JP2003172684A - Scanning probe microscope - Google Patents

Scanning probe microscope

Info

Publication number
JP2003172684A
JP2003172684A JP2001373647A JP2001373647A JP2003172684A JP 2003172684 A JP2003172684 A JP 2003172684A JP 2001373647 A JP2001373647 A JP 2001373647A JP 2001373647 A JP2001373647 A JP 2001373647A JP 2003172684 A JP2003172684 A JP 2003172684A
Authority
JP
Japan
Prior art keywords
sample
probe
cantilever
displacement
probe microscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001373647A
Other languages
Japanese (ja)
Other versions
JP3857581B2 (en
Inventor
Kazunori Ando
和徳 安藤
Amiko Saito
亜三子 齋藤
Yoshiaki Shikakura
良晃 鹿倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2001373647A priority Critical patent/JP3857581B2/en
Publication of JP2003172684A publication Critical patent/JP2003172684A/en
Application granted granted Critical
Publication of JP3857581B2 publication Critical patent/JP3857581B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a scanning probe microscope which prevents a probe from being separated from a face of a sample due to the thermal expansion, the thermal shrinkage or the like by the heating operation and the cooling operation of the sample and which controls the probe so as not to be separated from the surface of the sample due to the thermal expansion, the thermal shrinkage or the like by the heating operation and the cooling operation of the sample. <P>SOLUTION: The scanning probe microscope is composed of a cantilever which has a very small probe at its tip, a means which detects the displacement of the cantilever or the sample at a definite cycle in a desired amplitude amount, a means which heats and cools the sample and a sample movement means which moves the sample, and the surface shape or the surface physical property of the sample is measured. A follow-up means by which the sample movement means is moved wholly up and down is installed. Thereby, the probe is controlled so as not to be separated from the face of the sample due to the thermal expansion, the thermal shrinkage or the like of a constituent element by the heating operation and the cooling operation of the sample, and the probe is controlled so as to be pressed desirably with reference to the face of the sample even while a temperature is being changed. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、先端に微小な探針
を有するカンチレバーとカンチレバーの変位を検出する
手段とカンチレバーまたは試料を一定周期で所望の振幅
量で振動させる手段と試料を加熱冷却する手段と試料を
移動させる試料移動手段からなり、試料の表面形状ある
いは表面物性を測定する走査型プローブ顕微鏡に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cantilever having a fine probe at its tip, a means for detecting the displacement of the cantilever, a means for vibrating the cantilever or the sample at a desired amplitude in a constant cycle, and heating and cooling the sample. The present invention relates to a scanning probe microscope which comprises a means and a sample moving means for moving the sample, and measures the surface shape or surface physical properties of the sample.

【0002】[0002]

【従来の技術】従来の走査型プローブ顕微鏡は、先端に
微小な探針を有するカンチレバーとカンチレバーの変位
を検出する手段とカンチレバーまたは試料を一定周期で
所望の振幅量で振動させる手段と試料を加熱冷却する手
段と試料を移動させる試料移動手段からなり、試料の表
面形状あるいは表面物性を測定する走査型プローブ顕微
鏡において、試料温度を変化させるときは探針を試料表
面から離し、温度が安定になってから探針を試料表面に
接触させて試料の表面形状あるいは表面物性が測定され
ていた。さらに別の温度にするときは探針を一度試料面
から離し、別の温度にして安定になってから探針を再度
試料面に接触させて試料の表面形状あるいは表面物性を
測定するといった繰り返しが行われていた。
2. Description of the Related Art A conventional scanning probe microscope heats a cantilever having a minute probe at its tip, a means for detecting displacement of the cantilever, a means for vibrating the cantilever or the sample at a desired amplitude in a constant cycle, and a sample. In a scanning probe microscope that measures the surface shape or surface physical properties of the sample, which consists of a cooling means and a sample moving means that moves the sample, when changing the sample temperature, move the probe away from the sample surface to stabilize the temperature. Then, the probe was brought into contact with the sample surface to measure the surface shape or surface physical properties of the sample. When the temperature is changed to another temperature, the probe is once removed from the sample surface, and after it becomes stable at another temperature, the probe is brought into contact with the sample surface again to measure the surface shape or surface physical properties of the sample. It was done.

【0003】[0003]

【発明が解決しようとする課題】従来の走査型プローブ
顕微鏡では試料温度が安定になっていないとき、探針を
試料面に接触させたままであると、試料、試料台、試料
移動手段などの構成素子が熱膨張量の変化により探針が
試料面から離れたり、逆に試料面に押し付け過ぎたりす
る欠点があった。また温度を変化させるとき探針を試料
面から一度離し、温度が安定になってから探針を再度試
料面に接触させて試料の表面形状あるいは表面物性を測
定し、別の温度にするときは再度探針を試料面から離す
ことの繰り返しが行われているため測定に時間がかかる
欠点があった。
In the conventional scanning probe microscope, if the probe is kept in contact with the sample surface when the sample temperature is not stable, the structure of the sample, sample stage, sample moving means, etc. The element has a defect that the probe is separated from the sample surface due to a change in the amount of thermal expansion or, conversely, is pressed too much against the sample surface. When changing the temperature, move the probe away from the sample surface once, and after the temperature stabilizes, contact the probe again with the sample surface and measure the surface shape or surface physical properties of the sample. Since the probe is repeatedly separated from the sample surface again, there is a drawback that the measurement takes time.

【0004】[0004]

【課題を解決するための手段】上記の問題点を解決する
ために、本発明では、先端に微小な探針を有するカンチ
レバーとカンチレバーの変位を検出する変位検出手段と
カンチレバーまたは試料を一定周期で所望の振幅量で振
動させる振動手段と試料を加熱冷却する加熱冷却手段と
試料を移動させる試料移動手段からなり、試料の表面形
状あるいは表面物性を測定する走査型プローブ顕微鏡に
おいて、試料移動手段全体を上下動させる追従手段を設
けることで試料の加熱冷却に伴う熱膨張、熱収縮などで
探針が試料面から離れないように制御するようにした。
また試料の加熱冷却に伴う熱膨張、熱収縮などで温度変
化中も探針が試料表面に対して所望の押し付けで一定に
制御するようにした。
In order to solve the above problems, in the present invention, a cantilever having a minute probe at its tip, a displacement detecting means for detecting displacement of the cantilever, and a cantilever or a sample are periodically arranged. In a scanning probe microscope that measures the surface shape or surface physical properties of a sample, it consists of a vibrating means that vibrates with a desired amplitude, a heating and cooling means that heats and cools the sample, and a sample moving means that moves the sample. By providing a follow-up device for moving up and down, the probe is controlled so as not to separate from the sample surface due to thermal expansion, thermal contraction, etc. accompanying heating and cooling of the sample.
Further, the probe is pressed against the surface of the sample at a desired pressure so as to be constantly controlled even during temperature change due to thermal expansion and contraction due to heating and cooling of the sample.

【0005】[0005]

【発明の実施の形態】本発明は、図に示すように、先端
に微小な探針を有するカンチレバーとカンチレバーの変
位を検出する手段とカンチレバーまたは試料を一定周期
で所望の振幅量で振動させる手段と試料を加熱冷却する
手段と試料を移動させる試料移動手段からなり、試料の
表面形状あるいは表面物性を測定する走査型プローブ顕
微鏡において、試料移動手段全体を上下動させる追従手
段を設けることで試料の加熱冷却に伴う構成素子の熱膨
張、熱収縮などで探針が試料面から離れないように制御
するようにした。また試料の加熱冷却に伴う構成素子の
熱膨張、熱収縮などで探針が試料面に対して所望の押し
付けで一定に制御するようにした。温度変化中も探針は
試料面に接触させたままの試料面物性変化の温度依存測
定を容易にした。また試料面への探針の押し付けを一定
にすることで得られる物性値を正確に測定することを容
易にした。また温度安定になるまで測定を中止すること
が無くなり、測定時間の短縮化を可能にした。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is, as shown in the figure, a cantilever having a minute probe at its tip, a means for detecting displacement of the cantilever, and a means for vibrating the cantilever or the sample at a desired amplitude in a constant cycle. And a sample moving means for moving the sample and a means for moving the sample, and in the scanning probe microscope for measuring the surface shape or surface physical properties of the sample, by providing a follow-up means for vertically moving the entire sample moving means, The probe is controlled so as not to separate from the sample surface due to thermal expansion and thermal contraction of the constituent elements accompanying heating and cooling. In addition, the probe is pressed against the surface of the sample so as to be constantly controlled by thermal expansion and contraction of the constituent elements accompanying the heating and cooling of the sample. The probe facilitates temperature-dependent measurement of changes in physical properties of the sample surface while the probe remains in contact with the sample surface even during temperature changes. It also facilitates accurate measurement of physical properties obtained by keeping the probe pressed against the sample surface. In addition, the measurement is not stopped until the temperature becomes stable, and the measurement time can be shortened.

【0006】[0006]

【実施例】実施例について図面を参照して説明すると、
図1、図2、図3は本発明の走査型プローブ顕微鏡にお
ける測定方式の模式図である。カンチレバーまたは試料
を一定周期で所望の振幅量で振動させる手段として試料
移動手段に内蔵する上下動作をモジュレーション入力と
して利用して試料を振動し、表面物性測定の中でも粘弾
性特性を測定する例を図1で説明する。カンチレバー1
の先端には探針2があり、試料3と接触している。試料
3は加熱冷却手段4の上に設置されている。加熱冷却手
段4は試料移動手段5に設置されている。試料移動手段
5は上下方向の動作と平面方向の動作が可能である。上
下方向に動作させることで針先を試料表面に対して押し
付け・離しの繰り返しの振動を与えることができる。平
面方向の動作では探針と試料面接触位置を相対的に移動
させることができる。試料移動手段5は追従手段11の
上に設置されている。試料移動手段5は上下方向動作が
可能であるが圧電素子などが使われているため上下方向
の動作量は数ミクロン程度と少ない。追従手段11はモ
ータなどのアクチュエータおよび送りネジ機構で構成さ
れ上下動作量は例えば数ミリ以上が可能となっている。
なお追従手段11は移動量を稼ぐため積層タイプの圧電
素子としてもよい。
EXAMPLES Examples will be described with reference to the drawings.
1, 2, and 3 are schematic diagrams of the measuring method in the scanning probe microscope of the present invention. As an example of measuring the viscoelasticity in the surface physical property measurement by vibrating the sample by using the vertical movement built in the sample moving means as the modulation input as a means for vibrating the cantilever or the sample with a desired amplitude amount in a constant cycle. It will be explained in 1. Cantilever 1
Has a probe 2 at the tip thereof and is in contact with the sample 3. The sample 3 is installed on the heating / cooling means 4. The heating / cooling means 4 is installed in the sample moving means 5. The sample moving means 5 is capable of vertical movement and plane movement. By operating in the vertical direction, it is possible to apply repeated vibrations of pressing and releasing the needle tip against the sample surface. In the operation in the plane direction, the contact position between the probe and the sample surface can be moved relatively. The sample moving means 5 is installed on the following means 11. The sample moving means 5 is capable of vertical movement, but since a piezoelectric element or the like is used, the vertical movement amount is as small as several microns. The follow-up means 11 is composed of an actuator such as a motor and a feed screw mechanism, and the vertical movement amount can be several millimeters or more.
The follow-up means 11 may be a laminated type piezoelectric element in order to increase the movement amount.

【0007】試料の振動は試料移動手段5に内蔵する上
下動作によりモジュレーション入力6として与えられ
る。カンチレバー1にはレーザ7が照射されていて反射
光は変位検出手段8に到達する。反射光の変位検出手段
8の到達位置によりカンチレバー1の変位が出力信号9
として得られる。
The vibration of the sample is given as a modulation input 6 by the vertical movement built in the sample moving means 5. The cantilever 1 is irradiated with the laser 7, and the reflected light reaches the displacement detecting means 8. The output signal 9 indicates the displacement of the cantilever 1 depending on the arrival position of the displacement detection means 8 of the reflected light
Obtained as.

【0008】モジュレーション入力6には一般に正弦波
が利用され、出力信号9の波形は入力波形に対して時間
的に遅れる特性となる。時間的遅れの大きさは試料の粘
弾性特性を代表する値となる。またモジュレーション入
力6の振幅をA0とすると出力信号の振幅はA1とな
る。試料がやわらかければ出力振幅A1は入力振幅A0
より小さくなる。出力振幅A1の値の大きさでも試料の
粘弾性特性が測定できる。なおモジュレーション入力と
して試料移動手段5の代わりにカンチレバー側1に設置
された別の振動手段10を用いてもよい。
A sine wave is generally used for the modulation input 6, and the waveform of the output signal 9 has a characteristic of being delayed in time with respect to the input waveform. The magnitude of the time delay is a value that represents the viscoelastic properties of the sample. When the amplitude of the modulation input 6 is A0, the amplitude of the output signal is A1. If the sample is soft, the output amplitude A1 is the input amplitude A0
It gets smaller. The viscoelastic property of the sample can be measured even with the magnitude of the value of the output amplitude A1. As the modulation input, instead of the sample moving means 5, another vibrating means 10 installed on the cantilever side 1 may be used.

【0009】加熱冷却手段により加熱する場合を図2で
説明する。図2(A)に示すように加熱されると試料
3、加熱冷却手段4、試料移動手段5などの構成素子は
自身の熱膨張により膨張する。探針2と試料3の接触面
が上方向に伸び、探針2も上方向へ持ち上げようとして
カンチレバー1は上面が凹面状態に変形する。レーザ7
の反射光は加熱しないときの元の状態は反射光12であ
る。加熱により構成素子が熱膨張すると熱膨張時の反射
光13となり変位検出手段8に到達する位置が変化す
る。この場合には探針2が試料表面に対し押し付け過ぎ
となる。そこで図2(B)に示すように追従手段11を
下方向に操作させ、カンチレバー1の凹面変形を元の状
態になるようにすれば反射光12となる。この場合には
探針2の試料表面に対する押し付け具合は元の状態と同
じくなる。加熱温度をさらに上げれば構成素子の熱膨張
量も大きくなるが、いつも反射光12となるように追従
手段11で下方向へと制御することにより、探針2を試
料表面に対して一定の押し付け具合にしての物性測定が
可能となる。
The case of heating by the heating / cooling means will be described with reference to FIG. When heated as shown in FIG. 2A, the constituent elements such as the sample 3, the heating / cooling means 4, the sample moving means 5 expand due to thermal expansion of themselves. The contact surface between the probe 2 and the sample 3 extends upward, and the upper surface of the cantilever 1 is deformed into a concave state in an attempt to lift the probe 2 upward as well. Laser 7
The reflected light of is the original state when it is not heated to the reflected light 12. When the constituent element thermally expands by heating, the position of the reflected light 13 at the time of thermal expansion and reaching the displacement detecting means 8 changes. In this case, the probe 2 is excessively pressed against the sample surface. Therefore, as shown in FIG. 2B, the follower 11 is operated downward so that the concave surface deformation of the cantilever 1 is returned to the original state, and the reflected light 12 is obtained. In this case, the degree of pressing the probe 2 against the sample surface is the same as in the original state. If the heating temperature is further raised, the amount of thermal expansion of the constituent element also increases. However, by controlling the downward direction by the follow-up means 11 so that the reflected light 12 is always present, the probe 2 is pressed against the sample surface to a constant extent. It becomes possible to measure the physical properties according to the condition.

【0010】次に加熱冷却手段4により冷却する場合を
図3で説明する。図3(A)に示すように加熱冷却手段
4は中継冷却手段16と熱伝導手段15により接続され
ている。中継冷却手段16は液体窒素などで冷却されて
いる。中継冷却手段16を冷却する媒体は液体窒素以外
のものでもよい。またペルチェ素子などでもよい。熱伝
導手段15は例えば銅箔などが使用される。試料移動手
段5の動作を拘束させないように柔軟な箔である。銅箔
以外に銀箔、金箔、金属箔などでもよい。冷却されると
試料3、加熱冷却手段4、試料移動手段5などの構成素
子は自身の熱膨張により収縮する。探針2と試料3の接
触面が下方向に伸び、探針2は試料表面から離れる。レ
ーザ7の反射光は探針2が試料3に接触しているときは
反射光12であり、試料表面を適切な力で押し付けてい
る。探針2が冷却により構成素子が熱収縮すると離れた
ときの反射光14となり変位検出手段8に到達する位置
が変化する。この場合には探針2が試料表面に対し完全
に離れた状態となる。そこで図3(B)に示すように追
従手段11を上方向に操作させて探針2を試料表面に接
触させ反射光12になるように制御、追従させる。この
場合には探針2が試料表面に対する押し付け具合は元の
状態と同じくなる。冷却温度をさらに下げれば構成素子
の熱収縮量も大きくなるがいつも反射光12となるよう
に追従手段11で上方向へと制御すれば、探針2を試料
表面に対して一定の押し付け具合にしての物性測定が可
能となる。
Next, the case of cooling by the heating / cooling means 4 will be described with reference to FIG. As shown in FIG. 3A, the heating / cooling means 4 is connected to the relay cooling means 16 and the heat conduction means 15. The relay cooling means 16 is cooled with liquid nitrogen or the like. The medium for cooling the relay cooling means 16 may be something other than liquid nitrogen. Alternatively, a Peltier element or the like may be used. For the heat conduction means 15, for example, copper foil or the like is used. The foil is flexible so as not to restrict the operation of the sample moving means 5. Besides copper foil, silver foil, gold foil, metal foil, etc. may be used. When cooled, the constituent elements such as the sample 3, the heating / cooling means 4, the sample moving means 5 contract due to thermal expansion of themselves. The contact surface between the probe 2 and the sample 3 extends downward, and the probe 2 separates from the sample surface. The reflected light of the laser 7 is the reflected light 12 when the probe 2 is in contact with the sample 3, and presses the sample surface with an appropriate force. When the probe 2 contracts due to thermal contraction of the constituent elements, the position of the reflected light 14 when the probe 2 is separated and reaching the displacement detecting means 8 changes. In this case, the probe 2 is completely separated from the sample surface. Therefore, as shown in FIG. 3B, the follow-up means 11 is operated in the upward direction to bring the probe 2 into contact with the sample surface and control and follow the reflected light 12. In this case, the degree to which the probe 2 is pressed against the sample surface is the same as in the original state. If the cooling temperature is further lowered, the amount of thermal contraction of the constituent element also increases, but if the follow-up means 11 is controlled upward so that the reflected light 12 is always reflected, the probe 2 is pressed to the surface of the sample at a constant degree. All physical properties can be measured.

【0011】以上により、加熱冷却による温度変化中も
探針2を試料表面に接触させたまま、かつ、探針2の試
料表面への押し付け具合を一定にしたまま追従手段11
により連続した物性測定が可能となる。
As described above, the follow-up means 11 keeps the probe 2 in contact with the sample surface even when the temperature is changed by heating and cooling, and keeps the probe 2 pressed against the sample surface at a constant level.
This enables continuous measurement of physical properties.

【0012】探針2を試料表面に接触させたまま温度を
変化させる場合の実施例を図4に示す。図4(A)に示
すように例えば温度を一定の比率で昇温させる。探針2
を試料表面に接触させたまま、あるいは探針2の試料表
面への押し付けが一定になるように追従手段11で制御
しながら昇温させ、同時に振幅の変化を測定していく。
図4(B)に示すように例えば温度の上昇とともに試料
3がやわらかくなって振幅が小さくなっていくグラフが
表示される。同じく探針2を試料表面に接触させたま
ま、あるいは探針2の試料表面への押し付けが一定にな
るように追従手段11で制御しながら昇温させて同時に
出力信号9の時間遅れの変化を測定していく。図4
(C)に示すように例えば温度の上昇とともにある温度
で試料3がやわらかくなって時間遅れが大きくなって、
適当な温度をさらに超えると逆に試料成分内の変化でか
たくなり、時間遅れが小さくなっていくグラフが表示さ
れる。グラフは昇温中リアルタイムに表示させてもよい
し、表示終了後記憶させてもよい。温度変化のしかたは
昇温(加熱)に限らず、降温(冷却)させてもよい。ま
た一定比率の昇温、降温ではなく、階段状に昇温、降温
させてもよい。いずれの場合にも探針2を試料表面に接
触させたまま、あるいは、探針2の試料表面への押し付
けを一定にしたまま連続で試料表面の粘弾性特性の変化
を測定することができる。
FIG. 4 shows an embodiment in which the temperature is changed while the probe 2 is kept in contact with the sample surface. As shown in FIG. 4A, the temperature is raised at a constant rate, for example. Probe 2
Is kept in contact with the sample surface, or the temperature is raised while controlling the follower 11 so that the pressing of the probe 2 against the sample surface is constant, and at the same time, the change in amplitude is measured.
As shown in FIG. 4B, a graph is displayed in which the sample 3 becomes softer and the amplitude becomes smaller as the temperature rises, for example. Similarly, the temperature of the probe 2 is kept in contact with the sample surface, or the temperature of the output signal 9 is changed by controlling the temperature of the probe 2 so that the pressing force of the probe 2 against the sample surface is kept constant while controlling the temperature rise. Measure. Figure 4
As shown in (C), for example, as the temperature rises, the sample 3 becomes softer at a certain temperature and the time delay increases,
On the other hand, if the temperature exceeds the appropriate temperature, the change in the sample composition will make the sample harder and the time delay will decrease. The graph may be displayed in real time during the temperature rise, or may be stored after the display ends. The method of changing the temperature is not limited to the temperature increase (heating) but may be the temperature decrease (cooling). Further, the temperature may be raised and lowered in a stepwise manner instead of the constant rate of temperature raising and lowering. In either case, the change in the viscoelastic property of the sample surface can be continuously measured while the probe 2 is kept in contact with the sample surface or while the probe 2 is kept pressed against the sample surface.

【0013】探針2を試料表面に対して水平方向に動か
さず、試料上の1点(測定ポイント)で連続測定しても
よい。また試料移動手段5により探針2を試料3に対し
水平方向に移動と戻しを繰り返し、試料面上の1ライン
(測定ライン)の平均値を測定して連続測定、表示して
もよい。また探針2を試料面上のある領域を移動させな
がら領域内の平均値を測定して連続測定、表示してもよ
い。
It is also possible to continuously measure at one point (measurement point) on the sample without moving the probe 2 horizontally with respect to the sample surface. Alternatively, the sample moving means 5 may repeatedly move and return the probe 2 with respect to the sample 3 in the horizontal direction, and the average value of one line (measurement line) on the sample surface may be measured and continuously measured and displayed. Alternatively, the probe 2 may be moved in a certain area on the sample surface, and the average value in the area may be measured for continuous measurement and display.

【0014】以上までは、探針2を試料表面に対して押
し付けることで得られる物性として粘弾性特性の例で説
明してきた。一方、探針2を試料表面から離すことに着
目して得られる表面物性としては、試料表面の吸着特性
もある。探針2を試料表面に対して接触・離しを繰り返
す実施例を図3に示す。図5(A)で探針が試料表面上
の吸着が小さい部分31に接触している。図5(B)で
試料3を下方向へ移動させるとカンチレバー1はつり竿
状態になる。探針2がどの程度試料側に引っ張られてい
るかはカンチレバー1に照射されているレーザ7の反射
光を変位検出手段8で検知することで知ることができ
る。図5(C)で試料3をさらに下方向に移動させれば
探針2は試料表面から離れる。次に図5(D)で探針2
が試料表面上の吸着が大きい部分32に接触している。
図5(E)で試料3を下方向へ移動させるとカンチレバ
ー1はつり竿状態になる。探針2がどの程度試料側に引
っ張られているかはカンチレバー1に照射されているレ
ーザ7の反射光を変位検出手段8で検知することで知る
ことができる。図5(F)で試料3をさらに下方向に移
動させれば探針2は試料面から離れる。吸着の大きい部
分32ではカンチレバー1のつり竿状態は顕著で探針2
の変位量も大きく、吸着の小さい部分31ではカンチレ
バー1のつり竿状態の度合いは少なく探針2の変位量は
小さくなる。これにより試料表面から離れるときの探針
2の変位量を測定することで試料面のポイントにおける
吸着力の大小つまり吸着特性を測定できる。
Up to this point, the example of viscoelasticity has been described as the physical property obtained by pressing the probe 2 against the sample surface. On the other hand, the surface physical properties obtained by focusing on separating the probe 2 from the sample surface include the adsorption property of the sample surface. FIG. 3 shows an embodiment in which the probe 2 is repeatedly brought into contact with and separated from the sample surface. In FIG. 5A, the probe is in contact with the portion 31 on the sample surface where the adsorption is small. When the sample 3 is moved downward in FIG. 5B, the cantilever 1 is in a fishing rod state. The extent to which the probe 2 is pulled toward the sample can be known by detecting the reflected light of the laser 7 applied to the cantilever 1 with the displacement detecting means 8. If the sample 3 is moved further downward in FIG. 5C, the probe 2 is separated from the sample surface. Next, referring to FIG.
Is in contact with the portion 32 on the sample surface where the adsorption is large.
When the sample 3 is moved downward in FIG. 5 (E), the cantilever 1 is in a fishing rod state. The extent to which the probe 2 is pulled toward the sample can be known by detecting the reflected light of the laser 7 applied to the cantilever 1 with the displacement detecting means 8. If the sample 3 is moved further downward in FIG. 5 (F), the probe 2 separates from the sample surface. In the part 32 where the adsorption is large, the suspended rod state of the cantilever 1 is remarkable, and the probe 2
The displacement of the probe 2 is small in the portion 31 where the adsorption is small, and the degree of the rod shape of the cantilever 1 is small. Thus, by measuring the amount of displacement of the probe 2 when it is separated from the sample surface, it is possible to measure the magnitude of the suction force at the point on the sample surface, that is, the suction characteristic.

【0015】探針2を試料表面に対し、接触と離しを繰
り返しながら温度を変化させる。探針2が試料表面に接
触したときの押し付け具合が一定になるように追従手段
11で制御する。探針2が離れる直前のつり竿状態の度
合いを変位検出手段8により測定する。温度変化中も測
定していけば試料表面の吸着特性の温度依存を連続して
測定できる。探針2を試料に対して水平方向に動かさ
ず、試料上の1点(測定ポイント)で連続測定してもよ
い。また試料移動手段5により探針2を試料3に対し水
平方向に移動と戻しを繰り返し、試料面上の1ライン
(測定ライン)を測定して連続測定、表示してもよい。
また探針2を試料上のある領域を2次元的に移動させな
がら領域内の平均値を測定して連続測定、表示してもよ
い。いずれも吸着特性の温度依存グラフが得られる。
The temperature is changed by repeatedly contacting and separating the probe 2 from the sample surface. The follow-up means 11 controls the pressing condition when the probe 2 comes into contact with the sample surface to be constant. The degree of the fishing rod state immediately before the probe 2 is separated is measured by the displacement detecting means 8. If the measurement is performed during the temperature change, the temperature dependence of the adsorption property on the sample surface can be continuously measured. Instead of moving the probe 2 horizontally with respect to the sample, continuous measurement may be performed at one point (measurement point) on the sample. Further, the probe 2 may be moved and returned in the horizontal direction with respect to the sample 3 repeatedly by the sample moving means 5, and one line (measurement line) on the sample surface may be measured and continuously measured and displayed.
Alternatively, the probe 2 may be moved two-dimensionally over a certain area on the sample, and the average value in the area may be measured for continuous measurement and display. In either case, a temperature dependence graph of adsorption characteristics can be obtained.

【0016】また試料移動手段5により探針2に対し試
料3を水平方向に相対的にずらせばカンチレバー1は摩
擦などによりねじれることで摩擦特性を測定する実施例
を図6に示す。図6(A)は探針2を有するカンチレバ
ー1の長手方向が紙面と垂直の場合を示している。探針
2は試料表面に接触している。カンチレバー1がねじれ
やすいようにカンチレバー1の長手方向に直交する方向
に試料3を移動させる。摩擦の小さい部分33ではねじ
れ量は小さい。図6(B)で微粒子付きの探針2が摩擦
の大きい部分34にくるとねじれ量は大きくなる。図6
(C)で再び摩擦の小さい部分33に探針2がくればね
じれ量は小さくなる。探針のねじれ量を測定することで
試料表面のポイントにおける摩擦力の大小つまり摩擦特
性を測定できる。探針2を試料3に対し、水平方向の移
動と戻しを繰り返しながら温度を変化させる。温度変化
中も探針2が試料表面に対し押し付け具合が一定になる
ように追従手段11で制御する。探針2のねじれ量を変
位検出手段8により測定する。温度変化中も測定してい
けば試料表面の摩擦特性の温度依存を連続して測定でき
る。探針2を試料3に対して水平方向に大きく動かさ
ず、カンチレバー1をねじれさせる程度の移動量で探針
2を傾けることで試料面上の1点(測定ポイント)で連
続測定してもよい。また試料移動手段5により探針2を
試料3に対し水平方向に移動と戻しを繰り返し、試料表
面上の1ライン(測定ライン)を測定して連続測定、表
示してもよい。また探針2を試料表面のある領域を2次
元的に移動させながら領域内を測定して連続測定、表示
してもよい。いずれも摩擦特性の温度依存グラフが得ら
れる。
FIG. 6 shows an embodiment in which the sample 3 is moved relative to the probe 2 in the horizontal direction by the sample moving means 5 and the cantilever 1 is twisted by friction or the like to measure the frictional characteristics. FIG. 6A shows a case where the longitudinal direction of the cantilever 1 having the probe 2 is perpendicular to the paper surface. The probe 2 is in contact with the sample surface. The sample 3 is moved in a direction orthogonal to the longitudinal direction of the cantilever 1 so that the cantilever 1 is easily twisted. The amount of twist is small in the portion 33 where the friction is small. In FIG. 6 (B), when the probe 2 with the fine particles comes to the portion 34 with large friction, the amount of twist becomes large. Figure 6
In (C), if the probe 2 comes again to the portion 33 where the friction is small, the twist amount becomes small. By measuring the amount of twist of the probe, the magnitude of the frictional force at the point on the sample surface, that is, the frictional characteristic can be measured. The temperature of the probe 3 is changed by repeatedly moving and returning the probe 2 in the horizontal direction with respect to the sample 3. The tracking means 11 controls the probe 2 so that the degree of pressing the probe 2 against the sample surface is constant even during temperature change. The amount of twist of the probe 2 is measured by the displacement detecting means 8. The temperature dependence of the frictional properties of the sample surface can be measured continuously if the measurement is performed during the temperature change. Continuous measurement may be performed at one point (measurement point) on the sample surface by inclining the probe 2 with a movement amount that twists the cantilever 1 without moving the probe 2 largely in the horizontal direction with respect to the sample 3. . Further, the probe 2 may be moved and returned horizontally with respect to the sample 3 by the sample moving means 5 to measure one line (measurement line) on the sample surface for continuous measurement and display. Alternatively, the probe 2 may be moved two-dimensionally over a certain area of the sample surface to measure the inside of the area for continuous measurement and display. In either case, a temperature dependence graph of friction characteristics can be obtained.

【0017】また摩擦特性の測定を目的とする場合、試
料を上下方向に振動させるかわりに、試料移動手段5の
水平方向の動作で探針2に対して試料3を水平方向に所
望の振動数、振動量で振動させながら試料表面を測定し
てもよい。摩擦の大きい部分34でねじれ量が大きく、
摩擦の小さい部分33でねじれ量が小さくなるので、水
平方向の振動をさせながら温度変化させて同様に試料表
面の摩擦特性を連続測定してもよい。
For the purpose of measuring the frictional characteristics, instead of vertically vibrating the sample, the horizontal movement of the sample moving means 5 moves the sample 3 horizontally relative to the probe 2 at a desired frequency. Alternatively, the sample surface may be measured while vibrating with the amount of vibration. The amount of twist is large in the high-friction portion 34,
Since the amount of twist is small at the portion 33 having a small friction, the friction characteristics of the sample surface may be continuously measured by changing the temperature while vibrating in the horizontal direction.

【0018】探針2を試料に接触させたまま、あるいは
探針を試料表面に対し接触と離しを繰り返し、加熱冷却
を行い、表面凹凸像と物性像をマッピング像として測
定、記録する別の実施例を図7に示す。表面凹凸像と物
性像を表示、記憶する。別の温度になったとき表面凹凸
像と物性像を表示、記憶する。なお温度変化中、連続で
表示、記憶させていってもよい。物性像としては粘弾性
特性のマッピング像を表示させてもよい。また摩擦特性
のマッピング像、吸着特性のマッピング像としてもよ
い。
Another embodiment in which the probe 2 is kept in contact with the sample or the probe is repeatedly brought into contact with and separated from the sample surface to perform heating and cooling, and the surface unevenness image and the physical property image are measured and recorded as a mapping image. An example is shown in FIG. It displays and stores the surface unevenness image and the physical property image. When the temperature becomes different, the surface unevenness image and the physical property image are displayed and stored. Note that the temperature may be continuously displayed and stored during the temperature change. As the physical property image, a viscoelastic property mapping image may be displayed. Alternatively, a friction characteristic mapping image or a suction characteristic mapping image may be used.

【0019】カンチレバー1または試料3を振動させず
に、表面凹凸像のみの温度による変化をリアルタイムで
表示させても、また連続して表示させて順に記憶させて
いってもよい。
The change of the surface unevenness image due to the temperature may be displayed in real time without vibrating the cantilever 1 or the sample 3, or may be continuously displayed and sequentially stored.

【0020】[0020]

【発明の効果】本発明は、以上説明したような形態で実
施され、以下に記載されるような効果を奏する。先端に
微小な探針を有するカンチレバーとカンチレバーの変位
を検出する手段とカンチレバーまたは試料を一定周期で
所望の振幅量で振動させる手段と試料を加熱冷却する手
段と試料を移動させる試料移動手段からなり、試料の表
面形状あるいは表面物性を測定する走査型プローブ顕微
鏡において、試料移動手段全体を上下動させる追従手段
を設けることで試料の加熱冷却に伴う構成素子の熱膨
張、熱収縮などで探針が試料面から離れないように制御
するようにした。また試料の加熱冷却に伴う構成素子の
熱膨張、熱収縮などがあっても、探針が試料に対して所
望の押し付けで一定になるように制御するようにした。
温度変化中も探針を試料に接触させたままにできるた
め、試料面物性変化の温度依存測定を容易にする効果が
ある。また試料面への探針の押し付け具合を一定にする
ことで得られる物性値を、正確に測定することを容易に
する効果もある。また温度安定になるまで測定を中止す
ることが無くなり、測定時間の短縮化を可能にする効果
もある。
The present invention is carried out in the form as described above, and has the following effects. It consists of a cantilever with a minute tip at the tip, a means for detecting displacement of the cantilever, a means for vibrating the cantilever or the sample at a desired amplitude in a fixed cycle, a means for heating and cooling the sample, and a sample moving means for moving the sample. In a scanning probe microscope that measures the surface shape or surface physical properties of a sample, by providing a follow-up unit that moves the sample moving unit up and down, the probe can be expanded and contracted due to thermal expansion and contraction of the components accompanying heating and cooling of the sample. Control was performed so that the sample surface was not separated. Further, even if there is thermal expansion or thermal contraction of the constituent elements due to heating and cooling of the sample, the probe is controlled so as to be constant with a desired pressing force against the sample.
Since the probe can be kept in contact with the sample during the temperature change, there is an effect of facilitating the temperature-dependent measurement of the property change of the sample surface. In addition, there is also an effect of facilitating accurate measurement of physical property values obtained by making the degree of pressing the probe against the sample surface constant. Further, there is also an effect that the measurement is not stopped until the temperature becomes stable and the measurement time can be shortened.

【図面の簡単な説明】[Brief description of drawings]

【図1】走査型プローブ顕微鏡で粘弾性特性を測定する
ときの本発明の模式図。
FIG. 1 is a schematic diagram of the present invention when measuring viscoelastic properties with a scanning probe microscope.

【図2】(A)から(B)は、走査型プローブ顕微鏡で
加熱時構成素子の熱膨張と追従制御を説明する模式図。
2A to 2B are schematic diagrams for explaining thermal expansion and follow-up control of constituent elements during heating with a scanning probe microscope.

【図3】(A)から(B)は、走査型プローブ顕微鏡で
冷却時構成素子の熱収縮と追従制御を説明する模式図。
FIGS. 3A to 3B are schematic views for explaining thermal contraction and follow-up control of constituent elements during cooling with a scanning probe microscope.

【図4】(A)から(C)は、走査型プローブ顕微鏡で
温度変化中に探針を試料面に接触させたまま物性変化と
して得られる振幅および時間遅れを表示した模式図。
4 (A) to 4 (C) are schematic diagrams showing the amplitude and time delay obtained as a change in physical properties while the probe is in contact with the sample surface during temperature change in the scanning probe microscope.

【図5】(A)から(F)は、走査型プローブ顕微鏡で
吸着特性を求める場合の実施例を示す模式図。
5 (A) to 5 (F) are schematic diagrams showing an example in which an adsorption characteristic is obtained by a scanning probe microscope.

【図6】(A)から(C)は、走査型プローブ顕微鏡で
摩擦特性を求める場合の実施例を示す模式図。
FIGS. 6A to 6C are schematic views showing an example in the case of obtaining a friction characteristic with a scanning probe microscope.

【図7】走査型プローブ顕微鏡で表面凹凸像と物性像を
温度変化中も測定、記録する実施例を示す模式図。
FIG. 7 is a schematic diagram showing an example in which a surface unevenness image and a physical property image are measured and recorded even during temperature change by a scanning probe microscope.

【符号の説明】[Explanation of symbols]

1 カンチレバー 2 探針 3 試料 4 加熱冷却手段 5 試料移動手段 6 モジュレーション入力 7 レーザ 8 変位検出手段 9 信号出力 10 別の振動手段 11 追従手段 12 反射光 13 熱膨張時の反射光 14 離れたときの反射光 15 熱伝導手段 16 中継冷却手段 A0 入力振幅 A1 出力振幅 31 吸着の小さい部分 32 吸着の大きい部分 33 摩擦の小さい部分 34 摩擦の大きい部分 1 cantilever 2 probe 3 samples 4 Heating / cooling means 5 Sample moving means 6 Modulation input 7 laser 8 Displacement detection means 9 signal output 10 Alternative vibration means 11 Tracking means 12 reflected light 13 Reflected light during thermal expansion 14 Reflected light at a distance 15 Heat transfer means 16 Relay cooling means A0 input amplitude A1 output amplitude 31 Small adsorption area 32 Large adsorption area 33 Small friction 34 High friction area

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01N 19/04 G01N 19/04 D 25/16 25/16 C (72)発明者 鹿倉 良晃 千葉県千葉市美浜区中瀬1丁目8番地 セ イコーインスツルメンツ株式会社内 Fターム(参考) 2F069 AA60 GG02 HH04 MM34 RR09 2G040 AB07 BA25 CA23 EB02 ZA01─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) G01N 19/04 G01N 19/04 D 25/16 25/16 C (72) Inventor Yoshiaki Kakura Chiba City, Chiba Prefecture 1-8 Nakase, Mihama-ku Seiko Instruments Co., Ltd. F-term (reference) 2F069 AA60 GG02 HH04 MM34 RR09 2G040 AB07 BA25 CA23 EB02 ZA01

Claims (24)

【特許請求の範囲】[Claims] 【請求項1】 先端に微小な探針を有するカンチレバー
と、該カンチレバーの変位を検出する変位検出手段と、
カンチレバーまたは試料を一定周期で所望の振幅量で振
動させる振動手段と、試料を加熱冷却する加熱冷却手段
と、試料を移動させる試料移動手段からなり、試料の表
面形状あるいは表面物性を測定する走査型プローブ顕微
鏡において、前記試料移動手段全体を上下動させる追従
手段を設けることを特徴とする走査型プローブ顕微鏡。
1. A cantilever having a minute probe at its tip, and displacement detecting means for detecting displacement of the cantilever,
A scanning type which comprises a vibrating means for vibrating the cantilever or the sample with a desired amplitude amount in a constant cycle, a heating / cooling means for heating / cooling the sample, and a sample moving means for moving the sample. A scanning probe microscope, wherein the probe microscope is provided with follow-up means for moving the entire sample moving means up and down.
【請求項2】 前記探針を試料に接触させる際に、前記
カンチレバーの変位または押し付け力が一定になるよう
にした、請求項1記載の走査型プローブ顕微鏡。
2. The scanning probe microscope according to claim 1, wherein when the probe is brought into contact with a sample, the displacement or pressing force of the cantilever is constant.
【請求項3】 前記探針を試料に接触させたまま、探針
が試料から離れないように、あるいは前記カンチレバー
の変位または押し付け力が一定になるように制御して一
連の加熱冷却操作を行い、試料表面の1点において表面
物性の温度依存を連続して測定することとした、請求項
1または2に記載の走査型プローブ顕微鏡。
3. A series of heating / cooling operations are performed while the probe is kept in contact with the sample so that the probe does not separate from the sample or the displacement or pressing force of the cantilever becomes constant. The scanning probe microscope according to claim 1 or 2, wherein the temperature dependence of the surface physical properties is continuously measured at one point on the sample surface.
【請求項4】 前記カンチレバーの変位検出手段により
前記カンチレバー振幅量を得、振幅量の大小から試料表
面の物性として粘弾性特性を測定することとした、請求
項3記載の走査型プローブ顕微鏡。
4. The scanning probe microscope according to claim 3, wherein the cantilever displacement detection means obtains the cantilever amplitude amount, and the viscoelastic property is measured as the physical property of the sample surface from the magnitude of the amplitude amount.
【請求項5】 前記振動させる手段の入力波形に対する
前記カンチレバーの変位を検出する手段の出力波形の時
間的遅れから試料表面の物性として粘弾性特性を測定す
ることとした、請求項3記載の走査型プローブ顕微鏡。
5. The scanning according to claim 3, wherein the viscoelastic property is measured as the physical property of the sample surface from the time delay of the output waveform of the means for detecting the displacement of the cantilever with respect to the input waveform of the vibrating means. Type probe microscope.
【請求項6】 前記探針を試料と接触させた状態で前記
試料移動手段により相対的に試料を水平方向に移動さ
せ、前記カンチレバーのねじれ量を測定することで試料
表面の摩擦特性を求めることとした、請求項3記載の走
査型プローブ顕微鏡。
6. The friction characteristic of the sample surface is obtained by moving the sample in the horizontal direction relatively by the sample moving means with the probe in contact with the sample and measuring the twist amount of the cantilever. The scanning probe microscope according to claim 3.
【請求項7】 前記カンチレバーの変位検出手段によ
り、試料を探針に対して水平方向に振動させながら前記
カンチレバーの変位を測定することとした、請求項6記
載の走査型プローブ顕微鏡。
7. The scanning probe microscope according to claim 6, wherein the displacement detection means of the cantilever measures the displacement of the cantilever while vibrating the sample horizontally with respect to the probe.
【請求項8】 前記試料移動手段に内蔵する上下動作に
より試料表面に対して前記探針を接触と離しを繰り返
し、特に接触時には前記カンチレバーの変位または押し
付け力が一定になるように制御し、離す際に必要な前記
カンチレバーの変位量を得ながら試料の前記過熱冷却手
段により加熱冷却操作を行い、試料上の1点における表
面物性としての吸着特性を連続して測定することとし
た、請求項1または2に記載の走査型プローブ顕微鏡。
8. The probe is repeatedly brought into and out of contact with the surface of the sample by a vertical movement built in the sample moving means, and in particular, when contacting, the displacement or pressing force of the cantilever is controlled to be constant and released. The heating / cooling operation of the sample is performed by the superheat cooling means while obtaining the required displacement of the cantilever, and the adsorption property as a surface physical property at one point on the sample is continuously measured. Alternatively, the scanning probe microscope according to the item 2.
【請求項9】 前記探針を試料に接触させたまま試料の
加熱冷却を行い、、特に前記前期探針が試料から離れな
いように、あるいは前記カンチレバーの変位または押し
付け力が一定になるように制御して前記過熱冷却手段に
より加熱冷却を行い、試料上の1ライン(測定ライン)
において表面物性の温度依存を連続して測定することと
した、請求項1または2記載の走査型プローブ顕微鏡。
9. The sample is heated and cooled while the probe is kept in contact with the sample so that the probe is not separated from the sample, or the displacement or pressing force of the cantilever is constant. One line (measurement line) on the sample is controlled and heated and cooled by the superheat cooling means.
The scanning probe microscope according to claim 1 or 2, wherein the temperature dependence of the surface physical properties is continuously measured.
【請求項10】 前記変位検出手段により前記カンチレ
バーの振幅量を得て、振幅量の大小から試料表面の物性
として粘弾性特性を測定することとした、請求項9記載
の走査型プローブ顕微鏡。
10. The scanning probe microscope according to claim 9, wherein an amplitude amount of the cantilever is obtained by the displacement detecting means, and a viscoelastic property is measured as a physical property of the sample surface from the magnitude of the amplitude amount.
【請求項11】 前記振動させる手段の入力波形に対す
る前記カンチレバーの変位を検出する手段より得られる
出力波形の時間的遅れから、試料表面の物性として粘弾
性特性を測定することとした、請求項9記載の走査型プ
ローブ顕微鏡。
11. The viscoelastic property as the physical property of the sample surface is measured from the time delay of the output waveform obtained by the means for detecting the displacement of the cantilever with respect to the input waveform of the vibrating means. The scanning probe microscope described.
【請求項12】 前記探針を試料と接触させた状態で前
記試料移動手段により相対的に試料を水平方向に移動さ
せ、前記カンチレバーのねじれ量を測定することで試料
表面の摩擦特性を求めることとした、請求項9記載の走
査型プローブ顕微鏡。
12. The friction characteristic of the sample surface is obtained by moving the sample relatively in the horizontal direction by the sample moving means in a state where the probe is in contact with the sample and measuring the twist amount of the cantilever. The scanning probe microscope according to claim 9.
【請求項13】 前記探針に対して試料を水平方向に一
定周期で所望の振幅量で振動させながら前記カンチレバ
ーの変位検出手段により測定することとした、請求項1
2記載の走査型プローブ顕微鏡。
13. The cantilever displacement detection means measures the sample while vibrating the sample in a horizontal direction at a constant amplitude with respect to the probe with a desired amplitude amount.
2. The scanning probe microscope according to 2.
【請求項14】 前記試料移動手段に内蔵する上下動作
により、試料表面に対して前記探針を接触と離しを繰り
返し、特に接触時には前記カンチレバーの変位または押
し付け力が一定になるように制御し、離す際に必要なカ
ンチレバーの変位量を得ながら加熱冷却を行い、試料上
の1ライン(測定ライン)における表面物性の吸着特性
を連続して測定することとした、請求項1またはおよび
2記載の走査型プローブ顕微鏡。
14. The vertical movement built into the sample moving means repeatedly contacts and separates the probe with respect to the sample surface, and in particular, at the time of contact, the displacement or pressing force of the cantilever is controlled to be constant, 3. The heating / cooling is performed while obtaining the displacement amount of the cantilever necessary for the separation, and the adsorption property of the surface physical property on one line (measurement line) on the sample is continuously measured. Scanning probe microscope.
【請求項15】 前記探針を試料に接触させたまま、前
記探針が試料表面から離れないように、あるいは前記カ
ンチレバーの変位または押し付け力が一定になるように
制御して加熱冷却を行い、試料上の測定領域における表
面物性の温度依存を連続して測定することとした、請求
項1または2記載の走査型プローブ顕微鏡。
15. Heating and cooling is performed while the probe is kept in contact with the sample so that the probe does not separate from the sample surface or the displacement or pressing force of the cantilever is constant. The scanning probe microscope according to claim 1, wherein the temperature dependence of the surface physical properties in the measurement region on the sample is continuously measured.
【請求項16】 前記カンチレバーの変位検出手段の出
力波形の振幅量を得ることで振幅量の大小から試料表面
の物性として粘弾性特性を測定することとした、請求項
15記載の走査型プローブ顕微鏡。
16. The scanning probe microscope according to claim 15, wherein the viscoelastic property is measured as the physical property of the sample surface from the magnitude of the amplitude amount by obtaining the amplitude amount of the output waveform of the displacement detecting means of the cantilever. .
【請求項17】 前記振動させる手段の入力波形に対す
る前記カンチレバーの変位を検出する手段の出力波形の
時間的遅れから試料表面の物性として粘弾性特性を測定
することとした、請求項15記載の走査型プローブ顕微
鏡。
17. The scanning according to claim 15, wherein the viscoelastic property is measured as the physical property of the sample surface from the time delay of the output waveform of the means for detecting the displacement of the cantilever with respect to the input waveform of the vibrating means. Type probe microscope.
【請求項18】 前記探針を試料と接触させた状態で前
記試料移動手段により相対的に試料を水平方向に移動さ
せ、前記カンチレバーのねじれ量を測定することで試料
表面の摩擦特性を求めることとした、請求項15記載の
走査型プローブ顕微鏡。
18. The friction characteristic of the sample surface is obtained by moving the sample relatively in the horizontal direction by the sample moving means in a state where the probe is in contact with the sample and measuring the amount of twist of the cantilever. 16. The scanning probe microscope according to claim 15.
【請求項19】 前記試料移動手段により前記カンチレ
バーの変位検出手段により試料を探針に対して水平方向
に一定周期で所望の振幅量で振動させながら測定するこ
ととした、請求項18記載の走査型プローブ顕微鏡。
19. The scanning according to claim 18, wherein the sample moving means measures displacement of the cantilever while vibrating the sample in a horizontal direction with respect to the probe in a predetermined cycle while vibrating at a desired amplitude amount. Type probe microscope.
【請求項20】 前記試料移動手段に内蔵する上下動作
により試料に対して探針を接触と離しを繰り返し、特に
接触時には前記カンチレバーの変位または押し付け力が
一定になるように制御し、離す際に必要な前記カンチレ
バー変位量を得ながら加熱冷却を行い、試料上の測定領
域における表面物性の吸着特性を連続して測定すること
とした、請求項1または2記載の走査型プローブ顕微
鏡。
20. The probe is repeatedly brought into and out of contact with the sample by a vertical movement built in the sample moving means. Particularly, when the probe is contacted, the displacement or pressing force of the cantilever is controlled so as to be constant, and the probe is released. The scanning probe microscope according to claim 1 or 2, wherein heating and cooling are performed while obtaining the required displacement amount of the cantilever, and adsorption properties of surface physical properties in a measurement region on a sample are continuously measured.
【請求項21】 前記探針を試料に接触させたまま加熱
冷却を行い、得られた物性値の温度依存変化のグラフを
同時に表示および記録することとした、請求項4から
7、10から13、16から19のいずれかに記載の走
査型プローブ顕微鏡。
21. The heating and cooling are performed while the probe is kept in contact with the sample, and the graph of the temperature-dependent change of the obtained physical property values is displayed and recorded at the same time. The scanning probe microscope according to any one of 16 to 19.
【請求項22】 前記探針を試料に接触させたまま加熱
冷却を行い、得られた表面凹凸像と物性像をマッピング
像として測定、記録することとした、請求項16から1
9のいずれかに記載の走査型プローブ顕微鏡。
22. The heating and cooling is performed while the probe is in contact with the sample, and the obtained surface unevenness image and the physical property image are measured and recorded as a mapping image.
9. The scanning probe microscope according to any one of 9.
【請求項23】 試料に対して前記探針を接触と離しを
繰り返しながら加熱冷却を行い、得られた物性値の温度
依存変化のグラフを同時に表示および記録することとし
た、請求項8、14、または20のいずれかに記載の走
査型プローブ顕微鏡。
23. The sample is heated and cooled while repeating contact and separation of the probe, and the graph of the temperature-dependent change of the obtained physical property values is displayed and recorded at the same time. Or the scanning probe microscope according to any one of 20.
【請求項24】 試料に対して前記探針を接触と離しを
繰り返しながら加熱冷を行い、表面凹凸像と物性像をマ
ッピング像として測定、記録することとした、請求項2
0記載の走査型プローブ顕微鏡。
24. The sample is heated and cooled while repeating contact and separation of the probe to measure and record a surface unevenness image and a physical property image as a mapping image.
The scanning probe microscope according to 0.
JP2001373647A 2001-12-07 2001-12-07 Scanning probe microscope Expired - Fee Related JP3857581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001373647A JP3857581B2 (en) 2001-12-07 2001-12-07 Scanning probe microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001373647A JP3857581B2 (en) 2001-12-07 2001-12-07 Scanning probe microscope

Publications (2)

Publication Number Publication Date
JP2003172684A true JP2003172684A (en) 2003-06-20
JP3857581B2 JP3857581B2 (en) 2006-12-13

Family

ID=19182326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001373647A Expired - Fee Related JP3857581B2 (en) 2001-12-07 2001-12-07 Scanning probe microscope

Country Status (1)

Country Link
JP (1) JP3857581B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008304211A (en) * 2007-06-05 2008-12-18 Jeol Ltd Automatic tuning method of cantilever
JP2011053107A (en) * 2009-09-02 2011-03-17 Hoya Corp Method for evaluating film on optical member and method for manufacturing optical member using the same
US10031083B2 (en) 2014-10-16 2018-07-24 Hitachi High-Technologies Corporation Fixed position controller and method
WO2020080516A1 (en) * 2018-10-18 2020-04-23 国立研究開発法人産業技術総合研究所 Apparatus for analyzing change in physical property near solid-liquid interface and method for analyzing change in physical property near solid-liquid interface
CN117387534A (en) * 2023-12-11 2024-01-12 泰州日顺电器发展有限公司 Outer diameter size detection device for sensor cables at different temperatures

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008304211A (en) * 2007-06-05 2008-12-18 Jeol Ltd Automatic tuning method of cantilever
JP2011053107A (en) * 2009-09-02 2011-03-17 Hoya Corp Method for evaluating film on optical member and method for manufacturing optical member using the same
US10031083B2 (en) 2014-10-16 2018-07-24 Hitachi High-Technologies Corporation Fixed position controller and method
DE112014006967B4 (en) 2014-10-16 2023-03-02 Hitachi High-Tech Corporation Fixing position control device and method
WO2020080516A1 (en) * 2018-10-18 2020-04-23 国立研究開発法人産業技術総合研究所 Apparatus for analyzing change in physical property near solid-liquid interface and method for analyzing change in physical property near solid-liquid interface
JPWO2020080516A1 (en) * 2018-10-18 2021-12-16 国立研究開発法人産業技術総合研究所 Physical property change analysis device near the solid-liquid interface and method for analyzing physical property changes near the solid-liquid interface
JP7432241B2 (en) 2018-10-18 2024-02-16 国立研究開発法人産業技術総合研究所 Device for analyzing changes in physical properties near the solid-liquid interface and method for analyzing changes in physical properties near the solid-liquid interface
CN117387534A (en) * 2023-12-11 2024-01-12 泰州日顺电器发展有限公司 Outer diameter size detection device for sensor cables at different temperatures
CN117387534B (en) * 2023-12-11 2024-03-22 泰州日顺电器发展有限公司 Outer diameter size detection device for sensor cables at different temperatures

Also Published As

Publication number Publication date
JP3857581B2 (en) 2006-12-13

Similar Documents

Publication Publication Date Title
JP3157840B2 (en) New cantilever structure
KR101195729B1 (en) Probe for an atomic force microscope and a method of its use
JP2003172684A (en) Scanning probe microscope
JP2001512230A5 (en)
JP4898551B2 (en) Piezoelectric actuator and scanning probe microscope using the same
JP4502122B2 (en) Scanning probe microscope and scanning method
JP4900594B2 (en) Sample handling device
US20210003608A1 (en) Method and system for at least subsurface characterization of a sample
US10837982B2 (en) Scanning probe microscope and scanning method using the same
JPH11352135A (en) Interatomic force microscope
JP2005106786A (en) Scanning type probe microscope
JPH11258131A (en) Minute material-testing apparatus
JP2003329565A (en) Scanning probe microscope
JP3817521B2 (en) Mechanical data processing
JP3624607B2 (en) Surface hardness measuring device
JP2007017388A (en) Scanned probe microscope
JP4975546B2 (en) Dielectric constant measuring device
JP2003227789A (en) Scanning probe microscope
JP2000002649A (en) Method and device for testing friction coefficient of macromolecular material
JP2008232657A (en) Hardness testing machine
EP3330695A1 (en) Magnetic needle interfacial shear rheometer and system and method for actuating same
JPH07248285A (en) Device for evaluating surface physical properties
JP3942869B2 (en) Scanning probe microscope
JP6842158B2 (en) Heating holder and probe microscope
JPH0933424A (en) Device for measuring adhesion of very small object

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040304

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060914

R150 Certificate of patent or registration of utility model

Ref document number: 3857581

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees