WO2020080318A1 - 胸腔シミュレータ用臓器モデル固定具 - Google Patents

胸腔シミュレータ用臓器モデル固定具 Download PDF

Info

Publication number
WO2020080318A1
WO2020080318A1 PCT/JP2019/040346 JP2019040346W WO2020080318A1 WO 2020080318 A1 WO2020080318 A1 WO 2020080318A1 JP 2019040346 W JP2019040346 W JP 2019040346W WO 2020080318 A1 WO2020080318 A1 WO 2020080318A1
Authority
WO
WIPO (PCT)
Prior art keywords
mediastinum
chest cavity
cavity simulator
organ model
lung
Prior art date
Application number
PCT/JP2019/040346
Other languages
English (en)
French (fr)
Inventor
竹内 淳一
宮本 貴文
武志 安楽
昌巳 岡本
Original Assignee
株式会社ファソテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ファソテック filed Critical 株式会社ファソテック
Priority to US17/285,176 priority Critical patent/US20220343798A1/en
Priority to JP2020519472A priority patent/JP6728513B1/ja
Priority to EP19872464.3A priority patent/EP3869488A4/en
Priority to CN201980076525.4A priority patent/CN113168784A/zh
Publication of WO2020080318A1 publication Critical patent/WO2020080318A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
    • G09B23/285Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine for injections, endoscopy, bronchoscopy, sigmoidscopy, insertion of contraceptive devices or enemas
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
    • G09B23/30Anatomical models
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
    • G09B23/30Anatomical models
    • G09B23/34Anatomical models with removable parts

Definitions

  • the present invention relates to a device for attaching an organ model to a chest cavity simulator for training and learning of thoracoscopic surgery.
  • the chest cavity simulator disclosed in Patent Document 1 is a device including at least a human skeleton model that simulates ribs and a casing that stores the human skeleton model.
  • An opening portion is provided in a rib portion of the casing, and a diaphragm is provided. The part can be opened and closed, and the organ model can be stored inside the ribs of the human skeleton model. According to this, it is possible to effectively perform the technique training of the thoracoscopic surgery.
  • a gripping member provided with an engaging portion is used as a method of attaching the organ model to the simulator of Patent Document 1.
  • the chest cavity simulator disclosed in Patent Document 1 is premised on training in a supine position, and therefore is not sufficiently disclosed when the chest cavity simulator is fixed in a state of being tilted left and right.
  • the surgery is performed in the lateral decubitus position. Therefore, when performing the surgery in the lateral decubitus position, an instrument that can fix the organ model at an appropriate angle is desired.
  • a training organ installation that attaches a net to the hook provided on the device body, inserts a tubular organ into the net, and fixes it by suturing with a suture
  • the device is known.
  • the training organ placement device is provided with polygonal legs that allow the body to rotate, and the angle of the device can be changed during training.
  • the training organ placement device disclosed in Patent Document 2 has an advantage that it can accurately reproduce the shape of a tubular organ that curves vertically and horizontally. However, for accurate installation, it is necessary not only to insert the tubular organ into the net but also to perform suturing work, which poses a problem that the installation work is complicated. There is also a problem that the training organ placement apparatus disclosed in Patent Document 2 cannot be used for organ models such as lungs.
  • an object of the present invention is to provide an organ model fixture that can stably fix an organ model in a tilted state of the chest cavity simulator and that can be easily attached, removed and adjusted in position.
  • the organ model fixture for a chest cavity simulator of the present invention is a fixture for fixing the posture of an organ model to a chest cavity simulator including a human skeleton model simulating at least the spine, the sternum, and the ribs.
  • the tool is a pedestal part that can be stored inside the ribs of the chest cavity simulator, and a spine attachment mechanism provided on the back surface of the pedestal part, which is attached to the convex portion of the spine part of the chest cavity simulator.
  • the organ model fixture can be firmly fixed to the chest cavity simulator. Since the mediastinum is provided, the organ model can be stably installed even when the chest cavity simulator is tilted and used, and both the left and right surfaces can be used for the installation of the organ model, so that various variations can be achieved. Manual training is possible.
  • the length of the spine in the longitudinal direction is substantially the same as the length of the sternum in the longitudinal direction, so that the organ model installed in the chest cavity simulator can be firmly supported.
  • the pedestal may further include a slide mechanism capable of sliding the mediastinum between the left end and the right end of the surface.
  • a slide mechanism capable of sliding the mediastinum between the left end and the right end of the surface.
  • the slide mechanism includes an arm part connected to the mediastinum and an end of the arm part.
  • the guide unit is a shaft member provided on the surface of the pedestal unit and the shaft member. It is preferable that the shaft member is configured by a shaft stopper portion that holds both ends of the shaft member, and the shaft member is inserted into a through hole provided in the mediastinal portion. Since the slide mechanism includes the arm portion and the arm drive portion, the position of the mediastinum portion can be adjusted by a simple operation.
  • a known worm gear is preferably used as the structure of the arm portion and the arm driving portion. That is, one end of the arm is connected to the mediastinum and the other end is provided with a worm wheel. Further, the arm driving unit is provided with a cylindrical worm, and the end of the worm is provided with a knob for a user to operate. The user can rotate the knob to rotate the end of the arm on the surface of the pedestal. By using a worm gear, even if pressure is applied to the surface of the mediastinum, the knob does not rotate easily, so it is possible to fix the position of the mediastinum just by releasing the hand that operates the knob. Is.
  • the moving direction and the moving range of the mediastinum portion can be defined.
  • the mediastinum portion has a structure capable of moving in parallel between the left end and the right end of the pedestal surface.
  • the moving direction of the mediastinum portion can be defined with a simple structure.
  • Two shaft members are preferably provided. Since both ends of the shaft member are held by the shaft stoppers, the moving range of the mediastinum portion can be easily defined.
  • the pedestal part may further include an attachment mechanism capable of detachably attaching the mediastinum part to the left end or the right end of the surface.
  • an attachment mechanism capable of detachably attaching the mediastinum part to the left end or the right end of the surface.
  • the space in which the organ model is placed can be adjusted with a simple structure and operation.
  • the mounting mechanism it is preferable to use a mechanism in which one member is locked to the other member and fixed by a rotating claw and a mechanism in which one member is fitted with the other member and fixed by a claw portion are used together.
  • the present invention is not limited to such a configuration, and may use only one of the above-mentioned mechanisms, or may be a mechanism that is fixed by a fastener such as a screw.
  • hooks of hook and loop fasteners are formed on both the left and right surfaces of the mediastinum.
  • Some surface materials of the organ model have the same function as the loop portion of the surface fastener.
  • the right lateral decubitus is a posture in which the right side is down
  • the left lateral decubitus is a posture in which the left side is down.
  • a fixing mechanism other than the hook-and-loop fastener may be provided on the left and right surfaces of the mediastinum, for example, by providing a suction cup or applying an adhesive.
  • the organ model fixing device for a chest cavity simulator of the present invention when the posture of the chest cavity simulator is in the left lateral decubitus position, the organ model is loaded on the right surface of the mediastinum, and the posture of the chest cavity simulator is in the right lateral decubitus position. It is preferable to load the organ model on the left side of the mediastinum.
  • the left and right sides of the mediastinum shall be along the left and right in the human body structure, and with the fixture attached to the chest cavity simulator, the right-hand side is the right side and the left-hand side is the left side. .
  • the organ model is a bio-textured organ model of the lung that reproduces at least the shape and texture of the lung.
  • the shape and texture of the lung include the shape and texture of the hilum and blood vessels inside the lung. Further, it is preferable that the trachea, membrane, lymph, pleura, and lung ligament are also reproduced in the biological texture organ model of the lung.
  • the spine attachment mechanism may be provided with a concave portion or a convex portion capable of adjusting the attachment position on the spine portion in stages.
  • the spine attachment mechanism By providing the spine attachment mechanism with the concave portion or the convex portion, it becomes possible to adjust the mounting position of the fixing tool in a stepwise manner.
  • the recess or the protrusion may have a small shape so that the recess or the protrusion can be fixed at any position substantially steplessly.
  • the pedestal portion, the spine attachment mechanism, and the mediastinum portion may be integrally formed of resin.
  • the organ model can be firmly fixed to the fixing tool and the handling becomes easy.
  • the organ model fixture for the chest cavity simulator of the present invention the organ model can be stably fixed with the chest cavity simulator tilted, and the attachment, removal, and position adjustment can be easily performed.
  • FIG. 1 is an explanatory diagram of the attachment of the lung model fixture of Example 1 to the chest cavity simulator.
  • FIG. 2 is an explanatory diagram for attaching the lung model fixture of Example 1 to the chest cavity simulator. External view showing a state after attachment of the lung model fixture of Example 1.
  • FIG. 1 is a bottom view showing the state after attachment of the lung model fixture of Example 1.
  • FIG. 2 is a bottom view showing a state after the lung model fixture of Example 1 is attached.
  • FIG. 1 is an external view showing a state after attachment of the lung model fixture of Example 3
  • FIG. 1 is an external view showing a state after attachment of the lung model fixture of Example 3
  • FIG. 2 is an external view showing a state after attachment of the lung model fixture of Example 3
  • Flow chart of using the lung model fixture of Example 3 A perspective view of a lung model fixture of Example 4.
  • Front view of the lung model fixture of Example 4 Rear view of the lung model fixture of Example 4
  • External view of the lung model fixture of Example 4 Left side view of the lung model fixture of Example 4
  • Right view of the lung model fixture of Example 4 Flow chart of using the lung model fixture of Example 4
  • FIG. 16 shows a perspective view of the chest cavity simulator.
  • 17 to 19 are external views of the chest cavity simulator.
  • FIG. 17 (1) is a front view
  • FIG. 17 (2) is a rear view
  • FIG. 18 (1) is a right side view
  • FIG. 19 (2) is a bottom view.
  • the chest cavity simulator 9 includes an upper end portion 91, a lower end portion 92, a sternum portion 93, a spine portion 94, and a rib portion 95.
  • An upper end 91 is provided at the upper ends of the sternum 93 and the spine 94, and a lower end 92 is provided at the lower ends.
  • the rib portion 95 is fixed to the sternum portion 93 and the spine portion 94.
  • the lower end 92 is provided with a through hole 96 for attaching an organ model (not shown).
  • the chest cavity simulator 9 has a shape simulating the chest of the human body.
  • the surgery is often performed in the lateral decubitus position, and depending on the operation method, the right side portion 9a and the left side portion 9b shown in FIGS. 17 (1) and 17 (2) may face downward. It is necessary to install the chest cavity simulator 9 in the. However, as shown in FIGS. 18 (1) and (2), since the chest cavity simulator 9 does not have a portion corresponding to the mediastinum, even when the lung model is installed, the patient is still in the lateral recumbent position. There is a problem that the lung model cannot be retained. Therefore, even when the chest cavity simulator 9 is fixed laterally, a fixture that can stably support the organ model is required.
  • the right side portion 9a and the left side portion 9b are used, but the left and right sides are set here along the left and right sides in the structure of the human body. That is, the right hand side is the right side portion 9a and the left hand side is the left side portion 9b.
  • FIG. 1 is a perspective view
  • FIG. 2 is a front view
  • FIG. 3 is a rear view
  • FIG. 4 is a left side view
  • FIG. 5 is a right side view
  • FIG. 6 (1) is a plan view
  • FIG. ) Indicates a bottom view.
  • the lung model fixture 1 includes a pedestal portion 2 and a mediastinum portion 3, and both the pedestal portion 2 and the mediastinum portion 3 are made of resin and integrally formed.
  • the pedestal portion 2 has a concave portion 21 for attaching to the chest cavity simulator 9, the anti-slip mechanism (22a, 22b) shown in FIG.
  • the concave engagement portions (23a, 23b) shown in FIG. 1 and the convex engagement portion shown in FIG.
  • the joining portions (24a, 24b) and the female screw portion 25 shown in FIG. 6 are provided.
  • the concave engagement portions (23a, 23b), the convex engagement portions (24a, 24b), and the female screw portion 25 are the spine attachment mechanism.
  • the recess 21 is provided to attach the lung model fixture 1 to the chest cavity simulator 9, and has a structure in which the spine portion 94 of the chest cavity simulator 9 is fitted into the recess 21.
  • the anti-slip mechanism (22a, 22b) is for facilitating gripping the lung model fixture 1 at the time of attachment or detachment. That is, since the lung model fixture 1 is provided with the mediastinum portion 3 substantially perpendicular to the pedestal portion 2, it has a structure that is difficult to grasp with one hand. Therefore, an anti-slip mechanism (22a, 22b) is provided so that one of the operator's fingers can easily get caught in the anti-slip mechanism (22a, 22b) to facilitate attachment and detachment.
  • the concave engagement portions (23a, 23b) and the convex engagement portions (24a, 24b) are provided for positioning and fixing, and the convex engagement portions provided on the spine portion 94 of the chest cavity simulator 9 are provided.
  • the concave engagement portions (23a, 23b) are engaged with the concave engagement portions (23a, 23b), and the concave engagement portions (not shown) and the convex engagement portions (24a, 24a, 24b) is engaged.
  • the female screw portion 25 is provided to fix the lung model fixture 1 and the spine portion 94 using a screw (not shown) after the spine portion 94 of the chest cavity simulator 9 and the lung model fixture 1 are engaged. It is a thing.
  • the mediastinum portion 3 is made of a plate-shaped member and simulates the mediastinum in the human body.
  • a left lung organ model can be attached to the left side of the mediastinum portion 3, and a right lung organ model can be attached to the right side. Therefore, it is possible to perform surgical training on either the left lung or the right lung.
  • a surface fastener 3a is provided on the right side of the mediastinum portion 3, and a surface fastener 3b is provided on the left side thereof.
  • the left side and the right side are the same as the right side 9a and the left side 9b of the chest cavity simulator 9 along the left and right of the human body structure, and the left side of the mediastinum 3 in FIG. Is on the left side.
  • the hook-and-loop fasteners (3a, 3b) are all formed by hook portions of the hook-and-loop fastener. Since the surface of the lung model 4 described later can play the same role as the loop portion of the surface fastener in terms of material, the attachment position of the lung model 4 can be freely adjusted on the surface fasteners (3a, 3b).
  • FIG. 7 is an explanatory diagram of the lung model fixture of the first embodiment.
  • the lung model 4b is attached to the surface fastener 3b here.
  • the lung model 4b is an organ model simulating the left lung, and shows an image when training for surgery of the left lung is performed. Since the material of the surface of the lung model 4b performs the same function as the loop portion of the surface fastener, the surface of the lung model 4b abuts the surface fastener 3b provided in the mediastinum portion 3 so that the loop portion and the surface of the lung model The hook portion of the fastener 3b is engaged and firmly fixed.
  • the mediastinum portion 3 is formed integrally with the pedestal portion 2, even if the lung model 4b is pressed from above by, for example, forceps, the three-dimensional position of the lung model 4b is anatomically accurate. It is possible to support the position.
  • FIG. 8 and 9 are explanatory views of attachment of the lung model fixture of Example 1 to the chest cavity simulator.
  • FIG. 8 shows a state before attachment
  • FIG. 9 shows a state after attachment.
  • FIG. 13 shows a flow chart of the use of the lung model fixture of the first embodiment.
  • the lung model is not shown in FIG. 8, when the lung model fixture of Example 1 is actually used, the lung model is first fixed to the lung model fixture 1 as shown in FIG. Yes (step S01). Thereafter, the lung model fixture 1 is inserted into the chest cavity simulator 9 through the through hole 96, and the lung model fixture 1 is attached to the spine portion 94 (step S02).
  • the lung model may be fixed to the lung model fixture 1 after the lung model fixture 1 is attached to the chest cavity simulator 9. Further, the adjustment of the fixed position of the lung model can be performed with the lung model fixture 1 still attached to the chest cavity simulator 9, or once the lung model fixture 1 is detached from the chest cavity simulator 9 and adjusted. May be reattached.
  • FIG. 10 is an external view showing a state after attachment of the lung model fixture of Example 1, and FIGS. 11 and 12 are bottom views showing a state after attachment of the lung model fixture of Example 1.
  • . 10 (1) and 11 show the case where the lung model of the right lung is attached
  • FIG. 10 (2) and FIG. 12 show the case where the lung model of the left lung is attached.
  • the length L 1 of the mediastinum portion 3 in the lung model fixture 1 is substantially the same as the length L 2 of the sternum portion 93.
  • the lung model 4a is fixed to the lung model fixture 1 by the hook-and-loop fastener 3a, and the lung model fixture 1 is firmly fixed to the chest cavity simulator 9, it is as if the left lung exists above the mediastinum. A unique state has been created, and realistic training is possible.
  • An operator (not shown) inserts forceps or the like through the gap of the rib portion 95 shown in FIG. 10A to perform training.
  • the left lung model 4b is attached to the lung model fixture 1 for training as shown in FIG. . In this way, it is possible to perform training on either the left or right lung. Further, as described above, since the fixed position of the lung model (4a, 4b) can be finely adjusted, more realistic training can be performed assuming actual surgery.
  • FIG. 14 is a structural explanatory view of the lung model fixture of the second embodiment.
  • the lung model fixture 10 of the second embodiment includes a pedestal portion 20 and a mediastinum portion 3, and both the pedestal portion 20 and the mediastinum portion 3 are made of resin and are integrally molded.
  • the pedestal portion 20 is provided with a mechanism capable of fixing the lung model fixture 10 at an arbitrary position on the spine portion 94.
  • the lung model fixture 10 can be fixed upward so that the lower part of the spine part 94 and the lower part of the lung model fixture 10 are fitted firmly.
  • the lung model fixture 10 has a structure that can be fixed by sliding it below the spine portion 94. Thereby, the fixed position of the lung model can be adjusted more flexibly.
  • FIG. 15 is an external view showing a state after the lung model fixture of Example 2 is attached.
  • (1) shows the case where the lung model fixture is fixed upward
  • (2) shows the lung model fixture downward. It shows the case where it is fixed.
  • the chest cavity simulator 9 is in the lateral recumbent position, assuming the case of training the left lung.
  • the lung model fixture is fixed upward, as shown in FIG. 15 (1)
  • the lung model fixture 10 is fixed at a position closer to the upper end 91, that is, at the right side.
  • the lung model fixture 10 is fixed downward, as shown in FIG. 15 (2), the lung model fixture 10 is fixed at a position closer to the lower end portion 92, that is, on the left side.
  • the attachment position of the lung model can be easily finely adjusted without attaching or detaching the lung model (not shown) arranged on the mediastinum 3. It has a structure that allows it.
  • FIG. 20 shows a perspective view of the lung model fixture of the third embodiment.
  • 21 is a front view of the lung model fixture of Example 3
  • FIG. 22 is a rear view of the lung model fixture of Example 3
  • FIG. 23 is a left side view of the lung model fixture of Example 3
  • FIG. 8 shows a right side view of the lung model fixture of Example 3.
  • FIG. 25 is an external view of the lung model fixture of Example 3, where (1) is a plan view and (2) is a bottom view.
  • the lung model fixture 11 includes a pedestal portion 5, a mediastinum portion 6, and an arm driving portion 7.
  • the pedestal portion 5 is provided with shaft stopper portions (51a to 51d), and the mediastinum portion 6 is formed with through holes (61a, 61b).
  • the shaft members (52a, 52b) are inserted into the through holes (61a, 61b), and both ends thereof are fixed to the shaft stoppers (51a to 51d).
  • the shaft member 52a is inserted into the through hole 61a, and both ends are fixed by the shaft stoppers (51a, 51b).
  • the shaft member 52b is inserted into the through hole 61b, and both ends thereof are fixed by the shaft stoppers (51c, 51d).
  • the mediastinum portion 6 becomes slidable in the axial direction of the shaft members (52a, 52b) within the range of the shaft stopper 51a and the shaft stopper 51b, and the shaft stopper 51c and the shaft stopper 51d. ing.
  • the pedestal portion 5 has the anti-slip mechanism (59a, 59b) shown in FIG. 22, a concave portion 53 for attaching to the chest cavity simulator 9, the convex engagement portions (54a, 54b) shown in FIG. 25 (1), FIG.
  • the concave engagement portions (55a, 55b) shown in 24 are provided.
  • the concave engagement parts (55a, 55b) and the convex engagement parts (54a, 54b) are the spine attachment mechanism.
  • the recess 53 is provided to attach the lung model fixture 11 to the chest cavity simulator 9, and has a structure in which the spine 94 of the chest cavity simulator 9 is fitted into the recess 53.
  • the anti-slip mechanism (59a, 59b) is for facilitating gripping of the lung model fixture 11 during attachment or detachment.
  • the concave engaging portions (55a, 55b) and the convex engaging portions (54a, 54b) are provided for positioning and fixing, and the convex engaging portions provided on the spine portion 94 of the chest cavity simulator 9 are provided.
  • the concave engagement portions (55a, 55b) are engaged with the concave engagement portions (55a, 55b), and the concave engagement portions (not shown) and the convex engagement portions (54a, 54a, provided on the spine portion 94 of the chest cavity simulator 9 are engaged. 54b) is engaged.
  • the structure of the chest cavity simulator 9 is the same as that described in the first embodiment.
  • the pedestal portion 5 is provided with a slide mechanism, and the mediastinum portion 6 is slid using the slide mechanism.
  • 26 and 27 are explanatory views of the slide mechanism, and FIG. 26 shows a case where the mediastinum portion is moved to the right end.
  • 26 (1) is a perspective view and FIG. 26 (2) is a front view.
  • 27 shows the case where the mediastinum portion is moved to the left end.
  • FIG. 27 (1) is a perspective view and FIG. 27 (2) is a front view.
  • the arm mechanism 7, the knob 71, the arm portions (72, 73), the shaft members (52a, 52b) and the shaft stoppers are used as the slide mechanism. Parts (51a to 51d) are provided.
  • the shaft members (52a, 52b) and the shaft stoppers (51a to 51d) form a guide part.
  • a well-known worm gear is provided inside the arm drive unit 7, and one end of each of the arm units (72, 73) is provided in the arm drive unit 7. (Not shown), and the other end is connected to the mediastinum 6.
  • a knob 71 is provided at the tip of a worm (not shown) that is a screw gear that meshes with the worm wheel. As shown in FIG. 25 (2), the knob 71 is rotatable, and the user (not shown) rotates the knob 71 to rotate the end portions of the arm portions (72, 73) on the surface of the pedestal. It can be moved, and is further converted into left and right parallel movements by the shaft members (52a, 52b) and the shaft stoppers (51a to 51d).
  • the mediastinum portion 6 is moved to the right through the arm portions (72, 73) as shown in FIG. 26 (2).
  • the mediastinum portion 6 can be moved leftward via the arm portions (72, 73) as shown in FIG. 27 (2).
  • the mediastinum portion 6 is fixed at a position where the hand holding the knob 71 is released. Therefore, even when pressure is applied to the right surface 6a or the left surface 6b of the mediastinum 6 during training, it is not easily pushed down, and the three-dimensional position of the attached lung model (not shown) is anatomically determined. It is possible to support it in the exact position.
  • the fixing points are not limited to these, and for example, the position of the mediastinum portion 6 shown in FIG. 21 and FIG. It is also possible to fix the mediastinum portion 6 at an intermediate position between the positions of the mediastinum portion 6 shown in FIG.
  • the mediastinum portion 6 is made of a plate-shaped member and simulates the mediastinum in the human body.
  • the organ model of the right lung can be attached to the right surface 6a of the mediastinum part 6 shown in FIG. 23, and the organ model of the left lung can be attached to the left surface 6b of the mediastinum part 6 shown in FIG. This is the same as the first embodiment.
  • the mediastinum portion 6 can be used to fix the lung model on both the right surface 6a and the left surface 6b, and the attachment position to the pedestal portion 5 can be changed. It is possible.
  • FIGS. 26 (1) and 27 (1) are perspective views showing the left surface 6b of the mediastinum portion 6 as an upper surface in order to perform manual training in the right lateral decubitus position.
  • the mediastinum portion 6 moves to the right as shown in FIG. 26 (2), the mediastinum portion 6 moves upward in FIG. 26 (1), and as shown in FIG.
  • the partition 6 is moved to the left, the mediastinum 6 moves downward in FIG. 27 (1).
  • the right surface 6a and the left surface 6b of the mediastinum portion 6 are not provided with surface fasteners, but the same members as the surface fasteners (3a, 3b) described in the first embodiment. Can be provided.
  • FIG. 28A and 28B are explanatory views of the attachment of the lung model fixture of Example 3 to the chest cavity simulator, where (1) shows the state before attachment and (2) shows the state after attachment.
  • 29 and 30 are external views showing the state after attachment of the lung model fixture of Example 3, and
  • FIG. 30 is a perspective view with the mediastinum lowered.
  • FIG. 31 is an image diagram showing a state after attachment of the lung model fixture of Example 3.
  • FIG. 32 shows a use flow chart of the lung model fixture of the third embodiment.
  • the position of the mediastinum 6 in the lung model fixture 11 is adjusted according to the content of the manual training (step S11).
  • a lung model (not shown) is fixed to the lung model fixture 11 (step S12).
  • the lung model fixture 11 is inserted into the chest cavity simulator 9 through the through hole 96, and the lung model fixture 11 is attached to the spine portion 94 (step S13).
  • the chest cavity simulator 9 used is the same as that described in the first embodiment.
  • the length L 3 of the mediastinum portion 6 in the lung model fixture 11 is substantially the same as the length L 2 of the sternum portion 93.
  • the mediastinum portion 6 of the lung model fixture 11 is similar to the case shown in FIGS. 26 (1) and (2), and the shaft stopper portions (51b, 51d). It is fixed in a state where it has moved to a position where it abuts on the chest cavity simulator 9. Therefore, as shown in FIG. 31 (1), the space 8a formed when the lung model fixture 11 is attached to the chest cavity simulator 9 is formed to be relatively narrow.
  • the mediastinum portion 6 of the lung model fixture 11 is in contact with the shaft stoppers (51a, 51c) as in the case shown in FIGS. 27 (1) and (2). It is fixed in a state of moving to the contact position and attached to the chest cavity simulator 9. Therefore, as shown in FIG. 31 (3), the space 8c formed when the lung model fixture 11 is attached to the chest cavity simulator 9 is relatively wide.
  • the mediastinum portion 6 is adjusted to the middle position and fixed to fix the space. It is possible to form a space 8b that is wider than 8a and narrower than the space 8c. In this way, by adjusting the position of the mediastinum 6, it is possible to freely set the space required for the procedure, and it is possible to perform more realistic training assuming actual surgery.
  • a through hole 96 is formed in the chest cavity simulator 9, and the arm drive unit 7 is provided on the lower end portion 92 side of the chest cavity simulator 9 when the lung model fixture 11 is attached to the chest cavity simulator 9. Therefore, even after attaching the lung model fixture 11 to the chest cavity simulator 9, it is possible to rotate the knob 71 to adjust the position of the mediastinum portion 6. Since the adjustment can be performed not only before the attachment to the chest cavity simulator 9 but also after the attachment, the surgeon or an assistant inserts his / her hand through the through hole 96 and finely adjusts the position of the mediastinum portion 6 during the technique training. It is possible to reproduce the environment inside the body cavity close to the actual surgery.
  • FIG. 33 shows a perspective view of the lung model fixture of the fourth embodiment.
  • FIG. 34 shows a front view of the lung model fixture of the fourth embodiment.
  • FIG. 35 shows a rear view of the lung model fixture of the fourth embodiment.
  • 36A and 36B are external views of a lung model fixture of Example 4, where (1) is a plan view and (2) is a bottom view.
  • FIG. 37 shows a left side view of the lung model fixture of Example 4.
  • FIG. 38 shows a right side view of the lung model fixture of Example 4.
  • the lung model fixture 12 includes a pedestal portion 50 and a mediastinum portion 60, and both the pedestal portion 50 and the mediastinum portion 60 are made of resin.
  • the mediastinum portion 60 is detachably attached to the pedestal portion 50.
  • the pedestal portion 50 is provided with fasteners (56a, 56b) and concave fitting portions (57a, 57b) as a mechanism for attaching the mediastinum portion 60.
  • the mediastinum portion 60 is fixed by the fastener 56a and the concave fitting portion 57a.
  • the fastener 56a has a structure in which the shaft 29a is provided with a rotary claw 30a, and the rotary claw 30a is rotated around the shaft 29a to be fixed.
  • the mediastinum portion 60 After attaching the mediastinum portion 60, after adjusting the orientation of the rotary claw 30a in accordance with the shape of the through hole 63 formed in the mediastinum portion 60, the rotary nail 30a and the through hole 63 are fitted, After that, the direction of the rotary claw 30a is adjusted to a position displaced from the shape of the through hole 63.
  • the concave fitting portion 57a provided on the pedestal portion 50 and the convex fitting portion 62 provided on the mediastinum portion 60 are fitted together.
  • the claw portion 28 provided on the convex fitting portion 62 is caught and fixed to the window portion 27a provided on the concave fitting portion 57a. is there.
  • the claw 28 When releasing the fixed state, the claw 28 is pushed down from the window 27a and the convex fitting portion 62 is pulled out from the concave fitting portion 57a.
  • the mediastinum portion 60 can be easily pulled out from the fastener 56a by adjusting the direction of the rotary claw 30a according to the shape of the through hole 63.
  • the mediastinum portion 60 is fixed by the fastener 56a and the concave fitting portion 57a, but unlike this, the fastener 56b and the concave fitting portion shown in FIG. 38 are provided.
  • the mediastinum portion 60 may be fixed by 57b.
  • the through hole 63 is fitted into the fastener 56b, and the rotation provided on the shaft portion 29b is performed. This is a structure in which the claw 30b is rotated and fixed.
  • the concave fitting portion 57b has a structure in which the concave fitting portion 57b is fitted to the convex fitting portion 62, and is fixed by catching the claw portion 28 on the window 27b.
  • the concave fitting portion 57b is fitted to the convex fitting portion 62, and is fixed by catching the claw portion 28 on the window 27b.
  • the mediastinum portion 60 is made of a plate-shaped member and simulates the mediastinum in the human body.
  • a right lung organ model can be attached to the right surface 60a of the mediastinum portion 60 shown in FIG. 37
  • a left lung organ model can be attached to the left surface 60b of the mediastinum portion 60 shown in FIG.
  • the mediastinum portion 60 can be used to fix the lung model on both the right surface 60a and the left surface 60b, and the mounting position to the pedestal portion 50 can be changed, so that the position adjustment of various patterns can be performed. It is possible.
  • the length L 4 of the mediastinum portion 60 in the lung model fixture 12 shown in FIG. 37 is substantially the same as the length L 2 of the sternum 93 of the chest cavity simulator 9.
  • FIG. 39 shows a flow chart of use of the lung model fixture of the fourth embodiment.
  • the mediastinum portion 60 is attached to the pedestal portion 50 (step S21).
  • the method of attaching the mediastinum portion 60 is as described above.
  • a lung model (not shown) is fixed to the lung model fixture 12 (step S22).
  • hook portions of hook and loop fasteners can be provided on the right surface 60a and the left surface 60b of the mediastinum portion 60 as in the first embodiment. By providing the hook portion of the hook and loop fastener, the attachment position of the lung model can be arranged at an appropriate position on the right surface 60a or the left surface 60b.
  • the lung model fixture 12 is attached to the chest cavity simulator 9 (step S23).
  • the structure of the chest cavity simulator 9 is the same as that described in the first embodiment.
  • a female screw portion 26 shown in FIG. 36 (2) is provided.
  • the concave engaging portions (58a, 58b) and the female screw portion 26 are a spine engaging mechanism.
  • the recess 29 is provided to attach the lung model fixture 12 to the chest cavity simulator 9, and has a structure in which the spine portion 94 of the chest cavity simulator 9 is fitted into the recess 29.
  • the anti-slip mechanisms (59a, 59b) are for facilitating gripping of the lung model fixture 12 during attachment or detachment.
  • the concave engaging portions (58a, 58b) are provided for positioning and fixing, and the convex engaging portions (not shown) and the concave engaging portions provided on the spine portion 94 of the chest cavity simulator 9 are provided. This is a structure in which (58a, 58b) are engaged.
  • the female screw portion 26 is provided to fix the lung model fixture 12 and the spine portion 94 with a screw (not shown) after the spine portion 94 of the chest cavity simulator 9 and the lung model fixture 12 are engaged. It is a thing.
  • the fixation of the lung model to the lung model fixture 12 may be performed after the lung model fixture 12 is attached to the chest cavity simulator 9 (step S23). Further, the adjustment of the fixing position of the lung model can be performed with the lung model fixing tool 12 still attached to the chest cavity simulator 9, or the lung model fixing tool 12 is once removed from the chest cavity simulator 9 and adjusted. May be reattached.
  • the pedestal portion 50 of the lung model fixture 11 described in the third embodiment may be provided with a mechanism capable of fixing the lung model fixture 11 at any position on the spine portion 94. Further, the pedestal portion 50 of the lung model fixture 12 described in the fourth embodiment may be provided with a mechanism capable of fixing the lung model fixture 12 at any position on the spine portion 94.
  • the present invention is useful for training and learning of thoracoscopic surgery, and can be used as an organ fixing tool in a surgery support device or a surgery simulation device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Mathematical Analysis (AREA)
  • Pure & Applied Mathematics (AREA)
  • Medical Informatics (AREA)
  • Algebra (AREA)
  • Computational Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Medicinal Chemistry (AREA)
  • Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Theoretical Computer Science (AREA)
  • Pulmonology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Instructional Devices (AREA)

Abstract

胸腔シミュレータを傾けた状態で、臓器モデルを安定的に固定でき、取り付け、取り外し及び位置調整が容易な臓器モデル固定具を提供する。少なくとも背骨と胸骨と肋骨を模擬した人体骨格モデルを備える胸腔シミュレータに対し、臓器モデルの姿勢を固定する固定具において、固定具は、胸腔シミュレータの肋骨部の内側に収納可能な台座部と、該台座部の裏面に設けられた背骨係着機構であって、胸腔シミュレータの背骨部の凸部に係着させて該背骨部の長手方向にスライド自在に取り付けられる背骨係着機構と、台座部の表面に設けられ、左右を仕切る縦隔部を備え、縦隔部の左面と右面の双方の面は臓器モデルを積載でき、縦隔部の背骨部の長手方向の長さは、胸骨部の長手方向の長さと略同じである。

Description

胸腔シミュレータ用臓器モデル固定具
 本発明は、胸腔鏡下手術のトレーニングや学習用の胸腔シミュレータに臓器モデルを取り付ける器具に関するものである。
 近年、胸腔鏡下手術のトレーニングや学習用として、人の体型や質感を再現し、人の身体に対する手術環境を模擬できるシミュレータが開発されている(例えば、特許文献1を参照。)。
 上記特許文献1に開示された胸腔シミュレータは、少なくとも肋骨を模擬した人体骨格モデルと、人体骨格モデルを収納するケーシングとから成る装置であり、ケーシングの肋骨部分に開孔部が設けられ、横隔膜の部分が開閉でき、人体骨格モデルの肋骨内部に臓器モデルを収納できる構成となっている。これによれば、効果的に胸腔鏡下手術の手技トレーニングを行うことが可能である。
 そして、上記特許文献1のシミュレータへの臓器モデルの取り付け方法としては、例えば、係合部が設けられた把持部材を用いるとしている。
 上記特許文献1に開示された胸腔シミュレータは、仰臥位でのトレーニングを前提としたものであるため、胸腔シミュレータを左右に傾けた状態で固定する場合については、十分な開示はなされていないが、手術の対象部位や術式によっては、側臥位で手術を行う場合も存在するため、側臥位で手術を行う場合に、適切な角度で臓器モデルを固定できる器具が望まれている。
 臓器モデルを傾けた状態で設置可能とした技術としては、装置本体に設けられたフックに網を取り付け、網に管状臓器を挿入し、また、縫合糸で縫合することで固定するトレーニング用臓器設置装置が知られている。かかるトレーニング用臓器設置装置には、本体を回転可能とする多角形脚部が設けられており、トレーニング中に装置の角度を変えることも可能となっている。
 上記特許文献2に開示されたトレーニング用臓器設置装置では、上下左右に湾曲する管状臓器の形態を正確に再現することができるという利点がある。しかしながら、正確な設置のためには、網に管状臓器を挿入するだけではなく、縫合作業も行う必要があり、設置作業が煩雑であるという問題がある。
 また、上記特許文献2に開示されたトレーニング用臓器設置装置は、肺などの臓器モデルについては使用できないという問題もある。
国際公開パンフレットWO2015/151503号 実用新案登録第3177527号公報
 かかる状況に鑑みて、本発明は、胸腔シミュレータを傾けた状態で、臓器モデルを安定的に固定でき、取り付け、取り外し及び位置調整が容易な臓器モデル固定具を提供することを目的とする。
 上記課題を解決すべく、本発明の胸腔シミュレータ用臓器モデル固定具は、少なくとも背骨と胸骨と肋骨を模擬した人体骨格モデルを備える胸腔シミュレータに対し、臓器モデルの姿勢を固定する固定具において、固定具は、胸腔シミュレータの肋骨部の内側に収納可能な台座部と、該台座部の裏面に設けられた背骨係着機構であって、胸腔シミュレータの背骨部の凸部に係着させて該背骨部の長手方向にスライド自在に取り付けられる背骨係着機構と、台座部の表面に設けられ、左右を仕切る縦隔部を備え、縦隔部の左面と右面の双方の面は臓器モデルを積載でき、縦隔部の背骨部の長手方向の長さは、胸骨部の長手方向の長さと略同じである。
 台座部の裏面に背骨係着機構が設けられることにより、臓器モデル固定具を胸腔シミュレータにしっかりと固定することができる。
 縦隔部が設けられることにより、胸腔シミュレータを傾けて使用する場合でも臓器モデルを安定的に設置することができ、また、左右双方の面を臓器モデルの設置に利用できるため、多様なバリエーションの手技トレーニングが可能となる。
 縦隔部において、背骨部の長手方向の長さが、胸骨部の長手方向の長さと略同じとされることにより、胸腔シミュレータに設置した臓器モデルをしっかりと支持することができる。
 本発明の胸腔シミュレータ用臓器モデル固定具において、台座部は、表面の左端と右端の間で縦隔部をスライドし得るスライド機構を更に備えたことでもよい。
 実際の手術に近い状態を再現する場合、臓器モデルを配置する空間を調整し得ることが好ましい。上記スライド機構を備えることにより、縦隔部の位置を左右に調整して、臓器モデルを配置する空間を調整できる。これにより、より実際の手術に近いリアルな手技トレーニングが可能となる。
 本発明の胸腔シミュレータ用臓器モデル固定具の台座部が、縦隔部をスライドし得るスライド機構を更に備えた場合において、スライド機構は、縦隔部と連結するアーム部と、該アーム部の端部を台座の表面上で回動させるアーム駆動部と、縦隔部の移動方向及び移動範囲を画定するガイド部を備え、ガイド部は、台座部の表面に設けられた軸部材及び該軸部材の両端を保持する軸止め部で構成され、軸部材が縦隔部に設けられた貫通孔に挿通されることが好ましい。
 スライド機構が、アーム部及びアーム駆動部を備えることにより、簡単な操作で縦隔部の位置を調整することができる。アーム部及びアーム駆動部の構造としては、公知のウォームギヤが好適に用いられる。すなわち、アーム部の一端は縦隔部に連結され、他端にはウォームホイールが設けられる。また、アーム駆動部には円筒形状のウォームが設けられウォームの端部にはユーザが操作するためのノブが設けられる。ユーザはノブを回転させることにより、アーム部の端部を台座の表面上で回動させることができる。ウォームギヤを用いることにより、縦隔部の表面に圧力が加えられたとしても、容易にはノブは回転しないため、ノブを操作する手を離すだけで、縦隔部の位置を固定することが可能である。
 また、ガイド部を備えることにより、縦隔部の移動方向及び移動範囲を画定できる。具体的には、縦隔部が、台座部表面の左端と右端の間で平行移動し得る構造とすることが好ましい。軸部材が縦隔部に設けられた貫通孔に挿通される構成とすることで、簡易な構造で縦隔部の移動方向を画定できる。軸部材は、2本設けられることが好ましい。軸部材の両端は、軸止め部により保持されるため、縦隔部の移動範囲を容易に画定できる。上記ガイド部により、アーム部の端部が台座の表面上で回動する動きが、左右の平行運動へと変換される。
 このように、アーム部、アーム駆動部及びガイド部が一体となって機能することにより、比較的シンプルな構造で、ノブの回転運動を、縦隔部の平行運動に変換でき、縦隔部の位置を容易に調整・固定できる。
 本発明の胸腔シミュレータ用臓器モデル固定具において、台座部は、表面の左端又は右端に縦隔部を脱着自在に取り付け得る取付機構を更に備えたことでもよい。
 上記の取付機構を備えることにより、簡単な構造及び操作で、臓器モデルを配置する空間を調整することができる。取付機構としては、一方の部材を他方の部材に係止し回転爪により固定する機構と、一方の部材を他方の部材と嵌合して爪部により固定する機構を併用することが好ましいが、かかる構成に限られず、上記の何れかの機構のみを利用するものでもよいし、例えば、螺子等の留め具により固定する機構でもよい。
 本発明の胸腔シミュレータ用臓器モデル固定具において、縦隔部の左面と右面の双方の表面は、面ファスナのフック部が形成されたことが好ましい。
 臓器モデルの表面の素材は、面ファスナのループ部と同様の機能を果たすものがある。縦隔部の左右の表面に面ファスナのフック部が形成されることにより、該フック部に臓器モデルの表面を当接させて、臓器モデルをしっかりと固定することができ、また、取り外して位置調整を行うことも容易にできる。
 面ファスナのフック部が、縦隔部の左面と右面の双方の表面に設けられることにより、胸腔シミュレータを右側臥位と左側臥位のいずれの状態にした場合でも臓器モデルを安定的に設置することができる。ここで、右側臥位とは右側を下にした姿勢のことであり、左側臥位とは左側を下にした姿勢のことである。
 また、縦隔部の左面と右面には、例えば、吸盤を設ける、接着剤を塗布する等、面ファスナ以外の固定機構が設けられてもよい。
 本発明の胸腔シミュレータ用臓器モデル固定具は、胸腔シミュレータの姿勢が左側臥位である場合には、縦隔部の右面に臓器モデルを積載し、胸腔シミュレータの姿勢が右側臥位である場合には、縦隔部の左面に臓器モデルを積載することが好ましい。
 ここで、縦隔部の面の左右については、人体の構造における左右に沿ったものとし、固定具を胸腔シミュレータに取り付けた状態で、右手側の面を右面、左手側の面を左面としている。
 本発明の胸腔シミュレータ用臓器モデル固定具において、臓器モデルは、少なくとも肺の形状及び質感を再現した肺の生体質感臓器モデルであることが好ましい。
 肺の形状及び質感とは、肺門や肺内部の血管の形状や質感を含む。また、肺の生体質感臓器モデルには、気管、膜、リンパ、胸膜、肺靭帯も再現されることが好ましい。
 本発明の胸腔シミュレータ用臓器モデル固定具において、背骨係着機構は、背骨部上の取り付け位置を段階的に調整し得る凹部又は凸部が設けられたことでもよい。
 背骨係着機構に凹部又は凸部が設けられることにより、固定具の取り付け位置を段階的に調整することが可能となる。また、凹部又は凸部の形状を小さく設けることで、実質的には無段階で任意の位置に固定できるものとしてもよい。
 本発明の胸腔シミュレータ用臓器モデル固定具において、台座部と背骨係着機構と縦隔部は、樹脂により一体成形されたことでもよい。
 樹脂により一体成形されることにより、固定具に臓器モデルをしっかり固定でき、また取り扱いが容易となる。
 本発明の胸腔シミュレータ用臓器モデル固定具によれば、胸腔シミュレータを傾けた状態で、臓器モデルを安定的に固定でき、取り付け、取り外し及び位置調整が容易に行えるといった効果がある。
実施例1の肺モデル固定具の斜視図 実施例1の肺モデル固定具の正面図 実施例1の肺モデル固定具の背面図 実施例1の肺モデル固定具の左側面図 実施例1の肺モデル固定具の右側面図 実施例1の肺モデル固定具の外観図 実施例1の肺モデル固定具の説明図 実施例1の肺モデル固定具の胸腔シミュレータへの取り付け説明図1 実施例1の肺モデル固定具の胸腔シミュレータへの取り付け説明図2 実施例1の肺モデル固定具の取り付け後の状態を示す外観図 実施例1の肺モデル固定具の取り付け後の状態を示す底面図1 実施例1の肺モデル固定具の取り付け後の状態を示す底面図2 実施例1の肺モデル固定具の使用フロー図 実施例2の肺モデル固定具の構造説明図 実施例2の肺モデル固定具の取り付け後の状態を示す外観図 胸腔シミュレータの斜視図 胸腔シミュレータの外観図1 胸腔シミュレータの外観図2 胸腔シミュレータの外観図3 実施例3の肺モデル固定具の斜視図 実施例3の肺モデル固定具の正面図 実施例3の肺モデル固定具の背面図 実施例3の肺モデル固定具の左側面図 実施例3の肺モデル固定具の右側面図 実施例3の肺モデル固定具の外観図 スライド機構の説明図1 スライド機構の説明図2 実施例3の肺モデル固定具の胸腔シミュレータへの取付説明図 実施例3の肺モデル固定具の取り付け後の状態を示す外観図1 実施例3の肺モデル固定具の取り付け後の状態を示す外観図2 実施例3の肺モデル固定具の取り付け後の状態を示すイメージ図 実施例3の肺モデル固定具の使用フロー図 実施例4の肺モデル固定具の斜視図 実施例4の肺モデル固定具の正面図 実施例4の肺モデル固定具の背面図 実施例4の肺モデル固定具の外観図 実施例4の肺モデル固定具の左側面図 実施例4の肺モデル固定具の右側面図 実施例4の肺モデル固定具の使用フロー図
 以下、本発明の実施形態の一例を、図面を参照しながら詳細に説明していく。なお、本発明の範囲は、以下の実施例や図示例に限定されるものではなく、幾多の変更及び変形が可能である。
 まず、臓器モデル固定具を取り付ける胸腔シミュレータの構造について説明する。図16は、胸腔シミュレータの斜視図を示している。また、図17~19は、胸腔シミュレータの外観図であり、図17(1)は正面図、図17(2)は背面図、図18(1)は右側面図、図18(2)は左側面図、図19(1)は平面図、図19(2)は底面図を示している。
 図16に示すように、胸腔シミュレータ9は、上端部91、下端部92、胸骨部93、背骨部94及び肋骨部95から成る。胸骨部93及び背骨部94の上端には上端部91が設けられ、下端には下端部92が設けられている。肋骨部95は胸骨部93及び背骨部94に固定されている。また、図19(2)に示すように、下端部92には、臓器モデル(図示せず)を取り付けるための貫通孔96が設けられている。このように、胸腔シミュレータ9は、人体の胸部を模擬した形状となっている。
 肺の手術を行うような場合には、側臥位で手術が行われることが多く、術式によっては、図17(1)及び(2)に示す右側部9aや左側部9bが下向きとなるように胸腔シミュレータ9を設置する必要がある。
 ところが、図18(1)及び(2)に示すように、胸腔シミュレータ9の内部には、縦隔に相当する部分が設けられていないため、肺モデルを設置したとしても、側臥位の状態で肺モデルを保持することができないという問題がある。そこで、胸腔シミュレータ9を横向きに固定した場合でも、臓器モデルを安定的に支持可能な固定具が必要となる。
 なお、胸腔シミュレータ9において、右側部9a、左側部9bとしているが、左右については、ここでは人体の構造における左右に沿ったものとしている。すなわち、右手側を右側部9a、左手側を左側部9bとしている。
 次に、肺モデル固定具の構造について説明する。図1~6は、肺モデル固定具の外観図を示している。具体的には、図1は斜視図、図2は正面図、図3は背面図、図4は左側面図、図5は右側面図、図6(1)は平面図、図6(2)は底面図を示している。
 図1に示すように、肺モデル固定具1は、台座部2及び縦隔部3から成り、台座部2と縦隔部3は何れも樹脂製であり、一体成形されている。
 台座部2には、胸腔シミュレータ9に取り付けるための凹部21、図2に示す滑り止め機構(22a,22b)、図1に示す凹型係合部(23a,23b)、図3に示す凸型係合部(24a,24b)、及び図6に示す雌螺子部25が設けられている。凹型係合部(23a,23b)、凸型係合部(24a,24b)、及び雌螺子部25が背骨係着機構である。
 凹部21は、肺モデル固定具1を胸腔シミュレータ9に取り付けるために設けられたものであり、凹部21に胸腔シミュレータ9の背骨部94が嵌合するように取り付ける構造である。
 滑り止め機構(22a,22b)は、取り付け又は取り外しの際に、肺モデル固定具1を把持しやすくするためのものである。すなわち、肺モデル固定具1は、台座部2に対して略垂直に縦隔部3が設けられているため、片手では把持し難い構造となっている。そこで、滑り止め機構(22a,22b)を設けて、作業者の何れかの指が滑り止め機構(22a,22b)に引っ掛かりやすい構造とし、取り付けや取り外しを容易にしたものである。
 凹型係合部(23a,23b)及び凸型係合部(24a,24b)は、位置決め及び固定のために設けられたものであり、胸腔シミュレータ9の背骨部94に設けられた凸型係合部(図示せず)と凹型係合部(23a,23b)が係合し、胸腔シミュレータ9の背骨部94に設けられた凹型係合部(図示せず)と凸型係合部(24a,24b)が係合する構造である。
 雌螺子部25は、胸腔シミュレータ9の背骨部94と肺モデル固定具1が係合した後に、螺子(図示せず)を用いて肺モデル固定具1と背骨部94を固定するために設けられたものである。
 図2に示すように、縦隔部3はプレート状の部材から成り、人体における縦隔を模擬したものである。縦隔部3の左面には左肺の臓器モデルを取り付けることができ、右面には右肺の臓器モデルを取り付けることができる。したがって、左肺と右肺の何れの手術トレーニングを行うことも可能である。
 縦隔部3の右面には面ファスナ3aが設けられ、左面には面ファスナ3bが設けられている。なお、ここでも左右については、胸腔シミュレータ9における右側部9a、左側部9bと同様に人体の構造における左右に沿ったものとし、図2における縦隔部3の左側の面を右面、右側の面を左面としている。
 面ファスナ(3a,3b)は、いずれも面ファスナのフック部で形成されている。後述する肺モデル4の表面は、材質上、面ファスナのループ部と同じ役割を果たしうるため、面ファスナ(3a,3b)上において、肺モデル4の取付位置を自在に調整可能である。
 図7は、実施例1の肺モデル固定具の説明図である。図7に示すように、ここでは面ファスナ3bに肺モデル4bが取り付けられた状態を表している。肺モデル4bは左肺を模擬した臓器モデルであり、左肺の手術のトレーニングを行う場合のイメージを示している。
 肺モデル4bの表面の素材は、面ファスナのループ部と同様の機能を果たすため、肺モデル4bの表面が縦隔部3に設けられた面ファスナ3bと当接することで、該ループ部と面ファスナ3bのフック部が係合し、しっかりと固定される。また、縦隔部3は台座部2と一体成形されているため、例えば、鉗子などで肺モデル4bが上から押さえられたとしても、肺モデル4bの3次元的位置が解剖学的に正確な位置のまま支持することが可能である。
 図8及び9は、実施例1の肺モデル固定具の胸腔シミュレータへの取り付け説明図であり、図8は取り付け前、図9は取り付け後の状態を示している。また、図13は、実施例1の肺モデル固定具の使用フロー図を示している。
 図8においては、肺モデルは図示していないが、実際に実施例1の肺モデル固定具を使用する場合には、図13に示すように、まず、肺モデル固定具1に肺モデルを固定する(ステップS01)。その後、貫通孔96から胸腔シミュレータ9内に肺モデル固定具1を挿入し、背骨部94に肺モデル固定具1を取り付ける(ステップS02)。
 なお、肺モデルの肺モデル固定具1への固定は、肺モデル固定具1を胸腔シミュレータ9に取り付けた後に行ってもよい。また、肺モデルの固定位置の調整は、肺モデル固定具1を胸腔シミュレータ9に取り付けたままの状態で行うこともできるし、一旦肺モデル固定具1を胸腔シミュレータ9から取り外して調整を行い、再度取り付けてもよい。
 図10は、実施例1の肺モデル固定具の取り付け後の状態を示す外観図であり、図11及び図12は、実施例1の肺モデル固定具の取り付け後の状態を示す底面図である。図10(1)及び図11は右肺の肺モデルを取り付けた場合、図10(2)及び図12は左肺の肺モデルを取り付けた場合をそれぞれ示している。
 図10(1)に示すように、肺モデル固定具1における縦隔部3の長さLは、胸骨部93の長さLと略同じとなっている。
 右肺の肺モデル4aを使用して、側臥位でのトレーニングを行う場合には、図11に示すように、肺モデル固定具1に右肺の肺モデル4aを取り付ける。肺モデル4aは、面ファスナ3aにより肺モデル固定具1に固定され、肺モデル固定具1は胸腔シミュレータ9にしっかりと固定されているため、あたかも縦隔の上に左肺が存在するかのような状態が作出され、リアルなトレーニングが可能となっている。術者(図示せず)は、図10(1)に示す肋骨部95の隙間から鉗子等を挿入して、トレーニングを行う。
 同様に、左肺の肺モデル4bを使用して、側臥位でのトレーニングを行う場合には、図12に示すように、肺モデル固定具1に左肺の肺モデル4bを取り付けてトレーニングを行う。
 このように、左右いずれの肺についてもトレーニングを行うことが可能である。また、前述したように、肺モデル(4a,4b)の固定位置を微調整することもできるため、実際の手術を想定したよりリアルなトレーニングが可能である。
 人体の骨格内部において、肺は、概ね決まった位置に存在しているが、人によって僅かに位置や大きさが異なっていることがある。かかる場合でも、実態に即した骨格と肺の位置関係で手技トレーニングができることが望ましいといえる。
 図14は、実施例2の肺モデル固定具の構造説明図を示している。図14に示すように、実施例2の肺モデル固定具10は、台座部20及び縦隔部3から成り、台座部20と縦隔部3は何れも樹脂製であり、一体成形されている。
 台座部20には、図示しないが、肺モデル固定具10を背骨部94上の任意の位置で固定できる機構が設けられている。したがって、図14(1)に示すように、背骨部94の下部と肺モデル固定具10の下部がしっかりと嵌合するように、肺モデル固定具10を上方に固定することもできるし、図14(2)に示すように、肺モデル固定具10を背骨部94の下方に摺動して固定することもできる構造となっている。
 これにより、肺モデルの固定位置の調整をよりフレキシブルに行うことが可能である。
 図15は、実施例2の肺モデル固定具の取り付け後の状態を示す外観図であり、(1)は肺モデル固定具を上方に固定した場合、(2)は肺モデル固定具を下方に固定した場合を示している。また、いずれも左肺のトレーニングを行う場合を想定し、胸腔シミュレータ9を側臥位の状態としている。
 肺モデル固定具を上方に固定した場合は、図15(1)に示すように、肺モデル固定具10が上端部91に近い位置、すなわちより右側に固定されている。これに対して、肺モデル固定具を下方に固定した場合は、図15(2)に示すように、肺モデル固定具10が下端部92に近い位置、すなわちより左側に固定されている。このように、肺モデル固定具10を用いることで、縦隔部3上に配置される肺モデル(図示せず)の脱着を行うことなく、肺モデルの取り付け位置を容易に微調整することができる構造となっている。
 図20は、実施例3の肺モデル固定具の斜視図を示している。図21は実施例3の肺モデル固定具の正面図、図22は実施例3の肺モデル固定具の背面図、図23は実施例3の肺モデル固定具の左側面図、図24は実施例3の肺モデル固定具の右側面図を示している。また、図25は、実施例3の肺モデル固定具の外観図であり、(1)は平面図、(2)は底面図を示している。
 図20に示すように、肺モデル固定具11は、台座部5、縦隔部6及びアーム駆動部7から成る。図21に示すように、台座部5には軸止め部(51a~51d)が設けられ、縦隔部6には貫通孔(61a,61b)が形成されている。軸部材(52a,52b)は、貫通孔(61a,61b)に挿通され、両端部が軸止め部(51a~51d)に固定されている。具体的には、軸部材52aは、貫通孔61aに挿通され、両端部は軸止め部(51a,51b)により固定されている。また、軸部材52bは、貫通孔61bに挿通され、両端部は軸止め部(51c,51d)により固定されている。これにより、縦隔部6は、軸止め部51aと軸止め部51b、及び、軸止め部51cと軸止め部51dの範囲内で、軸部材(52a,52b)の軸方向にスライド自在となっている。
 台座部5には、図22に示す滑り止め機構(59a,59b)、胸腔シミュレータ9に取り付けるための凹部53、図25(1)に示す凸型係合部(54a,54b)、図23及び24に示す凹型係合部(55a,55b)が設けられている。凹型係合部(55a,55b)及び凸型係合部(54a,54b)が背骨係着機構である。
 凹部53は、肺モデル固定具11を胸腔シミュレータ9に取り付けるために設けられたものであり、凹部53に胸腔シミュレータ9の背骨部94が嵌合するように取り付ける構造である。滑り止め機構(59a,59b)は、取り付け又は取り外しの際に、肺モデル固定具11を把持しやすくするためのものである。凹型係合部(55a,55b)及び凸型係合部(54a,54b)は、位置決め及び固定のために設けられたものであり、胸腔シミュレータ9の背骨部94に設けられた凸型係合部(図示せず)と凹型係合部(55a,55b)が係合し、胸腔シミュレータ9の背骨部94に設けられた凹型係合部(図示せず)と凸型係合部(54a,54b)が係合する構造である。なお、胸腔シミュレータ9の構造は、実施例1で説明したものと同様である。
 台座部5にはスライド機構が設けられており、縦隔部6のスライドは、スライド機構を用いて行う。図26及び27は、スライド機構の説明図であり、図26は、縦隔部を右端に移動させた場合を示している。図26(1)は斜視図、(2)は正面図である。また、図27は、縦隔部を左端に移動させた場合であり、図27(1)は斜視図、(2)は正面図を示している。
 図21、図26(2)及び27(2)に示すように、スライド機構として、アーム駆動部7、ノブ71、アーム部(72,73)、上述した軸部材(52a,52b)及び軸止め部(51a~51d)が設けられている。軸部材(52a,52b)及び軸止め部(51a~51d)は、ガイド部を構成する。
 図26及び27では図示しないが、アーム駆動部7の内部には、公知のウォームギヤが設けられており、アーム部(72,73)は、それぞれ一端がアーム駆動部7内に設けられたウォームホイール(図示せず)に接続され、他端は縦隔部6に接続されている。ウォームホイールに噛み合わされる螺子状の歯車であるウォーム(図示せず)の先端には、ノブ71が設けられている。図25(2)に示すように、ノブ71は回動可能であり、ユーザ(図示せず)はノブ71を回すことにより、アーム部(72,73)の端部を台座の表面上で回動させることができ、さらに軸部材(52a,52b)及び軸止め部(51a~51d)により、左右の平行運動へと変換される。
 すなわち、図21に示す状態で、ノブ71を左に回すと、図26(2)に示すように、アーム部(72,73)を介して、縦隔部6を右方へと移動させることができる。これに対して、ノブ71を右に回すと、図27(2)に示すように、アーム部(72,73)を介して、縦隔部6を左方へと移動させることができる。縦隔部6は、ノブ71を持つ手を離した位置で固定される。したがって、トレーニング中に縦隔部6の右面6a又は左面6bに圧力が加わることによっても、容易に押し下げられることはなく、取り付けられる肺モデル(図示せず)の3次元的位置が解剖学的に正確な位置のまま支持することが可能である。なお、ここでは、右端若しくは左端まで縦隔部6を移動させた例を示しているが、固定箇所はこれらに限られず、例えば、図21に示す縦隔部6の位置と図26(2)に示す縦隔部6の位置の中間の位置で縦隔部6を固定することも可能である。
 図20に示すように、縦隔部6はプレート状の部材から成り、人体における縦隔を模擬したものである。図23に示す縦隔部6の右面6aには右肺の臓器モデルを取り付けることができ、図24に示す縦隔部6の左面6bには左肺の臓器モデルを取り付けることができる。かかる点は、実施例1と同様である。このように、縦隔部6は、右面6a及び左面6bの両面を肺モデルの固定に利用することができ、また、台座部5への取付位置も変更できるため、多様なパターンの位置調整が可能となっている。
 図26(1)及び図27(1)は、右側臥位での手技トレーニングを行うべく、縦隔部6の左面6bを上面とした斜視図を示している。図26(2)に示すように、縦隔部6を右方に移動させると、図26(1)では縦隔部6は上方へと移動し、図27(2)に示すように、縦隔部6を左方に移動させると、図27(1)では縦隔部6は下方へと移動する。
 このように、ノブ71を回して縦隔部6の高さを調整した上で、肺モデルを取り付けることが可能である。なお、図23及び図24に示すように、縦隔部6の右面6a及び左面6bには、面ファスナは設けられていないが、実施例1に示す面ファスナ(3a,3b)と同様の部材を設けることが可能である。
 ここで、実施例3の肺モデル固定具の使用方法について説明する。図28は、実施例3の肺モデル固定具の胸腔シミュレータへの取付説明図であり、(1)は取り付け前、(2)は取り付け後の状態を示している。図29及び30は、実施例3の肺モデル固定具の取り付け後の状態を示す外観図であり、図30は縦隔部を下げた状態の斜視図を示している。図31は、実施例3の肺モデル固定具の取り付け後の状態を示すイメージ図を示している。また、図32は、実施例3の肺モデル固定具の使用フロー図を示している。
 図32に示すように、まず、手技トレーニングの内容に合わせて、肺モデル固定具11における縦隔部6の位置を調整する(ステップS11)。後述するが、縦隔部6の位置調整は、胸腔シミュレータ9への取り付け後においても可能であるので、ここでは大まかな調整を行うことでもよい。次に、肺モデル固定具11に肺モデル(図示せず)を固定する(ステップS12)。
 その後、図28(1)及び(2)に示すように、貫通孔96から胸腔シミュレータ9内に肺モデル固定具11を挿入し、背骨部94に肺モデル固定具11を取り付ける(ステップS13)。使用する胸腔シミュレータ9は、実施例1で説明したものと同様である。なお、図29に示すように、肺モデル固定具11における縦隔部6の長さLは、胸骨部93の長さLと略同じとなっている。
 図28(1)及び(2)に示す例では、肺モデル固定具11の縦隔部6は、図26(1)及び(2)に示す場合と同様に、軸止め部(51b,51d)に当接する位置まで移動した状態で固定され、胸腔シミュレータ9に取り付けられている。したがって、図31(1)に示すように、胸腔シミュレータ9に肺モデル固定具11が取り付けられた際に形成される空間8aは、比較的狭く形成されることになる。
 これに対して、図30に示す例では、肺モデル固定具11の縦隔部6は、図27(1)及び(2)に示す場合と同様に、軸止め部(51a,51c)に当接する位置まで移動した状態で固定され、胸腔シミュレータ9に取り付けられている。したがって、図31(3)に示すように、胸腔シミュレータ9に肺モデル固定具11が取り付けられた際に形成される空間8cは、比較的広く形成されることになる。同様に、例えば、空間8aよりも広く、空間8cよりも狭い空間を望む場合には、図31(2)に示すように、縦隔部6を中段の位置に調整し固定することで、空間8aよりも広く、空間8cよりも狭い空間8bを形成することが可能である。このように、縦隔部6の位置を調整することで、手技に必要な空間を自由に設定することができ、実際の手術を想定したよりリアリティのあるトレーニングが可能となる。
 胸腔シミュレータ9には、貫通孔96が形成されており、またアーム駆動部7は肺モデル固定具11を胸腔シミュレータ9に取り付けた際に、胸腔シミュレータ9の下端部92側に設けられている。そのため、肺モデル固定具11を胸腔シミュレータ9に取り付けた後においても、ノブ71を回して、縦隔部6の位置を調整することが可能である。胸腔シミュレータ9への取り付け前だけではなく、取り付け後においても調整できることにより、手技トレーニング中に術者や補助者が貫通孔96から手を挿し入れて縦隔部6の位置を微調整し、より実際の手術に近い体腔内の環境を再現することが可能となる。
 図33は、実施例4の肺モデル固定具の斜視図を示している。図34は、実施例4の肺モデル固定具の正面図を示している。図35は、実施例4の肺モデル固定具の背面図を示している。図36は、実施例4の肺モデル固定具の外観図であり、(1)は平面図、(2)は底面図を示している。図37は、実施例4の肺モデル固定具の左側面図を示している。図38は、実施例4の肺モデル固定具の右側面図を示している。
 図33に示すように、肺モデル固定具12は、台座部50及び縦隔部60から成り、台座部50と縦隔部60は何れも樹脂製である。図34及び図36に示すように、縦隔部60は台座部50に対して脱着自在に取り付けられている。
 台座部50には、縦隔部60を取り付けるための機構として、図35に示すように、留め具(56a,56b)、凹型嵌合部(57a,57b)が設けられている。本実施例では図37に示すように、留め具56a及び凹型嵌合部57aによって縦隔部60が固定されている。
 留め具56aは、軸部29aに回転爪30aが設けられ、軸部29aを中心に回転爪30aを回転させて固定する構造である。縦隔部60の取り付けの際には、縦隔部60に形成された貫通孔63の形状に合わせて回転爪30aの向きを調整した上で、回転爪30aと貫通孔63を嵌合し、その後、回転爪30aの向きを貫通孔63の形状からずらした位置に調整する。次に、台座部50に設けられた凹型嵌合部57aと、縦隔部60に設けられた凸型嵌合部62を嵌合する。凹型嵌合部57aと凸型嵌合部62を嵌合すると、凹型嵌合部57aに設けられた窓部27aに凸型嵌合部62に設けられた爪部28が引っ掛かり固定される構造である。
 固定状態を解除する場合には、窓部27aから爪部28を押下して、凹型嵌合部57aから凸型嵌合部62を抜き出す。また、留め具56aについては、回転爪30aの向きを貫通孔63の形状に合わせて調整することで、容易に留め具56aから縦隔部60を抜き取ることが可能である。
 本実施例では、図37に示すように、留め具56a及び凹型嵌合部57aによって縦隔部60が固定されているが、これとは異なり、図38に示す留め具56b及び凹型嵌合部57bによって縦隔部60を固定することでもよい。留め具56b及び凹型嵌合部57bによって縦隔部60を固定する場合も、本実施例で示す例と同様に、留め具56bに貫通孔63を嵌合し、軸部29bに設けられた回転爪30bを回転させて固定する構造である。また、凹型嵌合部57bについては、凸型嵌合部62と嵌合し、窓部27bに爪部28が引っ掛かることで固定される構造である。このように、必要に応じて、縦隔部60の固定箇所を変えることで、胸腔シミュレータ9に取り付けた際に形成される内部空間を容易に調整することができる。また、実施例3に比べて構造がシンプルであるため、低コストで作製することができる。
 図33に示すように、縦隔部60はプレート状の部材から成り、人体における縦隔を模擬したものである。図37に示す縦隔部60の右面60aには右肺の臓器モデルを取り付けることができ、図38に示す縦隔部60の左面60bには左肺の臓器モデルを取り付けることができる。かかる点は、実施例1と同様である。このように、縦隔部60は、右面60a及び左面60bの両面を肺モデルの固定に利用することができ、また、台座部50への取付位置も変更できるため、多様なパターンの位置調整が可能となっている。なお、図37に示す肺モデル固定具12における縦隔部60の長さLは、図示しないが、胸腔シミュレータ9の胸骨部93の長さLと略同じとなっている。
 ここで、実施例4の肺モデル固定具の使用方法について説明する。図39は、実施例4の肺モデル固定具の使用フロー図を示している。まず、台座部50に縦隔部60を取り付ける(ステップS21)。縦隔部60の取付方法については、上述の通りである。
 次に、肺モデル固定具12に肺モデル(図示せず)を固定する(ステップS22)。ここでは図示しないが、縦隔部60の右面60a及び左面60bには、実施例1と同様に面ファスナのフック部を設けることが可能である。面ファスナのフック部を設けることにより、肺モデルの取付位置を右面60a又は左面60b上の適切な位置に配置することができる。
 肺モデル固定具12に肺モデルを固定した後に、胸腔シミュレータ9に肺モデル固定具12を取り付ける(ステップS23)。なお、胸腔シミュレータ9の構造は、実施例1で説明したものと同様である。
 台座部50には、胸腔シミュレータ9に取り付けるための、図35に示す凹部29及び滑り止め機構(59a,59b)、図37に示す凹型係合部58a、図38に示す凹型係合部58b、及び図36(2)に示す雌螺子部26が設けられている。凹型係合部(58a,58b)及び雌螺子部26が背骨係着機構である。
 凹部29は、肺モデル固定具12を胸腔シミュレータ9に取り付けるために設けられたものであり、凹部29に胸腔シミュレータ9の背骨部94が嵌合するように取り付ける構造である。滑り止め機構(59a,59b)は、取り付け又は取り外しの際に、肺モデル固定具12を把持しやすくするためのものである。凹型係合部(58a,58b)は、位置決め及び固定のために設けられたものであり、胸腔シミュレータ9の背骨部94に設けられた凸型係合部(図示せず)と凹型係合部(58a,58b)が係合する構造である。雌螺子部26は、胸腔シミュレータ9の背骨部94と肺モデル固定具12が係合した後に、螺子(図示せず)を用いて肺モデル固定具12と背骨部94を固定するために設けられたものである。
 なお、肺モデルの肺モデル固定具12への固定(ステップS22)は、肺モデル固定具12を胸腔シミュレータ9に取り付けた(ステップS23)後に行ってもよい。また、肺モデルの固定位置の調整は、肺モデル固定具12を胸腔シミュレータ9に取り付けたままの状態で行うこともできるし、一旦肺モデル固定具12を胸腔シミュレータ9から取り外して調整を行い、再度取り付けてもよい。
(その他の実施例)
 実施例3で説明した肺モデル固定具11の台座部50に、肺モデル固定具11を背骨部94上の任意の位置で固定できる機構が設けられてもよい。また、実施例4で説明した肺モデル固定具12の台座部50に、肺モデル固定具12を背骨部94上の任意の位置で固定できる機構が設けられてもよい。
 本発明は、胸腔鏡下手術のトレーニングや学習に有用であり、手術支援装置や手術シミュレーション装置における臓器固定具として利用できる。
 1,10~12 肺モデル固定具
 2,5,20,50 台座部
 3,6,60 縦隔部
 3a,3b 面ファスナ
 4a,4b 肺モデル
 6a,60a 右面
 6b,60b 左面
 7 アーム駆動部
 9 胸腔シミュレータ
 9a 右側部
 9b 左側部
 21,29,53 凹部
 22a,22b,59a,59b 滑り止め機構
 23a,23b,55a,55b,58a,58b 凹型係合部
 24a,24b,54a,54b 凸型係合部
 25,26 雌螺子部
 27a,27b 窓部
 28 爪部
 29a,29b 軸部
 30a,30b 回転爪
 51a~51d 軸止め部
 52a,52b 軸部材
 56a,56b 留め具
 57a,57b 凹型嵌合部
 61a,61b,63,96 貫通孔
 62 凸型嵌合部
 71 ノブ
 72,73 アーム部
 91 上端部
 92 下端部
 93 胸骨部
 94 背骨部
 95 肋骨部
 L 長さ
 

Claims (9)

  1.  少なくとも背骨と胸骨と肋骨を模擬した人体骨格モデルを備える胸腔シミュレータに対し、臓器モデルの姿勢を固定する固定具において、
     前記固定具は、
     胸腔シミュレータの肋骨部の内側に収納可能な台座部と、
     該台座部の裏面に設けられた背骨係着機構であって、胸腔シミュレータの背骨部の凸部に係着させて該背骨部の長手方向にスライド自在に取り付けられる前記背骨係着機構と、
     前記台座部の表面に設けられ、左右を仕切る縦隔部、
    を備え、
     前記縦隔部の左面と右面の双方の面は前記臓器モデルを積載でき、
     前記縦隔部の前記背骨部の長手方向の長さは、前記胸骨部の長手方向の長さと略同じであることを特徴とする胸腔シミュレータ用臓器モデル固定具。
  2.  前記台座部は、表面の左端と右端の間で前記縦隔部をスライドし得るスライド機構を更に備えたことを特徴とする請求項1に記載の胸腔シミュレータ用臓器モデル固定具。
  3.  前記スライド機構は、
     前記縦隔部と連結するアーム部と、該アーム部の端部を前記台座の表面上で回動させるアーム駆動部と、前記縦隔部の移動方向及び移動範囲を画定するガイド部を備え、
     前記ガイド部は、
     前記台座部の表面に設けられた軸部材及び該軸部材の両端を保持する軸止め部で構成され、前記軸部材が前記縦隔部に設けられた貫通孔に挿通される、ことを特徴とする請求項2に記載の胸腔シミュレータ用臓器モデル固定具。
  4.  前記台座部は、表面の左端又は右端に前記縦隔部を脱着自在に取り付け得る取付機構を更に備えたことを特徴とする請求項1に記載の胸腔シミュレータ用臓器モデル固定具。
  5.  前記縦隔部の左面と右面の双方の表面は、面ファスナのフック部が形成されたことを特徴とする請求項1~4の何れかに記載の胸腔シミュレータ用臓器モデル固定具。
  6.  前記胸腔シミュレータの姿勢が左側臥位である場合には、前記縦隔部の右面に前記臓器モデルを積載し、
     前記胸腔シミュレータの姿勢が右側臥位である場合には、前記縦隔部の左面に前記臓器モデルを積載する、
    ことを特徴とする請求項1~5の何れかに記載の胸腔シミュレータ用臓器モデル固定具。
  7.  前記臓器モデルは、少なくとも肺の形状及び質感を再現した、肺の生体質感臓器モデルであることを特徴とする請求項1~6の何れかに記載の胸腔シミュレータ用臓器モデル固定具。
  8.  前記背骨係着機構は、前記背骨部上の取り付け位置を段階的に調整し得る凹部又は凸部が設けられたことを特徴とする請求項1~7の何れかに記載の胸腔シミュレータ用臓器モデル固定具。
  9.  前記台座部と前記背骨係着機構と前記縦隔部は、樹脂により一体成形されたことを特徴とする請求項1に記載の胸腔シミュレータ用臓器モデル固定具。
     
PCT/JP2019/040346 2018-10-15 2019-10-13 胸腔シミュレータ用臓器モデル固定具 WO2020080318A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/285,176 US20220343798A1 (en) 2018-10-15 2019-10-13 Organ model fixing tool for thoracic cavity simulator
JP2020519472A JP6728513B1 (ja) 2018-10-15 2019-10-13 胸腔シミュレータ用臓器モデル固定具
EP19872464.3A EP3869488A4 (en) 2018-10-15 2019-10-13 ORGAN MODEL FIXATION TOOL FOR THORACIC CAVITY SIMULATOR
CN201980076525.4A CN113168784A (zh) 2018-10-15 2019-10-13 胸腔模拟器用器官模型固定器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2018/038385 2018-10-15
PCT/JP2018/038385 WO2020079739A1 (ja) 2018-10-15 2018-10-15 胸腔シミュレータ用臓器モデル固定具

Publications (1)

Publication Number Publication Date
WO2020080318A1 true WO2020080318A1 (ja) 2020-04-23

Family

ID=70283738

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2018/038385 WO2020079739A1 (ja) 2018-10-15 2018-10-15 胸腔シミュレータ用臓器モデル固定具
PCT/JP2019/040346 WO2020080318A1 (ja) 2018-10-15 2019-10-13 胸腔シミュレータ用臓器モデル固定具

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038385 WO2020079739A1 (ja) 2018-10-15 2018-10-15 胸腔シミュレータ用臓器モデル固定具

Country Status (5)

Country Link
US (1) US20220343798A1 (ja)
EP (1) EP3869488A4 (ja)
JP (1) JP6728513B1 (ja)
CN (1) CN113168784A (ja)
WO (2) WO2020079739A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040126746A1 (en) * 2000-10-23 2004-07-01 Toly Christopher C. Medical physiological simulator including a conductive elastomer layer
JP2010113032A (ja) * 2008-11-04 2010-05-20 Tokyo Medical & Dental Univ 人体模型
JP2011203699A (ja) * 2010-03-26 2011-10-13 Terumo Corp 骨格モデル及び人体モデル
JP3177527U (ja) 2012-05-15 2012-08-09 株式会社ワインレッド 内視鏡手術・検査トレーニング用臓器設置装置
US20140329217A1 (en) * 2013-05-01 2014-11-06 Northwestern University Surgical simulators and methods associated with the same
WO2015151503A1 (ja) 2014-03-31 2015-10-08 株式会社ファソテック 胸腔シミュレータ
US20170169734A1 (en) * 2014-04-22 2017-06-15 Inwentech A dynamic phantom
WO2018075588A1 (en) * 2016-10-19 2018-04-26 The Research Foundation For The State University Of New York Training model for medical applications

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6874501B1 (en) * 2002-12-06 2005-04-05 Robert H. Estetter Lung simulator
CN202332048U (zh) * 2011-12-09 2012-07-11 陈瑞玲 中医内科多功能人体模拟装置
CN202523295U (zh) * 2012-01-20 2012-11-07 徐鑫 一种胸腔镜模拟训练箱的内衬组件
CN204614330U (zh) * 2015-04-09 2015-09-02 营口巨成教学科技开发有限公司 一种腹部触诊人体模型
CN105225569B (zh) * 2015-11-04 2018-01-05 赵鑫 一种心脏外科手术模拟器及其使用方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040126746A1 (en) * 2000-10-23 2004-07-01 Toly Christopher C. Medical physiological simulator including a conductive elastomer layer
JP2010113032A (ja) * 2008-11-04 2010-05-20 Tokyo Medical & Dental Univ 人体模型
JP2011203699A (ja) * 2010-03-26 2011-10-13 Terumo Corp 骨格モデル及び人体モデル
JP3177527U (ja) 2012-05-15 2012-08-09 株式会社ワインレッド 内視鏡手術・検査トレーニング用臓器設置装置
US20140329217A1 (en) * 2013-05-01 2014-11-06 Northwestern University Surgical simulators and methods associated with the same
WO2015151503A1 (ja) 2014-03-31 2015-10-08 株式会社ファソテック 胸腔シミュレータ
US20170169734A1 (en) * 2014-04-22 2017-06-15 Inwentech A dynamic phantom
WO2018075588A1 (en) * 2016-10-19 2018-04-26 The Research Foundation For The State University Of New York Training model for medical applications

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3869488A4

Also Published As

Publication number Publication date
EP3869488A1 (en) 2021-08-25
WO2020079739A1 (ja) 2020-04-23
EP3869488A4 (en) 2022-07-13
CN113168784A (zh) 2021-07-23
JP6728513B1 (ja) 2020-07-22
JPWO2020080318A1 (ja) 2021-02-15
US20220343798A1 (en) 2022-10-27

Similar Documents

Publication Publication Date Title
JP6183735B2 (ja) 胸腔シミュレータ
US6908309B2 (en) Demonstration devices for medical procedures
JP2001005378A (ja) 手術手技訓練用シミュレータ
JP2011509438A (ja) 変化する肺のコンプライアンスをシミュレートする装置
US9418573B2 (en) Surgical simulation device and assembly
JP2015532454A (ja) 腹腔鏡下手技用の外科用訓練モデル
WO2015151504A1 (ja) 腹腔シミュレータ
Ruszkowski et al. On the feasibility of heart motion compensation on the daVinci® surgical robot for coronary artery bypass surgery: Implementation and user studies
JP6728513B1 (ja) 胸腔シミュレータ用臓器モデル固定具
JP6496096B1 (ja) 手技トレーニング用多目的固定具
JP2017032814A (ja) 手術訓練装置用の人体モデル装置
JP6473104B2 (ja) 手術練習キット
JP7046377B2 (ja) 手術訓練装置用の人体モデル装置
JP6757483B1 (ja) 胸腔シミュレータ用スタンド
US20220246064A1 (en) Mitral valve model and fixing jig
US20140234821A1 (en) Simulator for simulation of surgical procedures, particularly in cardiac and thoracic surgery
US11926047B2 (en) Systems and methods for facilitating surgical practice
RU2782873C2 (ru) Лапароскопический тренажер
RU2801338C1 (ru) Тренажер для отработки навыка ушивания троакарных ран в лапароскопической хирургии
WO2023102168A1 (en) Surgical trainer with mechanical feedback
JP6756947B2 (ja) 腹腔シミュレータ用臓器固定具

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020519472

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19872464

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019872464

Country of ref document: EP

Effective date: 20210517