JP3942869B2 - Scanning probe microscope - Google Patents

Scanning probe microscope Download PDF

Info

Publication number
JP3942869B2
JP3942869B2 JP2001348867A JP2001348867A JP3942869B2 JP 3942869 B2 JP3942869 B2 JP 3942869B2 JP 2001348867 A JP2001348867 A JP 2001348867A JP 2001348867 A JP2001348867 A JP 2001348867A JP 3942869 B2 JP3942869 B2 JP 3942869B2
Authority
JP
Japan
Prior art keywords
sample
cooling
heating
sample stage
scanning probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001348867A
Other languages
Japanese (ja)
Other versions
JP2003149118A (en
Inventor
和徳 安藤
周 北島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Science Corp
Original Assignee
SII NanoTechnology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SII NanoTechnology Inc filed Critical SII NanoTechnology Inc
Priority to JP2001348867A priority Critical patent/JP3942869B2/en
Publication of JP2003149118A publication Critical patent/JP2003149118A/en
Application granted granted Critical
Publication of JP3942869B2 publication Critical patent/JP3942869B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、試料を加熱する手段および試料を冷却する手段と、試料を移動させる試料移動手段を有し、試料の表面凹凸形状あるいは試料の表面物性を測定する走査型プローブ顕微鏡に関する。
【0002】
【従来の技術】
試料を加熱する手段および試料を冷却する手段と、試料を移動させる試料移動手段を有する走査型プローブ顕微鏡において、試料の表面凹凸形状あるいは試料の表面物性を測定するために、試料を加熱するときには加熱専用の試料台を、試料を冷却するときには冷却専用の試料台を用いて測定していた。
【0003】
【発明が解決しようとする課題】
従来の走査型プローブ顕微鏡では、試料を加熱するときと冷却するときは目的に応じて加熱専用の試料台と冷却専用の試料台を交換して測定が行われていたため、取り付け交換に伴う手間がかかるという欠点があった。また試料温度を冷却温度(マイナス温度)から加熱温度(プラス温度)まで連続して測定ができないという欠点があった。また温度に応じて試料台の交換を行うため、試料表面上の同一測定ポイントにおける温度変化が測定できない欠点もあった。また真空環境で測定するとき、特に試料表面が空気と触れることで酸化したり空気中の水分を吸収したりしやすい場合、温度に応じて試料台の交換を行うために、真空環境を途中で大気に戻す必要があり、真空環境での連続した試料表面物性の温度変化が測定できない欠点があった。
【0004】
【課題を解決するための手段】
上記の問題点を解決するために、本発明では、試料を加熱する手段および試料を冷却する手段と、試料を移動させる試料移動手段を有する走査型プローブ顕微鏡において、試料を加熱する手段と冷却する手段を同一の試料台で構成し、加熱冷却兼用の試料台とした。
【0005】
【発明の実施の形態】
本発明は、図に示すように、試料を加熱する手段および試料を冷却する手段と、試料を移動させる試料移動手段を有する走査型プローブ顕微鏡において、試料を加熱する手段と冷却する手段を同一の試料台で構成し、加熱冷却兼用の試料台とすることで、試料を加熱または冷却するときに、加熱専用の試料台と冷却専用の試料台を取り付け交換する手間を無くすことを可能にした。また測定温度に応じて試料台を交換する必要がないため、試料表面上の同一測定ポイントにおける温度変化を測定することを可能にした。また真空容器を有することと合わせて、試料表面が空気と触れることで酸化したり空気中の水分を吸収したりすることなく、真空環境のままで連続した試料表面の形状あるいは試料表面物性の温度変化の測定を可能にした。
【0006】
【実施例】
実施例として、先端に微小な探針を有するカンチレバーを用いた走査型プローブ顕微鏡について図面を参照して説明する。図1は走査型プローブ顕微鏡の測定における本発明の方式の模式図である。カンチレバー1の先端には探針2があり、試料3とは探針2で接触する。試料3は加熱冷却兼用の試料台4の上に設置されている。加熱冷却兼用の試料台4は内部にヒ−タ11が組み込まれていて下部には断熱手段12が構成され、試料移動手段5の上に設置されている。試料移動手段5の動作には圧電素子などが使われており、圧電素子は加熱により分極(ポ−リング)が消失し動作しなくなる危険がある。本発明では断熱手段12を介することでヒ−タ11から試料移動手段5への熱伝導量を少なくし、試料移動手段5の熱による動作不良を防止している。断熱手段12は熱伝導の悪いセラミックなどが使われる。特に熱伝導の悪い材質の中で断熱手段12の材質をマイカとしたことも実施例のひとつである。
【0007】
試料移動手段5は上下方向の動作と平面方向の動作が可能である。上下方向に動作させることで針先を試料面に対して押し付け、離しの繰り返しの振動を与えることができる。平面方向の動作では探針2と試料3を相対的に移動させることもできる。
【0008】
加熱冷却兼用の試料台4は中継冷却手段13と熱伝導手段14により接続されている。中継冷却手段13は液体窒素などで冷却されている。中継冷却手段13は内部に空間があり、液体窒素などを溜め込んでもよい。液体窒素以外に液体ヘリウム、液体アルゴンなど液体状の冷媒であればよい。また内部の空間に液体ではなくガス状の冷媒を溜め込み、あるいは循環させてもよい。また冷凍機で冷やしても、冷凍機の冷却されたヘッド部を中継冷却手段13そのものとしてもよい。熱伝導手段14は、例えば銅箔などを使用する。試料移動手段5の動作を拘束しないように柔軟な箔を使用する。銅箔の代わりに銀箔、金箔、あるいは一般金属箔でもよい。
【0009】
試料を冷却したいときは中継冷却手段13を冷やすことで熱伝導手段14を介して加熱冷却兼用の試料台4が冷却され、試料3も冷却される。引き続き、試料3を加熱したければヒ−タ11により加熱冷却兼用の試料台4が加熱され、試料も加熱される。また途中の温度では冷却しながらヒ−タ11への電流を制御することで所望の温度制御が可能である。冷却から加熱までの範囲において試料台を交換することなく連続して測定できる。
【0010】
本発明の別の実施例を図2で説明する。加熱冷却兼用の試料台4の内部にヒ−タを組み込む代わりにカンチレバー1および試料3の上方に輻射手段22を配置する。カンチレバー1は自分自身に別の変位検出手段21(例えばひずみ抵抗センサ)を内蔵していて、探針2の変位量が測定される。輻射手段22により輻射熱で試料を加熱する。冷却時には前述同様中継冷却手段13および熱伝導手段14で試料を冷却する。冷却と加熱の途中の温度は両者を併用する。
【0011】
本発明の別の実施例を図3に示す。試料表面物性の中で粘弾性特性を求める場合について説明する。カンチレバー1の先端には探針2があり、試料3と接触している。試料3は加熱冷却兼用の試料台4の上に設置されている。試料移動手段5は上下方向の動作と平面方向の動作が可能である。上下方向に動作させることで探針2を試料3の表面に対して押し付け、離しの繰り返しの振動を与えることができる。平面方向の動作では、探針2と試料3を相対的に移動させることができる。
【0012】
試料3への振動は試料移動手段5に内蔵する上下動作によりモジュレ−ション入力6として与えられる。カンチレバー1にはレ−ザ7が照射されていて反射光は変位検出手段8に到達する。変位検出手段8の到達位置によりカンチレバー1の変位が出力信号9として得られる。
【0013】
モジュレ−ション入力6には一般に正弦波が利用され、出力信号の波形は入力波形に対して時間的に遅れる特性となる。時間的遅れの大きさは試料3の粘弾性特性を代表する値となる。またモジュレ−ション入力6の振幅(入力振幅)をA0とすると出力信号の振幅(出力振幅)はA1となる。試料3がやわらかければ出力振幅A1は入力振幅A0より小さくなる。出力振幅A1の値の大きさでも試料3の粘弾性特性が測定できる。なおモジュレ−ション入力6として試料移動手段5の代わりにカンチレバー1側に設置された別の振動手段10を用いてもよい。
【0014】
前述のようにヒ−タ11と中継冷却手段13、熱伝導手段14により試料を所望の温度にする。モジュレ−ション入力6を加え、入力波形に対する出力波形を測定する。次に試料3を別の所望の温度にして同じく入力波形に対する出力波形を測定することを繰り返していく。温度依存の測定例を図4に示す。例えば出力波形の振幅に着目すれば、図4(A)に示すように試料の温度変化に伴う振幅の変化がグラフとして得られる。試料温度が高くなっていくと振幅が小さくなる、つまり試料3がやわらかくなっていくといった粘弾性特性が測定される。また例えば入力波形に対する出力波形の時間遅れに着目すれば、図4(B)に示すように試料の温度変化に伴う時間遅れの変化がグラフとして得られる。試料温度が高くなっていくと時間遅れが大きくなる、つまり試料3がやわらかくなっていき、ある温度以上になると試料内部の成分が反応してかたくなって時間遅れがピ−クを乗り越えて減少しだすといった粘弾性特性が測定される。
【0015】
以上までは試料表面物性として粘弾性特性を測定する例として説明した。試料表面物性測定の対象としては、摩擦特性でもよいし、吸着特性でもよい。試料表面の温度による物性変化を連続して同じ測定ポイントで追跡していくことが加熱冷却兼用の試料台とすることでで可能となる。
【0016】
次に試料移動手段5の平面方向の動作を使用して試料表面のある領域の表面凹凸像と物性像を測定、表示する実施例を図5に示す。試料温度を所望の温度にして表面凹凸像と物性像を測定する。別の温度にして同じことを繰り返す。試料表面上の同一領域の温度変化を追跡できるのは前述の通りである。
【0017】
図6に本発明の別の実施例を示す。真空容器61内に探針2を所有するカンチレバー1、試料3、加熱冷却兼用の試料台4、試料移動手段5が配置されている。真空容器61には真空排気手段62が接続されている。真空容器61の上部にはウインドウ63で真空機密性が確保されていて測定したい位置を目視で確認できるようになっている。レ−ザ7はウインドウ63を介して真空容器内61に導入されカンチレバー1に照射される。照射されたレ−ザ7の反射光はウインドウ63を介して大気側に戻され変位検出手段8に到達する。試料3は加熱冷却兼用の試料台4上に設置される。加熱冷却兼用の試料台4はヒ−タ11を内蔵させている。加熱冷却兼用の試料台4は断熱手段12を介して試料移動手段5に設置される。試料移動手段5は上下方向動作とX軸走査(紙面左右方向)、Y軸走査(紙面垂直方向)の動作が可能である。加熱冷却兼用の試料台4は中継冷却手段13と熱伝導手段14により接続されている。中継冷却手段13は液体窒素などで冷却されている。
【0018】
例えば探針2を試料3に接触させた状態で、カンチレバー1と試料3に試料移動手段5に内蔵する上下方向動作によりモジュレ−ション入力6として振動が与えられる。振動に応じたカンチレバー1の変位は、レ−ザ7の反射光の変位検出手段8への到達位置により、振幅が出力信号9として得られる。モジュレ−ション入力6と出力信号9との関係を求めることで、試料の粘弾性特性を測定する手順は前述の通りである。
【0019】
また、真空容器61にはガス導入64が配置され、真空容器61内を真空排気したあと所望のガスを導入して大気圧に戻し、一連の粘弾性特性の測定をしてもよい。またガスの導入は、大気圧になる手前の負圧状態で中止し、同じく一連の粘弾性特性の測定をしてもよい。また導入するガスに水分を含ませて同じく一連の粘弾性特性の測定をしてもよい。また真空排気せず、真空容器61内へガスあるいは水分を含んだガスを常時流し続けて1気圧状態で測定してもよい。
【0020】
またモジュレ−ション入力は試料移動手段5に内蔵する機能で行う代わりに、カンチレバー1側の別の振動手段10で行ってもよい。
【0021】
またヒ−タ11のかわりにウインドウ63上に輻射手段22を配置し加熱手段としてもよい。またレ−ザ7、変位検出手段8の変わりに変位検出手段を内蔵するカンチレバーを用いてもよい。
【0022】
【発明の効果】
本発明は、以上説明したような形態で実施され、以下に記載されるような効果を奏する。試料を加熱する手段および試料を冷却する手段と、試料を移動させる試料移動手段を有する走査型プローブ顕微鏡において、試料を加熱する手段と冷却する手段を同一の試料台で構成したことにより、試料を加熱、または冷却するときは目的に応じて加熱専用の試料台と冷却専用の試料台を取り付ける手間を無くす効果がある。また温度に応じて試料台を交換することなく試料表面上の同一測定ポイントにおける温度変化を連続して測定できる効果がある。さらに真空容器を有することにより、試料表面が空気と触れることで酸化したり空気中の水分を吸収したりすることなく、真空環境のままで連続した試料表面の形状あるいは試料表面物性の温度変化を測定できる効果もある。
【図面の簡単な説明】
【図1】走査型プロ−ブ顕微鏡で、加熱冷却兼用の試料台の構成を示す本発明の模式図。
【図2】走査型プロ−ブ顕微鏡で、加熱冷却兼用の試料台の構成を示す本発明の別の実施例を示す模式図。
【図3】走査型プロ−ブ顕微鏡で、本発明で試料の物性として粘弾性特性を測定する実施例を示す模式図。
【図4】(A)は、本発明の温度依存の測定例で、試料の温度変化に伴う振幅の変化を示すグラフ、(B)は、本発明の温度依存の測定例で、試料の温度変化に伴う時間的遅れの変化を示すグラフ。
【図5】走査型プロ−ブ顕微鏡で、測定像を求める場合の実施例を示す模式図。
【図6】走査型プロ−ブ顕微鏡で、真空環境で測定する場合の実施例を示す模式図。
【符号の説明】
1 カンチレバー
2 探針
3 試料
4 加熱冷却兼用の試料台
5 試料移動手段
6 モジュレ−ション入力
7 レ−ザ
8 変位検出手段
9 出力信号
10 別の振動手段
11 ヒ−タ
12 断熱手段
13 中継冷却手段
14 熱伝導手段
A0 入力振幅
A1 出力振幅
61 真空容器
62 真空排気手段
63 ウインドウ
64 ガス導入
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a scanning probe microscope that includes a means for heating a sample, a means for cooling the sample, and a sample moving means for moving the sample, and measures the surface irregularity shape of the sample or the surface physical properties of the sample.
[0002]
[Prior art]
In a scanning probe microscope having a means for heating a sample, a means for cooling the sample, and a sample moving means for moving the sample, heating is performed when the sample is heated in order to measure the surface irregularity shape of the sample or the surface physical properties of the sample. A dedicated sample stage was measured using a sample stage dedicated to cooling when the sample was cooled.
[0003]
[Problems to be solved by the invention]
In conventional scanning probe microscopes, when heating and cooling a sample, the measurement is performed by exchanging the sample table dedicated to heating and the sample table dedicated to cooling depending on the purpose, so there is no need for trouble in mounting and replacement. There was a drawback of this. In addition, there is a drawback that the sample temperature cannot be measured continuously from the cooling temperature (minus temperature) to the heating temperature (plus temperature). In addition, since the sample stage is exchanged according to the temperature, there is a drawback that the temperature change at the same measurement point on the sample surface cannot be measured. Also, when measuring in a vacuum environment, especially when the sample surface is likely to oxidize or absorb moisture in the air when it comes into contact with the air, the vacuum environment must be changed in the middle to replace the sample stage depending on the temperature. There was a drawback that it was necessary to return to the atmosphere, and the temperature change of the physical properties of the sample surface in a vacuum environment could not be measured.
[0004]
[Means for Solving the Problems]
In order to solve the above problems, in the present invention, in a scanning probe microscope having a means for heating a sample, a means for cooling the sample, and a sample moving means for moving the sample, the means for heating the sample is cooled. The means was composed of the same sample stage and used as a sample stage for heating and cooling.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
In the scanning probe microscope having a means for heating a sample and a means for cooling the sample and a sample moving means for moving the sample as shown in the figure, the means for heating the sample and the means for cooling are the same. By configuring the sample stage as a sample stage that is also used for heating and cooling, it is possible to eliminate the trouble of mounting and exchanging the sample stage dedicated to heating and the sample stage dedicated to cooling when heating or cooling the sample. In addition, since it is not necessary to replace the sample stage according to the measurement temperature, it is possible to measure the temperature change at the same measurement point on the sample surface. In addition to having a vacuum vessel, the surface of the sample surface or the temperature of the physical properties of the sample surface is maintained in a vacuum environment without oxidizing or absorbing moisture in the air when the sample surface comes into contact with air. It was possible to measure changes.
[0006]
【Example】
As an embodiment, a scanning probe microscope using a cantilever having a minute probe at the tip will be described with reference to the drawings. FIG. 1 is a schematic diagram of the method of the present invention in measurement with a scanning probe microscope. The tip of the cantilever 1 has a probe 2 and contacts the sample 3 with the probe 2. The sample 3 is placed on a sample stage 4 that is also used for heating and cooling. The sample table 4 also used as a heating / cooling has a heater 11 incorporated therein, a heat insulating means 12 is formed in the lower part, and is placed on the sample moving means 5. A piezoelectric element or the like is used for the operation of the sample moving means 5, and there is a risk that the piezoelectric element loses its polarization (polling) due to heating and becomes inoperable. In the present invention, the amount of heat conduction from the heater 11 to the sample moving means 5 is reduced by passing through the heat insulating means 12, and malfunction of the sample moving means 5 due to heat is prevented. The heat insulating means 12 is made of ceramic having poor heat conduction. One of the examples is that the material of the heat insulating means 12 is mica among the materials having particularly poor heat conduction.
[0007]
The sample moving means 5 can operate in the vertical direction and in the planar direction. By operating in the vertical direction, the tip of the needle can be pressed against the sample surface to give repeated vibrations. In the operation in the planar direction, the probe 2 and the sample 3 can be relatively moved.
[0008]
The sample stage 4 also serving as a heating / cooling is connected by a relay cooling means 13 and a heat conducting means 14. The relay cooling means 13 is cooled with liquid nitrogen or the like. The relay cooling means 13 has a space inside and may store liquid nitrogen or the like. What is necessary is just a liquid refrigerant other than liquid nitrogen, such as liquid helium and liquid argon. Further, a gaseous refrigerant instead of a liquid may be stored or circulated in the internal space. Moreover, even if it cools with a refrigerator, the head part cooled by the refrigerator is good also as the relay cooling means 13 itself. For example, a copper foil or the like is used as the heat conducting means 14. A flexible foil is used so as not to restrict the operation of the sample moving means 5. Silver foil, gold foil, or general metal foil may be used instead of copper foil.
[0009]
When it is desired to cool the sample, the relay table 13 is cooled by cooling the relay cooling means 13 through the heat conduction means 14, and the sample 3 is also cooled. Subsequently, if the sample 3 is to be heated, the heater 11 heats the sample stage 4 which is also used for heating and cooling, and the sample is also heated. Moreover, desired temperature control is possible by controlling the current to the heater 11 while cooling at an intermediate temperature. Measurement can be performed continuously without changing the sample stage in the range from cooling to heating.
[0010]
Another embodiment of the present invention is illustrated in FIG. A radiation means 22 is disposed above the cantilever 1 and the sample 3 instead of incorporating a heater inside the sample stage 4 which is also used for heating and cooling. The cantilever 1 incorporates another displacement detection means 21 (for example, a strain resistance sensor) in itself, and the displacement amount of the probe 2 is measured. The sample is heated by the radiation means 22 with radiant heat. At the time of cooling, the sample is cooled by the relay cooling means 13 and the heat conducting means 14 as described above. Both temperatures are used in the middle of cooling and heating.
[0011]
Another embodiment of the present invention is shown in FIG. The case of obtaining viscoelastic properties among the sample surface properties will be described. The tip of the cantilever 1 has a probe 2 that is in contact with the sample 3. The sample 3 is placed on a sample stage 4 that is also used for heating and cooling. The sample moving means 5 can operate in the vertical direction and in the planar direction. By operating in the vertical direction, the probe 2 can be pressed against the surface of the sample 3 to give repeated vibrations. In the operation in the planar direction, the probe 2 and the sample 3 can be relatively moved.
[0012]
The vibration to the sample 3 is given as a modulation input 6 by a vertical movement built in the sample moving means 5. The cantilever 1 is irradiated with a laser 7, and the reflected light reaches the displacement detecting means 8. The displacement of the cantilever 1 is obtained as an output signal 9 depending on the arrival position of the displacement detection means 8.
[0013]
A sine wave is generally used for the modulation input 6, and the waveform of the output signal has a characteristic that is delayed with respect to the input waveform. The magnitude of the time delay is a value representative of the viscoelastic characteristics of the sample 3. If the amplitude (input amplitude) of the modulation input 6 is A0, the amplitude (output amplitude) of the output signal is A1. If the sample 3 is soft, the output amplitude A1 is smaller than the input amplitude A0. Even with the magnitude of the output amplitude A1, the viscoelastic characteristics of the sample 3 can be measured. In addition, instead of the sample moving means 5, another vibration means 10 installed on the cantilever 1 side may be used as the modulation input 6.
[0014]
As described above, the sample is brought to a desired temperature by the heater 11, the relay cooling means 13, and the heat conducting means 14. Modulation input 6 is added and the output waveform relative to the input waveform is measured. Next, the sample 3 is set to another desired temperature, and the measurement of the output waveform with respect to the input waveform is repeated. An example of temperature-dependent measurement is shown in FIG. For example, if attention is paid to the amplitude of the output waveform, as shown in FIG. 4A, a change in amplitude accompanying a change in the temperature of the sample is obtained as a graph. As the sample temperature increases, the viscoelastic characteristics such that the amplitude decreases, that is, the sample 3 becomes softer are measured. For example, if attention is paid to the time delay of the output waveform with respect to the input waveform, a change in the time delay accompanying the temperature change of the sample can be obtained as a graph as shown in FIG. As the sample temperature increases, the time delay increases, that is, the sample 3 becomes softer. When the sample temperature exceeds a certain temperature, the components inside the sample react and become harder, and the time delay exceeds the peak and decreases. Such viscoelastic properties are measured.
[0015]
The above description has been given as an example of measuring viscoelastic properties as sample surface properties. The sample surface property measurement target may be a friction characteristic or an adsorption characteristic. It is possible to continuously track changes in physical properties depending on the temperature of the sample surface at the same measurement point by using a sample stage that is also used for heating and cooling.
[0016]
Next, FIG. 5 shows an embodiment for measuring and displaying the surface unevenness image and the physical property image in a certain region of the sample surface by using the movement of the sample moving means 5 in the plane direction. The surface unevenness image and the physical property image are measured by setting the sample temperature to a desired temperature. Repeat at the same temperature. As described above, the temperature change in the same region on the sample surface can be tracked.
[0017]
FIG. 6 shows another embodiment of the present invention. A cantilever 1 that owns the probe 2, a sample 3, a sample stage 4 that is also used for heating and cooling, and a sample moving means 5 are arranged in a vacuum vessel 61. A vacuum exhaust means 62 is connected to the vacuum vessel 61. In the upper part of the vacuum vessel 61, vacuum confidentiality is secured by a window 63 so that the position to be measured can be visually confirmed. The laser 7 is introduced into the vacuum container 61 through the window 63 and irradiated onto the cantilever 1. The reflected light of the irradiated laser 7 is returned to the atmosphere side through the window 63 and reaches the displacement detecting means 8. The sample 3 is placed on a sample table 4 that is also used for heating and cooling. The heating / cooling sample stage 4 incorporates a heater 11. The sample stage 4 also serving as a heating / cooling unit is installed on the sample moving unit 5 through the heat insulating unit 12. The sample moving means 5 can operate in the vertical direction, X-axis scanning (left-right direction on the paper surface), and Y-axis scanning (vertical direction on the paper surface). The sample stage 4 also serving as a heating / cooling is connected by a relay cooling means 13 and a heat conducting means 14. The relay cooling means 13 is cooled with liquid nitrogen or the like.
[0018]
For example, in a state where the probe 2 is in contact with the sample 3, the cantilever 1 and the sample 3 are vibrated as the modulation input 6 by the vertical operation built in the sample moving means 5. The amplitude of the displacement of the cantilever 1 corresponding to the vibration is obtained as an output signal 9 depending on the position where the reflected light of the laser 7 reaches the displacement detecting means 8. The procedure for measuring the viscoelastic characteristics of the sample by obtaining the relationship between the modulation input 6 and the output signal 9 is as described above.
[0019]
Further, a gas introduction 64 may be disposed in the vacuum vessel 61, and after evacuating the inside of the vacuum vessel 61, a desired gas may be introduced to return to atmospheric pressure, and a series of viscoelastic characteristics may be measured. The introduction of gas may be stopped in a negative pressure state before the atmospheric pressure is reached, and a series of viscoelastic characteristics may be measured. Also, a series of viscoelastic characteristics may be measured by adding moisture to the introduced gas. Alternatively, the measurement may be performed at 1 atm by continuously flowing gas or moisture-containing gas into the vacuum vessel 61 without evacuating.
[0020]
Further, the modulation input may be performed by another vibration means 10 on the cantilever 1 side instead of the function built in the sample moving means 5.
[0021]
Further, instead of the heater 11, the radiation means 22 may be arranged on the window 63 to serve as a heating means. Instead of the laser 7 and the displacement detection means 8, a cantilever incorporating a displacement detection means may be used.
[0022]
【The invention's effect】
The present invention is implemented in the form as described above, and has the following effects. In the scanning probe microscope having a means for heating the sample, a means for cooling the sample, and a sample moving means for moving the sample, the means for heating the sample and the means for cooling the sample are configured on the same sample stage. When heating or cooling, there is an effect of eliminating the trouble of attaching a sample stage dedicated to heating and a sample stage dedicated to cooling depending on the purpose. Further, there is an effect that the temperature change at the same measurement point on the sample surface can be continuously measured without exchanging the sample stage according to the temperature. In addition, by having a vacuum container, the sample surface can be kept in a vacuum environment without changing the temperature of the sample surface properties or physical properties without oxidizing or absorbing moisture in the air. There is also an effect that can be measured.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of the present invention showing the configuration of a sample stage for both heating and cooling in a scanning probe microscope.
FIG. 2 is a schematic view showing another embodiment of the present invention showing a configuration of a sample stage for heating and cooling in a scanning probe microscope.
FIG. 3 is a schematic view showing an example in which viscoelastic characteristics are measured as physical properties of a sample in the present invention using a scanning probe microscope.
FIG. 4A is a temperature-dependent measurement example of the present invention, and is a graph showing a change in amplitude accompanying a change in the temperature of a sample. FIG. 4B is a temperature-dependent measurement example of the present invention. The graph which shows the change of the time delay accompanying a change.
FIG. 5 is a schematic diagram showing an embodiment in the case of obtaining a measurement image with a scanning probe microscope.
FIG. 6 is a schematic diagram showing an example in the case of measuring in a vacuum environment with a scanning probe microscope.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Cantilever 2 Probe 3 Sample 4 Sample stand 5 also used for heating and cooling Sample moving means 6 Modulation input 7 Laser 8 Displacement detecting means 9 Output signal 10 Other vibration means 11 Heater 12 Heat insulating means 13 Relay cooling means 14 Heat conduction means A0 Input amplitude A1 Output amplitude 61 Vacuum vessel 62 Vacuum exhaust means 63 Window 64 Gas introduction

Claims (7)

試料台を加熱することで試料を加熱する加熱手段および試料台を冷却することで試料を冷却する冷却手段が同一の試料台と熱的に接続され、当該試料台は、これを移動させる試料移動手段と接続されており、
前記加熱手段は、前記試料台に組み込まれたヒ−タであり、
前記冷却手段は、自身が冷却能力を有する中継冷却手段と、当該中継冷却手段と前記試料台とを熱的に接続する熱伝導手段とで構成された走査型プローブ顕微鏡であって、
前記加熱手段と冷却手段とを制御する制御手段を備え、当該制御手段は、試料温度を冷却温度から加熱温度までの範囲において一連に変化させるよう制御するものであって、前記加熱手段と冷却手段とを同時に制御可能である走査型プローブ顕微鏡。
The heating means for heating the sample stage and the cooling means for cooling the sample stage by cooling the sample stage are thermally connected to the same sample stage, and the sample stage moves the sample. Connected with the means,
The heating means is a heater built in the sample stage,
The cooling means is a scanning probe microscope composed of a relay cooling means having a cooling capability itself, and a heat conduction means for thermally connecting the relay cooling means and the sample stage,
Control means for controlling the heating means and the cooling means, the control means for controlling the sample temperature to be changed in a series from the cooling temperature to the heating temperature , the heating means and the cooling means Scanning probe microscope that can be controlled simultaneously .
試料台を加熱することで試料を加熱する加熱手段および試料台を冷却することで試料を冷却する冷却手段が同一の試料台と熱的に接続され、当該試料台は、これを移動させる試料移動手段と接続されており、
前記加熱手段は、前記試料台に組み込まれたヒ−タであり、
前記冷却手段は、自身が冷却能力を有する中継冷却手段と、当該中継冷却手段と前記試料台とを熱的に接続する熱伝導手段とで構成された走査型プローブ顕微鏡であって、
少なくとも試料の情報を測定する環境を真空環境にするために真空容器と排気の手段とを備え、
さらに、前記加熱手段と冷却手段とを制御する制御手段を備え、当該制御手段は、試料温度を冷却温度から加熱温度までの範囲において一連に変化させるよう制御するものであって、前記加熱手段と冷却手段とを同時に制御可能である走査型プローブ顕微鏡。
The heating means for heating the sample stage and the cooling means for cooling the sample stage by cooling the sample stage are thermally connected to the same sample stage, and the sample stage moves the sample. Connected with the means,
The heating means is a heater built in the sample stage,
The cooling means is a scanning probe microscope composed of a relay cooling means having a cooling capability itself, and a heat conduction means for thermally connecting the relay cooling means and the sample stage,
In order to make the environment for measuring the information of the sample at least a vacuum environment, a vacuum vessel and an exhaust means are provided,
Further comprising a control means for controlling the cooling means and said heating means, said control means is for controlling to vary the series in the range of the sample temperature from the cooling temperature to heating temperature, said heating means A scanning probe microscope capable of simultaneously controlling the cooling means .
前記走査型プローブ顕微鏡は、さらに、前記真空容器内を大気圧にする手段を備え、大気中環境で測定もできるようにした、請求項2に記載の走査型プローブ顕微鏡。  The scanning probe microscope according to claim 2, further comprising means for bringing the inside of the vacuum vessel to an atmospheric pressure so that measurement can be performed in an atmospheric environment. 前記走査型プローブ顕微鏡は、さらに、前記真空容器内を一度真空にした後、ガス置換してガス雰囲気とする手段を備えた、請求項2又は3に記載の走査型プローブ顕微鏡。  4. The scanning probe microscope according to claim 2, further comprising means for evacuating the inside of the vacuum vessel once and then replacing the gas into a gas atmosphere. 5. 前記ガス置換してガス雰囲気とする手段は、さらに、ガスを導入する際に当該ガスに水分を含ませる機能を備えた、請求項4記載の走査型プローブ顕微鏡。  The scanning probe microscope according to claim 4, wherein the means for replacing the gas into a gas atmosphere further includes a function of adding moisture to the gas when the gas is introduced. 前記走査型プローブ顕微鏡は、さらに、前記試料台と前記試料移動手段とを熱的に断熱する断熱手段が設けられている、請求項1乃至請求項5のいずれか一項に記載の走査型プローブ顕微鏡。  6. The scanning probe microscope according to claim 1, wherein the scanning probe microscope is further provided with heat insulating means for thermally insulating the sample stage and the sample moving means. 7. microscope. 前記断熱手段は、材質がマイカである、請求項6記載の走査型プローブ顕微鏡。  The scanning probe microscope according to claim 6, wherein the heat insulating means is made of mica.
JP2001348867A 2001-11-14 2001-11-14 Scanning probe microscope Expired - Lifetime JP3942869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001348867A JP3942869B2 (en) 2001-11-14 2001-11-14 Scanning probe microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001348867A JP3942869B2 (en) 2001-11-14 2001-11-14 Scanning probe microscope

Publications (2)

Publication Number Publication Date
JP2003149118A JP2003149118A (en) 2003-05-21
JP3942869B2 true JP3942869B2 (en) 2007-07-11

Family

ID=19161620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001348867A Expired - Lifetime JP3942869B2 (en) 2001-11-14 2001-11-14 Scanning probe microscope

Country Status (1)

Country Link
JP (1) JP3942869B2 (en)

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05187813A (en) * 1992-01-10 1993-07-27 Jeol Ltd Scanning tunnel microscope
JPH0674880A (en) * 1992-08-25 1994-03-18 Seiko Instr Inc Sample holder for scanning tunneling microscope
JP3266740B2 (en) * 1994-08-17 2002-03-18 日本電子株式会社 Sample holder for scanning tunneling microscope
JP3369325B2 (en) * 1994-09-16 2003-01-20 株式会社東芝 Evaluation and analysis method of atoms or molecules on solid surface of semiconductor material
JPH08136556A (en) * 1994-09-16 1996-05-31 Toshiba Corp Spin polarization tunnel apparatus and evaluation method for metal interface
JP3280205B2 (en) * 1995-09-20 2002-04-30 日本電子株式会社 Holder holder and sample holder
JPH09196831A (en) * 1996-01-19 1997-07-31 Hitachi Ltd Specimen cooling and observing device
JP3529532B2 (en) * 1996-02-21 2004-05-24 日本電子株式会社 Sample heating device and sample heating / cooling device
JP3380134B2 (en) * 1997-02-26 2003-02-24 日本電子株式会社 Heat conductor
JP3202646B2 (en) * 1997-04-09 2001-08-27 セイコーインスツルメンツ株式会社 Scanning probe microscope
JP3553318B2 (en) * 1997-05-20 2004-08-11 日本電子株式会社 Holder holding device
JP3504831B2 (en) * 1997-08-19 2004-03-08 日本電子株式会社 Sample holder
DE69714479T2 (en) * 1997-11-25 2003-01-23 Goodyear Tire & Rubber TEMPERATURE CONTROL FOR MICROSCOPY
JP2000275261A (en) * 1999-03-23 2000-10-06 Jeol Ltd Scanning microscope with temperature correcting mechanism
JP3939050B2 (en) * 1999-07-27 2007-06-27 エスアイアイ・ナノテクノロジー株式会社 Scanning probe microscope
JP2001083068A (en) * 1999-09-16 2001-03-30 Hitachi Ltd Near-field optical microsocpe
JP3877919B2 (en) * 1999-10-13 2007-02-07 エスアイアイ・ナノテクノロジー株式会社 Scanning probe microscope
JP2002181681A (en) * 2000-12-12 2002-06-26 Jeol Ltd Scanning probe microscope

Also Published As

Publication number Publication date
JP2003149118A (en) 2003-05-21

Similar Documents

Publication Publication Date Title
US20030155939A1 (en) Hot/cold chuck system
US6874368B2 (en) Force measurement of bimetallic thermal disc
KR100926461B1 (en) The measurement method of distinguishing dew and frost point using quartz crystal microbalance dew-point sensor in low temperature
US8690421B2 (en) Apparatus and a method for measuring the body core temperature for elevated ambient temperatures
JP3942869B2 (en) Scanning probe microscope
US7395722B2 (en) Mechanical property measurement of thin films by micro plane-strain compression
JP3939148B2 (en) Scanning probe microscope
EP1764598B1 (en) Method and device for producing absolute pressure-type pressure sensor
JP3857581B2 (en) Scanning probe microscope
JP3608241B2 (en) Thermal deformation measuring device
US11850840B2 (en) Pop up controller for heat press
US8763161B2 (en) Zero thermal expansion, low heat transfer, variable temperature sample assembly for probe microscopy
JP2006105935A (en) Probe, apparatus, and method for microthermoanalysis
JPH1026594A (en) Thermal analysis element and its manufacture
US20060266895A1 (en) Temperature controlled, universal mounting assembly
JP4385520B2 (en) High temperature hardness tester
JP3247715B2 (en) Element cooling test equipment
JP2007178289A (en) Scanning probe microscope
JP2002098845A (en) Temperature adjusting device and optical waveguide device having temperature adjusting device
JPH09231932A (en) Sample heating apparatus and sample heating/cooling system
WO2019055928A1 (en) Variable conductivity metamaterials and thermal control systems employing the same
JP3939050B2 (en) Scanning probe microscope
JP2002181681A (en) Scanning probe microscope
JP7323108B2 (en) Thermoelectric property evaluation unit, thermoelectric property evaluation device, and thermoelectric property evaluation method
JPH05187813A (en) Scanning tunnel microscope

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040304

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070215

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070404

R150 Certificate of patent or registration of utility model

Ref document number: 3942869

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250