of the current applied to the battery can change the concentration of the electrolyte near the electrochemical interface to the extent that the motion state of the cantilever changes. The size of the cantilever should be within the range that does not operate the automatic correction function (function that automatically corrects the motion state of the cantilever) mounted on the atomic force microscope. Is sufficiently small, specifically, the absolute value of the current density is limited to 0.2 mAcm −2 or less.
 また、本試験例では本発明の解析方法を原子間力顕微鏡の機能を利用して実施したため、必然的に、原子間力顕微鏡に実装されているxyスキャン機能を動作させざるを得ず、500nm×500nmの範囲でスキャンを行って図5(a)の画像を取得した。本試験例では、当該スキャン範囲でも物性変化の経時的分析を可能にする、リチウム反応が均質な電極を用いた。しかしながら、xy方向のスキャンは固液界面近傍の溶液に擾乱を与えることを考慮すると、本発明の解析方法の実施においては、原子間力顕微鏡に実装されているxyスキャン機能が排除された本発明の固液界面近傍の物性変化解析装置を用いることで、固液界面近傍の溶液に擾乱を与えない静止位置で測定することが望ましいことは言うまでもない。 Further, in this test example, since the analysis method of the present invention was carried out by utilizing the function of the atomic force microscope, it was inevitable that the xy scan function mounted on the atomic force microscope had to be operated, and it was 500 nm. Scanning was performed in the range of × 500 nm to obtain the image in FIG. In this test example, an electrode with a homogeneous lithium reaction was used, which enables time-dependent analysis of changes in physical properties even in the scan range. However, in consideration of the fact that scanning in the xy directions disturbs the solution in the vicinity of the solid-liquid interface, in the implementation of the analysis method of the present invention, the xy scanning function implemented in the atomic force microscope is excluded from the present invention. Needless to say, it is desirable to measure at a stationary position that does not disturb the solution near the solid-liquid interface by using the physical property change analysis device near the solid-liquid interface.
 更に、本試験例では、本発明の解析方法を原子間力顕微鏡の機能を利用して実施する都合上、本発明の解析方法では行われない図5(a)に示すデータを予め取得しておき、その後、図5(b)に示すデータに変換して記録した。本発明の固液界面近傍の物性変化解析装置を用いて本発明の解析方法を実施する場合は、図5(a)のデータの取得は行わずに図6(b)のデータを取得する。 Furthermore, in this test example, the data shown in FIG. 5 (a), which is not obtained by the analysis method of the present invention, is acquired in advance because the analysis method of the present invention is performed by utilizing the function of the atomic force microscope. After that, it was converted into the data shown in FIG. 5B and recorded. When the analysis method of the present invention is carried out using the physical property change analyzer near the solid-liquid interface of the present invention, the data of FIG. 5A is not acquired but the data of FIG. 6B is acquired.
 分析結果を図6に示す。図6の下段は、一定電流を与えてリチウムの溶解と析出を繰り返したときのセル電圧の経時変化を示し、上段にはエネルギー散逸の時間変化をセル電圧の経時変化に同期させて示した。厳密には如何なる状況下でも溶液の抵抗は存在するが、結果を分かりやすくするために本試験例では初期の開回路状態(図3(a)参照)における溶液抵抗で補正して、エネルギー散逸変化の基準をゼロとした。 Figure 6 shows the analysis results. The lower part of FIG. 6 shows the change over time of the cell voltage when the dissolution and precipitation of lithium are repeated by applying a constant current, and the upper part shows the change over time of energy dissipation in synchronization with the change over time of the cell voltage. Strictly speaking, the resistance of the solution exists under any circumstance, but in order to make the results easy to understand, in this test example, the solution resistance in the initial open circuit state (see FIG. 3 (a)) was corrected to change the energy dissipation. Was set to zero.
 図6に示すように、リチウム析出を開始すると、相関して散逸エネルギーが減少する様子が捉えられている。散逸エネルギーの減少は、カンチレバーの受ける溶液抵抗が減少したことを示している。すなわちリチウム析出反応によって電気化学界面近傍におけるリチウムイオン濃度が減少した(図3(c)参照)ことが示されている。反対にセル電圧を挙げてリチウム溶解を開始すると、散逸エネルギーの値が増大する様子が捉えられており、カンチレバーの受ける溶液抵抗の大きさが増大した(図3(b)参照)ことが示されている。すなわちリチウム溶解反応によって電気化学界面近傍におけるリチウムイオン濃度が増大したことが示されている。 As shown in Fig. 6, it can be seen that the dissipation energy decreases in correlation with the start of lithium deposition. The decrease in dissipated energy indicates that the solution resistance experienced by the cantilevers was decreased. That is, it is shown that the lithium deposition reaction reduced the lithium ion concentration near the electrochemical interface (see FIG. 3C). On the contrary, when the cell voltage is raised and the dissolution of lithium is started, it is understood that the value of the dissipated energy increases, and the magnitude of the solution resistance received by the cantilever increases (see FIG. 3 (b)). ing. That is, it is shown that the lithium ion concentration near the electrochemical interface was increased by the lithium dissolution reaction.
 図6上段には各点(開回路状態、溶解状態、電析状態)における代表的なフォースカーブも併せて記載した。散逸エネルギー波形の最大値時点で取得したフォースカーブでは、アプローチ(Approach)すなわちカンチレバーを試料に近づける(下向きに移動する)方向で上向きの力を受け、リトラクト(Retract)すなわちカンチレバーを試料から遠ざける(上向きに移動する)方向で下向きの力を受けていることが読み取れる。これはカンチレバーが、基準状態よりも大きな溶液抵抗下で運動していることを意味している。一方、散逸エネルギー波形の最小値時点で取得したフォースカーブは、アプローチとリトラクトにおける力の関係が上記とは真逆になっている事が理解できる。これはこの時点における溶液抵抗が、基準状態に比べて小さくなっていることを意味している。このように溶液物性の変化は、アプローチとリトラクトにおけるフォースカーブの関係に如実に反映される。以上より、エネルギー散逸の解析で、溶液抵抗の変化(例えば濃度の変化)、すなわち物性の変化を調査できることが実証された。 In the upper part of Fig. 6, representative force curves at each point (open circuit state, molten state, electrodeposition state) are also shown. The force curve obtained at the maximum value of the dissipated energy waveform receives an upward force in the approach (approach), that is, the direction that moves the cantilever closer to the sample (moves downward), and moves the retract, that is, the cantilever away from the sample (upward). It can be read that a downward force is applied in the direction (moving to). This means that the cantilever is moving under solution resistance larger than that in the standard state. On the other hand, the force curve obtained at the minimum value of the dissipated energy waveform shows that the relationship between the approach and the force in the retract is the opposite of the above. This means that the solution resistance at this point is smaller than that in the standard state. In this way, changes in the physical properties of the solution are reflected in the relationship between the approach and the force curve in the retract. From the above, it was proved that the change of solution resistance (for example, the change of concentration), that is, the change of physical properties can be investigated by the analysis of energy dissipation.
 さらに、図6に示すように、制御電流値を大きく変化させた(相応する形でセル電圧の上げ幅及び下げ幅は大きく変化する)ところ、セル電圧の下げ幅が大きい、すなわちリチウムイオン濃度の減少度合が大きいほどエネルギー散逸値の減少も大きく、またセル電圧の上げ幅が大きい、すなわちリチウムイオン濃度の増大度合が大きいほどエネルギー散逸値の上げ幅が大きいことが確認できた。また、電流値を0にした場合(休止状態でセルの電圧が0になる)、エネルギー散逸の値は基準の値に徐々に漸近していくことが分かる。すなわち、この過渡的な時間応答の速さを解析することで、電極電解液界面近傍におけるイオン拡散の過程を直接解析可能になると考えられる。 Further, as shown in FIG. 6, when the control current value was changed greatly (the increase and decrease widths of the cell voltage greatly changed in a corresponding manner), the decrease amount of the cell voltage was large, that is, the lithium ion concentration decreased. It was confirmed that the greater the degree, the greater the decrease in energy dissipation value, and the greater the increase in cell voltage, that is, the greater the degree of increase in lithium ion concentration, the greater the increase in energy dissipation value. Further, it can be seen that when the current value is set to 0 (the cell voltage becomes 0 in the rest state), the energy dissipation value gradually approaches the reference value. That is, it is considered that by analyzing the speed of this transient time response, it becomes possible to directly analyze the process of ion diffusion in the vicinity of the electrode electrolyte interface.
 このように、カンチレバーのエネルギー散逸値の時間変化と電気化学的な操作とが非常に良く対応していることが確認できた。従って、カンチレバーの運動状態を時系列で解析することで、溶液抵抗の変化、つまり電気化学界面近傍の物質濃度変化を経時的に精度高く解析可能であることが実証された。 Thus, it was confirmed that the time variation of the energy dissipation value of the cantilever and the electrochemical operation correspond very well. Therefore, it was demonstrated that by analyzing the motion state of the cantilever in time series, changes in solution resistance, that is, changes in substance concentration near the electrochemical interface can be accurately analyzed with time.
 なお、上述のとおり、本試験例では本発明の解析方法を実施するため、敢えて、電解液濃度変化に伴うカンチレバーの運動状態の変化が、原子間力顕微鏡に実装されている自動補正機能(カンチレバーの運動状態を自動補正する機能)を動作させない範囲内となるように電流条件を制御して測定した。つまり、本発明の解析方法では、電気化学界面近傍の濃度変化が自動補正機能を制御させない程度の僅かな量であっても、界面近傍の物性変化を経時的に分析することができる。通常、電気化学界面に限らず、様々な固液界面近傍で生じる局所的な物性変化は、試験例1で分析した物性変化よりも大きい場合もある。試験例1の結果から、本発明の解析方法が、様々な固液界面近傍で生じるより大きな物性変化が生じたとしても同様に経時的に分析できることは容易に推認できる。 In addition, as described above, in order to carry out the analysis method of the present invention in this test example, the change in the motion state of the cantilever due to the change in the concentration of the electrolytic solution is intentionally corrected by the automatic correction function (cantilever) implemented in the atomic force microscope. The current condition was controlled so that it was within the range in which the function of automatically correcting the motion state (1) was not operated. That is, according to the analysis method of the present invention, even if the concentration change in the vicinity of the electrochemical interface is so small as not to control the automatic correction function, the change in physical properties in the vicinity of the interface can be analyzed over time. Usually, not only at the electrochemical interface, but local physical property changes occurring near various solid-liquid interfaces may be larger than the physical property changes analyzed in Test Example 1. From the results of Test Example 1, it can be easily inferred that the analysis method of the present invention can similarly analyze with time even if larger physical property changes occur near various solid-liquid interfaces.

Claims (14)

  1.  固液界面を構成する液体中に配置される振動子Aと、
     前記振動子Aを振動させる励振部Bと、
     前記固液界面近傍の液体物性を制御する物性制御部Cと、
     前記振動子Aの運動状態を解析する運動状態解析部Dと、
     前記物性制御部Cによる制御情報と前記運動状態解析部で得られた運動状態とを時系列で記録する時系列記録部Eと、
    を含む、固液界面近傍の物性変化解析装置。
    A vibrator A arranged in a liquid forming a solid-liquid interface,
    An exciting part B for vibrating the vibrator A;
    A physical property control unit C for controlling the physical properties of the liquid in the vicinity of the solid-liquid interface,
    A motion state analysis unit D that analyzes the motion state of the oscillator A;
    A time-series recording unit E that records the control information by the physical property control unit C and the motion state obtained by the motion state analysis unit in time series,
    An apparatus for analyzing changes in physical properties near the solid-liquid interface, including
  2.  前記時系列記録部Eが、更に、前記振動子Aの変位情報及び/又は前記振動子の振動方向位置情報を時系列で記録し、
     前記運動状態解析部Dが、前記変位情報及び/又は前記振動方向位置情報から前記運動状態を解析する、請求項1に記載の固液界面近傍の物性変化解析装置。
    The time series recording unit E further records displacement information of the vibrator A and / or vibration direction position information of the vibrator in time series,
    The physical property change analysis apparatus according to claim 1, wherein the motion state analysis unit D analyzes the motion state from the displacement information and / or the vibration direction position information.
  3.  前記運動状態解析部Dで得られた前記運動状態から物性を導出する物性導出部Fと、前記制御情報の経時変化を前記物性の経時変化に対応させて出力する出力部Gとをさらに含む、請求項1又は2に記載の物性変化解析装置。 It further includes a physical property deriving unit F that derives physical properties from the motion state obtained by the motion state analysis unit D, and an output unit G that outputs a temporal change of the control information in association with the temporal change of the physical property. The physical property change analysis device according to claim 1.
  4.  前記振動子Aが、自由端に探針を有しないカンチレバーである、請求項1~3のいずれかに記載の固液界面近傍の物性変化解析装置。 The physical property change analyzer near the solid-liquid interface according to any one of claims 1 to 3, wherein the vibrator A is a cantilever having no probe at its free end.
  5.  前記振動子Aが、前記振動方向に貫通する貫通孔を有していない、請求項1~4のいずれかに記載の固液界面近傍の物性変化解析装置。 The physical property change analyzer near the solid-liquid interface according to any one of claims 1 to 4, wherein the vibrator A does not have a through hole penetrating in the vibration direction.
  6.  前記固液界面を収容するセルをさらに含む、請求項1~5のいずれかに記載の固液界面近傍の物性変化解析装置。 The physical property change analyzer near the solid-liquid interface according to any one of claims 1 to 5, further comprising a cell accommodating the solid-liquid interface.
  7.  前記固液界面が電気化学的界面であり、前記制御情報が電流及び電圧の情報である、請求項1~6のいずれかに記載の固液界面近傍の物性変化解析装置。 7. The physical property change analyzer near the solid-liquid interface according to any one of claims 1 to 6, wherein the solid-liquid interface is an electrochemical interface, and the control information is current and voltage information.
  8.  固液界面を構成する液体中に配置された振動子を振動させる励振工程と、
     前記固液界面近傍の液体物性の制御を行う物性制御工程と、
     前記振動子の運動状態を解析する運動状態解析工程と、
     前記物性制御工程における制御情報と前記運動状態解析工程で得られた運動状態とを時系列で記録された状態で得る時系列記録工程と、
    を含む、固液界面近傍の物性変化を解析する方法。
    An exciting step of vibrating a vibrator arranged in a liquid forming a solid-liquid interface,
    A physical property control step of controlling the liquid physical properties in the vicinity of the solid-liquid interface,
    A motion state analysis step of analyzing the motion state of the oscillator;
    A time-series recording step of obtaining control information in the physical property control step and the motion state obtained in the motion state analysis step in a state recorded in time series,
    A method for analyzing changes in physical properties near the solid-liquid interface, including.
  9.  前記振動子の変位情報及び/又は前記振動子の振動方向位置情報を時系列で記録する予備情報時系列記録工程をさらに含み、
     前記運動状態解析工程において、前記運動状態を、予備情報時系列記録工程で記録された前記変位情報及び/又は前記振動方向位置情報から解析する、請求項8に記載の固液界面近傍の物性変化を解析する方法。
    Further comprising a preliminary information time series recording step of recording displacement information of the vibrator and / or vibration direction position information of the vibrator in time series,
    The physical property change in the vicinity of the solid-liquid interface according to claim 8, wherein in the motion state analysis step, the motion state is analyzed from the displacement information and / or the vibration direction position information recorded in the preliminary information time series recording step. How to parse.
  10.  前記運動情報解析工程において、前記運動状態をエネルギー散逸値又は共振角振動数として得る、請求項8又は9に記載の固液界面近傍の物性変化を解析する方法。 The method for analyzing changes in physical properties in the vicinity of a solid-liquid interface according to claim 8 or 9, wherein the motion state is obtained as an energy dissipation value or a resonance angular frequency in the motion information analysis step.
  11.  前記振動子を三角波で振動させる、請求項8~10のいずれかに記載の固液界面近傍の物性変化を解析する方法。 The method for analyzing changes in physical properties in the vicinity of a solid-liquid interface according to any one of claims 8 to 10, wherein the oscillator is vibrated in a triangular wave.
  12.  前記固液界面が電気化学的界面であり、前記制御情報が電流及び電圧の情報である、請求項8~11のいずれかに記載の固液界面近傍の物性変化を解析する方法。 The method for analyzing changes in physical properties near a solid-liquid interface according to any one of claims 8 to 11, wherein the solid-liquid interface is an electrochemical interface, and the control information is current and voltage information.
  13.  固液界面近傍の物性を解析させるために、コンピュータに、
     固液界面を構成する液体中に配置された振動子の運動状態を解析する手順と、
     前記運動状態と、前記固液界面近傍の液性物性の制御に関する制御情報とを、時系列で記録する手順と、
    を実行させるための、固液界面近傍の物性の解析プログラム。
    In order to analyze the physical properties near the solid-liquid interface, the computer
    A procedure for analyzing the motion state of an oscillator arranged in a liquid that forms a solid-liquid interface,
    A procedure for recording the motion state and control information relating to control of liquid physical properties in the vicinity of the solid-liquid interface in time series,
    A program for analyzing the physical properties near the solid-liquid interface for executing
  14.  固液界面近傍の物性を解析させるために、コンピュータに、
     固液界面を構成する液体中に配置され且つ前記固液界面に沿って移動する振動子の運動状態を解析する手順と、
     移動する前記振動子の位置と、前記位置における前記振動子の前記運動状態とが対応する二次元マッピング像を取得する手順と、
     前記振動子の総移動距離から等分割された所定の移動距離の各々における前記運動状態の平均値を取得する手順と、
     前記運動状態の平均値の各々を前記振動子の移動の時系列に変換する手順と、
     前記運動状態の平均値と、前記固液界面近傍の液性物性の制御に関する制御情報とを、時系列で記録する手順と、
    を実行させるための、固液界面近傍の物性の解析プログラム。
    In order to analyze the physical properties near the solid-liquid interface, the computer
    A step of analyzing a motion state of an oscillator arranged in a liquid forming a solid-liquid interface and moving along the solid-liquid interface;
    A step of obtaining a two-dimensional mapping image in which the position of the moving oscillator and the motion state of the oscillator at the position correspond to each other;
    A procedure of obtaining an average value of the motion state at each of predetermined moving distances equally divided from the total moving distance of the oscillator;
    A procedure of converting each of the average values of the motion state into a time series of movement of the oscillator,
    A procedure of recording the average value of the motion state and control information regarding control of liquid physical properties near the solid-liquid interface in time series,
    A program for analyzing the physical properties near the solid-liquid interface for executing
PCT/JP2019/041072 2018-10-18 2019-10-18 Apparatus for analyzing change in physical property near solid-liquid interface and method for analyzing change in physical property near solid-liquid interface WO2020080516A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020553335A JP7432241B2 (en) 2018-10-18 2019-10-18 Device for analyzing changes in physical properties near the solid-liquid interface and method for analyzing changes in physical properties near the solid-liquid interface

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-197054 2018-10-18
JP2018197054 2018-10-18

Publications (1)

Publication Number Publication Date
WO2020080516A1 true WO2020080516A1 (en) 2020-04-23

Family

ID=70283270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/041072 WO2020080516A1 (en) 2018-10-18 2019-10-18 Apparatus for analyzing change in physical property near solid-liquid interface and method for analyzing change in physical property near solid-liquid interface

Country Status (2)

Country Link
JP (1) JP7432241B2 (en)
WO (1) WO2020080516A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000329681A (en) * 1999-03-16 2000-11-30 Seiko Instruments Inc Self-exciation and self-detection-type probe and scanning probe device
JP2003172684A (en) * 2001-12-07 2003-06-20 Seiko Instruments Inc Scanning probe microscope
JP2006284391A (en) * 2005-03-31 2006-10-19 Gunma Univ Cantilever type sensor
US20080011058A1 (en) * 2006-03-20 2008-01-17 The Regents Of The University Of California Piezoresistive cantilever based nanoflow and viscosity sensor for microchannels
US20160025773A1 (en) * 2014-07-28 2016-01-28 Ut-Battelle, Llc Electrochemical force microscopy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000329681A (en) * 1999-03-16 2000-11-30 Seiko Instruments Inc Self-exciation and self-detection-type probe and scanning probe device
JP2003172684A (en) * 2001-12-07 2003-06-20 Seiko Instruments Inc Scanning probe microscope
JP2006284391A (en) * 2005-03-31 2006-10-19 Gunma Univ Cantilever type sensor
US20080011058A1 (en) * 2006-03-20 2008-01-17 The Regents Of The University Of California Piezoresistive cantilever based nanoflow and viscosity sensor for microchannels
US20160025773A1 (en) * 2014-07-28 2016-01-28 Ut-Battelle, Llc Electrochemical force microscopy

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FUKUMA TAKESHI ET AL.: "Mechanism of atomic force microscopy imaging of three-dimensional hydration structures at a solid-liquid interface", PHYSICAL REVIEW B, vol. 92, no. 15, 2015, pages 1 - 7, XP055703165 *
ICHII TAKASHI: "Atomic-resolution AFM imaging in viscous ionic liquid", KENBIKYO, vol. 51, no. 2, 2016, pages 78 - 82 *
KURIHARA KAZUE: "Characterization and regulation of the structure formation of liquid at the solid-liquid interfaces", HYOMEN KAGAKU, vol. 30, no. 3, 2009, pages 162 - 167 *
LABUDA ALEKSANDER ET AL.: "Atomic Force Microscopy in Viscous Ionic Liquids", LANGMUIR, vol. 28, 2012, pages 5319 - 5322, XP055312080, DOI: 10.1021/la300557u *

Also Published As

Publication number Publication date
JP7432241B2 (en) 2024-02-16
JPWO2020080516A1 (en) 2021-12-16

Similar Documents

Publication Publication Date Title
US11002757B2 (en) Method and apparatus of operating a scanning probe microscope
EP2864798B1 (en) Method and apparatus of electrical property measurement using an afm operating in peak force tapping mode
JP2010210636A5 (en)
JP2013525760A (en) Scanning electrochemical microscope
JP5813966B2 (en) Displacement detection mechanism and scanning probe microscope using the same
US9116167B2 (en) Method and apparatus of tuning a scanning probe microscope
US8615811B2 (en) Method of measuring vibration characteristics of cantilever
JP4876216B2 (en) Surface position measuring method and surface position measuring apparatus
JP5674159B2 (en) Viscosity measuring method and viscosity measuring apparatus
WO2014132341A1 (en) Surface charge density measuring device using atomic force microscope
WO2020080516A1 (en) Apparatus for analyzing change in physical property near solid-liquid interface and method for analyzing change in physical property near solid-liquid interface
JP5418413B2 (en) Cantilever excitation method in atomic force microscope
Cougnon et al. Development of a phase-controlled constant-distance scanning electrochemical microscope
JP6220306B2 (en) Cantilever vibration characteristic measurement method and vibration characteristic measurement program
JP2003329565A (en) Scanning probe microscope
JP7444017B2 (en) scanning probe microscope
JP5632131B2 (en) Method of vibrating cantilever for scanning probe microscope and scanning probe microscope using the method
JP6692088B2 (en) Liquid atomic force microscope
KR20240084543A (en) Quartz tuning fork - atomic force microscope cantilever operating in electrolyte
JPH07159368A (en) Vibrating electrode device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19872538

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020553335

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19872538

Country of ref document: EP

Kind code of ref document: A1