WO2020079967A1 - Displacement detection sensor - Google Patents

Displacement detection sensor Download PDF

Info

Publication number
WO2020079967A1
WO2020079967A1 PCT/JP2019/034068 JP2019034068W WO2020079967A1 WO 2020079967 A1 WO2020079967 A1 WO 2020079967A1 JP 2019034068 W JP2019034068 W JP 2019034068W WO 2020079967 A1 WO2020079967 A1 WO 2020079967A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection sensor
displacement
piezoelectric element
displacement detection
base material
Prior art date
Application number
PCT/JP2019/034068
Other languages
French (fr)
Japanese (ja)
Inventor
暢謙 森田
正道 安藤
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2020515060A priority Critical patent/JP6973630B2/en
Publication of WO2020079967A1 publication Critical patent/WO2020079967A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage

Definitions

  • the present invention relates to a displacement detection sensor that detects displacement of a detection target.
  • Patent Document 1 discloses a glove with a sensor in which a bending sensor is arranged at a position from the wrist to the back of the hand on the back side of the hand.
  • the sensor of Patent Document 1 includes a base material of a plastic sheet.
  • the glove with the sensor of Patent Document 1 can detect only one-way displacement such as wrist bending. Therefore, the glove with a sensor of patent document 1 cannot detect a complicated motion.
  • an object of the present invention is to provide a displacement detection sensor capable of detecting displacements in a plurality of directions.
  • a displacement detection sensor of the present invention includes a base material arranged on a first detection target and a second detection target, a first detection unit that detects displacement in a first direction, and a first detection unit that is different from the first direction.
  • a second detection unit that detects displacement in two directions, the first detection unit and the second detection unit are disposed on the base material, and the first detection unit is at least the first detection unit.
  • the second detection unit is arranged at least on the second detection target.
  • FIG. 1 is an external perspective view of a glove provided with a displacement detection sensor.
  • 2A is a plan view of the displacement detection sensor
  • FIG. 2B is a sectional view taken along the line AA
  • FIG. 2C is a bottom view.
  • FIG. 3 is a sectional view of the first piezoelectric element 11.
  • FIG. 4 is a sectional view of the displacement detection sensor during a bending operation.
  • 5A is a rear perspective view of the displacement detection sensor when the torsional displacement is 0, and
  • FIG. 5B is a rear perspective view of the displacement detection sensor when a predetermined torsional displacement is generated.
  • FIG. 6 is an external perspective view of the globe 5A according to the first modification.
  • 7A is a plan view of a displacement detection sensor 1A according to Modification 1, FIG.
  • FIG. 7B is a cross-sectional view taken along the line AA
  • FIG. 7C is a bottom view
  • . 8A is a plan view of a displacement detection sensor 1B according to Modification 2
  • FIG. 8B is a cross-sectional view taken along the line AA
  • FIG. 8C is a bottom view
  • . 9A is a plan view of a displacement detection sensor 1C according to Modification 3
  • FIG. 9B is a sectional view taken along the line AA.
  • FIG. 10 is an external perspective view of a globe 5D according to Modification 4.
  • FIG. 11 is a plan view of a displacement detection sensor 1D according to Modification 4.
  • FIG. 1 is an external perspective view of a glove 5 equipped with the displacement detection sensor of the present invention.
  • the glove 5 is made of a material such as elastomer and has a shape that covers the entire hand and wrist. However, the glove 5 does not need to have a shape that covers the fingertip.
  • the displacement detection sensor 1 is arranged on the palm side of the glove 5.
  • the displacement detection sensor 1 has a rectangular shape in plan view.
  • the displacement detection sensor 1 is arranged along the base of the middle finger from the wrist part.
  • the displacement detection sensor 1 is arranged over a palm region 101, a wrist joint region 102, and a wrist region 103.
  • the palm region 101 is an example of the first detection target in the present invention
  • the wrist region 103 is an example of the second detection target in the present invention.
  • the displacement detection sensor 1 may be arranged on the back side of the hand. In this case, the area of the back of the hand becomes the first detection target.
  • FIG. 2A is a plan view of the displacement detection sensor 1
  • FIG. 2B is a cross-sectional view taken along the line AA
  • FIG. 2C is a bottom view.
  • the displacement detection sensor 1 includes a base material 10, a first piezoelectric element 11 arranged on the first main surface of the base material 10, and a second piezoelectric element 12 arranged on the second main surface of the base material 10. I have it.
  • the 1st piezoelectric element 11 is an example of the 1st primary detecting element of the present invention
  • the 2nd piezoelectric element 12 is an example of the 2nd primary detecting element of the present invention.
  • the base material 10 is made of a highly flexible material such as PI (polyimide) or urethane.
  • the base material 10, the first piezoelectric element 11, and the second piezoelectric element 12 each have a rectangular shape in plan view.
  • the areas of the first piezoelectric element 11 and the second piezoelectric element 12 are the same, and each is slightly smaller than the base material 10. However, in the present invention, the areas of the first piezoelectric element 11 and the second piezoelectric element 12 do not have to be the same.
  • FIG. 3 is a sectional view of the first piezoelectric element 11. Since the second piezoelectric element 12 has the same cross-sectional structure as the first piezoelectric element 11, the structure of the first piezoelectric element 11 is shown as a representative in FIG.
  • the first piezoelectric element 11 includes a first protective layer 50, a conductive thin film member 51, an intermediate layer 52, a detection electrode 53, a piezoelectric film 54, and a second protective layer 55.
  • the lower surface of the first protective layer 50 is attached to the base material 10.
  • the first protective layer 50, the intermediate layer 52, and the second protective layer 55 are made of, for example, PET (polyethylene terephthalate), PC (polycarbonate), PMMA (acrylic resin), COP (cycloolefin polymer), or the like.
  • the first protective layer 50 and the second protective layer 55 have a shape that covers the entire first piezoelectric element 11.
  • the first protective layer 50 and the second protective layer 55 have a function of protecting the first piezoelectric element 11, although they are not essential in the present invention.
  • the first protective layer 50 and the second protective layer 55 are made of a polyethylene foam film or the like, they can also exhibit waterproofness by covering the first piezoelectric element 11.
  • the first piezoelectric element 11 may be molded with a highly flexible material such as polyurethane or silicone.
  • the conductive thin film member 51 is attached to the upper surface of the first protective layer 50.
  • the intermediate layer 52 is attached to the upper surface of the conductive thin film member 51.
  • the detection electrode 53 is arranged on the upper surface of the intermediate layer 52.
  • a piezoelectric film 54 is arranged on the upper surface of the detection electrode 53.
  • the conductive thin film member 51 is attached to the upper portion of the piezoelectric film 54. That is, the conductive thin film member 51 is configured to sandwich and cover the intermediate layer 52, the detection electrode 53, and the piezoelectric film 54 from above and below.
  • the second protective layer 55 is attached to the upper surface of the conductive thin film member 51.
  • the intermediate layer 52 is arranged at the position closest to the piezoelectric film 54. As shown in FIG. 4, when the displacement detection sensor 1 is convexly bent and deformed to the upper surface side, the lower surface side of the displacement detection sensor 1 contracts and the upper surface side extends. That is, inside the displacement detection sensor 1, there is a portion (neutral surface of stress) that does not expand or contract.
  • the first protective layer 50 is thicker than the second protective layer 55.
  • the intermediate layer 52 is thinner than the second protective layer 55.
  • the first protective layer 50 is thickest. If the first piezoelectric element 11 has a vertically symmetrical shape with the piezoelectric film 54 interposed therebetween, the neutral plane of stress may be located at the piezoelectric film 54. If the neutral surface of the stress is located at the position of the piezoelectric film 54, charges having different polarities are generated to the same extent inside the piezoelectric film 54. Since the generated charges having different polarities cancel each other, there is a possibility that a large output cannot be obtained from the piezoelectric film 54.
  • the neutral surface of the stress is located on the first protective layer 50 side, the intermediate layer 52, or the detection electrode 53. To do. Therefore, the piezoelectric film 54 generates an electric charge with respect to the bending displacement. In the present embodiment, the neutral surface of the stress may not be located on the piezoelectric film 54.
  • the detection electrodes 53 may have different thicknesses, or the detection electrodes 53 may have the same thickness and different electrode hardnesses.
  • the piezoelectric film 54 has a rectangular shape in plan view.
  • the detection electrode 53 is arranged so as to cover substantially the entire first main surface of the piezoelectric film 54.
  • the detection electrode 53 is made of, for example, aluminum or copper foil deposited on the intermediate layer 52.
  • the detection electrode 53 is attached to the upper surface of the piezoelectric film 54 with an adhesive or the like (not shown).
  • the conductive thin film member 51 is arranged so as to cover the upper surface of the piezoelectric film 54 and the lower surface of the intermediate layer 52.
  • the conductive thin film member 51 for example, a conductive non-woven fabric on which an adhesive is formed, or a resin-impregnated copper foil on which an adhesive is formed is used.
  • the conductive thin film member 51 functions as a ground conductor (shield conductor).
  • the detection electrode 53 a conductive non-woven fabric having a pressure sensitive adhesive formed thereon or a resin-impregnated copper foil having a pressure sensitive adhesive formed thereon may be used.
  • the piezoelectric film 54 is made of a chiral polymer.
  • the piezoelectric film 54 is preferably uniaxially stretched polylactic acid (PLA), more preferably L-type polylactic acid (PLLA) or D-type polylactic acid (PDLA).
  • PLA uniaxially stretched polylactic acid
  • PLLA L-type polylactic acid
  • PDLA D-type polylactic acid
  • a chiral polymer has a helical structure in its main chain and has piezoelectricity when the molecules are uniaxially stretched and the molecules are oriented.
  • the piezoelectric constant of uniaxially stretched PLLA belongs to a very high class among polymers.
  • the chiral polymer has piezoelectricity due to molecular orientation treatment such as stretching, it is not necessary to perform poling treatment unlike other polymers such as PVDF and piezoelectric ceramics. Therefore, the piezoelectric constant of PLLA does not fluctuate over time and is extremely stable.
  • polylactic acid has no pyroelectricity, the amount of electric charge detected does not change even when heat from the hand is transmitted.
  • the draw ratio is preferably about 3 to 8 times.
  • the same effect as uniaxial stretching can be obtained by changing the stretching ratio of each axis. For example, when a certain direction is set as the X-axis and the drawing is performed 8 times in the X-axis direction and 2 times in the Y-axis direction orthogonal to the X-axis, the piezoelectric constant is uniaxially drawn 4 times in the X-axis direction. The effect is almost the same as the case. Since a film that is simply uniaxially stretched tends to tear along the stretching axis direction, the strength can be somewhat increased by performing the biaxial stretching as described above.
  • the piezoelectric film 54 of the first piezoelectric element 11 forms an angle of approximately 45 ° in the uniaxial stretching direction with respect to the major axis direction of the displacement detection sensor 1, as shown by the white arrow in FIG. It is arranged to make up.
  • the piezoelectric film 54 of the second piezoelectric element 12 is arranged in the uniaxial stretching direction along the long axis direction of the displacement detection sensor 1, as shown by the white arrow in FIG.
  • the first piezoelectric element 11 can detect bending deformation. As shown in FIG. 4, when the displacement detection sensor 1 is bent and displaced, the displacement detection sensor 1 is curved along the longitudinal direction. In this case, the upper surface side of the first piezoelectric element 11 extends along the longitudinal direction. As a result, the piezoelectric film 54 of the first piezoelectric element 11 generates electric charges according to the amount of expansion.
  • the displacement detection sensor 1 detects a bending displacement and its bending amount based on the voltage detected by the detection electrode 53. As shown in FIG. 1, the displacement detection sensor 1 is arranged over a palm region 101, a wrist joint region 102, and a wrist region 103.
  • the displacement detection sensor 1 can detect the displacement of the palm region 101 caused by the operation when the hand is opened and when the hand is grasped. Further, the displacement detection sensor 1 can also detect the displacement of the wrist joint region 102 caused by the operation when the wrist joint is bent.
  • FIG. 5A is a rear perspective view of the displacement detection sensor when the torsional displacement is 0
  • FIG. 5B is a rear perspective view of the displacement detection sensor when a predetermined torsional displacement occurs. is there.
  • the main surface of the base material 10 and the second piezoelectric element 12 is in a flat state.
  • the second piezoelectric element 12 does not expand and contract, and no charge is generated in the piezoelectric film 54 of the second piezoelectric element 12.
  • the base material 10 When the base material 10 is twisted, the base material 10 moves in opposite directions along the normal direction at two corners in the longitudinal direction, as shown in FIG. 5 (B). As a result, the piezoelectric film 54 on one side of the two corners of the second piezoelectric element 12 expands and the piezoelectric film 54 on the other side contracts.
  • the piezoelectric film 54 of the second piezoelectric element 12 is arranged in the uniaxial stretching direction along the longitudinal direction. Therefore, the piezoelectric film 54 stretches in the direction of + 45 ° with respect to the uniaxial stretching direction at the corner on one side and in the vicinity thereof, and in the direction of ⁇ 45 ° with respect to the uniaxial stretching direction at the corner of the other side and its vicinity. Contract to. Therefore, in the piezoelectric film 54, an electric charge is generated according to the extension or contraction of the corner caused by the twist.
  • the displacement detection sensor 1 detects the twist displacement and the amount of twist based on the voltage detected by the detection electrode 53. As shown in FIG. 1, the displacement detection sensor 1 is arranged over a palm region 101, a wrist joint region 102, and a wrist region 103. Therefore, the displacement detection sensor 1 can detect the twist displacement of the wrist region 103 and the twist amount caused by the wrist twisting operation.
  • the uniaxial stretching direction of the piezoelectric film 54 of the first piezoelectric element 11 is 45 ° with respect to the longitudinal direction, which coincides with the expansion / contraction direction caused by twisting. Therefore, in the piezoelectric film 54 of the first piezoelectric element 11, no electric charge is generated due to the twist displacement. Further, the uniaxial stretching direction of the piezoelectric film 54 of the second piezoelectric element 12 is along the longitudinal direction, and therefore coincides with the expansion / contraction direction caused by bending. Therefore, in the piezoelectric film 54 of the second piezoelectric element 12, electric charges are not generated by bending displacement.
  • the first piezoelectric element 11 is arranged at least along the palm region 101.
  • the second piezoelectric element 12 is arranged at least along the wrist region 103. Therefore, the displacement detection sensor 1 is configured such that the displacement of the palm region 101 which is the first detection target (the displacement caused by the action of gripping the hand and the action of opening the hand) and the displacement of the region 103 of the wrist which is the second detection target. (Displacement caused by twisting wrist) can be detected individually and with high accuracy. Therefore, the displacement detection sensor 1 can individually detect the movement of the user's hand and the movement of the wrist with high sensitivity when the user is exercising, training, or rehabilitating.
  • the displacement detection sensor 1 can also highly accurately detect an action such as pushing out water when the user is exercising, training, or rehabilitating in water.
  • the first piezoelectric element 11 and the second piezoelectric element 12 are arranged on the same base material 10. Therefore, it is not necessary to separately attach the two piezoelectric elements to the palm and the wrist.
  • first piezoelectric element 11 may be arranged at least along the palm region 101 that is the first detection target, and need not be arranged in the wrist region 103.
  • FIG. 6 is an external perspective view of a glove 5A including a displacement detection sensor 1A according to the first modification.
  • 7A is a plan view of a displacement detection sensor 1A according to Modification 1
  • FIG. 7B is a cross-sectional view taken along the line AA
  • FIG. 7C is a bottom view. .
  • the displacement detection sensor 1A has a shorter length in the longitudinal direction of the first piezoelectric element 11 than the displacement detection sensor 1.
  • the first piezoelectric element 11 is arranged along the palm region 101, and is not arranged in the wrist joint region 102 and the wrist region 103.
  • Other structures are the same as the structures shown in FIGS. 1, 2A, 2B, and 2C.
  • the first piezoelectric element 11 has high sensitivity to the movement of the palm and low sensitivity to the movement of the wrist and the wrist joint. Therefore, the displacement detection sensor 1A can detect the movement of the palm with high sensitivity without detecting the movement when the wrist joint is bent.
  • FIG. 8A is a plan view of a displacement detection sensor 1B according to Modification 2
  • FIG. 8B is a cross-sectional view taken along the line AA
  • FIG. 8C is a bottom view.
  • the same configurations as those in FIGS. 7A, 7B, and 7C are denoted by the same reference numerals, and description thereof will be omitted.
  • the base material 10 of the displacement detection sensor 1B includes a slit 90.
  • the slit 90 has a rectangular shape in plan view.
  • the slit 90 is formed along the lateral direction near the center of the base material 10 in the longitudinal direction.
  • the slit 90 is arranged in the area 102 of the wrist.
  • the displacement detection sensor 1B does not detect the voltage in the first piezoelectric element 11 due to the movement of the joint even when the displacement detection sensor 1B is arranged across a site having a large bending displacement such as a wrist joint.
  • the portion of the base material 10 where the slit 90 is formed is easier to bend than the other portions. That is, the portion of the base material 10 where the slit 90 is formed is a stress relaxation portion. Therefore, even if the displacement detection sensor 1B is arranged across a large displacement such as a wrist joint, stress is not concentrated on the displacement detection sensor 1B. Therefore, it is possible to reduce the risk that the displacement detection sensor 1B will be peeled off from the globe or the fixed position of the globe will be changed.
  • the stress relaxation portion is not limited to the slit 90, and may be a notch or a recess, for example.
  • the second piezoelectric elements 12 of the displacement detection sensor 1A and the displacement detection sensor 1B are arranged from the palm to the wrist, but the second piezoelectric element 12 extends at least along the region 103 of the wrist which is the second detection target. However, it is not necessary to arrange along the palm region 101.
  • FIG. 9A is a plan view of a displacement detection sensor 1C according to Modification 3
  • FIG. 9B is a sectional view (a sectional view taken along the line AA).
  • the first piezoelectric element 11 and the second piezoelectric element 12 were arranged so as to overlap each other when the base material 10 was viewed in plan.
  • the first piezoelectric element 11 and the second piezoelectric element 12 are arranged so as to be separated from each other when the base material 10 is viewed in a plan view. Further, the first piezoelectric element 11 and the second piezoelectric element 12 are arranged on the same main surface (first main surface) of the base material 10.
  • the first piezoelectric element 11 has a high sensitivity to the movement of the palm and a low sensitivity to the movement of the wrist and the wrist joint.
  • the second piezoelectric element 12 has high sensitivity to the movement of twisting of the wrist and low sensitivity to the movement of the palm.
  • the displacement detection sensor 1C can detect the movement of the user's hand and the movement of the wrist individually and with higher accuracy.
  • the displacement detection sensor 1C can detect the motion with high accuracy by providing a slit, a notch, or a recess in the stress relaxation portion 95 of the base material 10 to more accurately separate the motion.
  • the area of the first piezoelectric element 11 or the second piezoelectric element 12 and the output are in a proportional relationship. For this reason, the area of the first piezoelectric element 11 or the second piezoelectric element 12 is set to be large at a portion having a small deformation amount, and the area of the first piezoelectric element 11 or the second piezoelectric element 12 is set to be small for a large deformation amount.
  • the displacement detection sensor 1C can be adjusted to a more appropriate output level, and the circuit design of the displacement detection sensor 1C can be simplified.
  • the displacement detection sensor 1C when the displacement detection sensor 1C is attached to the sole of the shoe, the displacement detection sensor 1C can detect the amount of bending of the sole and the amount of twist of the sole in the left and right directions.
  • the amount of bending of the sole is larger than the amount of twist of the sole, and the signal from the first piezoelectric element 11 or the second piezoelectric element 12 is output in a form according to the amount of deformation.
  • the output levels of the first piezoelectric element 11 and the second piezoelectric element 12 can be made equal, and the displacement detection sensor 1C can be designed with a circuit design. Can be simplified.
  • the displacement detection sensor 1C can detect the deformation of a portion having a higher elongation rate as well.
  • FIG. 10 is a perspective view of a glove 5D including a displacement detection sensor 1D according to Modification 4, and FIG. 11 is a plan view of the displacement detection sensor 1D according to Modification 4.
  • the base material 10 of the displacement detection sensor 1D has a T shape when viewed in a plan view.
  • the displacement detection sensor 1D is also arranged over the palm region 101, the wrist joint region 102, and the wrist region 103.
  • the first piezoelectric element 11 is arranged in the palm area 101, and the second piezoelectric element 12 is arranged in the wrist area 103.
  • the portion serving as the stress relaxation portion is arranged in the wrist joint region 102.
  • the first piezoelectric element 11 and the second piezoelectric element 12 are arranged so that their longitudinal directions are orthogonal to each other when seen in a plan view.
  • the first piezoelectric element 11 is arranged along the direction in which the fingers are arranged.
  • the first piezoelectric element 11 has a low sensitivity to displacement in the longitudinal direction of the finger and a high sensitivity to displacement in the direction orthogonal to the longitudinal direction. Therefore, the displacement detection sensor 1D is less sensitive than the displacement detection sensors 1, 1A, 1B, 1C to the action of grasping the hand and the action of opening the hand.
  • the displacement detection sensor 1D can individually detect the operation of pushing out water and the operation of twisting the wrist with high sensitivity.
  • the displacement detection sensor is arranged across the palm and the wrist, and an example in which the movement of the hand and the movement of the wrist are individually detected with high sensitivity has been shown. You may arrange
  • the displacement detection sensor may be disposed, for example, across the joint of the ankle, and may detect the movement of the foot and the ankle.
  • the displacement detection sensor can be used for a walking tool for rehabilitation.
  • the displacement detection sensor can detect the state of the sole of the foot, and by cooperating with another walking assist robot or the like, a higher rehabilitation effect can be obtained.
  • the displacement detection sensor can be attached to something other than a human body such as a robot.
  • the displacement detection sensor is arranged so as to straddle a portion where the displacement is large, and detects each individual movement.
  • the piezoelectric sensor is shown as the sensor for detecting the bending displacement and the torsional displacement, but the bending displacement and the torsional displacement can be detected even with the strain sensor, for example.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

A displacement detection sensor (1) is provided with a substrate (10) on which a first detection object and a second detection object are arranged, a first detection part (11) for detecting displacement in a first direction, and a second detection part (12) for detecting displacement in a second direction different from the first direction, the first detection part (11) and the second detection part (12) being arranged on the substrate (10), the first detection part (11) being arranged in at least the first detection object, and the second detection part (12) being arranged in at least the second detection object.

Description

変位検出センサDisplacement detection sensor
 本発明は、検出対象の変位を検出する変位検出センサに関する。 The present invention relates to a displacement detection sensor that detects displacement of a detection target.
 特許文献1には、手の甲側において、手首から手の甲部までの位置に、曲げセンサを配置したセンサ付き手袋が開示されている。特許文献1のセンサは、プラスチックシートの基材を備えている。 Patent Document 1 discloses a glove with a sensor in which a bending sensor is arranged at a position from the wrist to the back of the hand on the back side of the hand. The sensor of Patent Document 1 includes a base material of a plastic sheet.
特開平5-285249号公報Japanese Patent Laid-Open No. 5-285249
 特許文献1のセンサ付き手袋では、手首の曲げ等の1方向の変位しか検出できない。したがって、特許文献1のセンサ付き手袋は、複雑な動きを検出することができない。 The glove with the sensor of Patent Document 1 can detect only one-way displacement such as wrist bending. Therefore, the glove with a sensor of patent document 1 cannot detect a complicated motion.
 そこで、本発明の目的は、複数の方向の変位を検出することができる変位検出センサを提供することにある。 Therefore, an object of the present invention is to provide a displacement detection sensor capable of detecting displacements in a plurality of directions.
 本発明の変位検出センサは、第1の検出対象および第2の検出対象に配置される基材と、第1の方向の変位を検出する第1検出部と、前記第1の方向と異なる第2の方向の変位を検出する第2検出部と、を備え、前記第1検出部および前記第2検出部は、前記基材に配置され、前記第1検出部は、少なくとも前記第1の検出対象に配置され、前記第2検出部は、少なくとも前記第2の検出対象に配置される。 A displacement detection sensor of the present invention includes a base material arranged on a first detection target and a second detection target, a first detection unit that detects displacement in a first direction, and a first detection unit that is different from the first direction. A second detection unit that detects displacement in two directions, the first detection unit and the second detection unit are disposed on the base material, and the first detection unit is at least the first detection unit. The second detection unit is arranged at least on the second detection target.
 この発明によれば、複数の方向の変位を検出することができる。 According to this invention, it is possible to detect displacements in a plurality of directions.
図1は、変位検出センサを備えたグローブの外観斜視図である。FIG. 1 is an external perspective view of a glove provided with a displacement detection sensor. 図2(A)は、変位検出センサの平面図であり、図2(B)は、A-A線の断面図であり、図2(C)は、下面図である。2A is a plan view of the displacement detection sensor, FIG. 2B is a sectional view taken along the line AA, and FIG. 2C is a bottom view. 図3は、第1圧電素子11の断面図である。FIG. 3 is a sectional view of the first piezoelectric element 11. 図4は、曲げ操作時の変位検出センサの断面図である。FIG. 4 is a sectional view of the displacement detection sensor during a bending operation. 図5(A)は捻れ変位が0の状態での変位検出センサの背面斜視図であり、図5(B)は所定の捻れ変位が生じた状態での変位検出センサの背面斜視図である。5A is a rear perspective view of the displacement detection sensor when the torsional displacement is 0, and FIG. 5B is a rear perspective view of the displacement detection sensor when a predetermined torsional displacement is generated. 図6は、変形例1に係るグローブ5Aの外観斜視図である。FIG. 6 is an external perspective view of the globe 5A according to the first modification. 図7(A)は、変形例1に係る変位検出センサ1Aの平面図であり、図7(B)は、A-A線の断面図であり、図7(C)は、下面図である。7A is a plan view of a displacement detection sensor 1A according to Modification 1, FIG. 7B is a cross-sectional view taken along the line AA, and FIG. 7C is a bottom view. . 図8(A)は、変形例2に係る変位検出センサ1Bの平面図であり、図8(B)は、A-A線の断面図であり、図8(C)は、下面図である。8A is a plan view of a displacement detection sensor 1B according to Modification 2, FIG. 8B is a cross-sectional view taken along the line AA, and FIG. 8C is a bottom view. . 図9(A)は、変形例3に係る変位検出センサ1Cの平面図であり、図9(B)は、A-A線の断面図である。9A is a plan view of a displacement detection sensor 1C according to Modification 3, and FIG. 9B is a sectional view taken along the line AA. 図10は、変形例4に係るグローブ5Dの外観斜視図である。FIG. 10 is an external perspective view of a globe 5D according to Modification 4. 図11は、変形例4に係る変位検出センサ1Dの平面図である。FIG. 11 is a plan view of a displacement detection sensor 1D according to Modification 4.
 図1は、本発明の変位検出センサを備えたグローブ5の外観斜視図である。グローブ5は、エラストマー等の部材からなり、手の全体および手首を覆う形状からなる。ただし、グローブ5は、指先を覆う形状である必要はない。 FIG. 1 is an external perspective view of a glove 5 equipped with the displacement detection sensor of the present invention. The glove 5 is made of a material such as elastomer and has a shape that covers the entire hand and wrist. However, the glove 5 does not need to have a shape that covers the fingertip.
 変位検出センサ1は、グローブ5のうち、手の平側に配置される。変位検出センサ1は、平面視して長方形状である。変位検出センサ1は、手首部分から中指の付け根に沿って配置されている。変位検出センサ1は、手の平の領域101、手首の関節の領域102、および手首の領域103に渡って配置されている。手の平の領域101は、本発明における第1の検出対象の一例であり、手首の領域103は、本発明における第2の検出対象の一例である。なお、変位検出センサ1は、手の甲側に配置されていてもよい。この場合、手の甲の領域が第1の検出対象になる。 The displacement detection sensor 1 is arranged on the palm side of the glove 5. The displacement detection sensor 1 has a rectangular shape in plan view. The displacement detection sensor 1 is arranged along the base of the middle finger from the wrist part. The displacement detection sensor 1 is arranged over a palm region 101, a wrist joint region 102, and a wrist region 103. The palm region 101 is an example of the first detection target in the present invention, and the wrist region 103 is an example of the second detection target in the present invention. The displacement detection sensor 1 may be arranged on the back side of the hand. In this case, the area of the back of the hand becomes the first detection target.
 図2(A)は、変位検出センサ1の平面図であり、図2(B)は、A-A線の断面図であり、図2(C)は、下面図である。 2A is a plan view of the displacement detection sensor 1, FIG. 2B is a cross-sectional view taken along the line AA, and FIG. 2C is a bottom view.
 変位検出センサ1は、基材10と、基材10の第1主面に配置された第1圧電素子11と、基材10の第2主面に配置された第2圧電素子12と、を備えている。第1圧電素子11は、本発明の第1検出部の一例であり、第2圧電素子12は、本発明の第2検出部の一例である。 The displacement detection sensor 1 includes a base material 10, a first piezoelectric element 11 arranged on the first main surface of the base material 10, and a second piezoelectric element 12 arranged on the second main surface of the base material 10. I have it. The 1st piezoelectric element 11 is an example of the 1st primary detecting element of the present invention, and the 2nd piezoelectric element 12 is an example of the 2nd primary detecting element of the present invention.
 基材10は、PI(ポリイミド)またはウレタン等の可撓性の高い材料からなる。基材10、第1圧電素子11、および第2圧電素子12は、それぞれ平面視して長方形状である。第1圧電素子11および第2圧電素子12の面積は同一であり、それぞれ基材10よりもわずかに小さい。ただし、本発明において、第1圧電素子11および第2圧電素子12の面積が同一である必要はない。 The base material 10 is made of a highly flexible material such as PI (polyimide) or urethane. The base material 10, the first piezoelectric element 11, and the second piezoelectric element 12 each have a rectangular shape in plan view. The areas of the first piezoelectric element 11 and the second piezoelectric element 12 are the same, and each is slightly smaller than the base material 10. However, in the present invention, the areas of the first piezoelectric element 11 and the second piezoelectric element 12 do not have to be the same.
 図3は、第1圧電素子11の断面図である。なお、第2圧電素子12は、第1圧電素子11と同じ断面構造を有するため、図3では、代表して第1圧電素子11の構造を示す。 FIG. 3 is a sectional view of the first piezoelectric element 11. Since the second piezoelectric element 12 has the same cross-sectional structure as the first piezoelectric element 11, the structure of the first piezoelectric element 11 is shown as a representative in FIG.
 第1圧電素子11は、第1保護層50、導電性薄膜部材51、中間層52、検出用電極53、圧電フィルム54、および第2保護層55を備えている。第1保護層50の下面は、基材10に貼り付けられる。 The first piezoelectric element 11 includes a first protective layer 50, a conductive thin film member 51, an intermediate layer 52, a detection electrode 53, a piezoelectric film 54, and a second protective layer 55. The lower surface of the first protective layer 50 is attached to the base material 10.
 第1保護層50、中間層52、および第2保護層55は、例えばPET(ポリエチレンテレフタレート)、PC(ポリカーボネート)、PMMA(アクリル樹脂)、またはCOP(シクロオレフィンポリマー)等からなる。第1保護層50および第2保護層55は、第1圧電素子11の全体を覆う形状からなる。第1保護層50および第2保護層55は、本発明において必須の構成ではないが、第1圧電素子11を保護する機能を有する。また、第1保護層50および第2保護層55は、ポリエチレンフォームのフィルム等からなる場合、第1圧電素子11を覆うことにより防水性を発揮することもできる。また、第1圧電素子11は、ポリウレタンまたはシリコーン等の様な可撓性の高い材料でモールドされてもよい。 The first protective layer 50, the intermediate layer 52, and the second protective layer 55 are made of, for example, PET (polyethylene terephthalate), PC (polycarbonate), PMMA (acrylic resin), COP (cycloolefin polymer), or the like. The first protective layer 50 and the second protective layer 55 have a shape that covers the entire first piezoelectric element 11. The first protective layer 50 and the second protective layer 55 have a function of protecting the first piezoelectric element 11, although they are not essential in the present invention. In addition, when the first protective layer 50 and the second protective layer 55 are made of a polyethylene foam film or the like, they can also exhibit waterproofness by covering the first piezoelectric element 11. The first piezoelectric element 11 may be molded with a highly flexible material such as polyurethane or silicone.
 第1保護層50の上面は、導電性薄膜部材51が貼り付けられる。導電性薄膜部材51の上面には、中間層52が貼り付けられる。中間層52の上面には、検出用電極53が配置される。検出用電極53の上面には、圧電フィルム54が配置される。圧電フィルム54の上部には、導電性薄膜部材51が貼り付けられる。すなわち、導電性薄膜部材51は、中間層52、検出用電極53、および圧電フィルム54を上下で挟み込んで覆う様になっている。導電性薄膜部材51の上面には、第2保護層55が貼り付けられる。 The conductive thin film member 51 is attached to the upper surface of the first protective layer 50. The intermediate layer 52 is attached to the upper surface of the conductive thin film member 51. The detection electrode 53 is arranged on the upper surface of the intermediate layer 52. A piezoelectric film 54 is arranged on the upper surface of the detection electrode 53. The conductive thin film member 51 is attached to the upper portion of the piezoelectric film 54. That is, the conductive thin film member 51 is configured to sandwich and cover the intermediate layer 52, the detection electrode 53, and the piezoelectric film 54 from above and below. The second protective layer 55 is attached to the upper surface of the conductive thin film member 51.
 中間層52は、圧電フィルム54に最も近い位置に配置される。図4に示す様に、変位検出センサ1が上面側に凸に曲げ変形した場合、変位検出センサ1の下面側が収縮し、上面側が伸張する。すなわち、変位検出センサ1の内部には、伸縮しない箇所(応力の中立面)が存在する。 The intermediate layer 52 is arranged at the position closest to the piezoelectric film 54. As shown in FIG. 4, when the displacement detection sensor 1 is convexly bent and deformed to the upper surface side, the lower surface side of the displacement detection sensor 1 contracts and the upper surface side extends. That is, inside the displacement detection sensor 1, there is a portion (neutral surface of stress) that does not expand or contract.
 第1保護層50は、第2保護層55よりも厚い。中間層52は、第2保護層55よりも薄い。第1保護層50は、最も厚くなっている。仮に、第1圧電素子11が、圧電フィルム54を挟んで上下に対称な形状であると、応力の中立面が圧電フィルム54の位置になる可能性がある。仮に応力の中立面が圧電フィルム54の位置になると圧電フィルム54の内部で極性の異なる電荷が同程度発生する。発生した極性の異なる電荷は、互いにキャンセルし合うため、圧電フィルム54から大きな出力が得られない可能性がある。しかし、本実施形態の第1圧電素子11は、第1保護層50が厚くなっているため、応力の中立面は、第1保護層50側、中間層52、または検出用電極53に位置する。したがって、圧電フィルム54は、曲げ変位に対して電荷を生じる。なお、本実施形態においては、応力の中立面が圧電フィルム54の位置にならないようにすればよい。例えば、検出用電極53の厚みを異ならせてもよく、又は検出用電極53の厚みは同じで電極の硬さを異ならせてもよい。 The first protective layer 50 is thicker than the second protective layer 55. The intermediate layer 52 is thinner than the second protective layer 55. The first protective layer 50 is thickest. If the first piezoelectric element 11 has a vertically symmetrical shape with the piezoelectric film 54 interposed therebetween, the neutral plane of stress may be located at the piezoelectric film 54. If the neutral surface of the stress is located at the position of the piezoelectric film 54, charges having different polarities are generated to the same extent inside the piezoelectric film 54. Since the generated charges having different polarities cancel each other, there is a possibility that a large output cannot be obtained from the piezoelectric film 54. However, in the first piezoelectric element 11 of the present embodiment, since the first protective layer 50 is thick, the neutral surface of the stress is located on the first protective layer 50 side, the intermediate layer 52, or the detection electrode 53. To do. Therefore, the piezoelectric film 54 generates an electric charge with respect to the bending displacement. In the present embodiment, the neutral surface of the stress may not be located on the piezoelectric film 54. For example, the detection electrodes 53 may have different thicknesses, or the detection electrodes 53 may have the same thickness and different electrode hardnesses.
 圧電フィルム54は、平面視して長方形状である。検出用電極53は、圧電フィルム54の第1主面の略全体を覆うように配置されている。検出用電極53は、例えば中間層52に蒸着されたアルミまたは銅箔等からなる。検出用電極53は、不図示の粘着剤等により圧電フィルム54の上面に貼り付けられる。 The piezoelectric film 54 has a rectangular shape in plan view. The detection electrode 53 is arranged so as to cover substantially the entire first main surface of the piezoelectric film 54. The detection electrode 53 is made of, for example, aluminum or copper foil deposited on the intermediate layer 52. The detection electrode 53 is attached to the upper surface of the piezoelectric film 54 with an adhesive or the like (not shown).
 導電性薄膜部材51は、圧電フィルム54の上面および中間層52の下面を覆うように配置されている。導電性薄膜部材51は、例えば導電性不織布に粘着剤が形成されたもの、または樹脂が含浸された銅箔に粘着剤が形成されたものが用いられる。導電性薄膜部材51は、グランド導体(シールド導体)として機能する。なお、検出用電極53も導電性不織布に粘着剤が形成されたもの、または樹脂が含浸された銅箔に粘着剤が形成されたものを用いてもよい。 The conductive thin film member 51 is arranged so as to cover the upper surface of the piezoelectric film 54 and the lower surface of the intermediate layer 52. As the conductive thin film member 51, for example, a conductive non-woven fabric on which an adhesive is formed, or a resin-impregnated copper foil on which an adhesive is formed is used. The conductive thin film member 51 functions as a ground conductor (shield conductor). As the detection electrode 53, a conductive non-woven fabric having a pressure sensitive adhesive formed thereon or a resin-impregnated copper foil having a pressure sensitive adhesive formed thereon may be used.
 圧電フィルム54は、キラル高分子で構成されている。特に、圧電フィルム54は、一軸延伸されたポリ乳酸(PLA)、さらにはL型ポリ乳酸(PLLA)またはD型ポリ乳酸(PDLA)であることが好ましい。 The piezoelectric film 54 is made of a chiral polymer. In particular, the piezoelectric film 54 is preferably uniaxially stretched polylactic acid (PLA), more preferably L-type polylactic acid (PLLA) or D-type polylactic acid (PDLA).
 キラル高分子は、主鎖が螺旋構造を有し、一軸延伸されて分子が配向すると、圧電性を有する。一軸延伸されたPLLAの圧電定数は、高分子中で非常に高い部類に属する。また、キラル高分子は、延伸等による分子の配向処理で圧電性が生じるため、PVDF等の他のポリマーや圧電セラミックスのように、ポーリング処理を行う必要がない。このため、PLLAの圧電定数は経時的に変動することがなく、極めて安定している。さらに、ポリ乳酸は、焦電性がないため、手の熱が伝わる場合であっても検出される電荷量が変化することがない。 A chiral polymer has a helical structure in its main chain and has piezoelectricity when the molecules are uniaxially stretched and the molecules are oriented. The piezoelectric constant of uniaxially stretched PLLA belongs to a very high class among polymers. In addition, since the chiral polymer has piezoelectricity due to molecular orientation treatment such as stretching, it is not necessary to perform poling treatment unlike other polymers such as PVDF and piezoelectric ceramics. Therefore, the piezoelectric constant of PLLA does not fluctuate over time and is extremely stable. Furthermore, since polylactic acid has no pyroelectricity, the amount of electric charge detected does not change even when heat from the hand is transmitted.
 なお、延伸倍率は3~8倍程度が好適である。延伸後に熱処理を施すことにより、ポリ乳酸の延びきり鎖結晶の結晶化が促進され圧電定数が向上する。また、二軸延伸した場合はそれぞれの軸の延伸倍率を異ならせることによって一軸延伸と同様の効果を得ることが出来る。例えば、ある方向をX軸としてX軸方向に8倍、X軸に直交するY軸方向に2倍の延伸を施した場合、圧電定数に関してはおよそX軸方向に4倍の一軸延伸を施した場合とほぼ同等の効果が得られる。単純に一軸延伸したフィルムは延伸軸方向に沿って裂け易いため、前述したような二軸延伸を行うことにより幾分強度を増すことができる。 Note that the draw ratio is preferably about 3 to 8 times. By performing heat treatment after stretching, crystallization of the extended chain crystal of polylactic acid is promoted and the piezoelectric constant is improved. In the case of biaxial stretching, the same effect as uniaxial stretching can be obtained by changing the stretching ratio of each axis. For example, when a certain direction is set as the X-axis and the drawing is performed 8 times in the X-axis direction and 2 times in the Y-axis direction orthogonal to the X-axis, the piezoelectric constant is uniaxially drawn 4 times in the X-axis direction. The effect is almost the same as the case. Since a film that is simply uniaxially stretched tends to tear along the stretching axis direction, the strength can be somewhat increased by performing the biaxial stretching as described above.
 本実施形態では、第1圧電素子11の圧電フィルム54は、図2(A)の白い矢印に示すように、変位検出センサ1の長軸方向に対して一軸延伸方向が略45°の角度を成すように配置されている。第2圧電素子12の圧電フィルム54は、図2(C)の白い矢印に示すように、変位検出センサ1の長軸方向に沿って一軸延伸方向が配置されている。 In the present embodiment, the piezoelectric film 54 of the first piezoelectric element 11 forms an angle of approximately 45 ° in the uniaxial stretching direction with respect to the major axis direction of the displacement detection sensor 1, as shown by the white arrow in FIG. It is arranged to make up. The piezoelectric film 54 of the second piezoelectric element 12 is arranged in the uniaxial stretching direction along the long axis direction of the displacement detection sensor 1, as shown by the white arrow in FIG.
 第1圧電素子11は、曲げ変形を検出できる。図4に示すように、変位検出センサ1に曲げ変位が生じた場合、変位検出センサ1は、長手方向に沿って湾曲した状態となる。この場合、第1圧電素子11の上面側は、長手方向に沿って伸びる。これにより、第1圧電素子11の圧電フィルム54は、伸張量に応じた電荷を発生する。変位検出センサ1は、検出用電極53で検出される電圧に基づいて、曲げ変位およびその曲げ量を検出する。図1に示した様に、変位検出センサ1は、手の平の領域101、手首の関節の領域102、および手首の領域103に渡って配置されている。よって、変位検出センサ1は、手を開いた時および手を握った時の動作により生じる、手の平の領域101の変位を検出することができる。また、変位検出センサ1は、手首の関節を曲げた時の動作により生じる手首の関節の領域102の変位も検出することができる。 The first piezoelectric element 11 can detect bending deformation. As shown in FIG. 4, when the displacement detection sensor 1 is bent and displaced, the displacement detection sensor 1 is curved along the longitudinal direction. In this case, the upper surface side of the first piezoelectric element 11 extends along the longitudinal direction. As a result, the piezoelectric film 54 of the first piezoelectric element 11 generates electric charges according to the amount of expansion. The displacement detection sensor 1 detects a bending displacement and its bending amount based on the voltage detected by the detection electrode 53. As shown in FIG. 1, the displacement detection sensor 1 is arranged over a palm region 101, a wrist joint region 102, and a wrist region 103. Therefore, the displacement detection sensor 1 can detect the displacement of the palm region 101 caused by the operation when the hand is opened and when the hand is grasped. Further, the displacement detection sensor 1 can also detect the displacement of the wrist joint region 102 caused by the operation when the wrist joint is bent.
 一方、図5(A)は捻れ変位が0の状態での変位検出センサの背面斜視図であり、図5(B)は所定の捻れ変位が生じた状態での変位検出センサの背面斜視図である。 On the other hand, FIG. 5A is a rear perspective view of the displacement detection sensor when the torsional displacement is 0, and FIG. 5B is a rear perspective view of the displacement detection sensor when a predetermined torsional displacement occurs. is there.
 図5(A)に示すように、捻れ変位が0の場合、基材10および第2圧電素子12は、主面が平坦な状態となる。この場合、第2圧電素子12は伸縮せず、第2圧電素子12の圧電フィルム54に電荷が生じない。 As shown in FIG. 5A, when the torsional displacement is 0, the main surface of the base material 10 and the second piezoelectric element 12 is in a flat state. In this case, the second piezoelectric element 12 does not expand and contract, and no charge is generated in the piezoelectric film 54 of the second piezoelectric element 12.
 そして、基材10が捻れた場合、基材10は、図5(B)に示すように、長手方向の2つの角において、それぞれ法線方向に沿った逆方向へ移動する。これにより、第2圧電素子12のうち、2つの角の一方側の圧電フィルム54は伸張し、他方側の圧電フィルム54は収縮する。 When the base material 10 is twisted, the base material 10 moves in opposite directions along the normal direction at two corners in the longitudinal direction, as shown in FIG. 5 (B). As a result, the piezoelectric film 54 on one side of the two corners of the second piezoelectric element 12 expands and the piezoelectric film 54 on the other side contracts.
 第2圧電素子12の圧電フィルム54は、長手方向に沿って一軸延伸方向が配置されている。したがって、圧電フィルム54は、一方側の角およびその付近においては一軸延伸方向に対して+45°の方向へ伸張し、他方側の角およびその付近においては一軸延伸方向に対して-45°の方向へ収縮する。したがって、圧電フィルム54は、捻れにより生じる角の伸張または収縮に応じた電荷が生じる。 The piezoelectric film 54 of the second piezoelectric element 12 is arranged in the uniaxial stretching direction along the longitudinal direction. Therefore, the piezoelectric film 54 stretches in the direction of + 45 ° with respect to the uniaxial stretching direction at the corner on one side and in the vicinity thereof, and in the direction of −45 ° with respect to the uniaxial stretching direction at the corner of the other side and its vicinity. Contract to. Therefore, in the piezoelectric film 54, an electric charge is generated according to the extension or contraction of the corner caused by the twist.
 変位検出センサ1は、検出用電極53で検出される電圧に基づいて、捻れ変位およびその捻れ量を検出する。図1に示した様に、変位検出センサ1は、手の平の領域101、手首の関節の領域102、および手首の領域103に渡って配置されている。よって、変位検出センサ1は、手首の捻れ動作により生じる手首の領域103の捻れ変位およびその捻れ量を検出することができる。 The displacement detection sensor 1 detects the twist displacement and the amount of twist based on the voltage detected by the detection electrode 53. As shown in FIG. 1, the displacement detection sensor 1 is arranged over a palm region 101, a wrist joint region 102, and a wrist region 103. Therefore, the displacement detection sensor 1 can detect the twist displacement of the wrist region 103 and the twist amount caused by the wrist twisting operation.
 なお、第1圧電素子11の圧電フィルム54の一軸延伸方向は、長手方向に対して45°であり、捻れにより生じる伸縮方向と一致する。したがって、第1圧電素子11の圧電フィルム54において、捻れ変位によって電荷が生じることはない。また、第2圧電素子12の圧電フィルム54の一軸延伸方向は、長手方向に沿っているため、曲げにより生じる伸縮方向と一致する。したがって、第2圧電素子12の圧電フィルム54において、曲げ変位によって電荷が生じることはない。 The uniaxial stretching direction of the piezoelectric film 54 of the first piezoelectric element 11 is 45 ° with respect to the longitudinal direction, which coincides with the expansion / contraction direction caused by twisting. Therefore, in the piezoelectric film 54 of the first piezoelectric element 11, no electric charge is generated due to the twist displacement. Further, the uniaxial stretching direction of the piezoelectric film 54 of the second piezoelectric element 12 is along the longitudinal direction, and therefore coincides with the expansion / contraction direction caused by bending. Therefore, in the piezoelectric film 54 of the second piezoelectric element 12, electric charges are not generated by bending displacement.
 第1圧電素子11は、少なくとも手の平の領域101に沿って配置されている。第2圧電素子12は、少なくとも手首の領域103に沿って配置されている。したがって、変位検出センサ1は、第1の検出対象である手の平の領域101の変位(手を握る動作および手を開く動作により生じる変位)と、第2の検出対象である手首の領域103の変位(手首を捻る動作により生じる変位)と、を個別に、高精度に検出することができる。よって、変位検出センサ1は、利用者が運動、トレーニング、またはリハビリテーションを行っている場合に、当該利用者の手の動きおよび手首の動きをそれぞれ個別に高感度に検出することができる。 The first piezoelectric element 11 is arranged at least along the palm region 101. The second piezoelectric element 12 is arranged at least along the wrist region 103. Therefore, the displacement detection sensor 1 is configured such that the displacement of the palm region 101 which is the first detection target (the displacement caused by the action of gripping the hand and the action of opening the hand) and the displacement of the region 103 of the wrist which is the second detection target. (Displacement caused by twisting wrist) can be detected individually and with high accuracy. Therefore, the displacement detection sensor 1 can individually detect the movement of the user's hand and the movement of the wrist with high sensitivity when the user is exercising, training, or rehabilitating.
 なお、手に動きがなくとも、例えば、水中で手の平を前面に押し出す様な動作をした場合には、手の平に水圧が掛かり、変位検出センサ1に曲げ変位が生じる。したがって、変位検出センサ1は、利用者が水中での運動、トレーニング、またはリハビリテーションを行なっている場合に、水を押し出す様な動作を高精度に検出することもできる。 Note that even if the hand does not move, for example, when the palm is pushed forward in water, water pressure is applied to the palm, and the displacement detection sensor 1 is bent and displaced. Therefore, the displacement detection sensor 1 can also highly accurately detect an action such as pushing out water when the user is exercising, training, or rehabilitating in water.
 また、変位検出センサ1は、第1圧電素子11および第2圧電素子12を同じ基材10に配置している。そのため、2つの圧電素子を手の平と手首とに、個別に取り付ける必要はない。 Also, in the displacement detection sensor 1, the first piezoelectric element 11 and the second piezoelectric element 12 are arranged on the same base material 10. Therefore, it is not necessary to separately attach the two piezoelectric elements to the palm and the wrist.
 なお、第1圧電素子11は、少なくとも第1の検出対象である手の平の領域101に沿って配置されていればよく、手首の領域103に配置されている必要はない。 Note that the first piezoelectric element 11 may be arranged at least along the palm region 101 that is the first detection target, and need not be arranged in the wrist region 103.
 図6は、変形例1に係る変位検出センサ1Aを備えたグローブ5Aの外観斜視図である。図7(A)は、変形例1に係る変位検出センサ1Aの平面図であり、図7(B)は、A-A線の断面図であり、図7(C)は、下面図である。 FIG. 6 is an external perspective view of a glove 5A including a displacement detection sensor 1A according to the first modification. 7A is a plan view of a displacement detection sensor 1A according to Modification 1, FIG. 7B is a cross-sectional view taken along the line AA, and FIG. 7C is a bottom view. .
 変位検出センサ1Aは、変位検出センサ1よりも、第1圧電素子11の長手方向の長さが短くなっている。第1圧電素子11は、手の平の領域101に沿って配置されていて、手首の関節の領域102および手首の領域103には配置されていない。その他の構成は、図1、図2(A)、図2(B)および図2(C)に示した構造と同一である。 The displacement detection sensor 1A has a shorter length in the longitudinal direction of the first piezoelectric element 11 than the displacement detection sensor 1. The first piezoelectric element 11 is arranged along the palm region 101, and is not arranged in the wrist joint region 102 and the wrist region 103. Other structures are the same as the structures shown in FIGS. 1, 2A, 2B, and 2C.
 この場合、第1圧電素子11は、手の平の動きに対して高い感度を有し、手首および手首の関節の動きに対しては感度が低い。したがって、変位検出センサ1Aは、手首の関節を曲げた時の動作を検出することなく、手の平の動きを高感度に検出することができる。 In this case, the first piezoelectric element 11 has high sensitivity to the movement of the palm and low sensitivity to the movement of the wrist and the wrist joint. Therefore, the displacement detection sensor 1A can detect the movement of the palm with high sensitivity without detecting the movement when the wrist joint is bent.
 図8(A)は、変形例2に係る変位検出センサ1Bの平面図であり、図8(B)は、A-A線の断面図であり、図8(C)は、下面図である。図7(A)、図7(B)、および図7(C)と同一の構成は、同一の符号を付し、説明を省略する。変位検出センサ1Bの基材10は、スリット90を備えている。スリット90は、平面視して長方形状である。スリット90は、基材10の長手方向の中央付近において、短手方向に沿って形成されている。スリット90は、手首の領域102に配置される。 8A is a plan view of a displacement detection sensor 1B according to Modification 2, FIG. 8B is a cross-sectional view taken along the line AA, and FIG. 8C is a bottom view. . The same configurations as those in FIGS. 7A, 7B, and 7C are denoted by the same reference numerals, and description thereof will be omitted. The base material 10 of the displacement detection sensor 1B includes a slit 90. The slit 90 has a rectangular shape in plan view. The slit 90 is formed along the lateral direction near the center of the base material 10 in the longitudinal direction. The slit 90 is arranged in the area 102 of the wrist.
 この場合、第1圧電素子11が配置されていない箇所が曲げられたとしても、基材10の伸縮は、スリット90で遮断される。つまり、手首および手首の関節の動きによって生じる部分の曲げ変位は、スリット90で遮断され、第1圧電素子11が配置されている部分には伝達されない。よって、変位検出センサ1Bは、手首の関節の様に、大きな曲げ変位を有する部位に跨がって配置される場合でも、関節の動きにより第1圧電素子11において電圧を検出することがない。 In this case, even if the portion where the first piezoelectric element 11 is not arranged is bent, the expansion and contraction of the base material 10 is blocked by the slit 90. In other words, the bending displacement of the portion caused by the movement of the wrist and the joint of the wrist is blocked by the slit 90 and is not transmitted to the portion where the first piezoelectric element 11 is arranged. Therefore, the displacement detection sensor 1B does not detect the voltage in the first piezoelectric element 11 due to the movement of the joint even when the displacement detection sensor 1B is arranged across a site having a large bending displacement such as a wrist joint.
 また、基材10のうちスリット90が形成されている箇所は、他の部分よりも曲げやすくなっている。すなわち、基材10のうちスリット90が形成されている箇所は、応力緩和部となっている。したがって、変位検出センサ1Bは、手首の関節等の変位が大きい箇所に跨がって配置されたとしても、変位検出センサ1Bに応力が集中することがなくなる。そのため、変位検出センサ1Bがグローブから剥れたり、グローブに対する固定位置が変わるおそれも低減される。 Also, the portion of the base material 10 where the slit 90 is formed is easier to bend than the other portions. That is, the portion of the base material 10 where the slit 90 is formed is a stress relaxation portion. Therefore, even if the displacement detection sensor 1B is arranged across a large displacement such as a wrist joint, stress is not concentrated on the displacement detection sensor 1B. Therefore, it is possible to reduce the risk that the displacement detection sensor 1B will be peeled off from the globe or the fixed position of the globe will be changed.
 なお、応力緩和部は、スリット90に限らず、例えば切欠きまたは凹みであってもよい。また、変位検出センサ1Aおよび変位検出センサ1Bの第2圧電素子12は、手の平から手首にかけて配置されているが、第2圧電素子12は、少なくとも第2の検出対象である手首の領域103に沿って配置されていればよく、手の平の領域101に沿って配置されている必要はない。 The stress relaxation portion is not limited to the slit 90, and may be a notch or a recess, for example. Further, the second piezoelectric elements 12 of the displacement detection sensor 1A and the displacement detection sensor 1B are arranged from the palm to the wrist, but the second piezoelectric element 12 extends at least along the region 103 of the wrist which is the second detection target. However, it is not necessary to arrange along the palm region 101.
 図9(A)は、変形例3に係る変位検出センサ1Cの平面図であり、図9(B)は、断面図(A-A線の断面図)である。 FIG. 9A is a plan view of a displacement detection sensor 1C according to Modification 3, and FIG. 9B is a sectional view (a sectional view taken along the line AA).
 変位検出センサ1、1A,1Bでは、第1圧電素子11および第2圧電素子12は、基材10を平面視して重なって配置されていた。これに対して、変形例3に掛かる変位検出センサ1Cでは、第1圧電素子11および第2圧電素子12は、基材10を平面視して離間して配置されている。また、第1圧電素子11および第2圧電素子12は、基材10の同一の主面(第1主面)に配置されている。 In the displacement detection sensors 1, 1A, 1B, the first piezoelectric element 11 and the second piezoelectric element 12 were arranged so as to overlap each other when the base material 10 was viewed in plan. On the other hand, in the displacement detection sensor 1C according to Modification 3, the first piezoelectric element 11 and the second piezoelectric element 12 are arranged so as to be separated from each other when the base material 10 is viewed in a plan view. Further, the first piezoelectric element 11 and the second piezoelectric element 12 are arranged on the same main surface (first main surface) of the base material 10.
 この場合も、第1圧電素子11は、手の平の動きに対して高い感度を有し、手首および手首の関節の動きに対して感度が低い。また、第2圧電素子12は、手首の捻れの動きに対して高い感度を有し、手の平の動きに対して感度が低い。 Also in this case, the first piezoelectric element 11 has a high sensitivity to the movement of the palm and a low sensitivity to the movement of the wrist and the wrist joint. In addition, the second piezoelectric element 12 has high sensitivity to the movement of twisting of the wrist and low sensitivity to the movement of the palm.
 したがって、変位検出センサ1Cは、利用者の手の動きおよび手首の動きをそれぞれ個別に、より高精度に検出することができる。 Therefore, the displacement detection sensor 1C can detect the movement of the user's hand and the movement of the wrist individually and with higher accuracy.
 また、基材10のうち第1圧電素子11が配置される部分と第2圧電素子12が配置される部分との間は、他の部分よりも曲げやすい応力緩和部95となっている。応力緩和部95は、変形例2のスリット90と同様に、手首の関節の領域102に配置される。なお、変位検出センサ1Cは、基材10の応力緩和部95に、スリット、切欠き、又は凹みを設けることで、動作の分離がより正確になり、高精度に動作を検出することが出来る。 Further, between the portion where the first piezoelectric element 11 is arranged and the portion where the second piezoelectric element 12 is arranged in the base material 10, there is a stress relaxation portion 95 that is easier to bend than other portions. The stress relaxation portion 95 is arranged in the joint region 102 of the wrist similarly to the slit 90 of the second modification. In addition, the displacement detection sensor 1C can detect the motion with high accuracy by providing a slit, a notch, or a recess in the stress relaxation portion 95 of the base material 10 to more accurately separate the motion.
 したがって、変位検出センサ1Cも、手首の関節等の変位が大きい箇所に跨がって配置されたとしても、変位検出センサ1Cに応力が集中することがなくなる。そのため、変位検出センサ1Cがグローブから剥がれたり、グローブに対する固定位置が変わるおそれも低減される。 Therefore, even if the displacement detection sensor 1C is arranged across a large displacement such as a wrist joint, stress is not concentrated on the displacement detection sensor 1C. Therefore, the possibility that the displacement detection sensor 1C is peeled off from the glove or the fixed position with respect to the glove is reduced.
 第1圧電素子11又は第2圧電素子12の面積と出力は比例関係にある。このため、変形量の小さい箇所には第1圧電素子11又は第2圧電素子12の面積を大きく取り、変形量の大きな変形については第1圧電素子11又は第2圧電素子12の面積を小さく取るなどの工夫を施すことで、変位検出センサ1Cはより適切な出力レベルに調整することができ、変位検出センサ1Cの回路設計が簡素化できる。例えば、靴の足底に変位検出センサ1Cを貼り付けた場合、変位検出センサ1Cは、足底の曲がり量と足底の左右の方向のひねり量を検出することができる。足底の曲がり量は足底のひねり量に対して大きく、第1圧電素子11又は第2圧電素子12からの信号は、その変形量に応じた形で出力される。第1圧電素子11又は第2圧電素子12それぞれのサイズを調整することで、第1圧電素子11又は第2圧電素子12の出力レベルを同等にすることができ、変位検出センサ1Cは回路設計を簡素化できる。 The area of the first piezoelectric element 11 or the second piezoelectric element 12 and the output are in a proportional relationship. For this reason, the area of the first piezoelectric element 11 or the second piezoelectric element 12 is set to be large at a portion having a small deformation amount, and the area of the first piezoelectric element 11 or the second piezoelectric element 12 is set to be small for a large deformation amount. By devising such a device, the displacement detection sensor 1C can be adjusted to a more appropriate output level, and the circuit design of the displacement detection sensor 1C can be simplified. For example, when the displacement detection sensor 1C is attached to the sole of the shoe, the displacement detection sensor 1C can detect the amount of bending of the sole and the amount of twist of the sole in the left and right directions. The amount of bending of the sole is larger than the amount of twist of the sole, and the signal from the first piezoelectric element 11 or the second piezoelectric element 12 is output in a form according to the amount of deformation. By adjusting the sizes of the first piezoelectric element 11 and the second piezoelectric element 12, respectively, the output levels of the first piezoelectric element 11 and the second piezoelectric element 12 can be made equal, and the displacement detection sensor 1C can be designed with a circuit design. Can be simplified.
 また、第1圧電素子11又は第2圧電素子12として圧電フィルムを用いる場合、例えば、圧電フィルムに一か所もしくは複数のスリットを入れることで、見かけ上の圧電フィルムの伸縮性が上がる。このため、変位検出センサ1Cは、より伸長率の高い部位の変形にも追従して検出することが可能である。 Also, when a piezoelectric film is used as the first piezoelectric element 11 or the second piezoelectric element 12, for example, by forming one or a plurality of slits in the piezoelectric film, the apparent stretchability of the piezoelectric film is increased. For this reason, the displacement detection sensor 1C can detect the deformation of a portion having a higher elongation rate as well.
 図10は、変形例4に係る変位検出センサ1Dを備えたグローブ5Dの斜視図であり、図11は、変形例4に係る変位検出センサ1Dの平面図である。変位検出センサ1Dの基材10は、平面視してT字形状となっている。変位検出センサ1Dも、手の平の領域101、手首の関節の領域102、および手首の領域103に渡って配置されている。第1圧電素子11は、手の平の領域101に配置され、第2圧電素子12は、手首の領域103に配置される。応力緩和部となる箇所は、手首の関節の領域102に配置される。 FIG. 10 is a perspective view of a glove 5D including a displacement detection sensor 1D according to Modification 4, and FIG. 11 is a plan view of the displacement detection sensor 1D according to Modification 4. The base material 10 of the displacement detection sensor 1D has a T shape when viewed in a plan view. The displacement detection sensor 1D is also arranged over the palm region 101, the wrist joint region 102, and the wrist region 103. The first piezoelectric element 11 is arranged in the palm area 101, and the second piezoelectric element 12 is arranged in the wrist area 103. The portion serving as the stress relaxation portion is arranged in the wrist joint region 102.
 第1圧電素子11および第2圧電素子12は、平面視してそれぞれ長手方向が直交して配置されている。第1圧電素子11は、指が並ぶ方向に沿って配置されている。この場合、第1圧電素子11は、指の長手方向に沿った変位に対する感度が低く、当該長手方向に直交する方向に沿った変位の感度が高い。したがって、変位検出センサ1Dは、変位検出センサ1、1A,1B,1Cよりも、手を握る動作および手を開く動作に対する感度が低下する。一方で、水中で手の平を前面に押し出す様な動作をした場合には、第1圧電素子11は、水圧により手の平の窪みに沿って変位するため、水を押し出す様な動作は、高精度に検出することができる。そのため、変位検出センサ1Dは、水を押し出す様な動作と、手首を捻る動作と、を個別に高感度に検出することができる。 The first piezoelectric element 11 and the second piezoelectric element 12 are arranged so that their longitudinal directions are orthogonal to each other when seen in a plan view. The first piezoelectric element 11 is arranged along the direction in which the fingers are arranged. In this case, the first piezoelectric element 11 has a low sensitivity to displacement in the longitudinal direction of the finger and a high sensitivity to displacement in the direction orthogonal to the longitudinal direction. Therefore, the displacement detection sensor 1D is less sensitive than the displacement detection sensors 1, 1A, 1B, 1C to the action of grasping the hand and the action of opening the hand. On the other hand, when an operation of pushing the palm out to the front in water is performed, the first piezoelectric element 11 is displaced along the depression of the palm due to the water pressure, and therefore the action of pushing out the water is detected with high accuracy. can do. Therefore, the displacement detection sensor 1D can individually detect the operation of pushing out water and the operation of twisting the wrist with high sensitivity.
 なお、本実施形態では、変位検出センサは、手の平および手首に跨がって配置され、手の動きおよび手首の動きをそれぞれ個別に高感度に検出する例を示したが、他の関節等の変位が大きい箇所に跨がって配置されてもよい。変位検出センサは、例えば足首の関節に跨がって配置され、足および足首の動きを検出してもよい。例えば、変位検出センサを足底に配置した場合、歩行時の足底の曲がっている角度または足底の左右の傾き等を検出することができる。この場合、変位検出センサは、リハビリ用の歩行具に用いることができる。変位検出センサは、足底の状態を検出することができ、他の歩行アシストロボット等と連携させることでより高いリハビリ効果を得ることができる。 In addition, in the present embodiment, the displacement detection sensor is arranged across the palm and the wrist, and an example in which the movement of the hand and the movement of the wrist are individually detected with high sensitivity has been shown. You may arrange | position over the location with large displacement. The displacement detection sensor may be disposed, for example, across the joint of the ankle, and may detect the movement of the foot and the ankle. For example, when the displacement detection sensor is arranged on the sole of the foot, it is possible to detect the bent angle of the sole of the foot or the lateral inclination of the foot during walking. In this case, the displacement detection sensor can be used for a walking tool for rehabilitation. The displacement detection sensor can detect the state of the sole of the foot, and by cooperating with another walking assist robot or the like, a higher rehabilitation effect can be obtained.
 また、変位検出センサは、ロボット等の人体以外に取り付けることも可能である。この場合も、変位検出センサは、変位が大きい箇所に跨がって配置され、それぞれ個別の動きを検出する。 Also, the displacement detection sensor can be attached to something other than a human body such as a robot. In this case as well, the displacement detection sensor is arranged so as to straddle a portion where the displacement is large, and detects each individual movement.
 なお、本実施形態では、曲げ変位および捻り変位を検出するセンサとして、圧電センサを示したが、例えば歪みセンサであっても、曲げ変位および捻り変位を検出することができる。 In this embodiment, the piezoelectric sensor is shown as the sensor for detecting the bending displacement and the torsional displacement, but the bending displacement and the torsional displacement can be detected even with the strain sensor, for example.
 最後に、前記実施形態の説明は、すべての点で例示であり、制限的なものではないと考えられるべきである。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲は、特許請求の範囲と均等の範囲を含む。 Finally, the description of the above embodiments is to be considered as illustrative in all points and not restrictive. The scope of the invention is indicated by the claims rather than the embodiments described above. Further, the scope of the present invention includes the scope equivalent to the claims.
1,1A,1B,1C,1D…変位検出センサ
5,5A,5D…グローブ
10…基材
11…第1圧電素子
12…第2圧電素子
50…第1保護層
51…導電性薄膜部材
52…中間層
53…検出用電極
54…圧電フィルム
55…第2保護層
90…スリット
95…応力緩和部
1, 1A, 1B, 1C, 1D ... Displacement detection sensors 5, 5A, 5D ... Globe 10 ... Base material 11 ... First piezoelectric element 12 ... Second piezoelectric element 50 ... First protective layer 51 ... Conductive thin film member 52 ... Intermediate layer 53 ... Detection electrode 54 ... Piezoelectric film 55 ... Second protective layer 90 ... Slit 95 ... Stress relaxation portion

Claims (7)

  1.  第1の検出対象および第2の検出対象に配置される基材と、
     第1の方向の変位を検出する第1検出部と、
     前記第1の方向と異なる第2の方向の変位を検出する第2検出部と、
     を備え、
     前記第1検出部および前記第2検出部は、前記基材に配置され、
     前記第1検出部は、少なくとも前記第1の検出対象に配置され、
     前記第2検出部は、少なくとも前記第2の検出対象に配置される、
     変位検出センサ。
    A base material arranged on the first detection target and the second detection target;
    A first detector that detects displacement in a first direction;
    A second detector for detecting a displacement in a second direction different from the first direction;
    Equipped with
    The first detection unit and the second detection unit are arranged on the base material,
    The first detection unit is arranged at least in the first detection target,
    The second detection unit is arranged at least in the second detection target,
    Displacement detection sensor.
  2.  前記第1検出部および前記第2検出部は、前記基材を平面視して重なって配置される、
     請求項1に記載の変位検出センサ。
    The first detection unit and the second detection unit are arranged so as to overlap each other in a plan view of the base material.
    The displacement detection sensor according to claim 1.
  3.  前記第1検出部は、前記基材の第1主面に配置され、
     前記第2検出部は、前記基材の第2主面に配置される、
     請求項1または請求項2に記載の変位検出センサ。
    The first detection unit is disposed on the first main surface of the base material,
    The second detector is disposed on the second main surface of the base material,
    The displacement detection sensor according to claim 1.
  4.  前記第1検出部および前記第2検出部は、前記基材を平面視して離間して配置される、
     請求項1に記載の変位検出センサ。
    The first detection unit and the second detection unit are arranged so as to be separated from each other in a plan view of the base material.
    The displacement detection sensor according to claim 1.
  5.  前記基材のうち、前記第1の検出対象に配置される部分と、前記第2の検出対象に配置される部分との間に、応力緩和部が配置される、
     請求項1乃至請求項4のいずれか1項に記載の変位検出センサ。
    In the base material, a stress relaxation portion is arranged between a portion arranged on the first detection target and a portion arranged on the second detection target,
    The displacement detection sensor according to any one of claims 1 to 4.
  6.  前記第1検出部および前記第2検出部は、それぞれ圧電フィルムを有する、
     請求項1乃至請求項5のいずれか1項に記載の変位検出センサ。
    The first detection unit and the second detection unit each have a piezoelectric film,
    The displacement detection sensor according to any one of claims 1 to 5.
  7.  前記基材が曲げられた時、前記圧電フィルム以外の箇所に、伸縮しない中立面が存在する、
     請求項6に記載の変位検出センサ。
    When the base material is bent, a neutral surface that does not expand and contract exists in a portion other than the piezoelectric film.
    The displacement detection sensor according to claim 6.
PCT/JP2019/034068 2018-10-19 2019-08-30 Displacement detection sensor WO2020079967A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020515060A JP6973630B2 (en) 2018-10-19 2019-08-30 Displacement detection sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-197347 2018-10-19
JP2018197347 2018-10-19

Publications (1)

Publication Number Publication Date
WO2020079967A1 true WO2020079967A1 (en) 2020-04-23

Family

ID=70284574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/034068 WO2020079967A1 (en) 2018-10-19 2019-08-30 Displacement detection sensor

Country Status (2)

Country Link
JP (1) JP6973630B2 (en)
WO (1) WO2020079967A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001518185A (en) * 1997-03-17 2001-10-09 カナディアン・スペース・エージェンシー Tools for measuring position and movement
JP2004344180A (en) * 2003-03-31 2004-12-09 Japan Science & Technology Agency Operating equipment
JP2015057822A (en) * 2011-04-08 2015-03-26 株式会社村田製作所 Operation device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001518185A (en) * 1997-03-17 2001-10-09 カナディアン・スペース・エージェンシー Tools for measuring position and movement
JP2004344180A (en) * 2003-03-31 2004-12-09 Japan Science & Technology Agency Operating equipment
JP2015057822A (en) * 2011-04-08 2015-03-26 株式会社村田製作所 Operation device

Also Published As

Publication number Publication date
JP6973630B2 (en) 2021-12-01
JPWO2020079967A1 (en) 2021-02-15

Similar Documents

Publication Publication Date Title
CN107742670B (en) Operating device
US10101866B2 (en) Touch sensor having a hard coat layer
US9921654B2 (en) Tactile sense presentation device
EP3208687B1 (en) Data glove
JP6269171B2 (en) Finger joint drive device
US11023069B2 (en) Pressure sensor and electronic device
WO2018051917A1 (en) Sensor, band, electronic device, and wristwatch type electronic device
US10481701B2 (en) Operation input device
WO2020079967A1 (en) Displacement detection sensor
US11320942B2 (en) Pressing sensor
WO2020166633A1 (en) Wiring board, and method for manufacturing wiring board
JP7006789B2 (en) Housing structure
US11619555B2 (en) Pressure detection sensor and electronic device
WO2016067832A1 (en) Haptic device
US11163410B2 (en) Operation detection device
US11847289B2 (en) Pressing force detection device
JP6428076B2 (en) Tactile presentation device
KR20220097746A (en) Wearable exoskeletal apparatus for variable stiffness using electro-stiction force and control method thereof
JP2018206052A (en) mouse

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020515060

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19874227

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19874227

Country of ref document: EP

Kind code of ref document: A1