WO2020080044A1 - 通信制御装置、通信装置、通信制御方法、通信方法、通信制御プログラム、通信プログラム、及び通信システム - Google Patents

通信制御装置、通信装置、通信制御方法、通信方法、通信制御プログラム、通信プログラム、及び通信システム Download PDF

Info

Publication number
WO2020080044A1
WO2020080044A1 PCT/JP2019/037195 JP2019037195W WO2020080044A1 WO 2020080044 A1 WO2020080044 A1 WO 2020080044A1 JP 2019037195 W JP2019037195 W JP 2019037195W WO 2020080044 A1 WO2020080044 A1 WO 2020080044A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
communication
information
unit
relay
Prior art date
Application number
PCT/JP2019/037195
Other languages
English (en)
French (fr)
Inventor
信一郎 津田
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US17/274,191 priority Critical patent/US20210345218A1/en
Priority to BR112021006873-2A priority patent/BR112021006873A2/pt
Priority to KR1020217009389A priority patent/KR20210075983A/ko
Priority to EP19873546.6A priority patent/EP3869869A4/en
Publication of WO2020080044A1 publication Critical patent/WO2020080044A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/12Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/26Cell enhancers or enhancement, e.g. for tunnels, building shadow
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/22Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/14Interfaces between hierarchically different network devices between access point controllers and backbone network device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations

Definitions

  • the present disclosure relates to a communication control device, a communication device, a communication control method, a communication method, a communication control program, a communication program, and a communication system.
  • a technology called a relay has been used for the purpose of complementing areas where radio waves are hard to reach.
  • a technique using wireless communication for a backhaul line between a relay base station and a donor base station has received attention.
  • the present disclosure proposes a communication control device, a communication device, a communication control method, a communication method, a communication control program, a communication program, and a communication system that can realize stable communication.
  • a communication control device is a communication including a relay base station to which the communication device can connect and a donor base station that provides a wireless backhaul line to the relay base station.
  • the data exchanged between the communication device and the donor base station is based on the acquisition unit that acquires information about the service that the communication device connected to the system receives using the communication system, and the information about the service.
  • a determining unit that determines a route to go through.
  • FIG. 8 is a diagram showing an example of route selection when the communication quality of a part of the backhaul lines shown in FIG. 7 deteriorates.
  • FIG. 8 is a diagram showing an example of route selection when the communication quality of a part of the backhaul lines shown in FIG. 7 deteriorates.
  • FIG. 8 is a diagram showing another example of route selection when the communication quality of some backhaul lines of the backhaul line shown in FIG. 7 deteriorates. It is a figure which shows the example of a route selection when a terminal device receives several services simultaneously. It is a figure which shows the example of a route selection when the communication quality of some backhaul lines shown in FIG. 9A deteriorates. It is a figure which shows an example of the connection state of a terminal device and a donor base station. It is a figure which shows an example of a connection process when there is no network slice information from a proximity base station. It is a flow chart which shows an example of monitoring processing of backhaul line quality.
  • a plurality of constituent elements having substantially the same functional configuration may be distinguished by attaching different numbers after the same reference numerals.
  • a plurality of configurations having substantially the same functional configuration are distinguished as donor base stations 20 1 and 20 2 as necessary.
  • only the same reference numeral is given.
  • the donor base stations 20 1 and 20 2 when it is not necessary to distinguish the donor base stations 20 1 and 20 2 from each other, they are simply referred to as the donor base station 20.
  • a technology called a relay may be used to supplement an area where radio waves are hard to reach such as indoors.
  • the relay has the same function as a base station called L3 relay, which is standardized by Rel-10 of 3GPP (3rd Generation Partnership Project), from a function that only amplifies the signal called a repeater or booster.
  • L3 relay which is standardized by Rel-10 of 3GPP (3rd Generation Partnership Project)
  • 3GPP 3rd Generation Partnership Project
  • 3GPP 3rd Generation Partnership Project
  • RAT Radio Access Technology
  • LTE Long Term Evolution
  • NR New Radio
  • LTE and NR are types of cellular communication technology, and enable mobile communication of terminal devices by arranging multiple areas covered by base stations in a cell shape.
  • LTE includes LTE-A (LTE-Advanced), LTE-A Pro (LTE-Advanced Pro), and EUTRA (Evolved Universal Terrestrial Radio Access).
  • NR shall include NRAT (New Radio Access Technology) and FEUTRA (Further EUTRA). Note that a single base station may manage multiple cells.
  • a cell corresponding to LTE is referred to as an LTE cell and a cell corresponding to NR is referred to as an NR cell.
  • NR is a radio access technology (RAT) of the next generation (fifth generation) of LTE.
  • RAT radio access technology
  • NR is a wireless access technology that can support various use cases including eMBB (Enhanced Mobile Broadband), mMTC (Massive Machine Type Communications), and URLLC (Ultra-Reliable and Low Latency Communications).
  • eMBB Enhanced Mobile Broadband
  • mMTC Massive Machine Type Communications
  • URLLC Ultra-Reliable and Low Latency Communications
  • 5G 5th generation mobile communication system
  • IAB Integrated Access and Backhaul
  • NR NR of millimeter waves
  • the propagation distance of millimeter waves is short. Therefore, when using a millimeter wave for a backhaul, it is assumed that a multi-hop relaying a plurality of relays (relay base stations) from a base station (donor base station) to a terminal device is used.
  • millimeter waves often change dynamically in communication quality, it is expected that the path from the donor base station to the terminal device will switch frequently when millimeter waves are used for the backhaul.
  • the frequent switching of paths is not limited to the case where millimeter waves are used for the backhaul, and is assumed when radio waves other than the millimeter waves are used for the backhaul. If the path is switched frequently, the stability of communication may be impaired.
  • the communication system includes a relay base station and a donor base station that provides a wireless backhaul line to the relay base station.
  • the communication control device included in the communication system includes a terminal device and a donor base station based on information about a service that the terminal device receives using the communication system (for example, information about whether or not the service requires high-speed communication). Determines the route through which data to and from. Since the communication control device determines the route according to the service, stable communication is realized.
  • the concept of network slicing is introduced to provide communication services optimized for various communication characteristics according to use cases. Therefore, a path switching mechanism that takes network slicing into consideration is introduced. Will be required.
  • the communication control device realizes stable communication by switching the path in consideration of network slicing (hereinafter, also referred to as network slice).
  • the wireless network included in the communication system 1 is, for example, a wireless network using a wireless access method specified by NR.
  • the communication system 1 may include a wireless network of a wireless access method other than NR.
  • the communication system 1 of this embodiment supports a plurality of network slices.
  • the concept of a base station includes not only a donor base station but also a relay base station (hereinafter also referred to as a relay station or a relay station device). Further, the concept of a base station includes not only a structure having a function of a base station (Structure) but also a device installed in the structure.
  • the structure is, for example, a building such as a high-rise building, a house, a steel tower, a station facility, an airport facility, a port facility, and a stadium.
  • the concept of a structure includes not only buildings but also non-building structures such as tunnels, bridges, dams, fences, steel columns, and equipment such as cranes, gates, and windmills. Further, the concept of a structure includes not only structures on the ground (land) or in the ground, but also structures on the water such as a jetty and a megafloat, and structures underwater such as an ocean observation facility.
  • the base station may be a base station device configured to be movable.
  • the base station may be a device installed in a moving body or the moving body itself.
  • the mobile body may be a mobile terminal such as a smartphone.
  • the moving body may be a moving body that moves on the ground (on land) (for example, a vehicle such as an automobile, a bus, a truck, a train, or a linear motor car), or moves in the ground (for example, in a tunnel). It may be a moving body (for example, a subway).
  • the moving body may be a moving body that moves on the water (for example, a ship such as a passenger ship, a cargo ship, or a hovercraft), or a moving body that moves underwater (for example, a submarine, a submarine, an unmanned submersible, etc. Submersible).
  • the moving body may be a moving body that moves in the atmosphere (for example, an airplane such as an airplane, an airship, or a drone), or a moving body that moves outside the atmosphere (for example, an artificial satellite, a spaceship, a space station). , An artificial celestial body such as a probe).
  • the LTE base station is sometimes called eNodeB (Evolved Node B) or eNB.
  • the NR base station may be referred to as gNodeB or gNB.
  • a terminal device also referred to as a mobile station, a mobile station device, or a terminal
  • the terminal device is a type of communication device and is also called a mobile station, a mobile station device, or a terminal.
  • the concept of a communication device includes not only a portable terminal device such as a portable terminal but also a device installed in a structure or a moving body, for example.
  • the concept of a communication device includes not only a terminal device but also a base station (donor base station, relay base station, etc.).
  • FIG. 1 is a diagram illustrating a configuration example of a communication system 1 according to an embodiment of the present disclosure.
  • the communication system 1 includes a management device 10, a donor base station 20, a relay base station 30, and a terminal device 40.
  • the communication system 1 provides a user with a wireless network capable of mobile communication by operating the wireless communication devices configuring the communication system 1 in cooperation with each other.
  • the wireless communication device is a device having a wireless communication function, and corresponds to the donor base station 20, the relay base station 30, and the terminal device 40 in the example of FIG. 1. In the following description, the wireless communication device may be simply referred to as a communication device.
  • one or a plurality of devices included in the communication system 1 function as a communication control device that determines a route from the donor base station to the terminal device.
  • the communication management device is the donor base station 20, but the communication control device is not limited to the donor base station 20.
  • the communication management device may be the management device 10 or a device other than the management device 10 and the donor base station 20.
  • the communication system 1 may include a plurality of management devices 10, donor base stations 20, relay base stations 30, and terminal devices 40, respectively.
  • the communication system 1 includes management devices 10 1 , 10 2, etc. as the management device 10.
  • the communication system 1 includes donor base stations 20 1 and 20 2 as the donor base station 20 and relay base stations 30 1 , 30 2 , and 30 3 as the relay base station 30.
  • the communication system 1 includes terminal devices 40 1 , 40 2 , 40 3, 40 4, etc. as the terminal device 40.
  • the management device 10 is a device that manages a wireless network.
  • the management device 10 is a device that functions as an MME (Mobility Management Entity) or an AMF (Access and Mobility Management Function).
  • the management device 10 constitutes a core network CN.
  • the core network CN is, for example, EPC (Evolved Packet Core) or 5GC (5G Core network).
  • the management device 10 is connected to each of the donor base stations 20.
  • the management device 10 manages the communication of the donor base station 20.
  • the management device 10 may manage the communication of the relay base station 30.
  • the donor base station 20 is a base station that wirelessly communicates with the terminal device 40.
  • the donor base station 20 can wirelessly communicate with the terminal device 40.
  • the donor base station 20 may be configured to be able to wirelessly communicate with other donor base stations 20 and relay base stations 30.
  • the donor base station 20 may be a ground base station device (ground station device) installed on the ground.
  • the donor base station 20 may be a base station device arranged on a structure on the ground or a base station device installed on a moving body moving on the ground.
  • the donor base station 20 may be an antenna installed in a structure such as a building and a signal processing device connected to the antenna.
  • the donor base station 20 may be a structure or a moving body itself. “Ground” is not only the ground (terrestrial) but also the ground in a broad sense that includes ground, water, and water.
  • the donor base station 20 is not limited to the ground base station.
  • the donor base station 20 may be a non-ground base station (non-ground station) that can float in the air or space.
  • the donor base station 20 may be an aircraft station device or a satellite station device.
  • the aircraft station device is a wireless communication device that can float in the atmosphere, such as an aircraft.
  • the aircraft station device may be a device mounted on an aircraft or the like, or may be the aircraft itself.
  • the concept of an aircraft includes not only heavy aircraft such as airplanes and gliders, but also light aircraft such as balloons and airships.
  • the concept of an aircraft includes not only heavy aircraft and light aircraft, but also rotorcraft such as helicopters and autogyros.
  • the aircraft station device (or the aircraft on which the aircraft station device is mounted) may be an unmanned aircraft such as a drone.
  • the concept of unmanned aerial vehicles includes unmanned aircraft systems (UAS) and tethered unmanned aerial vehicles systems (tethered UAS).
  • unmanned aerial vehicles includes light unmanned aviation systems (LTA: Lighter than Air UAS) and heavy unmanned aviation systems (HTA: Heavier than Air UAS).
  • LTA Lighter than Air UAS
  • HTA Heavier than Air UAS
  • HAPs High Altitude UAS Platforms
  • Satellite device is a wireless communication device that can float outside the atmosphere.
  • the satellite station device may be a device mounted on a space vehicle such as an artificial satellite, or may be the space vehicle itself.
  • the satellite stations are low earth orbiting (LEO) satellites, medium earth orbiting (MEO) satellites, geostationary earth orbiting (GEO) satellites, and highly elliptical orbiting (HEO). It may be any satellite.
  • the satellite station device may be a device mounted on a low-orbit satellite, a medium-orbit satellite, a geostationary satellite, or a high-elliptic orbit satellite.
  • the donor base station 20 1 is connected to a relay base station 30.
  • the donor base station 20 1 can indirectly wirelessly communicate with the terminal device 40 via the relay base station 30 1 .
  • the donor base station 20 2 it is possible to indirectly communicate wirelessly with the terminal device 40 via the relay base station 30.
  • the relay base station 30 is a device that serves as a relay station for the base station.
  • the relay base station 30 is a kind of base station.
  • the relay base station 30 can wirelessly communicate with the terminal device 40.
  • the relay base station 30 relays communication between the donor base station 20 and the terminal device 40.
  • the relay base station 30 may be configured to be able to wirelessly communicate with another relay base station 30 and the donor base station 20.
  • the relay base station 30 functions as an MT (Mobile Termination) function with respect to the donor base station 20 or operates as a UE, and DU () with respect to another relay base station 30 (child relay base station). It may operate as a Distributed Unit).
  • the relay base station 30 may be a ground station device or a non-ground station device.
  • the relay base station 30 constitutes the radio access network RAN together with the donor base station 20.
  • the terminal device 40 is, for example, a mobile phone, a smart device (smartphone or tablet), a PDA (Personal Digital Assistant), or a personal computer. Further, the terminal device 40 may be an M2M (Machine to Machine) device or an IoT (Internet of Things) device. Further, the terminal device 40 may be a wireless communication device installed in a mobile body or the mobile body itself. The terminal device 40 can wirelessly communicate with the donor base station 20 and the relay base station 30. The terminal device 40 may be capable of wireless communication, for example, D2D (Device to Device) communication, also in communication (side link) with another terminal device 40. Here, the D2D communication may be communication based on an interface called PC5.
  • D2D Device to Device
  • FIG. 2 is a diagram for explaining IAB.
  • the base station having the optical fiber F in the backhaul (donor base station 20 1 shown in FIG. 2) operates as the donor base station and other base stations (relay base stations 30 1 , 30 2 , 30). 3 ) to directly or indirectly provide wireless backhauls BH1 and BH2.
  • the relay station 30 as a parent relay station provides a wireless backhaul BH3 to the relay base station 30 3. Note that the example of FIG.
  • the donor base station 20 1 operates as a parent node (Parent node), and the relay base station 30 3 operates as a child node (Child node).
  • the downlink (DL) of the wireless backhaul BH2 is DL Parent BH
  • the uplink (UL) of the wireless backhaul BH2 is UL Parent BH
  • the DL of the wireless backhaul BH3 is DL Child BH
  • the UL of the wireless backhaul BH3 is UL Child BH. Call each one.
  • the donor base station 20 can simultaneously provide an access line to any wireless communication device.
  • the donor base station 20 may have a means for distinguishing between the relay base station and an arbitrary wireless communication device.
  • Providing the backhaul line and the access line may include at least a process of allocating and scheduling Radio Resource, for example, Physical Resource Block (PRB).
  • PRB Physical Resource Block
  • the donor base station 20 1 provides backhaul lines BH1 and BH2 to the relay base stations 30 1 and 30 2 , and at the same time provides an access line to the terminal device 40 3 .
  • the donor base station 20 may support time, frequency, and spatial multiplexing as a method of multiplexing the access line and the backhaul line.
  • the relay base station 30 can provide an access line to an arbitrary wireless communication device at the same time as constructing the backhaul line BH1.
  • the relay base station 30 may have a means for distinguishing the relay base station from an arbitrary wireless communication device.
  • Providing a backhaul line and an access line may include at least a process of Radio Resource, for example, PRB allocation and scheduling.
  • the relay base station 30 1 establishes a backhaul line with the donor base station 20 1 and, at the same time, provides an access line to the terminal device 40 1 .
  • the relay base station 30 2 builds backhaul lines BH2 and BH3 with the donor base station 20 1 and the relay base station 30 3 and at the same time provides an access line to the terminal device 40 4 . Furthermore, the relay base station 30 3 builds a backhaul line BH3 with the relay base station 30 2 and at the same time provides an access line to the terminal device 40 2 .
  • the relay base station 30 may support time, frequency, and spatial multiplexing as a method of multiplexing the access line and the backhaul line.
  • the management device 10 is a device that manages a wireless network.
  • the management device 10 is a device that manages the communication of the donor base station 20.
  • the management device 10 may manage the communication of the relay base station 30.
  • the management device 10 is, for example, a device having a function as an MME (Mobility Management Entity).
  • the management device 10 is a device having a function as an AMF (Access and Mobility Management Function), for example.
  • the management device 10 is not limited to a device having a function as an MME or AMF.
  • some or all of the functions of the management device 10 may be integrated into a function called Central Unit (CU) in the concept of IAB.
  • the function of this CU may be implemented in the donor base station 20.
  • the management device 10 may have a gateway function.
  • the management device 10 may have a function as an S-GW (Serving Gateway) or a P-GW (Packet Data Network Gateway).
  • the management device 10 may have a function as a UPF (User Plane Function).
  • the management device 10 does not necessarily have to be a device that constitutes the core network.
  • the core network is a W-CDMA (Wideband Code Division Multiple Access) or cdma2000 (Code Division Multiple Access 2000) core network.
  • the management device 10 may be a device that functions as an RNC (Radio Network Controller).
  • RNC Radio Network Controller
  • FIG. 3 is a diagram illustrating a configuration example of the management device 10 according to the embodiment of the present disclosure.
  • the management device 10 includes a communication unit 11, a storage unit 12, and a control unit 13.
  • the configuration shown in FIG. 3 is a functional configuration, and the hardware configuration may be different from this.
  • the functions of the management device 10 may be distributed and implemented in a plurality of physically separated configurations.
  • the management device 10 may be composed of a plurality of server devices.
  • the function of may be implemented as a CU in the donor base station.
  • the communication unit 11 is a communication interface for communicating with other devices.
  • the communication unit 11 may be a network interface or a device connection interface.
  • the communication unit 11 may be a LAN (Local Area Network) interface such as a NIC (Network Interface Card), or a USB (Universal Serial Bus) host controller, a USB interface including a USB port, etc. Good.
  • the communication unit 11 may be a wired interface or a wireless interface.
  • the communication unit 11 functions as a communication unit of the management device 10.
  • the communication unit 11 communicates with the donor base station 20 under the control of the control unit 13.
  • the storage unit 12 is a storage device capable of reading and writing data such as DRAM (Dynamic Random Access Memory), SRAM (Static Random Access Memory), flash memory, and hard disk.
  • the storage unit 12 functions as a storage unit of the management device 10.
  • the storage unit 12 stores, for example, the connection state of the terminal device 40.
  • the storage unit 12 stores the RRC (Radio Resource Control) state and the ECM (EPS Connection Management) state of the terminal device 40.
  • the storage unit 12 may function as a home memory that stores the position information of the terminal device 40.
  • the control unit 13 is a controller that controls each unit of the management device 10.
  • the control unit 13 is realized by a processor such as a CPU (Central Processing Unit) and MPU (Micro Processing Unit).
  • the control unit 13 is realized by the processor executing various programs stored in the storage device inside the management device 10 using a RAM (Random Access Memory) or the like as a work area.
  • the control unit 13 may be realized by an integrated circuit such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array).
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • FIG. 4 is a diagram illustrating a configuration example of the donor base station 20 according to the embodiment of the present disclosure.
  • the donor base station 20 can wirelessly communicate with the relay base station 30, the terminal device 40, and another donor base station 20. At this time, the wireless communication may be communication using millimeter waves.
  • the donor base station 20 includes a wireless communication unit 21, a storage unit 22, and a control unit 23.
  • the configuration shown in FIG. 4 is a functional configuration, and the hardware configuration may be different from this. Further, the function of the donor base station 20 may be distributed and implemented in a plurality of physically separated configurations.
  • the wireless communication unit 21 is a wireless communication interface that wirelessly communicates with other wireless communication devices (for example, the terminal device 40 and the relay base station 30).
  • the wireless communication unit 21 operates according to the control of the control unit 23.
  • the wireless communication unit 21 supports one or more wireless access methods.
  • the wireless communication unit 21 supports both NR and LTE.
  • the wireless communication unit 21 may support W-CDMA and cdma2000 in addition to NR and LTE.
  • the wireless communication unit 21 includes a reception processing unit 211, a transmission processing unit 212, and an antenna 213.
  • the wireless communication unit 21 may include a plurality of reception processing units 211, transmission processing units 212, and antennas 213, respectively.
  • each unit of the wireless communication unit 21 can be individually configured for each wireless access scheme.
  • the reception processing unit 211 and the transmission processing unit 212 may be configured separately for LTE and NR.
  • the reception processing unit 211 processes the uplink signal received via the antenna 213.
  • the reception processing unit 211 includes a wireless reception unit 211a, a demultiplexing unit 211b, a demodulation unit 211c, and a decoding unit 211d.
  • the radio reception unit 211a down-converts an uplink signal, removes unnecessary frequency components, controls an amplification level, orthogonal demodulation, converts into a digital signal, removes a guard interval, and removes a frequency domain signal by fast Fourier transform. Extract, etc.
  • the demultiplexing unit 211b separates an uplink channel such as PUSCH (Physical Uplink Shared Channel) and PUCCH (Physical Uplink Control Channel) and an uplink reference signal from the signal output from the wireless reception unit 211a.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • the demodulation unit 211c demodulates the received signal using a modulation method such as BPSK (Binary Phase Shift Keying) or QPSK (Quadrature Phase Shift Keying) for the modulation symbol of the uplink channel.
  • the modulation method used by the demodulation unit 211c may be 16QAM (Quadrature Amplitude Modulation), 64QAM, or 256QAM.
  • the decoding unit 211d performs a decoding process on the coded bits of the demodulated uplink channel.
  • the decoded uplink data and uplink control information are output to the control unit 23.
  • the transmission processing unit 212 performs transmission processing of downlink control information and downlink data.
  • the transmission processing unit 212 includes an encoding unit 212a, a modulation unit 212b, a multiplexing unit 212c, and a wireless transmission unit 212d.
  • the encoding unit 212a uses the downlink control information and downlink data input from the control unit 23 to perform block encoding, convolutional encoding, turbo encoding, LDPC (Low-Density Parity Check) encoding, polar encoding, etc. Encoding is performed using the encoding method of.
  • the modulator 212b modulates the coded bits output from the encoder 212a by a predetermined modulation method such as BPSK, QPSK, 16QAM, 64QAM, 256QAM.
  • the multiplexing unit 212c multiplexes the modulation symbol of each channel and the downlink reference signal, and arranges them in a predetermined resource element.
  • the wireless transmission unit 212d performs various kinds of signal processing on the signal from the multiplexing unit 212c. For example, the wireless transmission unit 212d performs conversion into the time domain by fast Fourier transform, addition of a guard interval, generation of a baseband digital signal, conversion into an analog signal, quadrature modulation, up-conversion, removal of extra frequency components, Performs processing such as power amplification.
  • the signal generated by the transmission processing unit 212 is transmitted from the antenna 213.
  • the storage unit 22 is a data readable / writable storage device such as DRAM, SRAM, flash memory, and hard disk.
  • the storage unit 22 functions as a storage unit of the donor base station 20.
  • the control unit 23 is a controller that controls each unit of the donor base station 20.
  • the control unit 23 is realized by a processor such as a CPU (Central Processing Unit) and MPU (Micro Processing Unit), for example.
  • the control unit 23 is realized by the processor executing various programs stored in the storage device inside the donor base station 20 using a RAM (Random Access Memory) or the like as a work area.
  • the control unit 23 may be realized by an integrated circuit such as an ASIC (Application Specific Integrated Circuit) or FPGA (Field Programmable Gate Array).
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the control unit 23 includes an acquisition unit 231, a determination unit 232, an instruction unit 233, a reception unit 234, and a transmission unit 235.
  • Each block (acquisition unit 231 to transmission unit 235) forming the control unit 23 is a functional block showing the function of the control unit 23.
  • These functional blocks may be software blocks or hardware blocks.
  • each of the above functional blocks may be one software module realized by software (including a microprogram) or one circuit block on a semiconductor chip (die).
  • each functional block may be one processor or one integrated circuit.
  • the method of configuring the functional blocks is arbitrary.
  • the control unit 23 may be configured in functional units different from the above functional blocks. The operation of each block (acquisition unit 231 to transmission unit 235) forming the control unit 23 will be described in detail in the description of a handover process and the like described later.
  • FIG. 5 is a diagram illustrating a configuration example of the relay base station 30 according to the embodiment of the present disclosure.
  • the relay base station 30 can wirelessly communicate with the terminal device 40. At this time, the wireless communication may be communication using millimeter waves.
  • the relay base station 30 includes a wireless communication unit 31, a storage unit 32, a network communication unit 33, and a control unit 34. Note that the configuration shown in FIG. 5 is a functional configuration, and the hardware configuration may be different from this. Further, the function of the relay base station 30 may be distributed and implemented in a plurality of physically separated configurations.
  • the wireless communication unit 31 is a wireless communication interface that wirelessly communicates with other wireless communication devices (for example, the donor base station 20 and the terminal device 40).
  • the wireless communication unit 31 operates according to the control of the control unit 34.
  • the wireless communication unit 31 includes a reception processing unit 311, a transmission processing unit 312, and an antenna 313.
  • the configurations of the wireless communication unit 31, the reception processing unit 311, the transmission processing unit 312, and the antenna 313 are the same as those of the wireless communication unit 21, the reception processing unit 211, the transmission processing unit 212, and the antenna 213 of the donor base station 20.
  • the storage unit 32 is a data readable / writable storage device such as DRAM, SRAM, flash memory, and hard disk.
  • the storage unit 32 functions as a storage unit of the relay base station 30.
  • the configuration of the storage unit 32 is similar to that of the storage unit 22 of the donor base station 20.
  • the network communication unit 33 is a communication interface for communicating with other devices.
  • the network communication unit 33 is a LAN interface such as NIC.
  • the network communication unit 33 may be a wired interface or a wireless interface.
  • the network communication unit 33 functions as a network communication unit of the relay base station 30.
  • the network communication unit 33 communicates with the donor base station 20 under the control of the control unit 34.
  • the control unit 34 is a controller that controls each unit of the relay base station 30.
  • the control unit 34 has the same configuration as the control unit 23 of the donor base station 20.
  • FIG. 6 is a diagram illustrating a configuration example of the terminal device 40 according to the embodiment of the present disclosure.
  • the terminal device 40 can wirelessly communicate with the donor base station 20 and the relay base station 30. At this time, the wireless communication may be communication using millimeter waves.
  • the terminal device 40 includes a wireless communication unit 41, a storage unit 42, a network communication unit 43, an input / output unit 44, and a control unit 45.
  • the configuration shown in FIG. 6 is a functional configuration, and the hardware configuration may be different from this. Further, the functions of the terminal device 40 may be distributed and implemented in a plurality of physically separated configurations.
  • the wireless communication unit 41 is a wireless communication interface that wirelessly communicates with other wireless communication devices (for example, the donor base station 20 and the relay base station 30).
  • the wireless communication unit 41 operates under the control of the control unit 45.
  • the wireless communication unit 41 supports one or more wireless access methods.
  • the wireless communication unit 41 supports both NR and LTE.
  • the wireless communication unit 41 may support W-CDMA or cdma2000 in addition to NR and LTE.
  • the wireless communication unit 41 includes a reception processing unit 411, a transmission processing unit 412, and an antenna 413.
  • the wireless communication unit 41 may include a plurality of reception processing units 411, transmission processing units 412, and antennas 413, respectively.
  • each unit of the wireless communication unit 41 can be individually configured for each wireless access scheme.
  • the reception processing unit 411 and the transmission processing unit 412 may be configured separately for LTE and NR.
  • the reception processing unit 411 processes the downlink signal received via the antenna 413.
  • the reception processing unit 411 includes a wireless reception unit 411a, a demultiplexing unit 411b, a demodulation unit 411c, and a decoding unit 411d.
  • the wireless reception unit 411a down-converts a downlink signal, removes unnecessary frequency components, controls amplification level, orthogonal demodulation, converts to a digital signal, removes a guard interval, and removes a frequency domain signal by fast Fourier transform. Extract, etc.
  • the demultiplexing unit 411b separates the downlink channel, the downlink synchronization signal, and the downlink reference signal from the signal output from the wireless reception unit 411a.
  • the downlink channel is, for example, a channel such as PBCH (Physical Broadcast Channel), PDSCH (Physical Downlink Shared Channel), and PDCCH (Physical Downlink Control Channel).
  • PBCH Physical Broadcast Channel
  • PDSCH Physical Downlink Shared Channel
  • PDCCH Physical Downlink Control Channel
  • the demodulation unit 211c demodulates the received signal to the downlink channel modulation symbol by using a modulation method such as BPSK, QPSK, 16QAM, 64QAM, 256QAM.
  • the decoding unit 411d performs a decoding process on the demodulated coded bits of the downlink channel.
  • the decoded downlink data and downlink control information are output to the control unit 23.
  • the transmission processing unit 412 performs transmission processing of uplink control information and uplink data.
  • the transmission processing unit 412 includes an encoding unit 412a, a modulation unit 412b, a multiplexing unit 412c, and a wireless transmission unit 412d.
  • the coding unit 412a performs block coding, convolutional coding, turbo coding, LDPC (Low-Density Parity Check) coding, polar coding, etc. on the uplink control information and uplink data input from the control unit 45. Encoding is performed using the encoding method of.
  • the modulator 412b modulates the coded bits output from the encoder 412a by a predetermined modulation method such as BPSK, QPSK, 16QAM, 64QAM, 256QAM.
  • the multiplexing unit 412c multiplexes the modulation symbol of each channel and the uplink reference signal, and arranges them in a predetermined resource element.
  • the wireless transmission unit 412d performs various kinds of signal processing on the signal from the multiplexing unit 412c. For example, the wireless transmission unit 412d performs conversion into the time domain by inverse fast Fourier transform, addition of a guard interval, generation of a baseband digital signal, conversion into an analog signal, quadrature modulation, up-conversion, removal of extra frequency components. , Processing such as power amplification.
  • the signal generated by the transmission processing unit 412 is transmitted from the antenna 413.
  • the storage unit 42 is a data readable / writable storage device such as DRAM, SRAM, flash memory, and hard disk.
  • the storage unit 42 functions as a storage unit of the terminal device 40.
  • the network communication unit 43 is a communication interface for communicating with other devices.
  • the network communication unit 43 is a LAN interface such as NIC.
  • the network communication unit 43 may be a wired interface or a wireless interface.
  • the network communication unit 43 functions as a network communication unit of the terminal device 40.
  • the network communication unit 43 communicates with other devices under the control of the control unit 45.
  • the input / output unit 44 is a user interface for exchanging information with the user.
  • the input / output unit 44 is an operation device such as a keyboard, a mouse, operation keys, and a touch panel for the user to perform various operations.
  • the input / output unit 44 is a display device such as a liquid crystal display (Liquid Crystal Display) or an organic EL display (Organic Electroluminescence Display).
  • the input / output unit 44 may be an audio device such as a speaker or a buzzer.
  • the input / output unit 44 may be a lighting device such as an LED (Light Emitting Diode) lamp.
  • the input / output unit 44 functions as an input / output unit (input unit, output unit, operation unit or notification unit) of the terminal device 40.
  • the control unit 45 is a controller that controls each unit of the terminal device 40.
  • the control unit 45 is realized by a processor such as a CPU or MPU, for example.
  • the control unit 45 is realized by the processor executing various programs stored in the storage device inside the terminal device 40 using the RAM or the like as a work area.
  • the control unit 45 may be realized by an integrated circuit such as ASIC or FPGA.
  • the CPU, MPU, ASIC, and FPGA can all be regarded as controllers.
  • the control unit 45 includes an acquisition unit 451, an identification unit 452, a switching unit 453, a reception unit 454, and a transmission unit 455.
  • Each block (acquisition unit 451 to transmission unit 455) forming the control unit 45 is a functional block showing the function of the control unit 45.
  • These functional blocks may be software blocks or hardware blocks.
  • each of the above functional blocks may be one software module realized by software (including a microprogram) or one circuit block on a semiconductor chip (die).
  • each functional block may be one processor or one integrated circuit.
  • the method of configuring the functional blocks is arbitrary.
  • the control unit 45 may be configured in functional units different from the above functional blocks. The operation of each block (acquisition unit 451 to transmission unit 455) included in the control unit 45 will be described in detail in the description of connection processing, handover processing, and the like described later.
  • Example of route selection >> Next, an example of selecting a route between the donor base station 20 and the terminal device 40 will be described.
  • FIG. 7 is a diagram showing an example of route selection between the donor base station 20 and the terminal device 40. Specifically, it is a diagram showing an example of route selection with respect to two terminal devices, a terminal device 40 1 and a terminal device 40 2 .
  • the terminal device 40 1 is communicating via the access line of the relay base station 30 1 .
  • the relay base station 30 1 has a backhaul line BH1 with the donor base station 20 1 .
  • the terminal device 40 2 is communicating via the access line of the relay base station 30 3 .
  • the relay station 30 3 has a backhaul line BH3 between the relay station 30 2, further, the relay base station 30 2 has a backhaul line BH2 between the donor base station 20 1 ing.
  • the relay base station 30 1 has a 1-hop backhaul line
  • the relay base station 30 3 has a 2-hop backhaul line.
  • the IAB backhaul line is expected to utilize millimeter waves and beamforming to exchange large amounts of data.
  • mobile IAB relay stations will be discussed in the future, at the beginning of the introduction, most of the IAB relay stations are fixedly installed, and it is thought that beamforming is relatively easy to apply.
  • millimeter waves there is a concern that communication quality will frequently deteriorate due to external factors such as blocking caused by a moving object or the like. Therefore, it is considered important to have a mechanism to quickly select and switch the optimal route.
  • FIG. 8A is a diagram showing an example of route selection when the communication quality of a part of the backhaul lines shown in FIG. 7 deteriorates.
  • the relay base station 30 1 establishes a backhaul line BH4 with the relay base station 30 3 .
  • the terminal device 40 1 can connect to the donor base station 20 1 via the 3-hop backhaul line of BH2, BH3, and BH4 while maintaining the access line of the relay base station 30 1 .
  • the terminal device 40 1 can also give up the access line of the relay base station 30 1 and build an access line with the donor base station 20 1 .
  • FIG. 8B is a diagram showing another example of route selection when the communication quality of a part of the backhaul lines shown in FIG. 7 deteriorates.
  • the terminal device 40 1 can determine whether to maintain the connection with the relay base station 30 1 or to establish a new connection with the donor base station 20 1 .
  • the terminal device 40 1 cannot determine to construct a new backhaul line between the relay base station 30 1 and the relay base station 30 3 as in the case of FIG. 8A, at least the network side, for example, it may be necessary to donor base station 20 1 is involved in the selection of the optimal path.
  • a node called CU Central Unit
  • the CU can be restated as a communication control device.
  • the relay base station 30 1 when the relay base station 30 1 detects Radio Link Failure (RLF) for BH1, it instructs the terminal device 40 1 to perform Connection Release. Further, when the relay base station 30 2 detects the RLF regarding BH2, the relay base station 30 2 instructs the relay base station 30 3 and the terminal device 40 2 to perform Connection Release.
  • RLF Radio Link Failure
  • the relay base station 30 2 if the relay station 30 3 is providing access line to a plurality of terminal devices 40, Broadcast, or in Groupcast manner, via the relay base station 30 2 The connection release may be instructed simultaneously to a plurality of terminal devices 40 using the route.
  • the relay base stations that have lost all the backhaul lines execute Admission Control until the backhaul lines are reconstructed. Good. That is, the relay base stations 30 1 , 30 2, and 30 3 reject the connection request from the terminal device 40 or a different relay base station during this period. Also, the relay base stations 30 1 , 30 2, and 30 3 notify the information including the Access Class Barring set via the system information as the Access Control information during this period, so that the terminal device 40 or different You may make it suppress the connection request from a relay base station. Note that an internal timer period may be set as the period until the backhaul line is reconfigured, and the timer may be activated when the RLF is detected.
  • Connection Release may be instructed after the timer expires.
  • the parameter of the Access Class Barring may be set based on the period of the timer. Then, the terminal device 40 that has executed the Connection Release newly identifies the base station that supports the desired network slice and executes the connection process by the method described below.
  • the CU may be arranged in the donor base station 20 or may be mounted in any device in the core network.
  • the CU may be the control unit 23 included in the donor base station 20 or the control unit 13 included in the management device 10. If the donor base station 20 and the management device 10 are composed of a plurality of devices, one or more of them may function as a CU. It is also possible to give the relay base station 30 and the terminal device 40 a function as a CU.
  • Example of route selection according to service used by terminal device> In 5G, the key is to realize the concept of network slicing. That is, it is assumed that the terminal device 40 appropriately receives communication services having different characteristics such as high throughput or low delay. For example, the terminal apparatus 40 1, when receiving the service that requires low delay and high path hop count as in the example of FIG. 8A has been selected, it may not meet the requirements of low delay . That is, the CU is desired to select an optimum route according to the service used by the terminal device 40. In this case, it is desired that the CU activates the measurement report and the handover regarding the backhaul line prior to the construction of the optimum route.
  • the service type may be determined based on the identification information of the network slice, for example, slice ID (Slice ID).
  • slice ID Slice ID
  • the terminal apparatus 40 1 services requiring low latency, e.g., when undergoing URLLC (Ultra-Reliable Low Latency Communication ) is CU, in response to the slice ID corresponding to the low-latency services, FIG. A route via a backhaul line having a small number of hops such as 8B may be selected.
  • the terminal device 40 services requiring a high throughput, for example, when undergoing eMBB (enhanced Mobile Broadband), the CU, in response to the slice ID corresponding to the high-throughput, for example, in FIG. 8B Thus, a route including a base station close to the terminal device 40 1 may be selected.
  • CU monitors the load on each relay station 30 switches the path dynamically selects the route via the relay station 30 with less impact Good.
  • CU when the terminal apparatus 40 1 is receiving a mMTC (massive Machine Type Communication), because it is not sensitive with respect to delay, CU, for example, as the traffic of each MTC is distributed, assigned to another MTC
  • the backhaul line may be selected in consideration of the route used.
  • LPWA Low Power Wide Area
  • the slice ID may be, for example, S-NSSAI (Single Network Slice Selection Assistance Information).
  • S-NSSAI is composed of SST (Slice / Service type).
  • the S-NSSAI may be composed of SST and SD (Slice Differentiator).
  • the service type may be determined based on other preset criteria than the slice ID.
  • the slice ID can be regarded as information indicating a communication mode of a communication service received by the terminal device 40 using the wireless network of the communication system 1 (for example, whether the communication service received by the terminal device 40 is URLLC, eMBB, or mMTC).
  • the service type may be determined based on the capability of the terminal device 40 (for example, UE Capability).
  • FIG. 9A is a diagram showing a route selection example in which the terminal device 40 1 receives a plurality of services simultaneously. In the example of FIG. 9A, the terminal device 40 1 simultaneously receives two services (first service and second service) having different slice IDs.
  • the CU When the quality of the backhaul line BH1 deteriorates, the CU gives an instruction to construct a backhaul line between the relay base station 30 1 and the relay base station 30 3 as shown in the example of FIG. 8A or 8B. .
  • the CU specifies, for each slice ID, an optimal path of data exchanged between the donor base station 20 1 and the terminal device 40 1 .
  • FIG. 9B is a diagram showing an example of route selection when the communication quality of a part of the backhaul lines shown in FIG. 9A deteriorates.
  • the communication quality of the backhaul line BH1 that connects the relay base station 30 1 and the donor base station 20 1 has deteriorated.
  • the CU specifies a route including a base station adjacent to the terminal device 40 1 as shown in FIG. 9B for the first service. In this case, the access line used by the terminal device 40 1 remains unchanged as the access line AL1, and thus the connection with the relay base station 30 1 is maintained.
  • the CU specifies a route via the backhaul line having a small number of hops as shown in FIG. 9B for the second service. Therefore, CU, for example, to the terminal apparatus 40 1, so as to utilize the access line AL2 donor base station 20 1 instructs the handover to the donor base station 20 1.
  • the slice ID regardless of the quality of the terminal device 40 first access line, the trigger degradation of the quality of the backhaul, the handover of the terminal device 40 1 can be started.
  • the terminal apparatus 40 1 is reported differently whether information has the ability to connect the relay station 30, for example, the number of transceivers from the terminal device 40 1 at the same time There is a need. For example, to provide information about this capability (eg, UE Capability) as part of the NSSAI (Network Slice Selection Assistance Information) via any message (eg, Message 3) sent to the CU in the initial access process.
  • UE Capability information about this capability
  • NSSAI Network Slice Selection Assistance Information
  • FIG. 10 is a diagram illustrating an example of a connection state between the terminal device 40 1 and the donor base station 20 1 .
  • the terminal device 40 1 is connected to the donor base station 20 1 via a route P1 via the backhaul line BH1.
  • the backhaul line BH1 is a line connecting the relay base station 30 1 and the donor base station 20 1 .
  • the route P2 illustrated in FIG. 10 is a route connecting the terminal device 40 1 and the donor base station 20 1 via the backhaul lines BH2 and BH3.
  • the backhaul line BH2 is a line connecting the relay base station 30 2 and the donor base station 20 1
  • the backhaul line BH3 is a line connecting the relay base station 30 3 and the relay base station 30 2. Is.
  • CU is assumed to be a donor base station 20 1
  • CU may be another device included in the communication system 1.
  • the donor base station 20 1 of the following description (or, according to the donor base station 20) is replaced by another appropriate device.
  • the service received by the terminal device 40 includes a plurality of communication services having different communication modes.
  • the plurality of communication services include at least two communication services selected from mMTC, eMBB, and URLLC.
  • the plurality of communication services may include communication services other than mMTC, eMBB, and URLLC.
  • the terminal device 40 can simultaneously receive at least two communication services.
  • FIG. 11 is a diagram illustrating an example of a connection process when there is no network slice information from a neighboring base station. Specifically, it is a diagram showing an example of a connection process in the case where information regarding a network slice is not provided from a neighboring base station via system information, or the neighboring base station does not support a desired network slice. .
  • the terminal apparatus 40 1 is connected to the donor base station 20 1 in the route P1 shown in FIG. 10, and those that are not connected to the donor base station 20 1, the path P2.
  • the terminal device 40 First, the terminal device 40 1, cell selection, or performing cell reselection process (step S101). Then, based on the processing result, the terminal device 40 1 executes the random access procedure (Random Access Procedure) for the relay base station 30 1 which is the highest ranked cell (step S102). Then, the terminal device 40 1 establishes an RRC connection (Radio Resource Control Connection) with the donor base station 20 1 via the access line of the relay base station 30 1 (step S103).
  • RRC connection Radio Resource Control Connection
  • an SRB Signaling Radio Bearer
  • C-plane a control signal of a control plane
  • the terminal device 40 1 can be any message of the random access processing (e.g., Message 3), or any message of RRC connection setup process (RRC Connection Setup Procedure) (e.g., RRC Connection Request, RRC Connection Setup Complete ) Can be used to notify the information about the service that the terminal device 40 1 receives.
  • RRC Connection Setup Procedure e.g., RRC Connection Request, RRC Connection Setup Complete
  • the terminal device 40 1 can notify the donor base station 20 1 of the desired slice ID using an arbitrary message of the RRC connection setup process.
  • the slice ID may be, for example, S-NSSAI as described above.
  • the acquisition unit 231 of the donor base station 20 1 acquires information about the service received by the terminal device 40 1 (for example, information on a slice ID desired by the terminal device 40 1 ).
  • the route P1 set in the RRC connection establishment procedure with the donor base station 20 1 via the access line of the relay base station 30 1 can be considered as a default route.
  • the terminal device 40 1 performs an attach process (Attach Procedure) (step S104).
  • Attach Procedure user plane between the donor base station 20 1 (hereinafter, also referred to as U-plane.) DRB for transmitting and receiving data (Data Radio Bearer) are established.
  • the CU sets a retransmission processing automatic repeat request (ARQ) method (for example, Hop by Hop or End to End) according to the slice ID.
  • ARQ retransmission processing automatic repeat request
  • an End to End ARQ process with a small delay that is, a method of controlling the ARQ process between a relay base station providing an access line and a donor base station 20 is provided. Is set. Further, in the case of a service that requires high throughput, for example, eMBB, a Hop by Hop ARQ process with good utilization efficiency of radio resources, that is, a method of controlling the ARQ process for each backhaul line is set.
  • Hybrid ARQ processing is set between the terminal device 40 and the relay base station that provides the access line.
  • Determination unit 232 of the donor base station 20 determines a path through the data to be exchanged between the terminal device 40 1 and the donor base station 20 1. For example, determination unit 232, together with the terminal apparatus 40 1 to identify the slice ID of desired, to identify the optimal route for providing network slice corresponding to the specified slice ID (T1 shown in FIG. 11).
  • the instruction unit 233 of the donor base station 20 1 instructs the terminal device 40 1 to connect the donor base station 20 or the relay base station 30 based on the specified route. For example, the instruction unit 233 sets the terminal device 40 1 to execute the measurement report process including the relay base station 30 (for example, the relay base station 30 3 ) included in the specified route as the measurement target. This instruction is set, for example, via a connection reconfiguration message (steps S105a and S105b).
  • the terminal device 40 1 When the setting is completed, the terminal device 40 1 returns a connection reconfiguration complete message to the donor base station 20 1 via the relay base station 30 1 (steps S106a and S106b). On the other hand, if the donor base station 20 1 can not determine the optimal route for providing a network slice corresponding to the desired slice ID returns a message refuse to provide the desired slice ID.
  • the terminal device 40 1 performs the measurement including the relay base station 30 3 as the measurement target based on the set measurement report process (T2 shown in FIG. 11). Then, the terminal device 40 1 reports the measurement result to the donor base station 20 1 via the relay base station 30 1 (steps S107a and S107b).
  • the instruction unit 233 of the donor base station 20 1 is specified to the terminal device 40 1 based on the route determined by the determination unit 232.
  • the base station to be handed over For example, assume a case where the relay base station 30 that provides a network slice corresponding to a desired slice ID is the relay base station 30 3 .
  • the instruction unit 233 based on the measurement results reported from the terminal device 40 1, to the terminal device 40 1 determines handover to the relay station 30 3.
  • Various known standards can be adopted as the criterion for determining whether or not to execute the handover.
  • the instruction unit 233 issues a slice base handover request (Slice based HO Request) to the relay base station 30 3 (step S108a, S108b).
  • the donor base station 20 1 When the relay base station 30 3 responds to the donor base station 20 1 with a positive response (Slice based HO Request ACK) to the slice-based handover request (steps S109a and S109b), the donor base station 20 1 informs the terminal device 40 1. Then, a message (Slice based Connection Reconfiguration message) instructing the handover to the relay base station 30 3 is transmitted to the relay base station 30 1 (steps S110a and S110b).
  • a message (Slice based Connection Reconfiguration message) instructing the handover to the relay base station 30 3 is transmitted to the relay base station 30 1 (steps S110a and S110b).
  • the terminal device 40 1 Upon receiving the message, the terminal device 40 1 executes a random access process on the relay base station 30 3 (step S111). When the handover to the relay base station 30 3 is completed, the terminal device 40 1 transmits a slice-based connection reconfiguration complete message to the donor base station 20 1 (steps S112a and S112b). , S112c, S112d). As a result, the optimum path P2 that provides the network slice corresponding to the slice ID is set. That is, according to the conventional mobility management method, after the terminal device 401 establishes a default route based on cell selection or cell reselection processing, prior to transmission / reception of data via the network slice corresponding to the desired slice ID. Switching to the optimal route is performed.
  • step S113 transmission / reception of data via the network slice corresponding to the desired slice ID is started (step S113). Transmission and reception of data, the donor base station 20 1 of the receiving unit 234, transmitting unit 235, the terminal device 40 1 of the receiving unit 454, performed by the transmitting unit 455.
  • the terminal device 40 1 may utilize multiple network slices simultaneously, for each network slice can be performed independently the process shown in FIG. 11. That is, a plurality of radio bearers corresponding to each network slice can be simultaneously constructed. If the terminal device 40 1 has the ability to connect to a plurality of base stations at the same time, the terminal device 40 1 must simultaneously establish a radio bearer corresponding to each network slice with a plurality of base stations. You can also
  • step S104 for establishing the DRB for transmitting / receiving the U-plane data is performed after the handover to the relay base station 30 3 providing the network slice corresponding to the desired slice ID is completed. It may be performed for the relay base station 30 3 .
  • the terminal device 40 1 maintains the default route via the access line of the relay base station 30 1 as an SRB for transmitting and receiving a control signal of the C-plane, as one form of C / U-plane separation.
  • a path including the relay base station 30 3 for the DRB that transmits / receives the U-plane data of the network slice corresponding to the desired slice ID may be established separately from the SRB.
  • FIG. 12 is a flowchart showing an example of the backhaul line quality monitoring process. The processing illustrated in FIG. 12 is executed by each of the plurality of relay base stations 30 included in the communication system 1, for example. The backhaul line quality monitoring process will be described below with reference to the flowchart of FIG.
  • the relay base station 30 measures the quality of the wireless backhaul line with the parent relay base station 30 (or the donor base station 20 1 ) at a fixed cycle or a variable cycle and sets a threshold value. It is determined whether or not it is below (step S201).
  • the measurement frequency, period, and threshold are set by control information (for example, RRC connection reconfiguration or RRC connection release).
  • the quality of the backhaul line may be evaluated based on the reception strength or reception quality of the reference signal or the synchronization signal, that is, RSRP (Reference Signal Received Power) or RSRQ (Reference Signal Received Quality).
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • the relay base station 30 activates the event triggered measurement result reporting process (Event Triggered measurement reporting) process (step S202).
  • the relay station 30 in addition to the wireless backhaul link quality between a parent relay station, and reports the measurement results regarding the quality of the relay station 30 of the parent candidate to be measured to the donor base station 20 1 (step S203).
  • each relay base station 30 of the parent candidate to be measured is set by, for example, the above-mentioned RRC connection resetting or RRC connection release.
  • the donor base station 20 1 may set the report on the load for each relay station 30.
  • the donor base station 20 1 may be set to report when the amount of traffic transmitted and received per unit time exceeds a threshold value.
  • the amount of traffic transmitted / received per unit time may be a PRB usage indicating the ratio of used PRBs among all PRBs (Physical Resource Blocks) per unit frequency / unit time.
  • the report on the load may be set in a unit called a flow or in a bearer unit.
  • the donor base station 20 1, bearer or for each slice ID it is possible to determine the switching of the backhaul.
  • the donor base station 20 1, the quality of the backhaul for each relay station, or, on the basis of the report on the load of the relay station, flow control, i.e., the scheduling of data to be transferred to the child relay station May be controlled. This scheduling may be performed for each QoS or slice ID.
  • the donor base station 201 executes the Admission Control or the Access Control to the child relay base stations based on the quality of the backhaul line of each relay base station or the report on the load of each relay base station. Good.
  • the Access Control broadcasts the Access Control information including the Access Class Barring set via the system information, for example.
  • FIG. 13 is a flowchart showing an example of a backhaul line handover process.
  • the process shown in FIG. 13 is executed by the CU (for example, the donor base station 20).
  • the donor base station 20 1 executes the following handover process, but the CU that executes the following handover process is not limited to the donor base station 20 1 .
  • the relay base station 30 is a type of communication device.
  • the handover process of the backhaul line will be described with reference to the flowchart of FIG.
  • the measurement results regarding the quality of the relay station 30 to be measured is received from the relay station 30 which starts the event triggered measurement report process (step S301).
  • the relay base station 30 that has activated the event activation measurement result report processing is referred to as the relay base station 30 that is the handover processing target.
  • the acquisition unit 231 to the donor base station 20 1 from the relay base station 30, terminal device 40 in the communication system 1 The information on the service received using the wireless network (for example, the slice ID of the slice used by the terminal device 40) may be acquired. If the terminal device 40 receives a plurality of communication services, the acquisition unit 231 may acquire information on a plurality of communication services (for example, information on a plurality of slice IDs).
  • the determination unit 232 of the donor base station 20 1, based on the information about the service, to determine a path through data exchanged is between the terminal device 40 1 and the donor base station 20 1. For example, the determination unit 232 derives an optimal path for each slice ID (step S302).
  • the donor base station 20 1 based on the information of the optimum path, the relay station 30 handover processed to identify the base station to be the target of handover (step S303).
  • the relay base station 30 that is the target of the handover process is the relay base station 30 1 shown in FIG. 9A.
  • the donor base station 20 1 relays the donor base station 20 1 relays as shown in FIG. 9B.
  • the base station 30 1 specifies the base station to be the target of the handover as the relay base station 30 3 .
  • the base station that is the target of the handover (hereinafter referred to as the target base station) is not limited to the relay base station 30 and may be the donor base station 20.
  • the instruction unit 233 to the donor base station 20 1, to the relay station 30 handover processing target, and instructs the handover process (step S304).
  • the instruction unit 233 may instruct the handover for each slice ID.
  • the relay base station 30 that is the target of the handover process may be instructed to perform a plurality of handovers corresponding to the slice IDs.
  • the relay base station 30 establishes a plurality of connections with different target base stations.
  • the slice ID e.g., Hop By Hop, or, End-to End
  • the master relay base station of each backhaul line included in the route may be instructed to reset the ARQ process, or the handover is performed. Only the parent relay base station of the established backhaul line may be instructed to reset the ARQ process. Even when the ARQ process resetting is instructed only to the parent relay base station of the backhaul line for which the handover is executed, the transfer process or the parent relay base station of the other backhaul line is performed or , ARQ process reset may be instructed. On the other hand, when the End-to-End ARQ process is reset, the parent relay base station of each backhaul line may be instructed to reset the transfer process. Further, the relay base station that provides the access line may be instructed to reset the transfer process or the Hybrid ARQ process.
  • FIG. 14 is a flowchart showing an example of handover processing of an access line.
  • the process shown in FIG. 14 is executed by the CU (for example, the donor base station 20).
  • the donor base station 20 1 executes the following handover process, but the CU that executes the following handover process is not limited to the donor base station 20 1 .
  • the terminal device 40 is a type of communication device.
  • the access line handover process will be described with reference to the flowchart of FIG.
  • the acquisition unit 231 to the donor base station 20 1 the measurement results regarding the quality of the relay station 30 to be measured is acquired from the relay base station 30 which starts the event triggered measurement report process (step S401). Subsequently, the determination unit 232 of the donor base station 20 1 derives the optimum path for each slice ID (step S402). Then, the determination unit 232 specifies the relay base station 30 that provides the access line to the terminal device 40 for each slice ID based on the information of the optimum route (step S403).
  • the instruction unit 233 to the donor base station 20 determines whether there is a change in the relay station 30 to provide access line to the terminal device 40 (step S404). For a slice ID that changes, the instruction unit 233 instructs the terminal device 40 using the service corresponding to the slice ID to perform the handover process (step S405). Further, the instruction unit 233 of the donor base station 201 resets the ARQ process corresponding to the slice ID.
  • the parent relay base station of each backhaul line included in the route may be instructed to reconfigure the ARQ process or the influence of the route switching. Only the parent relay base station of the backhaul line that has received the instruction may be instructed to reset the ARQ process.
  • the transfer process to the parent relay base station of the other backhaul line may be instructed to reset the ARQ process.
  • the parent relay base station of each backhaul line may be instructed to reset the transfer process.
  • Hybrid ARQ processing is set between the relay base station providing the access line and the terminal device 40.
  • 15A and 15B are diagrams illustrating an example of a signaling flow related to optimum path selection corresponding to a slice ID. The following description will be made assuming that the terminal device 40 1 and the donor base station 20 1 are in the connection state shown in FIG. 9A.
  • both the first service (slice ID # 1) and the second service (slice ID # 2) are connected to the terminal device 40 1 via the access line AL1 and the backhaul line BH1. and transmission and reception of data between the donor base station 20 1 has been performed (step of FIG. 15A S501a, S501b, S502a, S502b ).
  • the access line AL1 is a line between the terminal device 40 1 and the relay base station 30 1 .
  • the backhaul line BH1 is a line between the relay base station 30 1 and the donor base station 20 1 .
  • the donor base station 20 1 sends control information (for example, a Connection Reconfiguration message).
  • control information for example, a Connection Reconfiguration message
  • the measurement and its reporting method are set in the relay base station 30 1 via (step S503).
  • the relay base station 30 1 transmits control information (for example, Connection Reconfiguration Complete message) to the donor base station 20 1 (step S504).
  • the relay base station 30 1 starts monitoring the quality of the backhaul line between the donor base stations 20 1 based on the setting, and when the quality becomes equal to or lower than the threshold value, starts measuring the relay base station 30 that is the measurement target (Ste S505).
  • the relay base station 30 to be measured is the relay base station 30 and the donor base station 20 1 that are the target base stations of the handover.
  • the relay base station 30 1 activates the event triggered measurement result reporting process based on the set condition, and the current parent relay base station (or the donor base station 20 1 ) and the measurement target are measured. reporting the results measurements of the containing quality of relay station 30 to the donor base station 20 1 (step S506).
  • Determination unit 232 of the donor base station 20 based on the information about the service to which the terminal device 40 1 receives via the communication system 1, through which data is exchanged between the terminal device 40 1 and the donor base station 20 1 Determine the route to take. For example, determination unit 232, the received measurement results, and, based on the slice ID corresponding to the service to the terminal apparatus 40 1 is utilized to derive an optimal route (step S507).
  • the service which the terminal device 40 1 is utilized may be a plurality of service as shown in the example of FIG. 9A.
  • the donor base station 20 1 identifies the slice ID needed to establish a new backhaul line (step S508).
  • the instruction unit 233 of the donor base station 20 1 transmits a handover request, for example, a slice-based handover request (Slice based HO Request) to the relay base station 30 3 that is a target base station for handover regarding the specified slice ID. (Steps S509a and S509b).
  • Relay station 30 3 which has finished the necessary preparations handover, response to the request of the handover, for example, returns slice base handover request acknowledgment (Slice based HO Request ACK) to the donor base station 20 1 (step S510a , S510b).
  • the instruction unit 233 of the donor base station 20 1 instructs the relay base station 30 1 to perform a handover instruction including information on a slice ID for which handover of the backhaul line is necessary, for example, slice base.
  • a connection reconfiguration (Slice based Connection Reconfiguration) is transmitted (step S511).
  • the relay base station 30 1 Upon receiving the handover instruction, the relay base station 30 1 performs random access to switch the connection of the backhaul line for the first service (slice ID # 1) from the donor base station 20 1 to the relay base station 30 3. A process (Random Access Procedure) is executed (step S512).
  • a relay base station 30 Upon completion of the switching of the connection of the backhaul line for a particular slice ID, a relay base station 30 1, the response to an instruction of the handover (e.g., a slice base connection reconfiguration complete (Slice based Connection Reconfiguration Complete)) the donor base station 20 1 to reply (step S513a, S513b, S513c), hand-over of the necessary backhaul line is completed.
  • an instruction of the handover e.g., a slice base connection reconfiguration complete (Slice based Connection Reconfiguration Complete)
  • the donor base station 20 1 notifies the relay base station 30 or the update of information for controlling the routing in the donor base station 20 1 (steps S514a, S514b, and S514c in FIG. 15B).
  • the information for controlling the routing is, for example, information about the change of the routing table according to the slice ID, the bearer mapping according to the slice ID, or the control of the QoS flow mapping.
  • the bearer mapping according to the slice ID may be information for identifying the route determined according to the slice ID, for example, bearer mapping according to the route ID.
  • the QoS flow mapping according to the slice ID may be information for identifying the route determined according to the slice ID, for example, the QoS flow mapping according to the route ID.
  • the relay base station 30 1 that provides the access line to the terminal device 40 1 uses the slice base connection resetting (step S511) received from the donor base station 20 1 to determine the terminal device 40 1 according to the slice ID. There set the measurement method and reporting method is required to switch the access line to the terminal apparatus 40 1 (step S515). At this time, the relay base station 30 1 may set the measurement method and the reporting method in the terminal device 40 1 via the control information (for example, slice-based connection resetting).
  • the terminal device 40 1 measures the relay base station 30 or the donor base station 20 1 to be measured according to the slice ID based on the setting (T3 in FIG. 15B). Then, the terminal device 40 1 reports the measurement result to the donor base station 20 1 (steps S516a, S516b, S516c, S516d).
  • the terminal device 40 1 that has received the handover instruction performs a random access process in order to switch the connection of the access line for the second service (slice ID # 2) from the relay base station 30 1 to the donor base station 20 1. Execute (step S518). Upon completion of the switching of the connection of the access line to a particular slice ID, the terminal device 40 1, the response to an instruction of the handover, for example, slice base connection reconfiguration complete (Slice based Connection Reconfiguration Complete) to the donor base station 20 1 A reply is sent (step S519), and the necessary access line handover is completed.
  • slice base connection reconfiguration complete Slice based Connection Reconfiguration Complete
  • the data related to the first service is transmitted / received via the access line AL1 and the backhaul lines BH2, BH3, BH4 (steps S520a, S520b, S520c, S520d).
  • the access line AL1 is a line between the terminal device 40 1 and the relay base station 30 1 .
  • the backhaul line BH2 is a line between the relay base station 30 2 and the donor base station 20 1 .
  • the backhaul line BH3 is a line between the relay base station 30 3 and the relay base station 30 2 .
  • the backhaul line BH4 is a line between the relay base station 30 1 and the relay base station 30 3 .
  • the data related to the second service is transmitted / received via the access line AL2 between the terminal device 40 1 and the donor base station 20 1 (step S521).
  • the relay base station 30 is a node that establishes a backhaul line with another relay base station 30 and transfers data, and in addition, establishes an access line to the terminal device 40 by itself. It is also a providing node. Therefore, the relay base station 30 that provides the access line to the terminal device 40 provides the terminal device 40 with information that assists the utilization of network slicing. For example, the relay base station 30 provides the terminal device 40 with the type of service that can be provided as an access line. For example, the relay base station 30 reports a list of slice IDs that can be handled as one of the system information.
  • the slice ID may be, for example, S-NSSAI as described above.
  • the idle mode terminal device 40 acquires the list of available slice IDs notified as the system information before transmitting the connection establishment request including the desired slice ID, and thus the relay base station to be connected It becomes possible to know whether or not the 30 can support the desired service.
  • the donor base station 20 may notify the terminal device 40 in Connected mode of this slice ID list change via control information, for example, RRC signaling. Furthermore, when the service corresponding to the slice ID currently used by the terminal device 40 in Connected mode cannot be provided due to the change in the route of the backhaul line, the donor base station 20 can provide the service.
  • the handover process to the target base station (for example, the donor base station 20 1 in FIG. 8B) may be activated. Specifically, the donor base station 20 may transmit, to the terminal device 40, control information regarding a connection setting change including information on the target base station, for example, an RRC connection reconfiguration message.
  • the description of the donor base station 20 can be replaced with CU.
  • the donor base station 20 determines the optimum route according to the service (for example, for each slice ID), the terminal device 40 cannot use the service because the communication speed is insufficient. Frequent path switching based on cause is reduced. As a result, the donor base station 20 can reduce signaling, and can realize stable communication.
  • the terminal device 40 connects to the base station based on the judgment of the donor base station 20, but may connect to the base station based on its own judgment.
  • FIG. 16 is a flowchart showing an example of the connection processing of the terminal device 40 based on the slice ID. Note that in the following description, the connection process shown in FIG. 16 is executed by the terminal device 40, but the device that executes the connection process may be a communication device other than the terminal device 40. Hereinafter, the connection processing of the terminal device 40 based on the slice ID will be described with reference to the flowchart of FIG.
  • the acquisition unit 451 of the terminal device 40 in Idle mode acquires information regarding communication of a neighboring base station.
  • the acquisition unit 451 acquires information about a network slice supported by a proximity base station via system information reported from a proximity base station (hereinafter, referred to as a proximity base station) (step S601).
  • the proximity base station may be the relay base station 30 or the donor base station.
  • the acquisition unit 451 acquires information regarding the communication of each of the plurality of adjacent base stations.
  • the information regarding the network slice may be information about the slice ID of the network slice supported by the adjacent base station.
  • the slice ID may be, for example, S-NSSAI as described above.
  • the information about network slices may be a list of identification information that distinguishes a plurality of network slices.
  • the identifying unit 452 of the terminal device 40 determines that the above-mentioned proximity as the base station supporting the desired network slice.
  • the base station is specified (step S602). If there are a plurality of neighboring base stations, the identifying unit 452 identifies the base station supporting the desired network slice from the plurality of neighboring base stations.
  • the terminal device 40 executes initial access to the proximity base station specified in step S602 and connects (step S603).
  • the terminal device 40 identifies the base station that supports the desired network slice based on its own judgment and is connected, so that the signaling of the CU (for example, the donor base station 20) can be reduced. As a result, communication is stable.
  • the handover process of terminal device based on slice ID> Next, the handover process of the terminal device 40 will be described.
  • the terminal device 40 executes the handover based on the judgment of the donor base station 20, but may execute the handover based on its own judgment.
  • FIG. 17 is a flowchart showing an example of a handover process of the terminal device 40 based on the slice ID.
  • the handover process shown in FIG. 17 is performed by the terminal device 40, but the device that executes the handover process may be a communication device other than the terminal device 40.
  • the handover process of the terminal device 40 based on the slice ID will be described with reference to the flowchart of FIG.
  • the acquisition unit 451 of the terminal device 40 in Connected mode acquires control information regarding the setting of the measurement process via the connected base station (step S701).
  • the acquired control information includes information on the base station that is a measurement candidate.
  • the switching unit 453 of the terminal device 40 sets the measurement process based on the control information.
  • the setting related to the measurement process is referred to as the measurement process setting.
  • the identifying unit 452 of the terminal device 40 selects a base station that supports a desired slice ID from among the measurement candidate base stations. Then, the switching unit 453 of the terminal device 40 executes the measurement of the measurement item based on the measurement processing setting (step S702).
  • the base station that is a measurement candidate may be the relay base station 30 or the donor base station 20.
  • the measurement items based on the measurement processing settings are, for example, RSRP (Reference Signal Received Power), RSRQ (Reference Signal Received Quality), SINR (Signal to Interference and Noise Ratio), or RSSI (Received Signal Strength Indicator). .
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • SINR Signal to Interference and Noise Ratio
  • RSSI Receiveived Signal Strength Indicator
  • the identifying unit 452 of the terminal device 40 identifies the target base station to be the handover destination based on the measurement result and the threshold value included in the measurement processing setting (step S703).
  • the measurement value of the currently connected base station for example, the value of RSRP, RSRQ, SINR, or RSSI
  • the measurement value of one base station among the plurality of measurement candidates is When it exceeds the second threshold, it is determined that the switching criterion of the base station is satisfied, and the base station that exceeds the second threshold is specified as the target base station.
  • the switching criterion serving as the handover execution criterion is not limited to this example, and various known criteria can be adopted.
  • the switching unit 453 of the terminal device 40 executes the handover to the target base station when the switching criterion of the base station is satisfied (step S704).
  • the threshold included in the setting of the measurement process is a threshold in the measurement result for activating handover, and a different value may be set according to the slice ID.
  • the terminal device 40 identifies the base station supporting the desired network slice by its own judgment and executes the handover, so that the signaling of the CU (for example, the donor base station 20) is reduced. it can. As a result, the communication of the communication system 1 is stable.
  • the donor base station 20 uses the route of data exchanged between the terminal device 40 and the donor base station 20 based on the information about the service that the terminal device 40 receives using the communication system 1. It was determined.
  • the information regarding the service is not limited to the slice ID, and may be information for identifying which of the plurality of communication services other than the slice ID, for example.
  • the plurality of communication services may include at least two communication services selected from mMTC, eMBB, and URLLC.
  • the donor base station 20 determines the route through which the data passes based on the slice ID. At this time, the donor base station 20 may determine the relay base station 30 through which the data passes, based on the information on the communication delay permitted by the network slice indicated by the slice ID. For example, the donor base station 20 determines the number of hops of the route according to the communication delay allowed by the network slice. Then, the donor base station 20 identifies a route having the determined number of hops or less.
  • the terminal device 40 specifies the base station to connect from among the plurality of base stations based on the information of the network slices supported by each of the plurality of base stations. However, the terminal device 40 may specify the base station to be connected from among the plurality of base stations based on the information regarding the communication service supported by each of the plurality of base stations. At this time, the information regarding the communication service may be information indicating which of the plurality of communication services having different communication modes. At this time, the plurality of communication services may include at least two communication services selected from mMTC, eMBB, and URLLC.
  • the terminal device 40 executes the cell selection or the cell reselection in the idle mode, and as a result of the cell reselection, the highest ranked cell (hereinafter referred to as the first relay base station 30)
  • the initial access process may be executed by the above.
  • the terminal device 40 constructs a radio bearer with the first relay base station 30, and then, if the first relay base station 30 does not support the desired network slice, the desired network slice.
  • the relay base station 30 that supports the above may be the relay base station 30 that is the target of the handover process (hereinafter, referred to as the second relay base station 30).
  • the terminal device 40 may execute a handover using the second relay base station as a target base station based on a measurement result including the second relay base station as a measurement target.
  • the control device for controlling the management device 10, the donor base station 20, the relay base station 30, or the terminal device 40 of this embodiment may be realized by a dedicated computer system or a general-purpose computer system.
  • a communication program for executing the above-described operation (for example, connection processing or handover processing) is stored in a computer-readable recording medium such as an optical disk, a semiconductor memory, a magnetic tape, or a flexible disk, and distributed. .
  • the control device is configured by installing the program in a computer and executing the above processing.
  • the control device may be a device (for example, a personal computer) external to the management device 10, the donor base station 20, the relay base station 30, or the terminal device 40.
  • the control device is a device inside the management device 10, the donor base station 20, the relay base station 30, or the terminal device 40 (for example, the control unit 13, the control unit 23, the control unit 34, or the control unit 45). May be.
  • the above communication program may be stored in a disk device provided in a server device on a network such as the Internet so that it can be downloaded to a computer.
  • the above-mentioned functions may be realized by cooperation between an OS (Operating System) and application software.
  • the part other than the OS may be stored in a medium for distribution, or the part other than the OS may be stored in the server device and downloaded to a computer.
  • each component of each illustrated device is functionally conceptual, and does not necessarily have to be physically configured as illustrated. That is, the specific form of distribution / integration of each device is not limited to the one shown in the figure, and all or part of the device may be functionally or physically distributed / arranged in arbitrary units according to various loads and usage conditions. It can be integrated and configured.
  • the communication control device (CU such as the donor base station 20) relates to the service that the terminal device 40 connected to the wireless network of the communication system 1 receives using the wireless network. Based on the information (for example, the slice ID and the information about the communication mode), the route through which the data exchanged between the terminal device 40 and the donor base station 20 passes is determined. Since the communication control device determines the optimum route according to the service (for example, for each slice ID), frequent path switching due to the reason that the service cannot be used is reduced. As a result, stable communication is realized since the signaling of the communication control device is reduced.
  • the communication control device can quickly and flexibly construct a route suitable for each communication service having a different communication mode, and thus can reduce instability in communication quality.
  • the communication control device can realize data transmission through a route suitable for each service having different characteristics based on the concept of network slicing. For example, the communication control device can provide the terminal device 40 with an appropriate path for each slice.
  • the terminal device 40 specifies a base station to be connected from among the plurality of base stations based on the information regarding the communication of each of the plurality of base stations (for example, the donor base station 20 and the relay base station 30). For example, the terminal device 40 specifies information on network slices supported by each of the plurality of base stations. Since the terminal device 40 itself identifies the base station to be connected to, the signaling of the communication control device can be reduced. As a result, the terminal device 40 can stabilize the communication of the communication system 1.
  • the present technology may also be configured as below.
  • Acquiring information about a service received by the communication device which is connected to a communication system including a relay base station to which the communication device can connect and a donor base station that provides a wireless backhaul line to the relay base station
  • the acquisition part A determining unit that determines a route through which data exchanged between the communication device and the donor base station passes, based on information about the service.
  • Communication control device (2)
  • the acquisition unit acquires the information for identifying which of the plurality of communication services the communication device receives, the communication service having different communication modes, The determining unit determines a route through which the data passes, based on information for identifying which of the plurality of communication services is used, The communication control device according to (1) above.
  • the plurality of communication services include at least two communication services selected from among mMTC (massive Machine Type Communication), eMBB (enhanced Mobile BroadBand), and URLLC (Ultra-Reliable and Low Latency Communication).
  • the communication device is capable of simultaneously receiving at least two communication services, The determination unit determines a route through which the data passes for each communication service, The communication control device according to (2) or (3).
  • the communication system supports multiple network slices, The acquisition unit acquires the identification information of the network slice corresponding to the service as the information about the service, The determining unit determines a route through which the data passes based on the identification information of the network slice, The communication control device according to any one of (1) to (4) above.
  • the determining unit determines the relay base station through which the data passes based on information on a communication delay permitted by the network slice indicated by the identification information, The communication control device according to (5).
  • the communication device is capable of using at least two network slices simultaneously, The determining unit determines a route through which the data passes for each network slice, The communication control device according to (5).
  • an instruction unit for instructing the donor base station or the relay base station to be connected The communication control device according to any one of (1) to (7).
  • the instructing unit instructs the communication device to perform a handover to a base station specified based on the route determined by the determining unit when the criterion for the communication device to execute the handover is satisfied.
  • the communication control device according to (8).
  • An acquisition unit that acquires information regarding communication of each of a plurality of base stations included in a communication system that includes at least a relay base station as a base station and a donor base station that provides a wireless backhaul line to the relay base station, A specifying unit that specifies a base station to be connected from among the plurality of base stations, based on information about each of the plurality of base stations. Communication device.
  • the acquisition unit as the information about the communication of each of the plurality of base stations, acquires information about a communication service supported by each of the plurality of base stations,
  • the specifying unit specifies a base station to be connected from among the plurality of base stations based on information about communication services supported by each of the plurality of base stations,
  • the communication device according to (10).
  • the information about the communication service is information indicating which of the plurality of communication services the communication service supported by the base station has different communication modes,
  • the plurality of communication services include at least two communication services selected from among mMTC (massive Machine Type Communication), eMBB (enhanced Mobile BroadBand), and URLLC (Ultra-Reliable and Low Latency Communication).
  • mMTC massive Machine Type Communication
  • eMBB enhanced Mobile BroadBand
  • URLLC Ultra-Reliable and Low Latency Communication
  • the acquisition unit as the information about the communication of each of the plurality of base stations, acquires the information of the network slice supported by each of the plurality of base stations
  • the specifying unit based on the information of the network slice supported by each of the plurality of base stations, identifies the base station to be connected from among the plurality of base stations,
  • the communication device according to any one of (10) to (12).
  • a switching unit for executing handover The acquisition unit acquires information on a switching criterion that is a handover execution criterion, The switching unit determines whether or not the switching criterion is satisfied, and when the switching criterion is satisfied, executes a handover by using the base station specified by the specifying unit as a switching destination base station, The communication device according to any one of (10) to (13). (15) Obtain information about services received by the communication device, which is connected to a communication system including a relay base station connectable to the communication device and a donor base station providing a wireless backhaul line to the relay base station.
  • a communication method executed by a communication device comprising: As a base station, at least a relay base station and a relay base station providing a wireless base station for providing a wireless backhaul line to a communication system including a plurality of base stations provided with information regarding communication, Based on the information about the communication of each of the plurality of base stations, to identify the base station to which the communication device is connected from among the plurality of base stations, Communication method.
  • Computer Acquiring information about services received by the communication device connected to the communication system including a relay base station connectable to the communication device and a donor base station providing a wireless backhaul line to the relay base station Acquisition department, A determination unit that determines a route through which data exchanged between the communication device and the donor base station passes, based on information about the service; Communication control program to function as.
  • a computer included in the communication device An acquisition unit that acquires information about communication of each of a plurality of base stations included in a communication system that includes at least a relay base station as a base station and a donor base station that provides a wireless backhaul line to the relay base station, A specifying unit that specifies a base station to which the communication device is connected from among the plurality of base stations based on information about communication of each of the plurality of base stations, Communication program to function as.
  • a communication system comprising at least a relay base station to which a communication device can be connected, and a donor base station that provides a wireless backhaul line to the relay base station,
  • the at least one device included in the communication system is An acquisition unit that acquires information about services that the communication device receives using the communication system;
  • a determining unit that determines a route through which data exchanged between the communication device and the donor base station passes, based on information about the service. Communications system.
  • a communication system comprising a relay base station as a base station and a donor base station providing a wireless backhaul line to the relay base station, and a communication device connectable to at least one of the plurality of base stations,
  • the communication device is An acquisition unit that acquires information regarding communication of each of a plurality of base stations included in the communication system, A specifying unit that specifies a base station to be connected from among the plurality of base stations, based on information about each of the plurality of base stations. Communications system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Abstract

通信制御装置は、通信装置が接続可能なリレー基地局(30)と該リレー基地局(30)に無線バックホール回線を提供するドナー基地局(20)とを備える通信システム(1)に接続する通信装置が通信システム(1)を使って受けるサービスに関する情報を取得する取得部(231)と、サービスに関する情報に基づいて、通信装置とドナー基地局(20)との間でやり取りされるデータが経由する経路を決定する決定部(232)と、を備える。

Description

通信制御装置、通信装置、通信制御方法、通信方法、通信制御プログラム、通信プログラム、及び通信システム
 本開示は、通信制御装置、通信装置、通信制御方法、通信方法、通信制御プログラム、通信プログラム、及び通信システムに関する。
 電波の届きにくいエリアを補完する目的でリレーと呼ばれる技術が従来から用いられている。近年では、リレー基地局とドナー基地局との間のバックホール回線に無線通信を使用する技術が注目されている。
"Motivation for Integrated Backhaul and Access", 3GPP RP-170168, Samsung, 2017年3月 "Study on Integrated Access and Backhaul for NR", 3GPP RP-172290, Qualcomm Incorporated, 2017年12月
 リレー基地局とドナー基地局との間のバックホール回線を無線通信とする場合、リレー基地局に接続する通信装置とドナー基地局との間の通信が不安定となることが想定される。例えば、バックホール回線にミリ波を利用することを想定する。ミリ波は伝搬損失が大きく、通信品質の動的な変化が大きい。そのため、バックホール回線にミリ波を利用した場合、通信装置とドナー基地局との間のパスの切り替えが頻繁に起こることが想定される。こうなると、ドナー基地局のシグナリングが多くなり、通信が不安定となる可能性がある。
 そこで、本開示では、安定した通信を実現可能な通信制御装置、通信装置、通信制御方法、通信方法、通信制御プログラム、通信プログラム、及び通信システムを提案する。
 上記の課題を解決するために、本開示に係る一形態の通信制御装置は、通信装置が接続可能なリレー基地局と該リレー基地局に無線バックホール回線を提供するドナー基地局とを備える通信システムに接続する前記通信装置が前記通信システムを使って受けるサービスに関する情報を取得する取得部と、前記サービスに関する情報に基づいて、前記通信装置と前記ドナー基地局との間でやり取りされるデータが経由する経路を決定する決定部と、を備える。
本開示の実施形態に係る通信システムの構成例を示す図である。 IABを説明するための図である。 本開示の実施形態に係る管理装置の構成例を示す図である。 本開示の実施形態に係るドナー基地局の構成例を示す図である。 本開示の実施形態に係るリレー基地局の構成例を示す図である。 本開示の実施形態に係る端末装置の構成例を示す図である。 ドナー基地局と端末装置との間の経路選択例を示す図である。 図7に示すバックホール回線の一部のバックホール回線の通信品質が劣化した場合の経路選択例を示す図である。 図7に示すバックホール回線の一部のバックホール回線の通信品質が劣化した場合の他の経路選択例を示す図である。 端末装置が同時に複数のサービスを受けた場合の経路選択例を示す図である。 図9Aに示すバックホール回線の一部のバックホール回線の通信品質が劣化した場合の経路選択例を示す図である。 端末装置とドナー基地局との接続状態の一例を示す図である。 近接基地局からのネットワークスライス情報がない場合の接続処理の一例を示す図である。 バックホール回線品質のモニタリング処理の一例を示すフローチャートである。 バックホール回線のハンドオーバー処理の一例を示すフローチャートである。 アクセス回線のハンドオーバー処理の一例を示すフローチャートである。 スライスIDに対応する最適経路選択に係るシグナリングフローの一例を示す図である。 スライスIDに対応する最適経路選択に係るシグナリングフローの一例を示す図である。 スライスIDに基づいた端末装置の接続処理の一例を示すフローチャートである。 スライスIDに基づいた端末装置のハンドオーバー処理の一例を示すフローチャートである。
 以下に、本開示の実施形態について図面に基づいて詳細に説明する。なお、以下の各実施形態において、同一の部位には同一の符号を付することにより重複する説明を省略する。
 また、本明細書及び図面において、実質的に同一の機能構成を有する複数の構成要素を、同一の符号の後に異なる数字を付して区別する場合もある。例えば、実質的に同一の機能構成を有する複数の構成を、必要に応じてドナー基地局20、及び20のように区別する。ただし、実質的に同一の機能構成を有する複数の構成要素の各々を特に区別する必要がない場合、同一符号のみを付する。例えば、ドナー基地局20、及び20を特に区別する必要が無い場合には、単にドナー基地局20と称する。
 また、以下に示す項目順序に従って本開示を説明する。
  1.はじめに
  2.通信システムの構成
   2-1.通信システムの全体構成
   2-2.管理装置の構成
   2-3.ドナー基地局の構成
   2-4.リレー基地局の構成
   2-5.端末装置の構成
  3.経路選択例
   3-1.基本となる経路選択例
   3-2.通信品質悪化の場合の経路選択例
   3-3.端末装置が利用するサービスに応じた経路選択例
   3-4.端末装置が複数のサービスを受けている場合の経路選択例
  4.通信システムの動作
   4-1.近接基地局からのネットワークスライス情報がない場合の接続処理
   4-2.バックホール回線品質のモニタリング処理
   4-3.バックホール回線のハンドオーバー処理
   4-4.アクセス回線のハンドオーバー処理
   4-5.スライスIDに対応する最適経路選択に係るシグナリングフロー
   4-6.スライスIDに基づいた端末装置の接続処理
   4-7.スライスIDに基づいた端末装置のハンドオーバー処理
  5.変形例
  6.むすび
<<1.はじめに>>
 Indoor等の電波の届きにくいエリアを補完する目的でリレーと呼ばれる技術が用いられることがある。リレーには、リピーター、或いは、ブースターと呼ばれる信号を増幅するだけの機能を持つものから、3GPP(3rd Generation Partnership Project)のRel-10で規格化されたL3リレーと呼ばれる基地局と同じ機能を搭載するような様々な構成のリレー技術が存在する。
 3GPP(3rd Generation Partnership Project)は、LTE(Long Term Evolution)、NR(New Radio)等の等の無線アクセス技術(RAT:Radio Access Technology)の検討を行うプロジェクトである。3GPPでは、現在、第5世代移動通信システム(5G)が検討されている。
 LTE及びNRは、セルラー通信技術の一種であり、基地局がカバーするエリアをセル状に複数配置することで端末装置の移動通信を可能にする。なお、以下の説明では、「LTE」には、LTE-A(LTE-Advanced)、LTE-A Pro(LTE-Advanced Pro)、及びEUTRA(Evolved Universal Terrestrial Radio Access)が含まれるものとする。また、NRには、NRAT(New Radio Access Technology)、及びFEUTRA(Further EUTRA)が含まれるものとする。なお、単一の基地局は複数のセルを管理してもよい。以下の説明において、LTEに対応するセルはLTEセルと呼称され、NRに対応するセルはNRセルと呼称される。
 NRは、LTEの次の世代(第5世代)の無線アクセス技術(RAT)である。NRは、eMBB(Enhanced Mobile Broadband)、mMTC(Massive Machine Type Communications)及びURLLC(Ultra-Reliable and Low Latency Communications)を含む様々なユースケースに対応できる無線アクセス技術である。NRは、これらのユースケースにおける利用シナリオ、要求条件、及び配置シナリオなどに対応する技術フレームワークを目指して検討されている。
 第5世代移動通信システム(5G)では、28GHz帯、或いは、ミリ波の利用により、光回線並みの大容量無線通信を実現することが期待されている。5Gでは、このミリ波の利用により、光ファイバーに比べて低コストで大容量の無線バックホールを提供できる可能性がある。例えば、3GPPでは、ミリ波のNRをバックホールとしても活用するIAB(Integrated Access and Backhaul)の標準化を開始している。なお、ミリ波の伝搬距離は短い。そのため、バックホールにミリ波を利用する場合、基地局(ドナー基地局)から端末装置まで、複数のリレー(リレー基地局)を中継するマルチホップが使用されることが想定される。
 ミリ波は通信品質の動的な変化が多いことから、ミリ波をバックホールに使った場合、ドナー基地局から端末装置までのパスが頻繁に切り替わることが予想される。勿論、パスの頻繁な切り替えは、バックホールにミリ波を使った場合に限られず、ミリ波以外の電波をバックホールに利用した場合にも想定される。パスが頻繁に切り替わった場合、通信の安定が損なわれる恐れがある。
 本実施形態では、通信システムはリレー基地局と当該リレー基地局に無線バックホール回線を提供するドナー基地局とを備える。そして、通信システムが備える通信制御装置は、端末装置が通信システムを使って受けるサービスに関する情報(例えば、高速の通信が必要なサービスか否か等の情報)に基づいて、端末装置とドナー基地局との間でやり取りされるデータが経由する経路を決定する。通信制御装置がサービスに応じて経路を決定しているので、安定した通信が実現する。
 なお、5Gでは、ユースケースに応じた様々な通信特質に最適化された通信サービスを提供するための、ネットワーク・スライシングというコンセプトが導入されることから、ネットワーク・スライシングを考慮したパスの切り替えの仕組みが必要になる。本実施形態では、通信制御装置が、ネットワーク・スライシング(以下、ネットワークスライスともいう。)を考慮してパスを切り替えることで、安定した通信を実現する。
<<2.通信システムの構成>>
 以下、本開示の実施形態に係る通信システム1を説明する。通信システム1が備える無線ネットワークは、例えば、NRで規定される無線アクセス方式を使用した無線ネットワークである。勿論、通信システム1は、NR以外の無線アクセス方式の無線ネットワークを備えていてもよい。本実施形態の通信システム1は、複数のネットワークスライスをサポートしている。
 なお、基地局(以下、基地局装置ともいう。)という概念には、ドナー基地局のみならず、リレー基地局(以下、中継局、或いは中継局装置ともいう。)も含まれる。また、基地局という概念には、基地局の機能を備えた構造物(Structure)のみならず、構造物に設置される装置も含まれる。構造物は、例えば、高層ビル、家屋、鉄塔、駅施設、空港施設、港湾施設、スタジアム等の建物である。なお、構造物という概念には、建物のみならず、トンネル、橋梁、ダム、塀、鉄柱等の構築物(Non-building structure)や、クレーン、門、風車等の設備も含まれる。また、構造物という概念には、地上(陸上)又は地中の構造物のみならず、桟橋、メガフロート等の水上の構造物や、海洋観測設備等の水中の構造物も含まれる。
 また、基地局は、移動可能に構成された基地局装置であってもよい。例えば、基地局は、移動体に設置される装置であってもよいし、移動体そのものであってもよい。移動体は、スマートフォンなどのモバイル端末であってもよい。また、移動体は、地上(陸上)を移動する移動体(例えば、自動車、バス、トラック、列車、リニアモーターカー等の車両)であってもよいし、地中(例えば、トンネル内)を移動する移動体(例えば、地下鉄)であってもよい。また、移動体は、水上を移動する移動体(例えば、旅客船、貨物船、ホバークラフト等の船舶)であってもよいし、水中を移動する移動体(例えば、潜水艇、潜水艦、無人潜水機等の潜水船)であってもよい。また、移動体は、大気圏内を移動する移動体(例えば、飛行機、飛行船、ドローン等の航空機)であってもよいし、大気圏外を移動する移動体(例えば、人工衛星、宇宙船、宇宙ステーション、探査機等の人工天体)であってもよい。
 なお、LTEの基地局は、eNodeB(Evolved Node B)又はeNBと称されることがある。また、NRの基地局は、gNodeB又はgNBと称されることがある。また、LTE及びNRでは、端末装置(移動局、移動局装置、又は端末ともいう。)はUE(User Equipment)と称されることがある。なお、端末装置は、通信装置の一種であり、移動局、移動局装置、又は端末とも称される。本開示の実施形態において、通信装置という概念には、携帯端末等の持ち運び可能な端末装置のみならず、例えば、構造物や移動体に設置される装置も含まれる。また、通信装置という概念には、端末装置のみならず、基地局(ドナー基地局、リレー基地局等)も含まれる。
<2-1.通信システムの全体構成>
 図1は、本開示の実施形態に係る通信システム1の構成例を示す図である。通信システム1は、管理装置10と、ドナー基地局20と、リレー基地局30と、端末装置40と、を備える。通信システム1は、通信システム1を構成する各無線通信装置が連携して動作することで、ユーザに対し、移動通信が可能な無線ネットワークを提供する。無線通信装置は、無線通信の機能を有する装置のことであり、図1の例では、ドナー基地局20、リレー基地局30、及び端末装置40が該当する。以下の説明では、無線通信装置のことを単に通信装置ということがある。
 なお、本実施形態では、通信システム1が備える1又は複数の装置が、ドナー基地局から端末装置までの経路を決定する通信制御装置として機能する。以下の説明では、通信管理装置はドナー基地局20であるものとして説明するが、通信制御装置はドナー基地局20に限られない。通信管理装置は、管理装置10であってもよいし、管理装置10及びドナー基地局20以外の装置であってもよい。
 通信システム1は、管理装置10、ドナー基地局20、リレー基地局30、及び端末装置40をそれぞれ複数備えていてもよい。図1の例では、通信システム1は、管理装置10として管理装置10、10等を備えている。また、通信システム1は、ドナー基地局20としてドナー基地局20、20等を備えており、リレー基地局30としてリレー基地局30、30、30等を備えている。また、通信システム1は、端末装置40として端末装置40、40、403、40等を備えている。
 管理装置10は、無線ネットワークを管理する装置である。例えば、管理装置10は、MME(Mobility Management Entity)やAMF(Access and Mobility Management Function)として機能する装置である。管理装置10は、コアネットワークCNを構成する。コアネットワークCNは、例えば、EPC(Evolved Packet Core)や5GC(5G Core network)である。管理装置10は、複数のドナー基地局20それぞれと接続される。管理装置10は、ドナー基地局20の通信を管理する。管理装置10は、リレー基地局30の通信を管理してもよい。
 ドナー基地局20は、端末装置40と無線通信する基地局である。ドナー基地局20は、端末装置40と無線通信することが可能である。ドナー基地局20は、他のドナー基地局20及びリレー基地局30と無線通信可能に構成されていてもよい。
 ドナー基地局20は、地上に設置される地上基地局装置(地上局装置)であってもよい。例えば、ドナー基地局20は、地上の構造物に配置される基地局装置であってもよいし、地上を移動する移動体に設置される基地局装置であってもよい。より具体的には、ドナー基地局20は、ビル等の構造物に設置されたアンテナ及びそのアンテナに接続する信号処理装置であってもよい。勿論、ドナー基地局20は、構造物や移動体そのものであってもよい。「地上」は、地上(陸上)のみならず、地中、水上、水中も含む広義の地上である。なお、ドナー基地局20は、地上基地局に限られない。ドナー基地局20は、空中又は宇宙を浮遊可能な非地上基地局(非地上局)であってもよい。例えば、ドナー基地局20は、航空機局装置や衛星局装置であってもよい。
 航空機局装置は、航空機等、大気圏内を浮遊可能な無線通信装置である。航空機局装置は、航空機等に搭載される装置であってもよいし、航空機そのものであってもよい。なお、航空機という概念には、飛行機、グライダー等の重航空機のみならず、気球、飛行船等の軽航空機も含まれる。また、航空機という概念には、重航空機や軽航空機のみならず、ヘリコプターやオートジャイロ等の回転翼機も含まれる。なお、航空機局装置(又は、航空機局装置が搭載される航空機)は、ドローン等の無人航空機であってもよい。なお、無人航空機という概念には、無人航空システム(UAS:Unmanned Aircraft Systems)、つなぎ無人航空システム(tethered UAS)も含まれる。また、無人航空機という概念には、軽無人航空システム(LTA:Lighter than Air UAS)、重無人航空システム(HTA:Heavier than Air UAS)が含まれる。その他、無人航空機という概念には、高高度無人航空システムプラットフォーム(HAPs:High Altitude UAS Platforms)も含まれる。
 衛星局装置は、大気圏外を浮遊可能な無線通信装置である。衛星局装置は、人工衛星等の宇宙移動体に搭載される装置であってもよいし、宇宙移動体そのものであってもよい。衛星局装置となる衛星は、低軌道(LEO:Low Earth Orbiting)衛星、中軌道(MEO:Medium Earth Orbiting)衛星、静止(GEO:Geostationary Earth Orbiting)衛星、高楕円軌道(HEO:Highly Elliptical Orbiting)衛星の何れであってもよい。勿論、衛星局装置は、低軌道衛星、中軌道衛星、静止衛星、又は高楕円軌道衛星に搭載される装置であってもよい。
 なお、図1の例では、ドナー基地局20は、リレー基地局30と接続されている。ドナー基地局20はリレー基地局30を介して端末装置40と間接的に無線通信することが可能である。同様に、ドナー基地局20は、リレー基地局30を介して端末装置40と間接的に無線通信することが可能である。
 リレー基地局30は、基地局の中継局となる装置である。リレー基地局30は、基地局の一種である。リレー基地局30は、端末装置40と無線通信することが可能である。リレー基地局30は、ドナー基地局20と端末装置40との通信を中継する。なお、リレー基地局30は、他のリレー基地局30及びドナー基地局20と無線通信可能に構成されていてもよい。IABの概念において、リレー基地局30は、ドナー基地局20に対してMT(Mobile Termination)の機能、或いは、UEとして動作し、他のリレー基地局30(子リレー基地局)に対してDU(Distributed Unit)として動作してもよい。リレー基地局30は、地上局装置であってもよいし、非地上局装置であってもよい。リレー基地局30はドナー基地局20とともに無線アクセスネットワークRANを構成する。
 端末装置40は、例えば、携帯電話、スマートデバイス(スマートフォン、又はタブレット)、PDA(Personal Digital Assistant)、パーソナルコンピュータである。また、端末装置40は、M2M(Machine to Machine)デバイス、又はIoT(Internet of Things)デバイスであってもよい。また、端末装置40は、移動体に設置される無線通信装置であってもよいし、移動体そのものであってもよい。端末装置40は、ドナー基地局20及びリレー基地局30と無線通信が可能である。なお、端末装置40は、他の端末装置40との通信(サイドリンク)においても無線通信、例えば、D2D(Device to Device)通信が可能であってもよい。ここで、D2D通信は、PC5と呼ばれるインタフェースに準拠した通信であってもよい。
 上述したように、3GPPでは、ミリ波のNRをバックホールとしても活用するIABの標準化を開始している。図2は、IABを説明するための図である。図2の例では、光ファイバーFをバックホールに有する基地局(図2の示すドナー基地局20)が、ドナー基地局として動作し、他の基地局(リレー基地局30、30、30)に対して、直接的或いは間接的に無線バックホールBH1、BH2を提供する。なお、図2の例では、リレー基地局30は、親リレー基地局として、リレー基地局30に対して無線バックホールBH3を提供している。なお、図2の例では、リレー基地局が3つの例を示しているが、リレー基地局は3つより少なくてもよいし、3つより多くてもよい。より詳細には、リレー基地局30を基準に、ドナー基地局20は親ノード(Parent node)、リレー基地局30は子ノード(Child node)として動作する。無線バックホールBH2のdownlink(DL)をDL Parent BH、無線バックホールBH2のuplink(UL)をUL Parent BH、無線バックホールBH3のDLをDL Child BH、無線バックホールBH3のULをUL Child BHとそれぞれ呼称する。
 ここで、ドナー基地局20はバックホール回線に加え、同時に、任意の無線通信装置に対してアクセス回線を提供することができる。ここで、ドナー基地局20がバックホール回線およびアクセス回線を提供する際、リレー基地局と任意の無線通信装置とを区別する手段を有してもよい。バックホール回線およびアクセス回線の提供は、少なくとも、Radio Resource、例えば、Physical Resource Block(PRB)の割り当て、スケジューリングという処理を含み得る。図2の例では、ドナー基地局20は、リレー基地局30、30に対してバックホール回線BH1、BH2を提供すると同時に、端末装置40に対してアクセス回線を提供している。なお、ドナー基地局20は、アクセス回線とバックホール回線の多重方法として、時間、周波数、空間多重をサポートしていてもよい。
 同様に、リレー基地局30は、バックホール回線BH1を構築すると同時に、任意の無線通信装置に対してアクセス回線を提供することができる。ここで、リレー基地局30がバックホール回線およびアクセス回線を提供する際、リレー基地局と任意の無線通信装置とを区別する手段を有してもよい。バックホール回線およびアクセス回線の提供は、少なくとも、Radio Resource、例えば、PRBの割り当て、スケジューリングという処理を含み得る。図2の例では、リレー基地局30は、ドナー基地局20とバックホール回線を構築すると同時に、端末装置40に対してアクセス回線を提供している。また、リレー基地局30は、ドナー基地局20及びリレー基地局30とバックホール回線BH2、BH3を構築すると同時に、端末装置40に対してアクセス回線を提供している。さらに、リレー基地局30は、リレー基地局30とバックホール回線BH3を構築すると同時に、端末装置40に対してアクセス回線を提供している。リレー基地局30は、アクセス回線とバックホール回線の多重方法として、時間、周波数、空間多重をサポートしていてもよい。
 以下、実施形態に係る通信システム1を構成する各装置の構成を具体的に説明する。
<2-2.管理装置の構成>
 管理装置10は、無線ネットワークを管理する装置である。例えば、管理装置10はドナー基地局20の通信を管理する装置である。管理装置10はリレー基地局30の通信を管理してもよい。コアネットワークがEPCなのであれば、管理装置10は、例えば、MME(Mobility Management Entity)としての機能を有する装置である。また、コアネットワークが5GCなのであれば、管理装置10は、例えば、AMF(Access and Mobility Management Function)としての機能を有する装置である。勿論、管理装置10は、MMEやAMFとしての機能を有する装置に限られない。例えば、管理装置10の一部、若しくは、全ての機能は、IABの概念においてCentral Unit(CU)という機能に集約されてもよい。このCUの機能は、ドナー基地局20に実装されてもよい。
 なお、管理装置10はゲートウェイの機能を有していてもよい。例えば、コアネットワークがEPCなのであれば、管理装置10は、S-GW(Serving Gateway)やP-GW(Packet Data Network Gateway)としての機能を有していてもよい。また、コアネットワークが5GCなのであれば、管理装置10は、UPF(User Plane Function)としての機能を有していてもよい。なお、管理装置10は必ずしもコアネットワークを構成する装置でなくてもよい。例えば、コアネットワークがW-CDMA(Wideband Code Division Multiple Access)やcdma2000(Code Division Multiple Access 2000)のコアネットワークであるとする。このとき、管理装置10はRNC(Radio Network Controller)として機能する装置であってもよい。
 図3は、本開示の実施形態に係る管理装置10の構成例を示す図である。管理装置10は、通信部11と、記憶部12と、制御部13と、を備える。なお、図3に示した構成は機能的な構成であり、ハードウェア構成はこれとは異なっていてもよい。また、管理装置10の機能は、複数の物理的に分離された構成に分散して実装されてもよい。例えば、管理装置10は、複数のサーバ装置により構成されていてもよい。また、管理装置10の機能の内、少なくとも、ドナー基地局からリレー基地局を介した端末装置への転送処理、或いは、端末装置からリレー基地局を介したドナー基地局への転送処理に係る制御の機能はCUとして、ドナー基地局に実装されてもよい。
 通信部11は、他の装置と通信するための通信インタフェースである。通信部11は、ネットワークインタフェースであってもよいし、機器接続インタフェースであってもよい。例えば、通信部11は、NIC(Network Interface Card)等のLAN(Local Area Network)インタフェースであってもよいし、USB(Universal Serial Bus)ホストコントローラ、USBポート等により構成されるUSBインタフェースであってもよい。また、通信部11は、有線インタフェースであってもよいし、無線インタフェースであってもよい。通信部11は、管理装置10の通信手段として機能する。通信部11は、制御部13の制御に従ってドナー基地局20と通信する。
 記憶部12は、DRAM(Dynamic Random Access Memory)、SRAM(Static Random Access Memory)、フラッシュメモリ、ハードディスク等のデータ読み書き可能な記憶装置である。記憶部12は、管理装置10の記憶手段として機能する。記憶部12は、例えば、端末装置40の接続状態を記憶する。例えば、記憶部12は、端末装置40のRRC(Radio Resource Control)の状態やECM(EPS Connection Management)の状態を記憶する。記憶部12は、端末装置40の位置情報を記憶するホームメモリとして機能してもよい。
 制御部13は、管理装置10の各部を制御するコントローラ(controller)である。制御部13は、例えば、CPU(Central Processing Unit)、MPU(Micro Processing Unit)等のプロセッサにより実現される。例えば、制御部13は、管理装置10内部の記憶装置に記憶されている各種プログラムを、プロセッサがRAM(Random Access Memory)等を作業領域として実行することにより実現される。なお、制御部13は、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)等の集積回路により実現されてもよい。CPU、MPU、ASIC、及びFPGAは何れもコントローラとみなすことができる。
<2-3.ドナー基地局の構成>
 次に、ドナー基地局20の構成を説明する。図4は、本開示の実施形態に係るドナー基地局20の構成例を示す図である。ドナー基地局20は、リレー基地局30、端末装置40、及び他のドナー基地局20と無線通信可能である。このとき、無線通信はミリ波を使った通信であってもよい。ドナー基地局20は、無線通信部21と、記憶部22と、制御部23と、を備える。なお、図4に示した構成は機能的な構成であり、ハードウェア構成はこれとは異なっていてもよい。また、ドナー基地局20の機能は、複数の物理的に分離された構成に分散して実装されてもよい。
 無線通信部21は、他の無線通信装置(例えば、端末装置40、リレー基地局30)と無線通信する無線通信インタフェースである。無線通信部21は、制御部23の制御に従って動作する。無線通信部21は1又は複数の無線アクセス方式に対応する。例えば、無線通信部21は、NR及びLTEの双方に対応する。無線通信部21は、NRやLTEに加えて、W-CDMAやcdma2000に対応していてもよい。
 無線通信部21は、受信処理部211、送信処理部212、アンテナ213を備える。無線通信部21は、受信処理部211、送信処理部212、及びアンテナ213をそれぞれ複数備えていてもよい。なお、無線通信部21が複数の無線アクセス方式に対応する場合、無線通信部21の各部は、無線アクセス方式毎に個別に構成されうる。例えば、受信処理部211及び送信処理部212は、LTEとNRとで個別に構成されてもよい。
 受信処理部211は、アンテナ213を介して受信された上りリンク信号の処理を行う。受信処理部211は、無線受信部211aと、多重分離部211bと、復調部211cと、復号部211dと、を備える。
 無線受信部211aは、上りリンク信号に対して、ダウンコンバート、不要な周波数成分の除去、増幅レベルの制御、直交復調、デジタル信号への変換、ガードインターバルの除去、高速フーリエ変換による周波数領域信号の抽出等を行う。多重分離部211bは、無線受信部211aから出力された信号から、PUSCH(Physical Uplink Shared Channel)、PUCCH(Physical Uplink Control Channel)等の上りリンクチャネル及び上りリンク参照信号を分離する。復調部211cは、上りリンクチャネルの変調シンボルに対して、BPSK(Binary Phase Shift Keying)、QPSK(Quadrature Phase Shift Keying)等の変調方式を使って受信信号の復調を行う。復調部211cが使用する変調方式は、16QAM(Quadrature Amplitude Modulation)、64QAM、又は256QAMであってもよい。復号部211dは、復調された上りリンクチャネルの符号化ビットに対して、復号処理を行う。復号された上りリンクデータ及び上りリンク制御情報は制御部23へ出力される。
 送信処理部212は、下りリンク制御情報及び下りリンクデータの送信処理を行う。送信処理部212は、符号化部212aと、変調部212bと、多重部212cと、無線送信部212dと、を備える。
 符号化部212aは、制御部23から入力された下りリンク制御情報及び下りリンクデータを、ブロック符号化、畳み込み符号化、ターボ符号化、LDPC(Low-Density Parity Check)符号化、ポーラ符号化等の符号化方式を用いて符号化を行う。変調部212bは、符号化部212aから出力された符号化ビットをBPSK、QPSK、16QAM、64QAM、256QAM等の所定の変調方式で変調する。多重部212cは、各チャネルの変調シンボルと下りリンク参照信号とを多重化し、所定のリソースエレメントに配置する。無線送信部212dは、多重部212cからの信号に対して、各種信号処理を行う。例えば、無線送信部212dは、高速フーリエ変換による時間領域への変換、ガードインターバルの付加、ベースバンドのデジタル信号の生成、アナログ信号への変換、直交変調、アップコンバート、余分な周波数成分の除去、電力の増幅等の処理を行う。送信処理部212で生成された信号は、アンテナ213から送信される。
 記憶部22は、DRAM、SRAM、フラッシュメモリ、ハードディスク等のデータ読み書き可能な記憶装置である。記憶部22は、ドナー基地局20の記憶手段として機能する。
 制御部23は、ドナー基地局20の各部を制御するコントローラ(controller)である。制御部23は、例えば、CPU(Central Processing Unit)、MPU(Micro Processing Unit)等のプロセッサにより実現される。例えば、制御部23は、ドナー基地局20内部の記憶装置に記憶されている各種プログラムを、プロセッサがRAM(Random Access Memory)等を作業領域として実行することにより実現される。なお、制御部23は、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)等の集積回路により実現されてもよい。CPU、MPU、ASIC、及びFPGAは何れもコントローラとみなすことができる。
 制御部23は、図4に示すように、取得部231と、決定部232と、指示部233と、受信部234と、送信部235と、を備える。制御部23を構成する各ブロック(取得部231~送信部235)はそれぞれ制御部23の機能を示す機能ブロックである。これら機能ブロックはソフトウェアブロックであってもよいし、ハードウェアブロックであってもよい。例えば、上述の機能ブロックが、それぞれ、ソフトウェア(マイクロプログラムを含む。)で実現される1つのソフトウェアモジュールであってもよいし、半導体チップ(ダイ)上の1つの回路ブロックであってもよい。勿論、各機能ブロックがそれぞれ1つのプロセッサ又は1つの集積回路であってもよい。機能ブロックの構成方法は任意である。なお、制御部23は上述の機能ブロックとは異なる機能単位で構成されていてもよい。制御部23を構成する各ブロック(取得部231~送信部235)の動作は、後述のハンドオーバー処理等の説明で詳述する。
<2-4.リレー基地局の構成>
 次に、リレー基地局30の構成を説明する。図5は、本開示の実施形態に係るリレー基地局30の構成例を示す図である。リレー基地局30は、端末装置40と無線通信可能である。このとき、無線通信はミリ波を使った通信であってもよい。リレー基地局30は、無線通信部31と、記憶部32と、ネットワーク通信部33と、制御部34と、を備える。なお、図5に示した構成は機能的な構成であり、ハードウェア構成はこれとは異なっていてもよい。また、リレー基地局30の機能は、複数の物理的に分離された構成に分散して実装されてもよい。
 無線通信部31は、他の無線通信装置(例えば、ドナー基地局20、及び端末装置40)と無線通信する無線通信インタフェースである。無線通信部31は、制御部34の制御に従って動作する。無線通信部31は、受信処理部311、送信処理部312、アンテナ313を備える。無線通信部31、受信処理部311、送信処理部312、及びアンテナ313の構成は、ドナー基地局20の無線通信部21、受信処理部211、送信処理部212及びアンテナ213と同様である。
 記憶部32は、DRAM、SRAM、フラッシュメモリ、ハードディスク等のデータ読み書き可能な記憶装置である。記憶部32は、リレー基地局30の記憶手段として機能する。記憶部32の構成は、ドナー基地局20の記憶部22と同様である。
 ネットワーク通信部33は、他の装置と通信するための通信インタフェースである。例えば、ネットワーク通信部33は、NIC等のLANインタフェースである。ネットワーク通信部33は、有線インタフェースであってもよいし、無線インタフェースであってもよい。ネットワーク通信部33は、リレー基地局30のネットワーク通信手段として機能する。ネットワーク通信部33は、制御部34の制御に従ってドナー基地局20と通信する。
 制御部34は、リレー基地局30の各部を制御するコントローラである。制御部34の構成は、ドナー基地局20の制御部23と同様である。
<2-5.端末装置の構成>
 次に、端末装置40の構成を説明する。図6は、本開示の実施形態に係る端末装置40の構成例を示す図である。端末装置40は、ドナー基地局20及びリレー基地局30と無線通信可能である。このとき、無線通信はミリ波を使った通信であってもよい。端末装置40は、無線通信部41と、記憶部42と、ネットワーク通信部43と、入出力部44と、制御部45と、を備える。なお、図6に示した構成は機能的な構成であり、ハードウェア構成はこれとは異なっていてもよい。また、端末装置40の機能は、複数の物理的に分離された構成に分散して実装されてもよい。
 無線通信部41は、他の無線通信装置(例えば、ドナー基地局20、及びリレー基地局30)と無線通信する無線通信インタフェースである。無線通信部41は、制御部45の制御に従って動作する。無線通信部41は1又は複数の無線アクセス方式に対応する。例えば、無線通信部41は、NR及びLTEの双方に対応する。無線通信部41は、NRやLTEに加えて、W-CDMAやcdma2000に対応していてもよい。
 無線通信部41は、受信処理部411、送信処理部412、アンテナ413を備える。無線通信部41は、受信処理部411、送信処理部412、及びアンテナ413をそれぞれ複数備えていてもよい。なお、無線通信部41が複数の無線アクセス方式に対応する場合、無線通信部41の各部は、無線アクセス方式毎に個別に構成されうる。例えば、受信処理部411及び送信処理部412は、LTEとNRとで個別に構成されてもよい。
 受信処理部411は、アンテナ413を介して受信された下りリンク信号の処理を行う。受信処理部411は、無線受信部411aと、多重分離部411bと、復調部411cと、復号部411dと、を備える。
 無線受信部411aは、下りリンク信号に対して、ダウンコンバート、不要な周波数成分の除去、増幅レベルの制御、直交復調、デジタル信号への変換、ガードインターバルの除去、高速フーリエ変換による周波数領域信号の抽出等を行う。多重分離部411bは、無線受信部411aから出力された信号から、下りリンクチャネル、下りリンク同期信号、及び下りリンク参照信号を分離する。下りリンクチャネルは、例えば、PBCH(Physical Broadcast Channel)、PDSCH(Physical Downlink Shared Channel)、PDCCH(Physical Downlink Control Channel)等のチャネルである。復調部211cは、下りリンクチャネルの変調シンボルに対して、BPSK、QPSK、16QAM、64QAM、256QAM等の変調方式を使って受信信号の復調を行う。復号部411dは、復調された下りリンクチャネルの符号化ビットに対して、復号処理を行う。復号された下りリンクデータ及び下りリンク制御情報は制御部23へ出力される。
 送信処理部412は、上りリンク制御情報及び上りリンクデータの送信処理を行う。送信処理部412は、符号化部412aと、変調部412bと、多重部412cと、無線送信部412dと、を備える。
 符号化部412aは、制御部45から入力された上りリンク制御情報及び上りリンクデータを、ブロック符号化、畳み込み符号化、ターボ符号化、LDPC(Low-Density Parity Check)符号化、ポーラ符号化等の符号化方式を用いて符号化を行う。変調部412bは、符号化部412aから出力された符号化ビットをBPSK、QPSK、16QAM、64QAM、256QAM等の所定の変調方式で変調する。多重部412cは、各チャネルの変調シンボルと上りリンク参照信号とを多重化し、所定のリソースエレメントに配置する。無線送信部412dは、多重部412cからの信号に対して、各種信号処理を行う。例えば、無線送信部412dは、逆高速フーリエ変換による時間領域への変換、ガードインターバルの付加、ベースバンドのデジタル信号の生成、アナログ信号への変換、直交変調、アップコンバート、余分な周波数成分の除去、電力の増幅等の処理を行う。送信処理部412で生成された信号は、アンテナ413から送信される。
 記憶部42は、DRAM、SRAM、フラッシュメモリ、ハードディスク等のデータ読み書き可能な記憶装置である。記憶部42は、端末装置40の記憶手段として機能する。
 ネットワーク通信部43は、他の装置と通信するための通信インタフェースである。例えば、ネットワーク通信部43は、NIC等のLANインタフェースである。ネットワーク通信部43は、有線インタフェースであってもよいし、無線インタフェースであってもよい。ネットワーク通信部43は、端末装置40のネットワーク通信手段として機能する。ネットワーク通信部43は、制御部45の制御に従って、他の装置と通信する。
 入出力部44は、ユーザと情報をやりとりするためのユーザインタフェースである。例えば、入出力部44は、キーボード、マウス、操作キー、タッチパネル等、ユーザが各種操作を行うための操作装置である。又は、入出力部44は、液晶ディスプレイ(Liquid Crystal Display)、有機ELディスプレイ(Organic Electroluminescence Display)等の表示装置である。入出力部44は、スピーカー、ブザー等の音響装置であってもよい。また、入出力部44は、LED(Light Emitting Diode)ランプ等の点灯装置であってもよい。入出力部44は、端末装置40の入出力手段(入力手段、出力手段、操作手段又は通知手段)として機能する。
 制御部45は、端末装置40の各部を制御するコントローラである。制御部45は、例えば、CPU、MPU等のプロセッサにより実現される。例えば、制御部45は、端末装置40内部の記憶装置に記憶されている各種プログラムを、プロセッサがRAM等を作業領域として実行することにより実現される。なお、制御部45は、ASICやFPGA等の集積回路により実現されてもよい。CPU、MPU、ASIC、及びFPGAは何れもコントローラとみなすことができる。
 制御部45は、図6に示すように、取得部451と、特定部452と、切替部453と、受信部454と、送信部455と、を備える。制御部45を構成する各ブロック(取得部451~送信部455)はそれぞれ制御部45の機能を示す機能ブロックである。これら機能ブロックはソフトウェアブロックであってもよいし、ハードウェアブロックであってもよい。例えば、上述の機能ブロックが、それぞれ、ソフトウェア(マイクロプログラムを含む。)で実現される1つのソフトウェアモジュールであってもよいし、半導体チップ(ダイ)上の1つの回路ブロックであってもよい。勿論、各機能ブロックがそれぞれ1つのプロセッサ又は1つの集積回路であってもよい。機能ブロックの構成方法は任意である。なお、制御部45は上述の機能ブロックとは異なる機能単位で構成されていてもよい。制御部45を構成する各ブロック(取得部451~送信部455)の動作は、後述の接続処理、ハンドオーバー処理等の説明で詳述する。
<<3.経路選択例>>
 次に、ドナー基地局20と端末装置40との間の経路の選択例について説明する。
<3-1.基本となる経路選択例>
 図7は、ドナー基地局20と端末装置40との間の経路選択例を示す図である。具体的には、端末装置40および端末装置40の2つの端末装置に対する経路選択例を示す図である。端末装置40はリレー基地局30のアクセス回線を介して通信を行っている。リレー基地局30はドナー基地局20との間にバックホール回線BH1を有している。また、端末装置40はリレー基地局30のアクセス回線を介して通信を行っている。リレー基地局30は、リレー基地局30との間にバックホール回線BH3を有しており、さらに、リレー基地局30はドナー基地局20との間にバックホール回線BH2を有している。図7の例では、リレー基地局30は、1ホップのバックホール回線を有し、リレー基地局30は、2ホップのバックホール回線を有している。
<3-2.通信品質悪化の場合の経路選択例>
 IABのバックホール回線には、大容量なデータをやり取りするためにミリ波とビームフォーミングの活用が期待される。将来的には、移動可能なIABリレー局も議論される予定であるが、導入当初は、IABリレー局は固定設置されるケースがほとんどであり、ビームフォーミングの適用も比較的容易であると考えられる。ただし、ミリ波に関しては、外的な要因、例えば、移動物体等に起因したブロッキングにより、通信品質の劣化が頻繁に発生することが懸念される。そこで、素早く最適な経路を選択して切り替える仕組みが重要になると考えられる。
 図8Aは、図7に示すバックホール回線の一部のバックホール回線の通信品質が劣化した場合の経路選択例を示す図である。例えば、図8Aの例のように、バックホール回線BH1の通信品質が劣化したとする。この場合、リレー基地局30はリレー基地局30との間にバックホール回線BH4を構築する。これにより、端末装置40は、リレー基地局30のアクセス回線を維持したまま、ドナー基地局20と、BH2、BH3、BH4の3ホップのバックホール回線を介した接続が可能となる。
 端末装置40は、リレー基地局30のアクセス回線を断念して、ドナー基地局20との間でアクセス回線を構築することも可能である。図8Bは、図7に示すバックホール回線の一部のバックホール回線の通信品質が劣化した場合の他の経路選択例を示す図である。ここで、端末装置40は、図8Bのケースのように、リレー基地局30との接続を維持するか、ドナー基地局20との新たな接続を構築するかの判断はできる。しかしながら、端末装置40は、図8Aのケースのように、リレー基地局30とリレー基地局30との間に新たなバックホール回線を構築することを判断することはできないため、少なくともネットワーク側、例えば、ドナー基地局20が最適なパスの選択に関与することが必要であると考えられる。例えば、最適なパスの選択、若しくは、管理は、CU(Central Unit)と呼ばれるノードが行ってもよい。CUは通信制御装置と言い換えることができる。
 なお、図7の例で、リレー基地局30がBH1に関してRadio Link Failure(RLF)を検知した場合、端末装置40にConnection Releaseを指示する。また、リレー基地局30がBH2に関してRLFを検知した場合、リレー基地局30は、リレー基地局30および端末装置40にConnection Releaseを指示する。ここで、リレー基地局30を介して、リレー基地局30が複数の端末装置40にアクセス回線を提供している場合、Broadcast、或いは、Groupcastの手法で、リレー基地局30を介した経路を利用している複数の端末装置40に同時にConnection Releaseを指示してもよい。さらに、全てのバックホール回線を失ったリレー基地局(ここでの例のリレー基地局30、30および30)は、バックホール回線を再構築するまでの間、Admission Controlを実行してもよい。つまり、リレー基地局30、30および30は、端末装置40、或いは、異なるリレー基地局からの接続要求をこの期間拒否する。また、リレー基地局30、30および30は、この期間、Access Control情報として、システム情報を介して設定されたAccess Class Barringを含む情報を報知することで、端末装置40、或いは、異なるリレー基地局からの接続要求を抑制するようにしてもよい。なお、バックホール回線を再構築するまでの期間として、内部のタイマーの期間を設定して、RLFを検知した際に、当該タイマーを起動させるようにしてもよい。また、タイマーの期限が切れた後、上記Connection Releaseを指示してもよい。上記Access Class Barringのパラメータは、上記タイマーの期間に基づいて設定されてもよい。そして、Connection Releaseを実行した端末装置40は、後述する方法で、新たに所望のネットワークスライスをサポートする基地局を特定し、接続処理を実行する。
 なお、CUはドナー基地局20に配置されてもよいし、コアネットワーク内の任意の装置内に実装されてもよい。例えば、CUはドナー基地局20が備える制御部23であってもよいし、管理装置10が備える制御部13であってもよい。なお、ドナー基地局20及び管理装置10が複数の装置で構成されるのであれば、それらのうちの1又は複数の装置がCUとして機能してもよい。また、リレー基地局30や端末装置40にCUとしての機能を持たせることも可能である。
<3-3.端末装置が利用するサービスに応じた経路選択例>
 5Gではネットワーク・スライシングというコンセプトの実現が鍵となっている。つまり、端末装置40は、例えば、高スループット、或いは、低遅延というように特質の異なる通信サービスを適宜受けることが想定される。例えば、端末装置40が、低遅延を要求するサービスを受けている場合、図8Aの例のようにホップ数の多い経路が選択されてしまうと、低遅延の要求を満たせない可能性がある。つまり、CUは、端末装置40が利用しているサービスに応じて最適な経路を選択することが望まれる。この場合、CUは、その最適な経路の構築に先立って、バックホール回線に関する測定報告、ハンドオーバーを起動することが望まれる。
 ここで、サービスの種別の判別は、ネットワークスライスの識別情報、例えば、スライスID(Slice ID)に基づいて行われてもよい。例えば、端末装置40が、低遅延を要求するサービス、例えば、URLLC(Ultra-Reliable Low Latency Communication)を受けている場合には、CUは、低遅延サービスに対応するスライスIDに応じて、図8Bのようにホップ数の少ないバックホール回線を介した経路を選択してもよい。
 また、端末装置40が、高スループットを要求するサービス、例えば、eMBB(enhanced Mobile Broadband)を受けている場合には、CUは、高スループットに対応するスライスIDに応じて、例えば、図8Bのように端末装置40に近接する基地局を含む経路を選択してもよい。なお、端末装置40がeMBBを受けている場合、CUは、各リレー基地局30の負荷をモニターし、負荷の少ないリレー基地局30を経由する経路を動的に選択してパスを切り替えてもよい。
 また、端末装置40がmMTC(massive Machine Type Communication)を受けている場合、遅延に関しては敏感ではないため、CUは、例えば、各MTCのトラフィックが分散されるように、他のMTCに割り当てられている経路を勘案してバックホール回線が選択してもよい。ただし、消費電力に敏感なLPWA(Low Power Wide Area)のような用途のMTCの場合には、アクセス網に関しては近接するリレー基地局30を介するような経路が考慮されてもよい。
 ここで、スライスIDは、例えば、S-NSSAI(Single Network Slice Selection Assistance Information)であってもよい。S-NSSAIは、SST(Slice/Service type)から構成される。また、S-NSSAIは、SSTおよびSD(Slice Differentiator)から構成されてもよい。
 なお、サービスの種別の判別は、スライスID以外の、予め設定された他の基準に基づいて行われてもよい。スライスIDは、端末装置40が通信システム1の無線ネットワークを使って受ける通信サービスの通信態様(例えば、端末装置40が受ける通信サービスがURLLCかeMBBかmMTCか)を示す情報とみなすことができる。また、サービスの種別の判別は、端末装置40の能力(例えば、UE Capability)に基づいて行われてもよい。
<3-4.端末装置が複数のサービスを受けている場合の経路選択例>
 端末装置40が同時に複数のサービスを受けるケースも想定される。例えば、端末装置40が同時に複数の異なるスライスIDに属する通信サービスを受けるケースも想定される。図9Aは、端末装置40が同時に複数のサービスを受けた場合の経路選択例を示す図である。図9Aの例では、端末装置40が、同時に、スライスIDが異なる2つのサービス(第1のサービスと第2のサービス)を受けている。
 バックホール回線BH1の品質が劣化した場合、CUは、図8A或いは図8Bの例で示したように、リレー基地局30とリレー基地局30の間にバックホール回線の構築の指示を与える。ここで、CUはドナー基地局20と端末装置40との間でやり取りするデータの最適な経路をスライスID毎に特定する。
 図9Bは、図9Aに示すバックホール回線の一部のバックホール回線の通信品質が劣化した場合の経路選択例を示す図である。例えば、リレー基地局30とドナー基地局20とを繋ぐバックホール回線BH1の通信品質が劣化したとする。第1のサービスが例えばeMBBのようなサービスである場合、CUは第1のサービスに関しては例えば図9Bに示すような端末装置40に近接する基地局を含む経路を特定する。この場合、端末装置40が利用するアクセス回線はアクセス回線AL1のまま変更がないため、リレー基地局30との接続は維持される。
 一方、第2のサービスがURLLCのようなサービスである場合、CUは第2のサービスに関しては例えば図9Bに示すようにホップ数の少ないバックホール回線を介する経路を特定する。そのため、CUは、例えば、端末装置40に対し、ドナー基地局20のアクセス回線AL2を利用するように、ドナー基地局20へのハンドオーバーを指示する。つまり、スライスIDによっては、端末装置40のアクセス回線の品質に関わらず、バックホール回線の品質の劣化をトリガに、端末装置40のハンドオーバーが起動され得る。
 ここで、CUは、端末装置40が同時に異なるリレー基地局30と接続することができる能力を有しているか否かの情報、例えば、送受信機の数を端末装置40から報告されている必要がある。例えば、初期アクセス処理においてCUに送信する任意のメッセージ(例えば、Message 3)を介して、NSSAI(Network Slice Selection Assistance Information)の一部として、この能力(例えば、UE Capability)に関する情報を提供することができる。
<<4.通信システムの動作>>
 次に、通信システム1の動作を説明する。
 なお、以下の説明では、端末装置40とドナー基地局20との接続を例に通信システム1の動作を説明する。ここで、端末装置40とドナー基地局20は、図10に示す接続状態にあるものとする。図10は、端末装置40とドナー基地局20との接続状態の一例を示す図である。端末装置40は、バックホール回線BH1を介する経路P1でドナー基地局20と接続されている。ここで、バックホール回線BH1は、リレー基地局30とドナー基地局20とを接続する回線である。また、図10に示す経路P2は、バックホール回線BH2、BH3を介して端末装置40とドナー基地局20とを接続する経路である。ここで、バックホール回線BH2は、リレー基地局30とドナー基地局20とを接続する回線であり、バックホール回線BH3は、リレー基地局30とリレー基地局30とを接続する回線である。
 また、以下の説明では、CUは、ドナー基地局20であるものとするが、CUは通信システム1が備える他の装置であってもよい。この場合、以下の説明のドナー基地局20の記載(或いは、ドナー基地局20の記載)は適宜他の装置に置き換える。
 また、端末装置40が受けるサービスには、通信態様の異なる複数の通信サービスが含まれるものとする。ここで、複数の通信サービスには、mMTCとeMBBとURLLCとの中から選択される少なくとも2つの通信サービスが含まれる。複数の通信サービスには、mMTC、eMBB、及びURLLC以外の通信サービスが含まれていてもよい。以下の説明では、端末装置40は、少なくとも2つの通信サービスを同時に受けることが可能であるものとする。
<4-1.近接基地局からのネットワークスライス情報がない場合の接続処理>
 図11は、近接基地局からのネットワークスライス情報がない場合の接続処理の一例を示す図である。具体的には、ネットワークスライスに関する情報がシステム情報を介して近接する基地局から提供されない、或いは、近接する基地局が所望するネットワークスライスをサポートしていない場合の接続処理の一例を示す図である。なお、図11の例では、端末装置40は図10に示す経路P1でドナー基地局20と接続されており、経路P2ではドナー基地局20と接続されていないものとする。
 まず、端末装置40は、セル選択、或いはセル再選択処理を実行する(ステップS101)。そして、端末装置40は、処理結果に基づいて、最も高くランクされているセルであるリレー基地局30に対して、ランダムアクセス処理(Random Access Procedure)を実行する(ステップS102)。そして、端末装置40は、リレー基地局30のアクセス回線を介して、ドナー基地局20との間にRRC接続(Radio Resource Control Connection)を確立する(ステップS103)。
 この処理に伴い、コントロールプレーン(以下、C-planeともいう。)の制御信号を送受信するためのSRB(Signaling Radio Bearer)が確立される。ここで、端末装置40は、ランダムアクセス処理の任意のメッセージ(例えば、Message 3)、或いは、RRC接続設定処理(RRC Connection Setup Procedure)の任意のメッセージ(例えば、RRC Connection Request、RRC Connection Setup Complete)を使って、端末装置40が受けるサービスに関する情報を通知することができる。例えば、端末装置40は、RRC接続設定処理の任意のメッセージを使って、所望のスライスIDをドナー基地局20に通知することができる。ここで、スライスIDは、上述のように、例えば、S-NSSAIであってもよい。ドナー基地局20の取得部231は、端末装置40が受けるサービスに関する情報(例えば、端末装置40が所望するスライスIDの情報)を取得する。リレー基地局30のアクセス回線を介したドナー基地局20との間のRRC接続確立処理(RRC Connection Establishment Procedure)で設定される経路P1は、デフォルト経路と考えることができる。
 続いて、端末装置40は、アタッチ処理(Attach Procedure)を実行する(ステップS104)。これにより、ドナー基地局20との間でユーザプレーン(以下、U-planeともいう。)のデータを送受信するためのDRB(Data Radio Bearer)が確立される。なお、CUは、PDU(Protocol Data Unit)セッション確立の過程で、スライスIDに応じた再送処理Automatic Repeat reQuest(ARQ)の方法(たとえば、Hop by Hop、若しくは、End to End)を設定する。低遅延を要求するサービス、例えば、URLLCである場合には、遅延の少ないEnd to EndのARQ処理、つまり、アクセス回線を提供するリレー基地局とドナー基地局20間でARQ処理を制御する方法が設定される。また、高スループットを要求するサービス、例えば、eMBBである場合には、無線リソースの利用効率の良いHop by HopのARQ処理、つまり、バックホール回線毎にARQ処理を制御する方法が設定される。ここで、バックホール回線とは別に、アクセス回線を提供するリレー基地局と端末装置40の間にはHybrid ARQ処理が設定される。
 ドナー基地局20の決定部232は、端末装置40が受けるサービスに関する情報に基づいて、端末装置40とドナー基地局20との間でやり取りされるデータが経由する経路を決定する。例えば、決定部232は、端末装置40が所望するスライスIDを特定するとともに、特定したスライスIDに対応するネットワークスライスを提供する最適な経路を特定する(図11に示すT1)。ドナー基地局20の指示部233は、特定した経路に基づいて、端末装置40に対して、接続するドナー基地局20或いはリレー基地局30を指示する。例えば、指示部233は、特定した経路に含まれるリレー基地局30(例えば、リレー基地局30)を測定対象に含んだ測定報告処理を実行するよう端末装置40に設定する。この指示は、例えば、接続再設定メッセージ(Connection Reconfiguration message)を介して設定される(ステップS105a、S105b)。
 設定を完了すると、端末装置40は、リレー基地局30を介して、接続再設定完了メッセージ(Connection Reconfiguration Complete message)をドナー基地局20に返答する(ステップS106a、S106b)。一方、ドナー基地局20が所望のスライスIDに対応するネットワークスライスを提供するための最適経路を特定できない場合は、所望のスライスIDの提供を拒否するメッセージを返信する。
 端末装置40は、設定された測定報告処理に基づいて、リレー基地局30を測定対象に含んだ測定を行う(図11に示すT2)。そして、端末装置40は、リレー基地局30を介して、測定結果をドナー基地局20に報告する(ステップS107a、S107b)。
 そして、ドナー基地局20の指示部233は、端末装置40がハンドオーバーを実行する基準を満たした場合には、端末装置40に対して、決定部232が決定した経路に基づき特定される基地局に、ハンドオーバーするよう指示する。例えば、所望のスライスIDに対応するネットワークスライスを提供するリレー基地局30がリレー基地局30であるケースを想定する。このとき、指示部233は、端末装置40から報告された測定結果に基づいて、端末装置40に対しリレー基地局30へのハンドオーバーを決定する。ハンドオーバーを実行するか否かの判別基準は既知の様々な基準を採用可能である。そして、指示部233は、リレー基地局30に対してスライスベースハンドオーバー要求(Slice based HO Request)を発行する(ステップS108a、S108b)。
 リレー基地局30がスライスベースハンドオーバー要求に対する肯定応答(Slice based HO Request ACK)をドナー基地局20に返答すると(ステップS109a、S109b)、ドナー基地局20は、端末装置40に対して、リレー基地局30へのハンドオーバーを指示するメッセージ(Slice based Connection Reconfiguration message)をリレー基地局30に送信する(ステップS110a、S110b)。
 メッセージを受信した端末装置40は、リレー基地局30に対して、ランダムアクセス処理を実行する(ステップS111)。リレー基地局30へのハンドオーバーが完了すると、端末装置40は、ドナー基地局20に対し、スライスベース接続再設定完了メッセージ(Slice based Connection Reconfiguration Complete message)を送信する(ステップS112a、S112b、S112c、S112d)。これにより、スライスIDに対応するネットワークスライスを提供する最適な経路P2が設定される。つまり、従来のモビリティ管理方法に従って、端末装置401がセル選択、或いはセル再選択処理に基づいてデフォルトの経路を確立した後、所望のスライスIDに対応するネットワークスライスを介したデータの送受信に先立って最適な経路への切り替えが行われる。
 続いて、所望のスライスIDに対応するネットワークスライスを介したデータの送受信が開始される(ステップS113)。データの送受信は、ドナー基地局20の受信部234、送信部235、端末装置40の受信部454、送信部455によって行われる。
 ここで、端末装置40は、同時に複数のネットワークスライスを利用することができ、それぞれのネットワークスライスに対して、図11に示す処理を独立して実行することができる。つまり、各ネットワークスライスに対応した無線ベアラを同時に複数構築することができる。端末装置40が同時に複数の基地局と接続することができる能力を有するのであれば、端末装置40は、各ネットワークスライスに対応した無線ベアラを同時に複数の基地局との間に構築することもできる。
 また、U-planeのデータを送受信するDRBを確立するためのアタッチ処理(ステップS104)は、所望のスライスIDに対応するネットワークスライスを提供するリレー基地局30へのハンドオーバーが完了した後に、リレー基地局30に対して実行されてもよい。
 なお、端末装置40は、C/U-plane分離の一形態として、C-planeの制御信号を送受信するためのSRBとして、リレー基地局30のアクセス回線を介したデフォルト経路を維持したまま、所望のスライスIDに対応するネットワークスライスのU-planeのデータを送受信するDRBのためのリレー基地局30を含む経路をSRBとは別に確立してもよい。
<4-2.バックホール回線品質のモニタリング処理>
 次に、バックホール回線品質のモニタリング処理について説明する。図12は、バックホール回線品質のモニタリング処理の一例を示すフローチャートである。図12に示す処理は、例えば、通信システム1が備える複数のリレー基地局30がそれぞれ実行する。以下、図12のフローチャートを参照しながら、バックホール回線品質のモニタリング処理を説明する。
 まず、リレー基地局30は、親となるリレー基地局30(或いはは、ドナー基地局20)との間の無線バックホール回線の品質を固定の周期、若しくは可変の周期で測定し、閾値を下回っているか、否かを判断する(ステップS201)。ここで、測定の頻度、周期、及び閾値は、制御情報(例えば、RRC接続再設定(RRC Connection Reconfiguration)やRRC接続リリース(RRC Connection Release)等)により設定される。また、バックホール回線の品質は、リファレンス信号や同期信号の受信強度や受信品質、つまりRSRP(Reference Signal Received Power)やRSRQ(Reference Signal Received Quality)に基づいて評価されてもよい。なお、以下の説明では、モニタリング処理を実行するリレー基地局30の親となるリレー基地局30のことを親リレー基地局ということがある。
 ステップS201で、無線バックホール回線の品質が閾値を下回っていると判定されると、リレー基地局30は、イベント起動測定結果報告(Event Triggered measurement reporting)処理を起動する(ステップS202)。リレー基地局30は、親リレー基地局との間の無線バックホール回線品質に加え、測定対象となる親候補の各リレー基地局30の品質に関する測定結果をドナー基地局20に報告する(ステップS203)。ここで、測定対象となる親候補の各リレー基地局30は、例えば、上述のRRC接続再設定やRRC接続リリースにより設定される。
 なお、ドナー基地局20は、各リレー基地局30に対して負荷に関する報告を設定してもよい。例えば、ドナー基地局20は、単位時間当たりに送受信されるトラフィックの量が閾値を超えた場合に報告するように設定してもよい。なお、単位時間当たりに送受信されるトラフィックの量は、単位周波数、単位時間当たりの全PRB(Physical Resource Block)の内、使用されているPRBの割合を示すPRB usageであってもよい。ここで、負荷に関する報告はフローという単位、或いは、ベアラ単位で設定されてもよい。これにより、ドナー基地局20は、ベアラ、或いは、スライスID毎に、バックホール回線の切り替えを判断することができる。また、ドナー基地局20は、各リレー基地局のバックホール回線の品質、或いは、各リレー基地局の負荷に関する報告に基づいて、フロー・コントロール、つまり、子リレー基地局に転送するデータのスケジューリングを制御してもよい。このスケジューリングは、QoS、或いは、スライスID毎に行われてもよい。また、ドナー基地局201は、各リレー基地局のバックホール回線の品質、或いは、各リレー基地局の負荷に関する報告に基づいて、子リレー基地局に対して、Admission ControlやAccess Controlを実行してもよい。ここで、Access Controlは、例えば、システム情報を介して設定されたAccess Class Barringを含むAccess Control情報を報知する。
<4-3.バックホール回線のハンドオーバー処理>
 次に、バックホール回線のハンドオーバー処理について説明する。図13は、バックホール回線のハンドオーバー処理の一例を示すフローチャートである。図13に示す処理はCU(例えば、ドナー基地局20)が実行する。以下の説明では、ドナー基地局20が以下のハンドオーバー処理を実行するものとするが、以下のハンドオーバー処理を実行するCUはドナー基地局20に限られない。また、上述したように、リレー基地局30は通信装置の一種である。以下、図13のフローチャートを参照しながら、バックホール回線のハンドオーバー処理を説明する。
 ドナー基地局20の取得部231は、測定対象の各リレー基地局30の品質に関する測定結果を、イベント起動測定結果報告処理を起動したリレー基地局30から受信する(ステップS301)。以下の説明では、イベント起動測定結果報告処理を起動したリレー基地局30のことをハンドオーバー処理対象のリレー基地局30という。
 なお、ハンドオーバー処理対象のリレー基地局30が端末装置40にアクセス回線を提供している場合、ドナー基地局20の取得部231は、このリレー基地局30から、端末装置40が通信システム1の無線ネットワークを使って受けるサービスに関する情報(例えば、端末装置40が使用するスライスのスライスID)を取得してもよい。端末装置40が複数の通信サービスを受けているのであれば、取得部231は、複数の通信サービスの情報(例えば、複数のスライスIDの情報)を取得してもよい。
 続いて、ドナー基地局20の決定部232は、サービスに関する情報に基づいて、端末装置40とドナー基地局20との間でやり取りされるデータが経由する経路を決定する。例えば、決定部232は、スライスID毎に最適な経路を導出する(ステップS302)。
 そして、ドナー基地局20は、最適経路の情報に基づいて、ハンドオーバー処理対象のリレー基地局30がハンドオーバーのターゲットとすべき基地局を特定する(ステップS303)。図9Aと図9Bを例に具体的に説明する。例えば、ハンドオーバー処理対象のリレー基地局30が図9Aに示すリレー基地局30であるとする。リレー基地局30とドナー基地局20との間のバックホール回線BH1の通信品質が低下したとすると、ドナー基地局20は、ドナー基地局20は、図9Bに示すように、リレー基地局30がハンドオーバーのターゲットとすべき基地局をリレー基地局30と特定する。なお、ハンドオーバーのターゲットとなる基地局(以下、ターゲット基地局という。)は、リレー基地局30に限られず、ドナー基地局20であってもよい。
 そして、ドナー基地局20の指示部233は、ハンドオーバー処理対象のリレー基地局30に対して、ハンドオーバー処理を指示する(ステップS304)。なお、指示部233は、スライスID毎にハンドオーバーを指示してもよい。この場合、ハンドオーバー処理対象のリレー基地局30は、スライスIDに対応して複数のハンドオーバーが指示されるケースもあり得る。この場合、リレー基地局30は、異なるターゲット基地局との複数の接続が確立される。また、ドナー基地局20の指示部233は、スライスIDに対応したARQ処理(例えば、Hop by Hop、若しくは、End to End)を再設定する。ここで、Hop by HopのARQ処理が再設定される場合、経路に含まれる各バックホール回線の親リレー基地局に対して、ARQ処理の再設定を指示してもよいし、ハンドオーバーが実行されたバックホール回線の親リレー基地局に対してのみ、ARQ処理の再設定を指示してもよい。なお、ハンドオーバーが実行されたバックホール回線の親リレー基地局に対してのみ、ARQ処理の再設定を指示する場合でも、他のバックホール回線の親リレー基地局に対して、転送処理、或いは、ARQ処理のリセットを指示してもよい。一方、End to EndのARQ処理が再設定される場合、各バックホール回線の親リレー基地局に対して転送処理のリセットを指示してもよい。さらに、アクセス回線を提供するリレー基地局に対して、転送処理、或いは、Hybrid ARQ処理のリセットを指示してもよい。
<4-4.アクセス回線のハンドオーバー処理>
 次に、アクセス回線のハンドオーバー処理について説明する。図14は、アクセス回線のハンドオーバー処理の一例を示すフローチャートである。なお、図14に示す処理はCU(例えば、ドナー基地局20)が実行する。以下の説明では、ドナー基地局20が以下のハンドオーバー処理を実行するものとするが、以下のハンドオーバー処理を実行するCUはドナー基地局20に限られない。また、上述したように、端末装置40は通信装置の一種である。以下、図14のフローチャートを参照しながら、アクセス回線のハンドオーバー処理を説明する。
 ドナー基地局20の取得部231は、測定対象の各リレー基地局30の品質に関する測定結果を、イベント起動測定結果報告処理を起動したリレー基地局30から取得する(ステップS401)。続いて、ドナー基地局20の決定部232は、スライスID毎に最適な経路を導出する(ステップS402)。そして、決定部232は、最適経路の情報に基づいて、スライスID毎に端末装置40にアクセス回線を提供するリレー基地局30を特定する(ステップS403)。
 そして、ドナー基地局20の指示部233は、スライスID毎に、端末装置40にアクセス回線を提供するリレー基地局30に変更があるか否かを判定する(ステップS404)。変更が生じるスライスIDに対しては、指示部233は、当該スライスIDに対応するサービスを利用している端末装置40にハンドオーバー処理を指示する(ステップS405)。また、ドナー基地局201の指示部233は、スライスIDに対応したARQ処理を再設定する。ここで、Hop by HopのARQ処理が再設定される場合、経路に含まれる各バックホール回線の親リレー基地局に対して、ARQ処理の再設定を指示してもよいし、経路切り替えの影響を受けたバックホール回線の親リレー基地局に対してのみ、ARQ処理の再設定を指示してもよい。なお、経路切り替えの影響を受けたバックホール回線の親リレー基地局に対してのみ、ARQ処理の再設定を指示する場合でも、他のバックホール回線の親リレー基地局に対して、転送処理、或いは、ARQ処理のリセットを指示してもよい。一方、End to EndのARQ処理が再設定される場合、各バックホール回線の親リレー基地局に対して転送処理のリセットを指示してもよい。さらに、バックホールとは別に、アクセス回線を提供するリレー基地局と端末装置40の間にHybrid ARQ処理が設定される。
<4-5.スライスIDに対応する最適経路選択に係るシグナリングフロー>
 次に、スライスIDに対応する最適経路選択に係るシグナリングフローについて説明する。図15A及び図15Bは、スライスIDに対応する最適経路選択に係るシグナリングフローの一例を示す図である。以下の説明は、端末装置40とドナー基地局20が、図9Aに示す接続状態にあるものとして説明する。
 まず、図9Aの例で示すように、第1のサービス(スライスID #1)および第2のサービス(スライスID #2)共に、アクセス回線AL1及びバックホール回線BH1を介して、端末装置40及びドナー基地局20間でデータの送受信が行われている(図15AのステップS501a、S501b、S502a、S502b)。アクセス回線AL1は、端末装置40とリレー基地局30間の回線である。バックホール回線BH1は、リレー基地局30とドナー基地局20間の回線である。
 次に、リレー基地局30とドナー基地局20間のバックホール回線BH1の品質をモニタリングするために、ドナー基地局20は制御情報(例えば、接続再設定メッセージ(Connection Reconfiguration message))を介して、測定およびその報告方法をリレー基地局30に設定する(ステップS503)。設定を完了すると、リレー基地局30は制御情報(例えば、接続再設定完了メッセージ(Connection Reconfiguration Complete message))をドナー基地局20に送信する(ステップS504)。
 リレー基地局30は、設定に基づいて、ドナー基地局20間のバックホール回線の品質のモニタリングを開始し、品質が閾値以下になると、測定対象のリレー基地局30の測定を開始する(ステップS505)。ここで、測定対象のリレー基地局30は、ハンドオーバーのターゲット基地局となるリレー基地局30およびドナー基地局20である。さらに、リレー基地局30は、設定された条件に基づいて、イベント起動測定結果報告(Event Triggered measurement reporting)処理を起動し、現在の親リレー基地局(或いはドナー基地局20)および測定対象のリレー基地局30の品質を含む測定結果をドナー基地局20に報告する(ステップS506)。
 ドナー基地局20の決定部232は、端末装置40が通信システム1を使って受けるサービスに関する情報に基づいて、端末装置40とドナー基地局20との間でやり取りされるデータが経由する経路を決定する。例えば、決定部232は、受信した測定結果、および、端末装置40が利用しているサービスに対応するスライスIDに基づいて、最適な経路を導出する(ステップS507)。ここで、端末装置40が利用しているサービスは、図9Aの例に示すように複数のサービスであり得る。さらに、ドナー基地局20は、新たなバックホール回線の確立が必要なスライスIDを特定する(ステップS508)。
 ドナー基地局20の指示部233は、特定したスライスIDに関してハンドオーバーのターゲット基地局となるリレー基地局30にハンドオーバーの要求、例えば、スライスベースハンドオーバー要求(Slice based HO Request)を送信する(ステップS509a、S509b)。ハンドオーバーに必要な準備を終えたリレー基地局30は、ハンドオーバーの要求に対する応答、例えば、スライスベースハンドオーバー要求肯定応答(Slice based HO Request ACK)をドナー基地局20に返す(ステップS510a、S510b)。
 次に、ドナー基地局20の指示部233は、リレー基地局30に対して、バックホール回線のハンドオーバーが必要になるスライスIDに関する情報も含めた、ハンドオーバーの指示、例えば、スライスベース接続再設定(Slice based Connection Reconfiguration)を送信する(ステップS511)。
 ハンドオーバーの指示を受信したリレー基地局30は、第1のサービス(スライスID #1)用のバックホール回線の接続をドナー基地局20からリレー基地局30に切り替えるために、ランダムアクセス処理(Random Access Procedure)を実行する(ステップS512)。
 特定したスライスIDに対するバックホール回線の接続の切り替えを完了すると、リレー基地局30は、ハンドオーバーの指示に対する応答(例えば、スライスベース接続再設定完了(Slice based Connection Reconfiguration Complete))をドナー基地局20に返信し(ステップS513a、S513b、S513c)、必要なバックホール回線のハンドオーバーは完了する。
 続いて、ドナー基地局20は、各リレー基地局30、或いは、ドナー基地局20におけるルーティングを制御するための情報の更新を通知する(図15BのステップS514a、S514b、S514c)。ルーティングを制御するための情報は、例えば、スライスIDに応じたルーティング・テーブルの変更、スライスIDに応じたベアラ・マッピング、或いは、QoSフロー・マッピングの制御に関する情報である。ここで、スライスIDに応じたベアラ・マッピングは、スライスIDに応じて決定した経路を識別する情報、例えば、経路IDに応じたベアラ・マッピングであってもよい。スライスIDに応じたQoSフロー・マッピングは、スライスIDに応じて決定した経路を識別する情報、例えば、経路IDに応じたQoSフロー・マッピングであってもよい。
 次に、端末装置40にアクセス回線を提供するリレー基地局30は、ドナー基地局20から受信したスライスベース接続再設定(ステップS511)に基づいて、スライスIDに応じて端末装置40がアクセス回線を切り替えるために必要となる測定方法および報告方法を端末装置40に設定する(ステップS515)。このとき、リレー基地局30は、制御情報(例えば、スライスベース接続再設定)を介して、端末装置40に測定方法および報告方法を設定してもよい。
 端末装置40は、設定に基づいて、スライスIDに応じて測定対象となるリレー基地局30、或いは、ドナー基地局20の測定を行う(図15BのT3)。そして、端末装置40は、測定結果をドナー基地局20に報告する(ステップS516a、S516b、S516c、S516d)。
 ドナー基地局20の指示部233は、受信した測定結果に基づいてアクセス回線のハンドオーバーが必要なスライスIDを特定する(図15BのT4)。そして、指示部233は、スライスIDに応じたハンドオーバーを、制御情報(例えば、スライスベース接続再設定)を介して端末装置40に指示する(ステップS517a、S517b、S517c、S517d)。
 ハンドオーバーの指示を受信した端末装置40は、第2のサービス(スライスID #2)用のアクセス回線の接続をリレー基地局30からドナー基地局20に切り替えるために、ランダムアクセス処理を実行する(ステップS518)。特定したスライスIDに対するアクセス回線の接続の切り替えを完了すると、端末装置40は、ハンドオーバーの指示に対する応答、例えば、スライスベース接続再設定完了(Slice based Connection Reconfiguration Complete)をドナー基地局20に返信し(ステップS519)、必要なアクセス回線のハンドオーバーは完了する。
 以降、第1のサービス(スライスID #1)に係るデータは、アクセス回線AL1、バックホール回線BH2、BH3、BH4を介して送受信される(ステップS520a、S520b、S520c、S520d)。アクセス回線AL1は、端末装置40とリレー基地局30の間の回線である。バックホール回線BH2は、リレー基地局30とドナー基地局20の間の回線である。バックホール回線BH3は、リレー基地局30とリレー基地局30の間の回線である。バックホール回線BH4は、リレー基地局30とリレー基地局30の間の回線である。一方、第2のサービス(スライスID #2)に係るデータは、端末装置40とドナー基地局20間のアクセス回線AL2を介して送受信される(ステップS521)。
 また、上述のように、リレー基地局30は、他のリレー基地局30との間でバックホール回線を確立して、データを転送するノードであることに加え、自ら端末装置40にアクセス回線を提供するノードでもある。そこで、端末装置40にアクセス回線を提供するリレー基地局30は、端末装置40に対して、ネットワーク・スライシングの活用を補助する情報を提供する。例えば、リレー基地局30は、アクセス回線として提供可能なサービスの種別を端末装置40に提供する。例えば、リレー基地局30は、システム情報の1つとして対応可能なスライスIDのリストを報知する。ここで、スライスIDは、上述のように、例えば、S-NSSAIであってもよい。Idle modeの端末装置40は、所望のスライスIDを含む接続確立要求を送信する前に、システム情報として報知されている対応可能なスライスIDのリストを取得することで、接続対象となるリレー基地局30が所望のサービスに対応可能であるか、否かを知ることが可能となる。
 また、バックホール回線の経路の変更に伴い、対応可能なスライスIDのリストに変更があった場合には、報知されるシステム情報に含まれるスライスIDのリストが変更される。ドナー基地局20は、Connected modeの端末装置40に対しては、制御情報、例えば、RRC signalingを介して、このスライスIDのリストの変更を通知してもよい。さらに、バックホール回線の経路の変更に伴い、Connected modeの端末装置40が現在利用しているスライスIDに対応するサービスを提供できなくなる場合には、ドナー基地局20は、当該サービスを提供可能なターゲット基地局(例えば、図8Bのドナー基地局20)へのハンドオーバー処理を起動してもよい。具体的には、ドナー基地局20は、ターゲット基地局の情報を含む接続設定変更に関する制御情報、例えば、RRC接続再設定メッセージ(RRC Connection Reconfiguration message)を端末装置40に送信してもよい。ドナー基地局20の記載は、CUに置き換え可能である。
 以上の処理によれば、ドナー基地局20は、サービスに応じて(例えば、スライスID毎に)最適経路を決定しているので、端末装置40が通信速度が足りずにサービスが利用できない等の原因に基づく頻繁なパスの切り替えが少なくなる。結果として、ドナー基地局20はシグナリングを少なくできるので安定した通信を実現できる。
<4-6.スライスIDに基づいた端末装置の接続処理>
 次に、端末装置40の接続処理について説明する。上述の例では、端末装置40は、ドナー基地局20の判断に基づいて基地局に接続したが、自らの判断に基づいて基地局に接続してもよい。
 図16は、スライスIDに基づいた端末装置40の接続処理の一例を示すフローチャートである。なお、以下の説明では、図16に示す接続処理は端末装置40が実行するものとするが、接続処理を実行する装置は端末装置40以外の通信装置であってもよい。以下、図16のフローチャートを参照しながら、スライスIDに基づいた端末装置40の接続処理を説明する。
 まず、Idle modeの端末装置40の取得部451は、近接する基地局の通信に関する情報を取得する。例えば、取得部451は、近接する基地局(以下、近接基地局という。)から報知されるシステム情報を介して、近接基地局がサポートするネットワークスライスに関する情報を取得する(ステップS601)。このとき、近接基地局は、リレー基地局30であってもよいし、ドナー基地局であってもよい。また、近接基地局は複数あってもよい。この場合、取得部451は、複数の近接基地局それぞれの通信に関する情報を取得する。
 なお、ネットワークスライスに関する情報は、近接基地局がサポートするネットワークスライスのスライスIDの情報であってもよい。また、スライスIDは、上述のように、例えば、S-NSSAIであってもよい。例えば、ネットワークスライスに関する情報は、複数のネットワークスライスを区別する識別情報のリストであってもよい。
 続いて、端末装置40の特定部452は、ステップS601で取得した情報に所望のネットワークスライスに対応する識別情報が含まれていれば、所望のネットワークスライスをサポートしている基地局として上述の近接基地局を特定する(ステップS602)。近接基地局が複数あるのであれば、特定部452は、複数の近接基地局の中から所望のネットワークスライスをサポートしている基地局を特定する。
 そして、端末装置40は、ステップS602で特定した近接基地局に対して、イニシャルアクセスを実行し、接続する(ステップS603)。
 以上の処理によれば、端末装置40は自らの判断で所望のネットワークスライスをサポートする基地局を特定し、接続しているので、CU(例えば、ドナー基地局20)のシグナリングを少なくできる。結果として、通信は安定する。
<4-7.スライスIDに基づいた端末装置のハンドオーバー処理>
 次に、端末装置40のハンドオーバー処理について説明する。上述の例では、端末装置40は、ドナー基地局20の判断に基づいてハンドオーバーを実行したが、自らの判断に基づいてハンドオーバーを実行してもよい。
 図17は、スライスIDに基づいた端末装置40のハンドオーバー処理の一例を示すフローチャートである。なお、以下の説明では、図17に示すハンドオーバー処理は端末装置40が実行するものとするが、ハンドオーバー処理を実行する装置は端末装置40以外の通信装置であってもよい。以下、図17のフローチャートを参照しながら、スライスIDに基づいた端末装置40のハンドオーバー処理を説明する。
 まず、Connected modeの端末装置40の取得部451は、接続している基地局を介して測定処理の設定に関する制御情報を取得する(ステップS701)。このとき、取得した制御情報には、測定候補となる基地局の情報が含まれる。端末装置40の切替部453は、制御情報に基づいて測定処理に関する設定を行う。以下の説明では、測定処理に関する設定のことを測定処理設定という。
 続いて、端末装置40の特定部452は、測定候補となる基地局の中から、所望のスライスIDをサポートする基地局を選別する。そして、端末装置40の切替部453は、測定処理設定に基づく測定項目の測定を実行する(ステップS702)。測定候補となる基地局は、リレー基地局30であってもよいし、ドナー基地局20であってもよい。
 なお、測定処理設定に基づく測定項目は、例えば、RSRP(Reference Signal Received Power)、RSRQ(Reference Signal Received Quality)、SINR(Signal to Interference and Noise Ratio)、或いはRSSI(Received Signal Strength Indicator)等である。
 次に、端末装置40の特定部452は、測定結果および測定処理設定に含まれる閾値に基づいて、ハンドオーバー先となるターゲット基地局を特定する(ステップS703)。例えば、現在接続中の基地局の測定値(例えば、RSRP、RSRQ、SINR、或いはRSSIの値)が第1の閾値を下回り、かつ、複数ある測定候補のうちの1つの基地局の測定値が第2の閾値を上回っている場合、基地局の切替基準を満たしたと判別し、第2の閾値を上回った基地局をターゲット基地局と特定する。なお、ハンドオーバーの実行基準となる切替基準はこの例に限られず、既知の様々な基準を採用可能である。
 そして、端末装置40の切替部453は、基地局の切替基準を満たしたら、ターゲット基地局へのハンドオーバーを実行する(ステップS704)。なお、測定処理の設定に含まれる閾値はハンドオーバーの起動するための測定結果における閾値であり、スライスIDに応じて異なる値が設定されてもよい。
 以上の処理によれば、端末装置40は自らの判断で所望のネットワークスライスをサポートする基地局を特定し、ハンドオーバーを実行しているので、CU(例えば、ドナー基地局20)のシグナリングを少なくできる。結果として、通信システム1の通信は安定する。
<<5.変形例>>
 上述の実施形態は一例を示したものであり、種々の変更及び応用が可能である。
 例えば、上述の実施形態では、ドナー基地局20は、端末装置40が通信システム1を使って受けるサービスに関する情報に基づいて、端末装置40とドナー基地局20との間でやり取りされるデータの経路を決定した。このとき、サービスに関する情報は、スライスIDに限られず、例えば、スライスID以外の、複数の通信サービスのいずれであるかを特定するための情報であってもよい。このとき、複数の通信サービスには、mMTCとeMBBとURLLCとの中から選択される少なくとも2つの通信サービスが含まれていてもよい。
 上述の実施形態では、ドナー基地局20は、スライスIDに基づいて、データが経由する経路を決定した。このとき、ドナー基地局20は、スライスIDが示すネットワークスライスが許容する通信遅延の情報に基づいて、データが経由するリレー基地局30を決定してもよい。例えば、ドナー基地局20は、ネットワークスライスが許容する通信遅延に応じて、経路のホップ数を決定する。そして、ドナー基地局20は、決定したホップ数以下の経路を特定する。
 上述の実施形態では、端末装置40は、複数の基地局それぞれがサポートするネットワークスライスの情報に基づいて、複数の基地局の中から接続する基地局を特定した。しかしながら、端末装置40は、複数の基地局それぞれがサポートする通信サービスに関する情報に基づいて、複数の基地局の中から接続する基地局を特定してもよい。このとき、通信サービスに関する情報は、通信態様の異なる複数の通信サービスのいずれであるかを示す情報であってもよい。このとき、複数の通信サービスには、mMTCとeMBBとURLLCとの中から選択される少なくとも2つの通信サービスが含まれていてもよい。
 また、端末装置40は、Idle modeにおいて、セル選択、若しくは、セル再選択を実行し、セル再選択の結果、最も高くランクされているセル(以下、第1のリレー基地局30という)に対して初期アクセス処理を実行してもよい。そして、端末装置40は、第1のリレー基地局30との間に無線ベアラを構築した後、第1のリレー基地局30が所望のネットワークスライスをサポートしていない場合には、所望のネットワークスライスをサポートするリレー基地局30をハンドオーバー処理対象のリレー基地局30(以下、第2のリレー基地局30という。)としてもよい。端末装置40は、第2のリレー基地局を測定対象に含む測定結果に基づいて、上記第2のリレー基地局をターゲット基地局とするハンドオーバーを実行してもよい。
 本実施形態の管理装置10、ドナー基地局20、リレー基地局30、又は端末装置40を制御する制御装置は、専用のコンピュータシステム、又は汎用のコンピュータシステムによって実現してもよい。
 例えば、上述の動作(例えば、接続処理、又はハンドオーバー処理等)を実行するための通信プログラムを、光ディスク、半導体メモリ、磁気テープ、フレキシブルディスク等のコンピュータ読み取り可能な記録媒体に格納して配布する。そして、例えば、該プログラムをコンピュータにインストールし、上述の処理を実行することによって制御装置を構成する。このとき、制御装置は、管理装置10、ドナー基地局20、リレー基地局30、又は端末装置40の外部の装置(例えば、パーソナルコンピュータ)であってもよい。また、制御装置は、管理装置10、ドナー基地局20、リレー基地局30、又は端末装置40の内部の装置(例えば、制御部13、制御部23、制御部34、又は制御部45)であってもよい。
 また、上記通信プログラムをインターネット等のネットワーク上のサーバ装置が備えるディスク装置に格納しておき、コンピュータにダウンロード等できるようにしてもよい。また、上述の機能を、OS(Operating System)とアプリケーションソフトとの協働により実現してもよい。この場合には、OS以外の部分を媒体に格納して配布してもよいし、OS以外の部分をサーバ装置に格納しておき、コンピュータにダウンロード等できるようにしてもよい。
 また、上記実施形態において説明した各処理のうち、自動的に行われるものとして説明した処理の全部又は一部を手動的に行うこともでき、或いは、手動的に行われるものとして説明した処理の全部又は一部を公知の方法で自動的に行うこともできる。この他、上記文書中や図面中で示した処理手順、具体的名称、各種のデータやパラメータを含む情報については、特記する場合を除いて任意に変更することができる。例えば、各図に示した各種情報は、図示した情報に限られない。
 また、図示した各装置の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各装置の分散・統合の具体的形態は図示のものに限られず、その全部又は一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的又は物理的に分散・統合して構成することができる。
 また、上記してきた実施形態は、処理内容を矛盾させない領域で適宜組み合わせることが可能である。また、上記してきた実施形態のフローチャート及びシーケンス図に示された各ステップは、適宜順序を変更することが可能である。
<<6.むすび>>
 以上説明したように、本開示の一実施形態によれば、通信制御装置(ドナー基地局20等のCU)は通信システム1の無線ネットワークに接続する端末装置40が無線ネットワークを使って受けるサービスに関する情報(例えば、スライスIDや通信態様に関する情報)に基づいて、端末装置40とドナー基地局20との間でやり取りされるデータが経由する経路を決定する。通信制御装置がサービスに応じて(例えば、スライスID毎に)最適経路を決定しているので、サービスが利用できない等の原因に基づく頻繁なパスの切り替えが少なくなる。結果として、通信制御装置のシグナリングが少なくなるので安定した通信が実現する。
 また、大容量のデータを扱うバックホールを無線にすれば、固定の光ケーブルを設置する煩わしさを解消できる。バックホール回線にミリ波を活用した場合、外部環境に起因して通信品質が不安定になり易い。この場合も、通信制御装置は、通信態様が異なる通信サービス毎に適した経路を迅速かつ柔軟に構築できるので、通信品質が不安定さを低減できる。
 さらに、サービスに関する情報をスライスIDに関する情報とした場合、通信制御装置は、ネットワーク・スライシングのコンセプトに基づく、特質の異なるサービス毎に適した経路でのデータ伝送を実現できる。例えば、通信制御装置は、スライス毎に適切な経路を端末装置40に提供できる。
 また、端末装置40は、複数の基地局(例えば、ドナー基地局20、リレー基地局30)それぞれの通信に関する情報に基づいて、複数の基地局の中から接続する基地局を特定する。例えば、端末装置40は、複数の基地局それぞれがサポートするネットワークスライスの情報を特定する。端末装置40が自ら接続先となる基地局を特定しているので、通信制御装置のシグナリングを少なくできる。結果として、端末装置40は、通信システム1の通信を安定させることができる。
 以上、本開示の各実施形態について説明したが、本開示の技術的範囲は、上述の各実施形態そのままに限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。また、異なる実施形態及び変形例にわたる構成要素を適宜組み合わせてもよい。
 また、本明細書に記載された各実施形態における効果はあくまで例示であって限定されるものでは無く、他の効果があってもよい。
 なお、本技術は以下のような構成も取ることができる。
(1)
 通信装置が接続可能なリレー基地局と該リレー基地局に無線バックホール回線を提供するドナー基地局とを備える通信システムに接続する前記通信装置が前記通信システムを使って受けるサービスに関する情報を取得する取得部と、
 前記サービスに関する情報に基づいて、前記通信装置と前記ドナー基地局との間でやり取りされるデータが経由する経路を決定する決定部と、を備える、
 通信制御装置。
(2)
 前記取得部は、前記通信装置の受ける前記サービスが、通信態様の異なる複数の通信サービスのいずれであるかを特定するための情報を取得し、
 前記決定部は、前記複数の通信サービスのいずれであるかを特定するための情報に基づいて、前記データが経由する経路を決定する、
 前記(1)に記載の通信制御装置。
(3)
 前記複数の通信サービスには、mMTC(massive Machine Type Communication)とeMBB(enhanced Mobile BroadBand)とURLLC(Ultra-Reliable and Low Latency Communication)との中から選択される少なくとも2つの通信サービスが含まれる、
 前記(2)に記載の通信制御装置。
(4)
 前記通信装置は、少なくとも2つの通信サービスを同時に受けることが可能であり、
 前記決定部は、前記通信サービス毎に前記データが経由する経路を決定する、
 前記(2)又は(3)に記載の通信制御装置。
(5)
 前記通信システムは、複数のネットワークスライスをサポートしており、
 前記取得部は、前記サービスに関する情報として、前記サービスに対応するネットワークスライスの識別情報を取得し、
 前記決定部は、前記ネットワークスライスの前記識別情報に基づいて、前記データが経由する経路を決定する、
 前記(1)から(4)のいずれか1つに記載の通信制御装置。
(6)
 前記決定部は、前記識別情報が示す前記ネットワークスライスが許容する通信遅延の情報に基づいて前記データが経由する前記リレー基地局を決定する、
 前記(5)に記載の通信制御装置。
(7)
 前記通信装置は、少なくとも2つのネットワークスライスを同時に使用可能であり、
 前記決定部は、前記ネットワークスライス毎に前記データが経由する経路を決定する、
 前記(5)に記載の通信制御装置。
(8)
 前記決定部が決定した経路に基づいて、前記通信装置に対して、接続する前記ドナー基地局或いは前記リレー基地局を指示する指示部、を備える、
 前記(1)から(7)のいずれか1つに記載の通信制御装置。
(9)
 前記指示部は、前記通信装置がハンドオーバーを実行する基準を満たした場合には、前記通信装置に対して、前記決定部が決定した経路に基づき特定される基地局にハンドオーバーするよう指示する、
 前記(8)に記載の通信制御装置。
(10)
 基地局として少なくともリレー基地局と該リレー基地局に無線バックホール回線を提供するドナー基地局とを備える通信システムが備える複数の基地局それぞれの通信に関する情報を取得する取得部と、
 前記複数の基地局それぞれの通信に関する情報に基づいて、前記複数の基地局の中から接続する基地局を特定する特定部と、を備える、
 通信装置。
(11)
 前記取得部は、前記複数の基地局それぞれの通信に関する情報として、前記複数の基地局それぞれがサポートする通信サービスに関する情報を取得し、
 前記特定部は、前記複数の基地局それぞれがサポートする通信サービスに関する情報に基づいて、前記複数の基地局の中から接続する基地局を特定する、
 前記(10)に記載の通信装置。
(12)
 前記通信サービスに関する情報は、前記基地局がサポートする通信サービスが通信態様の異なる複数の通信サービスのいずれであるかを示す情報であり、
 前記複数の通信サービスには、mMTC(massive Machine Type Communication)とeMBB(enhanced Mobile BroadBand)とURLLC(Ultra-Reliable and Low Latency Communication)との中から選択される少なくとも2つの通信サービスが含まれる、
 前記(11)に記載の通信装置。
(13)
 前記取得部は、前記複数の基地局それぞれの通信に関する情報として、前記複数の基地局それぞれがサポートするネットワークスライスの情報を取得し、
 前記特定部は、前記複数の基地局それぞれがサポートするネットワークスライスの情報に基づいて、前記複数の基地局の中から接続する基地局を特定する、
 前記(10)から(12)のいずれか1つに記載の通信装置。
(14)
 ハンドオーバーを実行する切替部、を備え、
 前記取得部は、ハンドオーバーの実行基準となる切替基準の情報を取得し、
 前記切替部は、前記切替基準が満たされたか否かを判別し、前記切替基準が満たされた場合には、前記特定部が特定した基地局を切り替え先の基地局としてハンドオーバーを実行する、
 前記(10)から(13)のいずれか1つに記載の通信装置。
(15)
 通信装置が接続可能なリレー基地局と該リレー基地局に無線バックホール回線を提供するドナー基地局とを備える通信システムに接続する前記通信装置が前記通信システムを使って受けるサービスに関する情報を取得し、
 前記サービスに関する情報に基づいて、前記通信装置と前記ドナー基地局との間でやり取りされるデータが経由する経路を決定する、
 通信制御方法。
(16)
 通信装置が実行する通信方法であって、
 基地局として少なくともリレー基地局と該リレー基地局に無線バックホール回線を提供するドナー基地局とを備える通信システムが備える複数の基地局それぞれの通信に関する情報を取得し、
 前記複数の基地局それぞれの通信に関する情報に基づいて、前記複数の基地局の中から前記通信装置が接続する基地局を特定する、
 通信方法。
(17)
 コンピュータを、
 通信装置が接続可能なリレー基地局と該リレー基地局に無線バックホール回線を提供するドナー基地局とを備える通信システムに接続する前記通信装置が前記通信システムを使って受けるサービスに関する情報を取得する取得部、
 前記サービスに関する情報に基づいて、前記通信装置と前記ドナー基地局との間でやり取りされるデータが経由する経路を決定する決定部、
 として機能させるための通信制御プログラム。
(18)
 通信装置が有するコンピュータを、
 基地局として少なくともリレー基地局と該リレー基地局に無線バックホール回線を提供するドナー基地局とを備える通信システムが備える複数の基地局それぞれの通信に関する情報を取得する取得部、
 前記複数の基地局それぞれの通信に関する情報に基づいて、前記複数の基地局の中から前記通信装置が接続する基地局を特定する特定部、
 として機能させるための通信プログラム。
(19)
 通信装置が接続可能なリレー基地局と、該リレー基地局に無線バックホール回線を提供するドナー基地局と、を少なくとも備える通信システムであって、
 前記通信システムが備える少なくとも1つの装置は、
 前記通信装置が前記通信システムを使って受けるサービスに関する情報を取得する取得部と、
 前記サービスに関する情報に基づいて、前記通信装置と前記ドナー基地局との間でやり取りされるデータが経由する経路を決定する決定部と、を備える、
 通信システム。
(20)
 基地局としてリレー基地局と該リレー基地局に無線バックホール回線を提供するドナー基地局とを備えるとともに、複数の前記基地局の少なくとも1つに接続可能な通信装置を備える通信システムであって、
 前記通信装置は、
 前記通信システムが備える複数の基地局それぞれの通信に関する情報を取得する取得部と、
 前記複数の基地局それぞれの通信に関する情報に基づいて、前記複数の基地局の中から接続する基地局を特定する特定部と、を備える、
 通信システム。
 1 通信システム
 10 管理装置
 20 ドナー基地局
 30 リレー基地局
 40 端末装置
 11 通信部
 12、22、32、42 記憶部
 13、23、34、45 制御部
 21、31、41 無線通信部
 33、43 ネットワーク通信部
 44 入出力部
 211、311、411 受信処理部
 211a、411a 無線受信部
 211b、411b 多重分離部
 211c、411c 復調部
 211d、411d 復号部
 212、312、412 送信処理部
 212a、412a 符号化部
 212b、412b 変調部
 212c、412c 多重部
 212d、412d 無線送信部
 213、313、413 アンテナ
 231、451 取得部
 232 決定部
 233 指示部
 234、454 受信部
 235、455 送信部
 452 特定部
 453 切替部

Claims (20)

  1.  通信装置が接続可能なリレー基地局と該リレー基地局に無線バックホール回線を提供するドナー基地局とを備える通信システムに接続する前記通信装置が前記通信システムを使って受けるサービスに関する情報を取得する取得部と、
     前記サービスに関する情報に基づいて、前記通信装置と前記ドナー基地局との間でやり取りされるデータが経由する経路を決定する決定部と、を備える、
     通信制御装置。
  2.  前記取得部は、前記通信装置の受ける前記サービスが、通信態様の異なる複数の通信サービスのいずれであるかを特定するための情報を取得し、
     前記決定部は、前記複数の通信サービスのいずれであるかを特定するための情報に基づいて、前記データが経由する経路を決定する、
     請求項1に記載の通信制御装置。
  3.  前記複数の通信サービスには、mMTC(massive Machine Type Communication)とeMBB(enhanced Mobile BroadBand)とURLLC(Ultra-Reliable and Low Latency Communication)との中から選択される少なくとも2つの通信サービスが含まれる、
     請求項2に記載の通信制御装置。
  4.  前記通信装置は、少なくとも2つの通信サービスを同時に受けることが可能であり、
     前記決定部は、前記通信サービス毎に前記データが経由する経路を決定する、
     請求項2に記載の通信制御装置。
  5.  前記通信システムは、複数のネットワークスライスをサポートしており、
     前記取得部は、前記サービスに関する情報として、前記サービスに対応するネットワークスライスの識別情報を取得し、
     前記決定部は、前記ネットワークスライスの前記識別情報に基づいて、前記データが経由する経路を決定する、
     請求項1に記載の通信制御装置。
  6.  前記決定部は、前記識別情報が示す前記ネットワークスライスが許容する通信遅延の情報に基づいて前記データが経由する前記リレー基地局を決定する、
     請求項5に記載の通信制御装置。
  7.  前記通信装置は、少なくとも2つのネットワークスライスを同時に使用可能であり、
     前記決定部は、前記ネットワークスライス毎に前記データが経由する経路を決定する、
     請求項5に記載の通信制御装置。
  8.  前記決定部が決定した経路に基づいて、前記通信装置に対して、接続する前記ドナー基地局或いは前記リレー基地局を指示する指示部、を備える、
     請求項1に記載の通信制御装置。
  9.  前記指示部は、前記通信装置がハンドオーバーを実行する基準を満たした場合には、前記通信装置に対して、前記決定部が決定した経路に基づき特定される基地局にハンドオーバーするよう指示する、
     請求項8に記載の通信制御装置。
  10.  基地局として少なくともリレー基地局と該リレー基地局に無線バックホール回線を提供するドナー基地局とを備える通信システムが備える複数の基地局それぞれの通信に関する情報を取得する取得部と、
     前記複数の基地局それぞれの通信に関する情報に基づいて、前記複数の基地局の中から接続する基地局を特定する特定部と、を備える、
     通信装置。
  11.  前記取得部は、前記複数の基地局それぞれの通信に関する情報として、前記複数の基地局それぞれがサポートする通信サービスに関する情報を取得し、
     前記特定部は、前記複数の基地局それぞれがサポートする通信サービスに関する情報に基づいて、前記複数の基地局の中から接続する基地局を特定する、
     請求項10に記載の通信装置。
  12.  前記通信サービスに関する情報は、前記基地局がサポートする通信サービスが通信態様の異なる複数の通信サービスのいずれであるかを示す情報であり、
     前記複数の通信サービスには、mMTC(massive Machine Type Communication)とeMBB(enhanced Mobile BroadBand)とURLLC(Ultra-Reliable and Low Latency Communication)との中から選択される少なくとも2つの通信サービスが含まれる、
     請求項11に記載の通信装置。
  13.  前記取得部は、前記複数の基地局それぞれの通信に関する情報として、前記複数の基地局それぞれがサポートするネットワークスライスの情報を取得し、
     前記特定部は、前記複数の基地局それぞれがサポートするネットワークスライスの情報に基づいて、前記複数の基地局の中から接続する基地局を特定する、
     請求項10に記載の通信装置。
  14.  ハンドオーバーを実行する切替部、を備え、
     前記取得部は、ハンドオーバーの実行基準となる切替基準の情報を取得し、
     前記切替部は、前記切替基準が満たされたか否かを判別し、前記切替基準が満たされた場合には、前記特定部が特定した基地局を切り替え先の基地局としてハンドオーバーを実行する、
     請求項10に記載の通信装置。
  15.  通信装置が接続可能なリレー基地局と該リレー基地局に無線バックホール回線を提供するドナー基地局とを備える通信システムに接続する前記通信装置が前記通信システムを使って受けるサービスに関する情報を取得し、
     前記サービスに関する情報に基づいて、前記通信装置と前記ドナー基地局との間でやり取りされるデータが経由する経路を決定する、
     通信制御方法。
  16.  通信装置が実行する通信方法であって、
     基地局として少なくともリレー基地局と該リレー基地局に無線バックホール回線を提供するドナー基地局とを備える通信システムが備える複数の基地局それぞれの通信に関する情報を取得し、
     前記複数の基地局それぞれの通信に関する情報に基づいて、前記複数の基地局の中から前記通信装置が接続する基地局を特定する、
     通信方法。
  17.  コンピュータを、
     通信装置が接続可能なリレー基地局と該リレー基地局に無線バックホール回線を提供するドナー基地局とを備える通信システムに接続する前記通信装置が前記通信システムを使って受けるサービスに関する情報を取得する取得部、
     前記サービスに関する情報に基づいて、前記通信装置と前記ドナー基地局との間でやり取りされるデータが経由する経路を決定する決定部、
     として機能させるための通信制御プログラム。
  18.  通信装置が有するコンピュータを、
     基地局として少なくともリレー基地局と該リレー基地局に無線バックホール回線を提供するドナー基地局とを備える通信システムが備える複数の基地局それぞれの通信に関する情報を取得する取得部、
     前記複数の基地局それぞれの通信に関する情報に基づいて、前記複数の基地局の中から前記通信装置が接続する基地局を特定する特定部、
     として機能させるための通信プログラム。
  19.  通信装置が接続可能なリレー基地局と、該リレー基地局に無線バックホール回線を提供するドナー基地局と、を少なくとも備える通信システムであって、
     前記通信システムが備える少なくとも1つの装置は、
     前記通信装置が前記通信システムを使って受けるサービスに関する情報を取得する取得部と、
     前記サービスに関する情報に基づいて、前記通信装置と前記ドナー基地局との間でやり取りされるデータが経由する経路を決定する決定部と、を備える、
     通信システム。
  20.  基地局としてリレー基地局と該リレー基地局に無線バックホール回線を提供するドナー基地局とを備えるとともに、複数の前記基地局の少なくとも1つに接続可能な通信装置を備える通信システムであって、
     前記通信装置は、
     前記通信システムが備える複数の基地局それぞれの通信に関する情報を取得する取得部と、
     前記複数の基地局それぞれの通信に関する情報に基づいて、前記複数の基地局の中から接続する基地局を特定する特定部と、を備える、
     通信システム。
PCT/JP2019/037195 2018-10-16 2019-09-24 通信制御装置、通信装置、通信制御方法、通信方法、通信制御プログラム、通信プログラム、及び通信システム WO2020080044A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/274,191 US20210345218A1 (en) 2018-10-16 2019-09-24 Communication control apparatus, communication apparatus, communication control method, communication method, communication control program, communication program, and communication system
BR112021006873-2A BR112021006873A2 (pt) 2018-10-16 2019-09-24 aparelhos, métodos e programas de controle de comunicação e de comunicação, e, sistema de comunicação.
KR1020217009389A KR20210075983A (ko) 2018-10-16 2019-09-24 통신 제어 장치, 통신 장치, 통신 제어 방법, 통신 방법, 통신 제어 프로그램, 통신 프로그램, 및 통신 시스템
EP19873546.6A EP3869869A4 (en) 2018-10-16 2019-09-24 COMMUNICATION CONTROL DEVICE, COMMUNICATION DEVICE, COMMUNICATION CONTROL METHOD, COMMUNICATION METHOD, COMMUNICATION CONTROL PROGRAM, COMMUNICATION PROGRAM AND COMMUNICATION SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-195447 2018-10-16
JP2018195447 2018-10-16

Publications (1)

Publication Number Publication Date
WO2020080044A1 true WO2020080044A1 (ja) 2020-04-23

Family

ID=70284518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037195 WO2020080044A1 (ja) 2018-10-16 2019-09-24 通信制御装置、通信装置、通信制御方法、通信方法、通信制御プログラム、通信プログラム、及び通信システム

Country Status (5)

Country Link
US (1) US20210345218A1 (ja)
EP (1) EP3869869A4 (ja)
KR (1) KR20210075983A (ja)
BR (1) BR112021006873A2 (ja)
WO (1) WO2020080044A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210176647A1 (en) * 2018-04-24 2021-06-10 Beijing Xiaomi Mobile Software Co., Ltd. Method and apparatus of wireless backhaul connection
JPWO2021261347A1 (ja) * 2020-06-25 2021-12-30
WO2022025666A1 (ko) * 2020-07-30 2022-02-03 삼성전자 주식회사 네트워크 슬라이스의 동시 사용 방법 및 장치
WO2022230524A1 (ja) * 2021-04-26 2022-11-03 キヤノン株式会社 通信装置、通信装置の制御方法、およびプログラム
WO2023079969A1 (ja) * 2021-11-08 2023-05-11 キヤノン株式会社 Iabドナー、制御方法、プログラム、及び、制御装置
WO2023089979A1 (ja) * 2021-11-18 2023-05-25 キヤノン株式会社 通信装置、通信方法、およびプログラム
WO2023153333A1 (ja) * 2022-02-09 2023-08-17 キヤノン株式会社 制御装置、制御方法、およびプログラム
WO2023188186A1 (ja) * 2022-03-30 2023-10-05 楽天モバイル株式会社 通信経路決定システム及び通信経路決定方法
WO2023203893A1 (ja) * 2022-04-18 2023-10-26 キヤノン株式会社 通信制御装置、通信装置の制御方法、およびプログラム
EP4307823A4 (en) * 2021-03-11 2024-03-27 Sony Group Corporation COMMUNICATION DEVICE AND COMMUNICATION METHOD
WO2024100785A1 (ja) * 2022-11-09 2024-05-16 三菱電機株式会社 変換装置、スマートメータ、スマートメータ通信システム、制御回路、記憶媒体および変換方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3952459A4 (en) * 2019-04-01 2022-03-30 Fujitsu Limited BASE STATION DEVICE, TERMINAL, WIRELESS COMMUNICATION SYSTEM AND METHOD OF CHANGING THE CONNECTION
US12082220B2 (en) * 2019-07-31 2024-09-03 Qualcomm Incorporated Techniques for connecting user equipment with multiple base stations through a wireless repeater
US11539830B2 (en) * 2020-10-29 2022-12-27 At&T Intellectual Property I, L.P. Facilitation of display of 5G icons or other next generation network icons
US20220182130A1 (en) * 2020-12-04 2022-06-09 Qualcomm Incorporated Techniques for using multi-connected repeaters in wireless communications
US11812346B2 (en) * 2021-03-12 2023-11-07 Verizon Patent And Licensing Inc. System and method for controlling and managing integrated access and backhaul
CN117395673B (zh) * 2022-07-05 2024-08-06 中国电信股份有限公司 通信方法、通信系统、用户设备、基站和存储介质

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140016537A1 (en) * 2012-05-04 2014-01-16 Qualcomm Incorporated Associating terminal user equipment with user equipment relays
US10536946B2 (en) * 2015-12-08 2020-01-14 Huawei Technologies Co., Ltd. Method and system for performing network slicing in a radio access network
US11477836B2 (en) * 2017-03-30 2022-10-18 Lg Electronics Inc. Method for performing path reselection in wireless communication system and apparatus therefor
US20180376380A1 (en) * 2017-06-23 2018-12-27 Huawei Technologies Co., Ltd. Exposure of capabilities of central units and distributed units in base station entities for admission control
CN109905887B (zh) * 2017-12-08 2020-10-23 上海诺基亚贝尔股份有限公司 用于中继设备的通信方法、设备和计算机可读存储介质
US10575230B2 (en) * 2018-07-20 2020-02-25 Google Llc Network slicing for WLAN
US11812444B2 (en) * 2018-08-03 2023-11-07 Nokia Technologies Oy Resource scheduling between network nodes
US11304092B2 (en) * 2018-09-12 2022-04-12 Ofinno, Llc Session packet duplication control

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
"3GPP RP-170168", March 2017, SAMSUNG, article "Motivation for Integrated Backhaul and Access"
"3GPP RP-172290", December 2017, QUALCOMM INCORPORATED, article "Study on Integrated Access and Backhaul for NR"
ERICSSON: "Supporting Slicing in IAB Networks", 3GPP TSG RAN WG2 #103BIS R2-1814366, vol. RAN WG2, 27 September 2018 (2018-09-27) - 8 October 2018 (2018-10-08), XP051523803 *
HUAWEI: "Slice support of IAB nodes", 3GPP TSG RAN WG3 #101 R3-184806, vol. RAN WG3, 10 August 2018 (2018-08-10), XP051528150 *
HUAWEI: "UP protocol design for architecture 1a", 3GPP TSG RAN WG3 ADHOC_R3-AH-1807 R3-183824, vol. RAN WG3, 2 July 2018 (2018-07-02), XP051468108 *
SAMSUNG ELECTRONICS R ET AL.: "Outcome of e-mail discussion [AH1807#08][IAB]: TP for TR 38.874 on Adaptation Layer", 3GPP TSG RAN WG2 ADHOC_2018_07_NR R2-1810973, vol. RAN WG2, 2 July 2018 (2018-07-02), XP051526678 *
See also references of EP3869869A4
SONY: "Route management in IAB", 3GPP TSG RAN WG2 ADHOC_2018_07_NR R2-1810116, vol. RAN WG2, 1 July 2018 (2018-07-01), XP051467329 *
TCL COMMUNICATION: "QoS and route selection for IAB", 3GPP TSG RAN WG2 ADHOC_2018_07_NR R2-1810114, vol. RAN WG2, 1 July 2018 (2018-07-01), XP051467327 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11510069B2 (en) * 2018-04-24 2022-11-22 Beijing Xiaomi Mobile Software Co., Ltd. Method and apparatus of wireless backhaul connection
US20210176647A1 (en) * 2018-04-24 2021-06-10 Beijing Xiaomi Mobile Software Co., Ltd. Method and apparatus of wireless backhaul connection
JPWO2021261347A1 (ja) * 2020-06-25 2021-12-30
WO2021261347A1 (ja) * 2020-06-25 2021-12-30 日本電気株式会社 飛行体管制装置、方法、及びプログラム
JP7472979B2 (ja) 2020-06-25 2024-04-23 日本電気株式会社 飛行体管制装置、方法、及びプログラム
WO2022025666A1 (ko) * 2020-07-30 2022-02-03 삼성전자 주식회사 네트워크 슬라이스의 동시 사용 방법 및 장치
EP4307823A4 (en) * 2021-03-11 2024-03-27 Sony Group Corporation COMMUNICATION DEVICE AND COMMUNICATION METHOD
WO2022230524A1 (ja) * 2021-04-26 2022-11-03 キヤノン株式会社 通信装置、通信装置の制御方法、およびプログラム
WO2023079969A1 (ja) * 2021-11-08 2023-05-11 キヤノン株式会社 Iabドナー、制御方法、プログラム、及び、制御装置
WO2023089979A1 (ja) * 2021-11-18 2023-05-25 キヤノン株式会社 通信装置、通信方法、およびプログラム
WO2023153333A1 (ja) * 2022-02-09 2023-08-17 キヤノン株式会社 制御装置、制御方法、およびプログラム
WO2023188186A1 (ja) * 2022-03-30 2023-10-05 楽天モバイル株式会社 通信経路決定システム及び通信経路決定方法
WO2023203893A1 (ja) * 2022-04-18 2023-10-26 キヤノン株式会社 通信制御装置、通信装置の制御方法、およびプログラム
WO2024100785A1 (ja) * 2022-11-09 2024-05-16 三菱電機株式会社 変換装置、スマートメータ、スマートメータ通信システム、制御回路、記憶媒体および変換方法

Also Published As

Publication number Publication date
US20210345218A1 (en) 2021-11-04
BR112021006873A2 (pt) 2021-07-20
EP3869869A1 (en) 2021-08-25
KR20210075983A (ko) 2021-06-23
EP3869869A4 (en) 2021-12-15

Similar Documents

Publication Publication Date Title
WO2020080044A1 (ja) 通信制御装置、通信装置、通信制御方法、通信方法、通信制御プログラム、通信プログラム、及び通信システム
WO2020235326A1 (ja) 通信装置、情報処理装置、通信方法、及び情報処理方法
EP2564636B1 (en) Handover preparations
WO2021029296A1 (ja) 端末装置、基地局装置、端末装置の制御方法および基地局装置の制御方法
US11785479B2 (en) Terminal device and communication method
WO2021090596A1 (ja) 端末装置、基地局装置、端末装置の制御方法および基地局装置の制御方法
WO2021193251A1 (ja) 通信装置および通信方法
WO2021241302A1 (ja) 情報処理装置、情報処理システム及び通信方法
WO2021192930A1 (ja) アプリケーションファンクションノード及び通信方法
CN114303422B (zh) 通信控制设备、通信设备、通信控制方法和通信方法
WO2024219407A1 (en) Relay device, communication device, and communication method
WO2024219408A1 (en) Relay device, communication device, and communication method
WO2021192946A1 (ja) 基地局装置、アプリケーションファンクションノード及び通信方法
GB2507437A (en) Handover from a relay node
WO2023127173A1 (ja) 通信方法、通信装置、及び通信システム
WO2023042430A1 (ja) 制御装置、通信装置、制御方法、通信方法、及び、通信システム
EP4432760A1 (en) Communication device and communication method
JP6899423B2 (ja) 通信システム及びハンドオーバ制御方法
JP2023160637A (ja) 端末装置、基地局装置及び通信方法
TW202308340A (zh) 通訊裝置及通訊方法
JP2021061567A (ja) 端末装置、基地局および通信制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19873546

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021006873

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2019873546

Country of ref document: EP

Effective date: 20210517

ENP Entry into the national phase

Ref document number: 112021006873

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210409

NENP Non-entry into the national phase

Ref country code: JP