WO2020078213A1 - 红外光学材料均匀性测试的温度影响评估和控制方法 - Google Patents

红外光学材料均匀性测试的温度影响评估和控制方法 Download PDF

Info

Publication number
WO2020078213A1
WO2020078213A1 PCT/CN2019/109387 CN2019109387W WO2020078213A1 WO 2020078213 A1 WO2020078213 A1 WO 2020078213A1 CN 2019109387 W CN2019109387 W CN 2019109387W WO 2020078213 A1 WO2020078213 A1 WO 2020078213A1
Authority
WO
WIPO (PCT)
Prior art keywords
test
temperature
optical material
infrared optical
accuracy
Prior art date
Application number
PCT/CN2019/109387
Other languages
English (en)
French (fr)
Inventor
麦绿波
Original Assignee
中国兵器工业标准化研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国兵器工业标准化研究所 filed Critical 中国兵器工业标准化研究所
Publication of WO2020078213A1 publication Critical patent/WO2020078213A1/zh
Priority to US16/939,675 priority Critical patent/US10809191B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/4133Refractometers, e.g. differential
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/45Refractivity; Phase-affecting properties, e.g. optical path length using interferometric methods; using Schlieren methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0207Details of measuring devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0228Testing optical properties by measuring refractive power
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/4133Refractometers, e.g. differential
    • G01N2021/414Correcting temperature effect in refractometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing
    • G01N2201/121Correction signals
    • G01N2201/1211Correction signals for temperature

Definitions

  • the invention relates to the technical field of infrared optical material uniformity testing, in particular to the temperature influence evaluation and control method of infrared optical material uniformity testing.
  • Infrared optical material uniformity test is a high-precision test.
  • the test content is the refractive index uniformity of infrared optical materials.
  • the test accuracy requirements are usually as high as 1 ⁇ 10 -4 ⁇ 1 ⁇ 10 -5 (due to different test accuracy) Requirement), in order to ensure the high-precision test of refractive index uniformity, generally work hard on the precision of the test equipment and the precision of the test method. In fact, high precision testing cannot be achieved only by making the test equipment precise and the test method precise.
  • the temperature change of infrared optical materials per degree Celsius has an influence on the refractive index of infrared materials up to 4 ⁇ 10 -4 ⁇ 1 ⁇ 10 -5 (different due to different infrared materials), and the temperature of the constant temperature test room is generally 22 °C ⁇ 2 °C or 22 °C ⁇ 1 °C, if the influence of the ambient temperature change of the test chamber on the refractive index of the sample is not evaluated and controlled, the test results will deviate greatly from the actual situation, so that invalid test results or futile tests are obtained Therefore, the measurement of the uniformity of infrared optical materials requires the temperature influence evaluation and control method of the uniformity test of infrared optical materials to guide and control the ambient temperature of the test room to ensure that the ambient temperature of the test room meets the requirements of test accuracy.
  • the ambient temperature of the test chamber for the infrared optical material homogeneity test simply specified the ambient temperature of the test chamber to be 22 ° C ⁇ 2 ° C or 22 ° C ⁇ 1 °C, ignoring the severe impact of the test results caused by the sudden change of the test environment temperature within a short period of time (during the test period), resulting in severe distortion of the test results of high-precision requirements and high-sensitivity temperature-refractive index changing materials, making the infrared optical material uniformity test results Lose credibility and usability.
  • the technical problem to be solved by the present invention is: how to design a technical solution for the temperature effect evaluation and control method of the infrared optical material uniformity test, and to perform accurate control of the ambient temperature of the test room for the infrared optical material uniformity test to ensure the predetermined Test accuracy.
  • the present invention provides a method for evaluating and controlling the temperature effect of infrared optical material uniformity testing, including the following steps:
  • Step S1 the test accuracy requirement of refractive index uniformity is P ⁇ n , the thickness of the sample is t 0 , the number of times the test beam passes through the sample is N, and the wavefront deformation wave difference of the standard light wave surface brought by P ⁇ n is ⁇ W P , then:
  • Step S2 When the ambient temperature of the test chamber changes, a local temperature increase ⁇ T of the sample is brought, and the wavefront deformation wave difference of the standard light wave surface is ⁇ W ⁇ T .
  • the nominal refractive index of the sample optical material Is n 0 the thermal optical coefficient is G
  • the thermal expansion coefficient is ⁇
  • the refractive index temperature gradient coefficient is dn / dt
  • the wavefront deformation wave difference of the standard light wave surface caused by a local temperature increase ⁇ T of the sample is ⁇ W ⁇ T .
  • Step S3. The accuracy of the infrared optical material uniformity test needs to satisfy the relationship of formula (3):
  • Step S4 Determine the range of P ⁇ n required for the test accuracy of the infrared optical material sample
  • Step S5. Based on formula (2), determine the range of the thermal optical coefficient G of the infrared optical material
  • Step S6 According to the formula (4) in step S3, the test accuracy required by step S4, the range of P ⁇ n , and the range of the thermal optical coefficient G of the infrared optical material determined in step S5, establish the infrared optical material uniformity test Accuracy requirements corresponding to the temperature influence control numerical table;
  • Step S7 For the ambient temperature of the test room, according to the test accuracy requirements and the material type of the sample, use the temperature control data in the temperature influence control value table to control the ambient temperature of the test room during the test.
  • k takes one of the values 1/2, 1/3, 1/4, and 1/5 respectively.
  • the value of k that meets the minimum accuracy requirement is taken as 1/2.
  • step S4 it is determined that the test accuracy of the infrared optical material requires that the range of P ⁇ n is 1 ⁇ 10 -5 ⁇ 1 ⁇ 10 -4 , and this accuracy range is increased by 2 times or approximately 2 times at a time from the highest accuracy requirement Divided into four levels, the test accuracy requires that the four precisions of P ⁇ n are divided into: 1 ⁇ 10 -5 ; 2 ⁇ 10 -5 ; 4 ⁇ 10 -5 ; 10 ⁇ 10 -5 .
  • the thermal optical coefficient G value of the germanium crystal material that is most sensitive to the change in refractive index due to the temperature of the infrared optical material and the thermal optical coefficient coefficient G of the least sensitive fused silica material are calculated according to infrared
  • the concentration relationship of the value of the thermal optical coefficient G of the optical material divides G into seven grades.
  • the seven grades of G are: 1 ⁇ 10 -5 / °C; 2 ⁇ 10 -5 / °C; 4 ⁇ 10 -5 / °C; 6 ⁇ 10 -5 / °C; 10 ⁇ 10 -5 / °C; 15 ⁇ 10 -5 / °C; 40 ⁇ 10 -5 / °C.
  • step S6 the temperature influence control numerical table is Table 1:
  • the temperature control data in Table 1 is used for control, it is used as less than or equal to the accuracy control factor k of the temperature influence in Table 1 is determined to take a small or large value according to the high or low requirement of the required test accuracy.
  • step S7 the following measures are also taken to avoid the influence of uneven temperature changes on the refraction uniformity test of the infrared optical material: before the infrared optical material uniformity interference test starts, the sample is placed on the test bench for a certain period of time Keep the temperature until the sample temperature is fully uniform.
  • the present invention is based on the discovery that the local small temperature change of the sample during the refractive index uniformity test of the infrared optical material affects the accuracy of the test result, and establishes the accuracy requirements of the refractive index test of the infrared optical material and the influence of the temperature change of different infrared optical materials on the refractive index.
  • the relationship between the two-dimensional numerical table of the ambient temperature control in the test room, and the establishment of relevant calculation formulas for numerical calculation and filling in the form provides an infrared optical material uniformity test temperature impact assessment and control method, and establishes an infrared optical material uniformity test
  • the technical solution of the temperature impact assessment and control method can provide accurate guidance of temperature control for the accuracy of the infrared optical material uniformity test.
  • Figure 1 is a graph of the allowable accuracy of infrared optical material homogeneity test
  • Figure 2 is a wave diagram caused by local temperature changes of infrared optical materials
  • Fig. 3 is a comparison diagram of the allowable accuracy wave difference of the infrared optical material uniformity test and the local temperature change wave difference.
  • the inventors of the present invention have found that a small local temperature change of the sample during the refractive index uniformity test of the infrared optical material will seriously affect the accuracy of the test result. Therefore, the accuracy requirements of the refractive index test of the infrared optical material and the temperature change of different infrared optical materials are established
  • the relationship between the two-dimensional numerical table of the ambient temperature control of the test chamber corresponding to the influence of the refractive index, and the establishment of related calculation formulas for numerical calculation and filling in the form provides an infrared optical material homogeneity test temperature impact assessment and control method, established infrared
  • the technical solution of the temperature effect assessment and control method of the homogeneity test of the optical material provides accurate guidance of the temperature control for the accuracy of the uniformity test of the infrared optical material.
  • the temperature impact assessment and control method of the infrared optical material uniformity test of the present invention adopts the following steps:
  • Step S1 the high-precision infrared refractive index uniformity test of the infrared optical material generally uses the interferometry method.
  • the interferometric test is to deform a standard light wave surface (usually a plane wave) through the wavefront of the sample to obtain the refractive index nonuniformity value in the sample.
  • the test accuracy requirement of refractive index uniformity is P ⁇ n
  • the thickness of the sample is t 0
  • the number of times the test beam passes through the sample is N
  • the wavefront deformation wave difference of the standard light wave surface brought by P ⁇ n is ⁇ W P (allowable the difference in index homogeneity wave), shown in Figure 1, ⁇ W P is calculated by the following formula (1) press.
  • Step S2 When the ambient temperature of the test chamber changes, a partial temperature increase ⁇ T of the sample is brought (because the sudden change of the ambient temperature is non-uniform), and the wavefront deformation wave difference of the standard light wave surface is ⁇ W ⁇ T ,
  • the nominal refractive index of the sample optical material is n 0
  • the thermal optical coefficient is G
  • the thermal expansion coefficient is ⁇
  • the refractive index temperature gradient coefficient is dn / dt
  • the standard light wave brought by the local temperature increase ⁇ T The wavefront deformation wave difference of the surface is ⁇ W ⁇ T , as shown in Figure 2, ⁇ W ⁇ T is calculated according to the following formula (2).
  • Step S3 In order to ensure the accuracy of the infrared optical material uniformity test requires P ⁇ n , the deformation wave difference ⁇ W ⁇ T of the test wavefront brought by the temperature increase ⁇ T of a certain portion of the infrared optical material sample should be less than or equal to the refractive index uniformity test Accuracy requires the product of the wavefront deformation wave difference ⁇ W P of the standard light wave surface brought by P ⁇ n and the accuracy control factor k affected by temperature, and k can be taken as 1/2, 1/3, 1/4, 1/5, etc. One, the smaller the value of k, the smaller the influence of temperature change on the test accuracy. The value of k that meets the minimum accuracy requirement is 1/2, and the accuracy requirement meets the relationship of the following formula (3).
  • the expression (3) is converted into the following expression (4).
  • the wavefront deformation wave difference ⁇ W P corresponding to ⁇ n makes the test accuracy exceed or significantly exceed the allowable accuracy value. The comparison between the two is shown in Figure 3.
  • Step S4 Determine the range of P ⁇ n required for the test accuracy of the infrared optical material sample.
  • Infrared optical materials require a low test accuracy of 1 ⁇ 10 -4 and a high test accuracy of 1 ⁇ 10 -5 . Therefore, the test accuracy requires a range of P ⁇ n of 1 ⁇ 10 -5 ⁇ 1 ⁇ 10 -4 .
  • This accuracy range is divided into four gears by multiplying by 2 times or approximately 2 times from the highest accuracy requirements, and divided into four gears to meet the requirements of more test accuracy.
  • the four accuracy of the test accuracy requirements P ⁇ n are divided into: 1 ⁇ 10 -5 ; 2 ⁇ 10 -5 ; 4 ⁇ 10 -5 ; 10 ⁇ 10 -5 .
  • Infrared optical material temperature is the most sensitive to the refractive index change of germanium crystal material, its G is 4 ⁇ 10 -4 / °C; the least sensitive is fused silica material, its G is 1 ⁇ 10 -5 / °C; many commonly used infrared
  • the optical material belongs to the middle sensitivity, and its G is in the range of 2 ⁇ 10 -5 / °C ⁇ 15 ⁇ 10 -5 / °C.
  • Relation set value G according to the infrared optical material thermo-optical coefficients divided into seven gear stages G, G are seven gear stages: 1 ⁇ 10 -5 / °C; 2 ⁇ 10 -5 / °C; 4 ⁇ 10 - 5 / °C; 6 ⁇ 10 -5 / °C; 10 ⁇ 10 -5 / °C; 15 ⁇ 10 -5 / °C; 40 ⁇ 10 -5 / °C.
  • Step S6 According to the formula (4) in step S3, the test accuracy required by step S4, the range of P ⁇ n , and the range of the thermal optical coefficient G of the infrared optical material determined in step S5, establish the infrared optical material uniformity test
  • the temperature control numerical table corresponding to the accuracy requirements, see Table 1, is used to perform temperature control on the testing of each infrared optical material and each sample required by the test accuracy.
  • the accuracy control factor k of the temperature influence in Table 1 is determined to take a small or large value according to the high or low requirement of the required test accuracy.
  • Step S7 In order to avoid the influence of the uneven temperature change on the refraction uniformity test of the infrared optical material, two guarantee measures are required: first, before the infrared optical material uniformity interference test begins, the sample needs to be placed on the test bench for a certain period of time Insulation until the sample temperature is fully uniform; Second, the ambient temperature of the test room, according to the test accuracy requirements and the material type of the sample, with the corresponding temperature control data in Table 1, during the test on the ambient temperature of the test room control.
  • the invention establishes a method for evaluating and controlling the temperature effect of the infrared optical material uniformity test, which can provide specific values for the ambient temperature control of the test room for the accuracy of the infrared optical material uniformity test, not only for infrared optical material uniformity testing, but also The same method can be used to evaluate the influence of temperature on the uniformity test of optical materials such as visible light and ultraviolet light.
  • the invention can provide specific guidance for the accuracy requirements of infrared optical material uniformity test and temperature influence control of refractive index uniformity test of various materials such as infrared optical crystal, infrared glass, infrared ceramics, etc., and make infrared optical material uniformity test true the result of.
  • the numerical value and classification of the test accuracy required by the above calculation range can be expanded and subdivided as required.
  • the present invention can also be applied to the evaluation and control of various test environmental temperatures obtained by obtaining test parameters through the relevant wave surface of the test sample.

Landscapes

  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

红外光学材料均匀性测试的温度影响评估和控制方法,涉及红外光学材料均匀性测试技术领域。该方法包括:步骤S1:建立标准光波面的波前变形波差ΔW P的计算公式;步骤S2:测试室环境温度变化时,带来试样某局部温度增量ΔT,进而建立此时的标准光波面的波前变形波差ΔW ΔT的计算公式;步骤S3:确定红外光学材料均匀性测试的精度要求满足的条件;步骤S4:确定红外光学材料试样的测试精度要求P Δn的范围;步骤S5:基于步骤S2的公式确定红外光学材料热光学系数G的范围;步骤S6:根据步骤S3、S4、S5,建立红外光学材料均匀性测试精度要求P Δn对应的温度影响控制数值表;步骤S7:根据测试精度要求P Δn和试样的材料类型,用温度影响控制数值表中相应的温度控制数据,在测试期间对测试室的环境温度进行控制。该方法为红外光学材料均匀性测试精度的保证提供了温度控制的准确指导。

Description

红外光学材料均匀性测试的温度影响评估和控制方法 技术领域
本发明涉及红外光学材料均匀性测试技术领域,具体涉及红外光学材料均匀性测试的温度影响评估和控制方法。
背景技术
红外光学材料均匀性测试是一种高精度的测试,测试的内容是红外光学材料的折射率均匀性,测试精度要求通常高达1×10 -4~1×10 -5(因有不同的测试精度要求),为了保证折射率均匀性高精度的测试,一般是在测试设备制作的精密性和测试方法的精密性上下功夫。实际上,只使测试设备精密和测试方法精密是不能获得高精度测试的。因为,红外光学材料每摄氏度温度变化对红外材料折射率的影响高达4×10 -4~1×10 -5(因红外材料的不同而不同),而恒温测试室的温度一般为22℃±2℃或22℃±1℃,如果不对测试室环境温度变化对试样折射率的影响进行评估和控制,测试的结果将会严重偏离实际情况,以至于得到无效的测试结果或作了徒劳的测试,因此,红外光学材料均匀性的测试需要有红外光学材料均匀性测试的温度影响评估和控制方法对测试室环境温度进行指导控制,以保证测试室环境温度满足测试精度的要求。
此前,红外光学材料均匀性测试的测试室环境温度无论测试试样的温度变化系数是什么、测试精度要求是什么,都只是简单地规定测试室环境温度为22℃±2℃或22℃±1℃,忽略了测试环境温度短时 间内突变(测试期间内)带来的测试结果严重影响,导致高精度要求和高灵敏温度折射率变化材料的测试结果严重失真,使红外光学材料均匀性测试结果失去可信度和可用性。
发明内容
(一)要解决的技术问题
本发明要解决的技术问题是:如何设计红外光学材料均匀性测试的温度影响评估和控制方法的技术解决方案,为红外光学材料均匀性测试进行准确的测试室环境温度的控制,以保证预定的测试精度。
(二)技术方案
为了解决上述技术问题,本发明提供了红外光学材料均匀性测试的温度影响评估和控制方法,包括以下步骤:
步骤S1、设折射率均匀性的测试精度要求为P Δn、试样的厚度为t 0、测试光束通过试样的次数为N,P Δn带来的标准光波面的波前变形波差为ΔW P,则有:
ΔW P=Nt 0P Δn                              (1)
步骤S2、当测试室环境温度变化时,带来了试样某局部的温度增量ΔT,带来的标准光波面的波前变形波差为ΔW ΔT,设试样光学材料的标称折射率为n 0、热光学系数为G、热膨胀系数为α、折射率温度梯度系数为dn/dt,试样某一局部的温度增量ΔT带来的标准光波面的波前变形波差为ΔW ΔT,则有:
Figure PCTCN2019109387-appb-000001
步骤S3、红外光学材料均匀性测试的精度要求满足式(3)的关系:
ΔW ΔT≤kΔW P                                 (3)
其中,k为温度影响的精度控制因子;
将式(3)变换为式(4):
Figure PCTCN2019109387-appb-000002
步骤S4、确定红外光学材料试样的测试精度要求P Δn的范围;
步骤S5、基于公式(2),确定红外光学材料热光学系数G的范围;
步骤S6、根据步骤S3中的式(4)、步骤S4确定的测试精度要求P Δn的档级范围、步骤S5确定的红外光学材料热光学系数G的档级范围,建立红外光学材料均匀性测试精度要求对应的温度影响控制数值表;
步骤S7、对测试室的环境温度,根据测试精度要求和试样的材料类型,用温度影响控制数值表中相应的温度控制数据,在测试期间对测试室的环境温度进行控制。
优选地,k分别取1/2、1/3、1/4、1/5数值之一,k取值越小,温度变化对测试精度的影响越小,满足最低精度要求的k值取为1/2。
优选地,步骤S4中,确定红外光学材料的测试精度要求P Δn的 范围为1×10 -5~1×10 -4,将这个精度范围按从最高精度要求一次乘2倍或近似2倍增加分档,分为四档,则测试精度要求P Δn的四档精度分别分为:1×10 -5;2×10 -5;4×10 -5;10×10 -5
优选地,步骤S5中,基于公式(2),根据红外光学材料温度导致折射率变化最敏感的锗晶体材料的热光学系数G值、最不敏感的熔石英材料热光学系数G值,按红外光学材料热光学系数G数值的集中关系将G分为七个档级,G的七个档级分别为:1×10 -5/℃;2×10 -5/℃;4×10 -5/℃;6×10 -5/℃;10×10 -5/℃;15×10 -5/℃;40×10 -5/℃。
优选地,步骤S6中,所述温度影响控制数值表为表1:
表1红外光学材料均匀性测试精度对应的温度控制要求表 摄氏度℃
Figure PCTCN2019109387-appb-000003
优选地,用表1中的温度控制数据进行控制时,按小于等于使用,表1中的温度影响的精度控制因子k根据需要测试精度要求的高或低决定取小或大的值。
优选地,步骤S7中,还采取如下措施以避免温度不均匀变化对红外光学材料折射均匀性测试的影响:在红外光学材料均匀性干涉测试开始前,将试样放置在测试台上进行一定时间的保温,直到试样温度全面均匀。
(三)有益效果
本发明基于对红外光学材料折射率均匀性测试期间试样局部小的温度变化对测试结果精度影响的发现,建立了红外光学材料折射率测试精度要求和不同红外光学材料温度变化对折射率影响对应的测试室环境温度控制的二维数值表格关系,并建立了相关计算公式进行数值计算和填表,提供了红外光学材料均匀性测试的温度影响评估和控制方法,建立了红外光学材料均匀性测试的温度影响评估和控制方法的技术解决方案,能够为红外光学材料均匀性测试精度的保证提供温度控制的准确指导。
附图说明
图1是红外光学材料均匀性测试允许精度波差图;
图2是红外光学材料局部温度变化带来的波差图;
图3是红外光学材料均匀性测试允许精度波差与局部温度变化波差的对比关系图。
具体实施方式
为使本发明的目的、内容和优点更加清楚,下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。
本发明的发明人发现,红外光学材料折射率均匀性测试期间试样局部小的温度变化将严重影响测试结果的精度,因此,建立了红外光学材料折射率测试精度要求和不同红外光学材料温度变化对折射率影响对应的测试室环境温度控制的二维数值表格关系,并建立了相关计算公式进行数值计算和填表,提供了红外光学材料均匀性测试的温度影响评估和控制方法,建立了红外光学材料均匀性测试的温度影响评估和控制方法的技术解决方案以为红外光学材料均匀性测试精度的保证提供了温度控制的准确指导。
基于上述设计思路,本发明的红外光学材料均匀性测试的温度影响评估和控制方法,采用以下步骤:
步骤S1、高精度的红外光学材料折射率均匀性测试一般是采用干涉法测试。干涉法测试是使标准光波面(通常为平面波)通过试样后的波前变形来获得试样中折射率的不均匀性量值。设折射率均匀性的测试精度要求为P Δn、试样的厚度为t 0、测试光束通过试样的次数为N,P Δn带来的标准光波面的波前变形波差为ΔW P(允许的折射率均匀性波差),见图1所示,ΔW P按以下式(1)计算。
ΔW P=Nt 0P Δn                              (1)
步骤S2、当测试室环境温度变化时,带来了试样某局部的温度增量ΔT(因为环境温度的突然变化是非均匀的),带来的标准光波面的波前变形波差为ΔW ΔT,设试样光学材料的标称折射率为n 0、热光学系数为G、热膨胀系数为α、折射率温度梯度系数为dn/dt,试样某局部的温度增量ΔT带来的标准光波面的波前变形波差为ΔW ΔT,见图2所示,ΔW ΔT按以下式(2)计算。
Figure PCTCN2019109387-appb-000004
步骤S3、为了保证红外光学材料均匀性测试的精度要求P Δn,红外光学材料试样某局部的温度增量ΔT带来的测试波前的变形波差ΔW ΔT应小于等于折射率均匀性的测试精度要求P Δn带来的标准光波面的波前变形波差ΔW P与温度影响的精度控制因子k之积,k可分别取1/2、1/3、1/4、1/5等数值之一,k取值越小,温度变化对测试 精度的影响越小,满足最低精度要求的k值取为1/2,精度要求满足以下式(3)的关系。
ΔW ΔT≤kΔW P                                 (3)
将式(3)变换为以下式(4)。
Figure PCTCN2019109387-appb-000005
红外光学材料试样某局部的温度增量ΔT带来的测试波前的变形波差ΔW ΔT如不进行量值控制,其量值将会超出或显著超出折射率均匀性测试允许的精度要求P Δn对应的波前变形波差ΔW P,使测试精度超出或显著超出允许的精度值,二者的对比关系见图3所示。
步骤S4、确定红外光学材料试样的测试精度要求P Δn的范围。红外光学材料的低测试精度的要求为1×10 -4,高测试精度的要求为1×10 -5,因此测试精度要求P Δn的范围为1×10 -5~1×10 -4,将这个精度范围按从最高精度要求一次乘2倍或近似2倍增加分档,分为四档,以适应更多的测试精度的要求,则测试精度要求P Δn的四档精度分别分为:1×10 -5;2×10 -5;4×10 -5;10×10 -5
步骤S5、确定红外光学材料热光学系数G的范围。由于红外光学材料热光学系数G=(n 0-1)α+dn/dt,红外光学材料折射率n 0的数值范围为1.4~4.0,红外光学材料的dn/dt值一般比α高一个数量级,故红外光学材料热光学系数G主要由dn/dt决定。红外光学材料温度导致折射率变化最敏感的是锗晶体材料,其G为4×10 -4/℃;最不敏感的是熔石英材料,其G为1×10 -5/℃;许多常用红外光学材料属于 中间敏感度的,其G为2×10 -5/℃~15×10 -5/℃范围。按红外光学材料热光学系数G数值的集中关系将G分为七个档级,G的七个档级分别为:1×10 -5/℃;2×10 -5/℃;4×10 -5/℃;6×10 -5/℃;10×10 -5/℃;15×10 -5/℃;40×10 -5/℃。
步骤S6、根据步骤S3中的式(4)、步骤S4确定的测试精度要求P Δn的档级范围、步骤S5确定的红外光学材料热光学系数G的档级范围,建立红外光学材料均匀性测试精度要求对应的温度影响控制数值表,见表1,用于对各红外光学材料和各测试精度要求的试样的测试进行温度控制。用表1中的温度控制数据进行控制时,按小于等于使用。表1中的温度影响的精度控制因子k根据需要测试精度要求的高或低决定取小或大的值。
表1红外光学材料均匀性测试精度对应的温度控制要求表 摄氏度℃
Figure PCTCN2019109387-appb-000006
步骤S7、为了避免温度不均匀变化对红外光学材料折射均匀性测试的影响,需要两个保障措施:一是红外光学材料均匀性干涉测试开始前,需要将试样放置在测试台上进行一定时间的保温,直到试样温度全面均匀;二是对测试室的环境温度,根据测试精度要求和试样的材料类型,用表1中相应的温度控制数据,在测试期间对测试室的环境温度进行控制。
发现测试期间小的温度变化对测试结果有严重影响的现象,建立 红外光学材料均匀性测试的精度要求范围关系和红外光学材料折射率温度影响系数范围匹配对应的测试室环境温度控制关系,建立相关的算法公式进行数值计算,创建红外光学材料均匀性测试精度保证的测试室环境温度控制的数值表格。
本发明建立了红外光学材料均匀性测试的温度影响评估和控制方法,可为红外光学材料均匀性测试的精度保证提供测试室环境温度控制的具体数值,不仅可用于红外光学材料均匀性测试,也可以同样的方法应用于可见光、紫外光等光学材料均匀性测试温度影响的评估。
本发明能为红外光学材料均匀性测试精度要求以及红外光学晶体、红外玻璃、红外陶瓷等各类材料的折射率均匀性测试的温度影响控制提供具体的指导,使红外光学材料均匀性测试得到真实的结果。以上计算的测试精度要求范围的数值、分级可根据需要进行扩展和细分。本发明除应用于均匀性测试的环境温度的评估和控制外,还可以应用于各种通过测试试样相关波面获得测试参数的测试环境温度的评估和控制。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (7)

  1. 红外光学材料均匀性测试的温度影响评估和控制方法,其特征在于,包括以下步骤:
    步骤S1、设折射率均匀性的测试精度要求为P Δn、试样的厚度为t 0、测试光束通过试样的次数为N,P Δn带来的标准光波面的波前变形波差为ΔW P,则有:
    ΔW P=Nt 0P Δn   (1)
    步骤S2、当测试室环境温度变化时,带来了试样某局部的温度增量ΔT,带来的标准光波面的波前变形波差为ΔW ΔT,设试样光学材料的标称折射率为n 0、热光学系数为G、热膨胀系数为α、折射率温度梯度系数为dn/dt,试样一局部的温度增量ΔT带来的标准光波面的波前变形波差为ΔW ΔT,则有:
    Figure PCTCN2019109387-appb-100001
    步骤S3、红外光学材料均匀性测试的精度要求满足式(3)的关系:
    ΔW ΔT≤kΔW P   (3)
    其中,k为温度影响的精度控制因子;
    将式(3)变换为式(4):
    Figure PCTCN2019109387-appb-100002
    步骤S4、确定红外光学材料试样的测试精度要求P Δn的范围;
    步骤S5、基于公式(2),确定红外光学材料热光学系数G的范围;
    步骤S6、根据步骤S3中的式(4)、步骤S4确定的测试精度要求P Δn的档级范围、步骤S5确定的红外光学材料热光学系数G的档级范围,建立红外光学材料均匀性测试精度要求对应的温度影响控制数值表;
    步骤S7、对测试室的环境温度,根据测试精度要求和试样的材料类型,用温度影响控制数值表中相应的温度控制数据,在测试期间对测试室的环境温度进行控制。
  2. 如权利要求1所述的方法,其特征在于,k分别取1/2、1/3、1/4、1/5数值之一,k取值越小,温度变化对测试精度的影响越小,满足最低精度要求的k值取为1/2。
  3. 如权利要求1所述的方法,其特征在于,步骤S4中,确定红外光学材料的测试精度要求P Δn的范围为1×10 -5~1×10 -4,将这个精度范围按从最高精度要求一次乘2倍或近似2倍增加分档,分为四档,则测试精度要求P Δn的四档精度分别分为:1×10 -5;2×10 -5;4×10 -5;10×10 -5
  4. 如权利要求3所述的方法,其特征在于,步骤S5中,基于公式(2),根据红外光学材料温度导致折射率变化最敏感的锗晶体材料的热光学系数G值、最不敏感的熔石英材料热光学系数G值,按红外光学材料热光学系数G数值的集中关系将G分为七个档级,G的 七个档级分别为:1×10 -5/℃;2×10 -5/℃;4×10 -5/℃;6×10 -5/℃;10×10 -5/℃;15×10 -5/℃;40×10 -5/℃。
  5. 如权利要求4所述的方法,其特征在于,步骤S6中,所述温度影响控制数值表为表1:
    表1 红外光学材料均匀性测试精度对应的温度控制要求表 摄氏度℃
    Figure PCTCN2019109387-appb-100003
  6. 如权利要求5所述的方法,其特征在于,用表1中的温度控制数据进行控制时,按小于等于使用,表1中的温度影响的精度控制因子k根据需要测试精度要求的高或低决定取小或大的值。
  7. 如权利要求1所述的方法,其特征在于,步骤S7中,还采取如下措施以避免温度不均匀变化对红外光学材料折射均匀性测试的影响:在红外光学材料均匀性干涉测试开始前,将试样放置在测试台上进行一定时间的保温,直到试样温度全面均匀。
PCT/CN2019/109387 2018-10-19 2019-09-30 红外光学材料均匀性测试的温度影响评估和控制方法 WO2020078213A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/939,675 US10809191B1 (en) 2018-10-19 2020-07-27 Method for evaluating and controlling temperature influence on a homogeneity test for infrared optical materials

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811219048.6 2018-10-19
CN201811219048.6A CN109406108B (zh) 2018-10-19 2018-10-19 红外光学材料均匀性测试的温度影响评估和控制方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/939,675 Continuation US10809191B1 (en) 2018-10-19 2020-07-27 Method for evaluating and controlling temperature influence on a homogeneity test for infrared optical materials

Publications (1)

Publication Number Publication Date
WO2020078213A1 true WO2020078213A1 (zh) 2020-04-23

Family

ID=65467801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109387 WO2020078213A1 (zh) 2018-10-19 2019-09-30 红外光学材料均匀性测试的温度影响评估和控制方法

Country Status (3)

Country Link
US (1) US10809191B1 (zh)
CN (1) CN109406108B (zh)
WO (1) WO2020078213A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109406108B (zh) * 2018-10-19 2020-03-10 中国兵器工业标准化研究所 红外光学材料均匀性测试的温度影响评估和控制方法
CN110687074A (zh) * 2019-10-28 2020-01-14 华中科技大学 一种基于波前传感器的光学制件均匀性检测装置与方法
CN112730265B (zh) * 2020-12-10 2022-08-09 江苏师范大学 一种测试红外光学材料热光系数的温控装置及使用方法
CN112666213B (zh) * 2020-12-21 2023-04-11 昆明理工大学 一种检测气液两相混合过程中温度场均匀性的方法
CN112816519A (zh) * 2020-12-29 2021-05-18 中车工业研究院有限公司 一种光热面料综合性能的测量装置和方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050140967A1 (en) * 2002-06-04 2005-06-30 Nikon Corporation Method for evaluating refractive index homogeneity of optical member
CN101251497A (zh) * 2008-03-19 2008-08-27 中国科学院上海光学精密机械研究所 光学玻璃均匀性测试装置及其测试方法
US20090230293A1 (en) * 2006-03-16 2009-09-17 Flir Systems Ab Method for correction of non-uniformity in detector elements comprised in an ir-detector
CN102226738A (zh) * 2011-03-25 2011-10-26 宁波大学 一种红外玻璃非均匀性检测装置及检测方法
CN105371964A (zh) * 2015-12-05 2016-03-02 中国航空工业集团公司洛阳电光设备研究所 红外探测器在全温响应范围内消除非均匀性的方法和装置
CN106248350A (zh) * 2015-12-21 2016-12-21 中国科学院长春光学精密机械与物理研究所 一种光学玻璃的材料均匀性检测方法及装置
CN107976255A (zh) * 2017-11-24 2018-05-01 烟台艾睿光电科技有限公司 一种红外探测器非均匀性校正系数的修正方法及装置
CN108322732A (zh) * 2017-12-01 2018-07-24 中国航空工业集团公司洛阳电光设备研究所 温度可变辐射材料的红外热像仪非均匀校正挡板测试方法
CN109406108A (zh) * 2018-10-19 2019-03-01 中国兵器工业标准化研究所 红外光学材料均匀性测试的温度影响评估和控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101587012B (zh) * 2009-06-30 2011-06-08 成都光明光电股份有限公司 光学玻璃光学均匀性测试装置及其测试方法
WO2013162944A1 (en) * 2012-04-27 2013-10-31 E. I. Du Pont De Nemours And Company Methods for determining photoprotective materials
CN107505288A (zh) * 2016-10-26 2017-12-22 成都光明光电股份有限公司 可见光至中红外折射率温度系数的测试方法
CN106501216B (zh) * 2016-12-27 2019-04-16 南京理工大学 一种光学平行平板玻璃的均匀性绝对测量方法
CN107870160A (zh) * 2017-11-13 2018-04-03 西安工业大学 一种光学材料面折射率的测量方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050140967A1 (en) * 2002-06-04 2005-06-30 Nikon Corporation Method for evaluating refractive index homogeneity of optical member
US20090230293A1 (en) * 2006-03-16 2009-09-17 Flir Systems Ab Method for correction of non-uniformity in detector elements comprised in an ir-detector
CN101251497A (zh) * 2008-03-19 2008-08-27 中国科学院上海光学精密机械研究所 光学玻璃均匀性测试装置及其测试方法
CN102226738A (zh) * 2011-03-25 2011-10-26 宁波大学 一种红外玻璃非均匀性检测装置及检测方法
CN105371964A (zh) * 2015-12-05 2016-03-02 中国航空工业集团公司洛阳电光设备研究所 红外探测器在全温响应范围内消除非均匀性的方法和装置
CN106248350A (zh) * 2015-12-21 2016-12-21 中国科学院长春光学精密机械与物理研究所 一种光学玻璃的材料均匀性检测方法及装置
CN107976255A (zh) * 2017-11-24 2018-05-01 烟台艾睿光电科技有限公司 一种红外探测器非均匀性校正系数的修正方法及装置
CN108322732A (zh) * 2017-12-01 2018-07-24 中国航空工业集团公司洛阳电光设备研究所 温度可变辐射材料的红外热像仪非均匀校正挡板测试方法
CN109406108A (zh) * 2018-10-19 2019-03-01 中国兵器工业标准化研究所 红外光学材料均匀性测试的温度影响评估和控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIANG, FEI ET AL.: "Uncertainty Evaluation in Infrared Optical Material Refractive Index Homogeneity Measurement", JOURNAL OF APPLIED OPTICS, vol. 36, no. 1, 31 January 2015 (2015-01-31), pages 82 - 87, ISSN: 1002-2082 *

Also Published As

Publication number Publication date
CN109406108A (zh) 2019-03-01
US20200355607A1 (en) 2020-11-12
CN109406108B (zh) 2020-03-10
US10809191B1 (en) 2020-10-20

Similar Documents

Publication Publication Date Title
WO2020078213A1 (zh) 红外光学材料均匀性测试的温度影响评估和控制方法
RU2593917C1 (ru) Способ определения запаздывающих во времени изменений физических величин, зависящих от температуры или механического напряжения, для стекла или стеклокерамики
JP5905710B2 (ja) 均一光透過溶融延伸ガラスの製造方法
Pallicity et al. Birefringence measurement for validation of simulation of precision glass molding process
Yi et al. Residual stresses in glass after molding and its influence on optical properties
CN104215660B (zh) 一种可同时测固体材料导热系数及热扩散率的方法及系统
Tao et al. Quantitatively measurement and analysis of residual stresses in molded aspherical glass lenses
CN110595508A (zh) 一种光纤陀螺标度因数误差补偿方法
Vu et al. Experimental investigation of contact heat transfer coefficients in nonisothermal glass molding by infrared thermography
CN203720116U (zh) 一种新型劈尖干涉线胀系数测定仪
Waxler et al. Relative stress-optical coefficients of some National Bureau of Standards optical glasses
CN103293178B (zh) 玻璃膨胀系数的测试方法
CN106679848A (zh) 一种利用普通温度传感器快速测温的方法
CN105572050B (zh) 球面透镜材料均匀性的检测方法
Li et al. Development of quartz glass as a certified reference material for thermal diffusivity measurements
WO2020078212A1 (zh) 红外光学材料均匀性测试的试样面形误差的控制方法
Kompan et al. Investigation of thermal expansion of a glass–ceramic material with an extra-low thermal linear expansion coefficient
Yue et al. Online and real-time accurate prediction of tempered glass surface stress during quenching process
Tilton et al. Refractive uniformity of a borosilicate glass after different annealing treatments
CN105548087A (zh) 一种测定平板玻璃透过率的方法
RU2796330C1 (ru) Способ определения вязкости стекла
Titov et al. Nanometrology and high-precision temperature measurements under varying in time temperature conditions
Pojur et al. Thermal expansion at elevated temperatures. I. Apparatus for use in the temperature range 300-800 K: the thermal expansion of copper
Chrzanowski Evaluation of commercial thermal cameras in quality systems
Fu et al. Analysis of the Test Method of Quartz Glass Optical Homogeneity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19873281

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19873281

Country of ref document: EP

Kind code of ref document: A1