WO2020078185A1 - 照明装置及照明系统 - Google Patents

照明装置及照明系统 Download PDF

Info

Publication number
WO2020078185A1
WO2020078185A1 PCT/CN2019/107986 CN2019107986W WO2020078185A1 WO 2020078185 A1 WO2020078185 A1 WO 2020078185A1 CN 2019107986 W CN2019107986 W CN 2019107986W WO 2020078185 A1 WO2020078185 A1 WO 2020078185A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
lens
lighting device
center
Prior art date
Application number
PCT/CN2019/107986
Other languages
English (en)
French (fr)
Inventor
张贤鹏
陈彬
周建华
马勇
李屹
Original Assignee
深圳市绎立锐光科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市绎立锐光科技开发有限公司 filed Critical 深圳市绎立锐光科技开发有限公司
Publication of WO2020078185A1 publication Critical patent/WO2020078185A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S8/00Lighting devices intended for fixed installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • F21V19/001Fastening of light sources or lamp holders the light sources being semiconductors devices, e.g. LEDs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • F21V23/003Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • F21V7/05Optical design plane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2113/00Combination of light sources
    • F21Y2113/20Combination of light sources of different form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present application relates to the field of optical technology, and in particular, to a lighting device and a lighting system.
  • the lighting device has a broad application prospect in flashlights, car lights and stage lighting.
  • There are two main technologies in the current lighting device one is the combination of LED and phosphor, and the other is the combination of fluorescence and laser.
  • the combination of LED and phosphor powder has low cost and soft light output.
  • the technology of mixing laser and fluorescence can achieve higher efficiency.
  • both solutions need to add optical devices and optical path to achieve the combination of the two, so it will increase the volume of the lighting device.
  • the pursuit of products is more and more extreme. While pursuing high brightness and wide color gamut display, it is also pursuing the small and vibrant equipment. Therefore, it is necessary to make reasonable use of the spatial structure of the lighting device to achieve the miniaturization of the lighting device and the lighting system.
  • An embodiment of the present invention provides a lighting device and a lighting system to solve the above problems.
  • the present invention provides a lighting device, including: a first light source, a primary lens, a reflective element, and a secondary lens.
  • the first light source is used to emit the first light.
  • the first-level lens is located on the light path of the first light source, and the distance from the center of the first-level lens to the center of the first light source is L0.
  • the reflecting element reflects the light emitted by the first-level lens to the second-level lens, wherein the distance of the optical path traversed by the center of the first-level lens to the center of the second-level lens is L1.
  • the secondary lens converges the light reflected by the reflective element, where the radius of the secondary lens is R2. L0 + L1 ⁇ 2R2.
  • the present invention provides a lighting system including the above lighting device.
  • the lighting system further includes a housing, and the lighting device is housed in the housing.
  • the lighting device and the lighting system provided by the present invention reduce the volume of the lighting device and the lighting system by reasonably setting the positions of the first light source, the primary lens and the secondary lens.
  • FIG. 1 is a schematic structural diagram of a lighting device provided by a first embodiment of the present application.
  • FIG. 2 is a schematic diagram of the size relationship of the primary lens, the secondary lens, and the first light source of the lighting device provided in the first embodiment of the present application.
  • FIG. 3 is a schematic diagram of light relationships of the lighting device provided by the first embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a lighting device provided by a second embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a wavelength conversion device of an illumination device provided by a second embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a lighting system provided by a third embodiment of the present application.
  • the lighting device 10 provided in this embodiment includes a first light source 13, a first-level lens 17, a reflective element 19 and a second-level lens 18.
  • the first light source 13 is used to emit first light.
  • the primary lens 17 is located on the light path of the first light source 13, and the distance from the center of the primary lens 17 to the center of the first light source 13 is L0.
  • the reflecting element 19 reflects the light emitted by the first-stage lens 17 to the second-stage lens 18, wherein the distance of the optical path traversed by the center of the first-stage lens 17 to the center of the second-stage lens 18 is L1.
  • the secondary lens 18 condenses the light reflected by the reflective element 19, wherein the radius of the secondary lens 18 is R2. L0 + L1 ⁇ 2R2.
  • the first light source 13 is a light-emitting diode. It can be understood that the first light source 13 may be a single light-emitting diode or a light-emitting diode array, that is, it includes multiple light-emitting diodes, each of which emits light. The distance between the diode and the adjacent light-emitting diode can be small, so that the light-emitting surface 131 of each light-emitting diode in the light-emitting diode array together constitute a surface light source. In other embodiments, the first light source 13 may also be a laser light source.
  • the first light source 13 may emit first light M1 as excitation light in the z-axis direction, for example: blue light, ultraviolet light, or violet light; or may emit first light M1 as non-excitation light, for example, red light, green light, and the like.
  • the primary lens 17 is a biconvex lens, and the primary optical axis L of the primary lens 17 is parallel to the z-axis.
  • the primary lens 17 may further include two or more convex lenses arranged coaxially
  • the optical axis of each convex lens is perpendicular to the light emitting surface 131 of the first light source 13, the focal length of each convex lens may be different, the closer the primary lens 17 is to the light emitting surface 131, the smaller the focal length of the convex lens.
  • the secondary lens 18 is disposed downstream of the optical path of the primary lens 17. Specifically, the first light M1 may be condensed by the secondary lens 18 and then exit the secondary lens 18.
  • the optical axis (not shown) of the secondary lens 18 is perpendicular to the main optical axis L of the primary lens 17, and the optical axis of the secondary lens 18 may be parallel to the y-axis direction, where the y-axis direction is The direction perpendicular to the transmission path of the first light M1.
  • the optical axis of the secondary lens 18 may be at another tilt angle with respect to the main optical axis L of the primary lens 17.
  • the second-level lens 18 is also a biconvex lens, the radius of which can be greater than or equal to the radius of the first-level lens 17, so that more light can emerge from the lighting device 10 to improve the illumination The brightness of the device 10.
  • the secondary lens 18 can also be a plurality of convex lenses arranged coaxially, so that the arrangement can better condense the light and increase the irradiation distance of the lighting device 10.
  • the lighting device 10 further includes a reflective element 19 located between the optical paths of the primary lens 17 and the secondary lens 18, and the reflective element 19 reflects the first light M1 passing through the primary lens 17 to the secondary lens 18.
  • the angle ⁇ between the reflective element 19 and the main optical axis L of the first-level lens 17 may be 45 °.
  • the reflective element 19 includes a high-reverse surface 193, which is located on the side of the first-level lens 17, and the reflective element 19 further includes a through hole 191 that penetrates the high-reverse surface 193, and the shape thereof is not limited.
  • the position of the through hole 191 on the reflective element 19 needs to satisfy the condition that light, such as laser light, passes through the through hole 191.
  • the high-reflective surface 193 may be a high-reflective film, or may be a material directly coated on the reflective element 19 with high-reflective characteristics.
  • the high-reflective surface 193 may reflect the first light M1.
  • the exit angle ⁇ 1 of the first light M1 converged by the first-level lens 17 may be 26 ° -39 °.
  • the first lens 17 and the second lens 18 are both ideal lenses (thickness is 0), and the first light M1 passes through the first lens 17 and the second lens
  • the emission angles after 18 are ⁇ 1 and ⁇ 2, respectively, and ⁇ 0 is the receiving angle of the first light source 13.
  • L0 is the distance from the center of the primary lens 17 to the center of the first light source 13
  • L1 is the distance of the optical path traversed from the center of the primary lens 17 to the center of the secondary lens 18.
  • R0 is the cross-sectional radius of the light emitting surface 131
  • R1 is the radius of the primary lens 17, and R2 is the radius of the secondary lens 18.
  • the structure of the lighting device 10 is the most compact, and the diameter of the lighting system including the lighting device 10, such as a flashlight, is the smallest.
  • the ray CG of the edge ray BC reflected by the 45 ° mirror passes through B '; the ray of the edge ray B'C' reflected by the 45 ° mirror reaches the 45 ° mirror edge of the secondary lens, considering the central axis ODE
  • R1sin ( ⁇ 1) R0sin ( ⁇ 0) (2)
  • Equation (3) is the transcendental equation.
  • the optimal value (minimum value) of R1 can also be calculated based on the conservation of optical expansion.
  • the thickness of the lens is not negligible.
  • Different lenses such as plano-convex lenses, meniscus lenses, or lenticular lenses, etc.
  • similar optical systems cannot be equivalent to zero. Therefore, there will be deviations in the calculation relationship between the edge angle and the aperture of the optical system.
  • the convergence system under the premise of 45 ° folding, when the maximum size is limited to the maximum lens aperture, the sum of the effective spacing L0, L1 is always less than the maximum size or close to it. Therefore, a smaller value of ⁇ 1 is not conducive to obtaining a smaller system size, or this cannot fully utilize the size of the system to obtain the best convergence effect.
  • the lighting device 10 further includes a second light source 11 located on the side of the reflective element 19 away from the first light source 13.
  • the second light source 11 emits third light M3 to the reflective element 19.
  • the center of the second light source 11 and the center of the first light source 13 are located on the primary optical axis L of the primary lens 17, so that the spot of the light rays that exit the secondary lens 18 fall on the secondary lens 18 as much as possible, to raise the illumination device 10 brightness and color purity.
  • the second light source 11 is a laser light source, and the second light source 11 may include a laser 112. It can be understood that the second light source 11 may further include a laser light homogenizing device (not shown) and / or a first convex lens 116 , Where the laser 112 is used to generate the third light M3 in a direction parallel to the z-axis, and the laser light homogenizing device is used to uniformly light the third light M3.
  • the laser diffuser may include a compound eye lens, a diffuser rod, a diffuser, or a diffuser wheel.
  • the first convex lens 116 may be a plano-convex lens, a biconvex lens, or a meniscus lens.
  • the first convex lens 116 condenses the third light M3 generated by the laser 112 and emits the condensed third light M3.
  • the second light source 11 may also be other light source devices that can emit excitation light, such as light emitting diodes.
  • the second light source 11 is a blue light source. It can be understood that the second light source 11 can emit excitation light, for example: blue light, ultraviolet light, or violet light; it can also emit non-excitation light, for example: red light or green light. Light and so on.
  • the laser 112 may be a blue laser 112 for emitting blue third light M3.
  • the laser 112 may include one, two or more blue lasers 112, and the number of lasers 112 may be selected according to actual needs.
  • the laser 112 may be a laser diode.
  • the colors of the third light M3 and the first light M1 may be the same, such as blue, or may be different, for example, the third light M3 is blue, ultraviolet light, and the first light M1 is green, red, yellow, Cyan, etc .; for another example, the third light M3 is red, green, etc., and the first light M1 is blue, ultraviolet light.
  • the lighting device 10 further includes a wavelength conversion element 15 disposed adjacent to the light emitting surface 131 of the first light source 13, the shape and size of the two may be the same, and the wavelength conversion element 15 may be slightly larger than the light emission of the first light source 13 Surface 131, so that the first light M1 emitted by the first light source 13 can be converted more.
  • the wavelength conversion element 15 may also be spaced apart from the light emitting surface 131, that is, the wavelength conversion element 15 is a structure independent of the first light source 13, for example, there is an air gap between the wavelength conversion element 15 and the light emitting surface 131, The projection of the light emitting surface 131 in the z-axis direction may fall within the range of the wavelength conversion element 15.
  • the wavelength conversion element 15 may be a wavelength conversion layer directly coated on the light emitting surface 131, and the wavelength conversion layer may be a material layer of the wavelength conversion element 15 or a material of the wavelength conversion element 15 sintered with an adhesive
  • the material of the wavelength conversion element 15 can be an all-solid fluorescent material, such as fluorescent ceramics or fluorescent glass, etc.
  • the color of the light emitted by the material when excited can be yellow, magenta, cyan or orange, etc. According to the light emitted by the second light source 13 and the color of the light emitted by the first light source 13 are selected accordingly, so as to finally form a mixed light exit, such as white light.
  • the material of the wavelength conversion element 15 may also be phosphors of different colors, for example, yellow phosphor, cyan phosphor, yellow-green phosphor, and the like.
  • the wavelength conversion element 15 may also be a material including a transparent substrate and the wavelength conversion element 15 doped inside the transparent substrate.
  • the wavelength conversion element 15 may convert the first light M1 emitted by the first light source 13 into the second light M2. Specifically, after the first light source 13 emits the first light M1 having an excitation function to the wavelength conversion element 15, the phosphor on the surface of the wavelength conversion element 15 is excited to generate second light M2.
  • the wavelength conversion element 15 may also convert the third light M3 into the fourth light M4.
  • the principle is similar to the first light M1 and will not be repeated here.
  • the first light source 13 and the second light source 11 emit light simultaneously, for example, the second light source 11 emits excitation light, the first light source 13 emits non-excitation light, and the wavelength conversion element 15 It is also possible to emit a mixed light including the first light M1 and the fourth light M4; when the first light source 13 emits excitation light and the second light source 11 emits non-excitation light, the wavelength conversion element 15 may emit the second light M2 and the third light Mixed light of light M3; when the second light source 11 emits excitation light and the first light source 13 also emits excitation light, the wavelength conversion element 15 may emit mixed light including the second light M2 and the fourth light M4.
  • the phosphor powder does not completely absorb all of the excitation light, it may cause that part of the excitation light, such as the first light M1 or the third light M3, is not completely absorbed and is output
  • the second light source 11 emits blue third light M3, which is incident on the wavelength conversion element 15 after sequentially passing through the convergence of the first convex lens 116, the through hole 191 of the reflective element 19, and the re-convergence of the first lens 17.
  • the yellow phosphor in the excitation wavelength conversion element 15 generates yellow fourth light M4, and after passing through the reflection action of the high reverse surface 193 of the reflection element 19 and the convergence action of the secondary lens 18, emits light with high brightness from the illumination device 10.
  • the first light M1 emitted by the first light source 13 is blue light. After the first light M1 is incident on the wavelength conversion element 15, the yellow phosphor in the wavelength conversion element 15 is excited to produce yellow second light M2, the reflection effect on the high reverse surface 193 passing through the reflection element 19 and the convergence effect of the secondary lens 18 After that, light with a high color rendering index is emitted from the lighting device 10.
  • the yellow mixed light of the fourth light M4 and the second light M2 also has the first light source 13 Advantages of high color rendering index and high brightness of the second light source 11.
  • the red third light M3 emitted by the second light source 11 passes through the convergence of the first convex lens 116, the through hole 191 of the reflective element 19, and the re-convergence of the primary lens 17 in order to enter the wavelength conversion element 15.
  • the light having high brightness is emitted from the lighting device 10 after the reflection effect passing through the high reverse surface 193 of the reflection element 19 and the convergence effect of the secondary lens 18.
  • the first light M1 emitted by the first light source 13 is blue light.
  • the cyan phosphor in the wavelength conversion element 15 is excited to generate cyan second light M2, which is mixed with the red third light M3 emitted by the second light source 11
  • white light is formed, and after passing through the reflection action of the high reverse surface 193 of the reflection element 19 and the convergence action of the secondary lens 18, light with a high color rendering index is emitted from the illumination device 10.
  • the mixed light of the third light M3 and the second light M2 also has the advantages of the high color rendering index of the first light source 13 and the high brightness of the second light source 11.
  • the lighting device 10 provided in this embodiment reduces the volume of the lighting device 10 by reasonably setting the positions of the first light source 13, the primary lens 17, and the secondary lens 18.
  • the wavelength conversion element 25 of the lighting device 20 provided in this embodiment includes a first conversion region 251 and a second conversion region 253.
  • the first conversion zone 251 may be disposed in the center of the wavelength conversion element 25, the center of the first conversion zone 251 may be located on the main optical axis L, and the first conversion zone 251 is the incident surface of the second light source 11 for converting the third light M3 is converted into the fourth light M4.
  • the first conversion zone 251 is the incident surface of the second light source 11 for converting the third light M3 is converted into the fourth light M4.
  • a small part of the first light M1 will be converted into the second light M2 through the first conversion region 251.
  • the shape of the first conversion region 251 is not limited, and the size can be similar to the spot of the third light M3.
  • the material can be an all-solid fluorescent material, and the color of the material can be red, green, blue, etc.
  • the second conversion area 253 is provided around the first conversion area 251.
  • the second conversion region 253 is an incident surface of the first light source 13 and is used to convert the first light M1 into the second light M2.
  • the material of the second conversion region 253 may be a high color rendering index wavelength conversion material, or a mixture of multiple fluorescent materials, and the color of the material may be different from that of the first conversion region 251.
  • the color of the material of the first conversion area 251 is yellow, and the color of the material of the second conversion area 253 is purple.
  • the second light source 11 emits blue third light M3 and the first light source 13 emits green first light M1
  • the color of mixed light can be white by proper proportion design.
  • the material of the second conversion region 253 is a high color rendering index wavelength conversion material
  • the light mixed with the first light M1 and the second light M2 has a high color rendering index characteristic; due to the high brightness characteristic of the third light M3, the first The mixed light of the three lights M3 and the fourth light M4 also has high brightness; it can be understood that the mixed light formed by the first light M1, the second light M2, the third light M3 and the fourth light M4 also has a high color rendering index And high-brightness characteristics, expanding the scope of application of the lighting device 20.
  • the lighting device 20 provided in this embodiment reduces the volume of the lighting device 20 by reasonably setting the positions of the primary lens 17, the secondary lens 18, and the first light source 13. And by dividing the wavelength conversion element 25 into the first conversion area 251 and the second conversion area 253, and the materials of the two are different, the advantages of the first light source 13 and the second light source 11 are combined to expand the application range of the lighting device 20 .
  • this embodiment provides a lighting system 100 including the lighting device of any of the foregoing embodiments, such as the lighting device 10, and the lighting system 100 further includes a housing 40 that houses the lighting device 10.
  • the lighting system 100 is a flashlight.
  • the lighting system 100 may also be a car lamp, a stage lamp, a projection device, or the like.
  • the housing 40 is a housing of the lighting system 100, and the material of the housing may be metal or plastic.
  • the lighting system 100 may not include the control device 30, and the opening and closing of the first light source 11 and the first light source 13 can be simultaneously controlled by the main switch.
  • the first and second light sources can be simultaneously turned on in the low beam and high beam states.
  • the lighting system 100 may further include a control device 30.
  • the control device 30 may also be accommodated in the lighting system 100.
  • the control device 30 controls the opening and closing of the first light source 13 and the first light source 11.
  • the control system controls the first light source 13 to turn on, and turns off the first light source 11 at the same time.
  • the lighting system 100 emits soft light with a high color rendering index to meet the needs of near-field lighting.
  • the control system controls the first light source 11 to turn on, because the brightness of the third light M3 (FIG. 4) emitted by the first light source 11 is much higher than the first light M1 emitted by the first light source 13 The brightness of (FIG.
  • the lighting system 100 emits light with high brightness, which can provide a large irradiation distance.
  • the lighting system 100 at least further includes components such as power supplies and wires, and the structure and connection relationship of other components such as power supplies, wires, etc. can refer to the prior art, and will not be repeated here.
  • the lighting system 100 provided in this embodiment includes the lighting device 10.
  • the lighting device 10 By reasonably setting the positions of the primary lens 17, the secondary lens 18 and the first light source 13, the volume of the lighting device 10 is reduced, and the corresponding reduction The volume of the lighting system is reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

一种照明装置(10)及照明系统(100)。照明装置(10)包括第一光源(13)、一级透镜(17)、反射元件(19)及二级透镜(18)。第一光源(13)用于发射第一光(M1)。一级透镜(17)位于第一光源(13)的出光光路上,一级透镜(17)的中心至第一光源(13)的中心距离为L0。反射元件(19)将一级透镜(17)出射的光反射至二级透镜(18),其中一级透镜(17)的中心至二级透镜(18)的中心所经过的光路的距离为L1。二级透镜(18)会聚经反射元件(19)反射的光,其中二级透镜(18)的半径为R2。L0+L1≤2R2。通过合理设置第一光源(13)、一级透镜(17)及二级透镜(18)的位置,减小了照明装置(10)及照明系统(100)的体积。

Description

照明装置及照明系统 技术领域
本申请涉及光学技术领域,具体而言,涉及一种照明装置及照明系统。
背景技术
照明装置在手电筒、车灯及舞台照明中有着广泛的应用前景。目前的照明装置中主要技术有两种,一种是采用LED与荧光粉结合的方案,另一种是荧光与激光的合光方案。利用LED与荧光粉结合,成本较低且出光柔和。激光与荧光混合的技术能够获得较高的效率。但两种方案均需要增加光学器件及光程来实现两者合光,因此会增大照明装置的体积。随着人们生活品质的提升,对产品的追求越来越极致,在追求高亮度、广色域显示的同时,也追求设备的小巧精致。因此需要对照明装置的空间结构进行合理利用,来实现照明装置及照明系统的小型化。
发明内容
本发明实施例提出了一种照明装置及照明系统,以解决上述问题。
本发明实施例通过以下技术方案来实现上述目的。
第一方面,本发明提供一种照明装置,包括:第一光源、一级透镜、反射元件及二级透镜。第一光源,用于发射第一光。一级透镜,位于第一光源的出光光路上,一级透镜的中心至第一光源的中心距离为L0。反射元件,将一级透镜出射的光反射至二级透镜,其中一级透镜的中心至二级透镜的中心所经过的光路的距离为L1。二级透镜,会聚经反射元件反射的光,其中二级透镜的半径为R2。L0+L1≤2R2。
第二方面,本发明提供一种照明系统,包括上述照明装置,照明系统还包括壳体,照明装置收容于壳体。
相较于现有技术,本发明提供的照明装置及照明系统通过合理设置第一光源、一级透镜及二级透镜的位置,减小了照明装置及照明系统的体积。
本发明的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
图1是本申请第一实施例提供的照明装置的结构示意图。
图2是本申请第一实施例提供的照明装置的一级透镜、二级透镜及第一光源的尺寸关系示意图。
图3是本申请第一实施例提供的照明装置的光线关系示意图。
图4是本申请第二实施例提供的照明装置的结构示意图。
图5是本申请第二实施例提供的照明装置的波长转换装置的结构示意图。
图6是本申请第三实施例提供的照明系统的结构示意图。
具体实施方式
第一实施例
请参阅图1、图2及图3,本实施例提供的照明装置10,包括第一光源13、一级透镜17、反射元件19及二级透镜18。第一光源13,用于发射第一光。一级透镜17,位于第一光源13的出光光路上,一级透镜17的中心至第一光源13的中心距离为L0。反射元件19,将一级透镜17出射的光反射至二级透镜18,其中一级透镜17的中心至二级透镜18的中心所经过的光路的距离为L1。二级透镜 18,会聚经反射元件19反射的光,其中二级透镜18的半径为R2。L0+L1≤2R2。
具体地,在本实施例中,第一光源13为发光二极管,可以理解的是,第一光源13可以是单个的发光二极管,还可以是发光二极管阵列,即包括多个发光二极管,每一个发光二极管与其相邻的发光二极管之间的间距可以很小,使得这个发光二极管阵列中的每一个发光二极管的发光面131共同构成一个面光源。在其他实施方式中,第一光源13还可以为激光光源。
第一光源13可以作为激发光沿z轴方向发出第一光M1,例如:蓝光、紫外光、紫光;也可以作为非激发光发出第一光M1,例如:红光、绿光等。
在本实施例中,一级透镜17为双凸透镜,一级透镜17的主光轴L平行于z轴,在其他实施方式中,一级透镜17还可以包括同轴设置的两个至多个凸透镜的组合,各凸透镜的光轴垂直于第一光源13的发光面131,各凸透镜的焦距可以不同,一级透镜17在与发光面131距离越近的位置,凸透镜的焦距越小。
二级透镜18设置在一级透镜17的光路下游位置,具体地,第一光M1可以经过二级透镜18聚光后从二级透镜18射出。在本实施例中,二级透镜18的光轴(图未示)与一级透镜17的主光轴L垂直,二级透镜18的光轴可以与y轴方向平行,其中,y轴方向为与第一光M1传输光路垂直的方向。在其他实施方式中,二级透镜18的光轴相对一级透镜17的主光轴L还可以是其他倾斜角度。
与一级透镜17类似,在本实施例中,二级透镜18也为双凸透镜,其半径可以大于或等于一级透镜17的半径,以便于更多的光可以从照明装置10出射,提升照明装置10的亮度。在其他实施方式中,二级透镜18也可以是同轴设置的若干凸透镜,这样设置可以更好的将光线会聚,提高照明装置10的照射距离。
照明装置10还包括反射元件19,反射元件19位于一级透镜17和二级透镜 18的光路之间,反射元件19将经过一级透镜17的第一光M1反射至二级透镜18。反射元件19与一级透镜17的主光轴L的夹角α可以为45°。
反射元件19包括高反面193,高反面193位于一级透镜17的一侧,反射元件19还包括通孔191,通孔191贯穿高反面193,其形状不限定。通孔191在反射元件19上的位置需要满足光线例如激光通过通孔191的条件。
高反面193可以是高反膜,还可以是直接涂覆在反射元件19上的具有高反特性的材料,高反面193可以反射第一光M1。
在第一光M1照射到反射元件19表面时,少部分第一光M1可能会通过通孔191而损失,因此可以尽量减小通孔191的面积,进而减小第一光M1在通孔191的损失。
第一光M1经一级透镜17会聚后的出射角度θ1可以为26°-39°。
请参阅图2,具体地,考虑理想透镜情况(厚度可忽略),一级透镜17及二级透镜18均为理想透镜(厚度为0),第一光M1经过一级透镜17及二级透镜18后的出射角度分别为θ1和θ2,θ0为第一光源13的收光角度。L0为一级透镜17的中心至第一光源13的中心的距离,L1为一级透镜17的中心至二级透镜18的中心的所经过的光路的距离。R0为发光面131的横截面半径,R1为一级透镜17的半径,R2为二级透镜18的半径。根据基本的几何关系,应满足下述条件:
tan(θ0)=(R1-R0)/L0
tan(θ1)=(R2-R1)/L1
根据基本的光学扩展量守恒定律,在理想情况下(光能利用率最高),应有:
R0*sin(θ0)=R1*sin(θ1)=R2*sin(θ2)
要考虑最小化系统尺寸(例如当照明系统为手电筒时的手电筒的直径),在 进行45°折叠的前提下,应该有:
L0+L1≤2*R2
一级透镜17、二级透镜18和第一光源13在满足上述条件的情况下,照明装置10的结构最紧凑,包括照明装置10的照明系统如手电筒等的直径最小。
为避免遮挡,充分利用光能,考虑极限情况,应满足:
请参阅图3,边缘光线BC经45°镜反射后的光线CG经过B’;边缘光线B’C’经45°镜反射后的光线到达二级透镜的45°镜像边缘,考虑中轴线ODE的反射为EF(F为二级透镜18的中心位置),有FC’=R2;
极限情况下:DE+EF=L1、EF=R2;
根据反射定律计算可知,边缘光线BC与中轴线ODE夹角为θ1、反射镜CC’为45°斜放(即角CED=45°)时,角BCB’=90-2*θ1,进而有角BB’C=θ1;
假定BB’延长线与GC’交于点H,有DH=R2,GH=B’H*tan(θ1)=(R2-R1)*tan(θ1);
所以有:
DE=DJ+JE=DJ+EE’=DJ+EI+IE’=DJ+R1+IE’
其中:DJ=R1*tan(θ1)
IE’/(L1-R2)=tan(θ1)
又:L1=(R2-R1)/tan(θ1)
即:
Figure PCTCN2019107986-appb-000001
Figure PCTCN2019107986-appb-000002
理想情况下,有
R1sin(θ1)=R0sin(θ0)       (2)
假定发光面131的横截面半径R0、收光角度θ0确定,二级透镜18的半径R2也确定(如R2=60R0),R2与手电筒的筒直径有直接关系,则可以联立(1)、(2)求解。
解(1)的方程有:
Figure PCTCN2019107986-appb-000003
显然有tan(θ1)≤1(即θ1≤45°,考虑避免遮挡),则
Figure PCTCN2019107986-appb-000004
Figure PCTCN2019107986-appb-000005
方程(3)为超越方程。
联立方程组(2)和(3,由于光束角为120°的朗伯光型光源各向同性,是较理想的光型。因此假定收光角度θ0为60度(朗伯光源的半宽角度)时,其允许的角度上限应为不到39°。由此,在考虑高效收光情况下,一级透镜17的出光角度不大于39°。
考虑极端情况,即L0+L1=2*R2时,系统的尺寸得以充分利用;
此时有:
Figure PCTCN2019107986-appb-000006
当θ1小于26°附近时,
Figure PCTCN2019107986-appb-000007
的值大于零,即L0+L1>2R2;无法满足照明装置10结构紧凑的条件,因此θ1的取值应不小于26°。
需要说明的是,在θ1确定的情况下,R1的最佳取值(最小值)也可以根据光学扩展量守恒计算获得。
在实际系统中,透镜的厚度是不可忽略的,不同的透镜(如平凸透镜、凹凸透镜或双凸透镜等等)以及类似的光学系统,并不能等效为零。因此在边缘角度与光学系统口径的计算关系也会出现偏差。但相对而言,对于会聚系统而言,在45°折叠的前提下,最大尺寸限制为最大透镜口径的时候,其有效的间距L0、L1之和总是小于最大尺寸或与之接近。因此,更小的θ1取值不利于获得更小的系统尺寸,或这无法充分利用系统的尺寸已获得最佳的会聚效果。
在本实施例中,照明装置10还包括一第二光源11,位于反射元件19远离第一光源13的一侧,第二光源11发出第三光M3至反射元件19。第二光源11的中心、及第一光源13的中心位于一级透镜17的主光轴L,以便出射至二级透镜18的光线的光斑尽可能地落在二级透镜18上,提升照明装置10的亮度及色彩纯度。
在本实施例中,第二光源11为激光光源,第二光源11可以包括激光器112,可以理解,第二光源11还可以包括激光匀光器件(图未示)和(或)第一凸透镜116,其中激光器112用于沿平行于z轴的方向产生第三光M3,激光匀光器件用于对该第三光M3进行匀光。激光匀光器可以包括复眼透镜、匀光棒、散光片或散射轮等。第一凸透镜116可以是平凸透镜,也可以是双凸透镜,还可以是凹凸透镜,第一凸透镜116对激光器112产生的第三光M3进行会聚并出射会聚后的第三光M3。在其他实施方式中,第二光源11还可以是其他能发射激发光的光源器件如发光二极管等。
在本实施例中,第二光源11为蓝光光源,可以理解的是,第二光源11可以出射激发光,例如:蓝光、紫外光、紫光;也可以出射非激发光,例如:红光或绿光等。激光器112可以为蓝光激光器112,用于发出蓝光第三光M3,激光器 112可以包括一个、两个或多个蓝光激光器112,具体其激光器112的数量可以依据实际需要进行选择,激光器112可以为激光二极管。
第三光M3与第一光M1的颜色的颜色可以相同,例如均为蓝色,还可以不同,例如,第三光M3为蓝色、紫外光,第一光M1为绿色、红色、黄色、青色等;又例如,第三光M3为红色、绿色等,第一光M1为蓝色、紫外光。
照明装置10还包括波长转换元件15,波长转换元件15与第一光源13的发光面131相邻设置,二者的形状及尺寸可以相同,波长转换元件15还可以略大于第一光源13的发光面131,以便第一光源13发出的第一光M1能更多的转换。
在其他实施方式中,波长转换元件15还可以与发光面131间隔设置,即波长转换元件15为相对第一光源13独立的结构,例如,波长转换元件15与发光面131之间存在空气间隙,发光面131在z轴方向上的投影可以落在波长转换元件15的范围之内。
在本实施例中,波长转换元件15可以是直接涂覆在发光面131上的波长转换层,波长转换层可以为波长转换元件15的材料层或者波长转换元件15的材料与粘接剂烧结而成的膜片等,波长转换元件15的材料可以为全固态荧光材料,例如荧光陶瓷或荧光玻璃等,材料受激发可以发出的光的颜色可以是黄色、品红、青色或者橙色等,具体可以根据第二光源13发出的光、第一光源13发出的光的颜色进行相应选择,以便最终能形成混合光出射,例如白光等。
在其他实施方式中,波长转换元件15的材料还可以是不同颜色的荧光粉,例如,黄光荧光粉、青色荧光粉、黄绿荧光粉等。当然,波长转换元件15也可以为包括透明基板以及掺杂在透明基板内部的波长转换元件15的材料。
波长转换元件15可以将第一光源13发出的第一光M1转换为第二光M2。 具体而言,当第一光源13发出具有激发功能的第一光M1至波长转换元件15之后,激发波长转换元件15表面的荧光粉产生第二光M2。
波长转换元件15还可以将第三光M3转换为第四光M4。原理与第一光M1相似,此处不再赘述,当第一光源13及第二光源11同时发光时,例如第二光源11发出激发光、第一光源13发出非激发光,波长转换元件15还可以出射包括第一光M1和第四光M4的混合光;当第一光源13发出激发光、第二光源11发出非激发光时,波长转换元件15可以出射包括第二光M2、第三光M3的混合光;当第二光源11发出激发光、第一光源13也发出激发光时,波长转换元件15可以出射包括第二光M2和第四光M4的混合光。当荧光粉未完全吸收所有的激发光时,可能导致部分激发光例如第一光M1或第三光M3未被完全吸收,与上述混合光一起输出。
以下参照图1,以两个具体的示例对本实施例提供的包括上述各部件的照明装置10的工作过程进行说明。
例如,第二光源11发出的为蓝色第三光M3,在依次经过第一凸透镜116的会聚、反射元件19的通孔191、以及一级透镜17的再次会聚之后入射到波长转换元件15。激发波长转换元件15中的黄色荧光粉产生黄色的第四光M4,在经过反射元件19的高反面193的反射作用及二级透镜18的会聚作用之后从照明装置10射出具有高亮度的光线。
第一光源13发出的第一光M1为蓝光。第一光M1入射到波长转换元件15后,激发波长转换元件15中的黄色荧光粉产生黄色的第二光M2,在经过反射元件19的高反面193的反射作用及二级透镜18的会聚作用之后从照明装置10射出具有高显色指数的光线。
由于第二光源11发出的第三光M3的亮度远远高于第一光源13发出的第一光M1的亮度,因此第四光M4与第二光M2的黄色混合光兼具第一光源13的高显色指数及第二光源11的高亮度的优点。
再例如,第二光源11发出的为红色第三光M3,在依次经过第一凸透镜116的会聚、反射元件19的通孔191、以及一级透镜17的再次会聚之后入射到波长转换元件15。在经过反射元件19的高反面193的反射作用及二级透镜18的会聚作用之后从照明装置10射出具有高亮度的光线。
第一光源13发出的第一光M1为蓝光。第一光M1入射到波长转换元件15后,激发波长转换元件15中的青色荧光粉产生青色的第二光M2,青色的第二光M2、和第二光源11发出的红色第三光M3混合后形成白光,在经过反射元件19的高反面193的反射作用及二级透镜18的会聚作用之后从照明装置10射出具有高显色指数的光线。
第三光M3与第二光M2的混合光亦兼具第一光源13的高显色指数及第二光源11的高亮度的优点。
综上,本实施例提供的照明装置10,通过合理设置第一光源13、一级透镜17及二级透镜18的位置,减小了照明装置10的体积。
第二实施例
请参阅图4及图5,与第一实施例不同的是,本实施例提供的照明装置20的波长转换元件25包括第一转换区251及第二转换区253。
第一转换区251可以设置在波长转换元件25的中央,第一转换区251的中心可以位于主光轴L上,第一转换区251为第二光源11的入射面,用于将第三光M3转换为第四光M4。当然,也会有少部分的第一光M1经过第一转换区251 转换为第二光M2。第一转换区251的形状不限,尺寸可以和第三光M3的光斑相近,材料可以为全固态荧光材料,材料的颜色可以为红色、绿色、蓝色等多种。
第二转换区253围绕第一转换区251设置。第二转换区253为第一光源13的入射面,用于将第一光M1转换为第二光M2。第二转换区253的材料可以为高显色指数波长转换材料,还可以为多种荧光材料的混合,材料的颜色可以与第一转换区251的材料的颜色不同。例如第一转换区251的材料的颜色为黄色,第二转换区253的材料的颜色为紫色,当第二光源11发出蓝色第三光M3,第一光源13发出绿色第一光M1时,通过适当的比例设计可以实现混合光的颜色为白色。由于第二转换区253的材料为高显色指数波长转换材料,因此第一光M1及第二光M2混合后的光线具有高显色指数特性;由于第三光M3的高亮度特性,因此第三光M3及第四光M4混合后的光线也具有高亮度;可以理解,由第一光M1、第二光M2、第三光M3及第四光M4形成的混合光兼具高显色指数及高亮度特性,扩大了照明装置20的应用范围。
综上,本实施例提供的照明装置20,通过合理设置一级透镜17、二级透镜18与第一光源13的位置,减小了照明装置20的体积。以及通过将波长转换元件25分为第一转换区251及第二转换区253,并且二者的材料不同,结合了第一光源13与第二光源11的优点,扩大了照明装置20的应用范围。
第三实施例
请参阅图6,本实施例提供一种照明系统100,包括上述任一实施例的照明装置,例如为照明装置10,照明系统100还包括壳体40,壳体40收容照明装置10,在本实施例中,照明系统100为手电筒,在其他实施方式中,照明系统100还可以是车灯、舞台灯或者投影装置等。
壳体40为照明系统100的外壳,外壳的材质可以为金属或者塑胶。
在其他实施方式中,照明系统100也可以不包括控制装置30,可以通过总开关同时控制第一光源11和第一光源13的启闭,另外,近光和远光状态下均可以同时开启第一光源11和第一光源13。
照明系统100还可以包括控制装置30,控制装置30也可以收容于照明系统100,控制装置30控制第一光源13及第一光源11的启闭。例如照明系统100需要近光时,控制系统控制第一光源13开启,同时关闭第一光源11,照明系统100发出具有高显色指数并且柔和的光线,满足近场照明的需求。又例如照明系统100需要远光时,控制系统控制第一光源11开启,由于第一光源11发出的第三光M3(图4)的亮度远远高于第一光源13发出的第一光M1(图4)的亮度,在需要远光时,第一光源13是否开启影响很小,因此在这种条件下,第一光源13可以关闭或者开启。照明系统100发出具有高亮度的光线,可以提供较大的照射距离。
照明系统100至少还包括电源及电线等零件,其中电源、电线等其他零件的结构、连接关系可参考现有技术,在此不做赘述。
综上,本实施例提供的照明系统100,包括照明装置10,通过合理设置一级透镜17、二级透镜18与第一光源13的位置,减小了照明装置10的体积,从而相应的减小了照明系统的体积。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (12)

  1. 一种照明装置,其特征在于,包括:
    第一光源,用于发射第一光;
    一级透镜,位于所述第一光源的出光光路上,所述一级透镜的中心至所述第一光源的中心距离为L0;
    反射元件,将所述一级透镜出射的光反射至二级透镜,其中所述一级透镜的中心至所述二级透镜的中心所经过的光路的距离为L1;
    二级透镜,会聚经所述反射元件反射的光,其中所述二级透镜的半径为R2;
    L0+L1≤2R2。
  2. 如权利要求1所述的照明装置,其特征在于,所述第一光经所述一级透镜会聚后的出射角度为26°-39°。
  3. 如权利要求1所述的照明装置,其特征在于,所述反射元件与所述一级透镜的主光轴的夹角为45°。
  4. 如权利要求1所述的照明装置,其特征在于,还包括一第二光源,位于所述反射元件远离所述第一光源的一侧,所述第二光源发出第三光至所述反射元件。
  5. 如权利要求4所述的照明装置,其特征在于,还包括波长转换元件,与所述第一光源的发光面相邻设置,将所述第一光源发出的第一光转换为第二光。
  6. 如权利要求5所述的照明装置,其特征在于,所述反射元件还包括通孔,所 述第三光通过所述通孔出射至所述波长转换元件。
  7. 如权利要求4所述的照明装置,其特征在于,所述第二光源的中心、及所述第一光源的中心均位于所述一级透镜的主光轴。
  8. 如权利要求5所述的照明装置,其特征在于,所述波长转换元件的材料为全固态荧光材料。
  9. 如权利要求5所述的照明装置,其特征在于,所述波长转换元件包括第一转换区及第二转换区,所述第二转换区围绕所述第一转换区设置,所述第一转换区为所述第二光源的入射面,用于将所述第三光转换为第四光,所述第二转换区将所述第一光转换为第二光。
  10. 如权利要求9所述的照明装置,其特征在于,所述第一转换区的材料为全固态荧光材料,所述第二转换区的材料为高显色指数波长转换材料。
  11. 如权利要求4所述的照明装置,其特征在于,所述第一光源为发光二极管,所述第二光源为激光光源。
  12. 一种照明系统,其特征在于,包括如权利要求1-11任一项所述的照明装置,所述照明系统还包括壳体,所述照明装置收容于所述壳体。
PCT/CN2019/107986 2018-10-15 2019-09-26 照明装置及照明系统 WO2020078185A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811199127.5A CN111059488B (zh) 2018-10-15 2018-10-15 照明装置及照明系统
CN201811199127.5 2018-10-15

Publications (1)

Publication Number Publication Date
WO2020078185A1 true WO2020078185A1 (zh) 2020-04-23

Family

ID=70283238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107986 WO2020078185A1 (zh) 2018-10-15 2019-09-26 照明装置及照明系统

Country Status (2)

Country Link
CN (1) CN111059488B (zh)
WO (1) WO2020078185A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114216100A (zh) * 2021-11-19 2022-03-22 广州旭福光电科技有限公司 一种透过式激光照明模组及匀光方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5331622A (en) * 1991-05-28 1994-07-19 Applied Magnetics Corporation Compact optical head
CN105717643A (zh) * 2016-04-13 2016-06-29 中山联合光电科技股份有限公司 一种反射式虚拟现实光学系统
CN205880480U (zh) * 2016-04-06 2017-01-11 上海蓝湖照明科技有限公司 发光装置及相关投影系统与照明系统
CN107272314A (zh) * 2016-04-06 2017-10-20 上海蓝湖照明科技有限公司 发光装置及相关投影系统与照明系统
CN206960659U (zh) * 2017-06-12 2018-02-02 深圳市镭神智能系统有限公司 一种回波探测光学系统

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2776465B2 (ja) * 1987-05-12 1998-07-16 株式会社リコー 光走査装置におけるfθレンズ系
KR100346398B1 (ko) * 1998-10-23 2002-10-25 삼성전자 주식회사 계단형회절격자구조를갖는평판렌즈를채용하여cd-rw에호환하는dvd용광기록/픽업헤드
US6201439B1 (en) * 1997-09-17 2001-03-13 Matsushita Electric Industrial Co., Ltd. Power splitter/ combiner circuit, high power amplifier and balun circuit
CN1102008C (zh) * 1998-09-23 2003-02-19 明碁电脑股份有限公司 投影显示装置
DE60043546D1 (de) * 1999-07-26 2010-01-28 Labosphere Inst Linse, lichtemittierender körper, beleuchtungskörper und optisches informationssystem
TW558861B (en) * 2001-06-15 2003-10-21 Semiconductor Energy Lab Laser irradiation stage, laser irradiation optical system, laser irradiation apparatus, laser irradiation method, and method of manufacturing semiconductor device
CN1248718C (zh) * 2003-01-29 2006-04-05 黑龙江省中医研究院 治疗支原体肺炎的药物组合物及其制备和质量控制方法
JP4196815B2 (ja) * 2003-11-28 2008-12-17 株式会社日立製作所 背面投写型映像表示装置
CN103292254B (zh) * 2011-12-07 2015-05-27 深圳市绎立锐光科技开发有限公司 光源
CN103279005B (zh) * 2013-05-13 2015-08-19 深圳市绎立锐光科技开发有限公司 激光光源、波长转换光源、合光光源及投影系统
CN204422962U (zh) * 2014-11-07 2015-06-24 深圳市绎立锐光科技开发有限公司 一种投影仪及其光源系统
CN204593250U (zh) * 2015-04-29 2015-08-26 深圳市光峰光电技术有限公司 一种光引导部件及光源装置
EP3228926B1 (en) * 2016-03-29 2021-07-07 LG Electronics Inc. Lighting device for vehicle
CN205880484U (zh) * 2016-05-27 2017-01-11 上海蓝湖照明科技有限公司 发光装置及相关投影系统与照明系统
KR101781033B1 (ko) * 2016-06-14 2017-09-25 엘지전자 주식회사 차량용 발광기구
CN108572497B (zh) * 2017-03-14 2019-12-17 深圳光峰科技股份有限公司 光源装置及投影系统
CN207122765U (zh) * 2017-06-14 2018-03-20 杨毅 灯具
CN207473278U (zh) * 2017-08-18 2018-06-08 广景视睿科技(深圳)有限公司 一种投影激光光源
CN108224361A (zh) * 2018-01-18 2018-06-29 云南裕光科技有限公司 一种激光照明装置及激光照明方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5331622A (en) * 1991-05-28 1994-07-19 Applied Magnetics Corporation Compact optical head
CN205880480U (zh) * 2016-04-06 2017-01-11 上海蓝湖照明科技有限公司 发光装置及相关投影系统与照明系统
CN107272314A (zh) * 2016-04-06 2017-10-20 上海蓝湖照明科技有限公司 发光装置及相关投影系统与照明系统
CN105717643A (zh) * 2016-04-13 2016-06-29 中山联合光电科技股份有限公司 一种反射式虚拟现实光学系统
CN206960659U (zh) * 2017-06-12 2018-02-02 深圳市镭神智能系统有限公司 一种回波探测光学系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114216100A (zh) * 2021-11-19 2022-03-22 广州旭福光电科技有限公司 一种透过式激光照明模组及匀光方法和应用

Also Published As

Publication number Publication date
CN111059488A (zh) 2020-04-24
CN111059488B (zh) 2022-03-15

Similar Documents

Publication Publication Date Title
US10365552B2 (en) Light source employing a wavelength conversion device with a light introducing device and a light collecting device
US8926109B2 (en) Illumination system
KR101825537B1 (ko) 발광 장치 및 프로젝션 시스템
US9719663B2 (en) Illuminating device and projector
CN107036033B (zh) 发光装置及照明系统
TWI432780B (zh) 光源系統
KR102428356B1 (ko) 광원 장치
CN104049445A (zh) 发光装置及投影系统
WO2020088671A1 (zh) 照明系统
WO2020134785A1 (zh) 激光光源及激光投影设备
WO2020248561A1 (zh) 一种折叠多光轴的激光手电照明系统及激光手电筒
CN207880503U (zh) 高亮度激光照明模组
CN106950785B (zh) 一种光源装置及照明装置
WO2020248560A1 (zh) 一种存在多光轴的激光手电筒光学系统及激光手电筒
CN110207025B (zh) 光源系统及照明装置
WO2021139501A1 (zh) 光源结构、色轮及投影装置
CN213686323U (zh) 一种消色差的准直发光装置及一种灯具
WO2020078185A1 (zh) 照明装置及照明系统
US11402738B2 (en) Illumination system and projection apparatus
WO2020248344A1 (zh) 一种折叠多光轴的激光手电筒光学系统及激光手电筒
CN102445827B (zh) 光源系统与投影装置
CN210179360U (zh) 一种存在多光轴的激光手电筒光学系统及激光手电筒
US11067882B2 (en) Illumination system and projection apparatus
US9052418B2 (en) Light source module
US20240142862A1 (en) Light source module and projection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19873756

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19873756

Country of ref document: EP

Kind code of ref document: A1