WO2020079361A1 - Seawater desalination system for ships - Google Patents

Seawater desalination system for ships Download PDF

Info

Publication number
WO2020079361A1
WO2020079361A1 PCT/FR2019/052436 FR2019052436W WO2020079361A1 WO 2020079361 A1 WO2020079361 A1 WO 2020079361A1 FR 2019052436 W FR2019052436 W FR 2019052436W WO 2020079361 A1 WO2020079361 A1 WO 2020079361A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
water
motor
axis
salinity
Prior art date
Application number
PCT/FR2019/052436
Other languages
French (fr)
Inventor
Patrick Wagner
Original Assignee
Dessalator
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dessalator filed Critical Dessalator
Priority to EP19806308.3A priority Critical patent/EP3867198A1/en
Priority to AU2019363347A priority patent/AU2019363347A1/en
Publication of WO2020079361A1 publication Critical patent/WO2020079361A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/08Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/10Accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/36Energy sources
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/001Build in apparatus for autonomous on board water supply and wastewater treatment (e.g. for aircrafts, cruiseships, oil drilling platforms, railway trains, space stations)
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/009Apparatus with independent power supply, e.g. solar cells, windpower, fuel cells
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/05Conductivity or salinity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/212Solar-powered wastewater sewage treatment, e.g. spray evaporation

Definitions

  • the present invention relates to seawater desalination systems on board ships, in particular sailboats, and intended to provide drinking water to the occupants of said ships when they are at sea, and relates in particular to a seawater desalination system operating with both alternating and direct current.
  • Such a desalination system generally consists of a reverse osmosis membrane device through which seawater is forced under pressure so that only potable water crosses the membrane while most of the mineral salts are blocked. by said membrane.
  • a pump is required to force seawater, under relatively high pressure of up to 65 bar, to pass through the membrane used to perform reverse osmosis.
  • a pump drive mechanism is therefore necessary.
  • This drive mechanism is generally a DC motor powered by the onboard battery. Different devices can be used to power said battery, such as a dynamo driven in rotation by a wind turbine. It goes without saying that such a battery, sufficient to power the boat's lighting system, discharges quickly when it comes to powering an engine. To compensate for a possible battery deficiency, sailboats have a generator supplying alternating current.
  • European patent EP 1 240 076 discloses a seawater desalination system in which the pump drive mechanism is either a direct current motor or an alternating current motor, switching from one to the other. the other is done automatically without human intervention.
  • the motors are mounted in the drive position of the axis of the pump by a belt respectively driving a pulley at each end of the axis, each of the belts connecting the shaft drive motor corresponding to the pump axis so that each of the motors drives the rotation of the pump axis when activated.
  • the drive mechanism comprises declutching means resulting from the freewheeling assembly of each of the pulleys on the axis of the pump, so that the pulley corresponding to one of the motors is coasted when the other motor is activated to drive the pump axis.
  • the object of the invention is to provide a more compact desalination system than the known system of the prior art and which can be installed without the opposite ends of said system being available during its use for maintenance. of this system.
  • the invention relates to a seawater desalination system comprising a reverse osmosis cell containing a semi-permeable membrane for carrying out the desalination of water by passing seawater under pressure through said membrane, a pump for enforcing sea water under pressure through said membrane and a drive mechanism of the axis of said pump in which said drive mechanism comprises a direct current motor, supplied by a direct voltage and an alternating current motor, powered by an alternating voltage, in which said motors are mounted in the drive position of the axis of said pump by a belt respectively driving a first and a second pulley, positioned next to each other on the axis of the pump, in which each pulley is fixed on the axis of the pump using a clutch-type clutch.
  • the system further comprises selection means for activating only said AC motor and therefore driving the axis of said pump when the two motors are supplied.
  • said selection means comprise an electromagnetic relay supplied by said alternating voltage when the latter is connected and a switch in the supply circuit of said DC motor, said switch being normally closed and going into the open position when said electromagnetic relay is supplied by said alternating voltage so that said DC motor ceases to be activated as soon as said AC voltage is connected.
  • said selection means are constituted by a control logic such as an electromagnetic card or CMOS technology.
  • the system further comprises a reservoir into which the desalinated water is sent after it has passed through said membrane.
  • the system further comprises a solenoid valve for sending the desalinated water into said tank when the quality of said water is sufficient and for rejecting the desalinated water when its quality is insufficient.
  • the system further comprises means for analyzing the salinity of the water to provide a potability threshold and a non-potability threshold corresponding to a salinity higher than the potability threshold. , said water being discharged only when its salinity exceeds the non-potable threshold, and the water being stored in said reservoir after having been discharged for insufficient quality only when its salinity has dropped below said potable threshold.
  • the system is on board a boat such as a sailboat.
  • FIG. 2 shows a schematic view of the configuration of the seawater desalination system, said configuration showing the pump positioned between the DC motor and the AC motor used to drive said pump,
  • FIG. 3 shows a schematic view of the electrical connections of the seawater desalination system
  • FIG. 4 shows an example of a crutch type clutch used to fix pulleys on the pump shaft.
  • FIG. 1 shows a schematic view of a boat in which a seawater desalination system has been installed.
  • the desalination system 1 according to the present invention is shown inside the hull of a boat 10.
  • the desalination of sea water 100 is carried out using a reverse osmosis cell 12 comprising a membrane semi-permeable.
  • the seawater 100 is sent under pressure to the reverse osmosis cell 12.
  • the pressure, used within the reverse osmosis cell 12 is typically at least 26 bars. During use, the pressure can reach a level of about 65 bars.
  • water (H2O) can pass through the semi-permeable membrane while the mineral salts, contained in seawater 100, cannot. This makes it possible to obtain fresh water whose salinity rate is below a defined threshold which allows the use of said fresh water on board the boat 10.
  • the sea water 100 to be desalinated is introduced by means of a pump 20 used to suck said sea water 100 to be desalinated by the inlet valve 14.
  • This water passes through easily.
  • a filter 16 adapted to retain particles of size greater than a threshold determined by said filter 16.
  • said filter 16 must be cleaned periodically.
  • the sea water 100 to be desalinated is then sent, via a pipe 17, to a pump unit comprising a pump 20, a direct current motor 22 and an alternating current motor 24.
  • the two motors 22, 24 are positioned on the opposite side of the pump 20 and are connected to the axis of said pump 20 to allow the drive of said pump axis 20.
  • the configuration and the connections between pump 20, the motor DC 22 and the AC motor 24 are described in detail in FIG. 2.
  • the pump 20, driven either by the DC motor 22 or by the AC motor 24, is used to force the passage of seawater 100 to desalinate through the pipe 26 against the semi-permeable membrane located at the interior of the reverse osmosis cell 12.
  • the fresh water thus collected is collected at the outlet of the reverse osmosis cell 12 and is then transported via the pipe 28 to a solenoid valve 30.
  • the solenoid valve 30 is used either for send the water, via the pipe 32, to a fresh water tank 34, when its salinity rate is below a determined threshold, either to evacuate the water towards the outside of the boat, via the pipe 36 and the valve evacuation 37, when its salinity level is above the determined threshold and the water quality does not correspond to the pre-determined quality criteria.
  • the option offering the possibility of sending water either to the pipe 32 or to the pipe 36 using the solenoid valve 30 is controlled by a control element 38.
  • Said control element 38 can be in the form of a simple electronic card produced using CMOS technology.
  • the command, generated and transmitted by the control element 38 takes account of the parameters of the water collected at the outlet of the reverse osmosis cell 12. These characteristics relate, among other things, to the salinity of the water supplied by a salinity detector provided with two electrodes measuring the salinity of water by electrical resistivity.
  • the salinity detector makes it possible to measure two salinity thresholds.
  • the first salinity threshold is a potability threshold
  • the second threshold is a non-potability threshold
  • the system When the salinity threshold is lower than the potability threshold, the system noting that the water is potable sends this to the reservoir 34 via the pipe 32. On the other hand, when the salinity threshold is greater than the potability threshold, the system waits until the non-potability threshold is crossed to discharge the water into the sea via pipe 36. If, thereafter, the salinity rate decreases, the water continues to be discharged into the sea until the salinity level goes below the potability threshold. At this precise moment, the water being considered as sufficiently drinkable is again directed towards the reservoir 34 via the pipe 32.
  • This control procedure using the solenoid valve 30 and the control element 38 in three stages, guarantees a production quality and high reliability.
  • FIG. 2 represents a schematic view of the pump unit 18 comprising the pump 20, the direct current motor 22 and the alternating current motor 24.
  • the pump 20 has an axis 21 on which two pulleys are fixed.
  • the first pulley 40 is connected to the drive shaft of the DC motor 22 by a belt 42.
  • the second pulley 44 is connected to the drive shaft of the AC motor 24 by a belt 46.
  • Each of the pulleys 40, 44 is mounted on the axis 21 of the pump 20 in freewheeling.
  • the friction force exerted on the axis 21 of the pump 20 by the other pulley is less than the friction force exerted by l other engine stopped.
  • the pulley of the motor which is not in rotation is freewheeling.
  • the direct current motor 22 it drives the rotation of the pulley 40 by means of the belt 42 and therefore causes the rotation of the axis of the pump.
  • the friction force exerted by the shaft of the AC motor 24 being higher than the friction force exerted by the pulley, the pulley 24 is freewheeling.
  • the belt 46 remains stationary and does not drive the AC motor 24.
  • the pulley 40 will coast.
  • the belt 42 remains stationary and does not drive the DC motor 22.
  • the pulleys 40, 44 are fixed to the axis 21 of the pump 20 using crutch-type clutches.
  • a fixing of this type makes it possible, on the one hand, to drive the pump using one of the two motors 22, 24, and, on the other hand, allows the pulleys to operate in freewheeling mode as soon as the corresponding motor is not activated (as explained above).
  • the pump unit 18 is provided with a support 19, said support being able to be used to assemble said pump unit before its installation inside a boat.
  • the pump unit can be introduced into a relatively small space and can be moved in the direction of the arrow, as shown in Figure 2.
  • the front face (as shown in FIG. 2) remains accessible during the use of the system 1 according to the invention so that the maintenance of said pump unit can be carried out.
  • the rotating elements and the belts 42, 46 are accessible from the same side of the pump unit 18.
  • FIG. 3 shows a schematic view of the pump block 18 as well as an electrical connection allowing the operation of the DC motor 22 and the AC motor 24.
  • the system 1 has a power supply from a battery 48 and a power supply 50 of 220 volts supplied by a generator.
  • the battery 48 is suitable for a 12 or 24 volt supply.
  • AC power is given priority, as shown in Figure 3 which shows an embodiment of an electrical system to which the pump unit 18 is connected. Indeed, assuming that the DC motor 22 is powered by the battery 48, the switch 52 is in the closed position.
  • the electromagnetic relay 54 is activated and the switch 52 opens, thereby cutting off the supply to the DC motor 22.
  • the supply of the DC motor 22 or the AC motor 24 is controlled by the control element 38 (as shown in Figure 1).
  • Said control system 38 could be used to optimize the system and control the exact operating mode of the system 1 according to the invention.
  • the control element 38 could be used to manage the various time delays, such as a time delay of a few seconds, implemented before being able to collect the potable water in the reservoir after the start-up of the desalination system 1 according to the invention.
  • FIG. 4 shows an example of a crutch type clutch 60, said clutch comprising an inner wheel 61 and an outer wheel 62.
  • Intermediate elements 63 are present between the inner wheel 61 and the outer wheel 62. The presence, and the specific shape of said elements 63, allows rotation of the inner wheel 61 causing the corresponding rotation of the outer wheel 62.
  • the inner wheel 61 can also be rotated without having an impact on the outer wheel 62.
  • the intermediate elements 63 are held in place by means of a positioning element 64.
  • the intermediate elements 63 can transmit the drive from the inner wheel 61 to the outer wheel 62 in the case where the inner wheel rotates in the direction of arrow 70, as shown in FIG. 4.
  • the outer surface of said inner wheel 61 comes into contact with the intermediate element 63, according to a contact point 67.
  • the intermediate element 63 comes into contact with the inner surface of the outer wheel 62, according to a contact point 66. Thanks to this contact, the rotation of the inner wheel 61 can drive the corresponding rotation of the outer wheel 62. Otherwise, if the inner wheel 61 is rotated in the direction of arrow 75, as shown in FIG. 4, the shape of the intermediate elements 63 allows the crutch type clutch to coast. This means that the inner wheel 61 can be rotated in the direction of the arrow 75 without any force being exerted on the outer wheel 62.

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

The present invention relates to a seawater desalination system comprising a reverse-osmosis cell containing a semipermeable membrane to desalinate the water by passing seawater under pressure through the said membrane, a pump for forcing the seawater under pressure through the said membrane and a mechanism for driving the shaft of the said pump, in which the said drive mechanism comprises a DC motor, powered by a DC voltage, and an AC motor, powered by an AC voltage, characterized in that the said motors are mounted in a position for driving the shaft of the said pump via a belt respectively driving a first and second pulley, the pulley is being positioned one beside the other on the shaft of the pump, in which each pulley is fixed to the shaft of the pump using a clutch of the sprag clutch type.

Description

DESCRIPTION  DESCRIPTION
Système de dessalinisation d’eau de mer pour bateaux Seawater desalination system for boats
Domaine technique Technical area
La présente invention concerne les systèmes de dessalinisation de l'eau de mer embarqués sur les bateaux, en particulier les voiliers, et destinés à fournir de l'eau potable aux occupants desdits bateaux lorsqu'ils se trouvent en mer, et concerne en particulier un système de dessalinisation de l'eau de mer fonctionnant aussi bien à l'aide du courant alternatif que du courant continu. The present invention relates to seawater desalination systems on board ships, in particular sailboats, and intended to provide drinking water to the occupants of said ships when they are at sea, and relates in particular to a seawater desalination system operating with both alternating and direct current.
Etat de la technique State of the art
Les voiliers d'une certaine importance sont de plus en plus souvent équipés d'un système de dessalinisation de l'eau de mer permettant de fournir l'eau potable nécessaire aux occupants du bateau lorsque celui-ci se trouve en mer pour un certain temps. Un tel système de dessalinisation est généralement constitué d'un dispositif de membrane à osmose inversée à travers laquelle l'eau de mer est forcée sous pression de sorte que seule l'eau potable traverse la membrane alors que la majeure partie des sels minéraux est bloquée par ladite membrane. Sailing yachts of a certain importance are more and more often equipped with a seawater desalination system making it possible to supply the drinking water necessary to the occupants of the boat when it is at sea for a certain time. . Such a desalination system generally consists of a reverse osmosis membrane device through which seawater is forced under pressure so that only potable water crosses the membrane while most of the mineral salts are blocked. by said membrane.
Une pompe est nécessaire pour forcer l'eau de mer, sous pression relativement importante pouvant atteindre 65 bars, à traverser la membrane utilisée pour effectuer l'osmose inversée. Un mécanisme d'entraînement de la pompe est donc nécessaire. Ce mécanisme d'entraînement est généralement un moteur à courant continu alimenté par la batterie du bord. Différents dispositifs peuvent être utilisés pour alimenter ladite batterie, tels qu’une dynamo entraînée en rotation par une éolienne. Il va de soi qu'une telle batterie, suffisante pour alimenter le système d'éclairage du bateau, se décharge rapidement lorsqu'il s'agit d'alimenter un moteur. Pour pallier une possible déficience de la batterie, les voiliers disposent d'un groupe électrogène fournissant du courant alternatif. Lorsque la batterie est déchargée ou lorsqu'il n'y a pas assez de vent pour faire fonctionner l'éolienne ou encore lorsque le bateau est à l'accostage, il est donc habituel de mettre en route le groupe électrogène, et de convertir à l'aide d'un chargeur, le courant alternatif 220 volts en courant continu 12 ou 24 volts susceptible d'alimenter le moteur utilisé pour la dessalinisation de l'eau de mer. Il est clair qu'un tel système consomme une énergie considérable du fait de la transformation du courant alternatif en courant continu et ledit système n'est absolument pas pratique à mettre en oeuvre. A pump is required to force seawater, under relatively high pressure of up to 65 bar, to pass through the membrane used to perform reverse osmosis. A pump drive mechanism is therefore necessary. This drive mechanism is generally a DC motor powered by the onboard battery. Different devices can be used to power said battery, such as a dynamo driven in rotation by a wind turbine. It goes without saying that such a battery, sufficient to power the boat's lighting system, discharges quickly when it comes to powering an engine. To compensate for a possible battery deficiency, sailboats have a generator supplying alternating current. When the battery is discharged or when there is not enough wind to operate the wind turbine or when the boat is docking, it is therefore usual to start the generator, and convert to using a charger, the current alternating 220 volts in direct current 12 or 24 volts capable of supplying the engine used for the desalination of sea water. It is clear that such a system consumes a considerable energy because of the transformation of alternating current into direct current and said system is absolutely not practical to implement.
Le brevet européen EP 1 240 076 divulgue un système de dessalinisation de l’eau de mer dans lequel le mécanisme d'entraînement de la pompe est indifféremment un moteur à courant continu ou un moteur à courant alternatif, le passage de l'un à l'autre se faisant automatiquement sans intervention humaine. European patent EP 1 240 076 discloses a seawater desalination system in which the pump drive mechanism is either a direct current motor or an alternating current motor, switching from one to the other. the other is done automatically without human intervention.
Dans le système selon le document EP 1 240 076, les moteurs sont montés en position d'entraînement de l'axe de la pompe par une courroie entraînant respectivement une poulie à chacune des extrémités de l'axe, chacune des courroies reliant l'arbre d'entraînement du moteur correspondant à l'axe de la pompe de sorte que chacun des moteurs entraîne la rotation de l'axe de la pompe lorsqu'il est activé. Le mécanisme d'entraînement comprend des moyens de débrayage résultant du montage en roue libre de chacune des poulies sur l'axe de la pompe, de sorte que la poulie correspondant à l'un des moteurs se met en roue libre lorsque l'autre moteur est activé pour entraîner l'axe de la pompe. In the system according to document EP 1 240 076, the motors are mounted in the drive position of the axis of the pump by a belt respectively driving a pulley at each end of the axis, each of the belts connecting the shaft drive motor corresponding to the pump axis so that each of the motors drives the rotation of the pump axis when activated. The drive mechanism comprises declutching means resulting from the freewheeling assembly of each of the pulleys on the axis of the pump, so that the pulley corresponding to one of the motors is coasted when the other motor is activated to drive the pump axis.
Même si les systèmes selon l’art antérieur, dont notamment celui décrit au sein du document EP 1 240 076, présentent l’avantage d’un mécanisme d’entraînement de la pompe par, indifféremment, un moteur à courant continu ou un moteur à courant alternatif, ceux-ci présentent des inconvénients liés à leur configuration. Dans le système selon le document EP 1 240 076, le moteur à courant continu et le moteur à courant alternatif sont positionnés de telle façon qu’ils présentent un axe de rotation essentiellement parallèle à l’axe de la pompe, ledit système comprenant deux moteurs fixés respectivement aux extrémités opposées dudit axe de la pompe. Cette configuration présente un inconvénient pour la maintenance du système selon laquelle les deux extrémités de ladite pompe, si on les regarde selon la direction de la pompe, doivent être accessibles. Le système décrit dans l’art antérieur, selon le document EP 1 240 076, présente un autre inconvénient qui réside dans le fait que le sens de la rotation du moteur à courant continu et celui du moteur à courant alternatif doivent être opposés afin de permettre au moteur de faire pivoter l’axe de la pompe dans un seul sens. En pratique, cela signifie que l’un des deux moteurs doit être modifié afin d’inverser le sens de sa direction de rotation avant son installation dans le système divulgué dans l’art antérieur. Even if the systems according to the prior art, including in particular that described in document EP 1 240 076, have the advantage of a mechanism for driving the pump by, indifferently, a direct current motor or a motor with alternating current, these have drawbacks linked to their configuration. In the system according to document EP 1 240 076, the direct current motor and the alternating current motor are positioned so that they have an axis of rotation essentially parallel to the axis of the pump, said system comprising two motors fixed respectively to the opposite ends of said axis of the pump. This configuration has a drawback for the maintenance of the system according to which the two ends of said pump, if viewed from the direction of the pump, must be accessible. The system described in the prior art, according to document EP 1 240 076, has another drawback which resides in the fact that the direction of rotation of the DC motor and that of the AC motor must be opposite in order to allow the motor to rotate the pump axis in one direction. In practice, this means that one of the two motors must be modified in order to reverse the direction of its direction of rotation before its installation in the system disclosed in the prior art.
Si l’on considère le fait que le système de dessalinisation décrit ci-dessus est particulièrement adapté pour l’utilisation sur un bateau, il convient de considérer l’espace disponible sur ledit bateau pour un système de dessalinisation. Cet espace disponible est, par définition, très limité. Par conséquent, le but de l’invention vise à fournir un système de dessalinisation plus compact que le système connu de l’art antérieur et pouvant être installé sans que les extrémités opposées dudit système ne soient disponibles au cours de son utilisation pour permettre la maintenance de ce système. If we consider the fact that the desalination system described above is particularly suitable for use on a boat, it is necessary to consider the space available on said boat for a desalination system. This available space is, by definition, very limited. Therefore, the object of the invention is to provide a more compact desalination system than the known system of the prior art and which can be installed without the opposite ends of said system being available during its use for maintenance. of this system.
Exposé de l’invention Statement of the invention
L’invention concerne un système de dessalinisation de l’eau de mer comprenant une cellule à osmose inversée contenant une membrane semi perméable pour effectuer la dessalinisation de l’eau par passage d’eau de mer sous pression à travers ladite membrane, une pompe pourforcer l’eau de mer sous pression à travers ladite membrane et un mécanisme d’entraînement de l’axe de ladite pompe dans lequel ledit mécanisme d’entraînement comprend un moteur à courant continu, alimenté par une tension continue et un moteur à courant alternatif, alimenté par une tension alternative, dans lequel lesdits moteurs sont montés en position d’entraînement de l’axe de ladite pompe par une courroie entraînant respectivement une première et une deuxième poulie, positionnées l’une à côté de l’autre sur l’axe de la pompe, dans lequel chaque poulie est fixée sur l’axe de la pompe à l’aide d’un embrayage de type à béquille. The invention relates to a seawater desalination system comprising a reverse osmosis cell containing a semi-permeable membrane for carrying out the desalination of water by passing seawater under pressure through said membrane, a pump for enforcing sea water under pressure through said membrane and a drive mechanism of the axis of said pump in which said drive mechanism comprises a direct current motor, supplied by a direct voltage and an alternating current motor, powered by an alternating voltage, in which said motors are mounted in the drive position of the axis of said pump by a belt respectively driving a first and a second pulley, positioned next to each other on the axis of the pump, in which each pulley is fixed on the axis of the pump using a clutch-type clutch.
Selon un mode de réalisation de la présente invention, le système comprend en outre des moyens de sélection pour activer seulement ledit moteur à courant alternatif et donc entraîner l’axe de ladite pompe lorsque les deux moteurs sont alimentés. According to an embodiment of the present invention, the system further comprises selection means for activating only said AC motor and therefore driving the axis of said pump when the two motors are supplied.
Selon un mode de réalisation de la présente invention, lesdits moyens de sélection comprennent un relais électromagnétique alimenté par ladite tension alternative lorsque celle-ci est connectée et un commutateur dans le circuit d’alimentation dudit moteur à courant continu, ledit commutateur étant normalement fermé et se mettant en position ouverte lorsque ledit relais électromagnétique est alimenté par ladite tension alternative de sorte que ledit moteur à courant continu cesse d’être activé dès que ladite tension alternative est connectée. According to an embodiment of the present invention, said selection means comprise an electromagnetic relay supplied by said alternating voltage when the latter is connected and a switch in the supply circuit of said DC motor, said switch being normally closed and going into the open position when said electromagnetic relay is supplied by said alternating voltage so that said DC motor ceases to be activated as soon as said AC voltage is connected.
Selon un mode de réalisation de la présente invention, lesdits moyens de sélection sont constitués par une logique de contrôle telle qu’une carte électromagnétique ou technologie CMOS. According to an embodiment of the present invention, said selection means are constituted by a control logic such as an electromagnetic card or CMOS technology.
Selon un mode de réalisation de la présente invention, le système comprend en outre un réservoir dans lequel est envoyée l’eau dessalinisée après son passage à travers ladite membrane. According to an embodiment of the present invention, the system further comprises a reservoir into which the desalinated water is sent after it has passed through said membrane.
Selon un mode de réalisation de la présente invention, le système comprend en outre une électrovanne pour envoyer l’eau dessalinisée dans ledit réservoir lorsque la qualité de ladite eau est suffisante et pour rejeter l’eau dessalinisée lorsque sa qualité est insuffisante. According to an embodiment of the present invention, the system further comprises a solenoid valve for sending the desalinated water into said tank when the quality of said water is sufficient and for rejecting the desalinated water when its quality is insufficient.
Selon un mode de réalisation de la présente invention, le système comprend en outre un moyen d’analyse de la salinité de l’eau pour fournir un seuil de potabilité et un seuil de non potabilité correspondant à une salinité plus élevée que le seuil de potabilité, ladite eau étant rejetée seulement lorsque sa salinité dépasse le seuil de non potabilité, et l’eau n’étant stockée dans ledit réservoir après avoir été rejetée pour qualité insuffisante que lorsque sa salinité est redescendue au dessous dudit seuil de potabilité. According to an embodiment of the present invention, the system further comprises means for analyzing the salinity of the water to provide a potability threshold and a non-potability threshold corresponding to a salinity higher than the potability threshold. , said water being discharged only when its salinity exceeds the non-potable threshold, and the water being stored in said reservoir after having been discharged for insufficient quality only when its salinity has dropped below said potable threshold.
Selon un mode de réalisation de la présente invention, le système est embarqué à bord d’un bateau tel qu’un voilier. According to an embodiment of the present invention, the system is on board a boat such as a sailboat.
Brève description des figures Brief description of the figures
Les but, objet et caractéristiques de l’invention apparaîtront plus clairement à la lecture de la description qui suit faite en référence aux dessins dans lesquels : la [figure 1] montre une vue schématique d’un bateau dans lequel un système de dessalinisation de l’eau de mer a été installé, The object, object and characteristics of the invention will appear more clearly on reading the following description made with reference to the drawings in which: [Figure 1] shows a schematic view of a boat in which a desalination system of the seawater has been installed,
la [figure 2] représente une vue schématique de la configuration du système de dessalinisation de l’eau de mer, ladite configuration montrant la pompe positionnée entre le moteur à courant continu et le moteur à courant alternatif utilisés pour entraîner ladite pompe,  [Figure 2] shows a schematic view of the configuration of the seawater desalination system, said configuration showing the pump positioned between the DC motor and the AC motor used to drive said pump,
la [figure 3] montre une vue schématique des connexions électriques du système de dessalinisation de l’eau de mer, et  [Figure 3] shows a schematic view of the electrical connections of the seawater desalination system, and
la [figure 4] représente un exemple d’un embrayage de type à béquille utilisé pour fixer des poulies sur l’axe de la pompe.  [Figure 4] shows an example of a crutch type clutch used to fix pulleys on the pump shaft.
Description détaillée de l’invention Detailed description of the invention
La figure 1 montre une vue schématique d’un bateau dans lequel un système de dessalinisation de l’eau de mer a été installé. Le système de dessalinisation 1 selon la présente invention est représenté à l’intérieur de la coque d’un bateau 10. La dessalinisation de l’eau de mer 100 est réalisée à l’aide d’une cellule à osmose inversée 12 comprenant une membrane semi-perméable. L’eau de mer 100 est envoyée sous pression dans la cellule à osmose inversée 12. La pression, utilisée au sein de la cellule à osmose inversée 12, est typiquement d’au moins 26 bars. Lors de l’utilisation, la pression peut atteindre un niveau d’environ 65 bars. Selon le principe de dessalinisation, l’eau (H2O) peut traverser la membrane semi-perméable alors que les sels minéraux, contenus dans l’eau de mer 100, ne le peuvent pas. Ceci permet d’obtenir de l’eau douce dont le taux de salinité est inférieur à un seuil défini qui permet l’utilisation de ladite eau douce à bord du bateau 10. Figure 1 shows a schematic view of a boat in which a seawater desalination system has been installed. The desalination system 1 according to the present invention is shown inside the hull of a boat 10. The desalination of sea water 100 is carried out using a reverse osmosis cell 12 comprising a membrane semi-permeable. The seawater 100 is sent under pressure to the reverse osmosis cell 12. The pressure, used within the reverse osmosis cell 12, is typically at least 26 bars. During use, the pressure can reach a level of about 65 bars. According to the principle of desalination, water (H2O) can pass through the semi-permeable membrane while the mineral salts, contained in seawater 100, cannot. This makes it possible to obtain fresh water whose salinity rate is below a defined threshold which allows the use of said fresh water on board the boat 10.
Au sein du système tel que montré sur la figure 1 , l’eau de mer 100 à dessaliniser est introduite grâce à une pompe 20 utilisée pour aspirer ladite eau de mer 100 à dessaliniser par la vanne d’entrée 14. Cette eau passe tout d’abord au travers d’un filtre 16, adapté pour retenir les particules de taille supérieure à un seuil déterminé par ledit filtre 16. Lors d’une utilisation normale du système, ledit filtre 16 doit être nettoyé périodiquement. Après son passage dans le filtre 16, l’eau de mer 100 à dessaliniser est ensuite envoyée, via un tuyau 17, à un bloc-pompe comprenant une pompe 20, un moteur à courant continu 22 et un moteur à courant alternatif 24. Les deux moteurs 22, 24 sont positionnés sur le côté opposé de la pompe 20 et sont connectés à l’axe de ladite pompe 20 pour permettre l’entraînement dudit axe de la pompe 20. La configuration et les connexions entre la pompe 20, le moteur à courant continu 22 et le moteur à courant alternatif 24 sont décrites de manière détaillée sur la figure 2. Within the system as shown in FIG. 1, the sea water 100 to be desalinated is introduced by means of a pump 20 used to suck said sea water 100 to be desalinated by the inlet valve 14. This water passes through easily. first through a filter 16, adapted to retain particles of size greater than a threshold determined by said filter 16. During during normal use of the system, said filter 16 must be cleaned periodically. After passing through the filter 16, the sea water 100 to be desalinated is then sent, via a pipe 17, to a pump unit comprising a pump 20, a direct current motor 22 and an alternating current motor 24. The two motors 22, 24 are positioned on the opposite side of the pump 20 and are connected to the axis of said pump 20 to allow the drive of said pump axis 20. The configuration and the connections between pump 20, the motor DC 22 and the AC motor 24 are described in detail in FIG. 2.
La pompe 20, entraînée soit par le moteur à courant continu 22 soit par le moteur à courant alternatif 24, est utilisée pour forcer le passage de l’eau de mer 100 à dessaliniser à travers le tuyau 26 contre la membrane semi-perméable située à l’intérieur de la cellule à osmose inversée 12. L’eau douce ainsi récoltée est recueillie à la sortie de la cellule à osmose inversée 12 et est ensuite transportée via le tuyau 28 vers une électrovanne 30. L’électrovanne 30 est utilisée soit pour envoyer l’eau, via le tuyau 32, dans un réservoir à eau douce 34, lorsque son taux de salinité est inférieur à un seuil déterminé, soit pour évacuer l’eau vers l’extérieur du bateau, via le tuyau 36 et la vanne d’évacuation 37, lorsque son taux de salinité est supérieur au seuil déterminé et que la qualité de l’eau ne correspond pas aux critères de qualité pré-déterminés. The pump 20, driven either by the DC motor 22 or by the AC motor 24, is used to force the passage of seawater 100 to desalinate through the pipe 26 against the semi-permeable membrane located at the interior of the reverse osmosis cell 12. The fresh water thus collected is collected at the outlet of the reverse osmosis cell 12 and is then transported via the pipe 28 to a solenoid valve 30. The solenoid valve 30 is used either for send the water, via the pipe 32, to a fresh water tank 34, when its salinity rate is below a determined threshold, either to evacuate the water towards the outside of the boat, via the pipe 36 and the valve evacuation 37, when its salinity level is above the determined threshold and the water quality does not correspond to the pre-determined quality criteria.
L’option offrant la possibilité d’envoyer l’eau soit vers le tuyau 32 soit vers le tuyau 36 en utilisant l’électrovanne 30 est contrôlée par un élément de contrôle 38. Ledit élément de contrôle 38 peut se présenter sous la forme d’une simple carte électronique réalisée grâce à la technologie CMOS. La commande, générée et transmise par l’élément de contrôle 38, tient compte des paramètres de l’eau recueillie à la sortie de la cellule à osmose inversée 12. Ces caractéristiques concernent, entre autre, la salinité de l’eau fournie par un détecteur de salinité pourvu de deux électrodes mesurant la salinité de l’eau par résistivité électrique. Le détecteur de salinité permet de mesurer deux seuils de salinité. Le premier seuil de salinité est un seuil de potabilité, le deuxième seuil est un seuil de non-potabilité, les deux seuils correspondant aux seuils légaux de salinité. Lorsque le seuil de salinité est inférieur au seuil de potabilité, le système constatant que l’eau est potable envoie celle-ci au réservoir 34 via le tuyau 32. En revanche, lorsque le seuil de salinité est supérieur au seuil de potabilité, le système attend que le seuil de non-potabilité soit franchi pour rejeter l’eau en mer via le tuyau 36. Si, par la suite, le taux de salinité diminue, l’eau continue d’être rejetée en mer jusqu’à ce que le taux de salinité passe au dessous du seuil de potabilité. A ce moment précis, l’eau étant considérée comme suffisamment potable est de nouveau dirigée vers le réservoir 34 via le tuyau 32. Cette procédure de commande, utilisant l’électrovanne 30 et l’élément de contrôle 38 en trois étapes, garantit une production de qualité et de grande fiabilité. The option offering the possibility of sending water either to the pipe 32 or to the pipe 36 using the solenoid valve 30 is controlled by a control element 38. Said control element 38 can be in the form of a simple electronic card produced using CMOS technology. The command, generated and transmitted by the control element 38, takes account of the parameters of the water collected at the outlet of the reverse osmosis cell 12. These characteristics relate, among other things, to the salinity of the water supplied by a salinity detector provided with two electrodes measuring the salinity of water by electrical resistivity. The salinity detector makes it possible to measure two salinity thresholds. The first salinity threshold is a potability threshold, the second threshold is a non-potability threshold, the two thresholds corresponding to the legal salinity thresholds. When the salinity threshold is lower than the potability threshold, the system noting that the water is potable sends this to the reservoir 34 via the pipe 32. On the other hand, when the salinity threshold is greater than the potability threshold, the system waits until the non-potability threshold is crossed to discharge the water into the sea via pipe 36. If, thereafter, the salinity rate decreases, the water continues to be discharged into the sea until the salinity level goes below the potability threshold. At this precise moment, the water being considered as sufficiently drinkable is again directed towards the reservoir 34 via the pipe 32. This control procedure, using the solenoid valve 30 and the control element 38 in three stages, guarantees a production quality and high reliability.
La figure 2 représente une vue schématique du bloc pompe 18 comprenant la pompe 20, le moteur à courant continu 22 et le moteur à courant alternatif 24. La pompe 20 présente un axe 21 sur lequel sont fixées deux poulies. La première poulie 40 est reliée à l’arbre d’entraînement du moteur à courant continu 22 par une courroie 42. La deuxième poulie 44 est reliée à l’arbre d’entraînement du moteur à courant alternatif 24 par une courroie 46. Chacune des poulies 40, 44 est montée sur l’axe 21 de la pompe 20 en roue libre. Lorsque l’un des moteurs 22, 24 entraîne la rotation de la poulie correspondante par la courroie associée, la force de friction exercée sur l’axe 21 de la pompe 20 par l’autre poulie est inférieure à la force de friction exercée par l’autre moteur à l’arrêt. Cela signifie que la poulie du moteur qui n’est pas en rotation se met en roue libre. Ainsi, dans le cas où le moteur à courant continu 22 est activé, il entraîne la rotation de la poulie 40 par l’intermédiaire de la courroie 42 et donc entraîne la rotation de l’axe de la pompe. La force de friction exercée par l’arbre du moteur à courant alternatif 24 étant plus élevée que la force de friction exercée par la poulie, la poulie 24 se met en roue libre. Cela signifie que la courroie 46 reste immobile et n’entraîne pas le moteur à courant alternatif 24. De la même façon, lorsque le moteur à courant alternatif 24 est activé, la poulie 40 se met en roue libre. La courroie 42 reste immobile et n’entraîne pas le moteur à courant continu 22. Les poulies 40, 44 sont fixées sur l’axe 21 de la pompe 20 à l’aide d’embrayages de type à béquille. Le fonctionnement d’un embrayage de ce type est expliqué de manière détaillée en faisant référence à la figure 4. Une fixation de ce type permet d’assurer d’une part l’entraînement de la pompe à l’aide de l’un des deux moteurs 22, 24, et, d’autre part, permet aux poulies de fonctionner en roue libre dès lors que le moteur correspondant n’est pas activé (comme expliqué ci-dessus). FIG. 2 represents a schematic view of the pump unit 18 comprising the pump 20, the direct current motor 22 and the alternating current motor 24. The pump 20 has an axis 21 on which two pulleys are fixed. The first pulley 40 is connected to the drive shaft of the DC motor 22 by a belt 42. The second pulley 44 is connected to the drive shaft of the AC motor 24 by a belt 46. Each of the pulleys 40, 44 is mounted on the axis 21 of the pump 20 in freewheeling. When one of the motors 22, 24 drives the rotation of the corresponding pulley by the associated belt, the friction force exerted on the axis 21 of the pump 20 by the other pulley is less than the friction force exerted by l other engine stopped. This means that the pulley of the motor which is not in rotation is freewheeling. Thus, in the case where the direct current motor 22 is activated, it drives the rotation of the pulley 40 by means of the belt 42 and therefore causes the rotation of the axis of the pump. The friction force exerted by the shaft of the AC motor 24 being higher than the friction force exerted by the pulley, the pulley 24 is freewheeling. This means that the belt 46 remains stationary and does not drive the AC motor 24. Likewise, when the AC motor 24 is activated, the pulley 40 will coast. The belt 42 remains stationary and does not drive the DC motor 22. The pulleys 40, 44 are fixed to the axis 21 of the pump 20 using crutch-type clutches. The operation of a clutch of this type is explained in detail with reference to FIG. 4. A fixing of this type makes it possible, on the one hand, to drive the pump using one of the two motors 22, 24, and, on the other hand, allows the pulleys to operate in freewheeling mode as soon as the corresponding motor is not activated (as explained above).
Comme montré sur la figure 2, le bloc pompe 18 est pourvu d’un support 19, ledit support pouvant être utilisé pour assembler ledit bloc pompe avant son installation à l’intérieur d’un bateau. Une fois assemblé à l’aide du support 19, le bloc pompe peut être introduit dans un espace relativement restreint et peut être déplacé dans la direction de la flèche, tel que représenté sur la figure 2. Lorsque l’installation est terminée, grâce à la configuration du bloc pompe 18, il suffit que la face avant (comme montré sur la figure 2) reste accessible pendant l’utilisation du système 1 selon l’invention pour que la maintenance dudit bloc pompe puisse être effectuée. Les éléments tournants et les courroies 42, 46 sont accessibles du même côté du bloc pompe 18. As shown in FIG. 2, the pump unit 18 is provided with a support 19, said support being able to be used to assemble said pump unit before its installation inside a boat. Once assembled using the support 19, the pump unit can be introduced into a relatively small space and can be moved in the direction of the arrow, as shown in Figure 2. When the installation is complete, thanks to the configuration of the pump unit 18, it suffices that the front face (as shown in FIG. 2) remains accessible during the use of the system 1 according to the invention so that the maintenance of said pump unit can be carried out. The rotating elements and the belts 42, 46 are accessible from the same side of the pump unit 18.
La figure 3 montre une vue schématique du bloc pompe 18 ainsi qu’une connexion électrique permettant le fonctionnement du moteur à courant continu 22 et du moteur à courant alternatif 24. Selon la présente invention, seul un des moteurs 22, 24 est alimenté dans le cas où le système 1 dispose d’une alimentation d’une batterie 48 et d’une alimentation 50 de 220 volts fournie par un groupe électrogène. La batterie 48 est adaptée pour une alimentation de 12 ou 24 volts. Afin de s’assurer qu’un seul des deux moteurs soit alimenté, l’alimentation sous courant alternatif est prioritaire, comme montré sur la figure 3 qui représente un mode de réalisation d’un système électrique auquel le bloc pompe 18 est connecté. En effet, en supposant que le moteur à courant continu 22 soit alimenté par la batterie 48, le commutateur 52 est en position fermé. Dès que le groupe électrogène est mis en marche, le relais électromagnétique 54 est activé et le commutateur 52 s’ouvre, coupant ainsi l’alimentation du moteur à courant continu 22. Ainsi, seul le moteur à courant alternatif 24 est alimenté. Selon un mode de réalisation alternatif, l’alimentation du moteur à courant continu 22 ou du moteur à courant alternatif 24 est contrôlé par l’élément de contrôle 38 (comme montré sur la figure 1 ). Ledit système de contrôle 38 pourrait être utilisé afin d’optimiser le système et contrôler le mode de fonctionnement exact du système 1 selon l’invention. Par exemple, l’élément de contrôle 38 pourrait servir à gérer les différentes temporisations, telle qu’une temporisation de quelques secondes, mises en oeuvre avant de pouvoir recueillir l’eau potable dans le réservoir après la mise en route du système de dessalinisation 1 selon l’invention. FIG. 3 shows a schematic view of the pump block 18 as well as an electrical connection allowing the operation of the DC motor 22 and the AC motor 24. According to the present invention, only one of the motors 22, 24 is supplied in the case where the system 1 has a power supply from a battery 48 and a power supply 50 of 220 volts supplied by a generator. The battery 48 is suitable for a 12 or 24 volt supply. In order to ensure that only one of the two motors is powered, AC power is given priority, as shown in Figure 3 which shows an embodiment of an electrical system to which the pump unit 18 is connected. Indeed, assuming that the DC motor 22 is powered by the battery 48, the switch 52 is in the closed position. As soon as the generator set is started, the electromagnetic relay 54 is activated and the switch 52 opens, thereby cutting off the supply to the DC motor 22. Thus, only the AC motor 24 is supplied. According to an alternative embodiment, the supply of the DC motor 22 or the AC motor 24 is controlled by the control element 38 (as shown in Figure 1). Said control system 38 could be used to optimize the system and control the exact operating mode of the system 1 according to the invention. For example, the control element 38 could be used to manage the various time delays, such as a time delay of a few seconds, implemented before being able to collect the potable water in the reservoir after the start-up of the desalination system 1 according to the invention.
La figure 4 montre un exemple d’un embrayage de type à béquille 60, ledit embrayage comprenant une roue intérieure 61 et une roue extérieure 62. Des éléments intermédiaires 63 sont présents entre la roue intérieure 61 et la roue extérieure 62. La présence, et la forme spécifique desdits éléments 63, permet une rotation de la roue intérieure 61 entraînant la rotation correspondante de la roue extérieure 62. La roue intérieure 61 peut également subir une rotation sans pour autant avoir une incidence sur la roue extérieure 62. Comme cela est visible sur la figure 4, les éléments intermédiaires 63 sont maintenus en place grâce à un élément de positionnement 64. Si l’on considère l’option selon laquelle la roue intérieure 61 subit une rotation en entraînant une rotation correspondante de la roue extérieure 62, les éléments intermédiaires 63 peuvent transmettre l’entraînement de la roue intérieure 61 vers la roue extérieure 62 dans le cas où la roue intérieure fait une rotation en direction de la flèche 70, comme montré sur la figure 4. FIG. 4 shows an example of a crutch type clutch 60, said clutch comprising an inner wheel 61 and an outer wheel 62. Intermediate elements 63 are present between the inner wheel 61 and the outer wheel 62. The presence, and the specific shape of said elements 63, allows rotation of the inner wheel 61 causing the corresponding rotation of the outer wheel 62. The inner wheel 61 can also be rotated without having an impact on the outer wheel 62. As can be seen in FIG. 4, the intermediate elements 63 are held in place by means of a positioning element 64. If we consider the option that the inner wheel 61 is rotated by causing a corresponding rotation of the outer wheel 62, the intermediate elements 63 can transmit the drive from the inner wheel 61 to the outer wheel 62 in the case where the inner wheel rotates in the direction of arrow 70, as shown in FIG. 4.
Si l’on considère l’option selon laquelle la roue intérieure 61 subit une rotation en direction de la flèche 70, sans pour autant avoir une incidence sur la roue extérieure 62, la surface extérieure de ladite roue intérieure 61 entre en contact avec l’élément intermédiaire 63, selon un point de contact 67. De la même façon, l’élément intermédiaire 63 entre en contact avec la surface intérieure de la roue extérieure 62, selon un point de contact 66. Grâce à ce contact, la rotation de la roue intérieure 61 peut entraîner la rotation correspondante de la roue extérieure 62. Dans le cas contraire, si la roue intérieure 61 subit une rotation en direction de la flèche 75, comme montré sur la figure 4, la forme des éléments intermédiaires 63 permet à l’embrayage de type à béquille de se mettre en roue libre. Cela signifie que la roue intérieure 61 peut subir une rotation en direction de la flèche 75 sans qu’aucune force ne soit exercée sur la roue extérieure 62. If we consider the option that the inner wheel 61 is rotated in the direction of the arrow 70, without having any effect on the outer wheel 62, the outer surface of said inner wheel 61 comes into contact with the intermediate element 63, according to a contact point 67. Likewise, the intermediate element 63 comes into contact with the inner surface of the outer wheel 62, according to a contact point 66. Thanks to this contact, the rotation of the inner wheel 61 can drive the corresponding rotation of the outer wheel 62. Otherwise, if the inner wheel 61 is rotated in the direction of arrow 75, as shown in FIG. 4, the shape of the intermediate elements 63 allows the crutch type clutch to coast. This means that the inner wheel 61 can be rotated in the direction of the arrow 75 without any force being exerted on the outer wheel 62.
La fixation des poulies 40, 44 à l’axe 21 de la pompe 20, tel que montré dans la figure 2, permet auxdites poulies d’être entraînées par leur moteur respectif ou de se mettre en roue libre. The fixing of the pulleys 40, 44 to the axis 21 of the pump 20, as shown in FIG. 2, allows said pulleys to be driven by their respective motor or to coast.

Claims

Revendications Claims
1. Système de dessalinisation (1 ) de l’eau de mer (100) comprenant une cellule à osmose inversée (12) contenant une membrane semi perméable pour effectuer la dessalinisation de l’eau par passage d’eau de mer sous pression à travers ladite membrane, une pompe (20) pour forcer l’eau de mer (100) sous pression à travers ladite membrane et un mécanisme d’entraînement de l’axe (21 ) de ladite pompe (20) dans lequel ledit mécanisme d’entraînement comprend un moteur à courant continu (22), alimenté par une tension continue et un moteur à courant alternatif (24), alimenté par une tension alternative, caractérisé en ce que lesdits moteurs (22, 24) sont montés en position d’entraînement de l’axe (21 ) de ladite pompe (20) par une courroie entraînant respectivement une première (40) et une deuxième poulie (44), positionnées l’une à côté de l’autre sur l’axe (21 ) de la pompe (20), dans lequel chaque poulie (40, 44) est fixée sur l’axe de la pompe (20) à l’aide d’un embrayage de type à béquille (60). 1. Seawater desalination system (1) (100) comprising a reverse osmosis cell (12) containing a semi-permeable membrane for carrying out the desalination of water by passing seawater under pressure through said membrane, a pump (20) for forcing seawater (100) under pressure through said membrane and a spindle drive mechanism (21) of said pump (20) wherein said drive mechanism comprises a direct current motor (22), supplied by a direct voltage and an alternating current motor (24), supplied by an alternating voltage, characterized in that said motors (22, 24) are mounted in the drive position of the axis (21) of said pump (20) by a belt respectively driving a first (40) and a second pulley (44), positioned one beside the other on the axis (21) of the pump (20), in which each pulley (40, 44) is fixed on the axis of the pump pe (20) using a crutch type clutch (60).
2. Système (1 ) selon la revendication 1 , comprenant en outre des moyens de sélection pour activer seulement ledit moteur à courant alternatif (24) et donc entraîner l’axe (21 ) de ladite pompe (20) lorsque les deux moteurs (22, 24) sont alimentés. 2. System (1) according to claim 1, further comprising selection means for activating only said AC motor (24) and therefore driving the axis (21) of said pump (20) when the two motors (22 , 24) are supplied.
3. Système (1 ) selon la revendication 2, dans lequel lesdits moyens de sélection comprennent un relais électromagnétique (54) alimenté par ladite tension alternative lorsque celle-ci est connectée et un commutateur (52) dans le circuit d’alimentation dudit moteur à courant continu (22), ledit commutateur (52) étant normalement fermé et se mettant en position ouverte lorsque ledit relais électromagnétique (54) est alimenté par ladite tension alternative de sorte que ledit moteur à courant continu (24) cesse d’être activé dès que ladite tension alternative est connectée. 3. System (1) according to claim 2, in which said selection means comprise an electromagnetic relay (54) supplied by said alternating voltage when the latter is connected and a switch (52) in the supply circuit of said motor to direct current (22), said switch (52) being normally closed and moving to the open position when said electromagnetic relay (54) is supplied by said alternating voltage so that said direct current motor (24) ceases to be activated as soon as that said alternating voltage is connected.
4. Système (1 ) selon la revendication 2, dans lequel lesdits moyens de sélection sont constitués par une logique de contrôle telle qu’une carte électromagnétique ou technologie CMOS. 4. System (1) according to claim 2, wherein said selection means are constituted by a control logic such as an electromagnetic card or CMOS technology.
5. Système (1 ) selon l’une des revendications 1 à 4, comprenant en outre un réservoir (34) dans lequel est envoyée l’eau dessalinisée après son passage à travers ladite membrane. 6. Système (1 ) selon la revendication 5, comprenant en outre une électrovanne5. System (1) according to one of claims 1 to 4, further comprising a reservoir (34) into which the desalinated water is sent after it has passed through said membrane. 6. System (1) according to claim 5, further comprising a solenoid valve
(30) pour envoyer l’eau dessalinisée dans ledit réservoir (34) lorsque la qualité de ladite eau est suffisante et pour rejeter l’eau dessalinisée lorsque sa qualité est insuffisante. 7. Système (1 ) selon la revendication 6, comprenant en outre un moyen d’analyse de la salinité de l’eau pourfournir un seuil de potabilité et un seuil de non potabilité correspondant à une salinité plus élevée que le seuil de potabilité, ladite eau étant rejetée seulement lorsque sa salinité dépasse le seuil de non potabilité, et l’eau n’étant stockée dans ledit réservoir (34) après avoir été rejetée pour qualité insuffisante que lorsque sa salinité est redescendue au dessous dudit seuil de potabilité. (30) to send the desalinated water into said tank (34) when the quality of said water is sufficient and to reject the desalinated water when its quality is insufficient. 7. System (1) according to claim 6, further comprising means for analyzing the salinity of the water to provide a potability threshold and a non-potability threshold corresponding to a salinity higher than the potability threshold, said water being discharged only when its salinity exceeds the non-potable threshold, and the water being stored in said reservoir (34) after having been rejected for insufficient quality only when its salinity has dropped below said potable threshold.
8. Système (1 ) selon l’une des revendications précédentes, embarqué à bord d’un bateau (10) tel qu’un voilier. 8. System (1) according to one of the preceding claims, on board a boat (10) such as a sailboat.
PCT/FR2019/052436 2018-10-16 2019-10-15 Seawater desalination system for ships WO2020079361A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19806308.3A EP3867198A1 (en) 2018-10-16 2019-10-15 Seawater desalination system for ships
AU2019363347A AU2019363347A1 (en) 2018-10-16 2019-10-15 Seawater desalination system for ships

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR1871188 2018-10-16
FR1871188A FR3087183B1 (en) 2018-10-16 2018-10-16 SEAWATER DESALINATION SYSTEM FOR BOATS

Publications (1)

Publication Number Publication Date
WO2020079361A1 true WO2020079361A1 (en) 2020-04-23

Family

ID=65951700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2019/052436 WO2020079361A1 (en) 2018-10-16 2019-10-15 Seawater desalination system for ships

Country Status (4)

Country Link
EP (1) EP3867198A1 (en)
AU (1) AU2019363347A1 (en)
FR (1) FR3087183B1 (en)
WO (1) WO2020079361A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3726371A (en) * 1968-07-24 1973-04-10 Kreske W Torque device for winches and the like
FR2802508A1 (en) * 1999-12-20 2001-06-22 Dessalator Sea water desalination system for use on ship has pump supplying water to reverse osmosis module selectively driven by AC and DC motors
JP2006322477A (en) * 2005-05-17 2006-11-30 Ntn Corp Belt transmission device for surface boat
US20070163932A1 (en) * 2004-02-20 2007-07-19 Bianchi Gianfranco Operating group for integrated production of energy and desalinated water
CN102184273B (en) * 2011-02-18 2012-08-29 洛阳轴研科技股份有限公司 Finite element model building and updating method of sprag clutch wedge block surface stress

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3726371A (en) * 1968-07-24 1973-04-10 Kreske W Torque device for winches and the like
FR2802508A1 (en) * 1999-12-20 2001-06-22 Dessalator Sea water desalination system for use on ship has pump supplying water to reverse osmosis module selectively driven by AC and DC motors
EP1240076A1 (en) 1999-12-20 2002-09-18 Dessalator S.a.r.l. Desalination system of sea water for ship
US20070163932A1 (en) * 2004-02-20 2007-07-19 Bianchi Gianfranco Operating group for integrated production of energy and desalinated water
JP2006322477A (en) * 2005-05-17 2006-11-30 Ntn Corp Belt transmission device for surface boat
CN102184273B (en) * 2011-02-18 2012-08-29 洛阳轴研科技股份有限公司 Finite element model building and updating method of sprag clutch wedge block surface stress

Also Published As

Publication number Publication date
FR3087183B1 (en) 2021-05-07
FR3087183A1 (en) 2020-04-17
EP3867198A1 (en) 2021-08-25
AU2019363347A1 (en) 2021-05-13

Similar Documents

Publication Publication Date Title
EP1240076B1 (en) Desalination system of sea water for ship
EP2771525B1 (en) Apparatus for cleaning a submerged surface with semi automatic return command
FR2852310A1 (en) METHOD AND SYSTEM FOR PURIFYING WATER, AS WELL AS MODULE FOR SUCH A SYSTEM
EP1340446B1 (en) Process for automatic dedusting of filters of central vacuum cleaner and corresponding apparatus
WO2001049397A1 (en) Automatic device for purifying drinking water
FR2995541A1 (en) METHOD AND DEVICE FOR UNDERWATER TESTING OF FILTRATION SYSTEM
EP3253648B1 (en) Device of use in transporting and/or handling materiel in an underwater environment for carrying out work
EP3317229B2 (en) Method for controlling a desalination plant fed by a source of renewable energy and associated plant
EP3867198A1 (en) Seawater desalination system for ships
EP0337861A1 (en) Device for removing water from gasoil for a diesel engine
FR3020822A1 (en) IMPROVED MOTORIZED FUNCTIONAL UNIT FOR TOILET INSTALLATION AND TOILET INSTALLATION COMPRISING SUCH A UNIT
WO2009068819A2 (en) Device for recycling wastewater
EP1824730B1 (en) Device and method for stabilising a vessel
CA2849687C (en) Ironing appliance comprising a water treatment device
EP0229414A2 (en) Apparatus for purifying water, particularly salt water, by means of reverse osmosis
FR2523219A1 (en) ELECTRICITY GENERATING APPARATUS FROM WAVE ENERGY
EP1557353A1 (en) Actuator device comprising autonomous means for blocking the drive chains
EP2051349A1 (en) Device for guaranteeing the power supply of electric appliances
FR2924952A1 (en) Autonomous system for potabilizing brackish and/or polluted water, comprises pipes for circulating water, a unit for capturing renewable energy, a unit for controlling electronic and/or informatic set, and an automatic control unit
CA3216144A1 (en) Installation for treating wastewater from a toilet and sanitary unit comprising such an installation
FR3038310A1 (en) PORTABLE DEVICE FOR FRESHWATER PURIFIER
CH717485B1 (en) Installation for the treatment of waste water from a WC and sanitary unit comprising such an installation.
FR2824091A1 (en) Control of evacuation of a toilet bowl fitted with a brush and of water from an adjacent hand basin, uses single phase motor supplied through two parallel capacitors, one of which is switched to provide high transient starting torque
FR2464175A1 (en) Safety lighting for bicycles - uses threshold detector with hysteresis to switch from dynamo supply of lights to battery supply when bicycle slows
FR2879978A1 (en) Cleaning vehicle e.g. small sized commercial motor vehicle, for urban environment, has hydrocuring unit including transmission chain to transmit power from driving engine to high pressure pump, and another chain to transmit power to wheels

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19806308

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019363347

Country of ref document: AU

Date of ref document: 20191015

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019806308

Country of ref document: EP

Effective date: 20210517