WO2020078046A1 - 洗衣机用电机运行控制方法、系统、洗衣机以及存储介质 - Google Patents

洗衣机用电机运行控制方法、系统、洗衣机以及存储介质 Download PDF

Info

Publication number
WO2020078046A1
WO2020078046A1 PCT/CN2019/094424 CN2019094424W WO2020078046A1 WO 2020078046 A1 WO2020078046 A1 WO 2020078046A1 CN 2019094424 W CN2019094424 W CN 2019094424W WO 2020078046 A1 WO2020078046 A1 WO 2020078046A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
speed
target
rotor
current
Prior art date
Application number
PCT/CN2019/094424
Other languages
English (en)
French (fr)
Inventor
徐磊
秦向南
龚黎明
赵小安
Original Assignee
广东威灵电机制造有限公司
美的威灵电机技术(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811198553.7A external-priority patent/CN111058224B/zh
Priority claimed from CN201811199209.XA external-priority patent/CN111058225B/zh
Application filed by 广东威灵电机制造有限公司, 美的威灵电机技术(上海)有限公司 filed Critical 广东威灵电机制造有限公司
Publication of WO2020078046A1 publication Critical patent/WO2020078046A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F33/00Control of operations performed in washing machines or washer-dryers 
    • D06F33/30Control of washing machines characterised by the purpose or target of the control 
    • D06F33/44Control of the operating time, e.g. reduction of overall operating time
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/24Spin speed; Drum movements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/44Current or voltage
    • D06F2103/46Current or voltage of the motor driving the drum
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2105/00Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
    • D06F2105/46Drum speed; Actuation of motors, e.g. starting or interrupting
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F37/00Details specific to washing machines covered by groups D06F21/00 - D06F25/00
    • D06F37/30Driving arrangements 
    • D06F37/36Driving arrangements  for rotating the receptacle at more than one speed
    • D06F37/38Driving arrangements  for rotating the receptacle at more than one speed in opposite directions

Definitions

  • the present application relates to the field of washing machine control and motor control, in particular, to a method for controlling the operation of a motor for a washing machine, a control system for the operation of a motor for a washing machine, a washing machine, and a computer-readable storage medium.
  • the washing machine is designed to imitate the principle of hammering on the laundry.
  • the motor controls the rotation of the drum or barrel of the washing machine, and the laundry is beaten or rubbed in the drum or barrel Washing of clothing.
  • the washing machines on the market all control the motor to rotate in the forward direction-stop-reverse direction-stop periodically to drive the rotation of the drum or barrel to achieve washing.
  • FIG. 1 shows a control mode of a related art washing machine motor.
  • the motor's forward rotation-stop-reverse rotation-stop periodically changing washing mode stops time and forward rotation time are set by a predetermined ratio.
  • the above motor control method will take up in the washing process A large amount of washing time causes how long the washing time is, which affects the user experience.
  • This application aims to solve at least one of related technical problems or technical problems in related technologies.
  • the first aspect of the present application is to provide a method for controlling the operation of a motor for a washing machine.
  • the second aspect of the present application is to provide a motor operation control system for a washing machine.
  • the third aspect of the present application is to provide a washing machine.
  • the fourth aspect of the present application is to provide a method for controlling the operation of a motor for a washing machine.
  • the fifth aspect of the present application is to provide a motor operation control system for a washing machine.
  • the sixth aspect of the present application is to provide another washing machine.
  • the seventh aspect of the present application is to provide yet another method for controlling the operation of a washing machine motor.
  • the eighth aspect of the present application is to provide yet another motor operation control system for washing machines.
  • the ninth aspect of the present application is to provide yet another washing machine.
  • the tenth aspect of the present application is to provide a computer-readable storage medium.
  • the present application provides a motor operation control method for a washing machine, including: a continuous operation mode, a continuous operation mode controls the rotor of the motor to accelerate in the first rotation direction, and obtains the motor Current speed, confirm that the motor speed reaches the first target speed, and after running the first preset time, control the motor to continuously change from the first target speed to the second target speed with no stop time during it; confirm that the motor speed reaches the second target After the rotation speed and running for the second preset time period, the control motor is continuously changed from the second target rotation speed to the first target rotation speed with no stop time during this period, wherein the rotation speed direction of the first target rotation speed is opposite to the second target rotation speed.
  • This method is applicable not only to drum washing machines but also to pulsator washing machines.
  • the control motor continuously changes the rotation speed from the first target rotation speed to the second Target speed.
  • the stop time in the related art is no longer retained, but the motor is controlled to change directly from the first target speed to the second target speed in the opposite direction of rotation, and no longer stops for a certain period of time when the speed is zero.
  • the motor is then controlled to continuously change from the second target speed to the first target speed in the opposite direction of rotation, no longer when the speed is zero Stopped for a certain period of time. Therefore, during the reciprocal switching between the first target speed and the second target speed when the washing machine is washing, the dwell time at the zero speed in the related art is omitted, thereby reducing the washing time of the laundry and improving Washing efficiency improves user experience.
  • the operation control method of the washing machine motor in the above technical solution provided by the present application may further have the following additional technical features:
  • the step of obtaining the current rotation speed of the motor specifically includes: obtaining the drive voltage and the current of the motor; calculating the rotor flux linkage of the motor according to the drive voltage and current current, and calculating the motor rotation flux according to the rotor flux Rotor position; calculate the current speed of the motor based on the rotor position.
  • the current rotational speed of the motor is calculated by obtaining the driving voltage and current of the motor, specifically, the rotor flux linkage of the current motor is calculated using the driving voltage and current current, and the rotor of the motor is calculated using the flux linkage observation method Position, calculate the current speed of the current rotor through the calculated rotor position.
  • the current speed can be observed from time to time by means of flux linkage observation. It only needs to detect the driving voltage and sample the current to determine the current speed.
  • the calculation process is simple, which is conducive to controlling the motor.
  • the step of calculating the rotor flux linkage of the motor specifically includes: calculating the back EMF of the motor using a stator flux estimation method based on a voltage model, performing phase compensation and integral filtering on the back EMF, and calculating The rotor flux linkage is obtained.
  • the rotor flux linkage is calculated based on the stator flux estimation method of the voltage model.
  • the specific steps are as follows. Based on the stator flux linkage of the voltage model, detecting the ⁇ -axis current and ⁇ -axis current, and the resistance of the motor, calculate the back EMF of the motor on the ⁇ -axis and ⁇ -axis. The electric potential is phase-compensated to obtain the compensated back-EMF on the ⁇ -axis and ⁇ -axis, and is integrated and filtered to obtain the stator flux linkage of the motor.
  • the flux linkage is used to calculate the rotor position of the motor according to the rotor flux linkage, and then determine the current speed of the motor rotor to realize the control of the motor.
  • the back-EMF of the motor is calculated by the following formula:
  • E ⁇ is the motor ⁇ -axis back EMF
  • E ⁇ is the motor ⁇ -axis back EMF
  • U ⁇ is the motor ⁇ -axis voltage
  • U ⁇ is the motor ⁇ -axis voltage
  • I ⁇ is the motor ⁇ -axis current
  • I ⁇ is the motor ⁇ -axis current Current
  • R is the motor resistance
  • the motor ⁇ -axis back EMF can be calculated ⁇ and the motor ⁇ axis back EMF E ⁇ can be obtained without complicated calculation process.
  • the steps of performing phase compensation and integral filtering on the back EMF are calculated by the following formula:
  • phase compensation formula is as follows:
  • E ' ⁇ is the voltage after the motor ⁇ axis compensation
  • E' ⁇ is the voltage after the motor ⁇ axis compensation
  • E ⁇ is the motor ⁇ axis back EMF
  • E ⁇ is the motor ⁇ axis back EMF
  • ⁇ c is the filter frequency
  • ⁇ e is the motor rotation angular frequency
  • S is the Laplace operator
  • the ⁇ -axis flux linkage ⁇ -axis flux linkage It can be directly calculated by the filtering frequency ⁇ c , the Laplacian S, the motor-axis compensated voltage E ′ ⁇ and the motor ⁇ -axis compensated voltage E ′ ⁇ , and it can be obtained without a complicated calculation process.
  • the rotor flux linkage is calculated by the following formula:
  • the rotor flux linkage with these are the motor ⁇ -axis flux linkage and ⁇ -axis rotor flux linkage, L q is the inductance of the motor rotor, I ⁇ is the motor ⁇ -axis current, and I ⁇ is the motor ⁇ -axis current.
  • the ⁇ -axis flux linkage obtained by calculation ⁇ -axis flux linkage And the inductance L q of the motor rotor, the ⁇ -axis current I ⁇ , and the motor ⁇ -axis current I ⁇ are directly calculated to obtain the rotor flux linkage with By calculating the rotor flux linkage with Perform the arc tangent calculation to obtain the rotor position, and then determine the rotor speed.
  • the motor operation control method for the washing machine further includes: a step of controlling the motor to continuously change from the first target speed to the second target speed, specifically including: controlling the motor to operate at a reduced speed when the motor speed When it falls to the first preset threshold, the rotor of the motor is controlled to accelerate to the second target speed in the second rotation direction; wherein the first preset threshold is 0, or the difference between the first preset threshold and 0 is in the first preset Any value within the setting range; the step of controlling the motor to continuously change from the second target speed to the first target speed specifically includes: controlling the motor to run at a reduced speed, and when the motor speed falls to the second preset threshold, controlling the rotor direction of the motor The first rotation direction accelerates to the first target rotational speed; wherein, the second preset threshold is 0, or the second preset threshold is any value within a second preset range of the difference from 0.
  • the first preset threshold value is the process of switching from deceleration to acceleration A node.
  • the first preset threshold may be 0 or any value that fluctuates above 0.
  • the rotation speed of the motor rotor is at 0, that is, when the rotor is just about to stop in the first rotation direction, the rotor is controlled to rotate in the second rotation direction, thereby avoiding the situation where the rotor is in a stopped state.
  • the second preset threshold has the same effect as the first preset threshold, and will not be described here.
  • the relationship is set by the relationship between the electrical frequency, the speed, and the number of pole pairs of the motor.
  • the specific electrical frequency is equal to the product of the speed and the number of pole pairs of the motor.
  • the fixed frequency is used to set the rotation speed indirectly, that is, the first preset threshold.
  • the second preset threshold is set in the same way.
  • the electrical frequency is the power supply frequency.
  • the step of controlling the rotor of the motor to accelerate to the second target speed in the second rotation direction is specifically: controlling the rotor step to the second target speed; and / or controlling the rotor direction of the motor
  • the step of accelerating the first rotation direction to the first target rotation speed specifically includes: controlling the rotor step to the first target rotation speed.
  • the rotor of the control motor is accelerated to the second target rotation speed in the second rotation direction by specifically: the rotor of the control motor is stepped to the second target rotation speed, specifically, the rotation speed of the control rotor is climbed within a period of time To the second target speed, such as applying a larger drive voltage and / or drive current to the rotor of the motor to provide greater acceleration to the rotor, controlling the speed of the rotor to step to the second target speed, one of which can be 1 Seconds, or a period of a few seconds, which in turn controls the rotor of the motor to switch rapidly in the first rotation direction to the second rotation direction.
  • the rotor of the motor is accelerated from the second rotation direction to the first rotation direction to the first target rotation speed by controlling the rotor step to the first target rotation speed.
  • the operation control method of the washing machine motor further includes: acquiring a preset speed curve from the acceleration of the motor toward the first target speed to the rotation of the motor to the second target speed; wherein, the preset speed The curve is generated according to the first target speed, the second target speed, the first preset duration, and the second target duration; according to the current time corresponding to the current speed, find the preset speed corresponding to the current time in the preset speed curve, when the current speed When there is a deviation from the preset speed, the current speed is corrected to the preset speed.
  • a preset speed curve from the acceleration of the motor to the first target speed to the second target speed is also obtained, which corresponds to the interval where the speed changes from the initial value (such as 0) to the second target speed, according to
  • the current time corresponding to the calculated current speed finds the preset speed directly corresponding to the corresponding time in the preset speed curve, and determines whether there is a deviation between the current speed and the preset speed. When there is a deviation between the current speed and the preset speed, the current speed is corrected to the preset speed.
  • the step of correcting the current speed By setting the step of correcting the current speed to the preset speed, the accuracy of the operation of the control motor is avoided, and it is avoided that the control motor runs at the first preset speed, and the actual motor runs less than the first preset speed, causing the motor not to follow the speed -Stalling that occurs during the time curve operation, and at the same time avoids damage to the motor due to the deviation of the speed from the target speed during commutation.
  • the step of correcting the current rotation speed to the preset rotation speed specifically includes: calculating the driving torque according to the difference between the preset rotation speed and the current rotation speed; obtaining the current of the motor, according to the current current and Drive torque, calculate the drive voltage, and control the motor to drive the rotor of the motor to rotate with the drive voltage.
  • the difference between the preset speed and the current speed to be obtained is calculated, the driving torque is calculated according to the calculated difference, the current of the motor is obtained, and the operation of the driving motor is calculated according to the current and the calculated driving torque Drive voltage, and input the drive voltage into the motor.
  • the preset speed and the current speed are corrected.
  • the above method of controlling the motor for correction only needs to obtain the current and no other parameters. Therefore, the data processing process is reduced, the correction speed is accelerated, and then the time for the motor rotor to decelerate is reduced, and the motor is efficiently used to reduce clothing Washing time.
  • the present application provides a motor operation control system for a washing machine, including: a memory for storing a computer program; a processor for executing a computer program to: control the rotor of the motor to rotate to the first Accelerate the direction of rotation, and obtain the current speed of the motor, confirm that the speed of the motor reaches the first target speed, and after running the first preset time, control the motor to continuously change from the first target speed to the second target speed with no stop time during this period; After confirming that the speed of the motor reaches the second target speed and running the second preset duration, the motor is controlled to continuously change from the second target speed to the first target speed with no stop time during this period; where the first target speed and the second target speed The direction of speed is reversed.
  • the system is not only suitable for drum washing machines but also for pulsator washing machines.
  • the motor operation control system for a washing machine includes a processor and a memory, where the processor executes an executable program stored in the memory to: control the rotor of the motor to rotate at a first target rotation speed at a first target rotation speed according to a first rotation direction After the duration, the control motor continuously changes the rotation speed from the first target rotation speed to the second target rotation speed.
  • the stop time in the related art is no longer retained, but the motor is controlled to change directly from the first target speed to the second target speed in the opposite direction of rotation, and no longer stops for a certain period of time when the speed is zero.
  • the motor is then controlled to continuously change from the second target speed to the first target speed in the opposite direction of rotation, no longer when the speed is zero Stopped for a certain period of time. Therefore, during the reciprocal switching between the first target speed and the second target speed when the washing machine is washing, the dwell time at the zero speed in the related art is omitted, thereby reducing the washing time of the laundry and improving Washing efficiency improves user experience.
  • the motor operation control system for the washing machine in the above technical solution provided by the present application may further have the following additional technical features:
  • the processor is further specifically configured to execute a computer program to control the step of continuously changing the motor from the first target speed to the second target speed, which specifically includes: controlling the motor to operate at a reduced speed when the speed of the motor decreases When the first preset threshold is reached, the rotor of the motor is controlled to accelerate to the second target speed in the second rotation direction; wherein the first preset threshold is 0, or the difference between the first preset threshold and 0 is at the first preset Any value within the range; the processor is also used to execute a computer program to realize the step of controlling the motor to continuously change from the second target speed to the first target speed, which specifically includes: controlling the motor to run at a reduced speed when the motor speed drops to the second When the preset threshold is set, the rotor of the motor is controlled to accelerate to the first target speed in the first rotation direction; wherein, the second preset threshold is 0, or the difference between the second preset threshold and 0 is within the second preset range Any value of.
  • the first preset threshold value is the process of switching from deceleration to acceleration A node.
  • the first preset threshold may be 0 or any value that fluctuates above 0.
  • the rotation speed of the motor rotor is at 0, that is, when the rotor is just about to stop in the first rotation direction, the rotor is controlled to rotate in the second rotation direction, thereby avoiding the situation where the rotor is in a stopped state.
  • the second preset threshold has the same effect as the first preset threshold, and will not be described here.
  • the relationship is set by the relationship between the electrical frequency, the speed, and the number of pole pairs of the motor.
  • the specific electrical frequency is equal to the product of the speed and the number of pole pairs of the motor.
  • the fixed frequency is used to set the rotation speed indirectly, that is, the first preset threshold.
  • the second preset threshold is set in the same way.
  • the electrical frequency is the power supply frequency.
  • the processor is further configured to execute a computer program to implement the step of controlling the rotor of the motor to accelerate to the second target rotational speed in the second rotation direction, which specifically includes: controlling the rotor step to the second target Speed; and / or the processor is further used to execute a computer program to implement the step of controlling the rotor of the motor to accelerate to the first target speed in the first rotation direction, specifically: controlling the rotor to step to the first target speed.
  • the rotor of the control motor is accelerated to the second target rotation speed in the second rotation direction by specifically: the rotor of the control motor is stepped to the second target rotation speed, specifically, the rotation speed of the control rotor is climbed within a period of time To the second target speed, such as applying a larger drive voltage and / or drive current to the rotor of the motor to provide greater acceleration to the rotor, controlling the speed of the rotor to step to the second target speed, one of which can be 1 Seconds, or a period of a few seconds, which in turn controls the rotor of the motor to switch rapidly in the first rotation direction to the second rotation direction.
  • the rotor of the motor is accelerated from the second rotation direction to the first rotation direction to the first target rotation speed by controlling the rotor step to the first target rotation speed.
  • the processor is specifically configured to execute a computer program to: obtain the drive voltage and current of the motor; calculate the rotor flux linkage of the motor based on the drive voltage and current current, and calculate the rotor flux linkage based on the rotor flux The rotor position of the motor; based on the rotor position, the current speed of the motor is calculated.
  • the current rotational speed of the motor is calculated by obtaining the driving voltage and current of the motor, specifically, the rotor flux linkage of the current motor is calculated using the driving voltage and current current, and the rotor of the motor is calculated using the flux linkage observation method Position, calculate the current speed of the current rotor through the calculated rotor position.
  • the current speed can be observed from time to time by means of flux linkage observation. It only needs to detect the driving voltage and sample the current to determine the current speed.
  • the calculation process is simple, which is conducive to controlling the motor.
  • the processor is specifically configured to execute a computer program to calculate the back-EMF of the motor by using a stator flux estimation method based on a voltage model, and perform phase compensation and integral filtering on the back-EMF to obtain Rotor flux linkage.
  • the rotor flux linkage is calculated based on the stator flux estimation method of the voltage model.
  • the processor is specifically used to execute a computer program to calculate the stator flux linkage based on the voltage model, detect the ⁇ -axis current and ⁇ -axis current, and the resistance of the motor to calculate the back-EMF of the motor on the ⁇ -axis and ⁇ -axis, based on the motor rotation angular frequency and
  • the filter frequency performs phase compensation on the calculated back EMF, obtains the back EMF on the ⁇ axis and ⁇ axis after compensation, and performs integral filtering to obtain the stator flux linkage of the motor.
  • the relationship formula calculates the rotor flux linkage of the motor, so as to calculate the rotor position of the motor according to the rotor flux linkage, and then determine the current rotation speed of the motor rotor to realize the control of the motor.
  • the back-EMF of the motor is calculated by the following formula:
  • E ⁇ is the motor ⁇ -axis back EMF
  • E ⁇ is the motor ⁇ -axis back EMF
  • U ⁇ is the motor ⁇ -axis voltage
  • U ⁇ is the motor ⁇ -axis voltage
  • I ⁇ is the motor ⁇ -axis current
  • I ⁇ is the motor ⁇ -axis current Current
  • R is the motor resistance
  • the motor ⁇ -axis back EMF can be calculated ⁇ and the motor ⁇ axis back EMF E ⁇ can be obtained without complicated calculation process.
  • the steps of performing phase compensation and integral filtering on the back EMF are calculated by the following formula:
  • phase compensation formula is as follows:
  • E ' ⁇ is the voltage after the motor ⁇ axis compensation
  • E' ⁇ is the voltage after the motor ⁇ axis compensation
  • E ⁇ is the motor ⁇ axis back EMF
  • E ⁇ is the motor ⁇ axis back EMF
  • ⁇ c is the filter frequency
  • ⁇ e is the motor rotation angular frequency
  • S is the Laplace operator
  • the ⁇ -axis flux linkage ⁇ -axis flux linkage It can be directly calculated by the filtering frequency ⁇ c , the Laplacian S, the motor-axis compensated voltage E ′ ⁇ and the motor ⁇ -axis compensated voltage E ′ ⁇ , and it can be obtained without a complicated calculation process.
  • the rotor flux linkage is calculated by the following formula:
  • the rotor flux linkage with these are the motor ⁇ -axis flux linkage and ⁇ -axis rotor flux linkage, L q is the inductance of the motor rotor, I ⁇ is the motor ⁇ -axis current, and I ⁇ is the motor ⁇ -axis current.
  • the ⁇ -axis flux linkage obtained by calculation ⁇ -axis flux linkage And the inductance L q of the motor rotor, the ⁇ -axis current I ⁇ , and the motor ⁇ -axis current I ⁇ are directly calculated to obtain the rotor flux linkage with By calculating the rotor flux linkage with Perform the arc tangent calculation to obtain the rotor position, and then determine the rotor speed.
  • the processor is further configured to execute a computer program to: obtain a preset speed curve from the acceleration of the motor to the first target rotation speed to the rotation of the motor to the second target rotation speed; Set the speed curve according to the first target speed, the second target speed, the first preset duration, and the second target duration; according to the current time corresponding to the current speed, find the preset speed corresponding to the current time in the preset speed curve, when When the current speed deviates from the preset speed, the current speed is corrected to the preset speed.
  • a preset speed curve from the acceleration of the motor to the first target speed to the second target speed is also obtained, which corresponds to the interval where the speed changes from the initial value (such as 0) to the second target speed, according to
  • the current time corresponding to the calculated current speed finds the preset speed directly corresponding to the corresponding time in the preset speed curve, and determines whether there is a deviation between the current speed and the preset speed. When there is a deviation between the current speed and the preset speed, the current speed is corrected to the preset speed.
  • the step of correcting the current speed By setting the step of correcting the current speed to the preset speed, the accuracy of the operation of the control motor is avoided, and it is avoided that the control motor runs at the first preset speed, and the actual motor runs less than the first preset speed, causing the motor not to follow the speed -Stalling that occurs during the time curve operation, and at the same time avoids damage to the motor due to the deviation of the speed from the target speed during commutation.
  • the processor is specifically configured to execute a computer program to: calculate the driving torque according to the difference between the preset speed and the current speed; obtain the current of the motor, and according to the current and the speed of the drive Moment, calculate the drive voltage, and control the motor to drive the rotor of the motor to rotate with the drive voltage.
  • the difference between the preset speed and the current speed to be obtained is calculated, the driving torque is calculated according to the calculated difference, the current of the motor is obtained, and the operation of the driving motor is calculated according to the current and the calculated driving torque Drive voltage, and input the drive voltage into the motor.
  • the preset speed and the current speed are corrected.
  • the above method of controlling the motor for correction only needs to obtain the current and no other parameters. Therefore, the data processing process is reduced, the correction speed is accelerated, and then the time for the motor rotor to decelerate is reduced, and the motor is efficiently used to reduce clothing Washing time.
  • the present application provides a washing machine including the motor operation control system for a washing machine of the second aspect.
  • the washing machine may be a drum washing machine or a pulsator washing machine.
  • the washing machine provided by the present application includes the motor operation control system for a washing machine of any of the above technical solutions. Therefore, the washing machine has all the beneficial technical effects of the motor operation control system for a washing machine of the second aspect described above, which will not be repeated here.
  • the fourth aspect of the present application provides a method for controlling the operation of a motor for a washing machine, including: detecting the temperature of the motor in real time, confirming that the temperature of the motor is lower than the first preset threshold, and controlling the motor to operate in a continuous operation mode; If the temperature is greater than the second preset threshold or the temperature of the motor controller is higher than the third preset threshold, the operating mode of the control motor is switched to the traditional operating mode; where the continuous operation mode is the duration of the motor running in the first rotation direction and the motor The rotation duration in the second rotation direction is continuous.
  • This method is applicable not only to drum washing machines but also to pulsator washing machines.
  • the motor operation control system for a washing machine provided by this application will first detect the temperature of the motor in real time and judge the current temperature detected by the motor. When the temperature of the motor is lower than the first preset threshold, it indicates that the motor can Maintain a good running state and control the motor to run in a continuous operation mode; specifically, the continuous operation mode is that the duration of the motor running in the first rotation direction is continuous with the duration of the motor running in the second rotation direction, that is, the motor is operated by the first There is no stopping time during the switching of the movement direction to the second movement direction.
  • the rotor of the motor is always in a state of motion, and the motor operation mode of the first direction rotation-the second direction rotation-the first direction rotation-the second direction rotation is realized to avoid
  • the stopping time of the rotor in the motor is realized, and the efficient use of the motor is realized, thereby reducing the washing time of the clothes and improving the user's experience.
  • the temperature of the motor is detected in real time, when the temperature of the motor is greater than the second preset threshold or the temperature of the motor controller is higher than the third preset threshold, it means that the continuous continuous operation mode makes the motor run for a long time.
  • the operation mode of the control motor is switched to the traditional operation mode ;
  • the traditional operating mode is when the motor rotates forward and reverse (that is, when switching between the first direction of rotation and the second direction of rotation), when switching forward, a stop command will be issued to the motor first, and the motor will stop for a preset time After that, the direction is switched, that is, the preset wash-to-stop ratio control is adopted. Since the motor has a pause time, the problem of motor heating can be alleviated.
  • the temperature of the motor is detected in real time, so that the motor makes an operating mode suitable for its current temperature, which shortens the washing time and ensures the service life of the motor.
  • the motor operation control system for the washing machine in the above technical solution provided by the present application may further have the following additional technical features:
  • the method further includes: detecting the temperature of the controller of the motor, such as the controller temperature is low At the fourth preset threshold, the step of controlling the motor to run in the continuous operation mode is executed; if the controller temperature is higher than the fourth preset threshold, the operation mode of the control motor is switched to the traditional operation mode.
  • the motor when it is detected that the temperature of the motor is lower than the first preset threshold, the motor is not immediately controlled to run in the continuous operation mode, but the temperature of the motor controller is first detected to determine the motor controller The working state at this time is to determine whether the controller of the motor meets the starting conditions for continuous operation mode.
  • the temperature of the controller is higher than the fourth preset threshold, it means that the current temperature of the controller is too high.
  • the continuous operation mode is very likely to be damaged by high temperature. It is necessary to control the operation mode of the motor to switch to the traditional operation mode to ensure its service life.
  • the temperature of the controller When the temperature of the controller is lower than the fourth preset threshold, it indicates the current temperature of the controller, which satisfies the starting conditions for continuous operation mode operation, and executes the step of controlling the motor to operate in the continuous operation mode to avoid the controller from being affected during the use process. damage.
  • the step of running the motor in the continuous operation mode specifically includes: controlling the rotor of the motor to accelerate in the first rotation direction, and acquiring the current speed of the motor, when the speed of the motor reaches the first After the target rotation speed is run for the first preset period of time, the motor is controlled to accelerate to the second target rotation speed in the second rotation direction, where the rotation direction of the first target rotation speed is opposite to the second target rotation speed.
  • a specific solution for a continuous operation mode which controls the rotor of the motor to rotate in the first rotation direction, and starts timing after the rotation speed reaches the first target rotation speed, and rotates the first preset at the first target rotation speed After the duration, the rotor of the control motor is accelerated to the second target rotation speed in the second rotation direction.
  • the rotor is controlled to rotate in the second rotation direction, which reduces the stop time of the rotor switching process from the first rotation direction to the second rotation direction, thereby reducing the washing time of the laundry.
  • the step of running the motor in the continuous operation mode further includes: when the motor runs at the second target speed for a second preset duration, controlling the motor to accelerate in the first rotation direction to the first A target speed.
  • the rotor of the control motor accelerates to the first target rotation speed in the first rotation direction.
  • the motor operation mode avoids the stop time of the rotor in the motor, and realizes the efficient use of the motor, thereby reducing the washing time of the clothes and improving the user experience.
  • the rotation speed values of the first target rotation speed and the second target rotation speed are the same.
  • the first target rotation speed and the second target rotation speed are set to have the same rotation speed value and opposite directions to ensure that the motor has the same effect at two rotation speeds, thereby ensuring the washing effect.
  • a fifth aspect of the present application provides a motor operation control system for a washing machine, including: a memory for storing a computer program; a processor for executing a computer program to: detect the temperature of the motor in real time and confirm the motor If the temperature is lower than the first preset threshold, control the motor to run in continuous operation mode; confirm that the temperature of the motor is greater than the second preset threshold or the temperature of the motor controller is higher than the third preset threshold, control the operation mode of the motor to switch to traditional operation Mode; wherein, the continuous operation mode is that the operation duration of the motor running in the first rotation direction is continuous with the rotation duration of the motor running in the second rotation direction.
  • the system is not only suitable for drum washing machines but also for pulsator washing machines.
  • the motor operation control system for a washing machine includes a processor and a memory, where the processor executes an executable program stored in the memory to firstly detect the temperature of the motor in real time and judge the current temperature detected by the motor, When the temperature of the motor is lower than the first preset threshold, it means that the motor can maintain a good running state at this time, and the motor is controlled to operate in the continuous operation mode; specifically, the continuous operation mode is the operation duration of the motor in the first rotation direction It is continuous with the rotation duration of the motor running in the second rotation direction, that is, there is no stop time during the switching of the motor from the first movement direction to the second movement direction, and the rotor of the motor is always in a state of motion to achieve the first direction of rotation-the first
  • the two-direction rotation-first direction rotation-second direction rotation motor operation mode avoids the rotor stop time in the motor, and realizes the efficient use of the motor, thereby reducing the washing time of clothes and improving the user experience.
  • the temperature of the motor is detected in real time, when the temperature of the motor is greater than the second preset threshold or the temperature of the motor controller is higher than the third preset threshold, it means that the continuous continuous operation mode makes the motor run for a long time.
  • the operation mode of the control motor is switched to the traditional operation mode ;
  • the traditional operating mode is when the motor rotates forward and reverse (that is, when switching between the first direction of rotation and the second direction of rotation), when switching forward, a stop command will be issued to the motor first, and the motor will stop for a preset time After that, the direction is switched, that is, the preset wash-to-stop ratio control is adopted. Since the motor has a pause time, the problem of motor heating can be alleviated.
  • the temperature of the motor is detected in real time, so that the motor makes an operation mode suitable for its current temperature, which shortens the washing time and ensures the service life of the motor.
  • the motor operation control system for the washing machine in the above technical solution provided by the present application may further have the following additional technical features:
  • the processor is further specifically configured to execute a computer program to: detect the control of the motor Temperature, if the controller temperature is lower than the fourth preset threshold, execute the step of controlling the motor to run in continuous operation mode; if the controller temperature is higher than the fourth preset threshold, the operating mode of the control motor is switched to the traditional operating mode .
  • the processor is also used to execute a stored computer program: when it is detected that the temperature of the motor is lower than the first preset threshold, the motor is not immediately controlled to run in the continuous operation mode, but the The controller temperature is detected to determine the working state of the motor controller at this time, that is, whether the motor controller meets the start-up conditions for continuous operation mode at this time, when it is checked that the controller temperature is higher than the fourth preset threshold , Which means that the current temperature of the controller is too high. If you start the continuous operation mode, it is very likely that the high temperature will be damaged. You need to control the operation mode of the motor to switch to the traditional operation mode to ensure its service life.
  • the temperature of the controller When the temperature of the controller is lower than the fourth preset threshold, it indicates the current temperature of the controller, which satisfies the starting conditions for continuous operation mode operation, and executes the step of controlling the motor to operate in the continuous operation mode to avoid the controller from being affected during the use process. damage.
  • the processor is further specifically configured to execute a computer program to: control the rotor of the motor to accelerate in the first rotation direction, and obtain the current speed of the motor, when the speed of the motor reaches the first target speed , And after running the first preset duration, the rotor of the motor is controlled to accelerate to the second target rotation speed in the second rotation direction; wherein, the rotation direction of the first target rotation speed is opposite to the second target rotation speed.
  • a specific solution for a continuous operation mode which controls the rotor of the motor to rotate in the first rotation direction, and starts timing after the rotation speed reaches the first target rotation speed, and rotates the first preset at the first target rotation speed After the duration, the rotor of the control motor is accelerated to the second target rotation speed in the second rotation direction.
  • the rotor is controlled to rotate in the second rotation direction, which reduces the stop time of the rotor switching process from the first rotation direction to the second rotation direction, thereby reducing the washing time of the laundry.
  • the processor is further specifically configured to execute a computer program to: when the motor runs at the second target speed for a second preset duration, control the motor to accelerate in the first rotation direction to the first target Rotating speed.
  • the rotor of the control motor accelerates to the first target rotation speed in the first rotation direction.
  • the motor operation mode avoids the stop time of the rotor in the motor, and realizes the efficient use of the motor, thereby reducing the washing time of the clothes and improving the user experience.
  • the rotation speed values of the first target rotation speed and the second target rotation speed are the same.
  • the first target rotation speed and the second target rotation speed are set to have the same rotation speed value and opposite directions to ensure that the motor has the same effect at two rotation speeds, thereby ensuring the washing effect.
  • a washing machine wherein the washing machine includes the motor operation control system for a washing machine proposed in the fifth aspect.
  • the washing machine may be a drum washing machine or a pulsator washing machine.
  • the washing machine provided by the present application includes the motor operation control system for a washing machine according to the technical solution of the fifth aspect described above. Therefore, the washing machine has all the beneficial technical effects of the motor operation control system for the washing machine of the fifth aspect described above, which will not be repeated.
  • a seventh aspect of the present application provides a method for controlling the operation of a motor for a washing machine, which includes: controlling the motor to operate in a continuous operation mode, the continuous operation mode including a plurality of continuous operation cycles;
  • a specific step of the continuous operation cycle of the continuous operation mode includes: controlling the rotor of the motor to accelerate in the first rotation direction, and obtaining the current speed of the motor, confirming that the speed of the motor reaches the first target speed, and running the first preset After the length of time, control the motor to continuously change from the first target speed to the second target speed, there is no stop time during it; confirm that the motor speed reaches the second target speed, and after running the second preset time, control the motor from the second target speed continuously There is no stopping time during the change to the first target speed, where the speed direction of the first target speed and the second target speed are opposite.
  • This method is applicable not only to drum washing machines but also to pulsator washing machines.
  • the operation control method of a motor for a washing machine controls the motor to operate in a continuous operation mode, which includes multiple continuous cycles in the continuous operation mode.
  • a continuous operation mode which includes multiple continuous cycles in the continuous operation mode.
  • the stop time between the rotation of the cylinder or barrel in the first rotation direction and the rotation in the second rotation direction in the related art is no longer retained, but the motor is controlled to change directly from a certain speed of forward rotation to A certain rotation speed with the opposite rotation direction will no longer stop for a certain period of time when the rotation speed is zero.
  • One continuous operation cycle of the continuous operation mode is: after the rotor of the control motor rotates at the first target rotation speed for the first preset duration according to the first rotation direction, the control motor continuously changes the rotation speed from the first target rotation speed to the second target rotation speed.
  • control motor directly changes from the first target speed to the second target speed in the opposite direction of rotation, and does not stop for a certain period of time when the speed is zero.
  • speed of the motor reaches the second target speed and runs for the second preset duration, the motor is then controlled to continuously change from the second target speed to the first target speed in the opposite direction of rotation, no longer when the speed is zero Stopped for a certain period of time.
  • the motor operation mode avoids the rotor stop time in the motor and realizes the efficient use of the motor. Therefore, during the reciprocal switching between the first target speed and the second target speed when the washing machine is washing, the dwell time at the zero speed in the related art is omitted, thereby reducing the washing time of the laundry and improving Washing efficiency improves user experience.
  • the operation control method of the washing machine motor in the above technical solution provided by the present application may further have the following additional technical features:
  • the step of obtaining the current rotation speed of the motor specifically includes: obtaining the drive voltage and the current of the motor; calculating the rotor flux linkage of the motor according to the drive voltage and current current, and calculating the motor rotation flux according to the rotor flux Rotor position; calculate the current speed of the motor based on the rotor position.
  • the current rotational speed of the motor is calculated by obtaining the driving voltage and current of the motor, specifically, the rotor flux linkage of the current motor is calculated using the driving voltage and current current, and the rotor of the motor is calculated using the flux linkage observation method Position, calculate the current speed of the current rotor through the calculated rotor position.
  • the current speed can be observed from time to time by means of flux linkage observation. It only needs to detect the driving voltage and sample the current to determine the current speed.
  • the calculation process is simple, which is conducive to controlling the motor.
  • the step of calculating the rotor flux linkage of the motor specifically includes: calculating the back EMF of the motor using a stator flux estimation method based on a voltage model, performing phase compensation and integral filtering on the back EMF, and calculating The rotor flux linkage is obtained.
  • the rotor flux linkage is calculated based on the stator flux estimation method of the voltage model.
  • the specific steps are as follows. Based on the stator flux linkage of the voltage model, detecting the ⁇ -axis current and ⁇ -axis current, and the resistance of the motor, calculate the back EMF of the motor on the ⁇ -axis and ⁇ -axis.
  • the electric potential is phase-compensated to obtain the compensated back-EMF on the ⁇ -axis and ⁇ -axis, and is integrated and filtered to obtain the stator flux linkage of the motor, and the rotor of the motor is calculated according to the formula of the relationship between the stator flux linkage and the rotor flux linkage.
  • the flux linkage is used to calculate the rotor position of the motor according to the rotor flux linkage, and then determine the current speed of the motor rotor to realize the control of the motor.
  • the back-EMF of the motor is calculated by the following formula:
  • E ⁇ is the motor ⁇ -axis back EMF
  • E ⁇ is the motor ⁇ -axis back EMF
  • U ⁇ is the motor ⁇ -axis voltage
  • U ⁇ is the motor ⁇ -axis voltage
  • I ⁇ is the motor ⁇ -axis current
  • I ⁇ is the motor ⁇ -axis current Current
  • R is the motor resistance
  • the motor ⁇ -axis back EMF can be calculated ⁇ and the motor ⁇ axis back EMF E ⁇ can be obtained without complicated calculation process.
  • the steps of performing phase compensation and integral filtering on the back EMF are calculated by the following formula:
  • phase compensation formula is as follows:
  • E ' ⁇ is the voltage after the motor ⁇ axis compensation
  • E' ⁇ is the voltage after the motor ⁇ axis compensation
  • E ⁇ is the motor ⁇ axis back EMF
  • E ⁇ is the motor ⁇ axis back EMF
  • ⁇ c is the filter frequency
  • ⁇ e is the motor rotation angular frequency
  • S is the Laplace operator
  • the ⁇ -axis flux linkage ⁇ -axis flux linkage It can be directly calculated by the filtering frequency ⁇ c , the Laplacian S, the motor-axis compensated voltage E ′ ⁇ and the motor ⁇ -axis compensated voltage E ′ ⁇ , and it can be obtained without a complicated calculation process.
  • the rotor flux linkage is calculated by the following formula:
  • the rotor flux linkage with these are the motor ⁇ -axis flux linkage and ⁇ -axis rotor flux linkage, L q is the inductance of the motor rotor, I ⁇ is the motor ⁇ -axis current, and I ⁇ is the motor ⁇ -axis current.
  • the ⁇ -axis flux linkage obtained by calculation ⁇ -axis flux linkage And the inductance L q of the motor rotor, the ⁇ -axis current I ⁇ , and the motor ⁇ -axis current I ⁇ are directly calculated to obtain the rotor flux linkage with By calculating the rotor flux linkage with Perform the arc tangent calculation to obtain the rotor position, and then determine the rotor speed.
  • the motor operation control method for the washing machine further includes: a step of controlling the motor to continuously change from the first target speed to the second target speed, specifically including: controlling the motor to operate at a reduced speed when the motor speed When it falls to the first preset threshold, the rotor of the motor is controlled to accelerate to the second target speed in the second rotation direction; wherein the first preset threshold is 0, or the difference between the first preset threshold and 0 is in the first preset Any value within the setting range; the step of controlling the motor to continuously change from the second target speed to the first target speed specifically includes: controlling the motor to run at a reduced speed, and when the motor speed falls to the second preset threshold, controlling the rotor direction of the motor The first rotation direction accelerates to the first target rotational speed; wherein, the second preset threshold is 0, or the second preset threshold is any value within a second preset range of the difference from 0.
  • the first preset threshold value is the process of switching from deceleration to acceleration A node.
  • the first preset threshold may be 0 or any value that fluctuates above 0.
  • the rotation speed of the motor rotor is at 0, that is, when the rotor is just about to stop in the first rotation direction, the rotor is controlled to rotate in the second rotation direction, thereby avoiding the situation where the rotor is in a stopped state.
  • the second preset threshold has the same effect as the first preset threshold, and will not be described here.
  • the relationship is set by the relationship between the electrical frequency, the speed, and the number of pole pairs of the motor.
  • the specific electrical frequency is equal to the product of the speed and the number of pole pairs of the motor.
  • the fixed frequency is used to set the rotation speed indirectly, that is, the first preset threshold.
  • the second preset threshold is set in the same way.
  • the electrical frequency is the power supply frequency.
  • the step of controlling the rotor of the motor to accelerate to the second target speed in the second rotation direction is specifically: controlling the rotor step to the second target speed; and / or controlling the rotor direction of the motor
  • the step of accelerating the first rotation direction to the first target rotation speed specifically includes: controlling the rotor step to the first target rotation speed.
  • the rotor of the control motor is accelerated to the second target rotation speed in the second rotation direction by specifically: the rotor of the control motor is stepped to the second target rotation speed, specifically, the rotation speed of the control rotor is climbed within a period of time To the second target speed, such as applying a larger drive voltage and / or drive current to the rotor of the motor to provide greater acceleration to the rotor, controlling the speed of the rotor to step to the second target speed, one of which can be 1 Seconds, or a period of a few seconds, which in turn controls the rotor of the motor to switch rapidly in the first rotation direction to the second rotation direction.
  • the rotor of the motor is accelerated from the second rotation direction to the first rotation direction to the first target rotation speed by controlling the rotor step to the first target rotation speed.
  • the operation control method of the washing machine motor further includes: acquiring a preset speed curve from the acceleration of the motor toward the first target speed to the rotation of the motor to the second target speed; wherein, the preset speed The curve is generated according to the first target speed, the second target speed, the first preset duration, and the second target duration; according to the current time corresponding to the current speed, find the preset speed corresponding to the current time in the preset speed curve, when the current speed When there is a deviation from the preset speed, the current speed is corrected to the preset speed.
  • a preset speed curve from the acceleration of the motor to the first target speed to the second target speed is also obtained, which corresponds to the interval where the speed changes from the initial value (such as 0) to the second target speed, according to
  • the current time corresponding to the calculated current speed finds the preset speed directly corresponding to the corresponding time in the preset speed curve, and determines whether there is a deviation between the current speed and the preset speed. When there is a deviation between the current speed and the preset speed, the current speed is corrected to the preset speed.
  • the step of correcting the current speed By setting the step of correcting the current speed to the preset speed, the accuracy of the operation of the control motor is avoided, and it is avoided that the control motor runs at the first preset speed, and the actual motor runs less than the first preset speed, causing the motor not to follow the speed -Stalling that occurs during the time curve operation, and at the same time avoids damage to the motor due to the deviation of the speed from the target speed during commutation.
  • the step of correcting the current rotation speed to the preset rotation speed specifically includes: calculating the driving torque according to the difference between the preset rotation speed and the current rotation speed; obtaining the current of the motor, according to the current current and Drive torque, calculate the drive voltage, and control the motor to drive the rotor of the motor to rotate with the drive voltage.
  • the difference between the preset speed and the current speed to be obtained is calculated, the driving torque is calculated according to the calculated difference, the current of the motor is obtained, and the operation of the driving motor is calculated according to the current and the calculated driving torque Drive voltage, and input the drive voltage into the motor.
  • the preset speed and the current speed are corrected.
  • the above method of controlling the motor for correction only needs to obtain the current and no other parameters. Therefore, the data processing process is reduced, the correction speed is accelerated, and then the time for the motor rotor to decelerate is reduced, and the motor is efficiently used to reduce clothing Washing time.
  • controlling the motor to operate in the continuous operation mode further includes: detecting the temperature of the motor in real time, and controlling the motor to operate in the continuous operation mode when the temperature of the motor is lower than the first preset threshold; When the temperature of the motor is greater than the second preset threshold or the temperature of the controller of the motor is higher than the third preset threshold, the operation mode of the control motor is switched to the traditional operation mode; wherein, in the continuous operation mode, the motor runs in the first rotation direction The operation duration is continuous with the rotation duration of the motor running in the second rotation direction.
  • the operation mode of the control motor is switched to the traditional operation mode ;
  • the traditional operating mode is when the motor rotates forward and reverse (that is, when switching between the first direction of rotation and the second direction of rotation), when switching forward, a stop command will be issued to the motor first, and the motor will stop for a preset time Then change the direction, that is, use the preset washing and stopping ratio control. Because the motor has a pause time, it can alleviate the problem of motor heating, so that the motor can make an operating mode suitable for its current temperature, which shortens the washing time. At the same time, the service life of the motor is guaranteed.
  • the first preset threshold is lower than the second preset threshold, and the first preset threshold is also lower than the third preset threshold.
  • the method further includes: detecting the temperature of the controller of the motor, such as the controller temperature is low At the fourth preset threshold, the step of controlling the motor to run in the continuous operation mode is executed; if the controller temperature is higher than the fourth preset threshold, the operation mode of the control motor is switched to the traditional operation mode.
  • the motor when it is detected that the temperature of the motor is lower than the first preset threshold, the motor is not immediately controlled to run in the continuous operation mode, but the temperature of the motor controller is first detected to determine the motor controller The working state at this time is to determine whether the controller of the motor meets the starting conditions for continuous operation mode.
  • the temperature of the controller is higher than the fourth preset threshold, it means that the current temperature of the controller is too high.
  • the continuous operation mode is very likely to be damaged by high temperature. It is necessary to control the operation mode of the motor to switch to the traditional operation mode to ensure its service life.
  • the temperature of the controller When the temperature of the controller is lower than the fourth preset threshold, it indicates the current temperature of the controller, which satisfies the starting conditions for continuous operation mode operation, and executes the step of controlling the motor to operate in the continuous operation mode to avoid the controller from being affected during the use process. damage.
  • the first preset threshold is lower than the fourth preset threshold.
  • the rotation speed values of the first target rotation speed and the second target rotation speed are the same.
  • the first target rotation speed and the second target rotation speed are set to have the same rotation speed value and opposite directions to ensure that the motor has the same effect at two rotation speeds, thereby ensuring the washing effect.
  • a motor operation control system for a washing machine including: a memory for storing a computer program; a processor for executing a computer program to control the motor to operate in a continuous operation mode, the continuous The operation mode includes a plurality of continuous operation cycles; the specific steps of controlling the motor to complete one of the continuous operation cycles of the continuous operation mode include: controlling the rotor of the motor to accelerate in the first direction of rotation, and obtaining the current speed of the motor, Confirm that the speed of the motor reaches the first target speed, and after running the first preset duration, control the motor to continuously change from the first target speed to the second target speed with no stop time during it; confirm that the motor speed reaches the second target speed, and After running the second preset time period, the control motor is continuously changed from the second target speed to the first target speed without stopping time during this period; wherein, the speed direction of the first target speed and the second target speed are opposite.
  • the system is not only suitable for drum washing machines but also for pulsator washing machines.
  • the motor operation control system for a washing machine includes a processor and a memory, where the processor executes an executable program stored in the memory to: the continuous operation mode includes a plurality of continuous operation cycles.
  • the motor operation control system for a washing machine controls the motor to operate in a continuous operation mode, which includes multiple continuous cycles in the continuous operation mode.
  • a continuous operation mode which includes multiple continuous cycles in the continuous operation mode.
  • the motor operation control system for a washing machine includes a processor and a memory, wherein the processor executes an executable program stored in the memory to: the control motor completes one of the continuous operation cycles of the continuous operation mode, specifically
  • the method includes: after the rotor of the control motor rotates at the first target rotation speed for the first preset time period according to the first rotation direction, the control motor continuously changes the rotation speed from the first target rotation speed to the second target rotation speed. In this process, the control motor directly changes from the first target speed to the second target speed in the opposite direction of rotation, and does not stop for a certain period of time when the speed is zero.
  • the motor is then controlled to continuously change from the second target speed to the first target speed in the opposite direction of rotation, no longer when the speed is zero Stopped for a certain period of time. That is, there is no stop time when the motor is switched from the first direction of motion to the second direction of motion, and the rotor of the motor is always in a state of motion to achieve the rotation in the first direction-the second direction-the first direction-the second
  • the motor operation mode avoids the rotor stop time in the motor and realizes the efficient use of the motor. Therefore, during the reciprocal switching between the first target speed and the second target speed when the washing machine is washing, the dwell time at the zero speed in the related art is omitted, thereby reducing the washing time of the laundry and improving Washing efficiency improves user experience.
  • the motor operation control system for the washing machine in the above technical solution provided by the present application may further have the following additional technical features:
  • the processor is further specifically configured to execute a computer program to control the step of continuously changing the motor from the first target speed to the second target speed, which specifically includes: controlling the motor to operate at a reduced speed when the speed of the motor decreases When the first preset threshold is reached, the rotor of the motor is controlled to accelerate to the second target speed in the second rotation direction; wherein the first preset threshold is 0, or the difference between the first preset threshold and 0 is at the first preset Any value within the range; the processor is also used to execute a computer program to realize the step of controlling the motor to continuously change from the second target speed to the first target speed, which specifically includes: controlling the motor to run at a reduced speed when the motor speed drops to the second When the preset threshold is set, the rotor of the motor is controlled to accelerate to the first target speed in the first rotation direction; wherein, the second preset threshold is 0, or the difference between the second preset threshold and 0 is within the second preset range Any value of.
  • the first preset threshold value is the process of switching from deceleration to acceleration A node.
  • the first preset threshold may be 0 or any value that fluctuates above 0.
  • the rotation speed of the motor rotor is at 0, that is, when the rotor is just about to stop in the first rotation direction, the rotor is controlled to rotate in the second rotation direction, thereby avoiding the situation where the rotor is in a stopped state.
  • the second preset threshold has the same effect as the first preset threshold, and will not be described here.
  • the relationship is set by the relationship between the electrical frequency, the speed, and the number of pole pairs of the motor.
  • the specific electrical frequency is equal to the product of the speed and the number of pole pairs of the motor.
  • the fixed frequency is used to set the rotation speed indirectly, that is, the first preset threshold.
  • the second preset threshold is set in the same way.
  • the electrical frequency is the power supply frequency.
  • the processor is further configured to execute a computer program to implement the step of controlling the rotor of the motor to accelerate to the second target rotational speed in the second rotation direction, which specifically includes: controlling the rotor step to the second target Speed; and / or the processor is further used to execute a computer program to implement the step of controlling the rotor of the motor to accelerate to the first target speed in the first rotation direction, specifically: controlling the rotor to step to the first target speed.
  • the rotor of the control motor is accelerated to the second target rotation speed in the second rotation direction by specifically: the rotor of the control motor is stepped to the second target rotation speed, specifically, the rotation speed of the control rotor is climbed within a period of time To the second target speed, such as applying a larger drive voltage and / or drive current to the rotor of the motor to provide greater acceleration to the rotor, controlling the speed of the rotor to step to the second target speed, one of which can be 1 Seconds, or a period of a few seconds, which in turn controls the rotor of the motor to switch rapidly in the first rotation direction to the second rotation direction.
  • the rotor of the motor is accelerated from the second rotation direction to the first rotation direction to the first target rotation speed by controlling the rotor step to the first target rotation speed.
  • the processor is specifically configured to execute a computer program to: obtain the drive voltage and current of the motor; calculate the rotor flux linkage of the motor based on the drive voltage and current current, and calculate the rotor flux linkage based on the rotor flux The rotor position of the motor; based on the rotor position, the current speed of the motor is calculated.
  • the current rotational speed of the motor is calculated by obtaining the driving voltage and current of the motor, specifically, the rotor flux linkage of the current motor is calculated using the driving voltage and current current, and the rotor of the motor is calculated using the flux linkage observation method Position, calculate the current speed of the current rotor through the calculated rotor position.
  • the current speed can be observed from time to time by means of flux linkage observation. It only needs to detect the driving voltage and sample the current to determine the current speed.
  • the calculation process is simple, which is conducive to controlling the motor.
  • the processor is specifically configured to execute a computer program to calculate the back-EMF of the motor by using a stator flux estimation method based on a voltage model, and perform phase compensation and integral filtering on the back-EMF to obtain Rotor flux linkage.
  • the rotor flux linkage is calculated based on the stator flux estimation method of the voltage model.
  • the processor is specifically used to execute a computer program to calculate the stator flux linkage based on the voltage model, detect the ⁇ -axis current and ⁇ -axis current, and the resistance of the motor to calculate the back EMF of the motor on the ⁇ -axis and ⁇ -axis, based on the motor rotation angular frequency and
  • the filter frequency performs phase compensation on the calculated back EMF, obtains the back EMF on the ⁇ axis and ⁇ axis after compensation, and performs integral filtering to obtain the stator flux linkage of the motor.
  • the relationship formula calculates the rotor flux linkage of the motor, so as to calculate the rotor position of the motor according to the rotor flux linkage, and then determine the current rotation speed of the motor rotor to realize the control of the motor.
  • the back-EMF of the motor is calculated by the following formula:
  • E ⁇ is the motor ⁇ -axis back EMF
  • E ⁇ is the motor ⁇ -axis back EMF
  • U ⁇ is the motor ⁇ -axis voltage
  • U ⁇ is the motor ⁇ -axis voltage
  • I ⁇ is the motor ⁇ -axis current
  • I ⁇ is the motor ⁇ -axis current Current
  • R is the motor resistance
  • the motor ⁇ -axis back EMF can be calculated ⁇ and the motor ⁇ axis back EMF E ⁇ can be obtained without complicated calculation process.
  • the steps of performing phase compensation and integral filtering on the back EMF are calculated by the following formula:
  • phase compensation formula is as follows:
  • E ' ⁇ is the voltage after the motor ⁇ axis compensation
  • E' ⁇ is the voltage after the motor ⁇ axis compensation
  • E ⁇ is the motor ⁇ axis back EMF
  • E ⁇ is the motor ⁇ axis back EMF
  • ⁇ c is the filter frequency
  • ⁇ e is the motor rotation angular frequency
  • S is the Laplace operator
  • the ⁇ -axis flux linkage ⁇ -axis flux linkage It can be directly calculated by the filtering frequency ⁇ c , the Laplacian S, the motor-axis compensated voltage E ′ ⁇ and the motor ⁇ -axis compensated voltage E ′ ⁇ , and it can be obtained without a complicated calculation process.
  • the rotor flux linkage is calculated by the following formula:
  • the rotor flux linkage with these are the motor ⁇ -axis flux linkage and ⁇ -axis rotor flux linkage, L q is the inductance of the motor rotor, I ⁇ is the motor ⁇ -axis current, and I ⁇ is the motor ⁇ -axis current.
  • the ⁇ -axis flux linkage obtained by calculation ⁇ -axis flux linkage And the inductance L q of the motor rotor, the ⁇ -axis current I ⁇ , and the motor ⁇ -axis current I ⁇ are directly calculated to obtain the rotor flux linkage with By calculating the rotor flux linkage with Perform the arc tangent calculation to obtain the rotor position, and then determine the rotor speed.
  • the processor is further configured to execute a computer program to: obtain a preset speed curve from the acceleration of the motor to the first target rotation speed to the rotation of the motor to the second target rotation speed; Set the speed curve according to the first target speed, the second target speed, the first preset duration, and the second target duration; according to the current time corresponding to the current speed, find the preset speed corresponding to the current time in the preset speed curve, when When the current speed deviates from the preset speed, the current speed is corrected to the preset speed.
  • a preset speed curve from the acceleration of the motor to the first target speed to the second target speed is also obtained, which corresponds to the interval where the speed changes from the initial value (such as 0) to the second target speed, according to
  • the current time corresponding to the calculated current speed finds the preset speed directly corresponding to the corresponding time in the preset speed curve, and determines whether there is a deviation between the current speed and the preset speed. When there is a deviation between the current speed and the preset speed, the current speed is corrected to the preset speed.
  • the step of correcting the current speed By setting the step of correcting the current speed to the preset speed, the accuracy of the operation of the control motor is avoided, and it is avoided that the control motor runs at the first preset speed, and the actual motor runs less than the first preset speed, causing the motor not to follow the speed -Stalling that occurs during the time curve operation, and at the same time avoids damage to the motor due to the deviation of the speed from the target speed during commutation.
  • the processor is specifically configured to execute a computer program to: calculate the driving torque according to the difference between the preset speed and the current speed; obtain the current of the motor, and according to the current and the speed of the drive Moment, calculate the drive voltage, and control the motor to drive the rotor of the motor to rotate with the drive voltage.
  • the difference between the preset speed and the current speed to be obtained is calculated, the driving torque is calculated according to the calculated difference, the current of the motor is obtained, and the operation of the driving motor is calculated according to the current and the calculated driving torque Drive voltage, and input the drive voltage into the motor.
  • the preset speed and the current speed are corrected.
  • the above method of controlling the motor for correction only needs to obtain the current and no other parameters. Therefore, the data processing process is reduced, the correction speed is accelerated, and then the time for the motor rotor to decelerate is reduced, and the motor is efficiently used to reduce clothing Washing time.
  • the processor is further used to detect the temperature of the motor in real time before executing the control of the motor to run in the continuous operation mode, and when the temperature of the motor is lower than the first preset threshold, control the motor to continuously Running in operation mode; when the temperature of the motor is greater than the second preset threshold or the temperature of the controller of the motor is higher than the third preset threshold, the operation mode of the control motor is switched to the traditional operation mode; The duration of operation in the rotation direction is continuous with the duration of rotation of the motor in the second rotation direction.
  • the continuous operation mode is that the operation duration of the motor in the first rotation direction is continuous with the rotation duration of the motor in the second rotation direction, that is, the motor is operated by the first There is no stopping time during the switching of one direction of motion to the second direction of motion, the rotor of the motor is always in motion, and the motor operation mode of first direction rotation-second direction rotation-first direction rotation-second direction rotation is realized.
  • the stopping time of the rotor in the motor is avoided, and the efficient use of the motor is realized, thereby reducing the washing time of clothes and improving the user experience.
  • the temperature of the motor is detected in real time, when the temperature of the motor is greater than the second preset threshold or the temperature of the motor controller is higher than the third preset threshold, it means that the continuous continuous operation mode makes the motor run for a long time.
  • the operation mode of the control motor is switched to the traditional operation mode ;
  • the traditional operating mode is when the motor rotates forward and reverse (that is, when switching between the first direction of rotation and the second direction of rotation), when switching forward, a stop command will be issued to the motor first, and the motor will stop for a preset time Then change the direction, that is, use the preset washing and stopping ratio control. Because the motor has a pause time, it can alleviate the problem of motor heating, so that the motor can make an operating mode suitable for its current temperature, which shortens the washing time. At the same time, the service life of the motor is guaranteed.
  • the first preset threshold is lower than the second preset threshold, and the first preset threshold is also lower than the third preset threshold.
  • the processor is further configured to execute a computer program to: after the step when the temperature of the motor is lower than the first preset threshold, before controlling the motor to run in the continuous operation mode, further includes: detecting The controller temperature of the motor, if the controller temperature is lower than the fourth preset threshold, the step of controlling the motor to run in the continuous operation mode is executed; if the controller temperature is higher than the fourth preset threshold, the operating mode of the control motor is switched to Traditional operating mode.
  • the motor when it is detected that the temperature of the motor is lower than the first preset threshold, the motor is not immediately controlled to run in the continuous operation mode, but the temperature of the motor controller is first detected to determine the motor controller The working state at this time is to determine whether the controller of the motor meets the starting conditions for continuous operation mode.
  • the temperature of the controller is higher than the fourth preset threshold, it means that the current temperature of the controller is too high.
  • the continuous operation mode is very likely to be damaged by high temperature. It is necessary to control the operation mode of the motor to switch to the traditional operation mode to ensure its service life.
  • the temperature of the controller When the temperature of the controller is lower than the fourth preset threshold, it indicates the current temperature of the controller, which satisfies the starting conditions for continuous operation mode operation, and executes the step of controlling the motor to operate in the continuous operation mode to avoid the controller from being affected during the use process. damage.
  • the first preset threshold is lower than the fourth preset threshold.
  • the rotation speed values of the first target rotation speed and the second target rotation speed are the same.
  • the first target rotation speed and the second target rotation speed are set to have the same rotation speed value and opposite directions to ensure that the motor has the same effect at two rotation speeds, thereby ensuring the washing effect.
  • the present application provides a washing machine, wherein the washing machine is a drum washing machine or a pulsator washing machine, wherein the washing machine includes the motor operation control system for the washing machine of the eighth aspect.
  • the washing machine provided by the present application includes the motor operation control system for a washing machine according to the technical solution of the eighth aspect. Therefore, the washing machine has all the beneficial technical effects of the motor operation control system for the washing machine of the eighth aspect, which will not be repeated here.
  • a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps of the motor operation control method for a washing machine as described in the first aspect above are implemented, or When the computer program is executed by the processor, the steps of the motor operation control method for a washing machine as described in the fourth aspect above are implemented, or when the computer program is executed by the processor, the steps of the motor operation control method for a washing machine as described in the seventh aspect are implemented.
  • the computer readable storage medium provided by the present application when the computer program is executed by the processor, implements the steps of the motor operation control method for a washing machine as described in the technical solutions of the first aspect, the fourth aspect, and the seventh aspect, so the computer readable storage medium Including all the beneficial effects of the operation control method of the motor for washing machine according to any one of the above technical solutions.
  • FIG. 1 shows the control mode of the motor in the washing machine in the related art
  • FIG. 2 is a schematic flowchart of a method for controlling operation of a washing machine motor according to an embodiment of the present application
  • FIG. 3 shows a schematic flow chart of a method for controlling operation of a washing machine motor according to another embodiment of the present application
  • FIG. 4 is a schematic flowchart of a method for controlling operation of a motor for a washing machine according to another embodiment of the present application
  • FIG. 5 shows a schematic flowchart of a method for controlling operation of a washing machine motor according to another embodiment of the present application
  • FIG. 6 shows a schematic flowchart of a method for controlling the operation of a motor for a washing machine according to another embodiment of the present application
  • FIG. 7 is a schematic flowchart of a method for controlling operation of a washing machine motor according to another embodiment of the present application.
  • FIG. 8 shows a schematic block diagram of the speed control of the motor rotor in this embodiment
  • FIG. 10 is a schematic block diagram of a motor operation control system for a washing machine according to an embodiment of the present application.
  • FIG. 11 shows a schematic block diagram of a washing machine according to an embodiment of the present application.
  • FIG. 12 shows a schematic flowchart of a motor operation control method for a washing machine according to another embodiment of the present application.
  • FIG. 13 shows a schematic flowchart of a motor operation control method for a washing machine according to another embodiment of the present application.
  • FIG. 14 is a schematic flowchart of a method for controlling operation of a washing machine motor according to another embodiment of the present application.
  • FIG. 15 shows a schematic flow chart of a method for controlling the operation of a washing machine motor according to yet another embodiment of the present application
  • FIG. 16 shows a schematic block diagram of a motor operation control system for a washing machine according to an embodiment of the present application
  • FIG. 17 shows a schematic block diagram of a washing machine according to an embodiment of the present application.
  • FIG. 18 is a schematic flowchart of a motor operation control method for a washing machine according to another embodiment of the present application.
  • FIG. 19 is a schematic flowchart of a motor operation control method for a washing machine according to another embodiment of the present application.
  • 20 is a schematic flowchart of a method for controlling operation of a motor for a washing machine according to another embodiment of the present application.
  • 21 is a schematic block diagram of a motor operation control system for a washing machine according to an embodiment of the present application.
  • FIG. 22 shows a schematic block diagram of a washing machine according to an embodiment of the present application.
  • FIG. 2 shows a flowchart of a method for controlling the operation of a motor for a washing machine according to an embodiment of the present application. Among them, the method includes:
  • the motor after confirming that the rotation speed of the motor reaches the second target rotation speed and running for a second preset time period, the motor is controlled to continuously change from the second target rotation speed to the first target rotation speed, and there is no stop time during this period, wherein the first target rotation speed and the second The speed direction of the target speed is opposite.
  • the method for controlling the operation of a motor for a washing machine controls the rotor of the motor to rotate at a first target rotation speed for a first preset time period according to a first rotation direction, and then controls the motor to continuously change the rotation speed from the first target rotation speed to the second target rotation speed .
  • the stop time in the related art is no longer retained, but the motor is controlled to change directly from the first target speed to the second target speed in the opposite direction of rotation, and no longer stops for a certain period of time when the speed is zero.
  • the motor is then controlled to continuously change from the second target speed to the first target speed in the opposite direction of rotation, no longer when the speed is zero Stopped for a certain period of time. Therefore, during the reciprocal switching between the first target speed and the second target speed when the washing machine is washing, the dwell time at the zero speed in the related art is omitted, thereby reducing the washing time of the laundry and improving Washing efficiency improves user experience.
  • This method is applicable not only to drum washing machines but also to pulsator washing machines.
  • FIG. 3 shows a schematic flowchart of a method for controlling operation of a motor for a washing machine according to another embodiment of the present application. Among them, the method includes:
  • the motor after confirming that the rotation speed of the motor reaches the second target rotation speed and running the second preset time period, the motor is controlled to continuously change from the second target rotation speed to the first target rotation speed, and there is no stop time during this period, wherein the first target rotation speed and the second target rotation speed The speed direction of the target speed is opposite.
  • the current rotational speed of the motor is calculated by acquiring the driving voltage and current of the motor, specifically, the rotor flux linkage of the current motor is calculated using the driving voltage and current current, and the rotor of the motor is calculated using the flux linkage observation method Position, calculate the current speed of the current rotor through the calculated rotor position.
  • the current speed can be observed from time to time by means of flux linkage observation. It only needs to detect the driving voltage and sample the current to determine the current speed.
  • the calculation process is simple, which is conducive to controlling the motor.
  • FIG. 4 shows a flowchart of a method for controlling the operation of a motor for a washing machine according to still another embodiment of the present application. Among them, the method includes:
  • stator flux linkage estimation method based on the voltage model is used to calculate the back EMF of the motor, the phase compensation and integral filtering are performed on the back EMF, the rotor flux is calculated, and the rotor position of the motor is calculated according to the rotor flux ;
  • the motor after confirming that the rotation speed of the motor reaches the second target rotation speed, and after running the second preset duration, the motor is controlled to continuously change from the second target rotation speed to the first target rotation speed, and there is no stop time during this period, wherein the first target rotation speed and the second target rotation speed The speed direction of the target speed is opposite.
  • the rotor flux linkage is calculated based on the stator flux estimation method of the voltage model.
  • the specific steps are as follows. Based on the stator flux linkage of the voltage model, detecting the ⁇ -axis current and ⁇ -axis current, and the resistance of the motor, calculate the back EMF of the motor on the ⁇ -axis and ⁇ -axis.
  • the electric potential is phase-compensated to obtain the compensated back-EMF on the ⁇ -axis and ⁇ -axis, and is integrated and filtered to obtain the stator flux linkage of the motor, and the rotor of the motor is calculated according to the formula of the relationship between the stator flux linkage and the rotor flux linkage.
  • the flux linkage is used to calculate the rotor position of the motor according to the rotor flux linkage, and then determine the current speed of the motor rotor to realize the control of the motor.
  • the back-EMF of the motor is calculated by the following formula:
  • E ⁇ is the motor ⁇ -axis back EMF
  • E ⁇ is the motor ⁇ -axis back EMF
  • U ⁇ is the motor ⁇ -axis voltage
  • U ⁇ is the motor ⁇ -axis voltage
  • I ⁇ is the motor ⁇ -axis current
  • I ⁇ is the motor ⁇ -axis current Current
  • R is the motor resistance
  • the motor ⁇ -axis back EMF can be calculated ⁇ and the motor ⁇ axis back EMF E ⁇ can be obtained without complicated calculation process.
  • the steps of performing phase compensation and integral filtering on the back EMF are calculated by the following formula:
  • phase compensation formula is as follows:
  • E ' ⁇ is the voltage after the motor ⁇ axis compensation
  • E' ⁇ is the voltage after the motor ⁇ axis compensation
  • E ⁇ is the motor ⁇ axis back EMF
  • E ⁇ is the motor ⁇ axis back EMF
  • ⁇ c is the filter frequency
  • ⁇ e is the motor rotation angular frequency
  • S is the Laplace operator
  • the ⁇ -axis flux linkage ⁇ -axis flux linkage It can be directly calculated by the filtering frequency ⁇ c , the Laplacian S, the motor-axis compensated voltage E ′ ⁇ and the motor ⁇ -axis compensated voltage E ′ ⁇ , and it can be obtained without a complicated calculation process.
  • the rotor flux linkage is calculated by the following formula:
  • the rotor flux linkage with these are the motor ⁇ -axis flux linkage and ⁇ -axis rotor flux linkage, L q is the inductance of the motor rotor, I ⁇ is the motor ⁇ -axis current, and I ⁇ is the motor ⁇ -axis current.
  • the calculated ⁇ -axis flux linkage ⁇ -axis flux linkage And the inductance L q of the motor rotor, the ⁇ -axis current I ⁇ , and the motor ⁇ -axis current I ⁇ are directly calculated to obtain the rotor flux linkage with By calculating the rotor flux linkage with Perform the arc tangent calculation to obtain the rotor position, and then determine the rotor speed.
  • FIG. 5 shows a flowchart of a method for controlling the operation of a motor for a washing machine according to another embodiment of the present application. Among them, the method includes:
  • the stator flux linkage estimation method based on the voltage model is used to calculate the back EMF of the motor, the phase compensation and integral filtering are performed on the back EMF, the rotor flux linkage is calculated, and the rotor position of the motor is calculated according to the rotor flux linkage ;
  • the first preset threshold is the process of switching from deceleration to acceleration A node.
  • the first preset threshold may be 0 or any value that fluctuates above 0.
  • the rotation speed of the motor rotor is at 0, that is, when the rotor is just about to stop in the first rotation direction, the rotor is controlled to rotate in the second rotation direction, thereby avoiding the situation where the rotor is in a stopped state.
  • the second preset threshold has the same effect as the first preset threshold, and will not be described here.
  • the relationship is set by the relationship between the electrical frequency, the speed, and the number of pole pairs of the motor.
  • the specific electrical frequency is equal to the product of the speed and the number of pole pairs of the motor.
  • the fixed frequency is used to set the rotation speed indirectly, that is, the first preset threshold.
  • the second preset threshold is set in the same way.
  • the electrical frequency is the power supply frequency.
  • FIG. 6 shows a flowchart of a method for controlling the operation of a washing machine motor according to another embodiment of the present application. Among them, the method includes:
  • stator flux linkage estimation method based on the voltage model is used to calculate the back EMF of the motor, the phase compensation and integral filtering are performed on the back EMF, the rotor flux linkage is calculated, and the rotor position of the motor is calculated according to the rotor flux linkage ;
  • the rotor of the control motor is accelerated to the second target rotation speed in the second rotation direction by specifically: the rotor of the control motor is stepped to the second target rotation speed, specifically, the rotation speed of the control rotor is increased within a period of time To the second target speed, such as applying a larger drive voltage and / or drive current to the rotor of the motor to provide greater acceleration to the rotor, controlling the speed of the rotor to step to the second target speed, one of which can be 1 Seconds, or a period of a few seconds, which in turn controls the rotor of the motor to switch rapidly in the first rotation direction to the second rotation direction.
  • the rotor of the motor is accelerated from the second rotation direction to the first rotation direction to the first target rotation speed by controlling the rotor step to the first target rotation speed.
  • the motor operation control method for the washing machine further includes: acquiring a preset speed curve from the acceleration of the motor toward the first target rotation speed to the rotation of the motor to the second target rotation speed; wherein, the preset The speed curve is generated according to the first target speed, the second target speed, the first preset duration, and the second target duration; according to the current time corresponding to the current speed, find the preset speed corresponding to the current time in the preset speed curve, when the current When there is a deviation between the speed and the preset speed, the current speed is corrected to the preset speed.
  • a preset speed curve from the acceleration of the motor to the first target rotation speed to the second target rotation speed is also obtained, which corresponds to the interval where the rotation speed changes from the initial value (such as 0) to the second target rotation speed, according to
  • the current time corresponding to the calculated current speed finds the preset speed directly corresponding to the corresponding time in the preset speed curve, and determines whether there is a deviation between the current speed and the preset speed. When there is a deviation between the current speed and the preset speed, the current speed is corrected to the preset speed.
  • the step of correcting the current speed By setting the step of correcting the current speed to the preset speed, the accuracy of the operation of the control motor is avoided, and it is avoided that the control motor runs at the first preset speed, and the actual motor runs less than the first preset speed, causing the motor not to follow the speed -Stalling that occurs during the time curve operation, and at the same time avoids damage to the motor due to the deviation of the speed from the target speed during commutation.
  • the step of correcting the current rotation speed to the preset rotation speed specifically includes: calculating the driving torque according to the difference between the preset rotation speed and the current rotation speed; acquiring the current of the motor, based on the current With the drive torque, the drive voltage is calculated, and the motor is controlled to drive the rotor of the motor to rotate with the drive voltage.
  • the difference between the obtained preset speed and the current speed is calculated, the driving torque is calculated according to the calculated difference, the current of the motor is obtained, and the operation of the drive motor is calculated according to the current and the calculated driving torque Drive voltage, and input the drive voltage into the motor.
  • the preset speed and the current speed are corrected.
  • the above method of controlling the motor for correction only needs to obtain the current and no other parameters. Therefore, the data processing process is reduced, the correction speed is accelerated, and then the time for the motor rotor to decelerate is reduced, and the motor is efficiently used to reduce clothing Washing time.
  • FIG. 7 shows a schematic flowchart of a motor operation control method for a washing machine according to another embodiment of the present application. Among them, the method includes:
  • the motor is controlled to cross at zero speed, decelerate from the cylinder or barrel rotation speed N1 to 0 speed, and then accelerate backward to the rotation speed N2;
  • the motor is controlled to cross at zero speed, decelerate from the cylinder or barrel rotation speed N2 to 0 speed, and then accelerate to the rotation speed N1;
  • FIG. 8 shows a schematic block diagram of the speed control of the motor rotor in this embodiment.
  • the motor zero-speed crossing specifically includes: a speed command generation module, a speed controller, a speed calculator, a current controller, a flux linkage observation unit, and a position estimation unit.
  • the speed command generation module is used to generate a zero-speed ride-through speed command.
  • FIG. 9 shows a schematic diagram of the speed command of the motor rotor in this embodiment.
  • the speed controller generates the torque command T asr through the speed command V ref and the feedback speed V fdb ; specifically, the speed controller generates a speed error V err based on the speed command V ref and the feedback speed V fdb , and the current controller uses the torque
  • the command T asr and the feedback current I fdb generate a voltage command U;
  • the flux linkage observation unit calculates the motor flux linkage based on the motor voltage and current;
  • the position estimation unit estimates the motor rotor position ⁇ based on the observed flux linkage. Specifically, the motor is controlled to run steadily with the preset speed N1.
  • the speed command generation module After the zero-speed ride-through is enabled, the speed command generation module generates a speed command according to the preset acceleration, decelerates from the speed N1 to 0, detects the motor speed, and when the motor speed is lower than After presetting the threshold value, the speed command is stepped to the speed N2, and the zero speed cross speed command is generated from the speed N1 to the speed N2.
  • the speed controller generates the torque command through the speed command and the feedback speed
  • the current controller generates the voltage command through the torque command and the feedback current.
  • the speed command After the motor speed is lower than the preset threshold, the speed command is stepped to the speed N2, and the current command is given the preset value as the initial value, and the subsequent output current command is calculated by the speed controller to achieve zero speed ride through.
  • FIG. 10 shows a schematic block diagram of a motor operation control system 1000 for a washing machine according to an embodiment of the present application.
  • the motor operation control system 1000 for a washing machine includes: a memory 1002 for storing a computer program; a processor 1004 for executing a computer program to: control the rotor of the motor to accelerate in the first rotation direction and obtain the current speed of the motor, When the speed of the motor reaches the first target speed and runs for the first preset time, the motor is controlled to continuously change from the first target speed to the second target speed with no stop time; when the motor speed reaches the second target speed, and After running the second preset time period, the control motor is continuously changed from the second target speed to the first target speed without stopping time during this period; wherein, the speed direction of the first target speed and the second target speed are opposite.
  • the system is not only suitable for drum washing machines but also for pulsator washing machines.
  • the motor operation control system 1000 for a washing machine includes a processor 1004 and a memory 1002, wherein the processor 1004 executes an executable program stored in the memory 1002 to control the rotor of the motor at a first target speed according to a first rotation direction After rotating for the first preset duration, the control motor continuously changes the rotation speed from the first target rotation speed to the second target rotation speed. During this process, the stop time in the related art is no longer retained, but the motor is controlled to change directly from the first target speed to the second target speed in the opposite direction of rotation, and no longer stops for a certain period of time when the speed is zero.
  • the motor is then controlled to continuously change from the second target speed to the first target speed in the opposite direction of rotation, no longer when the speed is zero Stopped for a certain period of time. Therefore, during the reciprocal switching between the first target speed and the second target speed when the washing machine is washing, the dwell time at the zero speed in the related art is omitted, thereby reducing the washing time of the laundry and improving Washing efficiency improves user experience.
  • the processor 1004 is further specifically configured to execute a computer program to control the step of continuously changing the motor from the first target speed to the second target speed, which specifically includes: controlling the motor to run at a reduced speed when When the speed of the motor drops to the first preset threshold, the rotor of the motor is controlled to accelerate to the second target speed in the second rotation direction; wherein the first preset threshold is 0, or the difference between the first preset threshold and 0 is Any value within the first preset range; the processor is also used to execute a computer program to implement the step of controlling the motor to continuously change from the second target speed to the first target speed, which specifically includes: controlling the motor to run at a reduced speed when the motor speed When it drops to the second preset threshold, the rotor of the motor is controlled to accelerate to the first target speed in the first rotation direction; wherein, the second preset threshold is 0, or the second preset threshold is the difference from 0 in the second Any value within the preset range.
  • the first preset threshold is the process of switching from deceleration to acceleration A node.
  • the first preset threshold may be 0 or any value that fluctuates above 0.
  • the rotation speed of the motor rotor is at 0, that is, when the rotor is just about to stop in the first rotation direction, the rotor is controlled to rotate in the second rotation direction, thereby avoiding the situation where the rotor is in a stopped state.
  • the second preset threshold has the same effect as the first preset threshold, and will not be described here.
  • the relationship is set by the relationship between the electrical frequency, the speed, and the number of pole pairs of the motor.
  • the specific electrical frequency is equal to the product of the speed and the number of pole pairs of the motor.
  • the fixed frequency is used to set the rotation speed indirectly, that is, the first preset threshold.
  • the second preset threshold is set in the same way.
  • the electrical frequency is the power supply frequency.
  • the processor 1004 is further configured to execute a computer program to implement the step of controlling the rotor of the motor to accelerate to the second target rotational speed in the second rotation direction, which specifically includes: controlling the rotor step to the Two target speeds; and / or the processor is also used to execute a computer program to implement the step of controlling the rotor of the motor to accelerate to the first target speed in the first rotation direction, specifically: controlling the rotor to step to the first target speed.
  • the rotor of the control motor is accelerated to the second target rotation speed in the second rotation direction by specifically: the rotor of the control motor is stepped to the second target rotation speed, specifically, the rotation speed of the control rotor is increased within a period of time To the second target speed, such as applying a larger drive voltage and / or drive current to the rotor of the motor to provide greater acceleration to the rotor, controlling the speed of the rotor to step to the second target speed, one of which can be 1 Seconds, or a period of a few seconds, which in turn controls the rotor of the motor to switch rapidly in the first rotation direction to the second rotation direction.
  • the rotor of the motor is accelerated from the second rotation direction to the first rotation direction to the first target rotation speed by controlling the rotor step to the first target rotation speed.
  • the processor 1004 is specifically configured to execute a computer program to: obtain the driving voltage and current of the motor; calculate the rotor flux linkage of the motor according to the driving voltage and current, and according to the rotor magnetic
  • the chain calculates the rotor position of the motor; based on the rotor position, the current speed of the motor is calculated.
  • the processor 1004 specifically executes the stored computer program to calculate the current speed of the motor by acquiring the driving voltage and the current of the motor, specifically, using the driving voltage and the current to calculate the rotor flux linkage of the current motor,
  • the rotor position of the motor is calculated by means of flux linkage observation
  • the current speed of the current rotor is calculated by the calculated rotor position.
  • the current speed can be observed from time to time by means of flux linkage observation. It only needs to detect the driving voltage and sample the current to determine the current speed.
  • the calculation process is simple, which is conducive to controlling the motor.
  • the processor 1004 is specifically configured to execute a computer program to calculate the back-EMF of the motor by using a stator flux estimation method based on a voltage model, perform phase compensation and integral filtering on the back-EMF, The rotor flux linkage is calculated.
  • the rotor flux linkage is calculated based on the stator flux estimation method of the voltage model.
  • the processor is specifically used to execute a computer program to calculate the stator flux linkage based on the voltage model, detect the ⁇ -axis current and ⁇ -axis current, and the resistance of the motor to calculate the back EMF of the motor on the ⁇ -axis and ⁇ -axis, based on the motor rotation angular frequency and
  • the filter frequency performs phase compensation on the calculated back EMF, obtains the back EMF on the ⁇ axis and ⁇ axis after compensation, and performs integral filtering to obtain the stator flux linkage of the motor.
  • the relationship formula calculates the rotor flux linkage of the motor, so as to calculate the rotor position of the motor according to the rotor flux linkage, and then determine the current rotation speed of the motor rotor to realize the control of the motor.
  • the back-EMF of the motor is calculated by the following formula:
  • E ⁇ is the motor ⁇ -axis back EMF
  • E ⁇ is the motor ⁇ -axis back EMF
  • U ⁇ is the motor ⁇ -axis voltage
  • U ⁇ is the motor ⁇ -axis voltage
  • I ⁇ is the motor ⁇ -axis current
  • I ⁇ is the motor ⁇ -axis current Current
  • R is the motor resistance
  • the motor ⁇ -axis back EMF can be calculated ⁇ and the motor ⁇ axis back EMF E ⁇ can be obtained without complicated calculation process.
  • the steps of performing phase compensation and integral filtering on the back EMF are calculated by the following formula:
  • phase compensation formula is as follows:
  • E ' ⁇ is the voltage after the motor ⁇ axis compensation
  • E' ⁇ is the voltage after the motor ⁇ axis compensation
  • E ⁇ is the motor ⁇ axis back EMF
  • E ⁇ is the motor ⁇ axis back EMF
  • ⁇ c is the filter frequency
  • ⁇ e is the motor rotation angular frequency
  • S is the Laplace operator
  • the ⁇ -axis flux linkage ⁇ -axis flux linkage It can be directly calculated by the filtering frequency ⁇ c , the Laplacian S, the motor-axis compensated voltage E ′ ⁇ and the motor ⁇ -axis compensated voltage E ′ ⁇ , and it can be obtained without a complicated calculation process.
  • the rotor flux linkage is calculated by the following formula:
  • the rotor flux linkage with these are the motor ⁇ -axis flux linkage and ⁇ -axis rotor flux linkage, L q is the inductance of the motor rotor, I ⁇ is the motor ⁇ -axis current, and I ⁇ is the motor ⁇ -axis current.
  • the calculated ⁇ -axis flux linkage ⁇ -axis flux linkage And the inductance L q of the motor rotor, the ⁇ -axis current I ⁇ , and the motor ⁇ -axis current I ⁇ are directly calculated to obtain the rotor flux linkage with By calculating the rotor flux linkage with Perform the arc tangent calculation to obtain the rotor position, and then determine the rotor speed.
  • the processor 1004 is further configured to execute a computer program to: obtain a preset speed curve during the process from the acceleration of the motor to the first target speed to the rotation of the motor to the second target speed; wherein , The preset speed curve is generated according to the first target speed, the second target speed, the first preset duration, and the second target duration; according to the current time corresponding to the current speed, find the preset speed corresponding to the current time in the preset speed curve When there is a deviation between the current speed and the preset speed, the current speed is corrected to the preset speed.
  • a preset speed curve from the acceleration of the motor to the first target rotation speed to the second target rotation speed is also obtained, which corresponds to the interval where the rotation speed changes from the initial value (such as 0) to the second target rotation speed, according to
  • the current time corresponding to the calculated current speed finds the preset speed directly corresponding to the corresponding time in the preset speed curve, and determines whether there is a deviation between the current speed and the preset speed. When there is a deviation between the current speed and the preset speed, the current speed is corrected to the preset speed.
  • the step of correcting the current speed By setting the step of correcting the current speed to the preset speed, the accuracy of the operation of the control motor is avoided, and it is avoided that the control motor runs at the first preset speed, and the actual motor runs less than the first preset speed, causing the motor not to follow the speed -Stalling that occurs during the time curve operation, and at the same time avoids damage to the motor due to the deviation of the speed from the target speed during commutation.
  • the processor 1004 is further configured to execute a computer program to: calculate the driving torque according to the difference between the preset speed and the current speed; obtain the current of the motor, according to the current and Drive torque, calculate the drive voltage, and control the motor to drive the rotor of the motor to rotate with the drive voltage.
  • the difference between the obtained preset speed and the current speed is calculated, the driving torque is calculated according to the calculated difference, the current of the motor is obtained, and the operation of the drive motor is calculated according to the current and the calculated driving torque Drive voltage, and input the drive voltage into the motor.
  • the preset speed and the current speed are corrected.
  • the above method of controlling the motor for correction only needs to obtain the current and no other parameters. Therefore, the data processing process is reduced, the correction speed is accelerated, and then the time for the motor rotor to decelerate is reduced, and the motor is efficiently used to reduce clothing Washing time.
  • FIG. 11 shows a schematic block diagram of a washing machine 1100 according to an embodiment of the present application.
  • the washing machine 1100 includes: a motor operation control system 1102 for a washing machine.
  • the washing machine is a drum washing machine or a pulsator washing machine.
  • the washing machine 1100 provided by the present application includes the motor operation control system 1102 for the washing machine of any of the foregoing embodiments. Therefore, the washing machine 1100 has all the beneficial technical effects of the motor operation control system 1102 of any of the foregoing washing machines, and will not be described in detail.
  • FIG. 12 shows a schematic flowchart of a method for controlling the operation of a motor for a washing machine according to an embodiment of the present application. Among them, the method includes:
  • S1202 Detect the temperature of the motor in real time, confirm that the temperature of the motor is lower than the first preset threshold, and control the motor to run in the continuous operation mode;
  • the continuous operation mode is that the duration of the motor running in the first rotation direction is continuous with the duration of the motor running in the second rotation direction.
  • the motor operation control method for a washing machine provided by this application will first detect the temperature of the motor in real time and judge the current temperature detected by the motor.
  • the temperature of the motor is lower than the first preset threshold, it means that the motor can Maintain a good running state and control the motor to run in a continuous operation mode; specifically, the continuous operation mode is that the duration of the motor running in the first rotation direction is continuous with the duration of the motor running in the second rotation direction, that is, the motor is operated by the first There is no stopping time during the switching of the movement direction to the second movement direction.
  • the rotor of the motor is always in a state of motion, and the motor operation mode of the first direction rotation-the second direction rotation-the first direction rotation-the second direction rotation is realized to avoid
  • the stopping time of the rotor in the motor is realized, and the efficient use of the motor is realized, thereby reducing the washing time of the clothes and improving the user's experience.
  • the temperature of the motor is detected in real time, when the temperature of the motor is greater than the second preset threshold or the temperature of the motor controller is higher than the third preset threshold, it means that the continuous continuous operation mode makes the motor run for a long time.
  • the operation mode of the control motor is switched to the traditional operation mode ;
  • the traditional operating mode is when the motor rotates forward and reverse (that is, when switching between the first direction of rotation and the second direction of rotation), when switching forward, a stop command will be issued to the motor first, and the motor will stop for a preset time After that, the direction is switched, that is, the preset wash-to-stop ratio control is adopted. Since the motor has a pause time, the problem of motor heating can be alleviated.
  • the temperature of the motor is detected in real time, so that the motor makes an operation mode suitable for its current temperature, which shortens the washing time and ensures the service life of the motor.
  • This method is applicable not only to drum washing machines but also to pulsator washing machines.
  • FIG. 13 shows a schematic flowchart of a method for controlling the operation of a motor for washing machines according to an embodiment of the present application. Among them, the method includes:
  • the motor when it is detected that the temperature of the motor is lower than the first preset threshold, the motor is not immediately controlled to run in the continuous operation mode, but the temperature of the motor controller is first detected to determine the motor controller The working state at this time is to determine whether the controller of the motor meets the starting conditions for continuous operation mode.
  • the temperature of the controller is higher than the fourth preset threshold, it means that the current temperature of the controller is too high.
  • the continuous operation mode is very likely to be damaged by high temperature. It is necessary to control the operation mode of the motor to switch to the traditional operation mode to ensure its service life.
  • the temperature of the controller When the temperature of the controller is lower than the fourth preset threshold, it indicates the current temperature of the controller, which satisfies the starting conditions for continuous operation mode operation, and executes the step of controlling the motor to operate in the continuous operation mode to avoid the controller from being affected during the use process. damage.
  • FIG. 14 shows a schematic flowchart of a method for controlling the operation of a motor for a washing machine according to an embodiment of the present application. Among them, the method includes:
  • S1402 Detect the temperature of the motor in real time, confirm that the temperature of the motor is lower than the first preset threshold, control the rotor of the motor to accelerate in the first rotation direction, and obtain the current speed of the motor, confirm that the speed of the motor reaches the first target speed, and After running the first preset duration, control the motor to accelerate to the second target speed in the second rotation direction;
  • S1404 confirm that the temperature of the motor is greater than the second preset threshold or the temperature of the controller of the motor is higher than the third preset threshold, and control the operation mode of the motor to switch to the traditional operation mode;
  • the rotation direction of the first target rotation speed and the second target rotation speed are opposite.
  • a specific solution for a continuous operation mode which controls the rotor of the motor to rotate in the first rotation direction, and starts timing after the rotation speed reaches the first target rotation speed, and rotates the first preset at the first target rotation speed After the duration, the rotor of the control motor is accelerated to the second target rotation speed in the second rotation direction.
  • the rotor is controlled to rotate in the second rotation direction, which reduces the stop time of the rotor switching process from the first rotation direction to the second rotation direction, thereby reducing the washing time of the laundry.
  • FIG. 15 shows a schematic flowchart of a method for controlling the operation of a motor for a washing machine according to an embodiment of the present application. Among them, the method includes:
  • S1506 Confirm that the temperature of the motor is greater than the second preset threshold or the temperature of the controller of the motor is greater than the third preset threshold, and control the operation mode of the motor to switch to the traditional operation mode.
  • the rotor of the control motor accelerates to the first target rotation speed in the first rotation direction.
  • the motor operation mode avoids the stop time of the rotor in the motor, and realizes the efficient use of the motor, thereby reducing the washing time of the clothes and improving the user experience.
  • the current speed of the motor needs to be obtained in real time to determine whether the motor reaches the first target speed or the second target speed, and the way to obtain the current speed of the motor may be to obtain the drive voltage and current of the motor according to
  • the driving voltage and current are used to calculate the rotor flux linkage of the motor, and the rotor position of the motor is calculated based on the rotor flux linkage; the current speed of the motor is calculated based on the rotor position.
  • the current rotation speed of the motor is calculated by acquiring the drive voltage and current of the motor. Specifically, the drive voltage and current are used to calculate the rotor flux linkage of the current motor. Way to calculate the rotor position of the motor, and calculate the current speed of the current rotor through the calculated rotor position. The current speed can be observed from time to time by means of flux linkage observation. It only needs to detect the driving voltage and sample the current to determine the current speed. The calculation process is simple, which is conducive to controlling the motor.
  • the stator flux linkage estimation method based on the voltage model is used to calculate the back EMF of the motor, and the phase compensation and integral filtering are performed on the back EMF to calculate the rotor flux linkage.
  • the rotor flux linkage is calculated based on the stator flux estimation method of the voltage model. Based on the voltage model to detect the ⁇ -axis current and ⁇ -axis current and the resistance of the motor, calculate the back-EMF of the motor on the ⁇ -axis and ⁇ -axis, and perform phase compensation on the calculated back-EMF based on the motor rotation angle frequency and filter frequency.
  • the back EMF on the ⁇ -axis and ⁇ -axis and integrate and filter it to obtain the stator flux linkage of the motor, and calculate the rotor flux linkage of the motor according to the formula of the relationship between the stator flux linkage and the rotor flux linkage for Calculate the rotor position of the motor, and then determine the current speed of the motor rotor to achieve the control of the motor.
  • the back-EMF of the motor is calculated by the following formula:
  • E ⁇ is the motor ⁇ -axis back EMF
  • E ⁇ is the motor ⁇ -axis back EMF
  • U ⁇ is the motor ⁇ -axis voltage
  • U ⁇ is the motor ⁇ -axis voltage
  • I ⁇ is the motor ⁇ -axis current
  • I ⁇ is the motor ⁇ -axis current Current
  • R is the motor resistance
  • the motor ⁇ -axis back EMF can be calculated ⁇ and the motor ⁇ axis back EMF E ⁇ can be obtained without complicated calculation process.
  • the steps of performing phase compensation and integral filtering on the back EMF are calculated by the following formula:
  • phase compensation formula is as follows:
  • E ' ⁇ is the voltage after the motor ⁇ axis compensation
  • E' ⁇ is the voltage after the motor ⁇ axis compensation
  • E ⁇ is the motor ⁇ axis back EMF
  • E ⁇ is the motor ⁇ axis back EMF
  • ⁇ c is the filter frequency
  • ⁇ e is the motor rotation angular frequency
  • S is the Laplace operator
  • the ⁇ -axis flux linkage ⁇ -axis flux linkage It can be directly calculated by the filtering frequency ⁇ c , the Laplacian S, the motor-axis compensated voltage E ′ ⁇ and the motor ⁇ -axis compensated voltage E ′ ⁇ , and it can be obtained without a complicated calculation process.
  • the rotor flux linkage is calculated by the following formula:
  • the rotor flux linkage with these are the motor ⁇ -axis flux linkage and ⁇ -axis rotor flux linkage, L q is the inductance of the motor rotor, I ⁇ is the motor ⁇ -axis current, and I ⁇ is the motor ⁇ -axis current.
  • the calculated ⁇ -axis flux linkage ⁇ -axis flux linkage And the inductance L q of the motor rotor, the ⁇ -axis current I ⁇ , and the motor ⁇ -axis current I ⁇ are directly calculated to obtain the rotor flux linkage with By calculating the rotor flux linkage with Perform the arc tangent calculation to obtain the rotor position, and then determine the rotor speed.
  • the first target rotation speed and the second target rotation speed have the same rotation speed value.
  • the first target rotation speed and the second target rotation speed are set to have the same rotation speed value and opposite directions to ensure that the motor has the same effect at two rotation speeds, thereby ensuring the washing effect.
  • FIG. 8 shows a schematic block diagram of the speed control of the motor rotor in this embodiment.
  • the motor zero-speed crossing specifically includes: a speed command generation module, a speed controller, a speed calculator, a current controller, a flux linkage observation unit and a position estimation unit.
  • the speed command generating module is used to generate a zero-speed ride-through speed command.
  • FIG. 9 shows a schematic diagram of a speed curve generated by the speed command generating module in this embodiment, wherein the schematic diagram of the speed curve is based on the first target speed 2.
  • a second target speed, a first preset duration, and a second target duration are generated.
  • the speed controller generates the torque command T asr through the speed command V ref and the feedback speed V fdb ; specifically, the speed controller generates a speed error V err based on the speed command V ref and the feedback speed V fdb , and the current controller uses the torque
  • the command T asr and the feedback current I fdb generate a voltage command U;
  • the flux linkage observation unit calculates the motor flux linkage based on the motor voltage and current;
  • the position estimation unit estimates the motor rotor position ⁇ based on the observed flux linkage. Specifically, the motor is controlled to run steadily with the preset speed N1.
  • the speed command generation module After the zero-speed ride-through is enabled, the speed command generation module generates a speed command according to the preset acceleration, decelerates from the speed N1 to 0, detects the motor speed, and when the motor speed is lower than After presetting the threshold value, the speed command is stepped to the speed N2, and the zero speed cross speed command is generated from the speed N1 to the speed N2.
  • the speed controller generates a torque command through the speed command and the feedback speed
  • the current controller generates a voltage command through the torque command and the feedback current, and controls the motor to run according to the zero-speed ride-through speed command, decelerates from the speed N1 to 0, detects the motor speed, when After the motor speed is lower than the preset threshold, the speed command is stepped to the speed N2, and the current command is given the preset value as the initial value, and the subsequent output current command is calculated by the speed controller to achieve zero speed ride through.
  • the present application provides another motor operation control system 1600 for a washing machine, including: a memory 1602 for storing computer programs; a processor 1604 for executing computer programs To: detect the temperature of the motor in real time, when the temperature of the motor is lower than the first preset threshold, control the motor to run in continuous operation mode; when the temperature of the motor is greater than the second preset threshold or the temperature of the motor controller is higher than the third preset When the threshold is set, the operation mode of the control motor is switched to the traditional operation mode; wherein, the continuous operation mode is that the operation duration of the motor in the first rotation direction is continuous with the rotation duration of the motor in the second rotation direction.
  • the motor operation control system 1600 for a washing machine includes a processor 1604 and a memory 1602, where the processor 1604 executes an executable program stored in the memory 1602 to firstly detect the temperature of the motor in real time and check the motor Judging the current temperature, when the temperature of the motor is lower than the first preset threshold, it means that the motor can maintain a good running state at this time, and the motor is controlled to operate in the continuous operation mode; specifically, the continuous operation mode is that the motor rotates toward the first
  • the running duration of the direction running is continuous with the rotating duration of the motor running in the second rotation direction, that is, there is no stop time during the switching of the motor from the first movement direction to the second movement direction, and the rotor of the motor is in a continuous movement state.
  • One-direction rotation-second direction rotation-first direction rotation-second direction rotation motor operation mode avoids the rotor stop time in the motor, realizes the efficient use of the motor, thereby reducing the washing time of the clothes and improving the user's use Experience.
  • the temperature of the motor is detected in real time, when the temperature of the motor is greater than the second preset threshold or the temperature of the motor controller is higher than the third preset threshold, it means that the continuous continuous operation mode makes the motor run for a long time.
  • the operation mode of the control motor is switched to the traditional operation mode ;
  • the traditional operating mode is when the motor rotates forward and reverse (that is, when switching between the first direction of rotation and the second direction of rotation), when switching forward, a stop command will be issued to the motor first, and the motor will stop for a preset time After that, the direction is switched, that is, the preset wash-to-stop ratio control is adopted. Since the motor has a pause time, the problem of motor heating can be alleviated.
  • the temperature of the motor is detected in real time, so that the motor makes an operation mode suitable for its current temperature, which shortens the washing time and ensures the service life of the motor.
  • the processor 1604 is further specifically configured to execute a computer program to: detect the motor's Controller temperature, if the controller temperature is lower than the fourth preset threshold, the step of controlling the motor to run in the continuous operation mode is executed; if the controller temperature is higher than the fourth preset threshold, the operating mode of the control motor is switched to the conventional operation mode.
  • the system is not only suitable for drum washing machines but also for pulsator washing machines.
  • the processor 1604 is also used to execute a stored computer program: when it is detected that the temperature of the motor is lower than the first preset threshold, the motor is not immediately controlled to run in the continuous operation mode, but the motor The temperature of the controller is detected to determine the working state of the motor controller at this time, that is, whether the motor controller meets the starting conditions for continuous operation mode at this time. When it is checked that the temperature of the controller is higher than the fourth preset threshold At this time, it means that the current temperature of the controller is too high. If you start the continuous operation mode, it is very likely that the high temperature will be damaged. You need to control the operation mode of the motor to switch to the traditional operation mode to ensure its service life.
  • the temperature of the controller When the temperature of the controller is lower than the fourth preset threshold, it indicates the current temperature of the controller, which satisfies the starting conditions for continuous operation mode operation, and executes the step of controlling the motor to operate in the continuous operation mode to avoid the controller from being affected during the use process. damage.
  • the processor 1604 is further specifically configured to execute a computer program to: control the rotor of the motor to accelerate in the first rotation direction, and obtain the current speed of the motor, when the speed of the motor reaches the first target Speed, and after running for the first preset duration, the rotor of the motor is controlled to accelerate to the second target speed in the second direction of rotation; wherein the first target speed is opposite to the direction of rotation of the second target speed.
  • a specific solution for a continuous operation mode which controls the rotor of the motor to rotate in the first rotation direction, and starts timing after the rotation speed reaches the first target rotation speed, and rotates the first preset at the first target rotation speed After the duration, the rotor of the control motor is accelerated to the second target rotation speed in the second rotation direction.
  • the rotor is controlled to rotate in the second rotation direction, which reduces the stop time of the rotor switching process from the first rotation direction to the second rotation direction, thereby reducing the washing time of the laundry.
  • the processor 1604 is further specifically configured to execute a computer program to: when the motor runs at the second target speed for a second preset duration, control the motor to accelerate in the first rotation direction to the first Target speed.
  • the rotor of the control motor accelerates to the first target rotation speed in the first rotation direction.
  • the motor operation mode avoids the stop time of the rotor in the motor, and realizes the efficient use of the motor, thereby reducing the washing time of the clothes and improving the user experience.
  • the first target rotation speed and the second target rotation speed have the same rotation speed value.
  • the first target rotation speed and the second target rotation speed are set to have the same rotation speed value and opposite directions to ensure that the motor has the same effect at two rotation speeds, thereby ensuring the washing effect.
  • the present application provides a washing machine 1700, wherein the washing machine is a drum washing machine or a pulsator washing machine, wherein the washing machine includes any one of the motor operation control systems 1702 for the washing machine.
  • the washing machine provided by the present application includes the motor operation control system 1702 of the washing machine according to any of the above embodiments. Therefore, the washing machine 1700 has all the beneficial technical effects of any of the motor operation control system 1702 of the washing machine.
  • FIG. 18 is a schematic flowchart of a method for controlling operation of a washing machine motor according to an embodiment of the present application, where the method steps include:
  • S1802 Control the motor to operate in a continuous operation mode, which includes multiple continuous operation cycles.
  • the operation control method of a motor for a washing machine controls the motor to operate in a continuous operation mode, which includes multiple continuous cycles in the continuous operation mode.
  • a continuous operation mode which includes multiple continuous cycles in the continuous operation mode.
  • the stop time between the rotation of the cylinder or barrel in the first rotation direction and the rotation in the second rotation direction in the related art is no longer retained, but the motor is controlled to change directly from a certain speed of forward rotation to A certain rotation speed with the opposite rotation direction will no longer stop for a certain period of time when the rotation speed is zero.
  • the specific steps of controlling the motor to complete one continuous operation cycle of the continuous operation mode include:
  • S1902 Control the rotor of the motor to accelerate in the first direction of rotation, and obtain the current speed of the motor.
  • the motor is controlled to continuously change from the first target speed to The second target speed, during which there is no stop time;
  • the specific steps for the washing machine control motor provided by the present application to complete one of the continuous operation cycles of the continuous operation mode include: after controlling the rotor of the motor to rotate at the first target rotation speed for a first preset duration according to the first rotation direction, the control motor will The rotation speed continuously changes from the first target rotation speed to the second target rotation speed.
  • the control motor directly changes from the first target speed to the second target speed in the opposite direction of rotation, and does not stop for a certain period of time when the speed is zero.
  • the speed of the motor reaches the second target speed and runs for the second preset duration, the motor is then controlled to continuously change from the second target speed to the first target speed in the opposite direction of rotation, no longer when the speed is zero Stopped for a certain period of time.
  • the motor operation mode avoids the rotor stop time in the motor and realizes the efficient use of the motor. Therefore, during the reciprocal switching between the first target speed and the second target speed when the washing machine is washing, the dwell time at the zero speed in the related art is omitted, thereby reducing the washing time of the laundry and improving Washing efficiency improves user experience.
  • This method is applicable not only to drum washing machines but also to pulsator washing machines.
  • the specific steps of controlling the motor to complete a continuous operation cycle of the continuous operation mode in another embodiment of the present application include:
  • the current rotational speed of the motor is calculated by acquiring the driving voltage and current of the motor, specifically, the rotor flux linkage of the current motor is calculated using the driving voltage and current current, and the rotor of the motor is calculated using the flux linkage observation method Position, calculate the current speed of the current rotor through the calculated rotor position.
  • the current speed can be observed from time to time by means of flux linkage observation. It only needs to detect the driving voltage and sample the current to determine the current speed.
  • the calculation process is simple, which is conducive to controlling the motor.
  • the specific steps of controlling the motor to complete a continuous operation cycle of the continuous operation mode in another embodiment of the present application include:
  • stator flux linkage estimation method based on the voltage model is used to calculate the back EMF of the motor, the phase compensation and integral filtering are performed on the back EMF, the rotor flux is calculated, and the rotor position of the motor is calculated according to the rotor flux ;
  • the rotor flux linkage is calculated based on the stator flux estimation method of the voltage model.
  • the specific steps are as follows. Based on the stator flux linkage of the voltage model, detecting the ⁇ -axis current and ⁇ -axis current, and the resistance of the motor, calculate the back EMF of the motor on the ⁇ -axis and ⁇ -axis.
  • the electric potential is phase-compensated to obtain the compensated back-EMF on the ⁇ -axis and ⁇ -axis, and is integrated and filtered to obtain the stator flux linkage of the motor, and the rotor of the motor is calculated according to the formula of the relationship between the stator flux linkage and the rotor flux linkage.
  • the flux linkage is used to calculate the rotor position of the motor according to the rotor flux linkage, and then determine the current speed of the motor rotor to realize the control of the motor.
  • the back-EMF of the motor is calculated by the following formula:
  • E ⁇ is the motor ⁇ -axis back EMF
  • E ⁇ is the motor ⁇ -axis back EMF
  • U ⁇ is the motor ⁇ -axis voltage
  • U ⁇ is the motor ⁇ -axis voltage
  • I ⁇ is the motor ⁇ -axis current
  • I ⁇ is the motor ⁇ -axis current Current
  • R is the motor resistance
  • the motor ⁇ -axis back EMF can be calculated ⁇ and the motor ⁇ axis back EMF E ⁇ can be obtained without complicated calculation process.
  • the steps of performing phase compensation and integral filtering on the back EMF are calculated by the following formula:
  • phase compensation formula is as follows:
  • E ' ⁇ is the voltage after the motor ⁇ axis compensation
  • E' ⁇ is the voltage after the motor ⁇ axis compensation
  • E ⁇ is the motor ⁇ axis back EMF
  • E ⁇ is the motor ⁇ axis back EMF
  • ⁇ c is the filter frequency
  • ⁇ e is the motor rotation angular frequency
  • S is the Laplace operator
  • the ⁇ -axis flux linkage ⁇ -axis flux linkage It can be directly calculated by the filtering frequency ⁇ c , the Laplacian S, the motor-axis compensated voltage E ′ ⁇ and the motor ⁇ -axis compensated voltage E ′ ⁇ , and it can be obtained without a complicated calculation process.
  • the rotor flux linkage is calculated by the following formula:
  • the rotor flux linkage with these are the motor ⁇ -axis flux linkage and ⁇ -axis rotor flux linkage, L q is the inductance of the motor rotor, I ⁇ is the motor ⁇ -axis current, and I ⁇ is the motor ⁇ -axis current.
  • the calculated ⁇ -axis flux linkage ⁇ -axis flux linkage And the inductance L q of the motor rotor, the ⁇ -axis current I ⁇ , and the motor ⁇ -axis current I ⁇ are directly calculated to obtain the rotor flux linkage with By calculating the rotor flux linkage with Perform the arc tangent calculation to obtain the rotor position, and then determine the rotor speed.
  • the specific steps of controlling the motor to complete one continuous operation cycle of the continuous operation mode in another embodiment of the present application include: S2202, controlling the rotor of the motor to accelerate and rotate in the first rotation direction;
  • S2206 based on the driving voltage and current, use the stator flux estimation method based on the voltage model to calculate the back EMF of the motor, perform phase compensation and integral filtering on the back EMF, calculate the rotor flux, and calculate the rotor position of the motor according to the rotor flux ;
  • the first preset threshold is the process of switching from deceleration to acceleration A node.
  • the first preset threshold may be 0 or any value that fluctuates above 0.
  • the rotation speed of the motor rotor is at 0, that is, when the rotor is just about to stop in the first rotation direction, the rotor is controlled to rotate in the second rotation direction, thereby avoiding the situation where the rotor is in a stopped state.
  • the second preset threshold has the same effect as the first preset threshold, and will not be described here.
  • the relationship is set by the relationship between the electrical frequency, the speed, and the number of pole pairs of the motor.
  • the specific electrical frequency is equal to the product of the speed and the number of pole pairs of the motor.
  • the fixed frequency is used to set the rotation speed indirectly, that is, the first preset threshold.
  • the second preset threshold is set in the same way.
  • the electrical frequency is the power supply frequency.
  • the specific steps of controlling the motor to complete one continuous operation cycle of the continuous operation mode in another embodiment of the present application include: S2302, controlling the rotor of the motor to accelerate and rotate in the first rotation direction;
  • stator flux linkage estimation method based on the voltage model is used to calculate the back EMF of the motor, the phase compensation and integral filtering are performed on the back EMF, the rotor flux is calculated, and the rotor position of the motor is calculated according to the rotor flux ;
  • the rotor of the control motor is accelerated to the second target rotation speed in the second rotation direction by specifically: the rotor of the control motor is stepped to the second target rotation speed, specifically, the rotation speed of the control rotor is increased within a period of time To the second target speed, such as applying a larger drive voltage and / or drive current to the rotor of the motor to provide greater acceleration to the rotor, controlling the speed of the rotor to step to the second target speed, one of which can be 1 Seconds, or a period of a few seconds, which in turn controls the rotor of the motor to switch rapidly in the first rotation direction to the second rotation direction.
  • the rotor of the motor is accelerated from the second rotation direction to the first rotation direction to the first target rotation speed by controlling the rotor step to the first target rotation speed.
  • the motor operation control method for the washing machine further includes: acquiring a preset speed curve from the acceleration of the motor toward the first target rotation speed to the rotation of the motor to the second target rotation speed; wherein, the preset The speed curve is generated according to the first target speed, the second target speed, the first preset duration, and the second target duration; according to the current time corresponding to the current speed, find the preset speed corresponding to the current time in the preset speed curve, when the current When there is a deviation between the speed and the preset speed, the current speed is corrected to the preset speed.
  • a preset speed curve from the acceleration of the motor to the first target rotation speed to the second target rotation speed is also obtained, which corresponds to the interval where the rotation speed changes from the initial value (such as 0) to the second target rotation speed, according to
  • the current time corresponding to the calculated current speed finds the preset speed directly corresponding to the corresponding time in the preset speed curve, and determines whether there is a deviation between the current speed and the preset speed. When there is a deviation between the current speed and the preset speed, the current speed is corrected to the preset speed.
  • the step of correcting the current speed By setting the step of correcting the current speed to the preset speed, the accuracy of the operation of the control motor is avoided, and it is avoided that the control motor runs at the first preset speed, and the actual motor runs less than the first preset speed, causing the motor not to follow the speed -Stalling that occurs during the time curve operation, and at the same time avoids damage to the motor due to the deviation of the speed from the target speed during commutation.
  • the step of correcting the current rotation speed to the preset rotation speed specifically includes: calculating the driving torque according to the difference between the preset rotation speed and the current rotation speed; acquiring the current of the motor, based on the current With the drive torque, the drive voltage is calculated, and the motor is controlled to drive the rotor of the motor to rotate with the drive voltage.
  • the difference between the obtained preset speed and the current speed is calculated, the driving torque is calculated according to the calculated difference, the current of the motor is obtained, and the operation of the drive motor is calculated according to the current and the calculated driving torque Drive voltage, and input the drive voltage into the motor.
  • the preset speed and the current speed are corrected.
  • the above method of controlling the motor for correction only needs to obtain the current and no other parameters. Therefore, the data processing process is reduced, the correction speed is accelerated, and then the time for the motor rotor to decelerate is reduced, and the motor is efficiently used to reduce clothing Washing time.
  • the specific steps of controlling the motor to complete one continuous operation cycle of the continuous operation mode in another embodiment of the present application include:
  • the motor is controlled to cross at zero speed, decelerate from the cylinder or barrel speed N1 to 0 speed, and then accelerate to the speed N2 in the reverse direction;
  • the motor is controlled to cross at zero speed, decelerate from the cylinder or barrel speed N2 to 0 speed, and then accelerate to the speed N1;
  • FIG. 19 shows a schematic flowchart of a motor operation control method for a washing machine according to another embodiment of the present application. Among them, the method includes:
  • S2504 Determine whether the temperature of the motor is greater than the second preset threshold, or whether the temperature of the motor controller is higher than the third preset threshold; when the judgment result is yes, perform step S2506; ;
  • the temperature of the motor needs to be detected in real time, and the current temperature detected by the motor needs to be judged.
  • the temperature of the motor is lower than the first preset threshold, it means that the motor Can maintain a good running state and control the motor to run in continuous operation mode; because the temperature of the motor is detected in real time, when the temperature of the motor is greater than the second preset threshold or the temperature of the motor controller is higher than the third preset threshold, then It means that the continuous continuous operation mode allows the motor to run uninterruptedly for a long time, and the temperature rise of the motor and / or motor controller has been too high. If it is not stopped, the use of the motor and / or motor controller cannot be guaranteed.
  • the operating mode of the control motor is switched to the traditional operating mode; specifically, the traditional operating mode is when the motor rotates forward and reverse (that is, when switching between the first direction of rotation and the second direction of rotation).
  • the first preset threshold is lower than the second preset threshold, and the first preset threshold is also lower than the third preset threshold.
  • FIG. 20 shows a flowchart of a method for controlling the operation of a motor for a washing machine according to another embodiment of the present application. Among them, the method includes:
  • step S2602 Detect the temperature of the motor in real time to determine whether the temperature of the motor is lower than the first preset threshold; when the determination result is yes, proceed to step S2608; when the determination result is no, perform step S2604;
  • step S2604 judging whether the temperature of the motor is greater than the second preset threshold, or whether the temperature of the controller of the motor is higher than the third preset threshold; when the judgment result is yes, step S2606 is executed; when the judgment result is no, step S2608 is executed ;
  • the motor when it is detected that the temperature of the motor is lower than the first preset threshold, the motor is not immediately controlled to run in the continuous operation mode, but the temperature of the motor controller is first detected to determine the motor controller The working state at this time is to determine whether the controller of the motor meets the starting conditions for continuous operation mode.
  • the temperature of the controller is higher than the fourth preset threshold, it means that the current temperature of the controller is too high.
  • the continuous operation mode is very likely to be damaged by high temperature. It is necessary to control the operation mode of the motor to switch to the traditional operation mode to ensure its service life.
  • the temperature of the controller When the temperature of the controller is lower than the fourth preset threshold, it indicates the current temperature of the controller, which satisfies the starting conditions for continuous operation mode operation, and executes the step of controlling the motor to operate in the continuous operation mode to avoid the controller from being affected during the use process. damage.
  • the first preset threshold is lower than the fourth preset threshold.
  • the fourth preset threshold is lower than the second preset threshold and the third preset threshold.
  • FIG. 21 shows a schematic block diagram of a motor operation control system 2700 for a washing machine according to an embodiment of the present application.
  • the motor operation control system 2700 for the washing machine includes: a memory 2702 for storing computer programs; a processor 2704 for executing computer programs so that the continuous operation mode includes multiple continuous operation cycles.
  • the motor operation control system for a washing machine controls the motor to operate in a continuous operation mode, which includes multiple continuous cycles in the continuous operation mode.
  • a continuous operation mode which includes multiple continuous cycles in the continuous operation mode.
  • the motor operation control system for a washing machine includes a processor and a memory, wherein the processor executes an executable program stored in the memory to: the control motor completes one of the continuous operation cycles of the continuous operation mode, specifically Including: controlling the rotor of the motor to accelerate in the first direction of rotation, and obtaining the current speed of the motor, when the speed of the motor reaches the first target speed, and after running the first preset duration, the motor is continuously changed from the first target speed to The second target speed, during which there is no stopping time; when the motor speed reaches the second target speed and runs the second preset duration, the motor is controlled to continuously change from the second target speed to the first target speed, during which there is no stop time; , The speed direction of the first target speed and the second target speed are opposite.
  • the motor operation control system 2700 for a washing machine includes a processor 2704 and a memory 2702, where the processor 2704 executes an executable program stored in the memory 2702 to control the rotor of the motor at a first target speed according to a first rotation direction After rotating for the first preset duration, the control motor continuously changes the rotation speed from the first target rotation speed to the second target rotation speed. During this process, the stop time in the related art is no longer retained, but the motor is controlled to change directly from the first target speed to the second target speed in the opposite direction of rotation, and no longer stops for a certain period of time when the speed is zero.
  • the motor is then controlled to continuously change from the second target speed to the first target speed in the opposite direction of rotation, no longer when the speed is zero Stopped for a certain period of time. Therefore, during the reciprocal switching between the first target speed and the second target speed when the washing machine is washing, the dwell time at the zero speed in the related art is omitted, thereby reducing the washing time of the laundry and improving Washing efficiency improves user experience.
  • the system is not only suitable for drum washing machines but also for pulsator washing machines.
  • the processor 2704 is further specifically configured to execute a computer program to control the step of continuously changing the motor from the first target speed to the second target speed, which specifically includes: controlling the motor to run at a reduced speed when When the speed of the motor drops to the first preset threshold, the rotor of the motor is controlled to accelerate to the second target speed in the second rotation direction; wherein the first preset threshold is 0, or the difference between the first preset threshold and 0 is Any value within the first preset range; the processor is also used to execute a computer program to implement the step of controlling the motor to continuously change from the second target speed to the first target speed, which specifically includes: controlling the motor to run at a reduced speed when the motor speed When it drops to the second preset threshold, the rotor of the motor is controlled to accelerate to the first target speed in the first rotation direction; wherein, the second preset threshold is 0, or the second preset threshold is the difference from 0 in the second Any value within the preset range.
  • the first preset threshold is the process of switching from deceleration to acceleration A node.
  • the first preset threshold may be 0 or any value that fluctuates above 0.
  • the rotation speed of the motor rotor is at 0, that is, when the rotor is just about to stop in the first rotation direction, the rotor is controlled to rotate in the second rotation direction, thereby avoiding the situation where the rotor is in a stopped state.
  • the second preset threshold has the same effect as the first preset threshold, and will not be described here.
  • the relationship is set by the relationship between the electrical frequency, the speed, and the number of pole pairs of the motor.
  • the specific electrical frequency is equal to the product of the speed and the number of pole pairs of the motor.
  • the fixed frequency is used to set the rotation speed indirectly, that is, the first preset threshold.
  • the second preset threshold is set in the same way.
  • the electrical frequency is the power supply frequency.
  • the processor 2704 is further configured to execute a computer program to implement a step of controlling the rotor of the motor to accelerate to the second target rotational speed in the second rotation direction, which specifically includes: controlling the rotor step to the Two target speeds; and / or the processor is also used to execute a computer program to implement the step of controlling the rotor of the motor to accelerate to the first target speed in the first rotation direction, specifically: controlling the rotor to step to the first target speed.
  • the rotor of the control motor is accelerated to the second target rotation speed in the second rotation direction by specifically: the rotor of the control motor is stepped to the second target rotation speed, specifically, the rotation speed of the control rotor is increased within a period of time To the second target speed, such as applying a larger drive voltage and / or drive current to the rotor of the motor to provide greater acceleration to the rotor, controlling the speed of the rotor to step to the second target speed, one of which can be 1 Seconds, or a period of a few seconds, which in turn controls the rotor of the motor to switch rapidly in the first rotation direction to the second rotation direction.
  • the rotor of the motor is accelerated from the second rotation direction to the first rotation direction to the first target rotation speed by controlling the rotor step to the first target rotation speed.
  • the processor 2704 is specifically configured to execute a computer program to: obtain the driving voltage and current of the motor; calculate the rotor flux linkage of the motor according to the driving voltage and current, and according to the rotor magnetic
  • the chain calculates the rotor position of the motor; based on the rotor position, the current speed of the motor is calculated.
  • the processor 2704 specifically executes the stored computer program to: calculate the current speed of the motor by acquiring the drive voltage and current of the motor, specifically, use the drive voltage and current to calculate the rotor flux linkage of the current motor,
  • the rotor position of the motor is calculated by means of flux linkage observation
  • the current speed of the current rotor is calculated by the calculated rotor position.
  • the current speed can be observed from time to time by means of flux linkage observation. It only needs to detect the driving voltage and sample the current to determine the current speed.
  • the calculation process is simple, which is conducive to controlling the motor.
  • the processor 2704 is specifically configured to execute a computer program to calculate the back-EMF of the motor using a stator flux estimation method based on a voltage model, perform phase compensation and integral filtering on the back-EMF, The rotor flux linkage is calculated.
  • the rotor flux linkage is calculated based on the stator flux estimation method of the voltage model.
  • the processor is specifically used to execute a computer program to calculate the stator flux linkage based on the voltage model, detect the ⁇ -axis current and ⁇ -axis current, and the resistance of the motor to calculate the back EMF of the motor on the ⁇ -axis and ⁇ -axis, based on the motor rotation angular frequency and
  • the filter frequency performs phase compensation on the calculated back EMF, obtains the back EMF on the ⁇ axis and ⁇ axis after compensation, and performs integral filtering to obtain the stator flux linkage of the motor.
  • the relationship formula calculates the rotor flux linkage of the motor, so as to calculate the rotor position of the motor according to the rotor flux linkage, and then determine the current rotation speed of the motor rotor to realize the control of the motor.
  • the back-EMF of the motor is calculated by the following formula:
  • E ⁇ is the motor ⁇ -axis back EMF
  • E ⁇ is the motor ⁇ -axis back EMF
  • U ⁇ is the motor ⁇ -axis voltage
  • U ⁇ is the motor ⁇ -axis voltage
  • I ⁇ is the motor ⁇ -axis current
  • I ⁇ is the motor ⁇ -axis current Current
  • R is the motor resistance
  • the motor ⁇ -axis back EMF can be calculated ⁇ and the motor ⁇ axis back EMF E ⁇ can be obtained without complicated calculation process.
  • the steps of performing phase compensation and integral filtering on the back EMF are calculated by the following formula:
  • phase compensation formula is as follows:
  • E ' ⁇ is the voltage after the motor ⁇ axis compensation
  • E' ⁇ is the voltage after the motor ⁇ axis compensation
  • E ⁇ is the motor ⁇ axis back EMF
  • E ⁇ is the motor ⁇ axis back EMF
  • ⁇ c is the filter frequency
  • ⁇ e is the motor rotation angular frequency
  • S is the Laplace operator
  • the ⁇ -axis flux linkage ⁇ -axis flux linkage It can be directly calculated by the filtering frequency ⁇ c , the Laplacian S, the motor-axis compensated voltage E ′ ⁇ and the motor ⁇ -axis compensated voltage E ′ ⁇ , and it can be obtained without a complicated calculation process.
  • the rotor flux linkage is calculated by the following formula:
  • the rotor flux linkage with these are the motor ⁇ -axis flux linkage and ⁇ -axis rotor flux linkage, L q is the inductance of the motor rotor, I ⁇ is the motor ⁇ -axis current, and I ⁇ is the motor ⁇ -axis current.
  • the calculated ⁇ -axis flux linkage ⁇ -axis flux linkage And the inductance L q of the motor rotor, the ⁇ -axis current I ⁇ , and the motor ⁇ -axis current I ⁇ are directly calculated to obtain the rotor flux linkage with By calculating the rotor flux linkage with Perform the arc tangent calculation to obtain the rotor position, and then determine the rotor speed.
  • the processor 2704 is further configured to execute a computer program to: obtain a preset speed curve during the process from the acceleration of the motor to the first target speed to the rotation of the motor to the second target speed; wherein , The preset speed curve is generated according to the first target speed, the second target speed, the first preset duration, and the second target duration; according to the current time corresponding to the current speed, find the preset speed corresponding to the current time in the preset speed curve When there is a deviation between the current speed and the preset speed, the current speed is corrected to the preset speed.
  • a preset speed curve from the acceleration of the motor to the first target rotation speed to the second target rotation speed is also obtained, which corresponds to the interval where the rotation speed changes from the initial value (such as 0) to the second target rotation speed, according to
  • the current time corresponding to the calculated current speed finds the preset speed directly corresponding to the corresponding time in the preset speed curve, and determines whether there is a deviation between the current speed and the preset speed. When there is a deviation between the current speed and the preset speed, the current speed is corrected to the preset speed.
  • the step of correcting the current speed By setting the step of correcting the current speed to the preset speed, the accuracy of the operation of the control motor is avoided, and it is avoided that the control motor runs at the first preset speed, and the actual motor runs less than the first preset speed, causing the motor not to follow the speed -Stalling that occurs during the time curve operation, and at the same time avoids damage to the motor due to the deviation of the speed from the target speed during commutation.
  • the processor 2704 is also used to execute a computer program to: calculate the driving torque according to the difference between the preset speed and the current speed; obtain the current of the motor, Drive torque, calculate the drive voltage, and control the motor to drive the rotor of the motor to rotate with the drive voltage.
  • the difference between the obtained preset speed and the current speed is calculated, the driving torque is calculated according to the calculated difference, the current of the motor is obtained, and the operation of the drive motor is calculated according to the current and the calculated driving torque Drive voltage, and input the drive voltage into the motor.
  • the preset speed and the current speed are corrected.
  • the above method of controlling the motor for correction only needs to obtain the current and no other parameters. Therefore, the data processing process is reduced, the correction speed is accelerated, and then the time for the motor rotor to decelerate is reduced, and the motor is efficiently used to reduce clothing Washing time.
  • the processor 2704 is further configured to execute a computer program to detect the temperature of the motor in real time, and when the temperature of the motor is lower than the first preset threshold, control the motor to operate in a continuous operation mode ;
  • the operation mode of the control motor is switched to the traditional operation mode; wherein, in the continuous operation mode, the motor runs in the first rotation direction
  • the running time of is continuous with the running time of the motor in the second rotation direction.
  • the continuous operation mode is that the operation duration of the motor in the first rotation direction is continuous with the rotation duration of the motor in the second rotation direction, that is, the motor is operated by the first There is no stopping time during the switching of one direction of motion to the second direction of motion, the rotor of the motor is always in motion, and the motor operation mode of first direction rotation-second direction rotation-first direction rotation-second direction rotation is realized.
  • the stopping time of the rotor in the motor is avoided, and the efficient use of the motor is realized, thereby reducing the washing time of clothes and improving the user experience.
  • the temperature of the motor is detected in real time, when the temperature of the motor is greater than the second preset threshold or the temperature of the motor controller is higher than the third preset threshold, it means that the continuous continuous operation mode makes the motor run for a long time.
  • the operation mode of the control motor is switched to the traditional operation mode ;
  • the traditional operating mode is when the motor rotates forward and reverse (that is, when switching between the first direction of rotation and the second direction of rotation), when switching forward, a stop command will be issued to the motor first, and the motor will stop for a preset time Then change the direction, that is, use the preset washing and stopping ratio control. Because the motor has a pause time, it can alleviate the problem of motor heating, so that the motor can make an operating mode suitable for its current temperature, which shortens the washing time. At the same time, the service life of the motor is guaranteed.
  • the first preset threshold is lower than the second preset threshold, and the first preset threshold is also lower than the third preset threshold.
  • the processor 2704 is further configured to execute a computer program to: after the step when the temperature of the motor is lower than the first preset threshold, before controlling the motor to run in the continuous operation mode, It also includes: detecting the temperature of the controller of the motor. If the temperature of the controller is lower than the fourth preset threshold, the step of controlling the motor to run in the continuous operation mode is executed; if the temperature of the controller is higher than the fourth preset threshold, the temperature of the motor is controlled. The operation mode is switched to the traditional operation mode.
  • the motor when it is detected that the temperature of the motor is lower than the first preset threshold, the motor is not immediately controlled to run in the continuous operation mode, but the temperature of the motor controller is first detected to determine the motor controller The working state at this time is to determine whether the controller of the motor meets the starting conditions for continuous operation mode.
  • the temperature of the controller is higher than the fourth preset threshold, it means that the current temperature of the controller is too high.
  • the continuous operation mode is very likely to be damaged by high temperature. It is necessary to control the operation mode of the motor to switch to the traditional operation mode to ensure its service life.
  • the temperature of the controller When the temperature of the controller is lower than the fourth preset threshold, it indicates the current temperature of the controller, which satisfies the starting conditions for continuous operation mode operation, and executes the step of controlling the motor to operate in the continuous operation mode to avoid the controller from being affected during the use process. damage.
  • the first preset threshold is lower than the fourth preset threshold.
  • FIG. 22 shows a schematic block diagram of a washing machine 2800 according to an embodiment of the present application.
  • the washing machine 2800 includes: a motor operation control system 2802 for the washing machine.
  • the washing machine 2800 provided by the present application includes the motor operation control system 2802 of the washing machine according to any of the foregoing embodiments. Therefore, the washing machine 2800 has all the beneficial technical effects of any motor operation control system 2802 of the washing machine.
  • An embodiment of the tenth aspect of the present application provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps of the motor operation control method for a washing machine as described above are implemented.
  • Computer-readable storage media may include any medium that can store or transfer information. Examples of computer-readable storage media include electronic circuits, semiconductor memory devices, ROM, flash memory, erasable ROM (EROM), floppy disks, CD-ROMs, optical disks, hard disks, fiber optic media, radio frequency (RF) links, and so on.
  • the code segment can be downloaded via a computer network such as the Internet, an intranet, and so on.
  • the computer-readable storage medium provided by the present application when the computer program is executed by the processor, implements the steps of the motor operation control method for a washing machine as in any of the foregoing embodiments, so the computer-readable storage medium includes the washing machine for any of the foregoing embodiments All beneficial effects of the motor operation control method.
  • connection can be a fixed connection, a detachable connection, or an integral connection; it can be directly connected or can be through the middle The media is indirectly connected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Control Of Washing Machine And Dryer (AREA)

Abstract

一种洗衣机用电机运行控制方法、系统、洗衣机以及计算机可读存储介质。其中方法包括:控制电机的转子向第一转动方向加速旋转,并获取电机的当前转速,确认电机的转速达到第一目标转速(N1),并运行第一预设时长(T1)后,控制电机从第一目标转速(N1)连续变化至第二目标转速(N2),期间没有停止时间;确认电机的转速达到第二目标转速(N2),并运行第二预设时长(T2)后,控制电机从第二目标转速(N2)连续变化至第一目标转速(N1),期间没有停止时间,其中,第一目标转速(N1)与第二目标转速(N2)的转速方向相反。该洗衣机在进行洗涤时在第一目标速度(N1)及第二目标速度(N2)的之间的切换过程中,省去在零速时的停留时间,减少了衣物的洗涤时间。

Description

洗衣机用电机运行控制方法、系统、洗衣机以及存储介质
本申请要求于2018年10月15日提交中国专利局、申请号为201811198553.7、发明名称为“电机运行控制方法、系统、滚筒洗衣机以及存储介质”以及于2018年10月15日提交中国专利局、申请号为201811199209.X、发明名称为“电机运行控制方法、系统、衣物处理装置以及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及洗衣机控制以及电机控制领域,具体而言,涉及一种的洗衣机用电机运行控制方法、一种的洗衣机用电机运行控制系统、洗衣机以及一种计算机可读存储介质。
背景技术
目前,相关技术中洗衣机是模仿锤击击打衣物原理进行设计,在滚筒洗衣机或波轮洗衣机中,电机控制洗衣机的筒体或桶体旋转,衣物在筒体或桶体内摔打或摩擦,进行实现衣物的清洗。目前市场上洗衣机都是控制电机正向旋转-停止-反向旋转-停止周期性变换进而带动筒体或桶体旋转,实现洗衣。具体地,图1示出了相关技术洗衣机电机的控制模式。电机正向旋转-停止-反向旋转-停止周期性变换的洗涤方式中停止时间和正向旋转时间通过预定的比值进行设定,然而上述电机控制方法由于停止时间的存在,在洗衣过程中会占用大量的洗涤时间,造成洗涤时间多长,影响用户的使用体验。
因此,亟需一种电机控制方法,控制电机运行以降低电机正传或者反转之间切换的停止时间,降低衣物洗涤时间。
发明内容
本申请旨在至少解决相关技术或相关技术中存在的技术问题之一。
为此,本申请的第一个方面在于,提供了一种洗衣机用电机运行控制方法。
本申请的第二个方面在于,提供了一种洗衣机用电机运行控制系统。
本申请的第三个方面在于,提供了一种洗衣机。
本申请的第四个方面在于,提供了一种洗衣机用电机运行控制方法。
本申请的第五个方面在于,提供了一种洗衣机用电机运行控制系统。
本申请的第六个方面在于,提供了另一种洗衣机。
本申请的第七个方面在于,提供了再一种洗衣机用电机运行控制方法。
本申请的第八个方面在于,提供了再一种洗衣机用电机运行控制系统。
本申请的第九个方面在于,提供了再一种洗衣机。
本申请的第十个方面在于,提供了一种计算机可读存储介质。
有鉴于此,根据本申请的第一个方面,本申请提供了一种洗衣机用电机运行控制方法,包括:连续运转模式连续运转模式控制电机的转子向第一转动方向加速旋转,并获取电机的当前转速,确认电机的转速达到第一目标转速,并运行第一预设时长后,控制电机从第一目标转速连续变化至第二目标转速,期间没有停止时间;确认电机的转速达到第二目标转速,并运行第二预设时长后,控制电机从第二目标转速连续变化至第一目标转速,期间没有停止时间,其中,第一目标转速与第二目标转速的转速方向相反。该方法不仅适用于滚筒洗衣机还适用于波轮洗衣机。
本申请所提供的洗衣机用电机运行控制方法,连续运转模式电机的转子按照第一转动方向以第一目标转速转动第一预设时长后,控制电机将转速由第一目标转速连续变化至第二目标转速。在此过程中,不再保留相关技术中的停止时间,而是控制电机由第一目标转速直接变化至旋转方向相反的第二目标转速,在转速为零的时候不再停转一定时长。同样地,当电机的转速达到第二目标转速,并运行第二预设时长后,再控制电机从第二目标转速连续变化至旋转方向相反的第一目标转速,在转速为零的时候不再停转一定时长。故而,在洗衣机进行洗涤时在第一目标速度及第二目标 速度的之间的往复切换过程中,省去了相关技术中在零速时的停留时间,从而减少了衣物的洗涤时间,提升了洗涤效率,提升用户的使用体验。
另外,本申请提供的上述技术方案中的洗衣机用电机运行控制方法还可以具有如下附加技术特征:
在上述技术方案中,优选地,获取电机的当前转速的步骤,具体包括:获取电机的驱动电压以及当前电流;根据驱动电压及当前电流,计算电机的转子磁链,根据转子磁链计算电机的转子位置;根据转子位置,计算电机的当前转速。
在该技术方案中,通过获取电机的驱动电压和当前电流来计算电机的当前转速,具体地,利用驱动电压和当前电流计算当前电机的转子磁链,利用磁链观测的方式来计算电机的转子位置,通过计算得到的转子位置来计算当前转子的当前转速。通过磁链观测的方式能够实现当前转速的时时观测,只需要检测驱动电压和对当前电流进行采样即可确定当前转速,计算过程简单,利于对电机进行控制。
在上述任一技术方案中,优选地,计算电机的转子磁链的步骤,具体包括:采用基于电压模型的定子磁链估算方法计算电机的反电势,对反电势进行相位补偿及积分滤波,计算得到转子磁链。
在该技术方案中,转子磁链是基于电压模型的定子磁链估算方法计算得到的。具体步骤如下,基于电压模型的定子磁链、检测α轴电流和β轴电流以及电机的电阻计算电机在α轴以及β轴上的反电势,基于电机旋转角频率和滤波频率对计算得到的反电势进行相位补偿,得到补偿后的α轴以及β轴上的反电势,并对其进行积分滤波,以得到电机的定子磁链,根据定子磁链和转子磁链的关系公式计算得到电机的转子磁链,以供根据转子磁链计算电机的转子位置,进而确定电机转子的当前转速,实现电机的控制。
在上述任一技术方案中,优选地,电机的反电势通过以下公式计算得到:
Figure PCTCN2019094424-appb-000001
其中,E α为电机α轴反电势,E β为电机β轴反电势,U α为电机α轴电 压、U β为电机β轴电压,I α为电机α轴电流,I β为电机β轴电流,R为电机电阻。
在该技术方案中,在获取得到电机α轴电压U α、电机β轴电压U β、电机电阻R、电机α轴电流I α、电机β轴电流I β之后可以计算得到电机α轴反电势E α以及电机β轴反电势E β,无需复杂的计算过程即可得到。
在上述任一技术方案中,优选地,对反电势进行相位补偿及积分滤波的步骤,通过以下公式计算得到:
其中相位补偿公式如下:
Figure PCTCN2019094424-appb-000002
其中,E' α为电机α轴补偿后的电压,E' β为电机β轴补偿后的电压,E α为电机α轴反电势,E β为电机β轴反电势,ω c为滤波频率,ω e为电机旋转角频率;
积分滤波的计算公式如下:
Figure PCTCN2019094424-appb-000003
其中,
Figure PCTCN2019094424-appb-000004
为α轴的磁链,
Figure PCTCN2019094424-appb-000005
为β轴的磁链,S为拉普拉斯算子。
在该技术方案中,α轴的磁链
Figure PCTCN2019094424-appb-000006
β轴的磁链
Figure PCTCN2019094424-appb-000007
可以直接通过滤波频率ω c、拉普拉斯算子S以及电机α轴补偿后的电压E' α、电机β轴补偿后的电压E' β直接计算得到,无需复杂的计算过程即可得到。
在上述任一技术方案中,优选地,转子磁链通过以下公式计算得到:
Figure PCTCN2019094424-appb-000008
其中,转子磁链
Figure PCTCN2019094424-appb-000009
Figure PCTCN2019094424-appb-000010
分别为电机α轴磁链和β轴转子磁链,L q为电机转子的电感,I α为电机α轴电流,I β为电机β轴电流。
在该技术方案中,通过计算得到的α轴的磁链
Figure PCTCN2019094424-appb-000011
β轴的磁链
Figure PCTCN2019094424-appb-000012
以及电机转子的电感L q、α轴电流I α、电机β轴电流I β直接计算得到转子磁链
Figure PCTCN2019094424-appb-000013
Figure PCTCN2019094424-appb-000014
通过对计算得到的转子磁链
Figure PCTCN2019094424-appb-000015
Figure PCTCN2019094424-appb-000016
进行反正切计算得到转子的位置,进而实现对转子转速的确定。
在上述任一技术方案中,优选地,洗衣机用电机运行控制方法还包括:控制电机从第一目标转速连续变化至第二目标转速的步骤,具体包括:控制电机降速运行,当电机的转速降至第一预设阈值时,控制电机的转子向第二转动方向加速至第二目标转速;其中第一预设阈值为0,或第一预设阈值为与0的差值在第一预设范围内的任意值;控制电机从第二目标转速连续变化至第一目标转速的步骤具体包括:控制电机降速运行,当电机的转速降至第二预设阈值时,控制电机的转子向第一转动方向加速至第一目标转速;其中,第二预设阈值为0,或第二预设阈值为与0的差值在第二预设范围内的任意值。
在该技术方案中,在电机由第一目标转速连续运转至第二目标转速的过程中,实际上是一个先减速再加速的过程,第一预设阈值就是减速运行切换到加速运行过程中的一个节点。当检测到电机的当前转速降速到第一预设阈值时,再加速运行直至达到第二目标转速,其中,第一预设阈值可以是0或者在0以上波动的任意值,具体地,当电机转子的转速处于0时,即当前转子刚刚由第一转动方向准备停止时,控制转子向第二转动方向转动,从而避免出现转子处于停止状态情况的出现。同样地,在电机由第二目标转速连续运转至第一目标转速的过程中,也存在第二预设阈值。第二预设阈值与第一预设阈值的作用相同,此处不再赘述。
值得指出的是,在进行设定第一预设阈值时,通过电频率、转速以及电机的极对数的关系来设定,具体的电频率等于转速和电机的极对数的乘积,通过设定电频率间接来设定转速,即第一预设阈值。同样地,第二预设阈值的设定方式相同。其中,电频率为供电频率。
在上述任一技术方案中,优选地,控制电机的转子向第二转动方向加速至第二目标转速的步骤,具体为:控制转子阶跃至第二目标转速;和/或控制电机的转子向第一转动方向加速至第一目标转速的步骤,具体为:控制转子阶跃至第一目标转速。
在该技术方案中,控制电机的转子向第二转动方向加速至第二目标转 速具体通过为:控制电机的转子阶跃至第二目标转速,具体地,控制转子的转速在一个时间段内攀升至第二目标转速,如向电机的转子施加较大的驱动电压和/或驱动电流,为转子提供较大的加速度,控制转子的转速阶跃至第二目标转速,其中一个时间段可以是1秒,或者几秒的时间段,进而控制电机的转子在第一转动方向向第二转动方向进行快速切换。同理通过控制控制转子阶跃至第一目标转速来完成电机的转子由第二转动方向向第一转动方向转动加速至第一目标转速。
在上述任一技术方案中,优选地,洗衣机用电机运行控制方法还包括:获取电机向第一目标转速加速起至电机转至第二目标转速过程中的预设速度曲线;其中,预设速度曲线根据第一目标转速、第二目标转速、第一预设时长、第二目标时长生成;根据当前转速对应的当前时刻,查找预设速度曲线中与当前时刻对应的预设转速,当当前转速与预设转速存在偏差时,校正当前转速为预设转速。
在该技术方案中,还获取电机向第一目标转速加速起至电机转至第二目标转速的预设速度曲线,对应于转速由初始值(如0)变化至第二目标转速的区间,根据计算得到的当前转速所对应的当前时刻查找预设速度曲线中对应时刻直接对应的预设转速,判断当前转速和预设转速是否存在偏差。在当前转速和预设转速之间存在偏差时,矫正当前转速为预设转速。通过设置矫正当前转速至预设转速的步骤,以使在控制电机运行的准确性,避免出现控制电机以第一预设转速运转,而实际电机小于第一预设转速运转,造成电机没有按照转速-时间曲线运行出现的失速,同时也避免电机在进行换向时由于转速与目标转速存在偏差造成电机损坏。
在上述任一技术方案中,优选地,校正当前转速为预设转速的步骤,具体包括:根据预设转速与当前转速的差值,计算驱动转矩;获取电机的当前电流,根据当前电流与驱动转矩,计算驱动电压,控制电机以驱动电压驱动电机的转子转动。
在该技术方案中,计算将获取的预设转速和当前转速的差值,根据计算的差值计算驱动转矩,获取电机的当前电流,根据当前电流以及计算得到的驱动转矩计算驱动电机运行的驱动电压,并将驱动电压输入值电机。 以使电机根据输入的驱动电压驱动电机运行,进而实现预设转速和当前转速的矫正。上述控制电机进行矫正的方式只需要获取当前电流,无需获取其他参数,因此,减少了数据的处理过程,加快了矫正的速度,进而降低电机转子减速的时间,实现电机的高效利用,以降低衣物的洗涤时间。
根据本申请的第二个方面,本申请提供了一种洗衣机用电机运行控制系统,包括:存储器,用于存储计算机程序;处理器,用于执行计算机程序以:控制电机的转子向第一转动方向加速旋转,并获取电机的当前转速,确认电机的转速达到第一目标转速,并运行第一预设时长后,控制电机从第一目标转速连续变化至第二目标转速,期间没有停止时间;确认电机的转速达到第二目标转速,并运行第二预设时长后,控制电机从第二目标转速连续变化至第一目标转速,期间没有停止时间;其中,第一目标转速与第二目标转速的转速方向相反。该系统不仅适用于滚筒洗衣机还适用于波轮洗衣机。
本申请所提供的洗衣机用电机运行控制系统包括处理器和存储器,其中处理器执行存储在存储器中的可执行程序以:控制电机的转子按照第一转动方向以第一目标转速转动第一预设时长后,控制电机将转速由第一目标转速连续变化至第二目标转速。在此过程中,不再保留相关技术中的停止时间,而是控制电机由第一目标转速直接变化至旋转方向相反的第二目标转速,在转速为零的时候不再停转一定时长。同样地,当电机的转速达到第二目标转速,并运行第二预设时长后,再控制电机从第二目标转速连续变化至旋转方向相反的第一目标转速,在转速为零的时候不再停转一定时长。故而,在洗衣机进行洗涤时在第一目标速度及第二目标速度的之间的往复切换过程中,省去了相关技术中在零速时的停留时间,从而减少了衣物的洗涤时间,提升了洗涤效率,提升用户的使用体验。
另外,本申请提供的上述技术方案中的洗衣机用电机运行控制系统还可以具有如下附加技术特征:
在上述技术方案中,优选地,处理器还具体用于执行计算机程序以控制电机从第一目标转速连续变化至第二目标转速的步骤,具体包括:控制电机降速运行,当电机的转速降至第一预设阈值时,控制电机的转子向第 二转动方向加速至第二目标转速;其中第一预设阈值为0,或第一预设阈值为与0的差值在第一预设范围内的任意值;处理器还用于执行计算机程序以实现控制电机从第二目标转速连续变化至第一目标转速的步骤,具体包括:控制电机降速运行,当电机的转速降至第二预设阈值时,控制电机的转子向第一转动方向加速至第一目标转速;其中,第二预设阈值为0,或第二预设阈值为与0的差值在第二预设范围内的任意值。
在该技术方案中,在电机由第一目标转速连续运转至第二目标转速的过程中,实际上是一个先减速再加速的过程,第一预设阈值就是减速运行切换到加速运行过程中的一个节点。当检测到电机的当前转速降速到第一预设阈值时,再加速运行直至达到第二目标转速,其中,第一预设阈值可以是0或者在0以上波动的任意值,具体地,当电机转子的转速处于0时,即当前转子刚刚由第一转动方向准备停止时,控制转子向第二转动方向转动,从而避免出现转子处于停止状态情况的出现。同样地,在电机由第二目标转速连续运转至第一目标转速的过程中,也存在第二预设阈值。第二预设阈值与第一预设阈值的作用相同,此处不再赘述。
值得指出的是,在进行设定第一预设阈值时,通过电频率、转速以及电机的极对数的关系来设定,具体的电频率等于转速和电机的极对数的乘积,通过设定电频率间接来设定转速,即第一预设阈值。同样地,第二预设阈值的设定方式相同。其中,电频率为供电频率。
在上述任一技术方案中,优选地,处理器还用于执行计算机程序以实现控制电机的转子向第二转动方向加速至第二目标转速的步骤,具体包括:控制转子阶跃至第二目标转速;和/或处理器还用于执行计算机程序以实现控制电机的转子向第一转动方向加速至第一目标转速的步骤,具体为:控制转子阶跃至第一目标转速。
在该技术方案中,控制电机的转子向第二转动方向加速至第二目标转速具体通过为:控制电机的转子阶跃至第二目标转速,具体地,控制转子的转速在一个时间段内攀升至第二目标转速,如向电机的转子施加较大的驱动电压和/或驱动电流,为转子提供较大的加速度,控制转子的转速阶跃至第二目标转速,其中一个时间段可以是1秒,或者几秒的时间段,进而 控制电机的转子在第一转动方向向第二转动方向进行快速切换。同理通过控制控制转子阶跃至第一目标转速来完成电机的转子由第二转动方向向第一转动方向转动加速至第一目标转速。
在上述任一技术方案中,优选地,处理器,具体用于执行计算机程序以:获取电机的驱动电压以及当前电流;根据驱动电压及当前电流,计算电机的转子磁链,根据转子磁链计算电机的转子位置;根据转子位置,计算电机的当前转速。
在该技术方案中,通过获取电机的驱动电压和当前电流来计算电机的当前转速,具体地,利用驱动电压和当前电流计算当前电机的转子磁链,利用磁链观测的方式来计算电机的转子位置,通过计算得到的转子位置来计算当前转子的当前转速。通过磁链观测的方式能够实现当前转速的时时观测,只需要检测驱动电压和对当前电流进行采样即可确定当前转速,计算过程简单,利于对电机进行控制。
在上述任一技术方案中,优选地,处理器,具体用于执行计算机程序以:采用基于电压模型的定子磁链估算方法计算电机的反电势,对反电势进行相位补偿及积分滤波,计算得到转子磁链。
在该技术方案中,转子磁链是基于电压模型的定子磁链估算方法计算得到的。处理器,具体用于执行计算机程序以:基于电压模型的定子磁链、检测α轴电流和β轴电流以及电机的电阻计算电机在α轴以及β轴上的反电势,基于电机旋转角频率和滤波频率对计算得到的反电势进行相位补偿,得到补偿后的α轴以及β轴上的反电势,并对其进行积分滤波,以得到电机的定子磁链,根据定子磁链和转子磁链的关系公式计算得到电机的转子磁链,以供根据转子磁链计算电机的转子位置,进而确定电机转子的当前转速,实现电机的控制。
在上述任一技术方案中,优选地,电机的反电势通过以下公式计算得到:
Figure PCTCN2019094424-appb-000017
其中,E α为电机α轴反电势,E β为电机β轴反电势,U α为电机α轴电 压、U β为电机β轴电压,I α为电机α轴电流,I β为电机β轴电流,R为电机电阻。
在该技术方案中,在获取得到电机α轴电压U α、电机β轴电压U β、电机电阻R、电机α轴电流I α、电机β轴电流I β之后可以计算得到电机α轴反电势E α以及电机β轴反电势E β,无需复杂的计算过程即可得到。
在上述任一技术方案中,优选地,对反电势进行相位补偿及积分滤波的步骤,通过以下公式计算得到:
其中相位补偿公式如下:
Figure PCTCN2019094424-appb-000018
其中,E' α为电机α轴补偿后的电压,E' β为电机β轴补偿后的电压,E α为电机α轴反电势,E β为电机β轴反电势,ω c为滤波频率,ω e为电机旋转角频率;
积分滤波的计算公式如下:
Figure PCTCN2019094424-appb-000019
其中,
Figure PCTCN2019094424-appb-000020
为α轴的磁链,
Figure PCTCN2019094424-appb-000021
为β轴的磁链,S为拉普拉斯算子。
在该技术方案中,α轴的磁链
Figure PCTCN2019094424-appb-000022
β轴的磁链
Figure PCTCN2019094424-appb-000023
可以直接通过滤波频率ω c、拉普拉斯算子S以及电机α轴补偿后的电压E' α、电机β轴补偿后的电压E' β直接计算得到,无需复杂的计算过程即可得到。
在上述任一技术方案中,优选地,转子磁链通过以下公式计算得到:
Figure PCTCN2019094424-appb-000024
其中,转子磁链
Figure PCTCN2019094424-appb-000025
Figure PCTCN2019094424-appb-000026
分别为电机α轴磁链和β轴转子磁链,L q为电机转子的电感,I α为电机α轴电流,I β为电机β轴电流。
在该技术方案中,通过计算得到的α轴的磁链
Figure PCTCN2019094424-appb-000027
β轴的磁链
Figure PCTCN2019094424-appb-000028
以及电机转子的电感L q、α轴电流I α、电机β轴电流I β直接计算得到转子磁链
Figure PCTCN2019094424-appb-000029
Figure PCTCN2019094424-appb-000030
通过对计算得到的转子磁链
Figure PCTCN2019094424-appb-000031
Figure PCTCN2019094424-appb-000032
进行反正切计算得到转子的位置,进而实现对转子转速的确定。
在上述任一技术方案中,优选地,处理器,还用于执行计算机程序以:获取电机向第一目标转速加速起至电机转至第二目标转速过程中的预设速度曲线;其中,预设速度曲线根据第一目标转速、第二目标转速、第一预设时长、第二目标时长生成;根据当前转速对应的当前时刻,查找预设速度曲线中与当前时刻对应的预设转速,当当前转速与预设转速存在偏差时,校正当前转速为预设转速。
在该技术方案中,还获取电机向第一目标转速加速起至电机转至第二目标转速的预设速度曲线,对应于转速由初始值(如0)变化至第二目标转速的区间,根据计算得到的当前转速所对应的当前时刻查找预设速度曲线中对应时刻直接对应的预设转速,判断当前转速和预设转速是否存在偏差。在当前转速和预设转速之间存在偏差时,矫正当前转速为预设转速。通过设置矫正当前转速至预设转速的步骤,以使在控制电机运行的准确性,避免出现控制电机以第一预设转速运转,而实际电机小于第一预设转速运转,造成电机没有按照转速-时间曲线运行出现的失速,同时也避免电机在进行换向时由于转速与目标转速存在偏差造成电机损坏。
在上述任一技术方案中,优选地,处理器,具体用于执行计算机程序以:根据预设转速与当前转速的差值,计算驱动转矩;获取电机的当前电流,根据当前电流与驱动转矩,计算驱动电压,控制电机以驱动电压驱动电机的转子转动。
在该技术方案中,计算将获取的预设转速和当前转速的差值,根据计算的差值计算驱动转矩,获取电机的当前电流,根据当前电流以及计算得到的驱动转矩计算驱动电机运行的驱动电压,并将驱动电压输入值电机。以使电机根据输入的驱动电压驱动电机运行,进而实现预设转速和当前转速的矫正。上述控制电机进行矫正的方式只需要获取当前电流,无需获取其他参数,因此,减少了数据的处理过程,加快了矫正的速度,进而降低电机转子减速的时间,实现电机的高效利用,以降低衣物的洗涤时间。
根据本申请的第三个方面,本申请提供了一种洗衣机,洗衣机包括上 述第二方面的洗衣机用电机运行控制系统。该洗衣机可以为滚筒洗衣机或波轮洗衣机。
本申请提供的洗衣机包括上述任一技术方案的洗衣机用电机运行控制系统,因此,该洗衣机具有上述第二方面的洗衣机用电机运行控制系统的全部有益技术效果,不再赘述。
本申请的第四个方面,提供了一种洗衣机用电机运行控制方法,包括:实时检测电机的温度,确认电机的温度低于第一预设阈值,控制电机以连续运转模式运行;确认电机的温度大于第二预设阈值或电机的控制器温度高于第三预设阈值,控制电机的运行模式切换至传统运行模式;其中,连续运转模式为电机向第一转动方向运转的运转时长与电机向第二转动方向运转的转动时长相连续。该方法不仅适用于滚筒洗衣机还适用于波轮洗衣机。
本申请所提供的洗衣机用电机运行控制系统,首先会实时检测电机的温度,并对电机检查到的当前温度进行判断,当电机的温度低于第一预设阈值时,则说明此时电机能保持良好运行的状态,控制电机以连续运转模式运行;具体地,连续运转模式为电机向第一转动方向运转的运转时长与电机向第二转动方向运转的转动时长相连续,即电机由第一运动方向向第二运动方向进行切换过程中不存在停止时间,电机的转子处于一直运动状态,实现第一方向转动-第二方向转动-第一方向转动-第二方向转动的电机运转模式,避免了电机中转子的停止时间,实现电机的高效利用,从而降低了衣物的洗涤时间,提升用户的使用体验。同时,由于实时在对电机温度进行检测,当电机的温度大于第二预设阈值或电机的控制器温度高于第三预设阈值时,则说明持续的连续运转模式下使得电机长时间运行不间断洗涤,电机和/或电机的控制器已经会出现温升过高的情况,如若不停止则会无法保证电机和/或电机的控制器使用寿命,因此控制电机的运行模式切换至传统运行模式;具体地,传统运行模式为在电机正反旋转时(即第一方向转动与第二方向转动之间进行切换时),换向前,会先向电机发出停止指令,在电机停止预设时间后再进行方向的转换,即采用预设的洗停比控制,由于电机具有停顿的时间,因此可以减缓电机发热的问题。本申请 通过对电机的温度进行实时检测,以使得电机做出适合其当前温度的运转模式,在缩短洗涤时长的同时保证了电机的使用寿命。
另外,本申请提供的上述技术方案中的洗衣机用电机运行控制系统还可以具有如下附加技术特征:
在上述技术方案中,优选地,在当电机的温度低于第一预设阈值时的步骤之后,控制电机以连续运转模式运行之前,还包括:检测电机的控制器温度,如控制器温度低于第四预设阈值时,执行控制电机以连续运转模式运行的步骤;如控制器温度高于第四预设阈值时,控制电机的运行模式切换至传统运行模式。
在该技术方案中,在检查到电机的温度低于第一预设阈值时,不会立即控制电机以连续运转模式运行,而会首先对电机的控制器温度进行检测,以判断电机的控制器此时的工作状态,即判断电机的控制器此时是否满足连续运转模式运行的启动条件,当检查到控制器温度高于第四预设阈值时,即说明控制器当前温度过高,若启动连续运转模式则极有可能出现高温受损的情况,需要控制电机的运行模式切换至传统运行模式,保证其使用寿命。当控制器温度低于第四预设阈值时则说明控制器的当前温度,满足连续运转模式运行的启动条件,执行控制电机以连续运转模式运行的步骤,以避免控制器在使用的过程中受损。
在上述任一技术方案中,优选地,电机在连续运转模式下运行的步骤,具体包括:控制电机的转子向第一转动方向加速旋转,并获取电机的当前转速,当电机的转速达到第一目标转速,并运行第一预设时长后,控制电机向第二转动方向加速至第二目标转速,其中,第一目标转速与第二目标转速的转动方向相反。
在该技术方案中,提供了一种连续运转模式的具体方案,控制电机的转子按照第一转动方向转动,并在转速达到第一目标转速后开始计时,以第一目标转速转动第一预设时长后,控制电机的转子向第二转动方向加速至第二目标转速。电机在第一目标转速转动第一预设时长时,控制转子向第二转动方向转动,降低了转子在第一转动方向向第二转动方向切换过程的停止时间,从而降低了衣物的洗涤时间,提升用户的使用体验。
在上述任一技术方案中,优选地,电机在连续运转模式下运行的步骤,还包括:当电机以第二目标转速运行达到第二预设时长时,控制电机向第一转动方向加速至第一目标转速。
在该技术方案中,控制电机的转子以第二目标转速的运行时间达到第二预设时长时,控制电机的转子向第一转动方向加速至第一目标转速。电机由第二运动方向向第一运动方向进行切换过程中不存在停止时间,即电机的转子处于一直运动状态,实现第一方向转动-第二方向转动-第一方向转动-第二方向转动的电机运转模式,避免了电机中转子的停止时间,实现电机的高效利用,从而降低了衣物的洗涤时间,提升用户的使用体验。
在上述任一技术方案中,优选地,第一目标转速与第二目标转速的转速值大小相同。
在该技术方案中,将第一目标转速与第二目标转速设置为的转速值大小相同,方向相反,以保证电机在两种转速下的效果相同,进而保证了洗涤的效果。
本申请的第五个方面,提供了一种洗衣机用电机运行控制系统,其中,包括:存储器,用于存储计算机程序;处理器,用于执行计算机程序以:实时检测电机的温度,确认电机的温度低于第一预设阈值,控制电机以连续运转模式运行;确认电机的温度大于第二预设阈值或电机的控制器温度高于第三预设阈值,控制电机的运行模式切换至传统运行模式;其中,连续运转模式为电机向第一转动方向运转的运转时长与电机向第二转动方向运转的转动时长相连续。该系统不仅适用于滚筒洗衣机还适用于波轮洗衣机。
本申请所提供的洗衣机用电机运行控制系统包括处理器和存储器,其中处理器执行存储在存储器中的可执行程序以:首先会实时检测电机的温度,并对电机检查到的当前温度进行判断,当电机的温度低于第一预设阈值时,则说明此时电机能保持良好运行的状态,控制电机以连续运转模式运行;具体地,连续运转模式为电机向第一转动方向运转的运转时长与电机向第二转动方向运转的转动时长相连续,即电机由第一运动方向向第二运动方向进行切换过程中不存在停止时间,电机的转子处于一直运动状态, 实现第一方向转动-第二方向转动-第一方向转动-第二方向转动的电机运转模式,避免了电机中转子的停止时间,实现电机的高效利用,从而降低了衣物的洗涤时间,提升用户的使用体验。同时,由于实时在对电机温度进行检测,当电机的温度大于第二预设阈值或电机的控制器温度高于第三预设阈值时,则说明持续的连续运转模式下使得电机长时间运行不间断洗涤,电机和/或电机的控制器已经会出现温升过高的情况,如若不停止则会无法保证电机和/或电机的控制器使用寿命,因此控制电机的运行模式切换至传统运行模式;具体地,传统运行模式为在电机正反旋转时(即第一方向转动与第二方向转动之间进行切换时),换向前,会先向电机发出停止指令,在电机停止预设时间后再进行方向的转换,即采用预设的洗停比控制,由于电机具有停顿的时间,因此可以减缓电机发热的问题。本申请通过对电机的温度进行实时检测,以使得电机做出适合其当前温度的运转模式,在缩短洗涤时长的同时保证了电机的使用寿命。
另外,本申请提供的上述技术方案中的洗衣机用电机运行控制系统还可以具有如下附加技术特征:
在上述技术方案中,优选地,在当电机的温度低于第一预设阈值时的步骤之后,控制电机以连续运转模式运行之前,处理器还具体用于执行计算机程序以:检测电机的控制器温度,如控制器温度低于第四预设阈值时,执行控制电机以连续运转模式运行的步骤;如控制器温度高于第四预设阈值时,控制电机的运行模式切换至传统运行模式。
在该技术方案中,处理器还用于执行存储的计算机程序以:在检查到电机的温度低于第一预设阈值时,不会立即控制电机以连续运转模式运行,而会首先对电机的控制器温度进行检测,以判断电机的控制器此时的工作状态,即判断电机的控制器此时是否满足连续运转模式运行的启动条件,当检查到控制器温度高于第四预设阈值时,即说明控制器当前温度过高,若启动连续运转模式则极有可能出现高温受损的情况,需要控制电机的运行模式切换至传统运行模式,保证其使用寿命。当控制器温度低于第四预设阈值时则说明控制器的当前温度,满足连续运转模式运行的启动条件,执行控制电机以连续运转模式运行的步骤,以避免控制器在使用的过程中 受损。
在上述任一技术方案中,优选地,处理器还具体用于执行计算机程序以:控制电机的转子向第一转动方向加速旋转,并获取电机的当前转速,当电机的转速达到第一目标转速,并运行第一预设时长后,控制电机的转子向第二转动方向加速至第二目标转速;其中,所述第一目标转速与所述第二目标转速的转动方向相反。
在该技术方案中,提供了一种连续运转模式的具体方案,控制电机的转子按照第一转动方向转动,并在转速达到第一目标转速后开始计时,以第一目标转速转动第一预设时长后,控制电机的转子向第二转动方向加速至第二目标转速。电机在第一目标转速转动第一预设时长时,控制转子向第二转动方向转动,降低了转子在第一转动方向向第二转动方向切换过程的停止时间,从而降低了衣物的洗涤时间,提升用户的使用体验。
在上述任一技术方案中,优选地,处理器还具体用于执行计算机程序以:当电机以第二目标转速运行达到第二预设时长时,控制电机向第一转动方向加速至第一目标转速。
在该技术方案中,控制电机的转子以第二目标转速的运行时间达到第二预设时长时,控制电机的转子向第一转动方向加速至第一目标转速。电机由第二运动方向向第一运动方向进行切换过程中不存在停止时间,即电机的转子处于一直运动状态,实现第一方向转动-第二方向转动-第一方向转动-第二方向转动的电机运转模式,避免了电机中转子的停止时间,实现电机的高效利用,从而降低了衣物的洗涤时间,提升用户的使用体验。
在上述任一技术方案中,优选地,第一目标转速与第二目标转速的转速值大小相同。
在该技术方案中,将第一目标转速与第二目标转速设置为的转速值大小相同,方向相反,以保证电机在两种转速下的效果相同,进而保证了洗涤的效果。
根据本申请的第六个方面,提供了一种洗衣机,其中,洗衣机包括上述第五个方面提出的洗衣机用电机运行控制系统。该洗衣机可以为滚筒洗衣机或波轮洗衣机。
本申请提供的洗衣机包括上述第五个方面技术方案的洗衣机用电机运行控制系统,因此,该洗衣机具有上述第五个方面的洗衣机用电机运行控制系统的全部有益技术效果,不再赘述。
本申请的第七个方面,提供了一种洗衣机用电机运行控制方法,其中,包括:控制电机以连续运转模式运行,所述连续运转模式包含多个连续运转周期;所述控制电机完成所述连续运转模式的一个所述连续运转周期的具体步骤包括:控制电机的转子向第一转动方向加速旋转,并获取电机的当前转速,确认电机的转速达到第一目标转速,并运行第一预设时长后,控制电机从第一目标转速连续变化至第二目标转速,期间没有停止时间;确认电机的转速达到第二目标转速,并运行第二预设时长后,控制电机从第二目标转速连续变化至第一目标转速,期间没有停止时间,其中,第一目标转速与第二目标转速的转速方向相反。该方法不仅适用于滚筒洗衣机还适用于波轮洗衣机。
本申请所提供的洗衣机用电机运行控制方法,控制电机以连续运转模式运行,在连续运转模式下包括多个连续周期。在此过程中,不再保留相关技术中筒体或桶体向第一转动方向转动变化至向第二转动方向转动之间的停止时间,而是控制电机由正转的某一转速直接变化至旋转方向相反的某一转速,在转速为零的时候不再停转一定时长。连续运转模式的一个连续运转周期为:控制电机的转子按照第一转动方向以第一目标转速转动第一预设时长后,控制电机将转速由第一目标转速连续变化至第二目标转速。在此过程中,控制电机由第一目标转速直接变化至旋转方向相反的第二目标转速,在转速为零的时候不再停转一定时长。同样地,当电机的转速达到第二目标转速,并运行第二预设时长后,再控制电机从第二目标转速连续变化至旋转方向相反的第一目标转速,在转速为零的时候不再停转一定时长。即电机由第一运动方向向第二运动方向进行切换过程中不存在停止时间,电机的转子处于一直运动状态,实现第一方向转动-第二方向转动-第一方向转动-第二方向转动的电机运转模式,避免了电机中转子的停止时间,实现电机的高效利用。故而,在洗衣机进行洗涤时在第一目标速度及第二目标速度的之间的往复切换过程中,省去了相关技术中在零速时的停 留时间,从而减少了衣物的洗涤时间,提升了洗涤效率,提升用户的使用体验。
另外,本申请提供的上述技术方案中的洗衣机用电机运行控制方法还可以具有如下附加技术特征:
在上述技术方案中,优选地,获取电机的当前转速的步骤,具体包括:获取电机的驱动电压以及当前电流;根据驱动电压及当前电流,计算电机的转子磁链,根据转子磁链计算电机的转子位置;根据转子位置,计算电机的当前转速。
在该技术方案中,通过获取电机的驱动电压和当前电流来计算电机的当前转速,具体地,利用驱动电压和当前电流计算当前电机的转子磁链,利用磁链观测的方式来计算电机的转子位置,通过计算得到的转子位置来计算当前转子的当前转速。通过磁链观测的方式能够实现当前转速的时时观测,只需要检测驱动电压和对当前电流进行采样即可确定当前转速,计算过程简单,利于对电机进行控制。
在上述任一技术方案中,优选地,计算电机的转子磁链的步骤,具体包括:采用基于电压模型的定子磁链估算方法计算电机的反电势,对反电势进行相位补偿及积分滤波,计算得到转子磁链。
在该技术方案中,转子磁链是基于电压模型的定子磁链估算方法计算得到的。具体步骤如下,基于电压模型的定子磁链、检测α轴电流和β轴电流以及电机的电阻计算电机在α轴以及β轴上的反电势,基于电机旋转角频率和滤波频率对计算得到的反电势进行相位补偿,得到补偿后的α轴以及β轴上的反电势,并对其进行积分滤波,以得到电机的定子磁链,根据定子磁链和转子磁链的关系公式计算得到电机的转子磁链,以供根据转子磁链计算电机的转子位置,进而确定电机转子的当前转速,实现电机的控制。
在上述任一技术方案中,优选地,电机的反电势通过以下公式计算得到:
Figure PCTCN2019094424-appb-000033
其中,E α为电机α轴反电势,E β为电机β轴反电势,U α为电机α轴电 压、U β为电机β轴电压,I α为电机α轴电流,I β为电机β轴电流,R为电机电阻。
在该技术方案中,在获取得到电机α轴电压U α、电机β轴电压U β、电机电阻R、电机α轴电流I α、电机β轴电流I β之后可以计算得到电机α轴反电势E α以及电机β轴反电势E β,无需复杂的计算过程即可得到。
在上述任一技术方案中,优选地,对反电势进行相位补偿及积分滤波的步骤,通过以下公式计算得到:
其中相位补偿公式如下:
Figure PCTCN2019094424-appb-000034
其中,E' α为电机α轴补偿后的电压,E' β为电机β轴补偿后的电压,E α为电机α轴反电势,E β为电机β轴反电势,ω c为滤波频率,ω e为电机旋转角频率;
积分滤波的计算公式如下:
Figure PCTCN2019094424-appb-000035
其中,
Figure PCTCN2019094424-appb-000036
为α轴的磁链,
Figure PCTCN2019094424-appb-000037
为β轴的磁链,S为拉普拉斯算子。
在该技术方案中,α轴的磁链
Figure PCTCN2019094424-appb-000038
β轴的磁链
Figure PCTCN2019094424-appb-000039
可以直接通过滤波频率ω c、拉普拉斯算子S以及电机α轴补偿后的电压E' α、电机β轴补偿后的电压E' β直接计算得到,无需复杂的计算过程即可得到。
在上述任一技术方案中,优选地,转子磁链通过以下公式计算得到:
Figure PCTCN2019094424-appb-000040
其中,转子磁链
Figure PCTCN2019094424-appb-000041
Figure PCTCN2019094424-appb-000042
分别为电机α轴磁链和β轴转子磁链,L q为电机转子的电感,I α为电机α轴电流,I β为电机β轴电流。
在该技术方案中,通过计算得到的α轴的磁链
Figure PCTCN2019094424-appb-000043
β轴的磁链
Figure PCTCN2019094424-appb-000044
以及电机转子的电感L q、α轴电流I α、电机β轴电流I β直接计算得到转子磁链
Figure PCTCN2019094424-appb-000045
Figure PCTCN2019094424-appb-000046
通过对计算得到的转子磁链
Figure PCTCN2019094424-appb-000047
Figure PCTCN2019094424-appb-000048
进行反正切计算得到转子的位置,进而实现对转子转速的确定。
在上述任一技术方案中,优选地,洗衣机用电机运行控制方法还包括:控制电机从第一目标转速连续变化至第二目标转速的步骤,具体包括:控制电机降速运行,当电机的转速降至第一预设阈值时,控制电机的转子向第二转动方向加速至第二目标转速;其中第一预设阈值为0,或第一预设阈值为与0的差值在第一预设范围内的任意值;控制电机从第二目标转速连续变化至第一目标转速的步骤具体包括:控制电机降速运行,当电机的转速降至第二预设阈值时,控制电机的转子向第一转动方向加速至第一目标转速;其中,第二预设阈值为0,或第二预设阈值为与0的差值在第二预设范围内的任意值。
在该技术方案中,在电机由第一目标转速连续运转至第二目标转速的过程中,实际上是一个先减速再加速的过程,第一预设阈值就是减速运行切换到加速运行过程中的一个节点。当检测到电机的当前转速降速到第一预设阈值时,再加速运行直至达到第二目标转速,其中,第一预设阈值可以是0或者在0以上波动的任意值,具体地,当电机转子的转速处于0时,即当前转子刚刚由第一转动方向准备停止时,控制转子向第二转动方向转动,从而避免出现转子处于停止状态情况的出现。同样地,在电机由第二目标转速连续运转至第一目标转速的过程中,也存在第二预设阈值。第二预设阈值与第一预设阈值的作用相同,此处不再赘述。
值得指出的是,在进行设定第一预设阈值时,通过电频率、转速以及电机的极对数的关系来设定,具体的电频率等于转速和电机的极对数的乘积,通过设定电频率间接来设定转速,即第一预设阈值。同样地,第二预设阈值的设定方式相同。其中,电频率为供电频率。
在上述任一技术方案中,优选地,控制电机的转子向第二转动方向加速至第二目标转速的步骤,具体为:控制转子阶跃至第二目标转速;和/或控制电机的转子向第一转动方向加速至第一目标转速的步骤,具体为:控制转子阶跃至第一目标转速。
在该技术方案中,控制电机的转子向第二转动方向加速至第二目标转 速具体通过为:控制电机的转子阶跃至第二目标转速,具体地,控制转子的转速在一个时间段内攀升至第二目标转速,如向电机的转子施加较大的驱动电压和/或驱动电流,为转子提供较大的加速度,控制转子的转速阶跃至第二目标转速,其中一个时间段可以是1秒,或者几秒的时间段,进而控制电机的转子在第一转动方向向第二转动方向进行快速切换。同理通过控制控制转子阶跃至第一目标转速来完成电机的转子由第二转动方向向第一转动方向转动加速至第一目标转速。
在上述任一技术方案中,优选地,洗衣机用电机运行控制方法还包括:获取电机向第一目标转速加速起至电机转至第二目标转速过程中的预设速度曲线;其中,预设速度曲线根据第一目标转速、第二目标转速、第一预设时长、第二目标时长生成;根据当前转速对应的当前时刻,查找预设速度曲线中与当前时刻对应的预设转速,当当前转速与预设转速存在偏差时,校正当前转速为预设转速。
在该技术方案中,还获取电机向第一目标转速加速起至电机转至第二目标转速的预设速度曲线,对应于转速由初始值(如0)变化至第二目标转速的区间,根据计算得到的当前转速所对应的当前时刻查找预设速度曲线中对应时刻直接对应的预设转速,判断当前转速和预设转速是否存在偏差。在当前转速和预设转速之间存在偏差时,矫正当前转速为预设转速。通过设置矫正当前转速至预设转速的步骤,以使在控制电机运行的准确性,避免出现控制电机以第一预设转速运转,而实际电机小于第一预设转速运转,造成电机没有按照转速-时间曲线运行出现的失速,同时也避免电机在进行换向时由于转速与目标转速存在偏差造成电机损坏。
在上述任一技术方案中,优选地,校正当前转速为预设转速的步骤,具体包括:根据预设转速与当前转速的差值,计算驱动转矩;获取电机的当前电流,根据当前电流与驱动转矩,计算驱动电压,控制电机以驱动电压驱动电机的转子转动。
在该技术方案中,计算将获取的预设转速和当前转速的差值,根据计算的差值计算驱动转矩,获取电机的当前电流,根据当前电流以及计算得到的驱动转矩计算驱动电机运行的驱动电压,并将驱动电压输入值电机。 以使电机根据输入的驱动电压驱动电机运行,进而实现预设转速和当前转速的矫正。上述控制电机进行矫正的方式只需要获取当前电流,无需获取其他参数,因此,减少了数据的处理过程,加快了矫正的速度,进而降低电机转子减速的时间,实现电机的高效利用,以降低衣物的洗涤时间。
在上述任一技术方案中,优选地,在控制电机以连续运转模式运行之还包括:实时检测电机的温度,当电机的温度低于第一预设阈值时,控制电机以连续运转模式运行;当电机的温度大于第二预设阈值或电机的控制器温度高于第三预设阈值时,控制电机的运行模式切换至传统运行模式;其中,连续运转模式中电机向第一转动方向运转的运转时长与电机向第二转动方向运转的转动时长相连续。
在该技术方案中,首先需要实时检测电机的温度,并对电机检查到的当前温度进行判断,当电机的温度低于第一预设阈值时,则说明此时电机能保持良好运行的状态,控制电机以连续运转模式运行。但是,由于实时在对电机温度进行检测,当电机的温度大于第二预设阈值或电机的控制器温度高于第三预设阈值时,则说明持续的连续运转模式下使得电机长时间运行不间断洗涤,电机和/或电机的控制器已经会出现温升过高的情况,如若不停止则会无法保证电机和/或电机的控制器使用寿命,因此控制电机的运行模式切换至传统运行模式;具体地,传统运行模式为在电机正反旋转时(即第一方向转动与第二方向转动之间进行切换时),换向前,会先向电机发出停止指令,在电机停止预设时间后再进行方向的转换,即采用预设的洗停比控制,由于电机具有停顿的时间,因此可以减缓电机发热的问题,以使得电机做出适合其当前温度的运转模式,在缩短洗涤时长的同时保证了电机的使用寿命。其中,第一预设阈值低于第二预设阈值,第一预设阈值也低于第三预设阈值。
在上述技术方案中,优选地,在当电机的温度低于第一预设阈值时的步骤之后,控制电机以连续运转模式运行之前,还包括:检测电机的控制器温度,如控制器温度低于第四预设阈值时,执行控制电机以连续运转模式运行的步骤;如控制器温度高于第四预设阈值时,控制电机的运行模式切换至传统运行模式。
在该技术方案中,在检查到电机的温度低于第一预设阈值时,不会立即控制电机以连续运转模式运行,而会首先对电机的控制器温度进行检测,以判断电机的控制器此时的工作状态,即判断电机的控制器此时是否满足连续运转模式运行的启动条件,当检查到控制器温度高于第四预设阈值时,即说明控制器当前温度过高,若启动连续运转模式则极有可能出现高温受损的情况,需要控制电机的运行模式切换至传统运行模式,保证其使用寿命。当控制器温度低于第四预设阈值时则说明控制器的当前温度,满足连续运转模式运行的启动条件,执行控制电机以连续运转模式运行的步骤,以避免控制器在使用的过程中受损。其中,第一预设阈值低于第四预设阈值。
在上述任一技术方案中,优选地,第一目标转速与第二目标转速的转速值大小相同。
在该技术方案中,将第一目标转速与第二目标转速设置为的转速值大小相同,方向相反,以保证电机在两种转速下的效果相同,进而保证了洗涤的效果。
申请的八个方面,提供了一种洗衣机用电机运行控制系统,其中,包括:存储器,用于存储计算机程序;处理器,用于执行计算机程序以:控制电机以连续运转模式运行,所述连续运转模式包含多个连续运转周期;所述控制电机完成所述连续运转模式的一个所述连续运转周期的具体步骤包括:控制电机的转子向第一转动方向加速旋转,并获取电机的当前转速,确认电机的转速达到第一目标转速,并运行第一预设时长后,控制电机从第一目标转速连续变化至第二目标转速,期间没有停止时间;确认电机的转速达到第二目标转速,并运行第二预设时长后,控制电机从第二目标转速连续变化至第一目标转速,期间没有停止时间;其中,第一目标转速与第二目标转速的转速方向相反。该系统不仅适用于滚筒洗衣机还适用于波轮洗衣机。
本申请所提供的洗衣机用电机运行控制系统包括处理器和存储器,其中处理器执行存储在存储器中的可执行程序以:所述连续运转模式包含多个连续运转周期。
本申请所提供的洗衣机用电机运行控制系统,控制电机以连续运转模式运行,在连续运转模式下包括多个连续周期。在此过程中,不再保留相关技术中筒体或桶体向第一转动方向转动变化至向第二转动方向转动之间的停止时间,而是控制电机由正转的某一转速直接变化至旋转方向相反的某一转速,在转速为零的时候不再停转一定时长。
本申请所提供的洗衣机用电机运行控制系统包括处理器和存储器,其中处理器执行存储在存储器中的可执行程序以:所述控制电机完成所述连续运转模式的一个所述连续运转周期,具体包括:控制电机的转子按照第一转动方向以第一目标转速转动第一预设时长后,控制电机将转速由第一目标转速连续变化至第二目标转速。在此过程中,控制电机由第一目标转速直接变化至旋转方向相反的第二目标转速,在转速为零的时候不再停转一定时长。同样地,当电机的转速达到第二目标转速,并运行第二预设时长后,再控制电机从第二目标转速连续变化至旋转方向相反的第一目标转速,在转速为零的时候不再停转一定时长。即电机由第一运动方向向第二运动方向进行切换过程中不存在停止时间,电机的转子处于一直运动状态,实现第一方向转动-第二方向转动-第一方向转动-第二方向转动的电机运转模式,避免了电机中转子的停止时间,实现电机的高效利用。故而,在洗衣机进行洗涤时在第一目标速度及第二目标速度的之间的往复切换过程中,省去了相关技术中在零速时的停留时间,从而减少了衣物的洗涤时间,提升了洗涤效率,提升用户的使用体验。
另外,本申请提供的上述技术方案中的洗衣机用电机运行控制系统还可以具有如下附加技术特征:
在上述技术方案中,优选地,处理器还具体用于执行计算机程序以控制电机从第一目标转速连续变化至第二目标转速的步骤,具体包括:控制电机降速运行,当电机的转速降至第一预设阈值时,控制电机的转子向第二转动方向加速至第二目标转速;其中第一预设阈值为0,或第一预设阈值为与0的差值在第一预设范围内的任意值;处理器还用于执行计算机程序以实现控制电机从第二目标转速连续变化至第一目标转速的步骤,具体包括:控制电机降速运行,当电机的转速降至第二预设阈值时,控制电机 的转子向第一转动方向加速至第一目标转速;其中,第二预设阈值为0,或第二预设阈值为与0的差值在第二预设范围内的任意值。
在该技术方案中,在电机由第一目标转速连续运转至第二目标转速的过程中,实际上是一个先减速再加速的过程,第一预设阈值就是减速运行切换到加速运行过程中的一个节点。当检测到电机的当前转速降速到第一预设阈值时,再加速运行直至达到第二目标转速,其中,第一预设阈值可以是0或者在0以上波动的任意值,具体地,当电机转子的转速处于0时,即当前转子刚刚由第一转动方向准备停止时,控制转子向第二转动方向转动,从而避免出现转子处于停止状态情况的出现。同样地,在电机由第二目标转速连续运转至第一目标转速的过程中,也存在第二预设阈值。第二预设阈值与第一预设阈值的作用相同,此处不再赘述。
值得指出的是,在进行设定第一预设阈值时,通过电频率、转速以及电机的极对数的关系来设定,具体的电频率等于转速和电机的极对数的乘积,通过设定电频率间接来设定转速,即第一预设阈值。同样地,第二预设阈值的设定方式相同。其中,电频率为供电频率。
在上述任一技术方案中,优选地,处理器还用于执行计算机程序以实现控制电机的转子向第二转动方向加速至第二目标转速的步骤,具体包括:控制转子阶跃至第二目标转速;和/或处理器还用于执行计算机程序以实现控制电机的转子向第一转动方向加速至第一目标转速的步骤,具体为:控制转子阶跃至第一目标转速。
在该技术方案中,控制电机的转子向第二转动方向加速至第二目标转速具体通过为:控制电机的转子阶跃至第二目标转速,具体地,控制转子的转速在一个时间段内攀升至第二目标转速,如向电机的转子施加较大的驱动电压和/或驱动电流,为转子提供较大的加速度,控制转子的转速阶跃至第二目标转速,其中一个时间段可以是1秒,或者几秒的时间段,进而控制电机的转子在第一转动方向向第二转动方向进行快速切换。同理通过控制控制转子阶跃至第一目标转速来完成电机的转子由第二转动方向向第一转动方向转动加速至第一目标转速。
在上述任一技术方案中,优选地,处理器,具体用于执行计算机程序 以:获取电机的驱动电压以及当前电流;根据驱动电压及当前电流,计算电机的转子磁链,根据转子磁链计算电机的转子位置;根据转子位置,计算电机的当前转速。
在该技术方案中,通过获取电机的驱动电压和当前电流来计算电机的当前转速,具体地,利用驱动电压和当前电流计算当前电机的转子磁链,利用磁链观测的方式来计算电机的转子位置,通过计算得到的转子位置来计算当前转子的当前转速。通过磁链观测的方式能够实现当前转速的时时观测,只需要检测驱动电压和对当前电流进行采样即可确定当前转速,计算过程简单,利于对电机进行控制。
在上述任一技术方案中,优选地,处理器,具体用于执行计算机程序以:采用基于电压模型的定子磁链估算方法计算电机的反电势,对反电势进行相位补偿及积分滤波,计算得到转子磁链。
在该技术方案中,转子磁链是基于电压模型的定子磁链估算方法计算得到的。处理器,具体用于执行计算机程序以:基于电压模型的定子磁链、检测α轴电流和β轴电流以及电机的电阻计算电机在α轴以及β轴上的反电势,基于电机旋转角频率和滤波频率对计算得到的反电势进行相位补偿,得到补偿后的α轴以及β轴上的反电势,并对其进行积分滤波,以得到电机的定子磁链,根据定子磁链和转子磁链的关系公式计算得到电机的转子磁链,以供根据转子磁链计算电机的转子位置,进而确定电机转子的当前转速,实现电机的控制。
在上述任一技术方案中,优选地,电机的反电势通过以下公式计算得到:
Figure PCTCN2019094424-appb-000049
其中,E α为电机α轴反电势,E β为电机β轴反电势,U α为电机α轴电压、U β为电机β轴电压,I α为电机α轴电流,I β为电机β轴电流,R为电机电阻。
在该技术方案中,在获取得到电机α轴电压U α、电机β轴电压U β、电机电阻R、电机α轴电流I α、电机β轴电流I β之后可以计算得到电机α轴反电势E α 以及电机β轴反电势E β,无需复杂的计算过程即可得到。
在上述任一技术方案中,优选地,对反电势进行相位补偿及积分滤波的步骤,通过以下公式计算得到:
其中相位补偿公式如下:
Figure PCTCN2019094424-appb-000050
其中,E' α为电机α轴补偿后的电压,E' β为电机β轴补偿后的电压,E α为电机α轴反电势,E β为电机β轴反电势,ω c为滤波频率,ω e为电机旋转角频率;
积分滤波的计算公式如下:
Figure PCTCN2019094424-appb-000051
其中,
Figure PCTCN2019094424-appb-000052
为α轴的磁链,
Figure PCTCN2019094424-appb-000053
为β轴的磁链,S为拉普拉斯算子。
在该技术方案中,α轴的磁链
Figure PCTCN2019094424-appb-000054
β轴的磁链
Figure PCTCN2019094424-appb-000055
可以直接通过滤波频率ω c、拉普拉斯算子S以及电机α轴补偿后的电压E' α、电机β轴补偿后的电压E' β直接计算得到,无需复杂的计算过程即可得到。
在上述任一技术方案中,优选地,转子磁链通过以下公式计算得到:
Figure PCTCN2019094424-appb-000056
其中,转子磁链
Figure PCTCN2019094424-appb-000057
Figure PCTCN2019094424-appb-000058
分别为电机α轴磁链和β轴转子磁链,L q为电机转子的电感,I α为电机α轴电流,I β为电机β轴电流。
在该技术方案中,通过计算得到的α轴的磁链
Figure PCTCN2019094424-appb-000059
β轴的磁链
Figure PCTCN2019094424-appb-000060
以及电机转子的电感L q、α轴电流I α、电机β轴电流I β直接计算得到转子磁链
Figure PCTCN2019094424-appb-000061
Figure PCTCN2019094424-appb-000062
通过对计算得到的转子磁链
Figure PCTCN2019094424-appb-000063
Figure PCTCN2019094424-appb-000064
进行反正切计算得到转子的位置,进而实现对转子转速的确定。
在上述任一技术方案中,优选地,处理器,还用于执行计算机程序以:获取电机向第一目标转速加速起至电机转至第二目标转速过程中的预设速 度曲线;其中,预设速度曲线根据第一目标转速、第二目标转速、第一预设时长、第二目标时长生成;根据当前转速对应的当前时刻,查找预设速度曲线中与当前时刻对应的预设转速,当当前转速与预设转速存在偏差时,校正当前转速为预设转速。
在该技术方案中,还获取电机向第一目标转速加速起至电机转至第二目标转速的预设速度曲线,对应于转速由初始值(如0)变化至第二目标转速的区间,根据计算得到的当前转速所对应的当前时刻查找预设速度曲线中对应时刻直接对应的预设转速,判断当前转速和预设转速是否存在偏差。在当前转速和预设转速之间存在偏差时,矫正当前转速为预设转速。通过设置矫正当前转速至预设转速的步骤,以使在控制电机运行的准确性,避免出现控制电机以第一预设转速运转,而实际电机小于第一预设转速运转,造成电机没有按照转速-时间曲线运行出现的失速,同时也避免电机在进行换向时由于转速与目标转速存在偏差造成电机损坏。
在上述任一技术方案中,优选地,处理器,具体用于执行计算机程序以:根据预设转速与当前转速的差值,计算驱动转矩;获取电机的当前电流,根据当前电流与驱动转矩,计算驱动电压,控制电机以驱动电压驱动电机的转子转动。
在该技术方案中,计算将获取的预设转速和当前转速的差值,根据计算的差值计算驱动转矩,获取电机的当前电流,根据当前电流以及计算得到的驱动转矩计算驱动电机运行的驱动电压,并将驱动电压输入值电机。以使电机根据输入的驱动电压驱动电机运行,进而实现预设转速和当前转速的矫正。上述控制电机进行矫正的方式只需要获取当前电流,无需获取其他参数,因此,减少了数据的处理过程,加快了矫正的速度,进而降低电机转子减速的时间,实现电机的高效利用,以降低衣物的洗涤时间。
在上述任一技术方案中,优选地,处理器在执行控制电机以连续运转模式运行之前还用于:实时检测电机的温度,当电机的温度低于第一预设阈值时,控制电机以连续运转模式运行;当电机的温度大于第二预设阈值或电机的控制器温度高于第三预设阈值时,控制电机的运行模式切换至传统运行模式;其中,连续运转模式中电机向第一转动方向运转的运转时长 与电机向第二转动方向运转的转动时长相连续。
在该技术方案中,在电机进入连续运转模式之前,需要实时检测电机的温度,并对电机检查到的当前温度进行判断,当电机的温度低于第一预设阈值时,则说明此时电机能保持良好运行的状态,控制电机以连续运转模式运行;具体地,连续运转模式为电机向第一转动方向运转的运转时长与电机向第二转动方向运转的转动时长相连续,即电机由第一运动方向向第二运动方向进行切换过程中不存在停止时间,电机的转子处于一直运动状态,实现第一方向转动-第二方向转动-第一方向转动-第二方向转动的电机运转模式,避免了电机中转子的停止时间,实现电机的高效利用,从而降低了衣物的洗涤时间,提升用户的使用体验。同时,由于实时在对电机温度进行检测,当电机的温度大于第二预设阈值或电机的控制器温度高于第三预设阈值时,则说明持续的连续运转模式下使得电机长时间运行不间断洗涤,电机和/或电机的控制器已经会出现温升过高的情况,如若不停止则会无法保证电机和/或电机的控制器使用寿命,因此控制电机的运行模式切换至传统运行模式;具体地,传统运行模式为在电机正反旋转时(即第一方向转动与第二方向转动之间进行切换时),换向前,会先向电机发出停止指令,在电机停止预设时间后再进行方向的转换,即采用预设的洗停比控制,由于电机具有停顿的时间,因此可以减缓电机发热的问题,以使得电机做出适合其当前温度的运转模式,在缩短洗涤时长的同时保证了电机的使用寿命。其中,第一预设阈值低于第二预设阈值,第一预设阈值也低于第三预设阈值。
在上述技术方案中,优选地,处理器,还用于执行计算机程序以:在当电机的温度低于第一预设阈值时的步骤之后,控制电机以连续运转模式运行之前,还包括:检测电机的控制器温度,如控制器温度低于第四预设阈值时,执行控制电机以连续运转模式运行的步骤;如控制器温度高于第四预设阈值时,控制电机的运行模式切换至传统运行模式。
在该技术方案中,在检查到电机的温度低于第一预设阈值时,不会立即控制电机以连续运转模式运行,而会首先对电机的控制器温度进行检测,以判断电机的控制器此时的工作状态,即判断电机的控制器此时是否满足 连续运转模式运行的启动条件,当检查到控制器温度高于第四预设阈值时,即说明控制器当前温度过高,若启动连续运转模式则极有可能出现高温受损的情况,需要控制电机的运行模式切换至传统运行模式,保证其使用寿命。当控制器温度低于第四预设阈值时则说明控制器的当前温度,满足连续运转模式运行的启动条件,执行控制电机以连续运转模式运行的步骤,以避免控制器在使用的过程中受损。其中,第一预设阈值低于第四预设阈值。
在上述任一技术方案中,优选地,第一目标转速与第二目标转速的转速值大小相同。
在该技术方案中,将第一目标转速与第二目标转速设置为的转速值大小相同,方向相反,以保证电机在两种转速下的效果相同,进而保证了洗涤的效果。
本申请的第九个方面,本申请提供了一种洗衣机,其中洗衣机为滚筒洗衣机或波轮洗衣机,其中洗衣机包括上述第八个方面的洗衣机用电机运行控制系统。
本申请提供的洗衣机包括上述第八个方面技术方案的洗衣机用电机运行控制系统,因此,该洗衣机具有上述第八个方面洗衣机用电机运行控制系统的全部有益技术效果,不再赘述。
本申请的第十个方面,提出了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现如上述第一方面提出的洗衣机用电机运行控制方法的步骤,或者计算机程序被处理器执行时实现如上述第四方面提出的洗衣机用电机运行控制方法的步骤,或者计算机程序被处理器执行时实现如上述第七方面提出的洗衣机用电机运行控制方法的步骤。
本申请提供的计算机可读存储介质,计算机程序被处理器执行时实现如上述第一方面、第四方面、第七方面技术方案的洗衣机用电机运行控制方法的步骤,因此该计算机可读存储介质包括上述任一方面技术方案的洗衣机用电机运行控制方法的全部有益效果。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面 的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1示出了相关技术中洗衣机中电机的控制模式;
图2示出了本申请的一个实施例的洗衣机用电机运行控制方法的流程示意图;
图3示出了本申请的另一个实施例的洗衣机用电机运行控制方法的流程示意图;
图4示出了本申请的再一个实施例的洗衣机用电机运行控制方法的流程示意图;
图5示出了本申请的又一个实施例的洗衣机用电机运行控制方法的流程示意图;
图6示出了本申请的又一个实施例的洗衣机用电机运行控制方法的流程示意图;
图7示出了本申请的又一个实施例的洗衣机用电机运行控制方法的流程示意图;
图8示出了本实施例中电机转子的转速控制示意框图;
图9示出了本实施例中电机转子的速度指令示意图;
图10示出了本申请的一个实施例的洗衣机用电机运行控制系统的示意框图;
图11示出了本申请的一个实施例的洗衣机的示意框图;
图12示出了本申请的再一个实施例的洗衣机用电机运行控制方法的流程示意图;
图13示出了本申请的又一个实施例的洗衣机用电机运行控制方法的流程示意图;
图14示出了本申请的又一个实施例的洗衣机用电机运行控制方法的流程示意图;
图15示出了本申请的又一个实施例的洗衣机用电机运行控制方法的流程示意图;
图16示出了本申请的一个实施例的洗衣机用电机运行控制系统的示意框图;
图17示出了本申请的一个实施例的洗衣机的示意框图;
图18示出了本申请的再一个实施例的洗衣机用电机运行控制方法的流程示意图;
图19示出了本申请的又一个实施例的洗衣机用电机运行控制方法的流程示意图;
图20示出了本申请的又一个实施例的洗衣机用电机运行控制方法的流程示意图;
图21示出了本申请的一个实施例的洗衣机用电机运行控制系统的示意框图;
图22示出了本申请的一个实施例的洗衣机的示意框图。
具体实施方式
为了能够更清楚地理解本申请的上述方面、特征和优点,下面结合附图和具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的其他方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
本申请第一方面的实施例,提出一种洗衣机用电机运行控制方法。图2示出了本申请的一个实施例的洗衣机用电机运行控制方法的流程示意图。其中,该方法包括:
S202,控制电机的转子向第一转动方向加速旋转,并获取电机的当前转速,确认电机的转速达到第一目标转速,并运行第一预设时长后,控制电机从第一目标转速连续变化至第二目标转速,期间没有停止时间;
S204,确认电机的转速达到第二目标转速,并运行第二预设时长后, 控制电机从第二目标转速连续变化至第一目标转速,期间没有停止时间,其中,第一目标转速与第二目标转速的转速方向相反。
本申请所提供的洗衣机用电机运行控制方法,控制电机的转子按照第一转动方向以第一目标转速转动第一预设时长后,控制电机将转速由第一目标转速连续变化至第二目标转速。在此过程中,不再保留相关技术中的停止时间,而是控制电机由第一目标转速直接变化至旋转方向相反的第二目标转速,在转速为零的时候不再停转一定时长。同样地,当电机的转速达到第二目标转速,并运行第二预设时长后,再控制电机从第二目标转速连续变化至旋转方向相反的第一目标转速,在转速为零的时候不再停转一定时长。故而,在洗衣机进行洗涤时在第一目标速度及第二目标速度的之间的往复切换过程中,省去了相关技术中在零速时的停留时间,从而减少了衣物的洗涤时间,提升了洗涤效率,提升用户的使用体验。该方法不仅适用于滚筒洗衣机还适用于波轮洗衣机。
图3示出了本申请的另一个实施例的洗衣机用电机运行控制方法的流程示意图。其中,该方法包括:
S302,控制电机的转子向第一转动方向加速旋转;
S304,获取电机的驱动电压以及当前电流;
S306,根据驱动电压及当前电流,计算电机的转子磁链,根据转子磁链计算电机的转子位置;
S308,根据转子位置,计算电机的当前转速;
S310,确认电机的转速达到第一目标转速,并运行第一预设时长后,控制电机从第一目标转速连续变化至第二目标转速,期间没有停止时间;
S312,确认电机的转速达到第二目标转速,并运行第二预设时长后,控制电机从第二目标转速连续变化至第一目标转速,期间没有停止时间,其中,第一目标转速与第二目标转速的转速方向相反。
在该实施例中,通过获取电机的驱动电压和当前电流来计算电机的当前转速,具体地,利用驱动电压和当前电流计算当前电机的转子磁链,利用磁链观测的方式来计算电机的转子位置,通过计算得到的转子位置来计算当前转子的当前转速。通过磁链观测的方式能够实现当前转速的时时观 测,只需要检测驱动电压和对当前电流进行采样即可确定当前转速,计算过程简单,利于对电机进行控制。
图4示出了本申请的再一个实施例的洗衣机用电机运行控制方法的流程示意图。其中,该方法包括:
S402,控制电机的转子向第一转动方向加速旋转;
S404,获取电机的驱动电压以及当前电流;
S406,根据驱动电压及当前电流,采用基于电压模型的定子磁链估算方法计算电机的反电势,对反电势进行相位补偿及积分滤波,计算得到转子磁链,根据转子磁链计算电机的转子位置;
S408,根据转子位置,计算电机的当前转速;
S410,确认电机的转速达到第一目标转速,并运行第一预设时长后,控制电机从第一目标转速连续变化至第二目标转速,期间没有停止时间;
S412,确认电机的转速达到第二目标转速,并运行第二预设时长后,控制电机从第二目标转速连续变化至第一目标转速,期间没有停止时间,其中,第一目标转速与第二目标转速的转速方向相反。
在该实施例中,转子磁链是基于电压模型的定子磁链估算方法计算得到的。具体步骤如下,基于电压模型的定子磁链、检测α轴电流和β轴电流以及电机的电阻计算电机在α轴以及β轴上的反电势,基于电机旋转角频率和滤波频率对计算得到的反电势进行相位补偿,得到补偿后的α轴以及β轴上的反电势,并对其进行积分滤波,以得到电机的定子磁链,根据定子磁链和转子磁链的关系公式计算得到电机的转子磁链,以供根据转子磁链计算电机的转子位置,进而确定电机转子的当前转速,实现电机的控制。
在本申请的一个实施例中,优选地,电机的反电势通过以下公式计算得到:
Figure PCTCN2019094424-appb-000065
其中,E α为电机α轴反电势,E β为电机β轴反电势,U α为电机α轴电压、U β为电机β轴电压,I α为电机α轴电流,I β为电机β轴电流,R为电机 电阻。
在该实施例中,在获取得到电机α轴电压U α、电机β轴电压U β、电机电阻R、电机α轴电流I α、电机β轴电流I β之后可以计算得到电机α轴反电势E α以及电机β轴反电势E β,无需复杂的计算过程即可得到。
在本申请的一个实施例中,优选地,对反电势进行相位补偿及积分滤波的步骤,通过以下公式计算得到:
其中相位补偿公式如下:
Figure PCTCN2019094424-appb-000066
其中,E' α为电机α轴补偿后的电压,E' β为电机β轴补偿后的电压,E α为电机α轴反电势,E β为电机β轴反电势,ω c为滤波频率,ω e为电机旋转角频率;
积分滤波的计算公式如下:
Figure PCTCN2019094424-appb-000067
其中,
Figure PCTCN2019094424-appb-000068
为α轴的磁链,
Figure PCTCN2019094424-appb-000069
为β轴的磁链,S为拉普拉斯算子。
在该实施例中,α轴的磁链
Figure PCTCN2019094424-appb-000070
β轴的磁链
Figure PCTCN2019094424-appb-000071
可以直接通过滤波频率ω c、拉普拉斯算子S以及电机α轴补偿后的电压E' α、电机β轴补偿后的电压E' β直接计算得到,无需复杂的计算过程即可得到。
在本申请的一个实施例中,优选地,转子磁链通过以下公式计算得到:
Figure PCTCN2019094424-appb-000072
其中,转子磁链
Figure PCTCN2019094424-appb-000073
Figure PCTCN2019094424-appb-000074
分别为电机α轴磁链和β轴转子磁链,L q为电机转子的电感,I α为电机α轴电流,I β为电机β轴电流。
在该实施例中,通过计算得到的α轴的磁链
Figure PCTCN2019094424-appb-000075
β轴的磁链
Figure PCTCN2019094424-appb-000076
以及电机转子的电感L q、α轴电流I α、电机β轴电流I β直接计算得到转子磁链
Figure PCTCN2019094424-appb-000077
Figure PCTCN2019094424-appb-000078
通过对计算得到的转子磁链
Figure PCTCN2019094424-appb-000079
Figure PCTCN2019094424-appb-000080
进行反正切计算得到转子的位置,进而实 现对转子转速的确定。
图5示出了本申请的又一个实施例的洗衣机用电机运行控制方法的流程示意图。其中,该方法包括:
S502,控制电机的转子向第一转动方向加速旋转;
S504,获取电机的驱动电压以及当前电流;
S506,根据驱动电压及当前电流,采用基于电压模型的定子磁链估算方法计算电机的反电势,对反电势进行相位补偿及积分滤波,计算得到转子磁链,根据转子磁链计算电机的转子位置;
S508,根据转子位置,计算电机的当前转速;
S510,确认电机的转速达到第一目标转速,并运行第一预设时长后,控制电机降速运行;
S512,确认电机的转速降至第一预设阈值,控制电机的转子向第二转动方向加速至第二目标转速,期间没有停止时间;其中第一预设阈值为0,或第一预设阈值为与0的差值在第一预设范围内的任意值;
S514,当确认电机的转速达到第二目标转速,并运行第二预设时长后,控制电机降速运行,确认电机的转速降至第二预设阈值,控制电机的转子向第一转动方向加速至第一目标转速,期间没有停止时间;其中,第一目标转速与第二目标转速的转速方向相反,第二预设阈值为0,或第二预设阈值为与0的差值在第二预设范围内的任意值。
在该实施例中,在电机由第一目标转速连续运转至第二目标转速的过程中,实际上是一个先减速再加速的过程,第一预设阈值就是减速运行切换到加速运行过程中的一个节点。当检测到电机的当前转速降速到第一预设阈值时,再加速运行直至达到第二目标转速,其中,第一预设阈值可以是0或者在0以上波动的任意值,具体地,当电机转子的转速处于0时,即当前转子刚刚由第一转动方向准备停止时,控制转子向第二转动方向转动,从而避免出现转子处于停止状态情况的出现。同样地,在电机由第二目标转速连续运转至第一目标转速的过程中,也存在第二预设阈值。第二预设阈值与第一预设阈值的作用相同,此处不再赘述。
值得指出的是,在进行设定第一预设阈值时,通过电频率、转速以及 电机的极对数的关系来设定,具体的电频率等于转速和电机的极对数的乘积,通过设定电频率间接来设定转速,即第一预设阈值。同样地,第二预设阈值的设定方式相同。其中,电频率为供电频率。
图6示出了本申请的又一个实施例的洗衣机用电机运行控制方法的流程示意图。其中,该方法包括:
S602,控制电机的转子向第一转动方向加速旋转;
S604,获取电机的驱动电压以及当前电流;
S606,根据驱动电压及当前电流,采用基于电压模型的定子磁链估算方法计算电机的反电势,对反电势进行相位补偿及积分滤波,计算得到转子磁链,根据转子磁链计算电机的转子位置;
S608,根据转子位置,计算电机的当前转速;
S610,确认电机的转速达到第一目标转速,并运行第一预设时长后,控制电机降速运行;
S612,确认电机的转速降至第一预设阈值,控制转子阶跃至第二目标转速;其中第一预设阈值为0,或第一预设阈值为与0的差值在第一预设范围内的任意值;
S614,确认电机的转速达到第二目标转速,并运行第二预设时长后,控制电机降速运行,确认电机的转速降至第二预设阈值,控制转子阶跃至第一目标转速;其中,第一目标转速与第二目标转速的转速方向相反,第二预设阈值为0,或第二预设阈值为与0的差值在第二预设范围内的任意值。
在该实施例中,控制电机的转子向第二转动方向加速至第二目标转速具体通过为:控制电机的转子阶跃至第二目标转速,具体地,控制转子的转速在一个时间段内攀升至第二目标转速,如向电机的转子施加较大的驱动电压和/或驱动电流,为转子提供较大的加速度,控制转子的转速阶跃至第二目标转速,其中一个时间段可以是1秒,或者几秒的时间段,进而控制电机的转子在第一转动方向向第二转动方向进行快速切换。同理通过控制控制转子阶跃至第一目标转速来完成电机的转子由第二转动方向向第一转动方向转动加速至第一目标转速。
在本申请的一个实施例中,优选地,洗衣机用电机运行控制方法还包括:获取电机向第一目标转速加速起至电机转至第二目标转速过程中的预设速度曲线;其中,预设速度曲线根据第一目标转速、第二目标转速、第一预设时长、第二目标时长生成;根据当前转速对应的当前时刻,查找预设速度曲线中与当前时刻对应的预设转速,当当前转速与预设转速存在偏差时,校正当前转速为预设转速。
在该实施例中,还获取电机向第一目标转速加速起至电机转至第二目标转速的预设速度曲线,对应于转速由初始值(如0)变化至第二目标转速的区间,根据计算得到的当前转速所对应的当前时刻查找预设速度曲线中对应时刻直接对应的预设转速,判断当前转速和预设转速是否存在偏差。在当前转速和预设转速之间存在偏差时,矫正当前转速为预设转速。通过设置矫正当前转速至预设转速的步骤,以使在控制电机运行的准确性,避免出现控制电机以第一预设转速运转,而实际电机小于第一预设转速运转,造成电机没有按照转速-时间曲线运行出现的失速,同时也避免电机在进行换向时由于转速与目标转速存在偏差造成电机损坏。
在本申请的一个实施例中,优选地,校正当前转速为预设转速的步骤,具体包括:根据预设转速与当前转速的差值,计算驱动转矩;获取电机的当前电流,根据当前电流与驱动转矩,计算驱动电压,控制电机以驱动电压驱动电机的转子转动。
在该实施例中,计算将获取的预设转速和当前转速的差值,根据计算的差值计算驱动转矩,获取电机的当前电流,根据当前电流以及计算得到的驱动转矩计算驱动电机运行的驱动电压,并将驱动电压输入值电机。以使电机根据输入的驱动电压驱动电机运行,进而实现预设转速和当前转速的矫正。上述控制电机进行矫正的方式只需要获取当前电流,无需获取其他参数,因此,减少了数据的处理过程,加快了矫正的速度,进而降低电机转子减速的时间,实现电机的高效利用,以降低衣物的洗涤时间。
图7示出了本申请的又一个实施例的洗衣机用电机运行控制方法的流程示意图。其中,该方法包括:
S702,预设转速N1以及转速N1的运行时间T1;预设转速N2以及转 速N1的运行时间T2,其中N1与N2正负相反;
S704,控制电机旋转,加速直至转速到达N1,保持转速N1运行,持续时间T1;
S706,时间T1到达后,控制电机零速穿越,从筒体或桶体转速N1减速至0速,再反向加速至转速N2;
S708,控制电机旋转,保持转速N2运行,持续时间T2;
S710,时间T2到达后,控制电机零速穿越,从筒体或桶体转速N2减速至0速,再加速至转速N1;
S712,判断是否洗涤结束,在判断结果为否时,执行S704的步骤。
图8示出了本实施例中电机转子的转速控制示意框图。其中电机零速穿越具体包括:速度指令生成模块、速度控制器、速度运算器、电流控制器、磁链观察单元以及位置估算单元。其中速度指令生成模块,用于产生零速穿越速度指令,具体地,图9示出了本实施例中电机转子的速度指令示意图。速度控制器,通过速度指令V ref与反馈速度V fdb产生转矩指令T asr;具体地,速度控制器根据速度指令V ref与反馈速度V fdb生成速度误差V err,电流控制器,通过转矩指令T asr与反馈电流产I fdb生电压指令U;磁链观察单元,根据电机电压电流,计算电机磁链;位置估算单元,根据观测的磁链,估算电机转子位置θ。具体地,控制电机稳定运行与预设转速N1,在零速穿越使能后,速度指令生成模块按照预设的加速度生成速度指令,从转速N1减速至0,检测电机转速,当电机转速低于预设阈值后,速度指令阶跃至转速N2,实现从转速N1至转速N2零速穿越速度指令生成。速度控制器通过速度指令与反馈速度产生转矩指令,电流控制器通过转矩指令与反馈电流产生电压指令,控制电机按照零速穿越速度指令运行,从转速N1减速至0,检测电机转速,当电机转速低于预设阈值后,速度指令阶跃至转速N2,同时电流指令给定预设值作为初值,后续输出电流指令由速度控制器计算得到,实现零速穿越。
本申请第二方面的实施例,提出一种洗衣机用电机运行控制系统。图10示出了本申请的一个实施例的洗衣机用电机运行控制系统1000的示意框图。其中,洗衣机用电机运行控制系统1000包括:存储器1002,用于 存储计算机程序;处理器1004,用于执行计算机程序以:控制电机的转子向第一转动方向加速旋转,并获取电机的当前转速,当电机的转速达到第一目标转速,并运行第一预设时长后,控制电机从第一目标转速连续变化至第二目标转速,期间没有停止时间;当电机的转速达到第二目标转速,并运行第二预设时长后,控制电机从第二目标转速连续变化至第一目标转速,期间没有停止时间;其中,第一目标转速与第二目标转速的转速方向相反。该系统不仅适用于滚筒洗衣机还适用于波轮洗衣机。
本申请所提供的洗衣机用电机运行控制系统1000包括处理器1004和存储器1002,其中处理器1004执行存储在存储器1002中的可执行程序以:控制电机的转子按照第一转动方向以第一目标转速转动第一预设时长后,控制电机将转速由第一目标转速连续变化至第二目标转速。在此过程中,不再保留相关技术中的停止时间,而是控制电机由第一目标转速直接变化至旋转方向相反的第二目标转速,在转速为零的时候不再停转一定时长。同样地,当电机的转速达到第二目标转速,并运行第二预设时长后,再控制电机从第二目标转速连续变化至旋转方向相反的第一目标转速,在转速为零的时候不再停转一定时长。故而,在洗衣机进行洗涤时在第一目标速度及第二目标速度的之间的往复切换过程中,省去了相关技术中在零速时的停留时间,从而减少了衣物的洗涤时间,提升了洗涤效率,提升用户的使用体验。
在本申请的一个实施例中,优选地,处理器1004还具体用于执行计算机程序以控制电机从第一目标转速连续变化至第二目标转速的步骤,具体包括:控制电机降速运行,当电机的转速降至第一预设阈值时,控制电机的转子向第二转动方向加速至第二目标转速;其中第一预设阈值为0,或第一预设阈值为与0的差值在第一预设范围内的任意值;处理器还用于执行计算机程序以实现控制电机从第二目标转速连续变化至第一目标转速的步骤,具体包括:控制电机降速运行,当电机的转速降至第二预设阈值时,控制电机的转子向第一转动方向加速至第一目标转速;其中,第二预设阈值为0,或第二预设阈值为与0的差值在第二预设范围内的任意值。
在该实施例中,在电机由第一目标转速连续运转至第二目标转速的过 程中,实际上是一个先减速再加速的过程,第一预设阈值就是减速运行切换到加速运行过程中的一个节点。当检测到电机的当前转速降速到第一预设阈值时,再加速运行直至达到第二目标转速,其中,第一预设阈值可以是0或者在0以上波动的任意值,具体地,当电机转子的转速处于0时,即当前转子刚刚由第一转动方向准备停止时,控制转子向第二转动方向转动,从而避免出现转子处于停止状态情况的出现。同样地,在电机由第二目标转速连续运转至第一目标转速的过程中,也存在第二预设阈值。第二预设阈值与第一预设阈值的作用相同,此处不再赘述。
值得指出的是,在进行设定第一预设阈值时,通过电频率、转速以及电机的极对数的关系来设定,具体的电频率等于转速和电机的极对数的乘积,通过设定电频率间接来设定转速,即第一预设阈值。同样地,第二预设阈值的设定方式相同。其中,电频率为供电频率。
在本申请的一个实施例中,优选地,处理器1004还用于执行计算机程序以实现控制电机的转子向第二转动方向加速至第二目标转速的步骤,具体包括:控制转子阶跃至第二目标转速;和/或处理器还用于执行计算机程序以实现控制电机的转子向第一转动方向加速至第一目标转速的步骤,具体为:控制转子阶跃至第一目标转速。
在该实施例中,控制电机的转子向第二转动方向加速至第二目标转速具体通过为:控制电机的转子阶跃至第二目标转速,具体地,控制转子的转速在一个时间段内攀升至第二目标转速,如向电机的转子施加较大的驱动电压和/或驱动电流,为转子提供较大的加速度,控制转子的转速阶跃至第二目标转速,其中一个时间段可以是1秒,或者几秒的时间段,进而控制电机的转子在第一转动方向向第二转动方向进行快速切换。同理通过控制控制转子阶跃至第一目标转速来完成电机的转子由第二转动方向向第一转动方向转动加速至第一目标转速。
在本申请的一个实施例中,优选地,处理器1004,具体用于执行计算机程序以:获取电机的驱动电压以及当前电流;根据驱动电压及当前电流,计算电机的转子磁链,根据转子磁链计算电机的转子位置;根据转子位置,计算电机的当前转速。
在该实施例中,处理器1004具体执行存储的计算机程序以:通过获取电机的驱动电压和当前电流来计算电机的当前转速,具体地,利用驱动电压和当前电流计算当前电机的转子磁链,利用磁链观测的方式来计算电机的转子位置,通过计算得到的转子位置来计算当前转子的当前转速。通过磁链观测的方式能够实现当前转速的时时观测,只需要检测驱动电压和对当前电流进行采样即可确定当前转速,计算过程简单,利于对电机进行控制。
在本申请的一个实施例中,优选地,处理器1004,具体用于执行计算机程序以:采用基于电压模型的定子磁链估算方法计算电机的反电势,对反电势进行相位补偿及积分滤波,计算得到转子磁链。
在该实施例中,转子磁链是基于电压模型的定子磁链估算方法计算得到的。处理器,具体用于执行计算机程序以:基于电压模型的定子磁链、检测α轴电流和β轴电流以及电机的电阻计算电机在α轴以及β轴上的反电势,基于电机旋转角频率和滤波频率对计算得到的反电势进行相位补偿,得到补偿后的α轴以及β轴上的反电势,并对其进行积分滤波,以得到电机的定子磁链,根据定子磁链和转子磁链的关系公式计算得到电机的转子磁链,以供根据转子磁链计算电机的转子位置,进而确定电机转子的当前转速,实现电机的控制。
在本申请的一个实施例中,优选地,电机的反电势通过以下公式计算得到:
Figure PCTCN2019094424-appb-000081
其中,E α为电机α轴反电势,E β为电机β轴反电势,U α为电机α轴电压、U β为电机β轴电压,I α为电机α轴电流,I β为电机β轴电流,R为电机电阻。
在该实施例中,在获取得到电机α轴电压U α、电机β轴电压U β、电机电阻R、电机α轴电流I α、电机β轴电流I β之后可以计算得到电机α轴反电势E α以及电机β轴反电势E β,无需复杂的计算过程即可得到。
在本申请的一个实施例中,优选地,对反电势进行相位补偿及积分滤 波的步骤,通过以下公式计算得到:
其中相位补偿公式如下:
Figure PCTCN2019094424-appb-000082
其中,E' α为电机α轴补偿后的电压,E' β为电机β轴补偿后的电压,E α为电机α轴反电势,E β为电机β轴反电势,ω c为滤波频率,ω e为电机旋转角频率;
积分滤波的计算公式如下:
Figure PCTCN2019094424-appb-000083
其中,
Figure PCTCN2019094424-appb-000084
为α轴的磁链,
Figure PCTCN2019094424-appb-000085
为β轴的磁链,S为拉普拉斯算子。
在该实施例中,α轴的磁链
Figure PCTCN2019094424-appb-000086
β轴的磁链
Figure PCTCN2019094424-appb-000087
可以直接通过滤波频率ω c、拉普拉斯算子S以及电机α轴补偿后的电压E' α、电机β轴补偿后的电压E' β直接计算得到,无需复杂的计算过程即可得到。
在本申请的一个实施例中,优选地,转子磁链通过以下公式计算得到:
Figure PCTCN2019094424-appb-000088
其中,转子磁链
Figure PCTCN2019094424-appb-000089
Figure PCTCN2019094424-appb-000090
分别为电机α轴磁链和β轴转子磁链,L q为电机转子的电感,I α为电机α轴电流,I β为电机β轴电流。
在该实施例中,通过计算得到的α轴的磁链
Figure PCTCN2019094424-appb-000091
β轴的磁链
Figure PCTCN2019094424-appb-000092
以及电机转子的电感L q、α轴电流I α、电机β轴电流I β直接计算得到转子磁链
Figure PCTCN2019094424-appb-000093
Figure PCTCN2019094424-appb-000094
通过对计算得到的转子磁链
Figure PCTCN2019094424-appb-000095
Figure PCTCN2019094424-appb-000096
进行反正切计算得到转子的位置,进而实现对转子转速的确定。
在本申请的一个实施例中,优选地,处理器1004,还用于执行计算机程序以:获取电机向第一目标转速加速起至电机转至第二目标转速过程中的预设速度曲线;其中,预设速度曲线根据第一目标转速、第二目标转速、第一预设时长、第二目标时长生成;根据当前转速对应的当前时刻,查找 预设速度曲线中与当前时刻对应的预设转速,当当前转速与预设转速存在偏差时,校正当前转速为预设转速。
在该实施例中,还获取电机向第一目标转速加速起至电机转至第二目标转速的预设速度曲线,对应于转速由初始值(如0)变化至第二目标转速的区间,根据计算得到的当前转速所对应的当前时刻查找预设速度曲线中对应时刻直接对应的预设转速,判断当前转速和预设转速是否存在偏差。在当前转速和预设转速之间存在偏差时,矫正当前转速为预设转速。通过设置矫正当前转速至预设转速的步骤,以使在控制电机运行的准确性,避免出现控制电机以第一预设转速运转,而实际电机小于第一预设转速运转,造成电机没有按照转速-时间曲线运行出现的失速,同时也避免电机在进行换向时由于转速与目标转速存在偏差造成电机损坏。
在本申请的一个实施例中,优选地,处理器1004,还用于执行计算机程序以:根据预设转速与当前转速的差值,计算驱动转矩;获取电机的当前电流,根据当前电流与驱动转矩,计算驱动电压,控制电机以驱动电压驱动电机的转子转动。
在该实施例中,计算将获取的预设转速和当前转速的差值,根据计算的差值计算驱动转矩,获取电机的当前电流,根据当前电流以及计算得到的驱动转矩计算驱动电机运行的驱动电压,并将驱动电压输入值电机。以使电机根据输入的驱动电压驱动电机运行,进而实现预设转速和当前转速的矫正。上述控制电机进行矫正的方式只需要获取当前电流,无需获取其他参数,因此,减少了数据的处理过程,加快了矫正的速度,进而降低电机转子减速的时间,实现电机的高效利用,以降低衣物的洗涤时间。
本申请第三方面的实施例,提出一种洗衣机,图11示出了本申请的一个实施例的洗衣机1100的示意框图。其中洗衣机1100包括:洗衣机用电机运行控制系统1102。该洗衣机为滚筒洗衣机或者波轮洗衣机。
本申请提供的洗衣机1100包括上述任一实施例的洗衣机用电机运行控制系统1102,因此,该洗衣机1100具有上述任一洗衣机用电机运行控制系统1102的全部有益技术效果,不再赘述。
本申请第四方面的实施例,提出另一种洗衣机用电机运行控制方法, 图12示出了本申请的一个实施例的洗衣机用电机运行控制方法的流程示意图。其中,该方法包括:
S1202,实时检测电机的温度,确认电机的温度低于第一预设阈值,控制电机以连续运转模式运行;
S1204,确认电机的温度大于第二预设阈值或电机的控制器温度高于第三预设阈值,控制电机的运行模式切换至传统运行模式;
其中,连续运转模式为电机向第一转动方向运转的运转时长与电机向第二转动方向运转的转动时长相连续。
本申请所提供的洗衣机用电机运行控制方法,首先会实时检测电机的温度,并对电机检查到的当前温度进行判断,当电机的温度低于第一预设阈值时,则说明此时电机能保持良好运行的状态,控制电机以连续运转模式运行;具体地,连续运转模式为电机向第一转动方向运转的运转时长与电机向第二转动方向运转的转动时长相连续,即电机由第一运动方向向第二运动方向进行切换过程中不存在停止时间,电机的转子处于一直运动状态,实现第一方向转动-第二方向转动-第一方向转动-第二方向转动的电机运转模式,避免了电机中转子的停止时间,实现电机的高效利用,从而降低了衣物的洗涤时间,提升用户的使用体验。同时,由于实时在对电机温度进行检测,当电机的温度大于第二预设阈值或电机的控制器温度高于第三预设阈值时,则说明持续的连续运转模式下使得电机长时间运行不间断洗涤,电机和/或电机的控制器已经会出现温升过高的情况,如若不停止则会无法保证电机和/或电机的控制器使用寿命,因此控制电机的运行模式切换至传统运行模式;具体地,传统运行模式为在电机正反旋转时(即第一方向转动与第二方向转动之间进行切换时),换向前,会先向电机发出停止指令,在电机停止预设时间后再进行方向的转换,即采用预设的洗停比控制,由于电机具有停顿的时间,因此可以减缓电机发热的问题。本申请通过对电机的温度进行实时检测,以使得电机做出适合其当前温度的运转模式,在缩短洗涤时长的同时保证了电机的使用寿命。该方法不仅适用于滚筒洗衣机还适用于波轮洗衣机。
本申请第一方面的实施例,提出一种洗衣机用电机运行控制方法,图 13示出了本申请的一个实施例的洗衣机用电机运行控制方法的流程示意图。其中,该方法包括:
S1302,实时检测电机的温度,确认电机的温度低于第一预设阈值,检测电机的控制器温度,
S1304,确认控制器温度低于第四预设阈值,控制电机以连续运转模式运行;
S1306,确认控制器温度高于第四预设阈值,控制电机的运行模式切换至传统运行模式;
S1308,确认电机的温度大于第二预设阈值或电机的控制器温度高于第三预设阈值,控制电机的运行模式切换至传统运行模式。
在该实施例中,在检查到电机的温度低于第一预设阈值时,不会立即控制电机以连续运转模式运行,而会首先对电机的控制器温度进行检测,以判断电机的控制器此时的工作状态,即判断电机的控制器此时是否满足连续运转模式运行的启动条件,当检查到控制器温度高于第四预设阈值时,即说明控制器当前温度过高,若启动连续运转模式则极有可能出现高温受损的情况,需要控制电机的运行模式切换至传统运行模式,保证其使用寿命。当控制器温度低于第四预设阈值时则说明控制器的当前温度,满足连续运转模式运行的启动条件,执行控制电机以连续运转模式运行的步骤,以避免控制器在使用的过程中受损。
本申请第一方面的实施例,提出一种洗衣机用电机运行控制方法,图14示出了本申请的一个实施例的洗衣机用电机运行控制方法的流程示意图。其中,该方法包括:
S1402,实时检测电机的温度,确认电机的温度低于第一预设阈值,控制电机的转子向第一转动方向加速旋转,并获取电机的当前转速,确认电机的转速达到第一目标转速,并运行第一预设时长后,控制电机向第二转动方向加速至第二目标转速;
S1404,确认电机的温度大于第二预设阈值或电机的控制器温度高于第三预设阈值,控制电机的运行模式切换至传统运行模式;
其中,第一目标转速与第二目标转速的转动方向相反。
在该实施例中,提供了一种连续运转模式的具体方案,控制电机的转子按照第一转动方向转动,并在转速达到第一目标转速后开始计时,以第一目标转速转动第一预设时长后,控制电机的转子向第二转动方向加速至第二目标转速。电机在第一目标转速转动第一预设时长时,控制转子向第二转动方向转动,降低了转子在第一转动方向向第二转动方向切换过程的停止时间,从而降低了衣物的洗涤时间,提升用户的使用体验。
本申请第一方面的实施例,提出一种洗衣机用电机运行控制方法,图15示出了本申请的一个实施例的洗衣机用电机运行控制方法的流程示意图。其中,该方法包括:
S1502,实时检测电机的温度,确认电机的温度低于第一预设阈值,控制电机的转子向第一转动方向加速旋转,并获取电机的当前转速,确认电机的转速达到第一目标转速,并运行第一预设时长后,控制电机的转子向第二转动方向加速至第二目标转速;
S1504,确认电机以第二目标转速运行达到第二预设时长,控制电机向第一转动方向加速至第一目标转速;
S1506,确认电机的温度大于第二预设阈值或电机的控制器温度高于第三预设阈值,控制电机的运行模式切换至传统运行模式。
在该实施例中,控制电机的转子以第二目标转速的运行时间达到第二预设时长时,控制电机的转子向第一转动方向加速至第一目标转速。电机由第二运动方向向第一运动方向进行切换过程中不存在停止时间,即电机的转子处于一直运动状态,实现第一方向转动-第二方向转动-第一方向转动-第二方向转动的电机运转模式,避免了电机中转子的停止时间,实现电机的高效利用,从而降低了衣物的洗涤时间,提升用户的使用体验。
在该实施例中,需要实时获取电机的当前转速,以确定电机是否到达第一目标转速或第二目标转速,而获取电机的当前转速的方式,可以为获取电机的驱动电压以及当前电流,根据驱动电压及当前电流,计算电机的转子磁链,根据转子磁链计算电机的转子位置;根据转子位置,计算电机的当前转速。
在本申请的一个实施例中,采用通过获取电机的驱动电压和当前电流 的方式来计算电机的当前转速,具体地,利用驱动电压和当前电流计算当前电机的转子磁链,利用磁链观测的方式来计算电机的转子位置,通过计算得到的转子位置来计算当前转子的当前转速。通过磁链观测的方式能够实现当前转速的时时观测,只需要检测驱动电压和对当前电流进行采样即可确定当前转速,计算过程简单,利于对电机进行控制。
在本申请的一个实施例中,优选地,采用基于电压模型的定子磁链估算方法计算电机的反电势,对反电势进行相位补偿及积分滤波,计算得到转子磁链。
在该实施例中,转子磁链是基于电压模型的定子磁链估算方法计算得到的。基于电压模型检测α轴电流和β轴电流以及电机的电阻计算电机在α轴以及β轴上的反电势,基于电机旋转角频率和滤波频率对计算得到的反电势进行相位补偿,得到补偿后的α轴以及β轴上的反电势,并对其进行积分滤波,以得到电机的定子磁链,根据定子磁链和转子磁链的关系公式计算得到电机的转子磁链,以供根据转子磁链计算电机的转子位置,进而确定电机转子的当前转速,实现电机的控制。
在本申请的一个实施例中,优选地,电机的反电势通过以下公式计算得到:
Figure PCTCN2019094424-appb-000097
其中,E α为电机α轴反电势,E β为电机β轴反电势,U α为电机α轴电压、U β为电机β轴电压,I α为电机α轴电流,I β为电机β轴电流,R为电机电阻。
在该实施例中,在获取得到电机α轴电压U α、电机β轴电压U β、电机电阻R、电机α轴电流I α、电机β轴电流I β之后可以计算得到电机α轴反电势E α以及电机β轴反电势E β,无需复杂的计算过程即可得到。
在本申请的一个实施例中,优选地,对反电势进行相位补偿及积分滤波的步骤,通过以下公式计算得到:
其中相位补偿公式如下:
Figure PCTCN2019094424-appb-000098
其中,E' α为电机α轴补偿后的电压,E' β为电机β轴补偿后的电压,E α为电机α轴反电势,E β为电机β轴反电势,ω c为滤波频率,ω e为电机旋转角频率;
积分滤波的计算公式如下:
Figure PCTCN2019094424-appb-000099
其中,
Figure PCTCN2019094424-appb-000100
为α轴的磁链,
Figure PCTCN2019094424-appb-000101
为β轴的磁链,S为拉普拉斯算子。
在该实施例中,α轴的磁链
Figure PCTCN2019094424-appb-000102
β轴的磁链
Figure PCTCN2019094424-appb-000103
可以直接通过滤波频率ω c、拉普拉斯算子S以及电机α轴补偿后的电压E' α、电机β轴补偿后的电压E' β直接计算得到,无需复杂的计算过程即可得到。
在本申请的一个实施例中,优选地,转子磁链通过以下公式计算得到:
Figure PCTCN2019094424-appb-000104
其中,转子磁链
Figure PCTCN2019094424-appb-000105
Figure PCTCN2019094424-appb-000106
分别为电机α轴磁链和β轴转子磁链,L q为电机转子的电感,I α为电机α轴电流,I β为电机β轴电流。
在该实施例中,通过计算得到的α轴的磁链
Figure PCTCN2019094424-appb-000107
β轴的磁链
Figure PCTCN2019094424-appb-000108
以及电机转子的电感L q、α轴电流I α、电机β轴电流I β直接计算得到转子磁链
Figure PCTCN2019094424-appb-000109
Figure PCTCN2019094424-appb-000110
通过对计算得到的转子磁链
Figure PCTCN2019094424-appb-000111
Figure PCTCN2019094424-appb-000112
进行反正切计算得到转子的位置,进而实现对转子转速的确定。
在上述任一实施例中,优选地,第一目标转速与第二目标转速的转速值大小相同。
在该实施例案中,将第一目标转速与第二目标转速设置为的转速值大小相同,方向相反,以保证电机在两种转速下的效果相同,进而保证了洗涤的效果。
图8示出了本实施例中电机转子的转速控制示意框图。其中电机零速 穿越具体包括:速度指令生成模块、速度控制器、速度运算器、电流控制器、磁链观察单元以及位置估算单元。其中速度指令生成模块,用于产生零速穿越速度指令,具体地,图9示出了本实施例中根据速度指令生成模块生成的速度曲线示意图,其中,所述速度曲线示意图根据第一目标转速、第二目标转速、第一预设时长、第二目标时长生成。速度控制器,通过速度指令V ref与反馈速度V fdb产生转矩指令T asr;具体地,速度控制器根据速度指令V ref与反馈速度V fdb生成速度误差V err,电流控制器,通过转矩指令T asr与反馈电流产I fdb生电压指令U;磁链观察单元,根据电机电压电流,计算电机磁链;位置估算单元,根据观测的磁链,估算电机转子位置θ。具体地,控制电机稳定运行与预设转速N1,在零速穿越使能后,速度指令生成模块按照预设的加速度生成速度指令,从转速N1减速至0,检测电机转速,当电机转速低于预设阈值后,速度指令阶跃至转速N2,实现从转速N1至转速N2零速穿越速度指令生成。速度控制器通过速度指令与反馈速度产生转矩指令,电流控制器通过转矩指令与反馈电流产生电压指令,控制电机按照零速穿越速度指令运行,从转速N1减速至0,检测电机转速,当电机转速低于预设阈值后,速度指令阶跃至转速N2,同时电流指令给定预设值作为初值,后续输出电流指令由速度控制器计算得到,实现零速穿越。
如图16所示,根据本申请的第五个方面,本申请提供了另一种洗衣机用电机运行控制系统1600,包括:存储器1602,用于存储计算机程序;处理器1604,用于执行计算机程序以:实时检测电机的温度,当电机的温度低于第一预设阈值时,控制电机以连续运转模式运行;当电机的温度大于第二预设阈值或电机的控制器温度高于第三预设阈值时,控制电机的运行模式切换至传统运行模式;其中,连续运转模式为电机向第一转动方向运转的运转时长与电机向第二转动方向运转的转动时长相连续。
本申请所提供的洗衣机用电机运行控制系统1600包括处理器1604和存储器1602,其中处理器1604执行存储在存储器1602中的可执行程序以:首先会实时检测电机的温度,并对电机检查到的当前温度进行判断,当电机的温度低于第一预设阈值时,则说明此时电机能保持良好运行的状态, 控制电机以连续运转模式运行;具体地,连续运转模式为电机向第一转动方向运转的运转时长与电机向第二转动方向运转的转动时长相连续,即电机由第一运动方向向第二运动方向进行切换过程中不存在停止时间,电机的转子处于一直运动状态,实现第一方向转动-第二方向转动-第一方向转动-第二方向转动的电机运转模式,避免了电机中转子的停止时间,实现电机的高效利用,从而降低了衣物的洗涤时间,提升用户的使用体验。同时,由于实时在对电机温度进行检测,当电机的温度大于第二预设阈值或电机的控制器温度高于第三预设阈值时,则说明持续的连续运转模式下使得电机长时间运行不间断洗涤,电机和/或电机的控制器已经会出现温升过高的情况,如若不停止则会无法保证电机和/或电机的控制器使用寿命,因此控制电机的运行模式切换至传统运行模式;具体地,传统运行模式为在电机正反旋转时(即第一方向转动与第二方向转动之间进行切换时),换向前,会先向电机发出停止指令,在电机停止预设时间后再进行方向的转换,即采用预设的洗停比控制,由于电机具有停顿的时间,因此可以减缓电机发热的问题。本申请通过对电机的温度进行实时检测,以使得电机做出适合其当前温度的运转模式,在缩短洗涤时长的同时保证了电机的使用寿命。
在上述实施例中,优选地,在当电机的温度低于第一预设阈值时的步骤之后,控制电机以连续运转模式运行之前,处理器1604还具体用于执行计算机程序以:检测电机的控制器温度,如控制器温度低于第四预设阈值时,执行控制电机以连续运转模式运行的步骤;如控制器温度高于第四预设阈值时,控制电机的运行模式切换至传统运行模式。该系统不仅适用于滚筒洗衣机还适用于波轮洗衣机。
在该实施例中,处理器1604还用于执行存储的计算机程序以:在检查到电机的温度低于第一预设阈值时,不会立即控制电机以连续运转模式运行,而会首先对电机的控制器温度进行检测,以判断电机的控制器此时的工作状态,即判断电机的控制器此时是否满足连续运转模式运行的启动条件,当检查到控制器温度高于第四预设阈值时,即说明控制器当前温度过高,若启动连续运转模式则极有可能出现高温受损的情况,需要控制电机的运行模式切换至传统运行模式,保证其使用寿命。当控制器温度低于第 四预设阈值时则说明控制器的当前温度,满足连续运转模式运行的启动条件,执行控制电机以连续运转模式运行的步骤,以避免控制器在使用的过程中受损。
在上述任一实施例中,优选地,处理器1604还具体用于执行计算机程序以:控制电机的转子向第一转动方向加速旋转,并获取电机的当前转速,当电机的转速达到第一目标转速,并运行第一预设时长后,控制电机的转子向第二转动方向加速至第二目标转速;其中,所述第一目标转速与所述第二目标转速的转动方向相反。
在该实施例中,提供了一种连续运转模式的具体方案,控制电机的转子按照第一转动方向转动,并在转速达到第一目标转速后开始计时,以第一目标转速转动第一预设时长后,控制电机的转子向第二转动方向加速至第二目标转速。电机在第一目标转速转动第一预设时长时,控制转子向第二转动方向转动,降低了转子在第一转动方向向第二转动方向切换过程的停止时间,从而降低了衣物的洗涤时间,提升用户的使用体验。
在上述任一实施例中,优选地,处理器1604还具体用于执行计算机程序以:当电机以第二目标转速运行达到第二预设时长时,控制电机向第一转动方向加速至第一目标转速。
在该实施例中,控制电机的转子以第二目标转速的运行时间达到第二预设时长时,控制电机的转子向第一转动方向加速至第一目标转速。电机由第二运动方向向第一运动方向进行切换过程中不存在停止时间,即电机的转子处于一直运动状态,实现第一方向转动-第二方向转动-第一方向转动-第二方向转动的电机运转模式,避免了电机中转子的停止时间,实现电机的高效利用,从而降低了衣物的洗涤时间,提升用户的使用体验。
在上述任一实施例中,优选地,第一目标转速与第二目标转速的转速值大小相同。
在该技术方案中,将第一目标转速与第二目标转速设置为的转速值大小相同,方向相反,以保证电机在两种转速下的效果相同,进而保证了洗涤的效果。
如图17所示,根据本申请的第六个方面,本申请提供了一种洗衣机 1700,其中洗衣机为滚筒洗衣机或波轮洗衣机,其中洗衣机包括上述任一项洗衣机用电机运行控制系统1702。
本申请提供的洗衣机包括上述任一实施例的洗衣机用电机运行控制系统1702,因此,该洗衣机1700具有上述任一洗衣机用电机运行控制系统1702的全部有益技术效果,不再赘述。
如图18所示,根据本申请的第七个方面,本申请提出一种洗衣机用电机运行控制方法。图18示出了本申请的一个实施例的洗衣机用电机运行控制方法的流程示意图,其中,方法步骤包括:
S1802,控制电机以连续运转模式运行,所述连续运转模式包含多个连续运转周期。
本申请所提供的洗衣机用电机运行控制方法,控制电机以连续运转模式运行,在连续运转模式下包括多个连续周期。在此过程中,不再保留相关技术中筒体或桶体向第一转动方向转动变化至向第二转动方向转动之间的停止时间,而是控制电机由正转的某一转速直接变化至旋转方向相反的某一转速,在转速为零的时候不再停转一定时长。在上述实施例中,控制电机完成连续运转模式的一个连续运转周期的具体步骤包括:
S1902,控制电机的转子向第一转动方向加速旋转,并获取电机的当前转速,当电机的转速达到第一目标转速,并运行第一预设时长后,控制电机从第一目标转速连续变化至第二目标转速,期间没有停止时间;
S1904,当电机的转速达到第二目标转速,并运行第二预设时长后,控制电机从第二目标转速连续变化至第一目标转速,期间没有停止时间,其中,第一目标转速与第二目标转速的转速方向相反。
本申请提供的洗衣机控制电机完成所述连续运转模式的一个所述连续运转周期的具体步骤包括:控制电机的转子按照第一转动方向以第一目标转速转动第一预设时长后,控制电机将转速由第一目标转速连续变化至第二目标转速。在此过程中,控制电机由第一目标转速直接变化至旋转方向相反的第二目标转速,在转速为零的时候不再停转一定时长。同样地,当电机的转速达到第二目标转速,并运行第二预设时长后,再控制电机从第二目标转速连续变化至旋转方向相反的第一目标转速,在转速为零的时候 不再停转一定时长。即电机由第一运动方向向第二运动方向进行切换过程中不存在停止时间,电机的转子处于一直运动状态,实现第一方向转动-第二方向转动-第一方向转动-第二方向转动的电机运转模式,避免了电机中转子的停止时间,实现电机的高效利用。故而,在洗衣机进行洗涤时在第一目标速度及第二目标速度的之间的往复切换过程中,省去了相关技术中在零速时的停留时间,从而减少了衣物的洗涤时间,提升了洗涤效率,提升用户的使用体验。该方法不仅适用于滚筒洗衣机还适用于波轮洗衣机。
在上述任一实施例中,优选地,本申请的另一个实施例的控制电机完成连续运转模式的一个连续运转周期的具体步骤,包括:
S2002,控制电机的转子向第一转动方向加速旋转;
S2004,获取电机的驱动电压以及当前电流;
S2006,根据驱动电压及当前电流,计算电机的转子磁链,根据转子磁链计算电机的转子位置;
S2008,根据转子位置,计算电机的当前转速;
S2010,当电机的转速达到第一目标转速,并运行第一预设时长后,控制电机从第一目标转速连续变化至第二目标转速,期间没有停止时间;
S2012,当电机的转速达到第二目标转速,并运行第二预设时长后,控制电机从第二目标转速连续变化至第一目标转速,期间没有停止时间,其中,第一目标转速与第二目标转速的转速方向相反。
在该实施例中,通过获取电机的驱动电压和当前电流来计算电机的当前转速,具体地,利用驱动电压和当前电流计算当前电机的转子磁链,利用磁链观测的方式来计算电机的转子位置,通过计算得到的转子位置来计算当前转子的当前转速。通过磁链观测的方式能够实现当前转速的时时观测,只需要检测驱动电压和对当前电流进行采样即可确定当前转速,计算过程简单,利于对电机进行控制。
在上述任一实施例中,优选地,本申请的另一个实施例的控制电机完成连续运转模式的一个连续运转周期的具体步骤,包括:
S2102,控制电机的转子向第一转动方向加速旋转;
S2104,获取电机的驱动电压以及当前电流;
S2106,根据驱动电压及当前电流,采用基于电压模型的定子磁链估算方法计算电机的反电势,对反电势进行相位补偿及积分滤波,计算得到转子磁链,根据转子磁链计算电机的转子位置;
S2108,根据转子位置,计算电机的当前转速;
S2110,当电机的转速达到第一目标转速,并运行第一预设时长后,控制电机从第一目标转速连续变化至第二目标转速,期间没有停止时间;
S2112,当电机的转速达到第二目标转速,并运行第二预设时长后,控制电机从第二目标转速连续变化至第一目标转速,期间没有停止时间,其中,第一目标转速与第二目标转速的转速方向相反。
在该实施例中,转子磁链是基于电压模型的定子磁链估算方法计算得到的。具体步骤如下,基于电压模型的定子磁链、检测α轴电流和β轴电流以及电机的电阻计算电机在α轴以及β轴上的反电势,基于电机旋转角频率和滤波频率对计算得到的反电势进行相位补偿,得到补偿后的α轴以及β轴上的反电势,并对其进行积分滤波,以得到电机的定子磁链,根据定子磁链和转子磁链的关系公式计算得到电机的转子磁链,以供根据转子磁链计算电机的转子位置,进而确定电机转子的当前转速,实现电机的控制。
在本申请的一个实施例中,优选地,电机的反电势通过以下公式计算得到:
Figure PCTCN2019094424-appb-000113
其中,E α为电机α轴反电势,E β为电机β轴反电势,U α为电机α轴电压、U β为电机β轴电压,I α为电机α轴电流,I β为电机β轴电流,R为电机电阻。
在该实施例中,在获取得到电机α轴电压U α、电机β轴电压U β、电机电阻R、电机α轴电流I α、电机β轴电流I β之后可以计算得到电机α轴反电势E α以及电机β轴反电势E β,无需复杂的计算过程即可得到。
在本申请的一个实施例中,优选地,对反电势进行相位补偿及积分滤波的步骤,通过以下公式计算得到:
其中相位补偿公式如下:
Figure PCTCN2019094424-appb-000114
其中,E' α为电机α轴补偿后的电压,E' β为电机β轴补偿后的电压,E α为电机α轴反电势,E β为电机β轴反电势,ω c为滤波频率,ω e为电机旋转角频率;
积分滤波的计算公式如下:
Figure PCTCN2019094424-appb-000115
其中,
Figure PCTCN2019094424-appb-000116
为α轴的磁链,
Figure PCTCN2019094424-appb-000117
为β轴的磁链,S为拉普拉斯算子。
在该实施例中,α轴的磁链
Figure PCTCN2019094424-appb-000118
β轴的磁链
Figure PCTCN2019094424-appb-000119
可以直接通过滤波频率ω c、拉普拉斯算子S以及电机α轴补偿后的电压E' α、电机β轴补偿后的电压E' β直接计算得到,无需复杂的计算过程即可得到。
在本申请的一个实施例中,优选地,转子磁链通过以下公式计算得到:
Figure PCTCN2019094424-appb-000120
其中,转子磁链
Figure PCTCN2019094424-appb-000121
Figure PCTCN2019094424-appb-000122
分别为电机α轴磁链和β轴转子磁链,L q为电机转子的电感,I α为电机α轴电流,I β为电机β轴电流。
在该实施例中,通过计算得到的α轴的磁链
Figure PCTCN2019094424-appb-000123
β轴的磁链
Figure PCTCN2019094424-appb-000124
以及电机转子的电感L q、α轴电流I α、电机β轴电流I β直接计算得到转子磁链
Figure PCTCN2019094424-appb-000125
Figure PCTCN2019094424-appb-000126
通过对计算得到的转子磁链
Figure PCTCN2019094424-appb-000127
Figure PCTCN2019094424-appb-000128
进行反正切计算得到转子的位置,进而实现对转子转速的确定。
在上述任一实施例中,优选地,本申请的另一个实施例的控制电机完成连续运转模式的一个连续运转周期的具体步骤包括:S2202,控制电机的转子向第一转动方向加速旋转;
S2204,获取电机的驱动电压以及当前电流;
S2206,根据驱动电压及当前电流,采用基于电压模型的定子磁链估算 方法计算电机的反电势,对反电势进行相位补偿及积分滤波,计算得到转子磁链,根据转子磁链计算电机的转子位置;
S2208,根据转子位置,计算电机的当前转速;
S2210,当电机的转速达到第一目标转速,并运行第一预设时长后,控制电机降速运行;
S2212,当电机的转速降至第一预设阈值时,控制电机的转子向第二转动方向加速至第二目标转速,期间没有停止时间;其中第一预设阈值为0,或第一预设阈值为与0的差值在第一预设范围内的任意值;
S2214,当电机的转速达到第二目标转速,并运行第二预设时长后,控制电机降速运行,当电机的转速降至第二预设阈值时,控制电机的转子向第一转动方向加速至第一目标转速,期间没有停止时间;其中,第一目标转速与第二目标转速的转速方向相反,第二预设阈值为0,或第二预设阈值为与0的差值在第二预设范围内的任意值。
在该实施例中,在电机由第一目标转速连续运转至第二目标转速的过程中,实际上是一个先减速再加速的过程,第一预设阈值就是减速运行切换到加速运行过程中的一个节点。当检测到电机的当前转速降速到第一预设阈值时,再加速运行直至达到第二目标转速,其中,第一预设阈值可以是0或者在0以上波动的任意值,具体地,当电机转子的转速处于0时,即当前转子刚刚由第一转动方向准备停止时,控制转子向第二转动方向转动,从而避免出现转子处于停止状态情况的出现。同样地,在电机由第二目标转速连续运转至第一目标转速的过程中,也存在第二预设阈值。第二预设阈值与第一预设阈值的作用相同,此处不再赘述。
值得指出的是,在进行设定第一预设阈值时,通过电频率、转速以及电机的极对数的关系来设定,具体的电频率等于转速和电机的极对数的乘积,通过设定电频率间接来设定转速,即第一预设阈值。同样地,第二预设阈值的设定方式相同。其中,电频率为供电频率。
在上述任一实施例中,优选地,本申请的另一个实施例的控制电机完成连续运转模式的一个连续运转周期的具体步骤包括:S2302,控制电机的转子向第一转动方向加速旋转;
S2304,获取电机的驱动电压以及当前电流;
S2306,根据驱动电压及当前电流,采用基于电压模型的定子磁链估算方法计算电机的反电势,对反电势进行相位补偿及积分滤波,计算得到转子磁链,根据转子磁链计算电机的转子位置;
S2308,根据转子位置,计算电机的当前转速;
S2310,当电机的转速达到第一目标转速,并运行第一预设时长后,控制电机降速运行;
S2312,当电机的转速降至第一预设阈值时,控制转子阶跃至第二目标转速;其中第一预设阈值为0,或第一预设阈值为与0的差值在第一预设范围内的任意值;
S2314,当电机的转速达到第二目标转速,并运行第二预设时长后,控制电机降速运行,当电机的转速降至第二预设阈值时,控制转子阶跃至第一目标转速;其中,第一目标转速与第二目标转速的转速方向相反,第二预设阈值为0,或第二预设阈值为与0的差值在第二预设范围内的任意值。
在该实施例中,控制电机的转子向第二转动方向加速至第二目标转速具体通过为:控制电机的转子阶跃至第二目标转速,具体地,控制转子的转速在一个时间段内攀升至第二目标转速,如向电机的转子施加较大的驱动电压和/或驱动电流,为转子提供较大的加速度,控制转子的转速阶跃至第二目标转速,其中一个时间段可以是1秒,或者几秒的时间段,进而控制电机的转子在第一转动方向向第二转动方向进行快速切换。同理通过控制控制转子阶跃至第一目标转速来完成电机的转子由第二转动方向向第一转动方向转动加速至第一目标转速。
在本申请的一个实施例中,优选地,洗衣机用电机运行控制方法还包括:获取电机向第一目标转速加速起至电机转至第二目标转速过程中的预设速度曲线;其中,预设速度曲线根据第一目标转速、第二目标转速、第一预设时长、第二目标时长生成;根据当前转速对应的当前时刻,查找预设速度曲线中与当前时刻对应的预设转速,当当前转速与预设转速存在偏差时,校正当前转速为预设转速。
在该实施例中,还获取电机向第一目标转速加速起至电机转至第二目 标转速的预设速度曲线,对应于转速由初始值(如0)变化至第二目标转速的区间,根据计算得到的当前转速所对应的当前时刻查找预设速度曲线中对应时刻直接对应的预设转速,判断当前转速和预设转速是否存在偏差。在当前转速和预设转速之间存在偏差时,矫正当前转速为预设转速。通过设置矫正当前转速至预设转速的步骤,以使在控制电机运行的准确性,避免出现控制电机以第一预设转速运转,而实际电机小于第一预设转速运转,造成电机没有按照转速-时间曲线运行出现的失速,同时也避免电机在进行换向时由于转速与目标转速存在偏差造成电机损坏。
在本申请的一个实施例中,优选地,校正当前转速为预设转速的步骤,具体包括:根据预设转速与当前转速的差值,计算驱动转矩;获取电机的当前电流,根据当前电流与驱动转矩,计算驱动电压,控制电机以驱动电压驱动电机的转子转动。
在该实施例中,计算将获取的预设转速和当前转速的差值,根据计算的差值计算驱动转矩,获取电机的当前电流,根据当前电流以及计算得到的驱动转矩计算驱动电机运行的驱动电压,并将驱动电压输入值电机。以使电机根据输入的驱动电压驱动电机运行,进而实现预设转速和当前转速的矫正。上述控制电机进行矫正的方式只需要获取当前电流,无需获取其他参数,因此,减少了数据的处理过程,加快了矫正的速度,进而降低电机转子减速的时间,实现电机的高效利用,以降低衣物的洗涤时间。
在上述任一实施例中,优选地,本申请的另一个实施例的控制电机完成连续运转模式的一个连续运转周期的具体步骤包括:
S2402,预设转速N1以及转速N1的运行时间T1;预设转速N2以及转速N1的运行时间T2,其中N1与N2正负相反;
S2404,控制电机旋转,加速直至转速到达N1,保持转速N1运行,持续时间T1;
S2406,时间T1到达后,控制电机零速穿越,从筒体或桶体转速N1减速至0速,再反向加速至转速N2;
S2408,控制电机旋转,保持转速N2运行,持续时间T2;
S2410,时间T2到达后,控制电机零速穿越,从筒体或桶体转速N2 减速至0速,再加速至转速N1;
S2412,判断是否洗涤结束,在判断结果为否时,执行S704的步骤。
图19示出了本申请的又一个实施例的洗衣机用电机运行控制方法的流程示意图。其中,该方法包括:
S2502,实时检测电机的温度,判断电机的温度是否低于第一预设阈值;当判断结果为是时,执行步骤S2508;当判断结果为否时,执行步骤S2504;
S2504,判断电机的温度是否大于第二预设阈值,或者电机的控制器温度是否高于第三预设阈值;当判断结果为是时,执行步骤S2506;当判断结果为否时,执行步骤S2508;
S2506,控制电机的运转模式切换至传统运行模式;
S2508,控制电机以连续运转模式运行,控制电机的转子向第一转动方向加速旋转,并获取电机的当前转速,当电机的转速达到第一目标转速,并运行第一预设时长后,控制电机从第一目标转速连续变化至第二目标转速,期间没有停止时间;
S2510,当电机的转速达到第二目标转速,并运行第二预设时长后,控制电机从第二目标转速连续变化至第一目标转速,期间没有停止时间,其中,第一目标转速与第二目标转速的转速方向相反。
在该实施例中,在电机进入连续运转模式之前,需要实时检测电机的温度,并对电机检查到的当前温度进行判断,当电机的温度低于第一预设阈值时,则说明此时电机能保持良好运行的状态,控制电机以连续运转模式运行;由于实时在对电机温度进行检测,当电机的温度大于第二预设阈值或电机的控制器温度高于第三预设阈值时,则说明持续的连续运转模式下使得电机长时间运行不间断洗涤,电机和/或电机的控制器已经会出现温升过高的情况,如若不停止则会无法保证电机和/或电机的控制器使用寿命,因此控制电机的运行模式切换至传统运行模式;具体地,传统运行模式为在电机正反旋转时(即第一方向转动与第二方向转动之间进行切换时),换向前,会先向电机发出停止指令,在电机停止预设时间后再进行方向的转换,即采用预设的洗停比控制,由于电机具有停顿的时间,因此可以减缓电机发热的问题,以使得电机做出适合其当前温度的运转模式, 在缩短洗涤时长的同时保证了电机的使用寿命。其中,第一预设阈值低于第二预设阈值,第一预设阈值也低于第三预设阈值。
图20示出了本申请的又一个实施例的洗衣机用电机运行控制方法的流程示意图。其中,该方法包括:
S2602,实时检测电机的温度,判断电机的温度是否低于第一预设阈值;当判断结果为是时,进行步骤S2608;当判断结果为否时,执行步骤S2604;
S2604,判断电机的温度是否大于第二预设阈值,或者电机的控制器温度是否高于第三预设阈值;当判断结果为是时,执行步骤S2606;当判断结果为否时,执行步骤S2608;
S2606,控制电机的运转模式切换至传统运行模式;
S2608,判断电机的控制器温度是否低于第四预设阈值,当判断结果为是时,执行步骤S2610,当判断结果为否时,执行步骤2606;
S2610,控制电机以连续运转模式运行,控制电机的转子向第一转动方向加速旋转,并获取电机的当前转速,当电机的转速达到第一目标转速,并运行第一预设时长后,控制电机从第一目标转速连续变化至第二目标转速,期间没有停止时间;
S2612,当电机的转速达到第二目标转速,并运行第二预设时长后,控制电机从第二目标转速连续变化至第一目标转速,期间没有停止时间,其中,第一目标转速与第二目标转速的转速方向相反。
在该实施例中,在检查到电机的温度低于第一预设阈值时,不会立即控制电机以连续运转模式运行,而会首先对电机的控制器温度进行检测,以判断电机的控制器此时的工作状态,即判断电机的控制器此时是否满足连续运转模式运行的启动条件,当检查到控制器温度高于第四预设阈值时,即说明控制器当前温度过高,若启动连续运转模式则极有可能出现高温受损的情况,需要控制电机的运行模式切换至传统运行模式,保证其使用寿命。当控制器温度低于第四预设阈值时则说明控制器的当前温度,满足连续运转模式运行的启动条件,执行控制电机以连续运转模式运行的步骤,以避免控制器在使用的过程中受损。其中,第一预设阈值低于第四预设阈值。第四预设阈值低于第二预设阈值以及第三预设阈值。
本申请第八方面的实施例,提出一种洗衣机用电机运行控制系统。图21示出了本申请的一个实施例的洗衣机用电机运行控制系统2700的示意框图。其中,洗衣机用电机运行控制系统2700包括:存储器2702,用于存储计算机程序;处理器2704,用于执行计算机程序以:所述连续运转模式包含多个连续运转周期。
本申请所提供的洗衣机用电机运行控制系统,控制电机以连续运转模式运行,在连续运转模式下包括多个连续周期。在此过程中,不再保留相关技术中筒体或桶体向第一转动方向转动变化至向第二转动方向转动之间的停止时间,而是控制电机由正转的某一转速直接变化至旋转方向相反的某一转速,在转速为零的时候不再停转一定时长。
本申请所提供的洗衣机用电机运行控制系统包括处理器和存储器,其中处理器执行存储在存储器中的可执行程序以:所述控制电机完成所述连续运转模式的一个所述连续运转周期,具体包括:控制电机的转子向第一转动方向加速旋转,并获取电机的当前转速,当电机的转速达到第一目标转速,并运行第一预设时长后,控制电机从第一目标转速连续变化至第二目标转速,期间没有停止时间;当电机的转速达到第二目标转速,并运行第二预设时长后,控制电机从第二目标转速连续变化至第一目标转速,期间没有停止时间;其中,第一目标转速与第二目标转速的转速方向相反。
本申请所提供的洗衣机用电机运行控制系统2700包括处理器2704和存储器2702,其中处理器2704执行存储在存储器2702中的可执行程序以:控制电机的转子按照第一转动方向以第一目标转速转动第一预设时长后,控制电机将转速由第一目标转速连续变化至第二目标转速。在此过程中,不再保留相关技术中的停止时间,而是控制电机由第一目标转速直接变化至旋转方向相反的第二目标转速,在转速为零的时候不再停转一定时长。同样地,当电机的转速达到第二目标转速,并运行第二预设时长后,再控制电机从第二目标转速连续变化至旋转方向相反的第一目标转速,在转速为零的时候不再停转一定时长。故而,在洗衣机进行洗涤时在第一目标速度及第二目标速度的之间的往复切换过程中,省去了相关技术中在零速时的停留时间,从而减少了衣物的洗涤时间,提升了洗涤效率,提升用户的 使用体验。该系统不仅适用于滚筒洗衣机还适用于波轮洗衣机。
在本申请的一个实施例中,优选地,处理器2704还具体用于执行计算机程序以控制电机从第一目标转速连续变化至第二目标转速的步骤,具体包括:控制电机降速运行,当电机的转速降至第一预设阈值时,控制电机的转子向第二转动方向加速至第二目标转速;其中第一预设阈值为0,或第一预设阈值为与0的差值在第一预设范围内的任意值;处理器还用于执行计算机程序以实现控制电机从第二目标转速连续变化至第一目标转速的步骤,具体包括:控制电机降速运行,当电机的转速降至第二预设阈值时,控制电机的转子向第一转动方向加速至第一目标转速;其中,第二预设阈值为0,或第二预设阈值为与0的差值在第二预设范围内的任意值。
在该实施例中,在电机由第一目标转速连续运转至第二目标转速的过程中,实际上是一个先减速再加速的过程,第一预设阈值就是减速运行切换到加速运行过程中的一个节点。当检测到电机的当前转速降速到第一预设阈值时,再加速运行直至达到第二目标转速,其中,第一预设阈值可以是0或者在0以上波动的任意值,具体地,当电机转子的转速处于0时,即当前转子刚刚由第一转动方向准备停止时,控制转子向第二转动方向转动,从而避免出现转子处于停止状态情况的出现。同样地,在电机由第二目标转速连续运转至第一目标转速的过程中,也存在第二预设阈值。第二预设阈值与第一预设阈值的作用相同,此处不再赘述。
值得指出的是,在进行设定第一预设阈值时,通过电频率、转速以及电机的极对数的关系来设定,具体的电频率等于转速和电机的极对数的乘积,通过设定电频率间接来设定转速,即第一预设阈值。同样地,第二预设阈值的设定方式相同。其中,电频率为供电频率。
在本申请的一个实施例中,优选地,处理器2704还用于执行计算机程序以实现控制电机的转子向第二转动方向加速至第二目标转速的步骤,具体包括:控制转子阶跃至第二目标转速;和/或处理器还用于执行计算机程序以实现控制电机的转子向第一转动方向加速至第一目标转速的步骤,具体为:控制转子阶跃至第一目标转速。
在该实施例中,控制电机的转子向第二转动方向加速至第二目标转速 具体通过为:控制电机的转子阶跃至第二目标转速,具体地,控制转子的转速在一个时间段内攀升至第二目标转速,如向电机的转子施加较大的驱动电压和/或驱动电流,为转子提供较大的加速度,控制转子的转速阶跃至第二目标转速,其中一个时间段可以是1秒,或者几秒的时间段,进而控制电机的转子在第一转动方向向第二转动方向进行快速切换。同理通过控制控制转子阶跃至第一目标转速来完成电机的转子由第二转动方向向第一转动方向转动加速至第一目标转速。
在本申请的一个实施例中,优选地,处理器2704,具体用于执行计算机程序以:获取电机的驱动电压以及当前电流;根据驱动电压及当前电流,计算电机的转子磁链,根据转子磁链计算电机的转子位置;根据转子位置,计算电机的当前转速。
在该实施例中,处理器2704具体执行存储的计算机程序以:通过获取电机的驱动电压和当前电流来计算电机的当前转速,具体地,利用驱动电压和当前电流计算当前电机的转子磁链,利用磁链观测的方式来计算电机的转子位置,通过计算得到的转子位置来计算当前转子的当前转速。通过磁链观测的方式能够实现当前转速的时时观测,只需要检测驱动电压和对当前电流进行采样即可确定当前转速,计算过程简单,利于对电机进行控制。
在本申请的一个实施例中,优选地,处理器2704,具体用于执行计算机程序以:采用基于电压模型的定子磁链估算方法计算电机的反电势,对反电势进行相位补偿及积分滤波,计算得到转子磁链。
在该实施例中,转子磁链是基于电压模型的定子磁链估算方法计算得到的。处理器,具体用于执行计算机程序以:基于电压模型的定子磁链、检测α轴电流和β轴电流以及电机的电阻计算电机在α轴以及β轴上的反电势,基于电机旋转角频率和滤波频率对计算得到的反电势进行相位补偿,得到补偿后的α轴以及β轴上的反电势,并对其进行积分滤波,以得到电机的定子磁链,根据定子磁链和转子磁链的关系公式计算得到电机的转子磁链,以供根据转子磁链计算电机的转子位置,进而确定电机转子的当前转速,实现电机的控制。
在本申请的一个实施例中,优选地,电机的反电势通过以下公式计算得到:
Figure PCTCN2019094424-appb-000129
其中,E α为电机α轴反电势,E β为电机β轴反电势,U α为电机α轴电压、U β为电机β轴电压,I α为电机α轴电流,I β为电机β轴电流,R为电机电阻。
在该实施例中,在获取得到电机α轴电压U α、电机β轴电压U β、电机电阻R、电机α轴电流I α、电机β轴电流I β之后可以计算得到电机α轴反电势E α以及电机β轴反电势E β,无需复杂的计算过程即可得到。
在本申请的一个实施例中,优选地,对反电势进行相位补偿及积分滤波的步骤,通过以下公式计算得到:
其中相位补偿公式如下:
Figure PCTCN2019094424-appb-000130
其中,E' α为电机α轴补偿后的电压,E' β为电机β轴补偿后的电压,E α为电机α轴反电势,E β为电机β轴反电势,ω c为滤波频率,ω e为电机旋转角频率;
积分滤波的计算公式如下:
Figure PCTCN2019094424-appb-000131
其中,
Figure PCTCN2019094424-appb-000132
为α轴的磁链,
Figure PCTCN2019094424-appb-000133
为β轴的磁链,S为拉普拉斯算子。
在该实施例中,α轴的磁链
Figure PCTCN2019094424-appb-000134
β轴的磁链
Figure PCTCN2019094424-appb-000135
可以直接通过滤波频率ω c、拉普拉斯算子S以及电机α轴补偿后的电压E' α、电机β轴补偿后的电压E' β直接计算得到,无需复杂的计算过程即可得到。
在本申请的一个实施例中,优选地,转子磁链通过以下公式计算得到:
Figure PCTCN2019094424-appb-000136
其中,转子磁链
Figure PCTCN2019094424-appb-000137
Figure PCTCN2019094424-appb-000138
分别为电机α轴磁链和β轴转子磁链,L q为电机转子的电感,I α为电机α轴电流,I β为电机β轴电流。
在该实施例中,通过计算得到的α轴的磁链
Figure PCTCN2019094424-appb-000139
β轴的磁链
Figure PCTCN2019094424-appb-000140
以及电机转子的电感L q、α轴电流I α、电机β轴电流I β直接计算得到转子磁链
Figure PCTCN2019094424-appb-000141
Figure PCTCN2019094424-appb-000142
通过对计算得到的转子磁链
Figure PCTCN2019094424-appb-000143
Figure PCTCN2019094424-appb-000144
进行反正切计算得到转子的位置,进而实现对转子转速的确定。
在本申请的一个实施例中,优选地,处理器2704,还用于执行计算机程序以:获取电机向第一目标转速加速起至电机转至第二目标转速过程中的预设速度曲线;其中,预设速度曲线根据第一目标转速、第二目标转速、第一预设时长、第二目标时长生成;根据当前转速对应的当前时刻,查找预设速度曲线中与当前时刻对应的预设转速,当当前转速与预设转速存在偏差时,校正当前转速为预设转速。
在该实施例中,还获取电机向第一目标转速加速起至电机转至第二目标转速的预设速度曲线,对应于转速由初始值(如0)变化至第二目标转速的区间,根据计算得到的当前转速所对应的当前时刻查找预设速度曲线中对应时刻直接对应的预设转速,判断当前转速和预设转速是否存在偏差。在当前转速和预设转速之间存在偏差时,矫正当前转速为预设转速。通过设置矫正当前转速至预设转速的步骤,以使在控制电机运行的准确性,避免出现控制电机以第一预设转速运转,而实际电机小于第一预设转速运转,造成电机没有按照转速-时间曲线运行出现的失速,同时也避免电机在进行换向时由于转速与目标转速存在偏差造成电机损坏。
在本申请的一个实施例中,优选地,处理器2704,还用于执行计算机程序以:根据预设转速与当前转速的差值,计算驱动转矩;获取电机的当前电流,根据当前电流与驱动转矩,计算驱动电压,控制电机以驱动电压驱动电机的转子转动。
在该实施例中,计算将获取的预设转速和当前转速的差值,根据计算的差值计算驱动转矩,获取电机的当前电流,根据当前电流以及计算得到的驱动转矩计算驱动电机运行的驱动电压,并将驱动电压输入值电机。以使电机根据输入的驱动电压驱动电机运行,进而实现预设转速和当前转速 的矫正。上述控制电机进行矫正的方式只需要获取当前电流,无需获取其他参数,因此,减少了数据的处理过程,加快了矫正的速度,进而降低电机转子减速的时间,实现电机的高效利用,以降低衣物的洗涤时间。
在本申请的一个实施例中,优选地,处理器2704,还用于执行计算机程序以:实时检测电机的温度,当电机的温度低于第一预设阈值时,控制电机以连续运转模式运行;当电机的温度大于第二预设阈值或电机的控制器温度高于第三预设阈值时,控制电机的运行模式切换至传统运行模式;其中,连续运转模式中电机向第一转动方向运转的运转时长与电机向第二转动方向运转的转动时长相连续。
在该技术方案中,在电机进入连续运转模式之前,需要实时检测电机的温度,并对电机检查到的当前温度进行判断,当电机的温度低于第一预设阈值时,则说明此时电机能保持良好运行的状态,控制电机以连续运转模式运行;具体地,连续运转模式为电机向第一转动方向运转的运转时长与电机向第二转动方向运转的转动时长相连续,即电机由第一运动方向向第二运动方向进行切换过程中不存在停止时间,电机的转子处于一直运动状态,实现第一方向转动-第二方向转动-第一方向转动-第二方向转动的电机运转模式,避免了电机中转子的停止时间,实现电机的高效利用,从而降低了衣物的洗涤时间,提升用户的使用体验。同时,由于实时在对电机温度进行检测,当电机的温度大于第二预设阈值或电机的控制器温度高于第三预设阈值时,则说明持续的连续运转模式下使得电机长时间运行不间断洗涤,电机和/或电机的控制器已经会出现温升过高的情况,如若不停止则会无法保证电机和/或电机的控制器使用寿命,因此控制电机的运行模式切换至传统运行模式;具体地,传统运行模式为在电机正反旋转时(即第一方向转动与第二方向转动之间进行切换时),换向前,会先向电机发出停止指令,在电机停止预设时间后再进行方向的转换,即采用预设的洗停比控制,由于电机具有停顿的时间,因此可以减缓电机发热的问题,以使得电机做出适合其当前温度的运转模式,在缩短洗涤时长的同时保证了电机的使用寿命。其中,第一预设阈值低于第二预设阈值,第一预设阈值也低于第三预设阈值。
在本申请的一个实施例中,优选地,处理器2704,还用于执行计算机程序以:在当电机的温度低于第一预设阈值时的步骤之后,控制电机以连续运转模式运行之前,还包括:检测电机的控制器温度,如控制器温度低于第四预设阈值时,执行控制电机以连续运转模式运行的步骤;如控制器温度高于第四预设阈值时,控制电机的运行模式切换至传统运行模式。
在该技术方案中,在检查到电机的温度低于第一预设阈值时,不会立即控制电机以连续运转模式运行,而会首先对电机的控制器温度进行检测,以判断电机的控制器此时的工作状态,即判断电机的控制器此时是否满足连续运转模式运行的启动条件,当检查到控制器温度高于第四预设阈值时,即说明控制器当前温度过高,若启动连续运转模式则极有可能出现高温受损的情况,需要控制电机的运行模式切换至传统运行模式,保证其使用寿命。当控制器温度低于第四预设阈值时则说明控制器的当前温度,满足连续运转模式运行的启动条件,执行控制电机以连续运转模式运行的步骤,以避免控制器在使用的过程中受损。其中,第一预设阈值低于第四预设阈值。
本申请第九方面的实施例,提出一种洗衣机,其中洗衣机为滚筒洗衣机或波轮洗衣机。图22示出了本申请的一个实施例的洗衣机2800的示意框图。其中洗衣机2800包括:洗衣机用电机运行控制系统2802。
本申请提供的洗衣机2800包括上述任一实施例的洗衣机用电机运行控制系统2802,因此,该洗衣机2800具有上述任一洗衣机用电机运行控制系统2802的全部有益技术效果,不再赘述。
本申请第十个面的实施例,提出了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现如上述任一项的洗衣机用电机运行控制方法的步骤。
计算机可读存储介质可以包括能够存储或传输信息的任何介质。计算机可读存储介质的例子包括电子电路、半导体存储器设备、ROM、闪存、可擦除ROM(EROM)、软盘、CD-ROM、光盘、硬盘、光纤介质、射频(RF)链路,等等。代码段可以经由诸如因特网、内联网等的计算机网络被下载。
本申请提供的计算机可读存储介质,计算机程序被处理器执行时实现如上述任一实施例的洗衣机用电机运行控制方法的步骤,因此该计算机可读存储介质包括上述任一实施例的洗衣机用电机运行控制方法的全部有益效果。
在本申请的描述中,术语“多个”则指两个或两个以上,除非另有明确的限定,术语“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制;术语“连接”、“安装”、“固定”等均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本申请的至少一个实施例或示例中。在本申请中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (45)

  1. 一种洗衣机用电机运行控制方法,其中,所述控制方法包括:
    控制电机的转子向第一转动方向加速旋转,并获取所述电机的当前转速,确认所述电机的转速达到第一目标转速,并运行第一预设时长后,控制所述电机从所述第一目标转速连续变化至第二目标转速,期间没有停止时间;
    确认所述电机的转速达到所述第二目标转速,并运行第二预设时长后,控制所述电机从所述第二目标转速连续变化至所述第一目标转速,期间没有停止时间;
    其中,所述第一目标转速与所述第二目标转速的转速方向相反。
  2. 根据权利要求1所述的洗衣机用电机运行控制方法,其中,所述获取所述电机的当前转速的步骤,具体包括:获取所述电机的驱动电压以及当前电流;
    根据所述驱动电压及所述当前电流,计算所述电机的转子磁链,根据所述转子磁链计算所述电机的转子位置;
    根据所述转子位置,计算所述电机的当前转速。
  3. 根据权利要求2所述的洗衣机用电机运行控制方法,其中,所述计算所述电机的转子磁链的步骤,具体包括:
    采用基于电压模型的定子磁链估算方法计算所述电机的反电势,对所述反电势进行相位补偿及积分滤波,计算得到所述电机的转子磁链。
  4. 根据权利要求3所述的洗衣机用电机运行控制方法,其中,所述电机的反电势通过以下公式计算得到:
    Figure PCTCN2019094424-appb-100001
    其中,E α为所述电机α轴反电势,E β为所述电机β轴反电势,U α所述电机α轴电压、U β为所述电机β轴电压,I α为所述电机α轴电流,I β为所述电机β轴电流,R为所述电机电阻。
  5. 根据权利要求4所述的洗衣机用电机运行控制方法,其中,所述对 所述反电势进行相位补偿及积分滤波的步骤,通过以下公式计算得到:
    其中相位补偿公式如下:
    Figure PCTCN2019094424-appb-100002
    其中,所述E' α为所述电机α轴补偿后的电压,所述E' β为所述电机β轴补偿后的电压,E α为所述电机α轴反电势,E β为所述电机β轴反电势,ω c为滤波频率,ω e为电机旋转角频率;
    积分滤波的计算公式如下:
    Figure PCTCN2019094424-appb-100003
    其中,
    Figure PCTCN2019094424-appb-100004
    为α轴的磁链,
    Figure PCTCN2019094424-appb-100005
    为β轴的磁链,S为拉普拉斯算子。
  6. 根据权利要求4所述的洗衣机用电机运行控制方法,其中:所述转子磁链通过以下公式计算得到:
    Figure PCTCN2019094424-appb-100006
    其中,转子磁链
    Figure PCTCN2019094424-appb-100007
    Figure PCTCN2019094424-appb-100008
    分别为电机α轴磁链和β轴转子磁链,L q为所述电机转子的电感,I α为所述电机α轴电流,I β为所述电机β轴电流。
  7. 根据权利要求1所述的洗衣机用电机运行控制方法,其中,所述控制所述电机从所述第一目标转速连续变化至所述第二目标转速的步骤,具体包括:
    控制所述电机降速运行,确认所述电机的转速降至第一预设阈值,控制所述电机的转子向第二转动方向加速至所述第二目标转速;其中,所述第一预设阈值为0,或所述第一预设阈值为与0的差值在第一预设范围内的任意值;
    所述控制所述电机从所述第二目标转速连续变化至所述第一目标转速的步骤具体包括:
    控制所述电机降速运行,确认所述电机的转速降至所述第二预设阈值, 控制所述电机的转子向所述第一转动方向加速至所述第一目标转速;其中,所述第二预设阈值为0,或所述第二预设阈值为与0的差值在第二预设范围内的任意值。
  8. 根据权利要求7所述的洗衣机用电机运行控制方法,其中,
    所述控制所述电机的转子向第二转动方向加速至第二目标转速的步骤,具体为:控制所述转子阶跃至所述第二目标转速;和/或
    所述控制所述电机的转子向所述第一转动方向加速至所述第一目标转速的步骤,具体为:控制所述转子阶跃至所述第一目标转速。
  9. 根据权利要求1至8中任一项所述的洗衣机用电机运行控制方法,其中,还包括:
    获取所述电机向所述第一目标转速加速起至所述电机转至第二目标转速过程中的预设速度曲线;其中,所述预设速度曲线根据所述第一目标转速、所述第二目标转速、所述第一预设时长、所述第二目标时长生成;
    根据所述当前转速对应的当前时刻,查找所述预设速度曲线中与所述当前时刻对应的预设转速,当所述当前转速与所述预设转速存在偏差时,校正所述当前转速为所述预设转速。
  10. 根据权利要求9所述的洗衣机用电机运行控制方法,其中,所述校正所述当前转速为所述预设转速的步骤,具体包括:
    根据所述预设转速与所述当前转速的差值,计算驱动转矩;
    获取所述电机的当前电流,根据所述当前电流与所述驱动转矩,计算驱动电压,控制所述电机以所述驱动电压驱动所述电机的转子转动。
  11. 一种洗衣机用电机运行控制系统,其中,包括:
    存储器,用于存储计算机程序;
    处理器,用于执行所述计算机程序以:
    控制电机的转子向第一转动方向加速旋转,并获取所述电机的当前转速,确认所述电机的转速达到第一目标转速,并运行第一预设时长后,控制所述电机从所述第一目标转速连续变化至第二目标转速,期间没有停止时间;
    确认所述电机的转速达到所述第二目标转速,并运行第二预设时长后, 控制所述电机从所述第二目标转速连续变化至所述第一目标转速,期间没有停止时间;
    其中,所述第一目标转速与所述第二目标转速的转速方向相反。
  12. 根据权利要求11所述的洗衣机用电机运行控制系统,其中,所述处理器还用于执行所述计算机程序以实现所述控制所述电机从所述第一目标转速连续变化至第二目标转速的步骤,具体包括:
    控制所述电机降速运行,确认所述电机的转速降至第一预设阈值,控制所述电机的转子向第二转动方向加速至所述第二目标转速;其中所述第一预设阈值为0,或所述第一预设阈值为与0的差值在第一预设范围内的任意值;
    所述处理器还用于执行所述计算机程序以实现所述控制所述电机从所述第二目标转速连续变化至所述第一目标转速的步骤,具体包括:
    控制所述电机降速运行,确认所述电机的转速降至第二预设阈值,控制所述电机的转子向所述第一转动方向加速至所述第一目标转速;其中,所述第二预设阈值为0,或所述第二预设阈值为与0的差值在第二预设范围内的任意值。
  13. 根据权利要求12所述的洗衣机用电机运行控制系统,其中,所述处理器还用于执行所述计算机程序以实现所述控制所述电机的转子向第二转动方向加速至第二目标转速的步骤,具体包括:
    控制所述转子阶跃至所述第二目标转速;和/或
    所述处理器还用于执行所述计算机程序以实现所述控制所述电机的转子向第一转动方向加速至第一目标转速的步骤,具体为:控制所述转子阶跃至所述第一目标转速。
  14. 一种洗衣机,其中,包括:如权利要求11至13中任一项所述的洗衣机用电机运行控制系统。
  15. 一种洗衣机用电机运行控制方法,其中,包括:
    实时检测所述电机的温度,确认所述电机的温度低于第一预设阈值,控制所述电机以连续运转模式运行;
    确认所述电机的温度高于第二预设阈值或所述电机的控制器温度高于 第三预设阈值,控制所述电机的运行模式切换至传统运行模式;
    其中,所述连续运转模式为所述电机向第一转动方向运转的运转时长与所述电机向第二转动方向运转的转动时长相连续。
  16. 根据权利要求15所述的洗衣机用电机运行控制方法,其中,确认所述电机的温度低于第一预设阈值的步骤之后,所述控制所述电机以连续运转模式运行之前,还包括:
    检测所述电机的控制器温度,确认所述控制器温度低于第四预设阈值,执行所述控制所述电机以连续运转模式运行的步骤;
    确认所述控制器温度高于第四预设阈值,控制所述电机的运行模式切换至传统运行模式。
  17. 根据权利要求15所述的洗衣机用电机运行控制方法,其中,所述电机在所述连续运转模式下运行的步骤,具体包括:
    控制所述电机的转子向第一转动方向加速旋转,并获取所述电机的当前转速,确认所述电机的转速达到第一目标转速,并运行第一预设时长后,控制所述电机向第二转动方向加速至第二目标转速,其中,所述第一目标转速与所述第二目标转速的转动方向相反;
    确认所述电机以所述第二目标转速运行达到所述第二预设时长,控制所述电机向第一转动方向加速至所述第一目标转速。
  18. 根据权利要求17所述的洗衣机用电机运行控制方法,其中,所述电机在所述连续运转模式下运行的步骤,还包括:
    确认所述电机以所述第二目标转速运行达到所述第二预设时长,控制所述电机向第一转动方向加速至所述第一目标转速。
  19. 根据权利要求18所述的洗衣机用电机运行控制方法,其中,
    所述第一目标转速与所述第二目标转速的转速值大小相同。
  20. 一种洗衣机用电机运行控制系统,其中,包括:
    存储器,用于存储计算机程序;
    处理器,用于执行所述计算机程序以:
    实时检测所述电机的温度,确认所述电机的温度低于第一预设阈值,控制所述电机以连续运转模式运行;
    确认所述电机的温度大于第二预设阈值或所述电机的控制器温度高于第三预设阈值,控制所述电机的运行模式切换至传统运行模式;
    其中,所述连续运转模式为所述电机向第一转动方向运转的运转时长与所述电机向第二转动方向运转的转动时长相连续。
  21. 根据权利要求20所述的洗衣机用电机运行控制系统,其中,确认所述当所述电机的温度低于第一预设阈值的步骤之后,所述控制所述电机以连续运转模式运行之前,所述处理器还具体用于执行所述计算机程序以:
    检测所述电机的控制器温度,确认所述控制器温度低于第四预设阈值,执行所述控制所述电机以连续运转模式运行的步骤;
    确认所述控制器温度高于第四预设阈值,控制所述电机的运行模式切换至传统运行模式。
  22. 根据权利要求20所述的洗衣机用电机运行控制系统,其中,所述处理器还具体用于执行所述计算机程序以:
    控制所述电机的转子向第一转动方向加速旋转,并获取所述电机的当前转速,确认所述电机的转速达到第一目标转速,并运行第一预设时长后,控制所述电机向第二转动方向加速至第二目标转速;其中,所述第一目标转速与所述第二目标转速的转动方向相反。
  23. 根据权利要求22所述的洗衣机用电机运行控制系统,其中,所述电机在所述连续运转模式下运行的步骤,还包括:
    确认所述电机以所述第二目标转速运行达到所述第二预设时长,控制所述电机向第一转动方向加速至所述第一目标转速。
  24. 根据权利要求23所述的洗衣机用电机运行控制系统,其中,
    所述第一目标转速与所述第二目标转速的转速值大小相同。
  25. 一种洗衣机,其中,包括:如权利要求20至24中任一项所述的洗衣机用电机运行控制系统。
  26. 一种洗衣机用电机运行控制方法,其中,所述控制方法包括:
    控制电机以连续运转模式运行,所述连续运转模式包含多个连续运转周期;
    所述控制电机完成所述连续运转模式的一个所述连续运转周期的具体 步骤包括:
    控制电机的转子向第一转动方向加速旋转,并获取所述电机的当前转速,确认所述电机的转速达到第一目标转速,并运行第一预设时长后,控制所述电机从所述第一目标转速连续变化至第二目标转速,期间没有停止时间;
    确认所述电机的转速达到所述第二目标转速,并运行第二预设时长后,控制所述电机从所述第二目标转速连续变化至所述第一目标转速,期间没有停止时间;其中,所述第一目标转速与所述第二目标转速的转速方向相反。
  27. 根据权利要求26所述的洗衣机用电机运行控制方法,其中,所述获取所述电机的当前转速的步骤,具体包括:获取所述电机的驱动电压以及当前电流;
    根据所述驱动电压及所述当前电流,计算所述电机的转子磁链,根据所述转子磁链计算所述电机的转子位置;
    根据所述转子位置,计算所述电机的当前转速。
  28. 根据权利要求27所述的洗衣机用电机运行控制方法,其中,所述计算所述电机的转子磁链的步骤,具体包括:
    采用基于电压模型的定子磁链估算方法计算所述电机的反电势,对所述反电势进行相位补偿及积分滤波,计算得到所述电机的转子磁链。
  29. 根据权利要求28所述的洗衣机用电机运行控制方法,其中,所述电机的反电势通过以下公式计算得到:
    Figure PCTCN2019094424-appb-100009
    其中,E α为所述电机α轴反电势,E β为所述电机β轴反电势,U α所述电机α轴电压、U β为所述电机β轴电压,I α为所述电机α轴电流,I β为所述电机β轴电流,R为所述电机电阻。
  30. 根据权利要求29所述的洗衣机用电机运行控制方法,其中,所述对所述反电势进行相位补偿及积分滤波的步骤,通过以下公式计算得到:
    其中相位补偿公式如下:
    Figure PCTCN2019094424-appb-100010
    其中,所述E' α为所述电机α轴补偿后的电压,所述E' β为所述电机β轴补偿后的电压,E α为所述电机α轴反电势,E β为所述电机β轴反电势,ω c为滤波频率,ω e为电机旋转角频率;
    积分滤波的计算公式如下:
    Figure PCTCN2019094424-appb-100011
    其中,
    Figure PCTCN2019094424-appb-100012
    为α轴的磁链,
    Figure PCTCN2019094424-appb-100013
    为β轴的磁链,S为拉普拉斯算子。
  31. 根据权利要求30所述的洗衣机用电机运行控制方法,其中:所述转子磁链通过以下公式计算得到:
    Figure PCTCN2019094424-appb-100014
    其中,转子磁链
    Figure PCTCN2019094424-appb-100015
    Figure PCTCN2019094424-appb-100016
    分别为电机α轴磁链和β轴转子磁链,L q为所述电机转子的电感,I α为所述电机α轴电流,I β为所述电机β轴电流。
  32. 根据权利要求26所述的洗衣机用电机运行控制方法,其中,所述控制所述电机从所述第一目标转速连续变化至所述第二目标转速的步骤,具体包括:
    控制所述电机降速运行,确认所述电机的转速降至第一预设阈值,控制所述电机的转子向第二转动方向加速至所述第二目标转速;其中,所述第一预设阈值为0,或所述第一预设阈值为与0的差值在第一预设范围内的任意值;
    所述控制所述电机从所述第二目标转速连续变化至所述第一目标转速的步骤具体包括:
    控制所述电机降速运行,确认所述电机的转速降至所述第二预设阈值,控制所述电机的转子向所述第一转动方向加速至所述第一目标转速;其中,所述第二预设阈值为0,或所述第二预设阈值为与0的差值在第二预设范 围内的任意值。
  33. 根据权利要求32所述的洗衣机用电机运行控制方法,其中,
    所述控制所述电机的转子向第二转动方向加速至第二目标转速的步骤,具体为:控制所述转子阶跃至所述第二目标转速;和/或
    所述控制所述电机的转子向所述第一转动方向加速至所述第一目标转速的步骤,具体为:控制所述转子阶跃至所述第一目标转速。
  34. 根据权利要求26至33中任一项所述的洗衣机用电机运行控制方法,其中,还包括:
    获取所述电机向所述第一目标转速加速起至所述电机转至第二目标转速过程中的预设速度曲线;其中,所述预设速度曲线根据所述第一目标转速、所述第二目标转速、所述第一预设时长、所述第二目标时长生成;
    根据所述当前转速对应的当前时刻,查找所述预设速度曲线中与所述当前时刻对应的预设转速,当所述当前转速与所述预设转速存在偏差时,校正所述当前转速为所述预设转速。
  35. 根据权利要求34所述的洗衣机用电机运行控制方法,其中,所述校正所述当前转速为所述预设转速的步骤,具体包括:
    根据所述预设转速与所述当前转速的差值,计算驱动转矩;
    获取所述电机的当前电流,根据所述当前电流与所述驱动转矩,计算驱动电压,控制所述电机以所述驱动电压驱动所述电机的转子转动。
  36. 根据权利要求26所述的洗衣机用电机运行控制方法,其中,所述方法还包括:
    实时检测所述电机的温度,确认所述电机的温度低于第一预设阈值,执行所述控制所述电机以所述连续运转模式运行的步骤;
    确认所述电机的温度大于第二预设阈值或所述电机的控制器温度高于第三预设阈值,控制所述电机的运行模式切换至传统运行模式;
    其中,所述连续运转模式中所述电机向第一转动方向运转的运转时长与所述电机向第二转动方向运转的转动时长相连续。
  37. 根据权利要求26所述的洗衣机用电机运行控制方法,其中,在所述电机的温度低于第一预设阈值时的步骤之后,所述控制所述电机以连续 运转模式运行之前,还包括:
    检测所述电机的控制器温度,如所述控制器温度低于第四预设阈值时,执行所述控制所述电机以连续运转模式运行的步骤;
    如所述控制器温度高于第四预设阈值时,控制所述电机的运行模式切换至传统运行模式。
  38. 根据权利要求26所述的洗衣机用电机运行控制方法,其中,
    所述第一目标转速与所述第二目标转速的转速值大小相同。
  39. 一种洗衣机用电机运行控制系统,其中,包括:
    存储器,用于存储计算机程序;
    处理器,用于执行所述计算机程序以控制电机以连续运转模式运行,所述连续运转模式包含多个连续运转周期;控制电机完成所述连续运转模式的一个所述连续运转周期的具体步骤包括:
    控制电机的转子向第一转动方向加速旋转,并获取所述电机的确认前转速,确认所述电机的转速达到第一目标转速,并运行第一预设时长后,控制所述电机从所述第一目标转速连续变化至第二目标转速,期间没有停止时间;
    确认所述电机的转速达到所述第二目标转速,并运行第二预设时长后,控制所述电机从所述第二目标转速连续变化至所述第一目标转速,期间没有停止时间;
    其中,所述第一目标转速与所述第二目标转速的转速方向相反。
  40. 根据权利要求39所述的洗衣机用电机运行控制系统,其中,所述处理器还用于执行所述计算机程序以实现所述控制所述电机从所述第一目标转速连续变化至第二目标转速的步骤,具体包括:
    控制所述电机降速运行,确认所述电机的转速降至第一预设阈值,控制所述电机的转子向第二转动方向加速至所述第二目标转速;其中所述第一预设阈值为0,或所述第一预设阈值为与0的差值在第一预设范围内的任意值;
    所述处理器还用于执行所述计算机程序以实现所述控制所述电机从所述第二目标转速连续变化至所述第一目标转速的步骤,具体包括:
    控制所述电机降速运行,确认所述电机的转速降至第二预设阈值,控制所述电机的转子向所述第一转动方向加速至所述第一目标转速;其中,所述第二预设阈值为0,或所述第二预设阈值为与0的差值在第二预设范围内的任意值。
  41. 根据权利要求40所述的洗衣机用电机运行控制系统,其中,所述处理器还用于执行所述计算机程序以实现所述控制所述电机的转子向第二转动方向加速至第二目标转速的步骤,具体包括:
    控制所述转子阶跃至所述第二目标转速;和/或
    所述处理器还用于执行所述计算机程序以实现所述控制所述电机的转子向第一转动方向加速至第一目标转速的步骤,具体为:控制所述转子阶跃至所述第一目标转速。
  42. 根据权利要求39所述的洗衣机用电机运行控制系统,其中,所述处理器还用于在执行控制电机以连续运转模式运行之前,还包括:
    实时检测所述电机的温度,确认所述电机的温度低于第一预设阈值,控制所述电机以连续运转模式运行;
    确认所述电机的温度大于第二预设阈值或所述电机的控制器温度高于第三预设阈值,控制所述电机的运行模式切换至传统运行模式;
    其中,所述连续运转模式中所述电机向第一转动方向运转的运转时长与所述电机向第二转动方向运转的转动时长相连续。
  43. 根据权利要求39所述的洗衣机用电机运行控制系统,其中,所述处理器在执行所述确认所述电机的温度低于第一预设阈值的步骤之后,所述控制所述电机以连续运转模式运行之前,还包括:
    检测所述电机的控制器温度,确认所述控制器温度低于第四预设阈值,执行所述控制所述电机以连续运转模式运行的步骤;
    确认所述控制器温度高于第四预设阈值,控制所述电机的运行模式切换至传统运行模式。
  44. 一种洗衣机,其中,包括:如权利要求39至43中任一项所述的洗衣机用电机运行控制系统。
  45. 一种计算机可读存储介质,其上存储有计算机程序,其中,所述 计算机程序被处理器执行时实现如权利要求1至10中任一项所述的洗衣机用电机运行控制方法的步骤,或如权利要求15至19中任一项所述的洗衣机用电机运行控制方法的步骤,或如权利要求26至38中任一项所述的洗衣机用电机运行控制方法的步骤。
PCT/CN2019/094424 2018-10-15 2019-07-02 洗衣机用电机运行控制方法、系统、洗衣机以及存储介质 WO2020078046A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201811198553.7A CN111058224B (zh) 2018-10-15 2018-10-15 电机运行控制方法、系统、滚筒洗衣机以及存储介质
CN201811199209.XA CN111058225B (zh) 2018-10-15 2018-10-15 电机运行控制方法、系统、衣物处理装置以及存储介质
CN201811199209.X 2018-10-15
CN201811198553.7 2018-10-15

Publications (1)

Publication Number Publication Date
WO2020078046A1 true WO2020078046A1 (zh) 2020-04-23

Family

ID=70283649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/094424 WO2020078046A1 (zh) 2018-10-15 2019-07-02 洗衣机用电机运行控制方法、系统、洗衣机以及存储介质

Country Status (1)

Country Link
WO (1) WO2020078046A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1521311A (zh) * 2003-02-14 2004-08-18 Lg������ʽ���� 滚筒式洗衣机的洗涤方法
CN101187129A (zh) * 2007-09-04 2008-05-28 南京乐金熊猫电器有限公司 衣物处理装置的控制方法
CN101838917A (zh) * 2009-10-27 2010-09-22 南京乐金熊猫电器有限公司 洗衣机及洗衣机的控制方法
CN101935934A (zh) * 2009-07-02 2011-01-05 潘雪珍 一种洗衣机标准洗的程序控制方法
CN103409967A (zh) * 2013-07-02 2013-11-27 松下家电研究开发(杭州)有限公司 一种洗衣机搅拌衣物的控制方法
WO2016019878A1 (zh) * 2014-08-05 2016-02-11 海尔亚洲株式会社 滚筒洗衣机
CN106592157A (zh) * 2016-11-21 2017-04-26 广东威灵电机制造有限公司 洗衣机以及洗衣机的称重方法
CN107287820A (zh) * 2017-07-18 2017-10-24 青岛海尔洗衣机有限公司 一种洗衣机的控制方法及洗衣机
CN108253595A (zh) * 2018-01-17 2018-07-06 广东美的暖通设备有限公司 电机转速的处理方法、电机转速的处理系统和空调器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1521311A (zh) * 2003-02-14 2004-08-18 Lg������ʽ���� 滚筒式洗衣机的洗涤方法
CN101187129A (zh) * 2007-09-04 2008-05-28 南京乐金熊猫电器有限公司 衣物处理装置的控制方法
CN101935934A (zh) * 2009-07-02 2011-01-05 潘雪珍 一种洗衣机标准洗的程序控制方法
CN101838917A (zh) * 2009-10-27 2010-09-22 南京乐金熊猫电器有限公司 洗衣机及洗衣机的控制方法
CN103409967A (zh) * 2013-07-02 2013-11-27 松下家电研究开发(杭州)有限公司 一种洗衣机搅拌衣物的控制方法
WO2016019878A1 (zh) * 2014-08-05 2016-02-11 海尔亚洲株式会社 滚筒洗衣机
CN106592157A (zh) * 2016-11-21 2017-04-26 广东威灵电机制造有限公司 洗衣机以及洗衣机的称重方法
CN107287820A (zh) * 2017-07-18 2017-10-24 青岛海尔洗衣机有限公司 一种洗衣机的控制方法及洗衣机
CN108253595A (zh) * 2018-01-17 2018-07-06 广东美的暖通设备有限公司 电机转速的处理方法、电机转速的处理系统和空调器

Similar Documents

Publication Publication Date Title
CN1314194C (zh) 磁极位置检测装置
JP7405918B2 (ja) 電動作業機
CN113395024B (zh) 用于直流电机的控制方法、装置和电机控制系统
CN104980069B (zh) 一种无刷直流电机双闭环调速系统多目标优化方法
KR20170012016A (ko) 세탁기용 모터, 및 이를 구비한 세탁기
CN1197235C (zh) 无传感器矢量控制设备及其方法
CN102710205A (zh) 异步电机定向控制系统及方法
KR101601964B1 (ko) 영구자석 전동기의 제어 장치 및 방법
WO2020078046A1 (zh) 洗衣机用电机运行控制方法、系统、洗衣机以及存储介质
CN111058224B (zh) 电机运行控制方法、系统、滚筒洗衣机以及存储介质
Kim et al. Speed ripple reduction of PMSM with eccentric load using sinusoidal compensation method
CN105229915B (zh) 用于起动转速可变的电动马达的方法
CN111058225B (zh) 电机运行控制方法、系统、衣物处理装置以及存储介质
CN110768592B (zh) 永磁同步电机的启动方法、装置及电机
CN111064398B (zh) 电机运行控制方法、系统、衣物处理装置及可读存储介质
CN112994540B (zh) 电机控制方法、装置以及电机控制器和电机和家用电器
CN112398373B (zh) 一种无刷直流电机的控制方法、装置及存储介质
JP6437188B2 (ja) 洗濯機
CN106059400B (zh) 一种电机hall速度平滑处理方法
Arokkiasamy et al. Automatic control loop tuning of PMAC servomotor drives using PID controller
EP3787184A1 (en) Autonomous apparatus
CN1052832C (zh) 电动机
CN111118816B (zh) 位置控制方法、控制装置、滚筒洗衣机及存储介质
CN113737451B (zh) 洗衣机电机的弱磁控制方法、装置、洗衣机及存储介质
CN1047268C (zh) 电动机

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21.09.2021)

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19874143

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19874143

Country of ref document: EP

Kind code of ref document: A1