WO2020078344A1 - 一种识别异形触摸的方法、终端及存储介质 - Google Patents

一种识别异形触摸的方法、终端及存储介质 Download PDF

Info

Publication number
WO2020078344A1
WO2020078344A1 PCT/CN2019/111178 CN2019111178W WO2020078344A1 WO 2020078344 A1 WO2020078344 A1 WO 2020078344A1 CN 2019111178 W CN2019111178 W CN 2019111178W WO 2020078344 A1 WO2020078344 A1 WO 2020078344A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch operation
bright spot
capacitive
frame
touch
Prior art date
Application number
PCT/CN2019/111178
Other languages
English (en)
French (fr)
Inventor
吴思举
徐杰
周轩
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020078344A1 publication Critical patent/WO2020078344A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72448User interfaces specially adapted for cordless or mobile telephones with means for adapting the functionality of the device according to specific conditions
    • H04M1/72454User interfaces specially adapted for cordless or mobile telephones with means for adapting the functionality of the device according to specific conditions according to context-related or environment-related conditions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72448User interfaces specially adapted for cordless or mobile telephones with means for adapting the functionality of the device according to specific conditions
    • H04M1/72463User interfaces specially adapted for cordless or mobile telephones with means for adapting the functionality of the device according to specific conditions to restrict the functionality of the device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/725Cordless telephones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2250/00Details of telephonic subscriber devices
    • H04M2250/12Details of telephonic subscriber devices including a sensor for measuring a physical value, e.g. temperature or motion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2250/00Details of telephonic subscriber devices
    • H04M2250/22Details of telephonic subscriber devices including a touch pad, a touch sensor or a touch detector

Definitions

  • the invention relates to the technical field of terminals, in particular to a method, terminal and storage medium for recognizing alien touch.
  • capacitive touch screens have the advantages of high sensitivity and fast response speed, making them widely used, especially in the field of smart phones to bring users a good user experience.
  • smartphones generally use proximity light sensors to identify obstacles in front of the screen.
  • the proximity light sensor When the user answers the phone, the proximity light sensor is turned on.
  • the proximity light sensor recognizes that there is an obstacle within a certain distance threshold, the phone will enter Screen off state to prevent the screen from being touched by mistake.
  • the proximity light sensor is affected by the recognition angle. In some scenes, obstacles may not be recognized.
  • the mobile phone is still on the bright screen when the user's ears are close, which may easily cause misoperation.
  • the irregular parts such as cheeks and ears may have touched the controls on the screen before the phone enters the off state, which caused Misoperation seriously affects user experience.
  • the existing capacitive touch screen technology can only calculate the report point data of the objects contacted on the screen, and cannot recognize whether the objects contacted on the screen are fingers or other parts of the human body.
  • Touchscreen Panel (TP) algorithm can identify the large-area contact on the screen by the characteristics of contact area and other features, and suppress the report points generated by it.
  • the area of the abnormal touch such as cheeks and ears is equivalent to the area touched by the finger, the abnormal touch cannot be effectively recognized, thereby causing misoperation.
  • Embodiments of the present application provide a method, terminal, and storage medium for recognizing alien touches, so as to improve the recognition rate of alien touch operations and prevent misoperations.
  • an embodiment of the present application provides a method for recognizing alien touch, including: a touch screen of a terminal receives a first touch operation; the terminal responds to the first touch operation and collects a frame of the touch screen within the life cycle of the first touch operation Capacitance signal; life cycle is the process from the first touch operation from touching the touch screen to leaving the touch screen; the terminal calculates the characteristic value of the capacitive bright spot corresponding to the first touch operation in a frame of capacitive signal; the terminal according to the characteristic value of the capacitive bright spot, And the characteristic value of the capacitive bright spot that belongs to the same life cycle as the first touch operation in at least one frame before one frame to determine whether the first touch operation is an alien touch operation; if the terminal determines that the first touch operation is an alien touch operation, then The response operation triggered for the first touch operation before one frame is recalled, and the first touch operation is not reported for the entire life cycle.
  • the touch screen of the terminal receives the first touch operation; in response to the first touch operation, the terminal collects a frame of capacitive signals of the touch screen within the life cycle of the first touch operation; where the life cycle is the first touch operation from the beginning of contact The process from the touch screen to leaving the touch screen; the terminal calculates the characteristic value of the capacitive bright spot corresponding to the first touch operation in a frame of the capacitive signal; the terminal according to the characteristic value of the capacitive bright spot and the first touch in at least one frame before one frame Operate the characteristic values of the capacitive bright spots belonging to the same life cycle to determine whether the first touch operation is an alien touch operation; through the feature values of the multi-frame capacitance bright spots, it is helpful to accurately determine whether the first touch operation is an alien shape
  • the solution provided in this embodiment of the present application can also recognize the alien touch operation in
  • the terminal determines that the first touch operation is an alien touch operation, it recalls the response operation triggered for the first touch operation one frame before and does not report the first touch operation for the entire life cycle. In this way, the response operation triggered for the first touch operation can be recalled in time for the occurrence of the erroneous operation, and the first touch operation is not reported for the entire life cycle, which can further prevent the erroneous touch.
  • the characteristic value includes at least one of the following: bright spot area, lateral span, longitudinal span, eccentricity, center of gravity coordinates, maximum capacitance, or standard deviation of bright spot slice center.
  • the bright spot area is the number of capacitance grids in the flood area of the capacitive bright spot
  • the lateral span is the lateral span of the flood area of the capacitive bright spot
  • the longitudinal span is The longitudinal span of the flooding area of the capacitor bright spot
  • the eccentricity is the eccentricity of the ellipse fitted by the flooding area of the capacitor bright spot
  • the center of gravity coordinate is the flooding area of the capacitor bright spot
  • the maximum value of the capacitance is the maximum value of the capacitance of the flooded area of the capacitor bright spot
  • the standard deviation of the center of the bright spot slice is the center of the horizontal slice of the horizontal slice of the flooded area of the capacitor The square root of the sum of the square of the standard deviation and the standard deviation of the central ordinate of the longitudinal slice.
  • the terminal calculating the characteristic value of the capacitive bright spot corresponding to the first touch operation in the one frame of the capacitive signal includes: At least one capacitance maximum value is determined from the capacitance values; the terminal starts flooding from each capacitance maximum value of the at least one capacitance maximum value, and adds a capacitance grid having a capacitance value greater than a preset capacitance threshold to A flooding area of the bright spot of the capacitor corresponding to the maximum value of the capacitance; the terminal determines a capacitance corresponding to the first touch operation from the flooding area of the bright spot of the capacitor corresponding to the maximum value of the capacitance Bright spot; the terminal calculates the characteristic value of the capacitive bright spot corresponding to the first touch operation. In this way, it is helpful for the terminal to quickly determine the capacitive bright spot corresponding to the first touch operation according to the flooding algorithm, so as to calculate the characteristic value of the capacitive bright spot.
  • the terminal according to the characteristic value of the capacitive bright spot and the characteristic value of the capacitive bright spot in the same life cycle as the first touch operation in at least one frame before the one frame To determine whether the first touch operation is an alien touch operation, which may include the following three determination processes:
  • the first determination process is: the terminal according to the characteristic value of the capacitive bright spot and the characteristic value of the capacitive bright spot in the same life cycle as the first touch operation in at least one frame before the one frame, Determining whether the first touch operation is a touch operation corresponding to a strong cheek, and the first judgment result includes a touch operation corresponding to a strong cheek and a touch operation corresponding to a non-strong cheek;
  • the second judgment flow is: the terminal determines whether the first touch operation is a touch operation corresponding to a weak cheek according to the characteristic value of the bright spot of the capacitor; the second judgment result includes a touch operation corresponding to a weak cheek, non- Touch operation and uncertainty corresponding to weak cheeks;
  • the third judgment flow is: the terminal determines whether the first touch operation is an ear-based touch operation according to the characteristic value of the capacitive bright spot; the third judgment result includes the touch operation corresponding to the ear and the non-ear correspondence Touch operation and uncertainty;
  • the terminal determines The first touch operation is a special-shaped touch operation; when the first judgment result is a touch operation corresponding to a non-strong cheek, and the second judgment result is a touch operation corresponding to a non-weak cheek, and the third judgment result is a non-ear During the corresponding first touch operation, the terminal determines that the first touch operation is not an alien touch operation.
  • pre-shaped touches are divided into three types: strong cheeks, weak cheeks, and ears.
  • strong cheeks By judging whether the capacitive bright spots meet the characteristics of the strong cheeks, whether the capacitive bright spots meet the characteristics of the weak cheeks, and judging the capacitive bright spots Whether the characteristics of the ear are satisfied, combined with the above three judgment results to comprehensively determine whether the first touch operation is an alien touch operation, is helpful to accurately identify the alien contact operation, and thereby prevent accidental touch.
  • the above second judgment process may be judged in the following manner: when the bright spot area of the bright spot of the capacitor is less than the first area threshold, the terminal determines that the first touch operation is not A touch operation corresponding to a strong cheek; or, when the one frame is a down frame, and the historical maximum bright spot area before one frame in the life cycle of the first touch operation is greater than the second area threshold, and the historical maximum
  • the terminal determines that the first touch operation is a touch operation corresponding to a strong cheek, where the down frame is the The first reported frame in the life cycle of the first touch operation; or, when the one frame is the next frame of the up frame, and the bright spot area of the capacitive bright spot and the capacitive bright spot of the up frame
  • the terminal determines that the difference of the bright spot area is greater than the second area difference threshold and the bright spot area of the capacitive bright spot is greater than the third area threshold
  • the first touch operation is a touch operation corresponding to a strong cheek by one or more of the area of the bright spot, the vertical span, the standard deviation of the center of the bright spot slice, and the horizontal span, which helps to accurately identify the abnormal shape Contact operation to prevent accidental touch.
  • the above second determination process may be determined in the following manner: when the maximum value of the capacitance of the capacitive spot is greater than or equal to the first capacitance threshold, the terminal determines that the first touch operation is A touch operation corresponding to a non-weak cheek; or, when the minimum value of the longitudinal coordinate of the edge of the capacitive bright spot is zero, and the longitudinal span of the capacitive spot is less than or equal to a third longitudinal span threshold, the terminal determines the first A touch operation is a touch operation corresponding to a non-weak cheek; or, when the bright spot area of the capacitive bright spot is greater than or equal to a fifth area threshold, the terminal determines that the first touch operation is a touch operation corresponding to a weak cheek Or, when the longitudinal span of the capacitive bright spot is greater than or equal to a fourth longitudinal span threshold, and when the lateral span of the capacitive bright spot is greater than or equal to a second lateral span threshold, the terminal determines the first touch The operation is a touch
  • whether the first touch operation is a touch operation corresponding to a weak cheek can be determined by one or more of the maximum capacitance, the position of the bright spot of the capacitor, the vertical span, the area of the bright spot, and the horizontal span, which is helpful for accurate Identify the special-shaped contact operation to prevent accidental touch.
  • the foregoing third determination process may be determined in the following manner: When the maximum value of the capacitance of the capacitive spot is greater than or equal to the second capacitance threshold, the terminal determines that the first touch operation is The touch operation corresponding to the non-ear; or, when the longitudinal coordinate of the center of gravity of the capacitive spot is greater than the first coordinate threshold, the terminal determines that the first touch operation is the touch operation corresponding to the non-ear; or, When the bright spot area of the capacitor light spot is greater than the seventh area threshold, the terminal determines that the first touch operation is the touch operation corresponding to the non-ear; or, when the minimum value of the ordinate of the capacitor bright spot edge is When the longitudinal span of the capacitive light spot is less than or equal to the sixth longitudinal span threshold, the terminal determines that the first touch operation is the touch operation corresponding to the non-ear; When the eccentricity is greater than the first eccentricity threshold and the longitudinal coordinate in the center of gravity of the capacitive spot is greater than the second coordinate threshold, the terminal
  • whether the first touch operation corresponds to the ear can be judged by one or more of the maximum capacitance, the shape of the bright spot of the capacitor, the area of the bright spot, the position of the bright spot of the capacitor, the longitudinal span, the eccentricity, and the center of gravity coordinates
  • the touch operation is helpful to accurately identify the abnormal contact operation, and thus prevent accidental touch.
  • the method may further include: the touch screen of the terminal receives a second touch operation within the life cycle of the touch operation The terminal determines whether the state of the touch screen in the one frame is an abnormal state. If the terminal determines that the state in the one frame is an alien state, it is determined that the second touch operation is an alien touch operation; the terminal and the first in the life cycle of the first touch operation After the one frame in the life cycle of the two-touch operation, the first touch operation and the second touch operation are not reported.
  • the method may further include: if the terminal determines that the state of the touch screen in the one frame is not an abnormal state, then according to the characteristic value of the capacitive bright spot, and the one The characteristic value of the capacitive bright spot belonging to the same life cycle as the first touch operation in at least one frame before the frame determines whether the second touch operation is the touch operation corresponding to the alien touch; when the second touch is determined The operation is the touch operation corresponding to the alien touch, and the state of the current frame of the touch screen is switched to the alien state.
  • the state of the current frame of the touch screen is switched to the alien state, so that the received other During the touch operation, it saves time to determine whether other touch operations are shaped touch operations.
  • the method may further include: when the one frame is the first frame in the life cycle of the first touch operation, and according to the characteristic value of the bright capacitance of the first frame, not When it is determined whether the first touch operation is an alien touch operation, the terminal saves the report point coordinates of the capacitive bright spot corresponding to the first touch operation in the first frame; when after the first frame When the preset number of frames determines that the first touch operation is not an alien touch operation, or if the subsequent preset number of frames are unsure whether the first touch operation is an alien touch operation, report to the first frame Reporting point coordinates of the capacitive bright spot corresponding to the first touch operation, and matching the reporting point coordinates with the capacitive bright spot corresponding to the first touch operation in the subsequent preset number of frames.
  • the report point coordinates of the capacitive bright spot of the first frame can also be retained, and the report point coordinates corresponding to the first frame and the subsequent number Frame matching, in this way, can solve the problem that the reporting point of the capacitor bright spot in the subsequent frame is not in the hot zone of the control that needs to be operated, resulting in the problem that the control cannot be started normally.
  • the present application provides a terminal, including: a touch screen, wherein the touch screen includes a touch-sensitive surface and a display; one or more processors; a memory; multiple application programs; and one or more computer programs, wherein The one or more computer programs are stored in the memory, the one or more computer programs include instructions, and when the instructions are executed by the terminal, the terminal executes the first aspect and the first aspect thereof Any possible design method.
  • the memory may be integrated in the processor or independent of the processor.
  • an embodiment of the present application further provides a terminal, and the terminal includes a module / unit that performs any one of the possible design methods of any one of the above aspects.
  • These modules / units can be implemented by hardware, and can also be implemented by hardware executing corresponding software.
  • a computer-readable storage medium is also provided in an embodiment of the present application.
  • the computer-readable storage medium includes a computer program.
  • the computer program runs on an electronic device, the electronic device performs any of the foregoing aspects Any possible design method.
  • an embodiment of the present application further provides a method that includes a computer program product that, when the computer program product runs on a terminal, causes the electronic device to perform any possible design of any of the above aspects.
  • FIG. 1 is a schematic diagram of a hardware structure of a terminal provided by an embodiment of this application.
  • FIG. 2 is a schematic diagram of a graphical user interface provided by an embodiment of this application.
  • FIG. 3 is a schematic diagram of a software structure of a terminal provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a method for recognizing alien touch provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a capacitive signal generated by a finger touching a screen provided by an embodiment of the present invention
  • FIG. 6 is a schematic diagram of some features of a capacitor bright spot provided by an embodiment of the present invention.
  • FIG. 6a is a schematic diagram of the shape of a capacitor bright spot provided by a finger according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a method for determining a standard deviation of the center of a capacitor bright spot slice provided by an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a comparison of capacitive bright spots on strong cheeks and ears in a scenario provided by an embodiment of the present invention.
  • FIG. 8a is a schematic comparison diagram of capacitive bright spots on strong cheeks and ears in another scenario provided by an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a comparison of capacitive bright spots on weak cheeks and ears provided by an embodiment of the present invention.
  • FIG. 10 is a comparison schematic diagram of capacitive bright spots of strong cheeks, weak cheeks and ears provided by an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of capacitive bright spots of thighs in a scenario provided by an embodiment of the present invention.
  • FIG. 11a is a schematic diagram of capacitive bright spots of thighs in another scenario provided by an embodiment of the present invention.
  • FIG. 11b is a schematic diagram of capacitive bright spots of the thigh in another scenario provided by an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of an up-frame capacitive bright spot generated by an irregular touch provided by an embodiment of the present invention.
  • 12a is a schematic diagram of a bright spot of a frame after an up frame generated by an irregular touch provided by an embodiment of the present invention
  • FIG. 13 is a schematic diagram of capacitive bright spots in a down frame generated by an irregular touch according to an embodiment of the present invention.
  • 13a is a schematic diagram of capacitive bright spots of a frame that suppresses reporting points before a down frame generated by an irregular touch according to an embodiment of the present invention
  • 17 is a schematic structural diagram of a terminal according to an embodiment of the present invention.
  • the terminal may be a portable terminal containing functions such as a personal digital assistant and / or a music player, such as a mobile phone, a tablet computer, a wearable device (such as a smart watch) with wireless communication function, an in-vehicle device Wait.
  • portable terminals include but are not limited to piggybacking Or portable terminals of other operating systems.
  • the above-mentioned portable terminal may also be a laptop computer (Laptop) having a touch-sensitive surface (for example, a touch panel) or the like. It should also be understood that, in some other embodiments of the present application, the terminal may also be a desktop computer with a touch-sensitive surface (such as a touch panel).
  • FIG. 1 exemplarily shows a schematic structural diagram of a terminal 100.
  • the illustrated terminal 100 is only an example, and the terminal 100 may have more or fewer components than shown in the figure, may combine two or more components, or may have different component configurations .
  • the various components shown in the figures can be implemented in hardware, software, or a combination of hardware and software, including one or more signal processing and / or application specific integrated circuits.
  • the processor 110 is the control center of the terminal 100, and uses various interfaces and lines to connect various parts of the terminal 100, by running or executing the software programs and / or modules stored in the memory 120, and calling the data stored in the memory 120 and Instructions to execute various functions and process data of the terminal 100.
  • the processor 110 may perform a method of identifying abnormal mistouches.
  • the processor 110 may include one or more processing units.
  • the processor 110 may also integrate an application processor and a modem processor.
  • the application processor mainly deals with the operating system, user interface and application programs, etc.
  • the modem processor mainly deals with wireless communication. It can be understood that, the foregoing modem processor may not be integrated into the processor 110.
  • the processor 110 may be a Kirin 970 chip manufactured by Huawei Technologies Co., Ltd.
  • the processor 110 may further include a fingerprint verification chip, which is used to verify the collected fingerprints.
  • the memory 120 may be used to store software programs and data.
  • the processor 150 runs the software program and data stored in the memory 120, so that the terminal executes the above-mentioned method for identifying abnormal mistouch.
  • the memory 120 mainly includes a program storage area and a data storage area.
  • the program storage area may store an operating system, and application programs required to implement the above-mentioned method for identifying abnormal mistouch.
  • the data storage area may store data created according to the use of the terminal 100 (such as audio data, phonebook, touch event related data, files, etc.).
  • the data storage area may also store program code, and the program code is used to enable the processor 110 to execute the sequence code to execute the method for identifying abnormal mis-touch provided by the embodiment of the present invention.
  • the memory 120 may include a high-speed random access memory, and may also include a non-volatile memory, such as a magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the memory 120 can also store various operating systems, such as developed by Apple Operating system, developed by Google Operating system, etc.
  • a radio frequency (RF) circuit 130 may be used to receive and transmit wireless signals during the process of receiving and sending information or talking. Specifically, the RF circuit 130 may receive the downlink data of the base station and process it to the processor 110. In addition, the RF circuit 130 can also send uplink data to the base station. Generally, the RF circuit 130 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low-noise amplifier, a duplexer, and the like. In addition, the RF circuit 130 can also communicate with other devices through wireless communication. The wireless communication may use any communication standard or protocol, including but not limited to global mobile communication system, general packet radio service, code division multiple access, broadband code division multiple access, long-term evolution, e-mail, and short message service.
  • the audio circuit 140, the speaker 141, and the microphone 142 may provide an audio interface between the user and the terminal 100.
  • the audio circuit 140 can transmit the converted electrical signal of the received audio data to the speaker 141, which converts the speaker 141 into a sound signal output; on the other hand, the microphone 142 converts the collected sound signal into an electrical signal, which is converted by the audio circuit 140 After receiving, it is converted into audio data, and then the audio data is output to the RF circuit 130 to be sent to, for example, a terminal, or the audio data is output to the memory 120 for further processing.
  • the touch screen 150 may include a touch-sensitive surface 151 and a display 152.
  • the touch-sensitive surface 151 (for example, a touch panel) can collect touch events on or near the user of the terminal 100 (such as the user using a finger, a stylus, or any other suitable object on the touch-sensitive surface 151 or on the touch-sensitive surface) Operation near the surface 151), and send the collected touch information to other devices such as the processor 110.
  • the user's touch event near the touch-sensitive surface 151 may be referred to as a floating touch.
  • Floating touch can mean that the user does not need to directly touch the touchpad in order to select, move, or drag an object (such as an App icon, etc.), but only needs the user to be near the terminal to perform the desired function.
  • the terms “touch”, “contact”, etc. do not imply direct contact with the touch screen 150, but contact near or close to it.
  • the touch-sensitive surface 151 capable of floating touch can be realized by capacitive, infrared light sensing and ultrasonic waves.
  • the touch-sensitive surface 151 may include a touch detection device and a touch controller. Among them, the touch detection device detects the user's touch orientation, and detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives touch information from the touch detection device and converts it into contact coordinates, and then It is sent to the processor 110, and the touch controller can also receive the instruction sent by the processor 110 and execute it.
  • the touch-sensitive surface 151 may be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the display (also referred to as a display screen) 152 may be used to display information input by the user or provided to the user and various graphical user interfaces (GUIs).
  • GUIs graphical user interfaces
  • the display 152 may display photos, videos, web pages, or files.
  • the display 152 may display a graphical user interface as shown in FIG. 2.
  • the graphical user interface 210 shown in FIG. 2 includes a status bar 201, a hideable navigation bar 202, a time and weather widget 203, and application icons, such as a browser icon 204.
  • the status bar 201 includes the name of the operator (eg China Mobile), mobile network (eg 4G), time and remaining power.
  • the navigation bar 202 includes a back button icon, a home button icon and a forward button icon.
  • the status bar 201 may further include a Bluetooth icon, a Wi-Fi icon, an external device icon, and the like.
  • the graphical user interface shown in FIG. 2 may further include a Dock bar, and the Dock bar may include commonly used application icons and the like.
  • the browser is displayed on the display 152
  • the user interface of the application may be a user's operation of clicking or touching the browser icon 204, or a user's touch operation above the browser icon 204, which is not limited.
  • the touch operation may be an operation in which the user's fingers, cheeks, ears, etc. press the touch screen of the terminal or move on the touch screen of the terminal with a preset trajectory.
  • touch operation by fingers As an example, most touch operations are realized by the movement of fingers, but some movements are small (usually, it is difficult for the human eye to perceive the finger on the touch screen during this touch operation). Movement, the intuitive feeling of the person is that the touch operation only includes the two actions of the finger falling on the touch screen and the finger lifting from the touch screen), some movements are larger, that is, the touch operation has a certain length of movement Track.
  • the display 152 may include a display controller and a display device.
  • the display controller is used to receive signals or data sent by the processor 110 to drive the display of the corresponding interface on the display device.
  • the embodiments of the present application may configure the display device through an LCD (liquid crystal), liquid crystal display, or organic light-emitting diode (OLED), etc.
  • LCD liquid crystal
  • OLED organic light-emitting diode
  • an active matrix organic light-emitting diode active matrix organic light-emitting diode
  • AMOLED light emitting diode
  • the touch-sensitive surface 151 may cover the display 152, and when the touch-sensitive surface 151 detects a touch event on or near it, it is transmitted to the processor 110 to determine the type of touch event, and then the processor 110 may The type of touch event provides corresponding visual output on the display 152.
  • the touch-sensitive surface 151 and the display 152 are implemented as two independent components to realize the input and output functions of the terminal 100, in some embodiments, the touch-sensitive surface 151 and the display 152 may be integrated to realize Input and output functions of the terminal 100. It can be understood that the touch screen 150 is formed by stacking multiple layers of materials.
  • the touch-sensitive surface 151 may cover the display 152, and the size of the touch-sensitive surface 151 is larger than the size of the display 152, so that the display 152 completely covers the touch-sensitive surface 151, or,
  • the above touch-sensitive surface 151 may be configured on the front of the terminal 100 in the form of a full-scale board, that is, the user's touch on the front of the terminal 100 can be sensed by the terminal, so that a full touch experience on the front of the terminal can be realized.
  • the touch-sensitive surface 151 is arranged on the front of the terminal 100 in the form of a full board, and the display 152 may also be arranged on the front of the terminal 100 in the form of a full board, so that the front of the terminal can be borderless structure.
  • the touch screen 150 may further include a series of pressure sensor arrays, which may enable the terminal to sense the pressure applied to the touch screen 150 by the touch event.
  • the light sensor may include an ambient light sensor and a proximity light sensor, wherein the ambient light sensor may adjust the brightness of the display of the touch screen 150 according to the brightness of the ambient light, and the proximity light sensor may turn off the display when the terminal 100 moves to the ear Power supply.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (generally three axes), and can detect the magnitude and direction of gravity when at rest, and can be used to identify terminal posture applications (such as horizontal and vertical screen switching, related Games, magnetometer posture calibration), vibration recognition related functions (such as pedometer, tap), etc.
  • Other sensors such as gyroscopes can be used to detect the angle of rotation of the terminal 100 about a fixed point or axis.
  • the sensor 106 may further include a fingerprint sensor.
  • the fingerprint sensor may be arranged on the back of the terminal 100 (for example, below the rear camera), or on the front of the terminal 100 (for example, below the touch screen 150).
  • the fingerprint recognition function may also be implemented by configuring a fingerprint sensor in the touch screen 150, that is, the fingerprint sensor may be integrated with the touch screen 150 to implement the fingerprint recognition function of the terminal 100.
  • the fingerprint sensor may be configured in the touch screen 250, may be a part of the touch screen 150, or may be configured in the touch screen 150 in other ways.
  • the fingerprint sensor can also be implemented as a full-board fingerprint sensor.
  • the touch screen 150 can be regarded as a panel that can perform fingerprint collection at any position.
  • the fingerprint sensor may process the collected fingerprint (for example, verify the collected fingerprint), and send the fingerprint processing result (for example, whether the fingerprint is verified or not) to the processor 110, and the processor 110 Make the corresponding processing according to the fingerprint processing results.
  • the fingerprint sensor may also send the collected fingerprint to the processor 110, so that the processor 110 processes the fingerprint (eg, fingerprint verification, etc.).
  • the fingerprint sensor in the embodiment of the present application may use any type of sensing technology, including but not limited to optical, capacitive, piezoelectric, or ultrasonic sensing technology.
  • the terminal 200 may also be configured with other sensors such as a gyroscope, barometer, hygrometer, thermometer, infrared sensor, etc., which will not be repeated here.
  • the Wi-Fi device 170 is used to provide the terminal 100 with network access following Wi-Fi related standard protocols.
  • the terminal 100 can be connected to a Wi-Fi access point through the Wi-Fi device 170, thereby helping the user to send and receive e-mails, browse web pages, and access streaming media. It provides users with wireless broadband Internet access.
  • the Wi-Fi device 207 may also serve as a Wi-Fi wireless access point, and may provide Wi-Fi network access for other terminals.
  • the peripheral interface 180 is used to provide various interfaces for external input / output devices (eg, keyboard, mouse, external display, external memory, user identification module card, etc.). For example, it connects to the mouse through the universal serial bus interface, and connects to the SIM card provided by the operator through the metal contacts on the card slot of the user identification module.
  • the peripheral interface 180 may be used to couple the above-mentioned external input / output peripheral devices to the processor 110 and the memory 130.
  • the terminal 100 may further include a power supply device 190 (such as a battery and a power management chip) that supplies power to various components.
  • a power supply device 190 such as a battery and a power management chip
  • the battery may be logically connected to the processor 110 through the power management chip, so that the power supply device 190 may implement charge, discharge, and power consumption management. And other functions.
  • the terminal 100 may further include a Bluetooth device, a positioning device, a flash lamp, a micro-projection device, a near field communication (NFC) device, and so on, and details are not described herein.
  • the front camera can be used to capture face feature information, and the processor 110 can perform face recognition on the face feature information, and then perform subsequent processing.
  • the terminal 100 may further include a Bluetooth device, a positioning device, a flash lamp, a micro-projection device, a near field communication (NFC) device, and so on, and details are not described herein.
  • a Bluetooth device a positioning device
  • a flash lamp a micro-projection device
  • NFC near field communication
  • the structure illustrated in the embodiment of the present application does not constitute a specific limitation on the electronic device 100.
  • the electronic device 100 may include more or fewer components than shown, or combine some components, or split some components, or arrange different components.
  • the illustrated components can be implemented in hardware, software, or a combination of software and hardware.
  • the software system of the terminal 100 may adopt a layered architecture.
  • the embodiment of the present application takes the layered architecture Android system as an example to illustrate the software structure of the terminal 100 by way of example.
  • FIG. 3 exemplarily shows a schematic diagram of a software structure of the terminal 100.
  • the layered architecture divides the software into several layers, and each layer has a clear role and division of labor.
  • the layers communicate with each other through a software interface.
  • the Android system is divided into five layers, from top to bottom are the application (APP, APP) layer, application framework (APP Framework) layer, native framework (Native) layer , Hardware Abstraction Layer (HAL), Driver layer.
  • the functions of each layer are as follows:
  • the application layer can install many applications, including but not limited to the home screen (Home), contacts (Contact), phone (Phone), e-mail, short messages, calendar, maps, WeChat, browser, etc.
  • the application framework layer provides an application programming interface (API) and programming framework for applications at the application layer.
  • the application framework layer may include, but is not limited to, a view component, an activity manager (Activity Manager), a notification manager (Notification Manager), a resource manager (Resource Manager), a content provider (Content Providers), etc.
  • the view component can be used to build applications, which include visual controls, such as controls that display text, controls that display pictures, etc .; activity management is used to manage the life cycle of each application and provide common navigation and fallback functions, and for all programs
  • the window provides an interactive interface; the notification manager allows the application to display custom prompts in the status bar; the resource manager provides access to non-code resources, such as local strings, graphics, layout files, etc .; the content provider makes Applications can access data from another application (such as a contact database), or share their own data.
  • the Native layer includes some common local services and some link libraries.
  • the Native layer can communicate with the upper Java code (called the JNI mechanism) through C and C ++ languages, and can also interact with the underlying hardware drivers.
  • the hardware abstraction layer can provide hardware services to call JNI methods, and then call the hardware abstraction layer interface to access the hardware.
  • an API interface is added to the Android application framework layer, and a built-in application is added to the application layer.
  • the application can obtain a specified service through the Service Manager (ServiceManager) interface and then obtain it through the specified service Hardware services to access hardware.
  • ServiceManager Service Manager
  • the driver layer is used to provide drivers for various hardware provided by the Android system, such as display drivers, audio drivers, camera drivers, WiFi drivers, sensor drivers, keyboard drivers, and Bluetooth drivers.
  • Capacitive touch screen technology uses the current sensing of the human body to work.
  • a finger touches the touch screen 150 due to the electric field of the human body, a coupling capacitor is formed on the surface of the user and the touch screen 150, and the finger draws a small current from the contact point, thereby generating a capacitance signal.
  • a coupling capacitor is formed on the surface of the user and the touch screen 150, and the finger draws a small current from the contact point, thereby generating a capacitance signal.
  • cheeks, ears and other parts touching the touch screen 150 will also generate a capacitance signal, so that the touch screen 150 changes the capacitance value according to the touch position in the full screen and monitors the user's touch operation.
  • the embodiments of the present application provide a method for identifying the alien touch.
  • the normal click and Recognize special-shaped touches to improve the recognition rate of special-shaped touches and prevent misoperation.
  • the touch-sensitive surface 151 detects a touch operation
  • the capacitive signal generated on the touch screen due to the cheek contact is monitored. If the finger touches For the touch screen 150, the generated capacitive signal is shown in FIG. 5, and if the cheek touches the touch screen 150, the generated capacitive signal is for the strong cheek shown in FIG. 8.
  • the touch-sensitive surface 151 After detecting the touch operation of the finger or cheek, the touch-sensitive surface 151 reports the capacitance signal of the full screen to the driving layer at a fixed frequency.
  • the fixed frequency may be 120 frames / ms, that is, the touch-sensitive surface 151 reports the capacitance signal every about 8 ms.
  • Each reporting time can be understood as one frame, and the driving layer can continuously receive the capacitance signal of the full screen of each frame.
  • the hardware abstraction layer obtains the capacitance signal of each frame of the full screen from the driver layer through the local frame layer.
  • the TP algorithm is used to calculate whether the frame needs to be reported and the coordinates of the reported point.
  • the flooding algorithm to calculate all the capacitance spots of the frame. Then, for each capacitor light spot, the capacitor light spot is matched with a report point, and if the capacitor light spot is matched with a report point, then whether the report point matched by the capacitor light spot is the report point generated by the special-shaped touch is determined by a special-shaped anti-mistouch algorithm. And report the judgment result (including normal report point or abnormal report point) to the application framework layer; if the capacitance spot does not match the report point, the calculation of the special-shaped anti-mistouch algorithm is not performed.
  • the report point of the capacitive bright spot (the shape is mostly an ellipse as shown in FIG. 5) generated by the touch operation of the user's finger on the touch screen 150 is called a normal report point; the user's cheeks, ears and thighs , Bright spots caused by the touch operation of the shaped parts such as arms and touch screen 150 (most of the shapes are irregular, such as strong cheeks or ears shown in FIG. 8, and the thighs shown in FIGS. 11, 11a, and 11b) Reporting point is called alien reporting point.
  • the hardware abstraction layer determines that the reporting point matching the capacitor light spot is a normal reporting point, it suppresses reporting the normal reporting point to the hardware abstraction layer.
  • the hardware abstraction layer determines that the reporting point that matches the capacitor light spot is a special-shaped reporting point in the first few frames of a bright spot of a capacitor, the hardware abstraction layer suppresses reporting of the special-shaped reporting point, that is, the hardware abstraction layer does not Report the special-shaped reporting point to the application framework layer.
  • the hardware abstraction layer determines that the spot matching the capacitor spot is a normal spot in the first few frames of a capacitor bright spot, and that the capacitor spot is determined in a frame after the normal spot If it is a special-shaped reporting point, the hardware abstraction layer reports the special-shaped reporting point to the application framework layer, so that the application framework layer recalls the response operation triggered by the normal reporting point reported in the previous frames of the capacitor bright spot.
  • the application framework layer receives the normal report point reported by the hardware abstraction layer, it will trigger the response operation for the touch operation corresponding to the normal report point; if it receives the irregular report point reported by the hardware abstraction layer, it will not The touch operation corresponding to the alien reporting point is triggered, or in the case where the touch operation corresponding to the alien reporting point has been previously triggered, the response operation triggered by the touch operation corresponding to the alien reporting point is recalled.
  • the touch screen 150 of the terminal 100 can receive at least one touch operation.
  • the touch screen 150 of the terminal 100 can receive at least one touch operation.
  • two touch operations are generated on the touch screen 150.
  • the method of being aberrantly touched in the following embodiments is used to identify each of the touch operations.
  • the following embodiment only takes one touch operation as an example, and does not limit that only one touch operation is received on the touch screen 150.
  • FIG. 4 exemplarily shows a schematic flowchart of a method for recognizing alien touches provided by the present application. The method includes the following steps:
  • Step 401 the touch screen 150 of the terminal 100 receives the first touch operation.
  • step 402 the processor 110 collects a frame of capacitive signals of the touch screen in the life cycle of the first touch operation in response to the first touch operation.
  • the life cycle is the process of the first touch operation from starting to contact the touch screen to leaving the touch screen.
  • the touch screen 150 will generate a capacitive signal, and the capacitive signal will continue to change.
  • the touch screen 150 collects the capacitance signal at a fixed frequency, for example, the capacitance signal is collected once every about 8 ms, which is a frame of capacitance signal.
  • the processor 110 executes steps 402-405.
  • the capacitance signal of one frame in the above steps can be understood as any frame of K frames.
  • FIG. 5 exemplarily shows a schematic diagram of a capacitance signal generated when a finger touches the screen.
  • the capacitive signal of the full screen of the touch screen 150 is in the form of a matrix, each element in the matrix corresponds to a capacitive grid at a corresponding position on the capacitive screen, and the data of the element represents the capacitive value in the capacitive grid area (ie, the capacitive signal Strength), see Figure 5, the capacitance value of the area on the full screen that is not in contact with the finger is 0, and the capacitance value of the area on the screen that is in contact with the finger is not 0, that is, the capacitance signal of the human body in the contact area on the screen is relatively Strong, the signal on the rest of the screen is weak.
  • step 403 the processor 110 calculates the characteristic value of the capacitive bright spot corresponding to the first touch operation in the one-frame capacitive signal.
  • the characteristic value includes but is not limited to at least one of the following: bright spot area, lateral span, longitudinal span, eccentricity, center of gravity coordinate, maximum capacitance, or standard deviation of bright spot slice center.
  • the processor 110 determines at least one capacitance maximum value from a plurality of capacitance values in a frame of capacitance signals, and starts flooding from each capacitance maximum value of the at least one capacitance maximum value to convert the capacitance
  • the capacitance grid area with a value greater than the preset capacitance threshold is added to the flood area of the capacitor bright spot corresponding to the maximum capacitance value; from the flood area of the capacitor bright spot corresponding to at least one maximum capacitance value, the first touch is determined Capacitive bright spots corresponding to the operation; calculating the characteristic value of the capacitive bright spots corresponding to the first touch operation.
  • only one capacitance maximum value is determined among the plurality of capacitance values in the one-frame capacitance signal, and at this time, one capacitance bright spot may be determined.
  • a plurality of capacitance maximum values are determined from the plurality of capacitance values in the one-frame capacitance signal, and the plurality of capacitance maximum values may be sorted from large to small, and the The maximum value of the capacitor determines the bright spot of the capacitor. For example, there are four maximum values in order from largest to smallest: A, B, C, D.
  • the capacitance grids corresponding to B, C, and D are within the flooding area of the bright spot of the capacitor corresponding to the maximum capacitance A, so there is no need to determine the bright spot of the capacitance for the maximum capacitance B, C, and D, that is, the capacitance
  • the maximum values A, B, C, and D correspond to the same bright spot on the capacitor.
  • a flooding algorithm is used to calculate the capacitance bright spot on the screen.
  • the basis of the flooding algorithm is breadth-first search. First, you need to calculate the maximum value of all the capacitors (that is, the capacitance signal greater than the surrounding 8 grids, the capacitance signal outside the screen is regarded as negative infinity), for example, the capacitance value 3237 shown in Figure 5 is the pole Large value, and then flood from the maximum value point.
  • the capacitive screen will generate capacitive bright spots in consecutive frames within a period of time.
  • the shape of the bright spot of the capacitor changes continuously with the area and position of the finger contact.
  • the life cycle of the first touch operation can also be referred to as the life cycle of the capacitive bright spot, that is, the process from the appearance of the capacitive bright spot to the disappearance.
  • the capacitive bright spots correspond to several consecutive frames of capacitive bright spots within one life cycle of the capacitive bright spots.
  • the one-frame capacitor bright spot After calculating the one-frame capacitor bright spot, it will search for the one-frame capacitor bright spot whether the corresponding capacitor bright spot can be found in the previous frame of the one frame.
  • the coincidence area between the bright spots of two frames can be used to determine whether the bright spots of the two frames belong to the same life cycle. If a capacitive bright spot belonging to the same life cycle as the capacitive bright spot of the one frame is found in the previous frame of the same frame, the capacitive bright spot of the one frame is added to the capacitance found in the previous frame of the one frame Bright spots are managed during the life cycle. If the bright spot of the one frame is not found in the previous frame of the one frame, a new life cycle is established, and the bright spot of the one frame of capacitance is added to the new life cycle.
  • Step 404 The processor 110 determines whether the first touch operation is based on the feature value of the capacitive bright spot and the feature value of the capacitive bright spot in the same life cycle as the first touch operation in at least one frame before the one frame It is an alien touch operation.
  • the first touch operation is a special-shaped touch operation.
  • the first touch operation is a special-shaped touch operation.
  • step 405 if the processor 110 determines that the first touch operation is an alien touch operation, it recalls the response operation triggered for the first touch operation before the one frame, and does not report the first touch operation for the entire life cycle.
  • the processor 110 determines that the first touch operation is an alien touch operation, and the response operation for the first touch operation is not triggered before the frame, the report of the first touch is suppressed operating. If the response operation for the first touch operation has been triggered before the one frame, the response operation triggered for the first touch operation before the one frame is recalled, and the first touch operation is not reported for the entire life cycle.
  • the touch screen of the terminal receives the first touch operation; in response to the first touch operation, the terminal collects a frame of capacitive signals of the touch screen within the life cycle of the first touch operation; where the life cycle is the first touch operation from the beginning of contact The process from the touch screen to leaving the touch screen; the terminal calculates the characteristic value of the capacitive bright spot corresponding to the first touch operation in a frame of the capacitive signal; the terminal according to the characteristic value of the capacitive bright spot and the first touch in at least one frame before one frame Operate the characteristic values of capacitive bright spots belonging to the same life cycle to determine whether the first touch operation is an alien touch operation; by determining whether the first touch operation is an alien operation according to the feature values of the multi-frame capacitance bright spots, it is helpful to accurately Recognizing the alien touch operation, compared to the solution of determining whether the first touch operation is an alien touch operation according to the feature value of the single-frame capacitive bright spot, the solution provided by the embodiments of the present application can also
  • the terminal determines that the first touch operation is an alien touch operation, it recalls the response operation triggered for the first touch operation one frame before and does not report the first touch operation for the entire life cycle. In this way, the response operation triggered for the first touch operation can be recalled in time for the occurrence of the erroneous operation, and the first touch operation is not reported for the entire life cycle, which can further prevent the erroneous touch.
  • the first touch operation is a touch operation in which a finger clicks on the touch screen as an example to describe in detail how to determine the characteristic value of the bright spot of the frame of capacitance.
  • the frame of capacitive bright spots formed by the finger pressing on the touch screen may be approximately an ellipse shape, and then feature detection is performed on the capacitive bright spots to extract feature values.
  • the above characteristic values are as follows (see Figures 5, 6, and 7):
  • Bright spot area S the number of capacitive grids in the flooded area of capacitive bright spots
  • the white elliptical area at the center of the figure is a flooded area, and the number of capacitor grids in this area is the bright spot area.
  • the gray area around the flooded area is a bright spot shadow.
  • the flooded area formed by finger pressing has an approximately elliptical shape, the long axis of the ellipse is denoted by 2a, and the short axis of the ellipse is denoted by 2b.
  • the part of the white area is a flooded area, and the number of capacitance grids in this area is 17, that is, the area of the bright spot is 17.
  • the horizontal direction of the screen is horizontal, and the vertical direction is vertical.
  • the lateral span is 4.
  • the horizontal direction of the screen is horizontal, and the vertical direction is vertical.
  • the longitudinal span is 5.
  • Minor axis the minor axis of the ellipse fitted by the flooding area of the capacitor bright spot
  • the length of the long axis is 2a
  • the length of the short axis is 2b.
  • Eccentricity e the eccentricity of the ellipse fitted by the flooding area of the capacitor bright spot
  • a common algorithm can be used to calculate the center of gravity coordinates, and the position of the center of gravity can be determined according to the capacitance value of each capacitor grid included in the capacitor bright spot, which will not be repeated here.
  • 6-row segments and 6-column segments including dark areas are included.
  • the center position of each row of fragments is shown by white dots in the figure
  • the center position of each column of fragments is shown by black dots in the figure.
  • the black origin and the white origin in the figure overlap into a black circle to represent the center position of a row of fragments (White dots) overlap with the center position (black dots) of a column of fragments, for example, the center position of the segment in the second row in FIG. 7 and the center position of the segment in the fourth column overlap into a black circle.
  • the central abscissas of the first to sixth row fragments are 4, 4, 4, 3, 2.5, and 1
  • the average value of the central abscissas of the six row row fragments is 3.1
  • the first row The standard deviation stdX of the center horizontal coordinate of the segment to the sixth row is calculated according to the following formula, and the calculation result is 1.10.
  • the center ordinates of the first column to the sixth column fragments are 5, 3, 3, 3, 2.5, 2 in sequence, the average value of the center ordinate of the column fragments of a total of 6 columns is 3.1, and the total of the row fragments of a total of 6 rows
  • the standard deviation stdY of the center ordinate is calculated according to the following formula, and the calculation result is 0.93.
  • the standard deviation stdCenterXY of the bright spot slice center of the bright spot of the capacitor can be calculated to be 1.44.
  • the capacitive bright spot after extracting the above 9 feature values, according to any one or more of the above 9 feature values, it is determined whether the capacitive bright spot is caused by an abnormal touch operation.
  • the reporting point can also be calculated by the TP algorithm. Since the TP algorithm also has a mechanism for suppressing reporting points for large-area irregular-shaped contacts, if the area of the capacitive bright spot corresponding to the first touch operation is greater than a certain threshold, The TP algorithm will suppress reporting points. In this case, it is possible to determine whether there is a matching reporting point for the bright spot of one frame by matching the bright spot of the frame with the reporting point. If there is no matching reporting point for the bright spot of the frame, explain The TP algorithm suppresses the reporting of the frame; if the one-frame capacitive bright spot has the one-frame capacitive bright spot, then it is determined according to the above step 404 whether the subsequent first touch operation is an irregular touch operation.
  • the ellipse capacitance bright spot calculates the position of the center of gravity of the ellipse, and the coordinates of the center of gravity are called report point coordinates.
  • capacitor bright spots there can be a one-to-one correspondence between capacitor bright spots and reporting points. For example, if a capacitor bright spot is not connected to other capacitor bright spots, there is only one reporting point; or, a capacitor bright spot can correspond to multiple reporting points. For example, when two fingers touch the screen, or the ears and cheeks touch the screen, multiple capacitive bright spots may be generated, and at this time the capacitive bright spots may generate multiple reporting points; or, one capacitive bright spot may not correspond to the reporting point, For example, bright spots of capacitance due to noise.
  • determining the reporting point and determining the bright spot of the capacitor are two separate processes, although determining the reporting spot may also involve determining the bright spot of the capacitor.
  • any method in the prior art is used to calculate the report point, for example, the TP algorithm is used, and details are not described here.
  • the flooding algorithm is used to determine the bright spot of the capacitor.
  • judging whether it is an alien touch operation itself also calculates the capacitance bright spot, and the calculation method may be different from the way to determine the capacitance bright spot in the reporting process, so after the breadth-first search ends, it is necessary to match the capacitance Bright spots and reporting points, such as capacitor bright spots matching the irregular algorithm and the reporting point coordinates output by the TP algorithm.
  • the reporting point with the capacitor bright spot that is, establish a corresponding relationship between the reporting point and the capacitor bright spot. For example, as long as the reporting point falls into the capacitor bright spot, the reporting point is considered to be the reporting point corresponding to the capacitor bright spot. In an example, for a certain frame, if the TP algorithm does not output a report point, then the capacitor bright spot of this frame does not have a matching report point. In another example, if it is determined that there is a matching spot for the capacitor bright spot, feature extraction can be performed for the capacitor bright spot.
  • FIG. 5 is a schematic diagram of a capacitive signal generated when a finger touches the screen
  • FIG. 8 is a schematic diagram of a capacitive signal generated when the cheek and ear touch the screen.
  • the capacitive bright spots generated by the irregular touch operation are divided into three categories: strong cheek capacitive bright spots (strong cheeks as shown in FIGS. 8 and 8a), and weak cheek capacitive bright spots (as shown in FIG. 9). Weak cheeks shown) and ear capacitance bright spots (ears shown in Figures 8, 8a, and 10).
  • the strong cheek refers to the capacitive bright spot generated when the cheek and the screen are in close contact
  • the weak cheek refers to the capacitive bright spot generated when the cheek and the screen are in weak contact
  • the ear refers to the capacitive bright spot generated when the ear touches the screen .
  • both cheeks and ears may touch the screen of the mobile phone.
  • Figures 8, 8a, and 9 show the case where both cheeks and ears touch the touch screen, and Figure 10 shows only There is a case where the ear touches the touch screen.
  • the strong cheek capacitance bright spots appear in the middle of the screen (the strong cheeks shown in FIG. 8). Since the cheek contact area is larger than the fingers, a much larger capacitance bright spot will be formed.
  • the capacitive bright spot corresponding to the contact operation is a strong cheek capacitive bright spot by combining feature values such as the bright spot area, the lateral span, and the longitudinal span.
  • Type 2 Bright spots on weak cheeks
  • the cheeks When the cheeks are not in close contact with the screen, it may produce bright spots of weak cheeks with low capacitance (as shown in Figure 9), and the TP algorithm itself will also generate random noise areas. Relative to noise, the capacitance intensity value of the weak cheek capacitance bright spots is higher than the noise area, and the capacitance intensity value of the weak cheek capacitance bright spots is lower than that of the strong cheek bright spots. And the area of the bright cheek capacitance bright spots is larger than the noise area, and it is more stable than the noise area.
  • the capacitance image of the ear is generally close to the upper edge of the screen (as shown in Figure 8, Figure 8a, Figure 9, and Figure 10).
  • the capacitance image generated at the lower part of the ear outline is narrow, and the ellipse centrifugal fitted The rate is high.
  • the strong cheeks, weak cheeks, and ears of the present application are only three types of exemplary shaped touches.
  • other shaped parts including but not limited to thighs, arms, abdomen, etc.
  • touch the capacitive flare generated by the touch screen
  • the shape of the capacitor bright spot is an approximate ellipse, and when the ears, face, and thighs and other irregular parts touch the screen, the shape of the capacitor bright spot is more irregular.
  • the center coordinate of the horizontal slice of the irregular shape of the capacitor bright spot and the center coordinate of the vertical slice have a large variance. Therefore, the standard deviation of the center of the bright spot slice of the capacitor bright spot, stdCenterXY, can be calculated according to the example shown in FIG. 7 above.
  • the stdCenterXY of the bright spot of the capacitor exceeds a certain threshold, it can be determined that the bright spot of the capacitor is caused by the abnormal operation, and a part of the abnormal touch operation can be recognized.
  • the capacitive bright spots it generates will experience bright spots, bright spot areas become larger, bright spots are stable, bright spot areas decrease, and finally disappear five stage.
  • the geometric features of the shape of the capacitive bright spot and the shape of the capacitive bright spot generated by finger pressing may be similar, and there is no obvious difference in geometric features.
  • the special-shaped anti-mistouch algorithm will first mark the reporting point as a normal reporting point and report it to the frame layer to ensure that the touch screen can respond to user operations in a timely manner.
  • the shaped anti-mistouch algorithm will continue to detect the shape features of the capacitor bright spot. If the shaped anti-mistouch algorithm finds a certain feature of the capacitor bright spot in a frame If the normal threshold is exceeded, the report point corresponding to the bright spot of the capacitor will be marked as a special report point and reported to the framework layer. After receiving the report as an alien report, the framework layer will recall the previous response operation triggered by the touch operation corresponding to the alien report, and suppress the reporting of the report of the capacitor bright spot in subsequent frames.
  • the continuous monitoring through multiple frames helps to ensure the timeliness of the touch screen's response to user operations and improve the recognition rate of alien reporting points.
  • the special-shaped anti-mistouch algorithm is connected to the TP algorithm, and the judgment of the TP algorithm is made. Since the TP reporting algorithm itself has a mechanism for suppressing bright spots on large areas of capacitance, when the area of the bright spots on the capacitor exceeds a certain threshold, the TP reporting algorithm stops reporting. For example, when the user is making a phone call, a large area of capacitive bright spots may be generated on the screen due to the cheek touching the touch screen.
  • the TP algorithm will suppress the correspondence of the capacitive bright spot that exceeds the threshold Reporting point.
  • FIG. 12 for the capacitance signal of the full screen in the Nth frame
  • FIG. 12a for the capacitance signal of the full screen in the N + 1 frame.
  • the Nth frame is the last reported frame of the bright spot of the capacitor
  • this frame may also be called an up frame. Since the shape of the bright spot of the Nth frame is not abnormal, it is reported normally, and the bright spot area of the bright spot of the capacitor after the Nth frame (the N + 1th frame) is too large, which is directly suppressed by the TP algorithm without being generated.
  • an optional implementation method is to supplement the reporting point of an up frame in the N + 1 frame to the alien anti-mistouch algorithm, and match the supplementary reporting point to the N + 1 frame.
  • the report point of the supplementary report can be marked as a special report point, and the response operation triggered by the touch operation corresponding to the special report point can be recalled.
  • FIG. 13 is the full screen capacitive bright spot of frame M
  • FIG. 13a is The capacitive bright spots of the full screen in the M + i frame, where M and i are both positive integers.
  • the bright spot of the capacitor in the Mth frame reaches the maximum area. At this time, because the area exceeds a certain threshold, the TP algorithm will not report a point.
  • the TP algorithm starts to report the capacitive bright spot in the M + i frame.
  • the M + i th frame may also be called a down frame.
  • the historical maximum area of the capacitor bright spot life cycle is recorded and determined by comparing the area of the down frame with the historical maximum area Whether the reporting point of the down frame is a special-shaped reporting point.
  • the report point corresponding to the down frame will be considered It is a special-shaped report point, and the response operation triggered by the touch operation corresponding to the special-shaped report point is recalled.
  • the terminal determines whether the first touch operation is based on the feature value of the capacitive bright spot and the feature value of the capacitive bright spot that belongs to the same life cycle as the first touch operation in at least one frame before one frame
  • the following three judgment processes can be included:
  • the first judgment process the terminal determines whether the first touch operation is a strong cheek according to the feature value of the capacitive bright spot and the feature value of the capacitive bright spot in the same life cycle as the first touch operation in at least one frame before one frame For the corresponding touch operation, the first judgment result includes the touch operation corresponding to the strong cheek and the touch operation corresponding to the non-strong cheek.
  • the second judgment process the terminal determines whether the first touch operation is the touch operation corresponding to the weak cheek according to the characteristic value of the bright spot of the capacitor; the second judgment result includes the touch operation corresponding to the weak cheek, the touch operation corresponding to the non-weak cheek and uncertain.
  • the third judgment process the terminal determines whether the first touch operation is the touch operation corresponding to the ear according to the characteristic value of the bright spot of the capacitor; the third judgment result includes the touch operation corresponding to the ear, the touch operation corresponding to the non-ear, and uncertainty.
  • the terminal determines the first The touch operation is an alien touch operation; when the first judgment result is a touch operation corresponding to a non-strong cheek, and the second judgment result is a touch operation corresponding to a non-weak cheek, and the third judgment result is a touch operation corresponding to a non-ear At this time, the terminal determines that the first touch operation is not an abnormal touch operation.
  • capacitor bright spots may be determined as the following types:
  • StrongFace Strong cheeks. When making a call, the cheek is close to the capacitive signal generated by the screen.
  • WeakFace Weak cheeks. When making a call, the capacitive signal generated by the unstable cheek touching the screen.
  • Ear Ear. The capacitive signal generated when the ear touches the screen when making a phone call.
  • the following uses the capacitive bright spot corresponding to the first touch operation as an example to describe the above three determination processes.
  • the first determination process according to the characteristic value of the capacitive bright spot corresponding to the first touch operation in the one frame, and the capacitive bright spots belonging to the same life cycle as the first touch operation in at least one frame before the one frame.
  • the characteristic value of determines whether the first touch operation is a touch operation corresponding to a strong cheek.
  • the first judgment result includes a touch operation corresponding to a strong cheek and a touch operation corresponding to a non-strong cheek.
  • the special-shaped anti-false touch algorithm mainly through the special-shaped anti-false touch algorithm, the following conditions are used to detect whether the bright spots of the capacitor are strong cheeks. If the bright spots of the capacitor are recognized as strong cheeks or non-strong cheeks, the subsequent conditions are not executed, otherwise all the backwards conditions of. In the implementation of the special-shaped anti-mistouch algorithm, only a few of these conditions can be used for judgment.
  • S is the bright spot area of the capacitive bright spot corresponding to the first touch operation in the frame
  • S Threshold_StrongFace_Level1 is the first area threshold.
  • the condition 1.1 indicates that when the bright spot area is less than the first area threshold, the processor 110 determines that the first touch operation is a touch operation corresponding to a non-strong cheek.
  • the frame is down frame &&maxSconditionalSize> SconditionalSize Threshold_StrongFce &&maxSconditionalSize-SconditionalSize> S Threshold_diff_conditionalSize : strong cheeks.
  • the down frame refers to the frame of the first report in the life cycle of the first touch operation, such as a scene that very quickly touches the touch screen and instantly generates a large area of capacitive bright spots, such as the first frame The bright spot area reaches a certain threshold, and the reported point is suppressed.
  • the bright spot area of the capacitive bright spot reaches the maximum value, and then the contact area with the touch screen becomes smaller and smaller as the cheeks leave the touch screen, resulting in capacitive bright spots. It will also become smaller and smaller, for example, the area of the bright spot of the capacitor in the M + i frame is less than a certain threshold, then the reporting point starts in the M + i frame, the M + i frame is the down frame, and the maxSconditionalSize is in the capacitor
  • SconditionalSize Threshold_StrongFce is the first area difference threshold
  • SconditionalSize is the area of the capacitive bright spot in the current frame.
  • the condition 1.2 indicates that the one frame is a down frame, the historical maximum bright spot area before one frame in the life cycle of the first touch operation is greater than the second area threshold, and the historical maximum bright spot area and the capacitance
  • the terminal determines that the first touch operation is the first touch operation corresponding to the strong cheek.
  • the report point of this frame is the complement of the up frame && S conditionalSize -S pre_conditionalSize > minDiff conditionalSize && S conditionalSize > S thresholdconditionalSize : strong cheeks.
  • the up frame refers to the frame that suppresses the report for the first time after the normal report in the life cycle of the first touch operation, for example, in a scene where the cheek touches the touch screen, for example, when the cheek just touches the touch screen, As the area of the bright spot generated by the cheek touching the touch screen reaches a certain threshold, the report point will be suppressed.
  • the N frame is the up frame, and the report point is suppressed in the N + 1 frame, then the N + 1 frame will be reported once.
  • the supplementary points of the up frame can use the reporting point coordinates of the Nth frame, that is to say, the reporting point coordinates of the Nth frame and the N + 1th frame are the same, because the position difference between the bright spots of the two frames is small, Therefore, the report point coordinates of the Nth frame can also fall in the capacitor bright spot of the N + 1th frame.
  • S conditionalSize is the bright spot area of the capacitive bright spot in the one frame
  • S pre_conditionalSize is the bright spot area of the capacitive bright spot in the up frame
  • minDiff conditionalSize is the second area difference threshold
  • S thresholdconditionalSize is the third area threshold.
  • the condition 1.3 indicates that when the one frame is the next frame of the up frame, and the difference between the bright spot area of the capacitive bright spot and the bright spot area of the capacitive bright spot of the up frame is greater than the second area difference threshold And when the bright spot area of the capacitive bright spot is greater than the third area threshold, the terminal determines that the first touch operation is a touch operation corresponding to a strong cheek.
  • Threshold_StrongFace strong cheeks.
  • stdCenterXY is the standard deviation of the bright spot slice center of the capacitive bright spot corresponding to the first touch operation in the frame
  • stdCenterXY Threshold_conditionalSize is the first standard deviation threshold
  • diagonal is the rectangular pair consisting of the horizontal and vertical spans of the capacitive bright spot Corner length
  • diagonal Threshold_StrongFace is the first diagonal length threshold.
  • the condition 1.4 indicates that when the standard deviation of the bright spot slice center of the capacitive bright spot corresponding to the first touch operation in the frame is greater than the first standard deviation threshold, and the diagonal of the rectangular form of the horizontal and vertical spans of the capacitive bright spot The length is greater than the first diagonal length threshold, and the terminal determines that the first touch operation is a touch operation corresponding to a strong cheek.
  • ySpan is the longitudinal span of the bright spot of the capacitor
  • ySpan Threshold_StrongFace_Level1 is the first longitudinal span threshold
  • condition 1.5 indicates that when the standard deviation of the bright spot slice center of the capacitive bright spot corresponding to the first touch operation in the frame is greater than the first standard A difference threshold, and the diagonal length of the rectangle formed by the horizontal and vertical spans of the capacitive bright spot is greater than the first diagonal length threshold, the terminal determines that the first touch operation is a touch operation corresponding to a strong cheek.
  • S is the bright spot area of the capacitive bright spot corresponding to the first touch operation in the frame
  • S Threshold_StrongFace_Level2 is the fourth area threshold.
  • the condition 1.6 indicates that when the longitudinal span of the capacitive bright spot corresponding to the first touch operation in the frame is greater than or equal to the first longitudinal span threshold, the terminal determines that the first touch operation is a touch operation corresponding to a strong cheek.
  • xSpan ⁇ xSpan Threshold_StrongFace_Level1 && ySpan ⁇ ySpan Threshold_StrongFace_Level2 strong cheeks.
  • xSpan Threshold_StrongFace_Level1 is the first horizontal span threshold
  • ySpan is the vertical span of the capacitive bright spot corresponding to the first touch operation in the frame
  • ySpan Threshold_StrongFace_Level2 is the second longitudinal span threshold.
  • the condition 1.7 indicates that the horizontal span of the capacitive bright spot corresponding to the first touch operation in the frame is less than or equal to the first horizontal span threshold, and the vertical span of the capacitive bright spot corresponding to the first touch operation in the frame is greater than or equal to
  • the terminal determines that the first touch operation is a touch operation corresponding to a strong cheek.
  • FIG. 14 exemplarily shows a flowchart of strong cheek judgment.
  • the capacitive bright spot corresponding to the first touch operation in the frame is determined to be a non-strong cheek, that is, the first touch operation is determined to be a touch operation corresponding to the non-strong cheek; if the above condition is met Any one of 1.2-1.7, the capacitive bright spot corresponding to the first touch operation in the frame is determined to be a strong cheek, that is, the first touch operation is determined to be a touch operation corresponding to a strong cheek.
  • the capacitive bright spot corresponding to the first touch operation in the frame is determined to be non-strong cheeks, that is, when none of the above conditions are satisfied, the first touch operation is determined to be a touch operation corresponding to non-strong cheeks .
  • whether the first touch operation is a touch operation corresponding to a strong cheek can be determined by one or more of the area of the bright spot, the longitudinal span, the standard deviation of the bright spot slice center, and the lateral span, and the judgment result has high accuracy.
  • the above conditions may not have priority, that is to say, the above conditions 1.1-1.7 can be judged in any order, as long as the judgment result of the previous item is that the condition is met, then no Continue to judge the subsequent conditions.
  • the above conditions may also have different priorities. According to the sequence described above, the priority gradually decreases, and the above conditions may be judged in order from high to low. When the priority is met When the condition is high, there is no need to judge the subsequent conditions. At this time, the judgment result is more accurate.
  • Second judgment process determine whether the first touch operation is the first touch operation corresponding to the weak cheek according to the feature value of the capacitive bright spot corresponding to the first touch operation in the frame, and the second judgment result includes the weak cheek Corresponding touch operations, touch operations corresponding to non-weak cheeks and uncertainty.
  • MaxCapacity is the maximum value of the capacitance bright spot corresponding to the first touch operation in the frame
  • MaxCapacity Threshold_WeakFace_Level1 is the first capacitance threshold
  • the condition 2.1 indicates that when the capacitance bright spot corresponding to the first touch operation in the frame
  • the maximum value of the capacitance of the capacitive spot is greater than or equal to the first capacitance threshold, it is determined that the first touch operation is a touch operation corresponding to a non-weak cheek.
  • minY 0 && ySpan ⁇ ySpan Threshold_WeakFace_Level1 : non-weak cheeks.
  • minY is the minimum vertical coordinate of the upper edge of the capacitive bright spot corresponding to the first touch operation in the frame
  • ySpan is the longitudinal span of the capacitive light spot corresponding to the first touch operation in the frame
  • ySpan Threshold_WeakFace_Level1 is the third longitudinal span threshold
  • the condition 2.2 indicates that when the minimum ordinate of the upper edge of the bright spot of the capacitor is zero, and the longitudinal span of the capacitive spot is less than or equal to the third longitudinal span threshold and the longitudinal span of the capacitive spot is less than or equal to the third longitudinal span threshold To determine that the first touch operation is a touch operation corresponding to the non-weak cheek.
  • S is the light spot of the capacitive light spot corresponding to the first touch operation in the frame
  • S Threshold_WeakFace_Level1 is the fifth area threshold.
  • the condition 2.3 indicates that when the bright spot area of the capacitive bright spot corresponding to the first touch operation in the frame is greater than or equal to the fifth area threshold, the first touch operation is determined to be the touch operation corresponding to the weak cheek.
  • ySpan is the vertical span of the capacitive bright spot corresponding to the first touch operation in the frame
  • ySpan Threshold_WeakFace_Level2 is the fourth vertical span threshold
  • xSpan is the horizontal span of the capacitive bright spot corresponding to the first touch operation in the frame
  • xSpan Threshold_WeakFace_Level2 is the second horizontal span threshold.
  • the condition 2.4 indicates that the vertical span of the capacitive bright spot corresponding to the first touch operation in the frame is greater than or equal to the fourth vertical span threshold, and the horizontal span of the capacitive bright spot is greater than or equal to the When two lateral span thresholds are determined, it is determined that the first touch operation is a touch operation corresponding to a weak cheek.
  • S is the bright spot area of the capacitive bright spot corresponding to the first touch operation in the frame
  • S Threshold_WeakFace_Level2 is the sixth area threshold
  • the condition 2.5 indicates that when the capacitive bright spot corresponding to the first touch operation in the frame
  • the judgment result is uncertain.
  • FIG. 15 exemplarily shows a flowchart of weak cheek judgment.
  • the capacitive bright spot is judged to be a non-weak cheek, that is, the first touch operation is determined to be a touch operation corresponding to the non-weak cheek; if the above condition is satisfied Any one of 2.3 and 2.4, the capacitive bright spot is judged as a weak cheek, that is, it is determined that the first touch operation is a touch operation corresponding to the weak cheek.
  • the judgment result is uncertain, that is, it is uncertain whether the first touch operation is a touch operation corresponding to a weak cheek. If none of the above conditions are satisfied, the capacitive bright spot area is determined to be a non-weak cheek, that is, the first touch operation is determined to be a touch operation corresponding to the non-weak cheek.
  • whether the first touch operation is a touch operation corresponding to a weak cheek can be determined by one or more of the maximum capacitance, the position of the capacitive bright spot, the vertical span, the bright spot area, and the horizontal span, and the judgment result is accurate sexuality is high.
  • the above conditions may not have priority, that is, the above conditions 2.1-condition 2.6 may be judged in any order, as long as the judgment result of the previous item is that the condition is met, then no Continue to judge the subsequent conditions.
  • the above conditions may also have different priorities. According to the sequence described above, the priority gradually decreases, and the above conditions may be judged in order from high to low. When the priority is met When the condition is high, there is no need to judge the subsequent conditions. At this time, the judgment result is more accurate.
  • the third determination process according to the characteristic value of the capacitive bright spot corresponding to the first touch operation in the frame, determine whether the first touch operation is the first touch operation corresponding to the weak cheek, and the third determination result includes the ear correspondence Touch operation, non-ear corresponding touch operation and uncertainty ;.
  • the special-shaped anti-mistouch algorithm mainly through the special-shaped anti-mistouch algorithm, the following conditions are used to detect whether the bright spot of the capacitor is the ear. If the bright spot of the capacitor is identified as an ear or a non-ear, subsequent judgment is not performed, otherwise all detection will be performed. In the implementation of the special-shaped anti-mistouch algorithm, only a few of these conditions can be used for judgment.
  • MaxCapacity is the maximum value of the capacitance of the capacitive bright spot corresponding to the first touch operation in the frame
  • MaxCapacity Threshold_Ear_Level1 is the second capacitance threshold
  • the condition 3.1 indicates that when the capacitance of the capacitive spot corresponding to the first touch operation in the frame
  • the maximum value is greater than or equal to the second capacitance threshold, it is determined that the first touch operation is a touch operation not corresponding to the ear.
  • Condition 3.2 Gy> Gy Threshold_Ear_Level1 : Non-ear.
  • Gy is the longitudinal coordinate of the center of gravity of the capacitive spot corresponding to the first touch operation in the frame
  • Gy Threshold_Ear_Level1 is the first coordinate threshold
  • the condition 3.2 indicates that when the capacitive spot corresponding to the first touch operation in the frame The longitudinal coordinate of the center of gravity coordinate is greater than the first coordinate threshold, and it is determined that the first touch operation is a touch operation corresponding to a non-ear.
  • S is the bright spot area of the capacitive spot corresponding to the first touch operation in the frame
  • S Threshold_Ear_Level1 is the seventh area threshold.
  • the condition 3.3 indicates that when the bright spot area of the capacitive spot corresponding to the first touch operation in the frame is greater than the seventh area threshold, it is determined that the first touch operation is a non-ear corresponding touch operation.
  • minY 0 && ySpan ⁇ ySpan Threshold_Ear_Level1 : non-ear.
  • minY is the minimum vertical coordinate of the upper edge of the capacitive bright spot corresponding to the first touch operation in the frame
  • ySpan is the longitudinal span of the capacitive light spot corresponding to the first touch operation in the frame
  • ySpan Threshold_Ear_Level1 is the sixth longitudinal span threshold .
  • the condition 3.4 indicates that the first touch operation is determined when the minimum vertical coordinate of the upper edge of the capacitive bright spot corresponding to the first touch operation in the frame is zero and the longitudinal span of the capacitive light spot is less than or equal to the sixth longitudinal span threshold It is a touch operation not corresponding to the ear.
  • Threshold_Ear_Level1 e Threshold_Ear_Level1 &&Gy> Gy Threshold_Ear_Level2 : ears.
  • e is the eccentricity of the capacitive bright spot corresponding to the first touch operation in the frame
  • e Threshold_Ear_Level1 is the first eccentricity threshold
  • Gy is the vertical axis in the center of gravity of the capacitive spot corresponding to the first touch operation in the frame Coordinates
  • Gy Threshold_Ear_Level2 is the second coordinate threshold.
  • the condition 3.5 indicates that the first touch is determined when the eccentricity of the capacitive spot corresponding to the first touch operation in the frame is greater than the first eccentricity threshold and the vertical coordinate in the center of gravity of the capacitive spot is greater than the second coordinate threshold
  • the operation is a touch operation corresponding to the ear.
  • the capacitive bright spot area is determined to be non-ear. That is, when none of the above conditions are satisfied, it is determined that the first touch operation is a touch operation not corresponding to the ear.
  • FIG. 16 exemplarily shows an ear judgment flowchart.
  • the capacitive bright spot area is determined to be non-ear, that is, the first touch operation is determined to be a non-ear corresponding touch operation; if satisfied Any one of the above conditions 3.4 and 3.6, the capacitive bright spot area is determined to be an ear, that is, it is determined that the first touch operation is a touch operation corresponding to the ear.
  • the judgment result is uncertain, that is, it is uncertain whether the first touch operation is a touch operation corresponding to the ear.
  • the capacitive bright spot area is determined to be non-ear, that is, it is determined that the first touch operation is a touch operation corresponding to non-ear.
  • whether the first touch operation is an ear can be determined by one or more of the maximum value of the capacitance, the shape of the bright spot of the capacitor, the area of the bright spot, the position of the bright spot of the capacitor, the longitudinal span, the eccentricity, and the coordinates of the center of gravity Corresponding to the touch operation, the judgment result has high accuracy.
  • the above conditions may not have priority, that is, the above conditions 3.1-3.6 can be judged in any order, as long as the judgment result of the previous item is that the condition is met, then no Continue to judge the subsequent conditions.
  • the above conditions may also have different priorities. According to the sequence described above, the priority gradually decreases, and the above conditions may be judged in order from high to low. When the priority is met When the condition is high, there is no need to judge the subsequent conditions. At this time, the judgment result is more accurate.
  • the judgment sequence of the above three judgment processes can be determined according to the actual situation, and is not limited here.
  • the judgment sequence may be as follows: a first judgment flow, a second judgment flow, and a third judgment flow.
  • the judgment sequence may be: a second judgment flow, a first judgment flow, and a third judgment flow.
  • pre-shaped touches are divided into three types: strong cheeks, weak cheeks, and ears.
  • the relationship between the three judgment results of strong cheeks, weak cheeks and ears and the final judgment result may be, but not limited to, as shown in Table 1.
  • the “ ⁇ ” in Table 1 represents any value, that is to say, when the first judgment result is a strong cheek, regardless of the second judgment result and the third judgment result being arbitrary values, it is determined that the first touch operation is not Irregular touch operation; when the second judgment result is weak cheeks, whether the first judgment result and the third judgment result are arbitrary values, it is determined that the first touch operation is not an abnormal touch operation; when the third judgment result is In the ear, regardless of whether the first judgment result and the second judgment result are arbitrary values, it is determined that the first touch operation is not an alien touch operation; when the first judgment result, the second judgment result, and the third judgment result are all When it is No, it is determined that the first touch operation is not an alien touch operation; when the first judgment result, the second judgment result, and the third judgment result are only the two judgment results of uncertainty and no or not When it is determined, the judgment result of whether the first touch operation is an abnormal touch operation is also uncertain.
  • the finger judgment condition is: if the capacitive bright spots corresponding to the first touch operation in the frame are judged as non-strong cheeks, non-weak cheeks and non-ears after strong cheek judgment, weak cheek judgment and ear judgment respectively ,
  • the bright spot area of the capacitor will be judged to be caused by normal finger click, that is, the first touch operation is a special-shaped touch operation.
  • the above-mentioned strong cheeks, weak cheeks, and ears of the present application are only three types of exemplary shaped touches, and capacitive flare generated by touching the touch screen with other shaped parts (including but not limited to thighs, arms, abdomen, etc.)
  • shape of the capacitor is similar to the shape of the capacitive light spot generated by the cheek or ear touching the touch screen, it can also be judged as a special-shaped part through the above three judgment processes. For example, take the mobile phone in the pocket and the thigh touching the touch screen in the bright screen as an example.
  • the capacitive bright spot area generated by the thigh touching the touch screen is similar to that of a strong cheek or a weak cheek.
  • the capacitive bright spot generated by the touch screen If the condition for judging strong cheeks is satisfied, then the area of the capacitive bright spot generated by the thigh touching the touch screen will be judged as strong cheeks. If the capacitive bright spot generated by the thigh touching the touch screen satisfies the condition for weak cheek judgment, the capacitive bright spot area generated by the thigh touching the touch screen will be judged as a weak cheek.
  • the terminal saves the report point coordinates of the capacitive bright spot in the first frame corresponding to the first touch operation.
  • the preset number of frames after the first frame determines that the first touch operation is not an alien touch operation, or the subsequent preset number of frames does not determine whether the first touch operation is an alien touch operation, the report Reporting coordinate of the bright spot of the capacitor corresponding to the first touch operation, and matching the coordinate of the reporting point with the bright spot of the capacitor corresponding to the first touch operation in the subsequent preset number of frames.
  • the capacitive bright spot In this frame, if the capacitive bright spot is judged to be Touch, the first touch operation will be reported. After the report is started, whether the first touch operation is a special-shaped touch operation is still determined according to the characteristic value of the capacitive bright spot corresponding to the first touch operation in the subsequent frame. If it is determined in a subsequent frame that the first touch operation is an alien touch operation, the previous response operation triggered for the first touch operation is recalled, and the first touch operation is not reported for the entire life cycle. If the capacitive bright spot is judged as StrongFace, WeakFace or Ear, the first touch operation is no longer reported, and after the suppression is started, it is no longer judged whether the first touch operation is an alien touch operation.
  • the bright spot of the capacitor is judged as Uncertain, it will temporarily suppress the reporting point and continue to judge in the subsequent frames. If it is judged as a normal click in the frames that allow the delay, then report the reporting point, or It is determined that the first touch operation is an abnormal touch operation in several frames of, and the reporting point is suppressed. If it cannot be determined within several frames that allow the delay, then it is reported that the first touch operation is not an abnormal touch operation.
  • a frame of capacitive data collected on the touch screen may include multiple capacitive bright spots, and the above three determination processes may be used to separately determine whether the touch operation corresponding to each capacitive bright spot in the multiple capacitive bright spots is For the special-shaped touch operation, after it has been determined that the touch operation corresponding to the presence of the capacitive bright spot is an abnormal touch operation, it may be determined that the touch operations corresponding to other undecided capacitive bright spots are all abnormal-shaped touch operations.
  • the touch operation corresponding to multiple capacitive bright spots is an alien touch operation
  • determine whether the current state is an alien state if the current state is an alien state, determine among the multiple capacitive bright spots
  • the touch operation corresponding to each capacitor bright spot is an alien touch operation; if the current state is not an alien state, then it is performed to determine whether one of the touch operations is an alien touch operation; when it is determined whether one of the touch operations is alien touch Switch the current state to alien state.
  • the touch screen of the terminal receives a second touch operation within the life cycle of the touch operation; the terminal determines that the touch screen is Whether the state of the one frame is an abnormal state; if the terminal determines that the state of the one frame is an abnormal state, it is determined that the second touch operation is an abnormal touch operation; the terminal is in the first After the one frame in the life cycle of a touch operation and the life cycle of the second touch operation, the first touch operation and the second touch operation are not reported.
  • the initial value of the state of the touch screen is set to a non-shaped state.
  • a capacitive signal of one frame corresponds to multiple capacitive bright spots, that is, there are multiple touch operations
  • one of the touch operations is determined to be an abnormal touch operation
  • the detection of spots can effectively save the processing resources of the terminal, and the judgment is rapid, and the user experience is good.
  • the time at which the first report point appears and the time at which the corresponding capacitor bright spot appears are inconsistent.
  • the reporting point often starts to report only after a few frames after the bright spot of the capacitor appears.
  • the capacitor bright spot can be judged whether it is an abnormal touch operation as soon as it appears, thereby increasing the number of judgments.
  • some capacitive screens may have a relatively noisy situation, leading to the possibility of misjudgment in the judgment before the reporting point, thereby misjudging the reporting point of normal finger operation. Therefore, whether the bright spot of the capacitor is judged before the reporting point is adjusted and the noise level of the visible capacitive screen is adjusted.
  • the abnormal shaped anti-mistouch algorithm recognizes that the capacitor bright spot is formed by the normal click of the finger, the corresponding reporting point will be reported normally. If the abnormal shaped anti-mistouch algorithm recognizes that the capacitive bright spots are formed by abnormal touches such as ears and cheeks in the first few frames, it will suppress the reporting of the corresponding reporting point. If the abnormal shape anti-mistouch algorithm recognizes that the capacitive bright spots are formed by the normal click of the finger in the first few frames, the report points of these frames will be reported.
  • the recognition is not formed by the normal click of the finger, but the ear and cheek If a special-shaped touch is formed, the report point corresponding to the capacitive bright spot generated by the special-shaped touch will be reported, and the response operation triggered by the report points of the previous frames will be recalled, and the report points of the subsequent frames after the frame will be suppressed.
  • a strategy of delayed reporting may be adopted in subsequent frames.
  • the reporting point coordinates may be different from the reporting point coordinates of the first frame.
  • delayed reporting will cause the reporting information of the previous frames to be lost. If the coordinate of the reported point is not in the hot zone corresponding to the start of the control after the delay, the control cannot be started. Therefore, when the start position of the report point falls on the edge position, the algorithm will record the coordinates of the first frame of the report point, and supplement this coordinate in the first frame of the report point after the delay. In this way, the control can be started normally.
  • an embodiment of the present application discloses a terminal.
  • the terminal is used to implement the method for identifying alien contacts described in the above method embodiments.
  • the terminal 1700 includes: The receiving unit 1701 and the processing unit 1702, wherein when the terminal 1700 executes the method in FIG. 4, the receiving unit 1701 is used for step 401, and the processing unit 1702 is used to perform steps 402-405.
  • the above method embodiments involve all relevant content and can refer to the functional description of the corresponding unit, which will not be repeated here.
  • the hardware implementation of the terminal can refer to FIG. 1 and related descriptions.
  • the terminal 100 includes: a touch screen 150, wherein the touch screen 150 includes a touch-sensitive surface and a display; one or more processors 110; a memory 120; a plurality of application programs (not shown in the figure); And one or more computer programs, wherein the one or more computer programs are stored in the memory 120, the one or more computer programs include instructions, when the instructions are executed by the terminal 100, the The terminal 100 executes any possible design method executed by the terminal 100 in the embodiment of the present application.
  • the memory 120 may be integrated in the processor 110, or may be independent of the processor 110.
  • the touch screen 150 may execute the method executed by the receiving module 1700 as shown in FIG. 17, and the processor 110 may execute the method executed by the processing module 1702 as shown in FIG. 17.
  • An embodiment of the present application further provides a computer storage medium that stores computer instructions.
  • the terminal executes the above-mentioned related method steps to implement the photo sharing method in the above embodiment.
  • An embodiment of the present application further provides a computer program product.
  • the computer program product runs on a computer, the computer is caused to perform the above-mentioned relevant steps to implement the translation method in the above embodiment.
  • the embodiments of the present application also provide an apparatus.
  • the apparatus may specifically be a chip, a component, or a module.
  • the apparatus may include a connected processor and a memory; wherein the memory is used to store computer-executed instructions.
  • the processor may execute computer execution instructions stored in the memory to cause the chip to execute the translation method in each of the above method embodiments.
  • the terminal, the computer storage medium, the computer program product, or the chip provided in the embodiments of the present application are all used to perform the corresponding methods provided above. Therefore, for the beneficial effects that can be achieved, refer to the corresponding provided The beneficial effects of the method will not be repeated here.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a division of logical functions.
  • there may be other divisions for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each of the embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units are integrated into one unit.
  • the functional unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the technical solutions of the embodiments of the present application may essentially be part of or contribute to the prior art or the technical solutions may be embodied in the form of software products, and the computer software products are stored in a storage medium , Including several instructions to enable a computer device (which may be a personal computer, server, or network device, etc.) or processor to execute all or part of the steps of the methods described in the embodiments of the present application.
  • the foregoing storage media include various media that can store program codes, such as a U disk, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Environmental & Geological Engineering (AREA)
  • User Interface Of Digital Computer (AREA)
  • Telephone Function (AREA)

Abstract

本申请实施例公开一种识别异形触摸的方法、终端及存储介质,所述方法包括:终端的触摸屏接收第一触摸操作;终端响应于第一触摸操作,在第一触摸操作的生命周期内采集触摸屏的一帧电容信号;生命周期为第一触摸操作从开始接触触摸屏至离开触摸屏的过程;计算一帧电容信号中与第一触摸操作对应的电容亮斑的特征值;根据电容亮斑的特征值,以及一帧之前的至少一帧中与第一触摸操作属于同一生命周期的电容亮斑的特征值,确定第一触摸操作是否为异形触摸操作;若确定第一触摸操作为异形触摸操作,则召回一帧之前针对第一触摸操作触发的响应操作,并在整个生命周期内不上报第一触摸操作。如此,有助于提高异形触摸操作的识别率,从而实现防误触。

Description

一种识别异形触摸的方法、终端及存储介质
本申请要求于2018年10月16日提交中国国家知识产权局,申请号为201811204505.4、发明名称为“一种识别异形触摸的方法、终端及存储介质”的中国专利申请,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及终端技术领域,尤其涉及一种识别异形触摸的方法、终端及存储介质。
背景技术
近年来,电容式触摸屏具有高灵敏度、反应速度快等优点,使其得到广泛应用,特别是在智能手机领域给用户带来良好的用户体验。目前智能手机普遍使用接近光传感器对屏幕前的障碍物进行识别,当用户在接听电话时,接近光传感器开启,当接近光传感器识别到在一定距离阈值范围内有障碍物,则手机就会进入灭屏状态,以防止屏幕被误触。接近光传感器受识别角度的影响,在某些场景下可能不能识别出障碍物,手机在用户耳朵靠近时仍旧处于亮屏状态,从而容易引起误操作。另外,从接近光传感器识别到障碍物至屏幕灭屏的这段时间存在一定的延时,脸颊、耳朵等异形部位可能在手机进入灭屏状态之前就已经触碰到屏幕上的控件,从而引起误操作,严重影响用户体验。
现有的电容式触摸屏技术只能计算屏幕上接触物体的报点数据,不能识别屏幕上接触到的物体是手指还是人体的其他部位。目前触摸屏(Touchscreen Panel,TP)算法可通过接触面积等特征识别屏幕上大面积的接触物,对其产生的报点进行抑制。但是对于脸颊、耳朵等异形触摸的面积与手指触碰的面积相当的情况,不能有效识别出异形触摸,从而引起误操作。
综上,如何实现提高异形触摸识别率,仍需进一步深入研究。
发明内容
本申请实施例提供一种识别异形触摸的方法、终端及存储介质,用以实现提高异形触摸操作的识别率,防止误操作。
第一方面,本申请实施例提供一种识别异形触摸的方法,包括:终端的触摸屏接收第一触摸操作;终端响应于第一触摸操作,在第一触摸操作的生命周期内采集触摸屏的一帧电容信号;生命周期为第一触摸操作从开始接触触摸屏至离开触摸屏的过程;终端计算一帧电容信号中与第一触摸操作对应的电容亮斑的特征值;终端根据电容亮斑的特征值,以及一帧之前的至少一帧中与第一触摸操作属于同一生命周期的电容亮斑的特征值,确定第一触摸操作是否为异形触摸操作;终端若确定第一触摸操作为异形触摸操作,则召回一帧之前针对第一触摸操作触发的响应操作,并在整个生命周期内不上报第一触摸操作。
基于该方案,终端的触摸屏接收第一触摸操作;终端响应于第一触摸操作,在第一触摸操作的生命周期内采集触摸屏的一帧电容信号;其中,生命周期为第一触摸操作从开始接触触摸屏至离开触摸屏的过程;终端计算一帧电容信号中与第一触摸操作对应的电容亮斑的特征值;终端根据电容亮斑的特征值,以及一帧之前的至少一帧中与第一触摸操作属于同一生命周期的电容亮斑的特征值,确定第一触摸操作是否为异形触摸操作;通过针对多帧电容量 亮斑的特征值,有助于准确的确定出第一触摸操作是否为异形触摸操作,相较于根据单帧电容亮斑的特征值确定第一触摸操作是否为异形触摸操作的方案来说,本申请实施例提供的方案还可以识别出特定场景下的异形触摸操作,例如,某些异形触摸操作的生命周期内前几帧电容亮斑的特征类似于手指触摸操作对应的电容亮斑的特征的情况,通过多帧电容亮斑的特征值可以准确的识别出异形触摸操作,从而提高异形触摸操作的识别率。而且,终端若确定第一触摸操作为异形触摸操作,则召回一帧之前针对第一触摸操作触发的响应操作,并在整个生命周期内不上报第一触摸操作。如此,针对出现误操作的情况可以及时召回针对该第一触摸操作触发的响应操作,而且在整个生命周期不上报第一触摸操作,可以进一步实现防误触。
在一种可能的设计中,所述特征值包括下述内容中的至少一项:亮斑面积、横向跨度、纵向跨度、离心率、重心坐标、电容最大值或亮斑切片中心标准差。其中,所述亮斑面积为所述电容亮斑的洪泛区域内的电容网格的数目;所述横向跨度为所述电容亮斑的洪泛区域在横向的跨度;所述纵向跨度为所述电容亮斑的洪泛区域在纵向的跨度;所述离心率为所述电容亮斑的洪泛区域拟合出的椭圆的离心率;所述重心坐标为所述电容亮斑的洪泛区域的重心坐标;所述电容最大值为所述电容亮斑的洪泛区域的电容最大值;所述亮斑切片中心标准差为所述电容亮斑的洪泛区域的横向切片的中心横坐标的标准差与纵向切片的中心纵坐标的标准差的平方和的平方根。如此,通过对屏幕底层的电容数据变化的形状、比例、大小、幅度,以及随时间变化趋势等一项或多项电容特征进行处理,从而有助于在实现防误触的同时,最大化保证正常操作不受影响。
在一种可能的设计中,所述终端计算所述一帧电容信号中与所述第一触摸操作对应的电容亮斑的特征值,包括:所述终端从所述一帧电容信号中的多个电容值中确定出至少一个电容极大值;所述终端从所述至少一个电容极大值的每个电容极大值开始洪泛,将电容值大于预设电容阈值的电容网格加入至所述电容极大值对应的电容亮斑的洪泛区域;所述终端从所述至少一个电容极大值对应的电容亮斑的洪泛区域,确定出与所述第一触摸操作对应的电容亮斑;所述终端计算所述与所述第一触摸操作对应的电容亮斑的特征值。如此,有助于终端根据洪泛算法快速确定第一触摸操作对应的电容亮斑,从而计算得到电容亮斑的特征值。
在一种可能的设计中,所述终端根据所述电容亮斑的特征值,以及所述一帧之前的至少一帧中与所述第一触摸操作属于同一生命周期的电容亮斑的特征值,确定所述第一触摸操作是否为异形触摸操作,可以包括以下三项判断流程:
第一项判断流程为:所述终端根据所述电容亮斑的特征值,以及所述一帧之前的至少一帧中与所述第一触摸操作属于同一生命周期的电容亮斑的特征值,确定所述第一触摸操作是否为强脸颊对应的触摸操作,第一项判断结果包括强脸颊对应的触摸操作和非强脸颊对应的触摸操作;
第二项判断流程为:所述终端根据所述电容亮斑的特征值,确定所述第一触摸操作是否为弱脸颊对应的触摸操作;第二项判断结果包括弱脸颊对应的触摸操作、非弱脸颊对应的触摸操作和不确定;
第三项判断流程为:所述终端根据所述电容亮斑的特征值,确定所述第一触摸操作是否为耳朵对应的触摸操作;第三项判断结果包括耳朵对应的触摸操作、非耳朵对应的触摸操作 和不确定;
当第一项判断结果为强脸颊对应的触摸操作时,或当第二项判断结果为弱脸颊对应的触摸操作时,或当第三项判断结果为耳朵对应的触摸操作时,所述终端确定所述第一触摸操作为异形触摸操作;当第一项判断结果为非强脸颊对应的触摸操作、且第二项判断结果为非弱脸颊对应的触摸操作、且第三项判断结果为非耳朵对应的第一触摸操作时,所述终端确定所述第一触摸操作不为异形触摸操作。
通过该设计,预先将异形触摸分为强脸颊、弱脸颊和耳朵三种类型,通过分别判断电容亮斑是否满足强脸颊的特征,判断电容亮斑是否满足弱脸颊的特征,以及判断电容亮斑是否满足耳朵的特征,结合上述三项判断结果综合判断第一触摸操作是否为异形触摸操作,有助于准确的识别异形接触操作,进而防止误触。
在一种可能的设计中,上述第二项判断流程可以采用以下方式进行判断:当所述电容亮斑的亮斑面积小于第一面积阈值时,所述终端确定所述第一触摸操作为非强脸颊对应的触摸操作;或者,当所述一帧为down帧、且所述第一触摸操作的生命周期内的一帧之前的历史最大亮斑面积大于第二面积阈值、且所述历史最大亮斑面积与所述电容亮斑的亮斑面积的差值大于第一面积差阈值时,所述终端确定所述第一触摸操作为强脸颊对应的触摸操作,其中所述down帧为所述第一触摸操作的生命周期内第一次报点的帧;或者,当所述一帧为up帧的后一帧、且所述电容亮斑的亮斑面积与所述up帧的电容亮斑的亮斑面积的差值大于第二面积差阈值、且所述电容亮斑的亮斑面积大于第三面积阈值时,所述终端确定所述第一触摸操作为强脸颊对应的触摸操作,其中所述up帧为所述第一触摸操作的生命周期内正常报点之后第一次抑制报点的帧;或者,当所述电容亮斑的亮斑切片中心标准差大于第一标准差阈值、且所述电容亮斑的横向跨度和纵向跨度组成的矩形的对角线长度大于第一对角线长度阈值,所述终端确定所述第一触摸操作为强脸颊对应的触摸操作;或者,当所述电容亮斑的纵向跨度大于或等于第一纵向跨度阈值,所述终端确定所述第一触摸操作为强脸颊对应的触摸操作;或者,当所述电容亮斑的亮斑面积大于或等于第四面积阈值时,所述终端确定所述第一触摸操作为强脸颊对应的触摸操作;或者,当所述电容亮斑的横向跨度小于或等于第一横向跨度阈值、且纵向跨度大于或等于第二纵向跨度阈值时,所述终端确定所述第一触摸操作为强脸颊对应的触摸操作;或者,当以上条件都不满足时,所述终端确定所述第一触摸操作为非强脸颊对应的触摸操作。
通过该设计,可以通过亮斑面积、纵向跨度、亮斑切片中心标准差、横向跨度中的一项或多项判断第一触摸操作是否为强脸颊对应的触摸操作,有助于准确的识别异形接触操作,进而防止误触。
在一种可能的设计中,上述第二项判断流程可以采用以下方式进行判断:当所述电容光斑的电容最大值大于或等于第一电容阈值时,所述终端确定所述第一触摸操作为非弱脸颊对应的触摸操作;或者,当所述电容亮斑边缘的纵坐标最小值为零、且所述电容光斑的纵向跨度小于或等于第三纵向跨度阈值时,所述终端确定所述第一触摸操作为非弱脸颊对应的触摸操作;或者,当所述电容亮斑的亮斑面积大于或等于第五面积阈值时,所述终端确定所述第一触摸操作为弱脸颊对应的触摸操作;或者,当所述电容亮斑的纵向跨度大于或等于第四纵向跨度阈值、且当所述电容亮斑的横向跨度大于或等于第二横向跨度阈值时,所述终端确定 所述第一触摸操作为弱脸颊对应的触摸操作;或者,当所述电容亮斑的亮斑面积大于或等于第六面积阈值时,判断结果为不确定;或者,当所述电容亮斑的纵向跨度大于或等于第五纵向跨度阈值时,判断结果为不确定;或者,当以上条件都不满足时,所述终端确定所述第一触摸操作为非弱脸颊对应的触摸操作。
通过该设计,可以通过电容最大值、电容亮斑的位置、纵向跨度、亮斑面积、横向跨度中的一项或多项判断第一触摸操作是否为弱脸颊对应的触摸操作,有助于准确的识别异形接触操作,进而防止误触。
在一种可能的设计中,上述第三项判断流程可以采用以下方式进行判断:当所述电容光斑的电容最大值大于或等于第二电容阈值时,所述终端确定所述第一触摸操作为非耳朵对应的所述触摸操作;或者,当所述电容光斑的重心坐标的纵坐标大于第一坐标阈值,所述终端确定所述第一触摸操作为非耳朵对应的所述触摸操作;或者,当所述电容光斑的亮斑面积大于第七面积阈值,所述终端确定所述第一触摸操作为非耳朵对应的所述触摸操作;或者,当所述电容亮斑边缘的纵坐标最小值为零、且所述电容光斑的纵向跨度小于或等于第六纵向跨度阈值时,所述终端确定所述第一触摸操作为非耳朵对应的所述触摸操作;或者,当所述电容光斑的离心率大于第一离心率阈值、且所述电容光斑的重心坐标中的纵坐标大于第二坐标阈值时,所述终端确定所述第一触摸操作为耳朵对应的所述触摸操作;或者,当所述电容光斑的离心率大于第一离心率阈值时,判断结果为不确定;或者,当以上条件都不满足时,所述终端确定所述第一触摸操作为非耳朵对应的所述触摸操作。
通过该设计,可以通过电容最大值、电容亮斑的形状、亮斑面积、电容亮斑的位置、纵向跨度、离心率、重心坐标中的一项或多项判断第一触摸操作是否为耳朵对应的触摸操作,有助于准确的识别异形接触操作,进而防止误触。
在一种可能的设计中,所述确定所述第一触摸操作是否为异形触摸操作之前,该方法还可以包括:所述终端的触摸屏在所述触摸操作的生命周期内接收到第二触摸操作;所述终端确定所述触摸屏在所述一帧的状态是否为异形状态。所述终端若确定所述在所述一帧的状态为异形状态,则确定所述第二触摸操作是为异形触摸操作;所述终端在所述第一触摸操作的生命周期内和所述第二触摸操作的生命周期内的所述一帧之后,不上报所述第一触摸操作和所述第二触摸操作。
通过该设计,只需要根据触摸屏的该一帧的状态为异形状态,就可以确定出第二触摸操作为异形触摸操作,无需再对第二触摸操作进行特征检测,可以有效节约终端的处理资源,并且判断迅速,用户体验佳。
在另一种可能的设计中,该方法还可以包括:所述终端若确定所述触摸屏在所述一帧的状态不为异形状态,则根据所述电容亮斑的特征值,以及所述一帧之前的至少一帧中与所述第一触摸操作属于同一生命周期的电容亮斑的特征值确定所述第二触摸操作是否为异形触摸对应的所述触摸操作;当确定所述第二触摸操作为异形触摸对应的所述触摸操作,将所述触摸屏的所述当前帧的状态切换为异形状态。
通过该设计,在确定所述第二触摸操作为异形触摸对应的所述触摸操作时,将所述触摸屏的所述当前帧的状态切换为异形状态,可以使得在后续帧中判断接收到的其它触摸操作时,节省判断其它触摸操作是否为异形触摸操作的时间。
在一种可能的设计中,该方法还可以包括:当所述一帧为所述第一触摸操作的生命周期内的第一帧,且根据所述第一帧的电容亮的特征值,不确定所述第一触摸操作是否为异形触摸操作时,所述终端保存所述第一帧中与所述第一触摸操作对应的电容亮斑的报点坐标;当在所述第一帧的之后的预设数目帧确定所述第一触摸操作不为异形触摸操作、或者所述之后的预设数目帧不确定所述第一触摸操作是否为异形触摸操作时,上报将所述第一帧中与所述第一触摸操作对应的电容亮斑的报点坐标,并将所述报点坐标与所述后续预设数目帧中与所述第一触摸操作对应的电容亮斑相匹配。
通过该设计,可以在第一帧无法确定第一触摸操作是否为异形触摸操作时,也可以保留第一帧的电容亮斑的报点坐标,并将第一帧对应的报点坐标与后续数目帧匹配,如此,可以解决在后续帧的电容亮斑的报点不在需要操作的控件的热区内,导致无法正常启动控件的问题。
第二方面,本申请提供一种终端,包括:触摸屏,其中,所述触摸屏包括触敏表面和显示器;一个或多个处理器;存储器;多个应用程序;以及一个或多个计算机程序,其中所述一个或多个计算机程序被存储在所述存储器中,所述一个或多个计算机程序包括指令,当所述指令被所述终端执行时,所述终端执行第一方面及其第一方面任一可能设计的方法。需要说明的是,该存储器可以集成于处理器中,也可以是独立于处理器之外。
第三方面,本申请实施例还提供一种终端,该终端包括执行上述任一方面的任意一种可能的设计的方法的模块/单元。这些模块/单元可以通过硬件实现,也可以通过硬件执行相应的软件实现。
第四方面,本申请实施例中还提供一种计算机可读存储介质,所述计算机可读存储介质包括计算机程序,当计算机程序在电子设备上运行时,使得所述电子设备执行上述任一方面的任意一种可能的设计的方法。
第五方面,本申请实施例还提供一种包含计算机程序产品,当所述计算机程序产品在终端上运行时,使得所述电子设备执行上述任一方面的任意一种可能的设计的方法。
本申请的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
图1为本申请实施例提供的一种终端的硬件结构示意图;
图2为本申请实施例提供的一种图形用户界面示意图;
图3为本申请实施例提供的一种终端的软件结构示意图;
图4为本申请实施例提供的一种识别异形触摸的方法流程示意图;
图5为本发明实施例提供的手指接触屏幕产生的电容信号的示意图;
图6为本发明实施例提供的电容亮斑的部分特征示意图;
图6a为本发明实施例提供手指正常点击的电容亮斑形状示意图;
图7为本发明实施例提供的电容亮斑切片中心标准差确定方法示意图;
图8为本发明实施例提供的一种场景下强脸颊和耳朵的电容亮斑对比示意图;
图8a为本发明实施例提供的另一种场景下强脸颊和耳朵的电容亮斑对比示意图;
图9为本发明实施例提供的弱脸颊和耳朵的电容亮斑对比示意图;
图10为本发明实施例提供的强脸颊、弱脸颊和耳朵的电容亮斑对比示意图;
图11为本发明实施例提供的一种场景的大腿的电容亮斑示意图;
图11a为本发明实施例提供的另一种场景的大腿的电容亮斑示意图;
图11b为本发明实施例提供的另一种场景的大腿的电容亮斑示意图;
图12为本发明实施例提供的异形触摸产生的up帧电容亮斑示意图;
图12a为本发明实施例提供的异形触摸产生的up帧后一帧电容亮斑示意图;
图13为本发明实施例提供的异形触摸产生的down帧的电容亮斑示意图;
图13a为本发明实施例提供的异形触摸产生的down帧之前抑制报点的帧的电容亮斑示意图;
图14为本发明实施例提供的强脸颊判断流程图;
图15为本发明实施例提供的弱脸颊判断流程图;
图16为本发明实施例提供的耳朵判断流程图;
图17为本发明实施例提供的一种终端结构示意图。
具体实施方式
本申请公开的各个实施例可以应用于设置有触摸屏的终端中。在本申请一些实施例中,终端可以是包含诸如个人数字助理和/或音乐播放器等功能的便携式终端,诸如手机、平板电脑、具备无线通讯功能的可穿戴设备(如智能手表)、车载设备等。便携式终端的示例性实施例包括但不限于搭载
Figure PCTCN2019111178-appb-000001
或者其它操作系统的便携式终端。上述便携式终端也可以是诸如具有触敏表面(例如触控面板)的膝上型计算机(Laptop)等。还应当理解的是,在本申请其他一些实施例中,上述终端也可以是具有触敏表面(例如触控面板)的台式计算机。
图1示例性示出了一种终端100的结构示意图。
应理解,图示终端100仅是一个范例,并且终端100可以具有比图中所示出的更多的或者更少的部件,可以组合两个或更多的部件,或者可以具有不同的部件配置。图中所示出的各种部件可以在包括一个或多个信号处理和/或专用集成电路在内的硬件、软件、或硬件和软件的组合中实现。
下面结合图1对终端100的各个部件进行具体的介绍:
处理器110是终端100的控制中心,利用各种接口和线路连接终端100的各个部分,通过运行或执行存储在存储器120内的软件程序和/或模块,以及调用存储在存储器120内的数据和指令,执行终端100的各种功能和处理数据。示例性地,处理器110可以执行识别异形误触的方法。
在一些实施例中,处理器110可包括一个或多个处理单元。处理器110还可以集成应用处理器和调制解调处理器。其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器110中。举例来说,处理器110可以是华为技术有限公司制造的麒麟970芯片。在本申请其他一些实施例中,上述处理器110还可以包括指纹验证芯片,用于对采集到的指纹进行 验证。
存储器120可用于存储软件程序以及数据。处理器150通过运行存储在存储器120的软件程序以及数据,从而使得该终端执行上述识别异形误触的方法。存储器120主要包括程序存储区以及数据存储区。其中,程序存储区可存储操作系统、以及实现上述识别异形误触的方法所需的应用程序等。数据存储区可以存储根据使用终端100时所创建的数据(比如音频数据、电话本、触摸事件的相关数据、文件等)。示例性的,数据存储区还可以存储程序代码,该程序代码用于使处理器110通过执行该序代码,执行本发明实施例提供识别异形误触的方法。此外,存储器120可以包括高速随机存取存储器,还可以包括非易失存储器,例如磁盘存储器件、闪存器件或其他非易失性固态存储器件等。存储器120还可以存储各种操作系统,例如苹果公司所开发的
Figure PCTCN2019111178-appb-000002
操作系统、谷歌公司所开发的
Figure PCTCN2019111178-appb-000003
操作系统等。
射频电路(radio frequency,RF)电路130可用于在收发信息或通话过程中进行无线信号的接收和发送。具体地,RF电路130可以将基站的下行数据接收后,给处理器110处理。另外,RF电路130还可以将上行数据发送给基站。通常,RF电路130包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪放大器、双工器等。此外,RF电路130还可以通过无线通信实现与其他设备通信。所述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统、通用分组无线服务、码分多址、宽带码分多址、长期演进、电子邮件、短消息服务等。
音频电路140、扬声器141、麦克风142可提供用户与终端100之间的音频接口。音频电路140可将接收到的音频数据转换后的电信号,传输到扬声器141,由扬声器141转换为声音信号输出;另一方面,麦克风142将收集的声音信号转换为电信号,由音频电路140接收后转换为音频数据,再将音频数据输出至RF电路130以发送给比如一个终端,或者将音频数据输出至存储器120以便进一步处理。
触摸屏150可以包括触敏表面151和显示器152。其中,触敏表面151(例如触控面板)可采集终端100的用户在其上或附近的触摸事件(比如用户使用手指、触控笔等任何适合的物体在触敏表面151上或在触敏表面151附近的操作),并将采集到的触摸信息发送给其他器件例如处理器110。其中,用户在触敏表面151附近的触摸事件可以称之为悬浮触控。悬浮触控可以是指,用户无需为了选择、移动或拖动目标(例如App图标等)而直接接触触控板,而只需用户位于终端附近以便执行所想要的功能。在悬浮触控的应用场景下,术语“触摸”、“接触”等不会暗示用于直接接触触摸屏150,而是在其附近或接近的接触。能够进行悬浮触控的触敏表面151可以采用电容式、红外光感以及超声波等实现。
触敏表面151可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再发送给处理器110,触摸控制器还可以接收处理器110发送的指令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型来实现触敏表面151。
显示器(也称为显示屏)152可用于显示由用户输入的信息或提供给用户的信息以及各种图形用户界面(graphical user interface,GUI)。例如,显示器152可以显示照片、视频、网页、或者文件等。再例如,显示器152可以显示如图2所示的图形用户界面。其中,如图 2所示的图形用户界面210上包括状态栏201、可隐藏的导航栏202、时间和天气小组件(widget)203、以及应用的图标,例如浏览器图标204等。状态栏201中包括运营商名称(例如中国移动)、移动网络(例如4G)、时间和剩余电量。导航栏202中包括后退(back)键图标、主屏幕(home)键图标和前进键图标。此外,可以理解的是,在一些实施例中,状态栏201中还可以包括蓝牙图标、Wi-Fi图标、外接设备图标等。还可以理解的是,在另一些实施例中,图2所示的图形用户界面中还可以包括Dock栏,Dock栏中可以包括常用的应用图标等。当处理器110检测到用户的手指(或触控笔等)针对某一应用图标的触摸事件后,响应于该触摸事件,打开与该应用图标对应的应用的用户界面,并在显示器152上显示该应用的用户界面。
当显示器152当前显示的为图2所示的图形用户界面的情况下,若处理器110检测到用户对浏览器图标204的第一操作,则响应于第一操作,在显示器152上显示浏览器应用的用户界面。例如,用户对浏览器图标204的第一操作可以为用户点击或者触摸浏览器图标204的操作,也可以为用户在浏览器图标204的上方的触摸操作等,对此不作限定。
触摸操作,可以是用户手指、脸颊、耳朵等部位按压终端的触控屏或者以预设轨迹在终端的触控屏上进行移动的操作。以手指进行的触摸操作为例,大多数触摸操作是通过手指的移动来实现,只不过有些移动幅度较小(通常情况下,人的肉眼是不易察觉到该触摸操作中手指在触控屏上移动,人的直观感觉是该触摸操作仅包含手指落到触控屏、及手指从触控屏上抬起这两个动作),有些移动幅度较大,即该触摸操作有一定位移长度的移动轨迹。
应理解,通常情况下,显示器152可以包括显示控制器和显示装置两部分。其中,显示控制器用于接收处理器110发送的信号或数据,来驱动在显示装置上显示相应的界面。示例的,本申请实施例可以通过LCD(liquid crystal display,液晶显示器、或者有机发光二极管(organic light-emitting diode,OLED)等来配置显示装置。例如,采用有源矩阵有机发光二极管(active matrix organic light emitting diode,AMOLED)来配置显示装置。
应理解,触敏表面151可以覆盖在显示器152之上,当触敏表面151检测到在其上或附近的触摸事件后,传送给处理器110以确定触摸事件的类型,随后处理器110可以根据触摸事件的类型在显示器152上提供相应的视觉输出。虽然在图1中,触敏表面151与显示器152是作为两个独立的部件来实现终端100的输入和输出功能,但是在某些实施例中,可以将触敏表面151与显示器152集成而实现终端100的输入和输出功能。可以理解的是,触摸屏150是由多层材料堆叠而成,本申请实施例中只展示出了触敏表面(层)和显示器(层),其他层在本申请实施例中不予赘述。另外,在本申请其他一些实施例中,触敏表面151可以覆盖在显示器152之上,并且触敏表面151的尺寸大于显示器152的尺寸,使得显示器152全部覆盖在触敏表面151下面,或者,上述触敏表面151可以以全面板的形式配置在终端100的正面,也即用户在终端100正面的触摸均能被终端感知,这样就可以实现终端正面的全触控体验。在其他一些实施例中,触敏表面151以全面板的形式配置在终端100的正面,显示器152也可以以全面板的形式配置在终端100的正面,这样在终端的正面就能够实现无边框的结构。在本申请其他一些实施例中,触摸屏150还可以包括一系列的压力传感器阵列,可以使得终端感测触摸事件所施加给触摸屏150的压力。
一个或多个传感器106,比如光传感器、运动传感器以及其他传感器。具体的,光传感器可包括环境光传感器及接近光传感器,其中,环境光传感器可根据环境光线的明暗来调节 触摸屏150的显示器的亮度,接近光传感器可在终端100移动到耳边时,关闭显示器的电源。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等。其他传感器例如陀螺仪,可以用于检测终端100围绕一个定点或轴的旋转的角度。
在本申请一些实施例中,传感器106还可以包括指纹传感器。例如,可以在终端100的背面(例如后置摄像头的下方)配置指纹传感器,或者在终端100的正面(例如触摸屏150的下方)配置指纹传感器。另外,也可以通过在触摸屏150中配置指纹传感器来实现指纹识别功能,即指纹传感器可以与触摸屏150集成在一起来实现终端100的指纹识别功能。在这种情况下,该指纹传感器可以配置在触摸屏250中,可以是触摸屏150的一部分,也可以以其他方式配置在触摸屏150中。另外,该指纹传感器还可以被实现为全面板指纹传感器,因此,可以把触摸屏150看成是任何位置都可以进行指纹采集的一个面板。在一些实施例中,该指纹传感器可以对采集到的指纹进行处理(例如对采集到的指纹进行验证),并将指纹处理结果(例如指纹是否验证通过)发送给处理器110,由处理器110根据指纹处理结果做出相应的处理。在另一些实施例中,该指纹传感器还可以将采集到的指纹发送给处理器110,以便处理器110对该指纹进行处理(例如指纹验证等)。本申请实施例中的指纹传感器可以采用任何类型的感测技术,包括但不限于光学式、电容式、压电式或超声波传感技术等。此外,终端200还可配置的陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不予赘述。
Wi-Fi装置170,用于为终端100提供遵循Wi-Fi相关标准协议的网络接入。终端100可以通过Wi-Fi装置170接入到Wi-Fi接入点,进而帮助用户收发电子邮件、浏览网页和访问流媒体等,它为用户提供了无线的宽带互联网访问。在其他一些实施例中,该Wi-Fi装置207也可以作为Wi-Fi无线接入点,可以为其他终端提供Wi-Fi网络接入。
外设接口180用于为外部的输入/输出设备(例如键盘、鼠标、外接显示器、外部存储器、用户识别模块卡等)提供各种接口。例如通过通用串行总线接口与鼠标连接,通过用户识别模块卡卡槽上的金属触点与运营商提供的SIM卡连接。外设接口180可以被用来将上述外部的输入/输出外围设备耦接到处理器110和存储器130。
终端100还可以包括给各个部件供电的电源装置190(比如电池和电源管理芯片),电池可以通过电源管理芯片与处理器110逻辑相连,从而通过电源装置190实现管理充电、放电、以及功耗管理等功能。
尽管图1未示出,终端100还可以包括蓝牙装置、定位装置、闪光灯、微型投影装置、近场通信(near field communication,NFC)装置等,在此不予赘述。其中,前置摄像头可以用于捕捉人脸特征信息,处理器110可以对该人脸特征信息进行人脸识别,进而进行后续处理。
尽管图1未示出,终端100还可以包括蓝牙装置、定位装置、闪光灯、微型投影装置、近场通信(near field communication,NFC)装置等,在此不予赘述。
可以理解的是,本申请实施例示意的结构并不构成对电子设备100的具体限定。在本申请另一些实施例中,电子设备100可以包括比图示更多或更少的部件,或者组合某些部件, 或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件、软件或软件和硬件的组合实现。
终端100的软件系统可以采用分层架构,本申请实施例以分层架构的Android系统为例,示例性说明终端100的软件结构。
图3示例性示出了一种终端100的软件结构示意图。
分层架构将软件分成若干个层,每一层都有清晰的角色和分工。层与层之间通过软件接口通信。示例的,当软件结构如图3所示时,Android系统分为五层,从上至下分别为应用程序(Application,APP)层、应用程序框架(APP Framework)层、本地框架(Native)层、硬件抽象层(Hardware Abstraction Layer,简称HAL)、驱动(Driver)层。具体的,当系统架构如图3所示时,各层的功能如下:
应用程序层可以安装很多应用程序,可以包括但不限于主屏幕(Home)、联系人(Contact)、电话(Phone)、电子邮件、短消息、日历、地图、微信、浏览器等。
应用程序框架层,为应用程序层的应用程序提供应用编程接口(application programming interface,API)和编程框架。在一些示例中,该应用框架层可以包括但不限于视图组件、活动管理器(Activity Manager)、通知管理器(Notification Manager)、资源管理器(Resource Manager)、内容提供器(Content Providers)等,其中视图组件可用于构建应用程序,其包括可视控件,例如显示文字的控件,显示图片的控件等;活动管理用于管理各个应用程序生命周期并提供常用的导航回退功能,并为所有程序的窗口提供交互的接口;通知管理器使得应用程序可以在状态栏中显示自定义的提示信息;资源管理器提供非代码资源的访问,如本地字符串、图形、布局文件等;内容提供器使得应用程序可以访问另一个应用程序的数据(如联系人数据库),或者共享它们自己的数据。
本地框架(Native)层包括常见的一些本地服务和一些链接库等,该Native层可以通过C和C++语言实现与上层的Java代码通信(称为JNI机制),还可以和底层的硬件驱动交互。
硬件抽象层可以提供硬件服务调用JNI方法,进而调用硬件抽象层接口访问硬件。在一些示例中,在Android的应用框架层增加API接口,应用程序层增加一个内置的应用程序,该应用程序可以通过服务管理器(ServiceManager)接口获取指定的服务,然后通过这个指定的服务来获得硬件服务,从而访问硬件。
驱动层用于为Android系统提供的各种硬件提供驱动,如显示驱动,音频驱动,照相机驱动、WiFi驱动、传感器驱动、键盘驱动、蓝牙驱动等。
以下实施例均可以在具有上述硬件结构的电子设备100实现。
本申请实施例主要用于电容式触摸屏。电容式触摸屏技术是利用人体的电流感应进行工作的。当手指触摸在触摸屏150上时,由于人体电场,用户和触摸屏150表面形成以一个耦合电容,手指从接触点吸走一个很小的电流,从而产生电容信号。除了手指之外,脸颊、耳朵等部位接触到触摸屏150也会产生电容信号,使得触摸屏150根据全屏幕中的触摸位置的电容值发生变化,监测到用户的触摸操作。
以用户用手机打电话的场景为例,用户的耳朵靠近手机听筒时,用户的脸颊和耳朵都有可能会接触到手机的屏幕,如果用户需要结束通话,一般会用手指点击挂机键来达到结束通话的目的,这种手指接触触摸屏的接触称为正常点击。如果脸颊和耳朵触碰到挂机键,就会 导致通话突然中断,影响到用户正常通话,用户并不希望发生这种情况,这种脸颊、耳朵等异形部位接触触摸屏称为异形触摸。
为了识别出异形触摸产生的触摸操作,防止发生误触屏幕的情况,本申请实施例提供一种识别异形触摸的方法,通过结合全屏幕的电容数据、以及触摸屏的报点数据,对正常点击和异形触摸进行识别,以实现提高异形触摸的识别率,防止误操作。
下面结合实施例,示例性说明电子设备100软件以及硬件实现识别异形触摸的方法工作流程。
以用户手指或者脸颊、耳朵、大腿等异形部位接触到亮屏的触摸屏150为例,当触敏表面151监测到触摸操作时,监测触摸屏上因脸颊接触而产生的电容信号,如果是手指接触到触摸屏150,则产生的电容信号如图5所示,如果脸颊接触到触摸屏150,则产生的电容信号如图8所示的强脸颊。
触敏表面151在检测到手指或脸颊的触摸操作后,以固定频率上报全屏幕的电容信号至驱动层。其中,例如,该固定频率可以为120帧/ms,也就是说,触敏表面151每间隔约8ms上报一次电容信号。每次上报的时刻可以理解为一帧,驱动层可以持续收到每一帧全屏幕的电容信号。
硬件抽象层通过本地框架层从驱动层获取每一帧全屏幕的电容信号,针对每一帧全屏幕的电容信号,通过TP算法计算该帧是否需要报点、以及需要报点的报点坐标,并通过洪泛算法计算该帧的所有电容光斑。然后,针对每个电容光斑,为该电容光斑匹配报点,若该电容光斑匹配到报点,则通过异形防误触算法确定该电容光斑匹配的报点是否为异形触摸所产生的报点,并将判断结果(包括正常报点或异形报点)上报至应用程序框架层;若该电容光斑未匹配到报点,则不进行异形防误触算法的计算。
本申请实施例中,将用户手指接触触摸屏150的触摸操作产生的电容亮斑(形状大多为如图5所示的椭圆形)的报点,称为正常报点;将用户脸颊、耳朵、大腿、胳膊等异形部位接触触摸屏150的触摸操作产生的电容亮斑(形状大多不规则,例如图8中所示的强脸颊或耳朵,再例如图11、图11a、图11b所示的大腿)的报点,称为异形报点。
在一个示例中,硬件抽象层如果在判断出与该电容光斑匹配的报点为正常报点,则向硬件抽象层抑制上报该正常报点。
在另一个示例中,硬件抽象层如果在一个电容亮斑的前几帧判断出与该电容光斑匹配的报点为异形报点,则硬件抽象层抑制上报该异形报点,即硬件抽象层不向应用程序框架层上报该异形报点。
在另一个示例中,硬件抽象层如果在一个电容亮斑的前几帧判断出与该电容光斑匹配的报点为正常报点、且在正常报点之后的某一帧确定出该电容亮斑为异形报点,则硬件抽象层向应用程序框架层上报该异形报点,以便应用程序框架层召回针对该电容亮斑的前几帧上报的正常报点所触发的响应操作。
进一步,应用程序框架层如果接收到硬件抽象层上报的正常报点,那么就会触发针对该正常报点对应的触摸操作的响应操作;如果接收到硬件抽象层上报的异形报点,就会不触发该异形报点对应的触摸操作,或者在之前已触发该异形报点对应的触摸操作的情况下,召回针对该异形报点对应的触摸操作所触发的响应操作。
下面结合实施例对本申请实施例提供的识别异形触摸的方法进行详细说明。
本申请实施例中,终端100的触摸屏150可以接收至少一个触摸操作,比如在用户打电话的场景中,用户耳朵和脸颊同时接触触摸屏150时,会在触摸屏150上产生两个触摸操作,为了分别识别这两个触摸操作是否为异形触摸操作,采用以下实施例中的是被异形触摸的方法分别针对这每个触摸操作进行识别。以下实施例仅以识别一个触摸操作为例,并不限定触摸屏150上只接收到一个触摸操作。
图4示例性示出了本申请提供的一种识别异形触摸的方法流程示意图。该方法包括以下步骤:
步骤401,终端100的触摸屏150接收第一触摸操作。
步骤402,处理器110响应于第一触摸操作,在该第一触摸操作的生命周期内采集该触摸屏的一帧电容信号。
其中,该生命周期为该第一触摸操作从开始接触该触摸屏至离开该触摸屏的过程。
在第一触摸操作的生命周期内,触摸屏150会产生电容信号,而且电容信号会持续变化。触摸屏150以固定频率采集电容信号,比如每间隔约8ms采集一次电容信号,即为一帧电容信号。
以第一触摸操作为手指点击操作为例,比如手指触摸到触摸屏的整个生命周期内采集K帧电容信号,那么针对K帧中每一帧电容信号,处理器110执行步骤402-405。上述步骤中的一帧电容信号可以理解为K帧中任一帧。
下面以图4为例,详细说明电容信号。
图5示例性示出了手指接触屏幕产生的电容信号的示意图。触摸屏150的全屏幕的电容信号形式上是一个矩阵,矩阵中的每一个元素对应于电容屏幕上相应位置的一个电容网格,元素的数据表示该电容网格区域内的电容值(即电容信号的强度),参见图5,全屏幕上未与手指接触的区域电容值为0,而屏幕上与手指接触的区域电容值不为0,也就是说,人体在屏幕上接触区域的电容信号较强,屏幕上其余部位信号较弱。
步骤403,处理器110计算该一帧电容信号中与该第一触摸操作对应的电容亮斑的特征值。
其中,该特征值包括但不限于下述内容中的至少一项:亮斑面积、横向跨度、纵向跨度、离心率、重心坐标、电容最大值或亮斑切片中心标准差。
作为一种实现方式,处理器110从一帧电容信号中的多个电容值中确定出至少一个电容极大值,从至少一个电容极大值的每个电容极大值开始洪泛,将电容值大于预设电容阈值的电容网格区域加入至电容极大值对应的电容亮斑的洪泛区域;从至少一个电容极大值对应的电容亮斑的洪泛区域,确定出与第一触摸操作对应的电容亮斑;计算与第一触摸操作对应的电容亮斑的特征值。
在一个示例中,该一帧电容信号中的多个电容值中只确定出一个电容极大值,此时可以确定出一个电容亮斑。
在另一个示例中,该一帧电容信号中的多个电容值中确定出多个电容极大值,可以将这多个电容极大值按照从大到小排序,按照排序顺序分别针对每个电容极大值确定电容亮斑,比如存在四个极大值从大到小排序依次为:A、B、C、D,针对电容极大值A确定出电容亮 斑后,如果电容极大值B、C、D对应的电容网格在电容极大值A对应的电容亮斑的洪泛区域内,那么无需再对电容极大值B、C、D确定电容亮斑,也就是说,电容极大值A、B、C、D对应同一个电容亮斑。
下面结合具体示例,说明采用洪泛算法确定电容亮斑的过程。
通过触敏表面151采集全屏幕的电容值之后,采用洪泛(Flooding)算法计算出屏幕上的电容亮斑,洪泛算法的基础是广度优先搜索。首先需要计算出所有的电容至的极大值(即大于周围的8个格子的电容信号,在屏幕外的电容信号则视为负无穷),例如,图5中所示的电容值3237为极大值,然后从极大值点开始洪泛。在广度优先搜索的过程中,可以使用固定的阈值来判断,只有电容信号大于一个固定的阈值,这一搜索到的电容网格才会被加入到当前的亮斑区域中,最终得到如图5所示的白色电容网格所在的洪泛区域,将该洪泛区域拟合出的椭圆所在的电容网格称为电容亮斑(如图5中椭圆实线所圈出的区域)。
以用户手指点击屏幕为例,在第一触摸操作的生命周期内,当用户点击屏幕到手指抬起的这一过程中,电容屏会在一段时序内的连续若干帧中产生电容亮斑。电容亮斑的形状随着手指接触的面积、位置不断变化。在本发明实施例中,第一触摸操作的生命周期也可以称之为电容亮斑的生命周期,即电容亮斑从出现到消失的这一过程。在电容亮斑一个生命周期内对应连续的若干帧的电容亮斑。
在计算得到该一帧电容亮斑后,会为该一帧电容亮斑查找该一帧的上一帧中是否能够找到对应电容亮斑。示例的,可以通过两帧电容亮斑之间的重合面积来判断这两帧的电容亮斑是否属于同一生命周期。如果在该一帧的上一帧中找到与该一帧电容亮斑属于同一生命周期的电容亮斑时,则将该一帧电容亮斑加入至在该一帧的上一帧中找到的电容亮斑的生命周期中进行管理。如果在该一帧的上一帧中未找到与该一帧电容亮斑,则建立新的生命周期,将该一帧电容亮斑加入该新的生命周期。
步骤404,处理器110根据该电容亮斑的特征值,以及该一帧之前的至少一帧中与该第一触摸操作属于同一生命周期的电容亮斑的特征值,确定该第一触摸操作是否为异形触摸操作。
此处,确定该第一触摸操作是否为异形触摸操作,具体可以参见下述内容。
步骤405,处理器110若确定该第一触摸操作为异形触摸操作,则召回该一帧之前针对该第一触摸操作触发的响应操作,并在整个生命周期内不上报该第一触摸操作。
在一种可能的实施方式中,处理器110若确定该第一触摸操作为异形触摸操作、且该一帧之前并未触发针对该第一触摸操作的响应操作时,抑制上报所述第一触摸操作。若该一帧之前已触发针对该第一触摸操作的响应操作时,则召回该一帧之前针对该第一触摸操作触发的响应操作,并在整个生命周期内不上报该第一触摸操作。
通过上述方案,终端的触摸屏接收第一触摸操作;终端响应于第一触摸操作,在第一触摸操作的生命周期内采集触摸屏的一帧电容信号;其中,生命周期为第一触摸操作从开始接触触摸屏至离开触摸屏的过程;终端计算一帧电容信号中与第一触摸操作对应的电容亮斑的特征值;终端根据电容亮斑的特征值,以及一帧之前的至少一帧中与第一触摸操作属于同一生命周期的电容亮斑的特征值,确定第一触摸操作是否为异形触摸操作;通过根据多帧电容量亮斑的特征值判断第一触摸操作是否为异形操作,有助于准确的识别出异形触摸操作,相 较于根据单帧电容亮斑的特征值确定第一触摸操作是否为异形触摸操作的方案来说,本申请实施例提供的方案还可以识别出特定场景下的异形触摸操作,例如,某些异形触摸操作的生命周期内前几帧电容亮斑的特征类似于手指触摸操作对应的电容亮斑的特征的情况,通过多帧电容亮斑的特征值可以准确的识别出异形触摸操作,从而提高异形触摸操作的识别率。而且,终端若确定第一触摸操作为异形触摸操作,则召回一帧之前针对第一触摸操作触发的响应操作,并在整个生命周期内不上报第一触摸操作。如此,针对出现误操作的情况可以及时召回针对该第一触摸操作触发的响应操作,而且在整个生命周期不上报第一触摸操作,可以进一步实现防误触。
下面以第一触摸操作为手指点击触摸屏的触摸操作为例,详述如何确定该一帧电容亮斑的特征值。
在手指点击触摸屏的场景中,例如图6a所示,手指按压在触摸屏上形成的该一帧电容亮斑可以近似为一个椭圆的形状,然后针对该电容亮斑进行特征检测,提取特征值。上述特征值如下(参见图5、图6、图7):
1)亮斑面积S:电容亮斑的洪泛区域内的电容网格的数目;
如图6所示,图中中心处的白色椭圆形区域为洪泛区域,该区域内的电容网格的数目即为亮斑面积。洪泛区域周围的一圈灰色区域为亮斑影子。如图6和图6a所示,手指按压形成的洪泛区域为近似椭圆的形状,椭圆的长轴记为2a,椭圆的短轴记为2b。
例如,如图6所示,白色区域的部分为洪泛区域,该区域电容网格的数目为17,即亮斑面积为17。
2)横向跨度xSpan:电容亮斑的洪泛区域在横向上的跨度;
在一个示例中,竖屏状态下,屏幕水平方向是横向,竖直方向是纵向。
例如,如图6所示,横向跨度为4。
3)纵向跨度ySpan:电容亮斑的洪泛区域在纵向上的跨度;
在一个示例中,竖屏状态下,屏幕水平方向是横向,竖直方向是纵向。
例如,如图6所示,纵向跨度为5。
4)长轴major:电容亮斑的洪泛区域拟合出的椭圆的长轴;
5)短轴minor:电容亮斑的洪泛区域拟合出的椭圆的短轴;
例如,如图3所示,长轴的长度为2a,短轴的长度为2b。
6)离心率e:电容亮斑的洪泛区域拟合出的椭圆的离心率;
计算椭圆的离心率可以采用通常的算法,在此不做赘述。
7)重心坐标Gx,Gy:电容亮斑的洪泛区域的重心坐标;
计算重心坐标可以采用通常的算法,根据电容亮斑包括的各个电容网格的电容值确定出重心位置,在此不做赘述。
8)电容最大值maxCapacity:电容亮斑的洪泛区域中电容最大值;
9)亮斑切片中心标准差stdCenterXY:
对于每一个电容亮斑,首先将其沿着横向切分成一行行的片段,沿着纵向切成一列列片段。分别计算所有行片段的中心横坐标的标准差stdX和所有列片段的中心纵坐标的标准差stdY,然后按照公式
Figure PCTCN2019111178-appb-000004
计算亮斑切片中心标准差stdCenterXY。
参照图7,包括深色区域的6行片段和6列片段。其中,每一行片段的中心位置见图中白色圆点所示,每一列片段的中心位置见图中黑色圆点所示,图中黑色原点和白色原点重叠成黑色圆圈代表某一行片段的中心位置(白色圆点)与某一列片段的中心位置(黑色圆点)重叠,例如,图7中的第2行片段的中心位置与第4列片段的中心位置重叠成黑色圆圈。
以屏幕左上角像素中心为原点O(0,0),构建沿着横向方向的X轴和沿着纵向方向的Y轴的直角坐标系XOY,例如,A点的坐标为(1,1),B点的坐标为(1,2.5)。
图7中,第1行片段至第6行片段的中心横坐标依次为4、4、4、3、2.5、1,总共6行的行片段的中心横坐标的平均值为3.1,第1行片段至第6行片段的中心横坐标的标准差stdX按照如下公式进行计算,计算结果为1.10。
Figure PCTCN2019111178-appb-000005
第1列片段至第6列片段的中心纵坐标依次为5、3、3、3、2.5、2,总共6列的列片段的中心纵坐标的平均值为3.1,总共6行的行片段的中心纵坐标的标准差stdY按照如下公式进行计算,计算结果为0.93。
Figure PCTCN2019111178-appb-000006
根据上述stdX和stdY,可以计算得到电容亮斑的亮斑切片中心标准差stdCenterXY为1.44。
在一个示例中,针对该一帧的电容亮斑,提取上述9项特征值之后,根据上述9项中的任一项或多项特征值,判断该电容亮斑是否为异形触摸操作产生的。
通过对触摸屏的电容信号变化的形状、比例、大小、幅度,以及随时间变化趋势等一项或多项电容特征进行处理,从而实现防误触的同时,最大化保证正常操作不受影响。
在上述步骤404之前,还可以通过TP算法计算出报点,由于TP算法对于大面积的异形接触也有抑制报点的机制,所以如果第一触摸操作对应的电容亮斑的面积大于一定的阈值,TP算法会抑制报点。这种情况下,可以通过将该一帧电容亮斑和报点进行匹配,以确定该一帧电容亮斑是否有相匹配的报点,如果该一帧电容亮斑没有匹配的报点,说明该TP算法抑制了该帧的报点;如果该一帧电容亮斑有该一帧电容亮斑,再根据上述步骤404进行后续第一触摸操作是否是异形触摸操作的判断。
在一个示例中,如图5所示的椭圆的电容亮斑,计算出该椭圆的重心位置,该重心位置的坐标称为报点坐标。
此外,电容亮斑与报点可以是一一对应的,例如,如果一个电容亮斑不和其他的电容亮斑相连,则只有一个报点;或者,一个电容亮斑可以对应多个报点,例如,当两个手指接触屏幕,或者耳朵、脸颊接触屏幕时,可能产生多个电容亮斑,此时该电容亮斑可能产生多个报点;或者,一个电容亮斑可以不对应报点,例如,由于噪声影响产生的电容亮斑。
需要说明的是,本申请实施例中确定报点和确定电容亮斑是两个独立的过程,虽然确定报点的过程中可能也会涉及到确定电容亮斑。其中,采用现有技术中的任意一种方法来计算报点,例如采用TP算法,在此不做赘述。采用洪泛算法确定电容亮斑。但是本发明实施例 中判断是否为异形触摸操作本身也会计算电容亮斑,并且计算方式可能会和确定报点过程中确定电容亮斑的方式不一样,因此广度优先搜索结束之后,需要匹配电容亮斑和报点,例如匹配异形算法的电容亮斑和TP算法输出的报点坐标。
将报点和电容亮斑匹配,即将报点与电容亮斑建立对应关系。例如,只要报点落入电容亮斑,就认为这一报点是该电容亮斑对应的报点。在一个示例中,针对某一帧来说,如果TP算法未输出报点,那么这一帧的电容亮斑并没有匹配的报点。在另一个示例中,如果确定电容亮斑存在匹配的报点,就可以针对该电容亮斑进行特征提取。
下面结合实施例及附图,详细说明如何判断第一触摸操作是否为异形触摸操作。
以用户用手机打电话的场景为例,一般而言,当用户将手机放到耳朵旁接听电话时,手机的接近光传感器工作,检测到手机靠近物体时,手机会关闭屏幕,以防止用户出现误触。但是某些情况下,接近光传感器会停止工作,用户的耳朵靠近手机听筒时,用户的脸颊和耳朵都有可能会接触到手机处于点亮状态的屏幕,而脸颊和耳朵等异形部位接触屏幕时产生的电容信号会与手指正常点击屏幕时产生的电容信号不同。例如图5为手指接触屏幕所产生的电容信号示意图,再如图8为脸颊与耳朵接触屏幕所产生的电容信号示意图。
本申请实施例中,将异形触摸操作产生的电容亮斑分为三大类:强脸颊电容亮斑(如图8和图8a所示的强脸颊)、弱脸颊电容亮斑(如图9所示的弱脸颊)和耳朵电容亮斑(如图8、图8a、以及图10所示的耳朵)。其中,强脸颊是指当脸颊和屏幕紧密接触时产生的电容亮斑,弱脸颊是指当脸颊和屏幕发生微弱接触时产生的电容亮斑,耳朵是指当耳朵接触屏幕时产生的电容亮斑。
下面结合图8-图11a所示的异形部位接触触摸屏产生的电容亮斑进行说明。
用户用手机打电话的场景中,脸颊和耳朵都有可能会接触到手机的屏幕,图8、图8a和图9示出了脸颊和耳朵均接触到触摸屏的情况,图10中示出了仅有耳朵接触到触摸屏的情况。
下面结合具体示例介绍上述三种类型。
类型一、强脸颊电容亮斑
当脸颊与屏幕紧密接触时,可能产生电容值较高的强脸颊电容亮斑,可以分脸颊分别落在屏幕中间和屏幕角落两种情况介绍。
第一种情况,强脸颊电容亮斑出现在屏幕中间(如图8中所示的强脸颊),由于脸颊接触面积比手指大,因此会形成明显大得多的电容亮斑。
第二种情况,当强脸颊电容亮斑出现在屏幕角落(如图8a中所示的强脸颊),由于强脸颊电容亮斑落在屏幕角落,该强脸颊电容亮斑横向跨度较小,但纵向跨度较大,横纵跨度差异大。
因此,可以结合亮斑面积、横向跨度和纵向跨度等特征值来判断接触操作对应的电容亮斑是否为强脸颊电容亮斑。
类型二、弱脸颊电容亮斑
当脸颊与屏幕没有产生紧密接触时,可能产生电容值较低的弱脸颊电容亮斑(如图9所示的弱脸颊),而TP算法本身也会产生随机的噪声区域。相对于噪声而言,弱脸颊电容亮斑的电容强度值高于噪声区域,弱脸颊电容亮斑相较于强脸颊亮斑的电容强度值较低。并且弱 脸颊电容亮斑的面积大于噪声区域,且相较于噪声区域更为稳定。
类型三、耳朵电容亮斑
当耳朵接触屏幕时,耳朵电容图像一般贴着屏幕上边缘(如图8、图8a、图9、图10中的耳朵),耳朵外廓下部产生的电容图像较窄,拟合出的椭圆离心率高。
除了上述三种类型之外,还有其它类型,比如手机放入在口袋、且手机处于点亮状态的场景中,当用户静止时,大腿和屏幕接触会产生大面积的电容亮斑(参见图11、图11a、图11b中所示大腿接触屏幕产生的电容亮斑)。当用户在移动时,大腿产生的电容亮斑数量和面积都会不断变化,大腿产生的电容亮斑的形状特征与强脸颊类似。
可以理解的是,本申请的上述强脸颊、弱脸颊和耳朵仅为示例性的异形触摸的三种类型,当其它异形部位(包括但不限于大腿、胳膊、腹部等)接触触摸屏产生的电容光斑的形状,与脸颊或耳朵接触触摸屏产生的电容光斑的形状类似时,也可以通过判断该其它异形部位接触触摸屏产生的电容亮斑是否为强脸颊、弱脸颊和耳朵等,来确定其它异形部位接触产生的电容光斑对应的报点是否为异形触摸产生的报点。
在一个示例中,当手指接触屏幕时,其产生电容亮斑的形状为一个近似的椭圆,而当耳朵、脸和大腿等异形部位接触屏幕时,电容亮斑的形状更不规则。一般电容亮斑的形状不规则的横向切片的中心坐标和纵向切片的中心坐标的方差较大,因此,可以按照上述图7所示的示例,计算电容亮斑的亮斑切片中心标准差stdCenterXY,当电容亮斑的stdCenterXY超过一定阈值时,可以确定出该电容亮斑为异形操作产生的,可以识别出一部分的异形触摸操作。
在另一个示例中,当大面积的非手指部位接触到触摸屏时,其产生的电容亮斑会经历出现亮斑、亮斑面积变大、亮斑稳定、亮斑面积减小以及最后消失五个阶段。在电容亮斑生长的前几帧中,由于接触面积较小,电容亮斑的形状的几何特征和手指按压产生的电容亮斑的形状可能较为相似,几何特征没有明显差异。在这种情况下,异形防误触算法会首先将该报点标记为正常报点,并上报给框架层,保证触摸屏能够及时响应用户的操作。在后续的连续帧中,在该电容亮斑消失前,异形防误触算法会持续检测该电容亮斑的形状特征,如果异形防误触算法发现在某一帧中电容亮斑的某一特征超过正常的阈值,则会将该电容亮斑对应的报点标记为异形报点,并上报给框架层。框架层接收到该报点为异形报点后,会召回之前针对该异形报点对应的触摸操作所触发的响应操作,并在后续帧中抑制该电容亮斑的报点的上报。通过多帧连续监测的方式,有助于在保证触摸屏响应用户操作的及时性的同时,提高对异形报点的识别率。
在一个示例中,异形防误触算法接在TP算法之后,对TP算法产生的进行判断。由于TP报点算法本身有对大面积电容亮斑抑制的机制,当电容亮斑面积超过一定阈值时,TP报点算法停止报点。例如,当用户在打电话时,由于脸颊接触触摸屏可能会在屏幕上产生大面积的电容亮斑,在脸颊刚开始接触触摸屏时,产生的电容亮斑的亮斑面积较小,和手指正常点击屏幕产生的电容光斑的区别不大,但随着脸颊与触摸屏的接触越来越紧密,后续的某一帧中亮斑面积超过TP算法的阈值时,TP算法会抑制超出阈值的电容亮斑对应的报点。
如果仅考虑单帧的情况,参见图12,为第N帧的全屏幕的电容信号,图12a为第N+1帧的全屏幕的电容信号。假设该第N帧为电容亮斑的最后一次报点的帧,可以理解的是,该帧也可称为up帧。由于该第N帧电容亮斑的形状没有异常,正常报点,而第N帧的后一帧 (第N+1帧)电容亮斑的亮斑面积过大,直接被TP算法抑制而没有产生报点,异形防误触算法根据第N+1帧的电容亮斑,并未找到与该电容亮斑匹配的报点,因此无法判断第N+1帧是否为异形报点对应的电容亮斑。在这种情况下,一种可选的实施方式为,在第N+1帧补报一次up帧的报点给异形防误触算法,并将该补报的报点匹配到第N+1帧的电容亮斑上,此时,由于在第N+1帧的电容亮斑有匹配的报点(即补报的报点),并且第N+1帧的电容亮斑的亮斑面积超过一定阈值,因此,可以将该补报的报点标记为异形报点,并召回针对该异形报点对应的触摸操作所触发的响应操作。
在另一个示例中,以脸颊或大腿等异形部位非常快速的接触到触摸屏并瞬间产生大面积的电容亮斑为例,参见图13,为第M帧的全屏幕的电容亮斑,图13a为第M+i帧的全屏幕的电容亮斑,其中,M、i均为正整数。比如第M帧的电容亮斑达到最大面积,此时由于面积超过一定阈值,TP算法不会报点。而在第M帧的后续帧中接触面积减小后,比如在第M+i帧的电容亮斑的亮斑面积减小到一定阈值,TP算法开始上报该第M+i帧的电容亮斑对应的报点(参见图13a),该第M+i帧也可以称为down帧。
如果仅考虑第M+i帧的电容亮斑的形状,由于该电容亮斑已经减小,它的各项特征可能与手指产生的电容亮斑差别很小,该异形报点可能会被误识别为正常点击产生的报点。为了识别出这种情况下的异形报点,一种可选的实施方式中,记录该电容亮斑生命周期中的历史最大面积,通过将该down帧的面积与历史最大面积相比较,来确定该down帧的报点是否为异形报点。在一个示例中,如果该电容亮斑生命周期中的历史最大面积超过阈值,并且历史最大面积和该down帧的电容亮斑面积的差值超过一定阈值,就会认为该down帧对应的报点是异形报点,并召回针对该异形报点对应的触摸操作所触发的响应操作。
在一种可能的实施方式中,终端根据电容亮斑的特征值,以及一帧之前的至少一帧中与第一触摸操作属于同一生命周期的电容亮斑的特征值,确定第一触摸操作是否为异形触摸,可以包括以下三项判断过程:
第一项判断过程:终端根据电容亮斑的特征值,以及一帧之前的至少一帧中与第一触摸操作属于同一生命周期的电容亮斑的特征值,确定第一触摸操作是否为强脸颊对应的触摸操作,第一项判断结果包括强脸颊对应的触摸操作和非强脸颊对应的触摸操作。
第二项判断过程:终端根据电容亮斑的特征值,确定第一触摸操作是否为弱脸颊对应的触摸操作;第二项判断结果包括弱脸颊对应的触摸操作、非弱脸颊对应的触摸操作和不确定。
第三项判断过程:终端根据电容亮斑的特征值,确定第一触摸操作是否为耳朵对应的触摸操作;第三项判断结果包括耳朵对应的触摸操作、非耳朵对应的触摸操作和不确定。
当第一项判断结果为强脸颊对应的触摸操作时,或当第二项判断结果为弱脸颊对应的触摸操作时,或当第三项判断结果为耳朵对应的触摸操作时,终端确定第一触摸操作为异形触摸操作;当第一项判断结果为非强脸颊对应的触摸操作、且第二项判断结果为非弱脸颊对应的触摸操作、且第三项判断结果为非耳朵对应的触摸操作时,终端确定第一触摸操作不为异形触摸操作。
下面结合具体示例,详述介绍上述三项判断流程。
本发明实施例中,对于该一帧的电容亮斑进行一系列的特征条件判断。在经过条件判断后,电容亮斑可能被确定为以下几种类型:
Touch:正常点击。
StrongFace:强脸颊。当打电话时脸颊紧贴屏幕产生的电容信号。
WeakFace:弱脸颊。当打电话时脸颊不稳定接触屏幕产生的电容信号。
Ear:耳朵。当打电话时耳朵接触屏幕产生的电容信号。
Uncertain:不确定。不能判断出是手指还是异形接触产生的电容信号。
下面以第一触摸操作对应的电容亮斑作为例,说明上述三项判断流程。
第一项判断流程:根据该一帧中第一触摸操作对应的电容亮斑的特征值、以及所述一帧之前的至少一帧中与所述第一触摸操作属于同一生命周期的电容亮斑的特征值,确定所述第一触摸操作是否为强脸颊对应的触摸操作,第一项判断结果包括强脸颊对应的触摸操作和非强脸颊对应的触摸操作。
其中,主要通过异形防误触算法对利用以下条件逐条检测电容亮斑是否为强脸颊,如果识别出电容亮斑为强脸颊或非强脸颊,则不执行后续条件,否则会继续向后执行所有的条件。在该异形防误触算法实现中,可仅用其中的几个条件进行判断。
条件1.1,S<S Threshold_StrongFace_Level1:非强脸颊。其中,S为该一帧中第一触摸操作对应的电容亮斑的亮斑面积,S Threshold_StrongFace_Level1为第一面积阈值。该条件1.1表示,当所述亮斑面积小于第一面积阈值时,处理器110确定该第一触摸操作为非强脸颊对应的触摸操作。
条件1.2,该一帧为down帧&&maxSconditionalSize>SconditionalSize Threshold_StrongFce&&maxSconditionalSize-SconditionalSize>S Threshold_diff_conditionalSize:强脸颊。其中,其中,down帧指的是第一触摸操作的生命周期内第一次报点的帧,比如非常快速的接触到触摸屏并瞬间产生大面积的电容亮斑的场景中,比如第一帧的亮斑面积就达到一定阈值,被抑制报点,在第M帧电容亮斑的亮斑面积达到最大值,然后随着脸颊离开触摸屏而与触摸屏的接触面积越来越小,产生的电容亮斑也会越来越小,比如在第M+i帧的电容亮斑的面积小于一定阈值,那么在第M+i帧开始报点,第M+i帧即为down帧,maxSconditionalSize为在该电容光斑的生命周期内达到的最大面积,SconditionalSize Threshold_StrongFce为第一面积差阈值,SconditionalSize为当前帧的电容亮斑的面积。该条件1.2表示,该一帧为down帧,所述第一触摸操作的生命周期内的一帧之前的历史最大亮斑面积大于第二面积阈值、且所述历史最大亮斑面积与所述电容亮斑的亮斑面积的差值大于第一面积差阈值时,所述终端确定所述第一触摸操作为强脸颊对应的第一触摸操作。
条件1.3,该一帧的报点为up帧的补点&&S conditionalSize-S pre_conditionalSize>minDiff conditionalSize&&S conditionalSize>S thresholdconditionalSize:强脸颊。其中,up帧指的是为所述第一触摸操作的生命周期内正常报点之后第一次抑制报点的帧,比如,比如在脸颊触碰触摸屏的场景中,从脸颊刚刚接触触摸屏开始,随着脸颊接触触摸屏产生的亮斑面积达到一定阈值时会抑制报点,比如,在第N帧为up帧,在第N+1帧被抑制报点,那么第N+1帧补报一次报点,称为up帧的补点。up帧的补点可以采用第N帧的报点坐标,也就是说,第N帧和第N+1帧的报点坐标相同,由于这两帧的电容亮斑之间的位置差别较小,所以第N帧的报点坐标也可以落在第N+1帧的电容亮斑中。S conditionalSize为该一帧的电容亮斑的亮斑面积,S pre_conditionalSize为up帧的电容亮斑的亮斑面积,minDiff conditionalSize为第二面积差阈值,S thresholdconditionalSize为第三面积阈值。
该条件1.3表示,当所述一帧为up帧的后一帧、且所述电容亮斑的亮斑面积与所述up 帧的电容亮斑的亮斑面积的差值大于第二面积差阈值、且所述电容亮斑的亮斑面积大于第三面积阈值时,所述终端确定所述第一触摸操作为强脸颊对应的触摸操作。
条件1.4,stdCenterXY>stdCenterXY Threshold_conditionalSize&&diagonal>diagonal Threshold_StrongFace:强脸颊。其中,stdCenterXY为该一帧中第一触摸操作对应的电容亮斑的亮斑切片中心标准差,stdCenterXY Threshold_conditionalSize为第一标准差阈值,diagonal为电容亮斑的横向跨度和纵向跨度组成的矩形的对角线长度,diagonal Threshold_StrongFace为第一对角线长度阈值。该条件1.4表示,当该一帧中第一触摸操作对应的电容亮斑的亮斑切片中心标准差大于第一标准差阈值、且电容亮斑的横向跨度和纵向跨度组成的矩形的对角线长度大于第一对角线长度阈值,所述终端确定所述第一触摸操作为强脸颊对应的触摸操作。
条件1.5,ySpan≥ySpan Threshold_StrongFace_Level1:强脸颊。其中,ySpan为电容亮斑的纵向跨度,ySpan Threshold_StrongFace_Level1为第一纵向跨度阈值,该条件1.5表示,当该一帧中第一触摸操作对应的电容亮斑的亮斑切片中心标准差大于第一标准差阈值、且所述电容亮斑的横向跨度和纵向跨度组成的矩形的对角线长度大于第一对角线长度阈值,所述终端确定所述第一触摸操作为强脸颊对应的触摸操作。
条件1.6,S≥S Threshold_StrongFace_Level2:强脸颊。其中,S为该一帧中第一触摸操作对应的电容亮斑的亮斑面积,S Threshold_StrongFace_Level2为第四面积阈值。该条件1.6表示,当该一帧中第一触摸操作对应的电容亮斑的纵向跨度大于或等于第一纵向跨度阈值,所述终端确定所述第一触摸操作为强脸颊对应的触摸操作。
条件1.7,xSpan≤xSpan Threshold_StrongFace_Level1&&ySpan≥ySpan Threshold_StrongFace_Level2:强脸颊。其中,xSpan为该一帧中第一触摸操作对应的电容亮斑的横向跨度,xSpan Threshold_StrongFace_Level1为第一横向跨度阈值,ySpan为该一帧中第一触摸操作对应的电容亮斑的纵向跨度,ySpan Threshold_StrongFace_Level2为第二纵向跨度阈值。该条件1.7表示,该一帧中第一触摸操作对应的电容亮斑的横向跨度小于或等于第一横向跨度阈值、且该一帧中第一触摸操作对应的电容亮斑的纵向跨度大于或等于第二纵向跨度阈值时,所述终端确定所述第一触摸操作为强脸颊对应的触摸操作。
以按照条件1.1-条件1.7的判断顺序进行判断为例,图14示例性示出了强脸颊判断流程图。参见图14,如果满足以上条件1.1,则该一帧中第一触摸操作对应的电容亮斑被判断为非强脸颊,即确定第一触摸操作为非强脸颊对应的触摸操作;如果满足以上条件1.2-1.7中的任一项,则该一帧中第一触摸操作对应的电容亮斑被判断为强脸颊,即确定第一触摸操作为强脸颊对应的触摸操作。如果以上条件都不满足,则该一帧中第一触摸操作对应的电容亮斑被判断为非强脸颊,即当以上条件都不满足时,确定第一触摸操作为非强脸颊对应的触摸操作。
根据该实施方式,可以通过亮斑面积、纵向跨度、亮斑切片中心标准差、横向跨度中的一项或多项判断第一触摸操作是否为强脸颊对应的触摸操作,判断结果准确性高。
在一个示例中,上述各项条件可以不具有优先级,也就是说,上述条件1.1-条件1.7可以按照任意顺序进行判断,只要按照在前的一项的判断结果为满足该项条件,则不继续后续条件的判断。
在另一个示例中,上述各项条件也可以具有不同的优先级,按照前面描述的顺序,优先 级逐渐降低,可以按照优先级从高到低依次判断是否满足上述各项条件,当满足优先级高的条件时,则无需进行后续条件的判断,此时判断结果更为精确。
第二项判断流程:根据该一帧中第一触摸操作对应的电容亮斑的特征值,确定所述第一触摸操作是否为弱脸颊对应的第一触摸操作,第二项判断结果包括弱脸颊对应的触摸操作、非弱脸颊对应的触摸操作和不确定。
其中主要通过异形防误触算法利用以下条件逐条检测电容亮斑是否为弱脸颊,如果识别出电容亮斑为弱脸颊或非弱脸颊,则不执行后续条件,否则会向后执行所有的条件。在该异形防误触算法实现中,可仅用其中的几个条件进行判断。
条件2.1,MaxCapacity≥MaxCapacity Threshold_WeakFace_Level1:非弱脸颊。其中,MaxCapacity为该一帧中第一触摸操作对应的电容亮斑的电容最大值,MaxCapacity Threshold_WeakFace_Level1为第一电容阈值,该条件2.1表示,当该一帧中第一触摸操作对应的电容亮斑的电容光斑的电容最大值大于或等于第一电容阈值时,确定所述第一触摸操作为非弱脸颊对应的触摸操作。
条件2.2,minY=0&&ySpan≤ySpan Threshold_WeakFace_Level1:非弱脸颊。其中,minY为该一帧中第一触摸操作对应的电容亮斑上边缘的最小纵坐标,ySpan为该一帧中第一触摸操作对应的电容光斑的纵向跨度,ySpan Threshold_WeakFace_Level1为第三纵向跨度阈值,该条件2.2表示,当电容亮斑上边缘的最小纵坐标为零、且该电容光斑的纵向跨度小于或等于第三纵向跨度阈值时且电容光斑的纵向跨度小于或等于第三纵向跨度阈值时,确定第一触摸操作为非弱脸颊对应的触摸操作。
条件2.3,S≥S Threshold_WeakFace_Level1:弱脸颊。其中,S为该一帧中第一触摸操作对应的电容光斑的光斑,S Threshold_WeakFace_Level1为第五面积阈值。该条件2.3表示,当该一帧中第一触摸操作对应的电容亮斑的亮斑面积大于或等于第五面积阈值时,确定第一触摸操作为弱脸颊对应的触摸操作。
条件2.4,ySpan≥ySpan Threshold_WeakFace_Level2&&xSpan≥xSpan Threshold_WeakFace_Level2:弱脸颊。
其中,ySpan为该一帧中第一触摸操作对应的电容亮斑的纵向跨度,ySpan Threshold_WeakFace_Level2为第四纵向跨度阈值,xSpan为该一帧中第一触摸操作对应的电容亮斑的横向跨度,xSpan Threshold_WeakFace_Level2为第二横向跨度阈值,该条件2.4表示,该一帧中第一触摸操作对应的电容亮斑的纵向跨度大于或等于第四纵向跨度阈值、且该电容亮斑的横向跨度大于或等于第二横向跨度阈值时,确定所述第一触摸操作为弱脸颊对应的触摸操作。
条件2.5,S≥S Threshold_WeakFace_Level2:不确定。其中,S为该一帧中第一触摸操作对应的电容亮斑的亮斑面积,S Threshold_WeakFace_Level2为第六面积阈值,该条件2.5表示,当该一帧中第一触摸操作对应的电容亮斑的亮斑面积大于或等于第六面积阈值时,判断结果为不确定。
条件2.6,ySpan≥ySpan Threshold_WeakFace_Level3:不确定。其中,ySpan为该一帧中第一触摸操作对应的电容亮斑的纵向跨度,ySpan Threshold_WeakFace_Level3为第五纵向跨度阈值,该条件2.6表示,该一帧中第一触摸操作对应的电容亮斑的纵向跨度大于或等于第五纵向跨度阈值时,判断结果为不确定。
以按照条件2.1-条件2.6的判断顺序进行判断为例,图15示例性示出了弱脸颊判断流程图。参见图15,如果满足条件2.1、条件2.2中的任一项,则该电容亮斑被判断为非弱脸颊,即确定所述第一触摸操作为非弱脸颊对应的触摸操作;如果满足以上条件2.3、2.4中的任一 项,则该电容亮斑被判断为弱脸颊,即确定所述第一触摸操作为弱脸颊对应的触摸操作。如果满足以上条件2.5和2.6,则判断结果为不确定,即不确定第一触摸操作是否为弱脸颊对应的触摸操作。如果以上条件都不满足时,该电容亮斑区域被判断为非弱脸颊,即确定第一触摸操作为非弱脸颊对应的触摸操作。
根据该实施方式,可以通过电容最大值、电容亮斑的位置、纵向跨度、亮斑面积、横向跨度中的一项或多项判断第一触摸操作是否为弱脸颊对应的触摸操作,判断结果准确性高。
在一个示例中,上述各项条件可以不具有优先级,也就是说,上述条件2.1-条件2.6可以按照任意顺序进行判断,只要按照在前的一项的判断结果为满足该项条件,则不继续后续条件的判断。
在另一个示例中,上述各项条件也可以具有不同的优先级,按照前面描述的顺序,优先级逐渐降低,可以按照优先级从高到低依次判断是否满足上述各项条件,当满足优先级高的条件时,则无需进行后续条件的判断,此时判断结果更为精确。
第三项判断流程:根据该一帧中第一触摸操作对应的电容亮斑的特征值,确定所述第一触摸操作是否为弱脸颊对应的第一触摸操作,第三项判断结果包括耳朵对应的触摸操作、非耳朵对应的触摸操作和不确定;。
其中,主要通过异形防误触算法,利用以下条件逐条检测电容亮斑是否为耳朵,如果识别出电容亮斑为耳朵或非耳朵,则不执行后续判断,否则会执行所有的检测。在该异形防误触算法实现中,可仅用其中的几个条件进行判断。
条件3.1,MaxCapacity<MaxCapacity Threshold_Ear_Level1:非耳朵。其中,MaxCapacity为该一帧中第一触摸操作对应的电容亮斑的电容最大值,MaxCapacity Threshold_Ear_Level1为第二电容阈值,该条件3.1表示,当该一帧中第一触摸操作对应的电容光斑的电容最大值大于或等于第二电容阈值时,确定所述第一触摸操作为非耳朵对应的触摸操作。
条件3.2,Gy>Gy Threshold_Ear_Level1:非耳朵。其中,Gy为该一帧中第一触摸操作对应的电容光斑的重心坐标的纵坐标,Gy Threshold_Ear_Level1为第一坐标阈值,该条件3.2表示,当该一帧中第一触摸操作对应的电容光斑的重心坐标的纵坐标大于第一坐标阈值,确定所述第一触摸操作为非耳朵对应的触摸操作。
条件3.3,S<S Threshold_Ear_Level1:非耳朵。其中,S为该一帧中第一触摸操作对应的电容光斑的亮斑面积,S Threshold_Ear_Level1为第七面积阈值。该条件3.3表示,当该一帧中第一触摸操作对应的电容光斑的亮斑面积大于第七面积阈值,确定所述第一触摸操作为非耳朵对应的触摸操作。
条件3.4,minY=0&&ySpan≤ySpan Threshold_Ear_Level1:非耳朵。其中,minY为该一帧中第一触摸操作对应的电容亮斑上边缘的最小纵坐标,ySpan为该一帧中第一触摸操作对应的电容光斑的纵向跨度,ySpan Threshold_Ear_Level1为第六纵向跨度阈值。该条件3.4表示,当该一帧中第一触摸操作对应的电容亮斑上边缘的最小纵坐标为零且电容光斑的纵向跨度小于或等于第六纵向跨度阈值时,确定所述第一触摸操作为非耳朵对应的触摸操作。
条件3.5,e>e Threshold_Ear_Level1&&Gy>Gy Threshold_Ear_Level2:耳朵。其中,e为该一帧中第一触摸操作对应的电容亮斑的离心率,e Threshold_Ear_Level1为第一离心率阈值,Gy为该一帧中第 一触摸操作对应的电容光斑的重心坐标中的纵坐标,Gy Threshold_Ear_Level2为第二坐标阈值。该条件3.5表示,当该一帧中第一触摸操作对应的电容光斑的离心率大于第一离心率阈值、且该电容光斑的重心坐标中的纵坐标大于第二坐标阈值时,确定第一触摸操作为耳朵对应的触摸操作。
条件3.6,e>e Threshold_Ear_Level1:不确定。其中,e为该一帧中第一触摸操作对应的电容亮斑的离心率,e Threshold_Ear_Level1为第一离心率阈值。该条件3.6表示,当电容光斑的离心率大于第一离心率阈值时,判断结果为不确定。
如果以上条件都不满足,则该电容亮斑区域被判断为非耳朵。即当以上条件都不满足时,确定所述第一触摸操作为非耳朵对应的触摸操作。
以按照条件3.1-条件3.6的判断顺序进行判断为例,图16示例性示出了耳朵判断流程图。参见图13,如果满足条件2.1-条件2.3、条件3.5中的任一项,则该电容亮斑区域被判断为非耳朵,即确定所述第一触摸操作为非耳朵对应的触摸操作;如果满足以上条件3.4和3.6中的任一项,则该电容亮斑区域被判断为耳朵,即确定所述第一触摸操作为耳朵对应的触摸操作。如果满足以上条件3.7,则判断结果为不确定,即不确定所述第一触摸操作是否为耳朵对应的触摸操作。如果以上条件都不满足时,该电容亮斑区域被判断为非耳朵,即确定所述第一触摸操作为非耳朵对应的触摸操作。
根据该实施方式,可以通过电容最大值、电容亮斑的形状、亮斑面积、电容亮斑的位置、纵向跨度、离心率、重心坐标中的一项或多项判断第一触摸操作是否为耳朵对应的触摸操作,判断结果准确性高。
在一个示例中,上述各项条件可以不具有优先级,也就是说,上述条件3.1-条件3.6可以按照任意顺序进行判断,只要按照在前的一项的判断结果为满足该项条件,则不继续后续条件的判断。
在另一个示例中,上述各项条件也可以具有不同的优先级,按照前面描述的顺序,优先级逐渐降低,可以按照优先级从高到低依次判断是否满足上述各项条件,当满足优先级高的条件时,则无需进行后续条件的判断,此时判断结果更为精确。
上述三项判断流程的先后判断顺序可以根据实际情况进行确定,在此处不进行限制。比如,判断顺序可以依次为:第一项判断流程、第二项判断流程、第三项判断流程。再比如,判断顺序可以依次为:第二项判断流程、第一项判断流程、第三项判断流程。
当第一项判断结果为强脸颊时,或当第二项判断结果为弱脸颊时,或当第三项判断结果为耳朵时,确定第一触摸操作为异形触摸操作;当第一项判断结果为非强脸颊且第二项判断结果为非弱脸颊且第三项判断结果为非耳朵时,确定第一触摸操作不为异形触摸操作。根据该实施方式,预先将异形触摸分为强脸颊、弱脸颊和耳朵三种类型,通过分别判断电容亮斑是否满足强脸颊的特征,判断电容亮斑是否满足弱脸颊的特征,以及判断电容亮斑是否满足耳朵的特征,结合三项判断结果综合判断第一触摸操作是否为异形触摸操作,判断结果准确性高。强脸颊、弱脸颊和耳朵这三项判断结果与最终判断结果之间的关系可以但不限于如表一所示。
表一
Figure PCTCN2019111178-appb-000007
Figure PCTCN2019111178-appb-000008
表一中的“×”代表任意值,也就是说,当第一项判断结果为强脸颊时,不论第二项判断结果和第三项判断结果为任意值,都确定第一触摸操作不为异形触摸操作;当第二项判断结果为弱脸颊时,不论第一项判断结果和第三项判断结果为任意值,都确定第一触摸操作不为异形触摸操作;当第三项判断结果为耳朵时,不论第一项判断结果和第二项判断结果为任意值,都确定第一触摸操作不为异形触摸操作;当第一项判断结果、第二项判断结果和第三项判断结果均为否时,确定第一触摸操作不为异形触摸操作;当第一项判断结果、第二项判断结果和第三项判断结果均中只存在不确定和否这两种判断结果或均为不确定时,第一触摸操作是否为异形触摸操作的判断结果也为不确定。
作为一个示例,手指判断条件为:如果该一帧中第一触摸操作对应的电容亮斑在经过强脸颊判断、弱脸颊判断和耳朵判断后分别被判为非强脸颊,非弱脸颊和非耳朵,则该电容亮斑区域会被判为是手指正常点击产生的,即第一触摸操作为异形触摸操作。
可以理解的是,本申请的上述强脸颊、弱脸颊和耳朵仅为示例性的异形触摸的三种类型,与其它异形部位(包括但不限于大腿、胳膊、腹部等)接触触摸屏产生的电容光斑的形状,与脸颊或耳朵接触触摸屏产生的电容光斑的形状类似时,通过上述三项判断流程也可以判断 出为异形部位。比如,以手机在口袋里,大腿接触到处于亮屏状态的触摸屏的场景为例,大腿接触到触摸屏产生的电容亮斑区域与强脸颊或弱脸颊类似,如果大腿接触到触摸屏产生的电容亮斑满足强脸颊判断条件,那么该大腿接触到触摸屏产生的电容亮斑区域会被判断为强脸颊。如果大腿接触到触摸屏产生的电容亮斑满足弱脸颊判断条件,那么该大腿接触到触摸屏产生的电容亮斑区域会被判断为弱脸颊。
在一种可选的实施方式中,当该一帧为第一触摸操作的生命周期内的第一帧,且根据第一帧的电容亮的特征值以及上述三项判断流程判断之后,不确定第一触摸操作是否为异形触摸操作时,终端保存第一帧中与第一触摸操作对应的电容亮斑的报点坐标。当在第一帧的之后的预设数目帧确定第一触摸操作不为异形触摸操作、或者之后的预设数目帧不确定第一触摸操作是否为异形触摸操作时,上报将第一帧中与第一触摸操作对应的电容亮斑的报点坐标,并将报点坐标与后续预设数目帧中与第一触摸操作对应的电容亮斑相匹配。
在该一帧中,如果电容亮斑被判为Touch,则会上报该第一触摸操作。开始上报后,仍旧会根据后续帧的第一触摸操作对应的电容亮斑的特征值,对第一触摸操作是否为异形触摸操作进行判断。如果后续帧中判断出第一触摸操作为异形触摸操作,则召回之前针对所述第一触摸操作触发的响应操作,并在整个生命周期内不上报所述第一触摸操作。如果电容亮斑被判为StrongFace、WeakFace或者Ear,不再上报该第一触摸操作,开始抑制后,不再对第一触摸操作是否为异形触摸操作进行判断。如果电容亮斑被判为Uncertain,则会先暂时抑制报点,在后续若干帧内继续判断,如果在允许延迟的若干帧内判断为正常点击,则上报该报点,或者,如果在允许延迟的若干帧内判断为第一触摸操作异形触摸操作,则抑制该报点。如果在允许延迟的若干帧内仍然判断不出来,则上报该第一触摸操作不为异形触摸操作。
如此,可以根据电容亮斑的生命周期中的各帧的判断结果,综合判断该第一触摸操作不为异形触摸操作。
在一个示例中,在触摸屏上采集到一帧的电容数据可能包括多个电容亮斑,可以采用上述三项判断流程分别判断多个电容亮斑中的每个电容亮斑对应的触摸操作是否为异形触摸操作,也可以在已经判断出存在电容亮斑对应的触摸操作为异形触摸操作后,确定其他未判断的电容亮斑对应的触摸操作均为异形触摸操作。
例如,在采用上述三项判断流程分别判断多个电容亮斑对应的触摸操作是否为异形触摸操作之前,判断当前状态是否为异形状态;若当前状态为异形状态,则确定多个电容亮斑中每个电容亮斑对应的触摸操作均为异形触摸操作;若当前状态不为异形状态,则执行判断其中一个触摸操作是否为异形触摸操作;当确定出其中一个触摸操作是否为异形触摸操作时,将当前状态切换为异形状态。
在一个示例中,所述确定所述第一触摸操作是否为异形触摸操作之前,所述终端的触摸屏在所述触摸操作的生命周期内接收到第二触摸操作;所述终端确定所述触摸屏在所述一帧的状态是否为异形状态;所述终端若确定所述在所述一帧的状态为异形状态,则确定所述第二触摸操作是为异形触摸操作;所述终端在所述第一触摸操作的生命周期内和所述第二触摸操作的生命周期内的所述一帧之后,不上报所述第一触摸操作和所述第二触摸操作。
根据该实施方式,将触摸屏的状态初始值设为非异形状态,当一帧的电容信号对应有多个电容亮斑,即有多个触摸操作时,在判断出其中一个触摸操作为异形触摸操作后,将当前 状态切换为异形状态,从而再判断其他触摸操作是否为异形触摸操作时,可以直接根据当前状态为异形状态确定其他触摸操作也为异形触摸操作,无需对其他触摸操作对应的电容亮斑进行特征检测,可以有效节约终端的处理资源,并且判断迅速,用户体验佳。
在一个示例中,首先假设用户在打电话的时候不会同时手指触控屏幕进行点击、滑动等操作。因此当屏幕上有多个电容亮斑时,如果有一个电容亮斑被识别为异形亮斑,则可切换到异形状态。在异形状态中,对于后续的每一个电容亮斑继续判断其是否是异形亮斑,如果是则将其加入到异形队列中。但无论后续的电容亮斑是否被确定为异形亮斑,都抑制上报后续电容亮斑对应的报点。当屏幕上所有异形队列中的电容亮斑都消失后,算法退出异形状态,不再对报点进行抑制。也就是说,当有多个电容亮斑时,只要有一个电容亮斑被确定为异形触摸产生的电容亮斑,则确定发生异形触摸操作,不上报所有的电容亮斑对应的异形触摸操作,不上报所有电容亮斑对应的报点。
对于每一个触摸操作,第一次报点出现的时间和其对应的电容亮斑出现的时间是不一致的。报点往往在电容亮斑出现后的若干帧之后才开始上报。为了提高异形的识别率,可在电容亮斑一出现的时候就开始判断其是否是异形触摸操作,从而增加了判断的次数。但某些电容屏可能出现噪声较大的情况,导致在报点前进行判断可能概率性产生误判的情况,从而将正常手指操作的报点误判。因此是否在报点前就对电容亮斑进行判断可视电容屏噪声程度进行调整。可以理解的是,在接触屏幕时,接触位置上会产生电容亮斑信号,但是一开始接触面积较小,并且信号强度较弱,因此并不会在一开始就报点。只有当亮斑满足一定的条件时,比如电容亮斑内的信号最大值超过一定阈值时,才会开始报点,因此电容亮斑报点前判断可以提高判断效率,用户体验佳。
如果异形防误触算法识别出来电容亮斑是手指正常点击形成的,则会正常上报对应的报点。如果异形防误触算法在前几帧识别出来电容亮斑是耳朵、脸颊等异形触摸形成的,则会抑制对应报点的上报。如果异形防误触算法在前几帧识别出来电容亮斑是手指正常点击形成的,会上报这几帧的报点,在后续某一帧识别出来并非手指正常点击形成的,而是耳朵、脸颊等异形触摸形成的,则会上报该帧异形触摸产生的电容亮斑对应的报点,并召回前几帧的报点所触发的响应操作,并且抑制该帧之后的后续帧的报点。
在一个示例中,当第一触摸操作落在屏幕顶端时,如果一帧内不能判断是否是正常点击,可以在后续若干帧内采取延时报点的策略。当报点在延时若干帧后重新上报时,报点坐标可能跟第一帧的报点坐标不同。对于某些需要从屏幕边缘向内滑动启动的控件,延时报点会导致前面若干帧的报点信息丢失。如果延时后报点坐标不在控件的启动相应热区内,则无法启动控件。因此当报点启动位置落在靠边缘位置时,算法会记录下来报点的第一帧坐标,在延时后报点的第一帧中补报这一坐标。通过这种方法可以使得控件可以正常启动。
基于与方法实施例的同一发明构思,本申请实施例公开了一种终端,如图17所示,该终端用于实现以上各个方法实施例中记载的识别异形接触的方法,该终端1700包括:接收单元1701和处理单元1702,其中当终端1700执行图4中的方法时,接收单元1701用于步骤401,处理单元1702用于执行步骤402-405。上述方法实施例涉及所有相关内容均可以援引到对应单元的功能描述,在此不再赘述。
采用硬件实现时,该终端的硬件实现可参考图1及其相关描述。
参见图1,所述终端100,包括:触摸屏150,其中,所述触摸屏150包括触敏表面和显示器;一个或多个处理器110;存储器120;多个应用程序(图中未示出);以及一个或多个计算机程序,其中所述一个或多个计算机程序被存储在所述存储器120中,所述一个或多个计算机程序包括指令,当所述指令被所述终端100执行时,所述终端100执行本申请实施例中终端100执行的任一可能设计的方法。需要说明的是,该存储器120可以集成于处理器110中,也可以是独立于处理器110之外。
本申请实施例中,触摸屏150可以执行如图17涉及到的接收模块1700所执行的方法,处理器110可以执行如图17涉及到的处理模块1702所执行的方法。
本申请实施例还提供一种计算机存储介质,该计算机存储介质中存储有计算机指令,当该计算机指令在终端上运行时,使得终端执行上述相关方法步骤实现上述实施例中的照片共享方法。
本申请实施例还提供了一种计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述相关步骤,以实现上述实施例中的翻译方法。
另外,本申请的实施例还提供一种装置,这个装置具体可以是芯片,组件或模块,该装置可包括相连的处理器和存储器;其中,存储器用于存储计算机执行指令,当装置运行时,处理器可执行存储器存储的计算机执行指令,以使芯片执行上述各方法实施例中的翻译方法。
其中,本申请实施例提供的终端、计算机存储介质、计算机程序产品或芯片均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
通过以上实施方式的描述,所属领域的技术人员可以了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请实施例所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请实施例各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者 说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请实施例各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请实施例的保护范围之内,因此本申请实施例的保护范围应以权利要求的保护范围为准。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (23)

  1. 一种识别异形触摸的方法,其特征在于,所述方法包括:
    终端的触摸屏接收第一触摸操作;
    所述终端响应于所述第一触摸操作,在所述第一触摸操作的生命周期内采集所述触摸屏的一帧电容信号;所述生命周期为所述第一触摸操作从开始接触所述触摸屏至离开所述触摸屏的过程;
    所述终端计算所述一帧电容信号中与所述第一触摸操作对应的电容亮斑的特征值;
    所述终端根据所述电容亮斑的特征值,以及所述一帧之前的至少一帧中与所述第一触摸操作属于同一生命周期的电容亮斑的特征值,确定所述第一触摸操作是否为异形触摸操作;
    所述终端若确定所述第一触摸操作为异形触摸操作,则召回所述一帧之前针对所述第一触摸操作触发的响应操作,并在整个生命周期内不上报所述第一触摸操作。
  2. 如权利要求1所述的方法,其特征在于,所述特征值包括下述内容中的至少一项:亮斑面积、横向跨度、纵向跨度、离心率、重心坐标、电容最大值或亮斑切片中心标准差。
  3. 如权利要求2所述的方法,其特征在于,所述终端计算所述一帧电容信号中与所述第一触摸操作对应的电容亮斑的特征值,包括:
    所述终端从所述一帧电容信号中的多个电容值中确定出至少一个电容极大值;
    所述终端从所述至少一个电容极大值的每个电容极大值开始洪泛,将电容值大于预设电容阈值的电容网格加入至所述电容极大值对应的电容亮斑的洪泛区域;
    所述终端从所述至少一个电容极大值对应的电容亮斑的洪泛区域,确定出与所述第一触摸操作对应的电容亮斑;
    所述终端计算所述与所述第一触摸操作对应的电容亮斑的特征值。
  4. 如权利要求3所述的方法,其特征在于,
    所述亮斑面积为所述电容亮斑的洪泛区域内的电容网格的数目;
    所述横向跨度为所述电容亮斑的洪泛区域在横向的跨度;
    所述纵向跨度为所述电容亮斑的洪泛区域在纵向的跨度;
    所述离心率为所述电容亮斑的洪泛区域拟合出的椭圆的离心率;
    所述重心坐标为所述电容亮斑的洪泛区域的重心坐标;
    所述电容最大值为所述电容亮斑的洪泛区域的电容最大值;
    所述亮斑切片中心标准差为所述电容亮斑的洪泛区域的横向切片的中心横坐标的标准差与纵向切片的中心纵坐标的标准差的平方和的平方根。
  5. 如权利要求1所述的方法,其特征在于,所述终端根据所述电容亮斑的特征值,以及所述一帧之前的至少一帧中与所述第一触摸操作属于同一生命周期的电容亮斑的特征值,确定所述第一触摸操作是否为异形触摸操作,包括:
    所述终端根据所述电容亮斑的特征值,以及所述一帧之前的至少一帧中与所述第一触摸操作属于同一生命周期的电容亮斑的特征值,确定所述第一触摸操作是否为强脸颊对应的触摸操作,第一项判断结果包括强脸颊对应的触摸操作和非强脸颊对应的触摸操作;
    所述终端根据所述电容亮斑的特征值,确定所述第一触摸操作是否为弱脸颊对应的触摸 操作;第二项判断结果包括弱脸颊对应的触摸操作、非弱脸颊对应的触摸操作和不确定;
    所述终端根据所述电容亮斑的特征值,确定所述第一触摸操作是否为耳朵对应的触摸操作;第三项判断结果包括耳朵对应的触摸操作、非耳朵对应的触摸操作和不确定;
    当第一项判断结果为强脸颊对应的触摸操作时,或当第二项判断结果为弱脸颊对应的触摸操作时,或当第三项判断结果为耳朵对应的触摸操作时,所述终端确定所述第一触摸操作为异形触摸操作;
    当第一项判断结果为非强脸颊对应的触摸操作、且第二项判断结果为非弱脸颊对应的触摸操作、且第三项判断结果为非耳朵对应的第一触摸操作时,所述终端确定所述第一触摸操作不为异形触摸操作。
  6. 如权利要求1所述的方法,其特征在于,所述终端根据所述电容亮斑的特征值,以及所述一帧之前的至少一帧中与所述第一触摸操作属于同一生命周期的电容亮斑的特征值,确定所述第一触摸操作是否为强脸颊对应的触摸操作,包括:
    当所述电容亮斑的亮斑面积小于第一面积阈值时,所述终端确定所述第一触摸操作为非强脸颊对应的触摸操作;或者,
    当所述一帧为down帧、且所述第一触摸操作的生命周期内的一帧之前的历史最大亮斑面积大于第二面积阈值、且所述历史最大亮斑面积与所述电容亮斑的亮斑面积的差值大于第一面积差阈值时,所述终端确定所述第一触摸操作为强脸颊对应的触摸操作,其中所述down帧为所述第一触摸操作的生命周期内第一次报点的帧;或者,
    当所述一帧为up帧的后一帧、且所述电容亮斑的亮斑面积与所述up帧的电容亮斑的亮斑面积的差值大于第二面积差阈值、且所述电容亮斑的亮斑面积大于第三面积阈值时,所述终端确定所述第一触摸操作为强脸颊对应的触摸操作,其中所述up帧为所述第一触摸操作的生命周期内正常报点之后第一次抑制报点的帧;或者,
    当所述电容亮斑的亮斑切片中心标准差大于第一标准差阈值、且所述电容亮斑的横向跨度和纵向跨度组成的矩形的对角线长度大于第一对角线长度阈值,所述终端确定所述第一触摸操作为强脸颊对应的触摸操作;或者,
    当所述电容亮斑的纵向跨度大于或等于第一纵向跨度阈值,所述终端确定所述第一触摸操作为强脸颊对应的触摸操作;或者,
    当所述电容亮斑的亮斑面积大于或等于第四面积阈值时,所述终端确定所述第一触摸操作为强脸颊对应的触摸操作;或者,
    当所述电容亮斑的横向跨度小于或等于第一横向跨度阈值、且纵向跨度大于或等于第二纵向跨度阈值时,所述终端确定所述第一触摸操作为强脸颊对应的触摸操作;或者,
    当以上条件都不满足时,所述终端确定所述第一触摸操作为非强脸颊对应的触摸操作。
  7. 如权利要求5或6所述的方法,其特征在于,所述终端根据所述电容亮斑的特征值,确定所述第一触摸操作是否为弱脸颊对应的第一触摸操作,包括:
    当所述电容光斑的电容最大值大于或等于第一电容阈值时,所述终端确定所述第一触摸操作为非弱脸颊对应的触摸操作;或者,
    当所述电容亮斑边缘的纵坐标最小值为零、且所述电容光斑的纵向跨度小于或等于第三纵向跨度阈值时,所述终端确定所述第一触摸操作为非弱脸颊对应的触摸操作;或者,
    当所述电容亮斑的亮斑面积大于或等于第五面积阈值时,所述终端确定所述第一触摸操作为弱脸颊对应的触摸操作;或者,
    当所述电容亮斑的纵向跨度大于或等于第四纵向跨度阈值、且当所述电容亮斑的横向跨度大于或等于第二横向跨度阈值时,所述终端确定所述第一触摸操作为弱脸颊对应的触摸操作;或者,
    当所述电容亮斑的亮斑面积大于或等于第六面积阈值时,判断结果为不确定;或者,
    当所述电容亮斑的纵向跨度大于或等于第五纵向跨度阈值时,判断结果为不确定;或者,
    当以上条件都不满足时,所述终端确定所述第一触摸操作为非弱脸颊对应的触摸操作。
  8. 如权利要求5至7中任一项所述的方法,其特征在于,所述终端根据所述电容亮斑的特征值,确定所述第一触摸操作是否为弱脸颊对应的第一触摸操作,包括:
    当所述电容光斑的电容最大值大于或等于第二电容阈值时,所述终端确定所述第一触摸操作为非耳朵对应的所述触摸操作;或者,
    当所述电容光斑的重心坐标的纵坐标大于第一坐标阈值,所述终端确定所述第一触摸操作为非耳朵对应的所述触摸操作;或者,
    当所述电容光斑的亮斑面积大于第七面积阈值,所述终端确定所述第一触摸操作为非耳朵对应的所述触摸操作;或者,
    当所述电容亮斑边缘的纵坐标最小值为零、且所述电容光斑的纵向跨度小于或等于第六纵向跨度阈值时,所述终端确定所述第一触摸操作为非耳朵对应的所述触摸操作;或者,
    当所述电容光斑的离心率大于第一离心率阈值、且所述电容光斑的重心坐标中的纵坐标大于第二坐标阈值时,所述终端确定所述第一触摸操作为耳朵对应的所述触摸操作;或者,
    当所述电容光斑的离心率大于第一离心率阈值时,判断结果为不确定;或者,
    当以上条件都不满足时,所述终端确定所述第一触摸操作为非耳朵对应的所述触摸操作。
  9. 如权利要求1至8中任一项所述的方法,其特征在于,所述确定所述第一触摸操作是否为异形触摸操作之前,方法还包括:
    所述终端的触摸屏在所述触摸操作的生命周期内接收到第二触摸操作;
    所述终端确定所述触摸屏在所述一帧的状态是否为异形状态;
    所述终端若确定所述在所述一帧的状态为异形状态,则确定所述第二触摸操作是为异形触摸操作;
    所述终端在所述第一触摸操作的生命周期内和所述第二触摸操作的生命周期内的所述一帧之后,不上报所述第一触摸操作和所述第二触摸操作。
  10. 如权利要求9所述的方法,其特征在于,所述方法还包括:
    所述终端若确定所述触摸屏在所述一帧的状态不为异形状态,则根据所述电容亮斑的特征值,以及所述一帧之前的至少一帧中与所述第一触摸操作属于同一生命周期的电容亮斑的特征值确定所述第二触摸操作是否为异形触摸对应的所述触摸操作;
    当确定所述第二触摸操作为异形触摸对应的所述触摸操作,将所述触摸屏的所述当前帧的状态切换为异形状态。
  11. 如权利要求5至8中任一项所述的方法,其特征在于,所述方法还包括:
    当所述一帧为所述第一触摸操作的生命周期内的第一帧,且根据所述第一帧的电容亮的 特征值,不确定所述第一触摸操作是否为异形触摸操作时,所述终端保存所述第一帧中与所述第一触摸操作对应的电容亮斑的报点坐标;
    当在所述第一帧的之后的预设数目帧确定所述第一触摸操作不为异形触摸操作、或者所述之后的预设数目帧不确定所述第一触摸操作是否为异形触摸操作时,上报将所述第一帧中与所述第一触摸操作对应的电容亮斑的报点坐标,并将所述报点坐标与所述后续预设数目帧中与所述第一触摸操作对应的电容亮斑相匹配。
  12. 一种终端,其特征在于,包括处理器、存储器、触摸屏;
    所述触摸屏,用于接收第一触摸操作;
    所述存储器用于存储一个或多个计算机程序,所述计算机程序被所述处理器执行时,使得所述处理器执行:
    响应于所述第一触摸操作,在所述第一触摸操作的生命周期内采集所述触摸屏的一帧电容信号;所述生命周期为所述第一触摸操作从开始接触所述触摸屏至离开所述触摸屏的过程;
    计算所述一帧电容信号中与所述第一触摸操作对应的电容亮斑的特征值;
    根据所述电容亮斑的特征值,以及所述一帧之前的至少一帧中与所述第一触摸操作属于同一生命周期的电容亮斑的特征值,确定所述第一触摸操作是否为异形触摸操作;
    若确定所述第一触摸操作为异形触摸操作,则召回所述一帧之前针对所述第一触摸操作触发的响应操作,并在整个生命周期内不上报所述第一触摸操作。
  13. 如权利要求12所述的终端,其特征在于,所述特征值包括下述内容中的至少一项:亮斑面积、横向跨度、纵向跨度、离心率、重心坐标、电容最大值或亮斑切片中心标准差。
  14. 如权利要求13所述的终端,其特征在于,所述处理器用于执行:
    从所述一帧电容信号中的多个电容值中确定出至少一个电容极大值;
    从所述至少一个电容极大值的每个电容极大值开始洪泛,将电容值大于预设电容阈值的电容网格加入至所述电容极大值对应的电容亮斑的洪泛区域;
    从所述至少一个电容极大值对应的电容亮斑的洪泛区域,确定出与所述第一触摸操作对应的电容亮斑;
    计算所述与所述第一触摸操作对应的电容亮斑的特征值。
  15. 如权利要求14所述的终端,其特征在于,
    所述亮斑面积为所述电容亮斑的洪泛区域内的电容网格的数目;
    所述横向跨度为所述电容亮斑的洪泛区域在横向的跨度;
    所述纵向跨度为所述电容亮斑的洪泛区域在纵向的跨度;
    所述离心率为所述电容亮斑的洪泛区域拟合出的椭圆的离心率;
    所述重心坐标为所述电容亮斑的洪泛区域的重心坐标;
    所述电容最大值为所述电容亮斑的洪泛区域的电容最大值;
    所述亮斑切片中心标准差为所述电容亮斑的洪泛区域的横向切片的中心横坐标的标准差与纵向切片的中心纵坐标的标准差的平方和的平方根。
  16. 如权利要求12所述的终端,其特征在于,所述处理器用于执行:
    根据所述电容亮斑的特征值,以及所述一帧之前的至少一帧中与所述第一触摸操作属于同一生命周期的电容亮斑的特征值,确定所述第一触摸操作是否为强脸颊对应的触摸操作, 第一项判断结果包括强脸颊对应的触摸操作和非强脸颊对应的触摸操作;
    根据所述电容亮斑的特征值,确定所述第一触摸操作是否为弱脸颊对应的触摸操作;第二项判断结果包括弱脸颊对应的触摸操作、非弱脸颊对应的触摸操作和不确定;
    根据所述电容亮斑的特征值,确定所述第一触摸操作是否为耳朵对应的触摸操作;第三项判断结果包括耳朵对应的触摸操作、非耳朵对应的触摸操作和不确定;
    当第一项判断结果为强脸颊对应的触摸操作时,或当第二项判断结果为弱脸颊对应的触摸操作时,或当第三项判断结果为耳朵对应的触摸操作时,确定所述第一触摸操作为异形触摸操作;
    当第一项判断结果为非强脸颊对应的触摸操作、且第二项判断结果为非弱脸颊对应的触摸操作、且第三项判断结果为非耳朵对应的第一触摸操作时,确定所述第一触摸操作不为异形触摸操作。
  17. 如权利要求12所述的终端,其特征在于,所述处理器用于执行:
    当所述电容亮斑的亮斑面积小于第一面积阈值时,所述终端确定所述第一触摸操作为非强脸颊对应的触摸操作;或者,
    当所述一帧为down帧、且所述第一触摸操作的生命周期内的一帧之前的历史最大亮斑面积大于第二面积阈值、且所述历史最大亮斑面积与所述电容亮斑的亮斑面积的差值大于第一面积差阈值时,确定所述第一触摸操作为强脸颊对应的触摸操作,其中所述down帧为所述第一触摸操作的生命周期内第一次报点的帧;或者,
    当所述一帧为up帧的后一帧、且所述电容亮斑的亮斑面积与所述up帧的电容亮斑的亮斑面积的差值大于第二面积差阈值、且所述电容亮斑的亮斑面积大于第三面积阈值时,确定所述第一触摸操作为强脸颊对应的触摸操作,其中所述up帧为所述第一触摸操作的生命周期内正常报点之后第一次抑制报点的帧;或者,
    当所述电容亮斑的亮斑切片中心标准差大于第一标准差阈值、且所述电容亮斑的横向跨度和纵向跨度组成的矩形的对角线长度大于第一对角线长度阈值,确定所述第一触摸操作为强脸颊对应的触摸操作;或者,
    当所述电容亮斑的纵向跨度大于或等于第一纵向跨度阈值,确定所述第一触摸操作为强脸颊对应的触摸操作;或者,
    当所述电容亮斑的亮斑面积大于或等于第四面积阈值时,确定所述第一触摸操作为强脸颊对应的触摸操作;或者,
    当所述电容亮斑的横向跨度小于或等于第一横向跨度阈值、且纵向跨度大于或等于第二纵向跨度阈值时,确定所述第一触摸操作为强脸颊对应的触摸操作;或者,
    当以上条件都不满足时,确定所述第一触摸操作为非强脸颊对应的触摸操作。
  18. 如权利要求16或17所述的终端,其特征在于,所述处理器用于执行:
    当所述电容光斑的电容最大值大于或等于第一电容阈值时,确定所述第一触摸操作为非弱脸颊对应的触摸操作;或者,
    当所述电容亮斑边缘的纵坐标最小值为零、且所述电容光斑的纵向跨度小于或等于第三纵向跨度阈值时,确定所述第一触摸操作为非弱脸颊对应的触摸操作;或者,
    当所述电容亮斑的亮斑面积大于或等于第五面积阈值时,确定所述第一触摸操作为弱脸 颊对应的触摸操作;或者,
    当所述电容亮斑的纵向跨度大于或等于第四纵向跨度阈值、且当所述电容亮斑的横向跨度大于或等于第二横向跨度阈值时,确定所述第一触摸操作为弱脸颊对应的触摸操作;或者,
    当所述电容亮斑的亮斑面积大于或等于第六面积阈值时,判断结果为不确定;或者,
    当所述电容亮斑的纵向跨度大于或等于第五纵向跨度阈值时,判断结果为不确定;或者,当以上条件都不满足时,确定所述第一触摸操作为非弱脸颊对应的触摸操作。
  19. 如权利要求16至18中任一项所述的终端,其特征在于,所述处理器用于执行:
    当所述电容光斑的电容最大值大于或等于第二电容阈值时,确定所述第一触摸操作为非耳朵对应的所述触摸操作;或者,
    当所述电容光斑的重心坐标的纵坐标大于第一坐标阈值,确定所述第一触摸操作为非耳朵对应的所述触摸操作;或者,
    当所述电容光斑的亮斑面积大于第七面积阈值,确定所述第一触摸操作为非耳朵对应的所述触摸操作;或者,
    当所述电容亮斑边缘的纵坐标最小值为零、且所述电容光斑的纵向跨度小于或等于第六纵向跨度阈值时,确定所述第一触摸操作为非耳朵对应的所述触摸操作;或者,
    当所述电容光斑的离心率大于第一离心率阈值、且所述电容光斑的重心坐标中的纵坐标大于第二坐标阈值时,确定所述第一触摸操作为耳朵对应的所述触摸操作;或者,
    当所述电容光斑的离心率大于第一离心率阈值时,判断结果为不确定;或者,
    当以上条件都不满足时,确定所述第一触摸操作为非耳朵对应的所述触摸操作。
  20. 如权利要求12至19中任一项所述的终端,其特征在于,所述触摸屏还用于:在所述触摸操作的生命周期内接收到第二触摸操作;
    所述处理器还用于执行:
    确定所述触摸屏在所述一帧的状态是否为异形状态;
    若确定所述在所述一帧的状态为异形状态,则确定所述第二触摸操作是为异形触摸操作;
    在所述第一触摸操作的生命周期内和所述第二触摸操作的生命周期内的所述一帧之后,不上报所述第一触摸操作和所述第二触摸操作。
  21. 如权利要求20所述的终端,其特征在于,所述处理器还用于执行:
    若确定所述触摸屏在所述一帧的状态不为异形状态,则根据所述电容亮斑的特征值,以及所述一帧之前的至少一帧中与所述第一触摸操作属于同一生命周期的电容亮斑的特征值确定所述第二触摸操作是否为异形触摸对应的所述触摸操作;
    当确定所述第二触摸操作为异形触摸对应的所述触摸操作,将所述触摸屏的所述当前帧的状态切换为异形状态。
  22. 如权利要求16至19中任一项所述的终端,其特征在于,所述处理器还用于执行:
    当所述一帧为所述第一触摸操作的生命周期内的第一帧,且根据所述第一帧的电容亮的特征值,不确定所述第一触摸操作是否为异形触摸操作时,保存所述第一帧中与所述第一触摸操作对应的电容亮斑的报点坐标;
    当在所述第一帧的之后的预设数目帧确定所述第一触摸操作不为异形触摸操作、或者所述之后的预设数目帧不确定所述第一触摸操作是否为异形触摸操作时,上报将所述第一帧中 与所述第一触摸操作对应的电容亮斑的报点坐标,并将所述报点坐标与所述后续预设数目帧中与所述第一触摸操作对应的电容亮斑相匹配。
  23. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括计算机程序,当计算机程序在终端上运行时,使得所述终端执行如权利要求1至11任一所述的方法。
PCT/CN2019/111178 2018-10-16 2019-10-15 一种识别异形触摸的方法、终端及存储介质 WO2020078344A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811204505.4 2018-10-16
CN201811204505.4A CN111064842B (zh) 2018-10-16 2018-10-16 一种识别异形触摸的方法、终端及存储介质

Publications (1)

Publication Number Publication Date
WO2020078344A1 true WO2020078344A1 (zh) 2020-04-23

Family

ID=70284426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/111178 WO2020078344A1 (zh) 2018-10-16 2019-10-15 一种识别异形触摸的方法、终端及存储介质

Country Status (2)

Country Link
CN (1) CN111064842B (zh)
WO (1) WO2020078344A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112860104B (zh) * 2021-01-27 2024-01-30 北京小米移动软件有限公司 触摸屏坐标偏离的校准方法、装置、移动终端及存储介质
CN113010078A (zh) * 2021-03-17 2021-06-22 Oppo广东移动通信有限公司 触控方法、装置、存储介质及电子设备
CN117193564B (zh) * 2023-10-26 2024-02-02 深圳市魔样科技有限公司 基于数据分析的智能手环误触检测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100261505A1 (en) * 2009-04-14 2010-10-14 Elan Microelectronics Corporation Control method for a cell phone
CN104375761A (zh) * 2014-11-07 2015-02-25 惠州Tcl移动通信有限公司 一种防止触摸屏手机误操作的方法及系统
CN108021259A (zh) * 2016-11-03 2018-05-11 华为技术有限公司 一种防误触方法及终端
CN108572758A (zh) * 2017-03-10 2018-09-25 中移(杭州)信息技术有限公司 一种触摸误操作的确定方法及确定装置
CN109669566A (zh) * 2017-10-13 2019-04-23 华为技术有限公司 一种控制报点输出的方法及装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9483170B2 (en) * 2010-11-22 2016-11-01 Amx Llc Method and apparatus of error correction in resistive touch panels
CN103455266A (zh) * 2012-06-04 2013-12-18 华为终端有限公司 一种触摸屏的误触摸操作的处理方法及终端设备
CN102968217B (zh) * 2012-12-07 2016-01-20 深圳市汇顶科技股份有限公司 触摸屏的基准更新方法、系统及触控终端
TWI474248B (zh) * 2013-05-08 2015-02-21 Touchplus Information Corp 應用於電容式面板的控制點感測方法與裝置
KR20160022583A (ko) * 2014-08-20 2016-03-02 삼성전기주식회사 터치스크린 장치 및 터치 감지 방법
CN107479820B (zh) * 2017-08-24 2021-01-08 深圳恒远智信科技有限公司 触控装置的识别方法、终端设备和服务器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100261505A1 (en) * 2009-04-14 2010-10-14 Elan Microelectronics Corporation Control method for a cell phone
CN104375761A (zh) * 2014-11-07 2015-02-25 惠州Tcl移动通信有限公司 一种防止触摸屏手机误操作的方法及系统
CN108021259A (zh) * 2016-11-03 2018-05-11 华为技术有限公司 一种防误触方法及终端
CN108572758A (zh) * 2017-03-10 2018-09-25 中移(杭州)信息技术有限公司 一种触摸误操作的确定方法及确定装置
CN109669566A (zh) * 2017-10-13 2019-04-23 华为技术有限公司 一种控制报点输出的方法及装置

Also Published As

Publication number Publication date
CN111064842A (zh) 2020-04-24
CN111064842B (zh) 2021-11-19

Similar Documents

Publication Publication Date Title
US9965158B2 (en) Touch screen hover input handling
KR102544780B1 (ko) 필기 입력에 따른 사용자 인터페이스 제어 방법 및 이를 구현한 전자 장치
US9383918B2 (en) Portable electronic device and method of controlling same
CN111158540B (zh) 一种应用图标的位置调整方法及电子设备
WO2019024056A1 (zh) 一种防误触方法及终端
US10222900B2 (en) Method and apparatus for differentiating between grip touch events and touch input events on a multiple display device
US10757245B2 (en) Message display method, user terminal, and graphical user interface
EP2851779A1 (en) Method, device, storage medium and terminal for displaying a virtual keyboard
WO2020078344A1 (zh) 一种识别异形触摸的方法、终端及存储介质
CN109871174B (zh) 一种虚拟按键显示方法和移动终端
WO2021129772A1 (zh) 一种虚拟键盘的显示方法和电子设备
WO2017197636A1 (zh) 识别误触摸操作的方法和电子设备
CN110502162B (zh) 文件夹的创建方法及终端设备
WO2019076238A1 (zh) 一种悬浮按钮显示方法及终端设备
CN111290794B (zh) 一种屏幕唤醒方法、装置、存储介质及移动终端
US11086442B2 (en) Method for responding to touch operation, mobile terminal, and storage medium
CN109542279B (zh) 一种终端设备控制方法及终端设备
WO2018068207A1 (zh) 识别操作的方法、装置及移动终端
CN107390923B (zh) 一种屏幕防误触方法、装置、存储介质和终端
CN110837318B (zh) 移动终端折叠屏的防误触方法、装置及存储介质
CN111026464A (zh) 一种识别方法及电子设备
WO2017117762A1 (zh) 一种指纹识别方法以及电子设备
US11194425B2 (en) Method for responding to touch operation, mobile terminal, and storage medium
EP3678001B1 (en) Method and device for controlling output of report
CN110049486B (zh) 一种sim卡选择方法及终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19872683

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19872683

Country of ref document: EP

Kind code of ref document: A1