WO2020078407A1 - Drx的配置方法及装置 - Google Patents

Drx的配置方法及装置 Download PDF

Info

Publication number
WO2020078407A1
WO2020078407A1 PCT/CN2019/111603 CN2019111603W WO2020078407A1 WO 2020078407 A1 WO2020078407 A1 WO 2020078407A1 CN 2019111603 W CN2019111603 W CN 2019111603W WO 2020078407 A1 WO2020078407 A1 WO 2020078407A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
drx
drx cycle
split bearer
data link
Prior art date
Application number
PCT/CN2019/111603
Other languages
English (en)
French (fr)
Inventor
王代锋
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2020078407A1 publication Critical patent/WO2020078407A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communications, for example, to a discontinuous reception (DRX) configuration method and device.
  • DRX discontinuous reception
  • the DRX technology provides a method for user terminal (User Equipment, UE) power saving in a wireless communication system.
  • the DRX function can be configured and controlled for the connected UE, so that the UE does not need to constantly detect the downlink channel Physical Downlink Control Channel (PDCCH).
  • the DRX cycle is composed of two parts, (1) “OnDuration", during which the UE monitors the PDCCH; (2) “DRX period”, during which the user can skip the monitoring of the downlink channel to save power.
  • the Packet Data Convergence Protocol (PDCP) layer introduces a reordering function.
  • the PDCP layer at the receiving end reorders out-of-order data packets and sequentially receives the received data packets. Post to the top.
  • the master base station (Master Node, MN) and the secondary base station (Secondary Node, SN) can configure different DRX for the UE.
  • the bearer types under multi-connection are divided into split (split) bearers and non-split bearers.
  • the same PDCP entity is used to send the data of the same data radio bearer (Data Radio) Bearer (DRB) on different links of MN and SN; at the receiving end, the PDCP entity needs to aggregate the data of multiple links to reorder, so that, If the DRX activation positions configured between the MN and the SN or multiple SNs are far apart, the sending end cannot send the continuously received data in time, the time difference between consecutive data packets received by the PDCP entity at the receiving end increases, and the reordering duration increases, Increased service delay affects user perception. Therefore, DRX configuration based on the Split bearer type requires special processing.
  • DRB Data Radio Bearer
  • Embodiments of the present application provide a DRX configuration method and device, so as to at least solve the problems of large time difference and complicated rearrangement of data packets received by terminals in the Split bearer service in the related art.
  • a DRX configuration method which includes: a first base station receives a DRX cycle for separating split bearer services, and obtains a data link transmission time between the first base station and a second base station Delay and clock difference; configure the first DRX starting position of the first base station according to the DRX cycle, the data link transmission delay and the clock difference.
  • a DRX configuration device including: a receiving module, configured to receive a DRX cycle that separates split bearer services, and obtain a data link between a first base station and a second base station Transmission delay and clock difference; a configuration module configured to configure the first DRX starting position of the first base station according to the DRX cycle, the data link transmission delay and the clock difference.
  • a DRX configuration system including: a second base station configured to configure a DRX cycle participating in split Split bearer services, and sending the DRX cycle to the first base station;
  • the first base station is configured to receive the discontinuous reception DRX cycle of the split split bearer service transmitted by the second base station, and obtain the data link transmission delay and clock difference between the first base station and the second base station; And configuring the first DRX starting position of the first base station according to the DRX cycle, the data link transmission delay, and the clock difference.
  • a storage medium stores a computer program, and the computer program is configured to execute the steps in any one of the foregoing method embodiments during runtime.
  • an electronic device including a memory and a processor, the memory stores a computer program, the processor is configured to run the computer program to perform any of the above The steps in the method embodiment.
  • FIG. 1 is a flowchart of a DRX configuration method provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of a DRX configuration process provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of DRX parameter interaction provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of the DRX working mechanism provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of multiple connections under Split bearer provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of the MN / SN DRX configuration provided in Embodiment 1 of the present application;
  • FIG. 7 is a schematic diagram of MN / SN DRX configuration provided in Embodiment 2 of the present application.
  • FIG. 8 is a schematic diagram of MN / SN1 / SN2 DRX configuration provided in Embodiment 3 of the present application.
  • An embodiment of the present application provides a mobile communication network (including but not limited to 5th generation mobile networks (5G)), and the network architecture of the network may include network side devices (such as base stations) and terminals.
  • a DRX configuration method that can run on the above network architecture is provided. It should be noted that the operating environment of the foregoing DRX configuration method provided in the embodiments of the present application is not limited to the foregoing network architecture.
  • FIG. 1 is a flowchart of a DRX configuration method provided in an embodiment of the present application. As shown in FIG. 1, the process includes the following step:
  • Step S102 The first base station receives a discontinuous reception DRX cycle that separates split bearer services, and obtains a data link transmission delay and a clock difference between the first base station and the second base station.
  • the first base station receives the DRX cycle of the split split bearer service transmitted by the second base station. It is also possible to receive DRX cycles from multiple second base stations and obtain data link transmission delay and clock difference values with multiple second base stations.
  • the second base station in this embodiment may be multiple second base stations.
  • Step S104 The first base station configures the first DRX starting position of the first base station according to the DRX cycle, the data link transmission delay, and the clock difference.
  • One or more of the DRX cycle, the data link transmission delay, and the clock difference may be determined by the first base station itself based on information related to multiple base stations.
  • the above base station may also be a communication node, that is, the communication node is also within the protection scope of the present application.
  • the first base station receives the DRX cycle for separating the split bearer services and obtains the data link transmission delay and clock difference between the first base station and the second base station; according to the DRX cycle and the data
  • the link transmission delay and the clock difference value configure the first DRX starting position of the first base station, that is, among the multiple base stations participating in the Split bearer service, the DRX starting position is unified to ensure that the terminal receives
  • the neat planning of data packet timing reduces the complexity of the rearrangement process, and solves the problems of large time difference and complicated rearrangement of the data packets received by the terminal in the Split bearer service in the related art.
  • the execution body of the above steps may be a base station, etc., but it is not limited thereto.
  • the first base station and the second base station include one of the following: When the primary base station MN and the first secondary base station SN both participate in the Split bearer service, the first base station is the first A secondary base station SN, the second base station is the primary base station MN; in the case where both the primary base station MN and the primary and secondary base stations participate in the Split bearer service, the first base station is the primary and secondary base station, and the second base station is The primary base station MN; in an embodiment, the primary and secondary base stations may be the base stations where the Split bearer PDCP entity is located; when the MN does not participate in the Split bearer service, the primary and secondary base stations and the first secondary base station both participate in the Split bearer service Next, the first base station is the first secondary base station, and the second base station is the primary and secondary base station.
  • the primary and secondary base stations are one of the secondary base stations.
  • the primary and secondary base stations and secondary base stations are distinguished, but the primary base station MN participates in the split.
  • the primary and secondary base stations and the secondary base station are equivalent.
  • configuring the first DRX starting position of the first base station according to the DRX cycle, the data link transmission delay, and the clock difference includes: calculating the DRX cycle, the The sum of the data link transmission delay and the clock difference; when the sum is greater than or equal to the DRX cycle, configure the difference between the sum and the DRX cycle to be the The first DRX starting position; if the sum value is less than the DRX cycle, configure the sum value as the first DRX starting position.
  • the above calculation and value steps may be performed by the base station itself.
  • the first base station after configuring the first DRX starting position of the first base station, the first base station initiates a split bearer service according to the first DRX starting position.
  • the time difference between the split bearer services initiated by the first base station and the second base station is low, which ensures the reception effect of the terminal.
  • the first base station before the first base station receives the DRX cycle of the split split bearer service transmitted by the second base station, the first base station detects whether it participates in the split bearer service; the first base station receives the discontinuous reception of the split bearer service
  • the DRX cycle includes: the first base station receives the DRX cycle when it determines that it participates in the Split bearer service.
  • the technical problem to be solved by the present application is to overcome the impact of DRX on the Split bearer service perception under multiple connections in the related art, and to provide a method and device (system) for discontinuous reception of DRX under multiple connections.
  • Step 210 SNi judges that there is currently a Split bearer type, and according to the DRX configuration transmitted on the MN side, configures the DRX starting point position on the SNi side to be the same as the MN side.
  • Step 220 According to the data link transmission delay between MN and SNi, calculate the delay difference ⁇ T between the MN side and the SNi side, and then update the DRX starting point position on the SNi side as:
  • DRX starting point position Mod (DRX cycle + MN side starting point position + Mod ( ⁇ T, DRX cycle), DRX cycle).
  • the DRX cycle in this application is a cycle repetition, that is, the end position of one DRX cycle may be the start position of another cycle, that is, 0.
  • Step 230 Calculate the clock difference ⁇ t between the MN side and the SN side according to the influence of the MN and SNi clock asynchronization factors, and update the SNi side DRX starting position as:
  • DRX starting position Mod (DRX cycle + MN side starting position + Mod ( ⁇ T, DRX cycle) + Mod ( ⁇ t, DRX cycle), DRX cycle).
  • Mod in this embodiment may mean taking the remainder in the related art.
  • the primary SN transmits the DRX configuration to other SNs, and the other SNs perform their respective DRX allocations according to the primary SN DRX configuration.
  • FIG. 2 is a schematic diagram of a DRX configuration process provided by an embodiment of the present application. As shown in FIG. 2, the DRX configuration process provided by an embodiment of the present application includes the following steps:
  • step 310 SNi judges that there is currently a Split bearer type, and according to the DRX configuration transmitted on the MN side, configures the DRX starting point position on the SNi side to be the same as the MN side.
  • Step 320 Calculate the delay difference ⁇ T between the MN side and the SNi side according to the F1 / X2 / Xn transmission delay of the MN and SNi data link, and update the start position of the DNi on the SNi side
  • Step 330 Calculate the clock difference ⁇ t between the MN side and the SN side according to the influence of the MN and SNi clock asynchronism factors, and update the SNi side DRX starting position.
  • FIG. 3 is a schematic diagram of DRX parameter interaction provided by an embodiment of the present application. As shown in FIG. 3, the DRX parameter interaction provided by the embodiment of the present application includes the following steps:
  • Step 10 The MN allocates DRX on the MN side.
  • Step 20-1 Transfer the DRX configuration on the MN side to SN1.
  • step 20-i the MN side DRX configuration is transferred to SNi.
  • Step 30-1 Perform DRX allocation on the SN1 side according to the DRX configuration on the MN side.
  • Step 30-i SNi side DRX allocation is performed according to the MN side DRX configuration.
  • Step 40-1 configure SN1 side DRX for the UE.
  • Step 40-i configure SNi side DRX for the UE.
  • FIG. 4 is a schematic diagram of a DRX working mechanism provided by an embodiment of the present application. As shown in FIG. 4, the DRX cycle includes OnDuration and Sleeping Time.
  • FIG. 5 is a schematic diagram of multiple connections under a Split bearer provided by an embodiment of the present application. As shown in FIG. 5, it includes UE, SN1, SNi, and MN. MN includes PDCP and Radio Link Control (Radio Link Control, RLC) m, SN1 includes RLCs, SNi includes RLCs, and UE includes PDCP, RLCm and RLCs.
  • MN includes PDCP and Radio Link Control (Radio Link Control, RLC) m
  • SN1 includes RLCs
  • SNi includes RLCs
  • UE includes PDCP, RLCm and RLCs.
  • the configuration process in the first embodiment includes:
  • Step 410 The MN configures the DRX cycle for the MN side as 160 ms, DRX On Duration as 10 psf, and DRX Start Position (Start Offset) as 0.
  • Step 420 The MN transmits the DRX configuration on the MN side to the SN side.
  • the bearer corresponding to the MN side has a DRX cycle of 160 ms and the DRX On Duration is 10 psf; the bearer corresponding to the SN side has a DRX cycle of 160 ms and the DRX On Duration is 10 psf.
  • the configuration process in the second embodiment includes:
  • Step 510 The MN configures the DRX cycle for the MN side as 160 ms, DRX On Duration as 10 psf, and DRX Start Offset as 0.
  • Step 520 The MN transmits the DRX configuration on the MN side to the SN side.
  • FIG. 8 is a schematic diagram of MN / SN1 / SN2 DRX configuration provided in Embodiment 3 of the present application.
  • the configuration process in Embodiment 3 includes:
  • Step 610 The MN configures the DRX cycle for the MN side as 160 ms, DRX On Duration as 10 psf, and DRX Start Offset as 0.
  • Step 620 The MN transmits the DRX configuration on the MN side to the SN1 side and the SN2 side.
  • the method and device (system) provided by the present application are optimized for DRX configuration of different bearer types under dual / multi-connection, which reduces the delay of receiving data of Split bearer and improves the multi-connection DRX configuration. User perception carried by the split.
  • the method according to the above embodiments may be implemented by means of software plus a general hardware platform, and of course, may also be implemented by hardware.
  • the technical solution of the present application can be embodied in the form of a software product, which is stored in a storage medium (such as read-only memory (Read-Only Memory, ROM) / random access memory (Random Access Memory) , RAM), magnetic disk, and optical disk), including multiple instructions to enable a terminal device (which may be a mobile phone, computer, server, or network device, etc.) to perform the methods described in multiple embodiments of the present application.
  • a storage medium such as read-only memory (Read-Only Memory, ROM) / random access memory (Random Access Memory) , RAM), magnetic disk, and optical disk
  • a terminal device which may be a mobile phone, computer, server, or network device, etc.
  • a DRX configuration device is also provided.
  • the device is used to implement the above-mentioned embodiments and implementation modes, and those that have already been described will not be repeated.
  • the term "module” may implement a combination of software and / or hardware that performs predetermined functions.
  • the devices described in the following embodiments may be implemented in software, implementation of hardware or a combination of software and hardware is also possible and conceived.
  • a DRX configuration device including: a receiving module, configured to receive a DRX cycle of a split split bearer service transmitted by a second base station, and obtain the data between the first base station and the second base station Data link transmission delay and clock difference; a configuration module configured to configure the first DRX starting position of the first base station according to the DRX cycle, the data link transmission delay and the clock difference.
  • the DRX starting point location is unified among multiple base stations participating in the Split bearer service, which ensures the neat planning of the timing of the data packets received by the terminal, reduces the complexity of the rearrangement process, and solves the Split bearer in related technologies
  • the data packets received by the terminal have a large time difference, and the problem of rearrangement is complicated.
  • the device is applied to a first base station, and the first base station and the second base station include one of the following: when the primary base station MN and the first secondary base station SN both participate in the Split bearer service Next, the first base station is a first secondary base station SN, and the second base station is a primary base station MN; in a case where both the primary base station MN and the primary and secondary base stations participate in the Split bearer service, the first base station is the primary A secondary base station, where the second base station is the primary base station MN; when the MN does not participate in the Split bearer service, and both the primary and secondary base stations and the first secondary base station participate in the Split bearer service, the first base station is The first secondary base station and the second base station are the primary and secondary base stations.
  • the configuration module is configured to calculate a sum of the DRX cycle, the data link transmission delay and the clock difference; and when the sum is greater than or equal to the In the case of a DRX cycle, the difference between the sum value and the DRX cycle is configured as the starting point of the first DRX; in the case where the sum value is less than the DRX cycle, the sum value is configured as the The first DRX starting position.
  • the configuration module is further configured to initiate a split bearer service according to the first DRX starting position.
  • the receiving module before receiving the DRX cycle of the split split bearer service transmitted by the second base station, is further configured to detect whether it participates in the split bearer service; when determining that it participates in the split bearer service Next, receive the DRX cycle.
  • the above-mentioned multiple modules can be implemented by software or hardware. For the latter, they can be implemented in the following ways, but not limited to this: the above-mentioned modules are all located in the same processor; or, the above-mentioned multiple modules are respectively combined in any combination Located in different processors.
  • a DRX configuration system including: a second base station configured to configure a DRX cycle participating in split Split bearer services, and sending the DRX cycle to the first base station;
  • the first base station is configured to receive the discontinuous reception DRX cycle of the split split bearer service transmitted by the second base station, and obtain a data link transmission delay and a clock difference between the first base station and the second base station Value; and configure the first DRX starting position of the first base station according to the DRX cycle, the data link transmission delay, and the clock difference.
  • the embodiments of the present application also provide a storage medium.
  • the above storage medium may be set to store program code for performing the following steps:
  • the first base station receives a discontinuous reception DRX cycle that separates split bearer services, and obtains a data link transmission delay and a clock difference between the first base station and the second base station.
  • the foregoing storage medium may include, but is not limited to, a variety of media that can store program codes, such as a USB flash drive, ROM, RAM, removable hard disk, magnetic disk, or optical disk.
  • An embodiment of the present application further provides an electronic device, including a memory and a processor, where a computer program is stored in the memory, and the processor is configured to run the computer program to perform any step in any of the foregoing method embodiments.
  • the electronic device may further include a transmission device and an input-output device, wherein the transmission device is connected to the processor, and the input-output device is connected to the processor.
  • the above processor may be configured to perform the following steps through a computer program:
  • the first base station receives a discontinuous reception DRX cycle that separates split bearer services, and obtains a data link transmission delay and a clock difference between the first base station and the second base station.
  • the above-mentioned multiple modules or multiple steps of the present application can be implemented by a general-purpose computing device, and they can be concentrated on a single computing device or distributed among multiple computing devices On the Internet.
  • the above-mentioned multiple modules or multiple steps may be implemented by program code executable by the computing device, so that the above-mentioned multiple modules or multiple steps may be stored in the storage device and executed by the computing device, and
  • the steps shown or described may be performed in an order different from here, or the above-mentioned multiple modules or multiple steps are separately made into multiple integrated circuit modules, or the above-mentioned multiple modules or multiple Multiple modules or steps in each step are implemented as a single integrated circuit module. In this way, this application is not limited to any specific combination of hardware and software.

Abstract

本申请提供了一种DRX的配置方法及装置,其中,该方法包括:第一基站接收分离Split承载业务的DRX周期,并获取所述第一基站与第二基站之间的数据链路传输时延和时钟差值;依据所述DRX周期、所述数据链路传输时延和所述时钟差值,配置所述第一基站的第一DRX起点位置

Description

DRX的配置方法及装置
本申请要求在2018年10月18日提交中国专利局、申请号为201811216926.9的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,例如涉及一种非连续接收(Discontinuous Reception,DRX)的配置方法及装置。
背景技术
在相关技术中,DRX技术为无线通信系统中用于用户终端(User Equipment,UE)省电提供的一种方法。在当前的DRX机制中,可以对处于连接状态的UE进行DRX功能的配置和控制,从而使得UE无需一直检测下行信道物理下行控制信道(Physical Downlink Control Channel,PDCCH)。DRX周期由两个部分组成,(1)“工作期间”(On Duration),在此期间UE监听PDCCH;(2)“DRX时段”,在此期间用户可以跳过下行信道的监听来节省电量。
新无线(New Radio,NR)系统中分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层引入重排序功能,接收端PDCP层对乱序的数据包进行重排序,按序将接收到的数据包投递到高层。
在新无线多连接场景下主基站(Master Node,MN)和辅基站(Secondary Node,SN)可以配置不同的DRX给UE。多连接下承载类型分为分离(Split)承载和非Split承载。对于Split承载,使用同一个PDCP实体在MN和SN不同链路上发送同一数据无线承载(Data Radio Bearer,DRB)的数据;在接收端PDCP实体需要将多条链路数据汇聚重新排序,这样,如果MN和SN或多个SN之间配置的DRX激活位置相距较远,发送端不能及时将连续接收到的数据发送,接收端PDCP实体接收到的连续数据包时差增大,重排序时长增加,业务时延增加影响用户感知。因此,基于Split承载类型的DRX配置需要进行特殊的处理。
针对相关技术中Split承载业务中终端接收到的数据包时差较大,重排复杂的问题,还没有有效的解决方案。
发明内容
本申请实施例提供了一种DRX的配置方法及装置,以至少解决相关技术中Split承载业务中终端接收到的数据包时差较大,重排复杂的问题。
根据本申请的一个实施例,提供了一种DRX的配置方法,包括:第一基站接收分离Split承载业务的DRX周期,并获取所述第一基站与第二基站之间的数据链路传输时延和时钟差值;依据所述DRX周期、所述数据链路传输时延和所述时钟差值,配置所述第一基站的第一DRX起点位置。
根据本申请的另一个实施例,还提供了一种DRX的配置装置,包括:接收模块,设置为接收分离Split承载业务的DRX周期,并获取第一基站与第二基站之间的数据链路传输时延和时钟差值;配置模块,设置为依据所述DRX周期、所述数据链路传输时延和所述时钟差值,配置所述第一基站的第一DRX起点位置。
根据本申请的另一个实施例,还提供了一种DRX的配置系统,包括:第二基站,设置为配置参与分离Split承载业务的DRX周期,并发送所述DRX周期至第一基站;所述第一基站,设置为接收所述第二基站传输的分离Split承载业务的非连续接收DRX周期,并获取所述第一基站与第二基站之间的数据链路传输时延和时钟差值;以及依据所述DRX周期、所述数据链路传输时延和所述时钟差值,配置所述第一基站的第一DRX起点位置。
根据本申请的又一个实施例,还提供了一种存储介质,所述存储介质中存储有计算机程序,所述计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
根据本申请的又一个实施例,还提供了一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行上述任一项方法实施例中的步骤。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是本申请实施例提供的DRX的配置方法的流程图;
图2是本申请实施例提供的DRX配置流程示意图;
图3是本申请实施例提供的DRX参数交互示意图;
图4是本申请实施例提供的DRX工作机制示意图;
图5是本申请实施例提供的Split承载下的多连接示意图;
图6是本申请实施例一提供的MN/SN DRX配置示意图;
图7是本申请实施例二提供的MN/SN DRX配置示意图;
图8是本申请实施例三提供的MN/SN1/SN2 DRX配置示意图。
具体实施方式
下文中将参考附图并结合实施例来说明本申请。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例一
本申请实施例中提供了一种移动通信网络(包括但不限于第五代移动通信网络(5th generation mobile networks,5G)),该网络的网络架构可以包括网络侧设备(例如基站)和终端。在本实施例中提供了一种可运行于上述网络架构上的DRX的配置方法。需要说明的是,本申请实施例中提供的上述DRX的配置方法的运行环境并不限于上述网络架构。
在本实施例中提供了一种运行于上述网络架构中的基站的DRX的配置方法,图1是本申请实施例提供的DRX的配置方法的流程图,如图1所示,该流程包括如下步骤:
步骤S102,第一基站接收分离Split承载业务的非连续接收DRX周期,并获取所述第一基站与第二基站之间的数据链路传输时延和时钟差值。
在一实施例中,第一基站接收第二基站传输的分离Split承载业务的DRX周期。也可以从多个第二基站接收DRX周期,以及获取与多个第二基站之间的数据链路传输时延和时钟差值。
在终端存在多连接场景,不包括双连接场景时,本实施例中的第二基站可以是多个第二基站。
步骤S104,所述第一基站依据所述DRX周期、所述数据链路传输时延和所述时钟差值,配置所述第一基站的第一DRX起点位置。
上述的DRX周期,数据链路传输延时,时钟差值中的一个或多个,可以是第一基站依据多个基站相关的信息自己综合确定的。
上述基站也可以是通信节点,即通信节点也在本申请保护范围内。
通过上述步骤,第一基站接收分离Split承载业务的DRX周期,并获取所述第一基站与第二基站之间的数据链路传输时延和时钟差值;依据所述DRX周期、所述数据链路传输时延和所述时钟差值,配置所述第一基站的第一DRX起点位置,即在参与Split承载业务的多个基站之间,统一了DRX起点位置,保 证了终端接收到的数据包时序整齐规划,降低了重排过程的复杂度,解决了相关技术中Split承载业务中终端接收到的数据包时差较大,重排复杂的问题。
在一实施例中,上述步骤的执行主体可以为基站等,但不限于此。
在一实施例中,所述第一基站和所述第二基站包括以下之一:在主基站MN和第一辅基站SN均参与所述Split承载业务的情况下,所述第一基站为第一辅基站SN,所述第二基站为主基站MN;在主基站MN和主辅基站均参与所述Split承载业务的情况下,所述第一基站为主辅基站,所述第二基站为主基站MN;在一实施例中,主辅基站可以是Split承载PDCP实体所在的基站;在MN未参与所述Split承载业务,主辅基站和第一辅基站均参与所述Split承载业务的情况下,所述第一基站为所述第一辅基站,所述第二基站为所述主辅基站。
上述可选实施例列出了三种场景,主辅基站是辅基站的一种,上述实施例为了更为清楚的表达,对主辅基站和辅基站进行了区分,但是在主基站MN参与Split承载业务时,主辅基站和辅基站是相当的。
在一实施例中,依据所述DRX周期、所述数据链路传输时延和所述时钟差值,配置所述第一基站的第一DRX起点位置,包括:计算所述DRX周期、所述数据链路传输时延和所述时钟差值三者的和值;在所述和值大于或等于所述DRX周期的情况下,配置所述和值与所述DRX周期的差值为所述第一DRX起点位置;在所述和值小于所述DRX周期的情况下,配置所述和值为所述第一DRX起点位置。
上述计算和值的步骤可以是在基站后台自身执行的。
在一实施例中,配置所述第一基站的第一DRX起点位置之后,所述第一基站依据所述第一DRX起点位置发起split承载业务。采用该方案,使得第一基站和第二基站发起的Split承载业务的时差较低,保证了终端的接收效果。
在一实施例中,第一基站接收第二基站传输的分离Split承载业务的DRX周期之前,所述第一基站检测自身是否参与所述Split承载业务;第一基站接收Split承载业务的非连续接收DRX周期,包括:第一基站在确定自身参与所述Split承载业务的情况下,所述第一基站接收所述DRX周期。
下面结合本申请另一个实施例进行说明。
本申请所要解决的技术问题是:克服相关技术中存在的多连接下DRX对Split承载业务感知的影响,提供一种多连接下非连续接收DRX的方法和装置(系统)。
本申请采用以下技术方案:
本申请所述一种多连接下DRX的方法和装置的方法包括以下步骤:
步骤210:SNi判断当前存在Split承载类型,依据MN侧传递的DRX配置,则将SNi侧DRX起点位置配置为与MN侧相同。
本申请文件的“将不同基站的DRX起点位置配置相同”并不是绝对意义的时间相同,是从终端的接收角度考虑,是为了保证终端的接收效果。
步骤220:根据MN与SNi的数据链路传输时延,计算MN侧与SNi侧时延差值ΔT,则更新SNi侧DRX起点位置为:
DRX起点位置=Mod(DRX周期+MN侧起点位置+Mod(ΔT,DRX周期),DRX周期)。
本申请中的DRX周期由于是周期重复的,即一个DRX周期的结束位置可以是又一个周期的开始位置,即为0。
步骤230:根据MN与SNi时钟不同步因素影响,计算MN侧与SN侧时钟差值Δt,更新SNi侧DRX起点位置为:
DRX起点位置=Mod(DRX周期+MN侧起点位置+Mod(ΔT,DRX周期)+Mod(Δt,DRX周期),DRX周期)。
本实施例中的Mod可以是相关技术中的取余数的意思。
在一实施例中,若多个SN进行Split承载数据的传输,MN不参与Split承载数据的传输,则主SN向其他SN传递DRX配置,其他SN依据主SN DRX配置进行各自DRX分配。
图2是本申请实施例提供的DRX配置流程示意图,如图2所示,本申请实施例提供的DRX配置流程包括以下步骤:
步骤310,SNi判断当前存在Split承载类型,依据MN侧传递的DRX配置,则将SNi侧DRX起点位置配置为与MN侧相同。
步骤320,根据MN与SNi数据链路的F1/X2/Xn传输时延,计算MN侧与SNi侧时延差值ΔT,更新SNi侧DRX起点位置
步骤330,根据MN与SNi时钟不同步因素影响,计算MN侧与SN侧时钟差值Δt,更新SNi侧DRX起点位置。
图3是本申请实施例提供的DRX参数交互示意图,如图3所示,本申请实施例提供的DRX参数交互包括以下步骤:
步骤10,MN分配MN侧DRX。
步骤20-1,传递MN侧DRX配置到SN1。
直到步骤20-i,传递MN侧DRX配置到SNi。
步骤30-1,根据MN侧DRX配置进行SN1侧DRX分配。
步骤30-i,根据MN侧DRX配置进行SNi侧DRX分配。
步骤40-1,为UE配置SN1侧DRX。
步骤40-i,为UE配置SNi侧DRX。
图4是本申请实施例提供的DRX工作机制示意图,如图4所示,DRX周期包括On Duration和睡眠时间(Sleeping Time)。
图5是本申请实施例提供的Split承载下的多连接示意图,如图5所示,包括UE,SN1,SNi,MN。MN包括PDCP和无线链路控制(Radio Link Control,RLC)m,SN1包括RLCs,SNi包括RLCs,UE包括PDCP、RLCm和RLCs。
实施例一:
假设双连接下建立一条Split承载,MN侧该承载对应DRX周期为160ms,DRX On Duration为10psf;SN侧该承载对应DRX周期为160ms,DRX On Duration为10psf。图6是本申请实施例一提供的MN/SN DRX配置示意图,(ΔT=0ms,Δt=0ms)。实施例一中的配置流程包括:
步骤410:MN为MN侧配置DRX周期为160ms,DRX On Duration为10psf,DRX起始位置(Start Offset)为0。
步骤420:MN传递MN侧DRX配置到SN侧。
步骤430:SN侧计算时延差值ΔT=0ms,时钟差值Δt=0ms,则SN侧DRX配置:DRX周期为160ms,DRX On Duration为10psf,DRX起点位置为0。
实施例二:
假设双连接下建立一条Split承载,MN侧该承载对应DRX周期为160ms,DRX On Duration为10psf;SN侧该承载对应DRX周期为160ms,DRX On Duration为10psf。图7是根据本申请实施例二提供的MN/SN DRX配置示意图,(ΔT=2ms,Δt=-7ms)。实施例二中的配置流程包括:
步骤510:MN为MN侧配置DRX周期为160ms,DRX On Duration为10psf,DRX Start Offset为0。
步骤520:MN传递MN侧DRX配置到SN侧。
步骤530:SN侧计算时延差值ΔT=2ms,时钟差值Δt=-7ms,则SN侧DRX配置:DRX周期为160ms,DRX On Duration为10psf,DRX起点位置为Mod(160ms+0+Mod(2ms,160ms)+Mod(-7ms,160ms),160ms)=155。
实施例三:
假设多连接下建立一条Split承载,MN侧该承载对应DRX周期为160ms,DRX On Duration为10psf;SN1侧该承载对应DRX周期为160ms,DRX On Duration为10psf;SN2侧该承载对应DRX周期为160ms,DRX On Duration为10psf。图8是本申请实施例三提供的MN/SN1/SN2 DRX配置示意图。实施例三中的配置流程包括:
步骤610:MN为MN侧配置DRX周期为160ms,DRX On Duration为10psf,DRX Start Offset为0。
步骤620:MN传递MN侧DRX配置到SN1侧和SN2侧。
步骤630:SN1侧计算时延差值ΔT=2ms,时钟差值Δt=-7ms,则SN侧DRX配置:DRX周期为160ms,DRX On Duration为10psf,DRX起点位置为Mod(160ms+0+Mod(2ms,160ms)+Mod(-7ms,160ms),160ms)=155。
步骤640:SN2侧计算时延差值ΔT=5ms,时钟差值Δt=0ms,则SN侧DRX配置:DRX周期为160ms,DRX On Duration为10psf,DRX起点位置为Mod(160ms+0+Mod(5ms,160ms)+Mod(0ms,160ms),160ms)=5。
采用本申请提供的所述方法和装置(系统),与相关技术相比,对双/多连接下不同承载类型的DRX配置优化,减少了Split承载数据接收时延,改善了多连接DRX配置下Split承载的用户感知。
通过以上的实施方式的描述,本领域的技术人员可以了解到根据上述实施例的方法可借助软件加通用硬件平台的方式来实现,当然也可以通过硬件来实现。基于这样的理解,本申请的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如只读存储器(Read-Only Memory,ROM)/随机存取存储器(Random Access Memory,RAM)、磁碟、光盘)中,包括多个指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本申请多个实施例所述的方法。
实施例二
在本实施例中还提供了一种DRX的配置装置,该装置用于实现上述实施例及实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置可以以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
根据本申请的一个实施例,提供了一种DRX的配置装置,包括:接收模块,设置为接收第二基站传输的分离Split承载业务的DRX周期,并获取第一基站与第二基站之间的数据链路传输时延和时钟差值;配置模块,设置为依据所述 DRX周期、所述数据链路传输时延和所述时钟差值,配置所述第一基站的第一DRX起点位置。
采用上述方案,在参与Split承载业务的多个基站之间,统一了DRX起点位置,保证了终端接收到的数据包时序整齐规划,降低了重排过程的复杂度,解决了相关技术中Split承载业务中终端接收到的数据包时差较大,重排复杂的问题。
在一实施例中,所述装置应用于第一基站,所述第一基站和所述第二基站包括以下之一:在主基站MN和第一辅基站SN均参与所述Split承载业务的情况下,所述第一基站为第一辅基站SN,所述第二基站为主基站MN;在主基站MN和主辅基站均参与所述Split承载业务的情况下,所述第一基站为主辅基站,所述第二基站为主基站MN;在所述MN未参与所述Split承载业务,主辅基站和第一辅基站均参与所述Split承载业务的情况下,所述第一基站为所述第一辅基站,所述第二基站为所述主辅基站。
在一实施例中,所述配置模块是设置为计算所述DRX周期、所述数据链路传输时延和所述时钟差值三者的和值;以及在所述和值大于或等于所述DRX周期的情况下,配置所述和值与所述DRX周期的差值为所述第一DRX起点位置;在所述和值小于所述DRX周期的情况下,配置所述和值为所述第一DRX起点位置。
在一实施例中,所述配置模块在配置所述第一基站的第一DRX起点位置之后,还设置为依据所述第一DRX起点位置发起split承载业务。
在一实施例中,所述接收模块在接收第二基站传输的分离Split承载业务的DRX周期之前,还设置为检测自身是否参与所述Split承载业务;在确定自身参与所述Split承载业务的情况下,接收所述DRX周期。
上述多个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述多个模块以任意组合的形式分别位于不同的处理器中。
实施例三
根据本申请的另一个实施例,还提供了一种DRX的配置系统,包括:第二基站,设置为配置参与分离Split承载业务的DRX周期,并发送所述DRX周期至第一基站;所述第一基站,设置为接收所述第二基站传输的分离Split承载业务的非连续接收DRX周期,并获取所述第一基站与所述第二基站之间的数据链路传输时延和时钟差值;以及依据所述DRX周期、所述数据链路传输时延和所述时钟差值,配置所述第一基站的第一DRX起点位置。实施例四
本申请的实施例还提供了一种存储介质。在一实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S10,第一基站接收分离Split承载业务的非连续接收DRX周期,并获取所述第一基站与第二基站之间的数据链路传输时延和时钟差值。
S20,依据所述DRX周期、所述数据链路传输时延和所述时钟差值,配置所述第一基站的第一DRX起点位置。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、ROM、RAM、移动硬盘、磁碟或者光盘等多种可以存储程序代码的介质。
本申请的实施例还提供了一种电子装置,包括存储器和处理器,该存储器中存储有计算机程序,该处理器被设置为运行计算机程序以执行上述任一项方法实施例中的步骤。
在一实施例中,上述电子装置还可以包括传输装置以及输入输出设备,其中,该传输装置和上述处理器连接,该输入输出设备和上述处理器连接。
在一实施例中,上述处理器可以被设置为通过计算机程序执行以下步骤:
S10,第一基站接收分离Split承载业务的非连续接收DRX周期,并获取所述第一基站与第二基站之间的数据链路传输时延和时钟差值。
S20,依据所述DRX周期、所述数据链路传输时延和所述时钟差值,配置所述第一基站的第一DRX起点位置。
在一实施例中,本实施例中的具体示例可以参考上述实施例及实施方式中所描述的示例,本实施例在此不再赘述。
在一实施例中,本实施例中的具体示例可以参考上述实施例及实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本申请的多个模块或多个步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上。在一实施例中,上述多个模块或多个步骤可以用计算装置可执行的程序代码来实现,从而,可以将上述多个模块或多个步骤存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将上述多个模块或多个步骤分别制作成多个集成电路模块,或者将上述多个模块或多个步骤中的多个模块或步骤制作成单个集成电路模块来实现。这样,本申请不限制于任何特定的硬件和软件结合。

Claims (10)

  1. 一种非连续接收DRX的配置方法,包括:
    第一基站接收分离Split承载业务的DRX周期,并获取所述第一基站与第二基站之间的数据链路传输时延和时钟差值;
    所述第一基站依据所述DRX周期、所述数据链路传输时延和所述时钟差值,配置所述第一基站的第一DRX起点位置。
  2. 根据权利要求1所述的方法,其中,所述第一基站和所述第二基站包括以下之一:
    在主基站MN和第一辅基站SN均参与所述Split承载业务的情况下,所述第一基站为所述第一SN,所述第二基站为所述MN;
    在MN和主SN均参与所述Split承载业务的情况下,所述第一基站为所述主SN,所述第二基站为所述MN;
    在MN未参与所述Split承载业务,主SN和第一SN均参与所述Split承载业务的情况下,所述第一基站为所述第一SN,所述第二基站为所述主SN。
  3. 根据权利要求1或2所述的方法,其中,所述依据所述DRX周期、所述数据链路传输时延和所述时钟差值,配置所述第一基站的第一DRX起点位置,包括:
    计算所述DRX周期、所述数据链路传输时延和所述时钟差值三者的和值;
    在所述和值大于或等于所述DRX周期的情况下,配置所述和值与所述DRX周期的差值为所述第一DRX起点位置;
    在所述和值小于所述DRX周期的情况下,配置所述和值为所述第一DRX起点位置。
  4. 根据权利要求1、2或3所述的方法,在所述配置所述第一基站的第一DRX起点位置之后,还包括:
    所述第一基站依据所述第一DRX起点位置发起所述split承载业务。
  5. 根据权利要求1-4任一项所述的方法,在所述第一基站接收分离Split承载业务的非连续接收DRX周期之前,还包括:所述第一基站检测自身是否参与所述Split承载业务;
    所述第一基站接收Split承载业务的非连续接收DRX周期,包括:在所述第一基站确定自身参与所述Split承载业务的情况下,所述第一基站接收Split承载业务的DRX周期。
  6. 一种非连续接收DRX的配置装置,包括:
    接收模块,设置为接收分离Split承载业务的DRX周期,并获取第一基站与第二基站之间的数据链路传输时延和时钟差值;
    配置模块,设置为依据所述DRX周期、所述数据链路传输时延和所述时钟差值,配置所述第一基站的第一DRX起点位置。
  7. 根据权利要求6所述的装置,其中,所述配置模块是设置为计算所述DRX周期、所述数据链路传输时延和所述时钟差值三者的和值;在所述和值大于或等于所述DRX周期的情况下,配置所述和值与所述DRX周期的差值为所述第一DRX起点位置;在所述和值小于所述DRX周期的情况下,配置所述和值为所述第一DRX起点位置。
  8. 一种非连续接收DRX的配置系统,包括:
    第二基站,设置为配置分离Split承载业务的DRX周期,并发送所述DRX周期至第一基站;
    所述第一基站,设置为接收所述第二基站传输的Split承载业务的DRX周期,并获取所述第一基站与所述第二基站之间的数据链路传输时延和时钟差值;依据所述DRX周期、所述数据链路传输时延和所述时钟差值,配置所述第一基站的第一DRX起点位置。
  9. 一种存储介质,存储有计算机程序,所述计算机程序被设置为运行时执行所述权利要求1至5任一项所述的方法。
  10. 一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行所述权利要求1至5任一项所述的方法。
PCT/CN2019/111603 2018-10-18 2019-10-17 Drx的配置方法及装置 WO2020078407A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811216926.9 2018-10-18
CN201811216926.9A CN111083805B (zh) 2018-10-18 2018-10-18 Drx的配置方法及装置

Publications (1)

Publication Number Publication Date
WO2020078407A1 true WO2020078407A1 (zh) 2020-04-23

Family

ID=70283648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/111603 WO2020078407A1 (zh) 2018-10-18 2019-10-17 Drx的配置方法及装置

Country Status (2)

Country Link
CN (1) CN111083805B (zh)
WO (1) WO2020078407A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022051501A1 (en) * 2020-09-04 2022-03-10 Qualcomm Incorporated New radio (nr) split bearer round trip time (rtt) latency optimization

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101572945A (zh) * 2008-04-29 2009-11-04 中国移动通信集团公司 一种信道质量指示的发送资源确定方法与装置
WO2015018136A1 (zh) * 2013-08-09 2015-02-12 华为技术有限公司 测量方法及装置,信息交互方法及装置,驻留方法及装置
CN108287801A (zh) * 2018-01-08 2018-07-17 深圳必旺电子商务有限公司 Uart接口串联网络的时分复用装置、时分复用方法及其控制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102378329B (zh) * 2010-08-16 2014-08-20 华为技术有限公司 实现非连续接收的方法和装置
CN110381533A (zh) * 2013-08-09 2019-10-25 华为技术有限公司 测量方法及装置,信息交互方法及装置,驻留方法及装置
CN104618883B (zh) * 2013-11-01 2019-04-19 上海诺基亚贝尔股份有限公司 在双连接系统的承载分离场景中传输调度请求的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101572945A (zh) * 2008-04-29 2009-11-04 中国移动通信集团公司 一种信道质量指示的发送资源确定方法与装置
WO2015018136A1 (zh) * 2013-08-09 2015-02-12 华为技术有限公司 测量方法及装置,信息交互方法及装置,驻留方法及装置
CN108287801A (zh) * 2018-01-08 2018-07-17 深圳必旺电子商务有限公司 Uart接口串联网络的时分复用装置、时分复用方法及其控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; 5GS; UE conformance specification; Part 1: Protocol Conformance Specification", 3GPP TS 38.523-1 V0.2.0, 31 March 2018 (2018-03-31), XP051450504 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022051501A1 (en) * 2020-09-04 2022-03-10 Qualcomm Incorporated New radio (nr) split bearer round trip time (rtt) latency optimization
US11871406B2 (en) 2020-09-04 2024-01-09 Qualcomm Incorporated Split bearer round trip time (RTT) latency optimization

Also Published As

Publication number Publication date
CN111083805B (zh) 2023-02-28
CN111083805A (zh) 2020-04-28

Similar Documents

Publication Publication Date Title
US9363847B2 (en) Method and apparatus for providing for discontinuous reception via cells having different time division duplex subframe configurations
US11659411B2 (en) Single radio switching between multiple wireless links
TW201935978A (zh) 一種資源預留方法及裝置、電腦存儲媒介
EP4106358A1 (en) Wireless communication method and communication apparatus
US20140348146A1 (en) Transition period for dual connectivity
CN110958088B (zh) 一种通信方法及装置
JP2022501917A (ja) Lbt監視失敗の処理方法、装置及びシステム
WO2018184571A1 (zh) 反馈信息的发送、接收方法及相关装置和存储介质
US10470058B2 (en) Single radio serving multiple wireless links
WO2022104542A1 (zh) 无线通信方法和通信装置
WO2019062621A1 (zh) 一种进行重复传输的方法和设备
CN111294899B (zh) 用于drx的不活动定时器控制方法及装置、存储介质、终端、基站
WO2021081696A1 (zh) 传输数据的方法和通信装置
WO2020078407A1 (zh) Drx的配置方法及装置
WO2021027551A9 (zh) 一种通信方法及装置
WO2015062477A1 (zh) 一种数据传输方法及设备
US11284430B2 (en) Method of determining ambiguous period, terminal and network-side device
JP5993599B2 (ja) 無線通信システム、ユーザ装置、基地局、ネットワーク、および通信制御方法。
WO2018018512A1 (zh) 通信方法和通信装置
CN111436119B (zh) 一种drx传输方法及相关设备
WO2016184286A1 (zh) 执行设备到设备发现过程及检测用户设备的方法及装置
KR20240047394A (ko) 이중 연결을 이용한 복제를 위한 생존 시간 상태 트리거링 및 폴백 기법
US10206124B1 (en) Method and apparatus for bidirectional modem
WO2023070661A1 (zh) 数据传输方法、终端设备、计算机存储介质及程序产品
WO2023143323A1 (zh) 信息处理方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19873110

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26.08.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19873110

Country of ref document: EP

Kind code of ref document: A1