WO2020077920A1 - 防反射涂层的制备方法和具有该防反射涂层的背光模组 - Google Patents

防反射涂层的制备方法和具有该防反射涂层的背光模组 Download PDF

Info

Publication number
WO2020077920A1
WO2020077920A1 PCT/CN2019/074831 CN2019074831W WO2020077920A1 WO 2020077920 A1 WO2020077920 A1 WO 2020077920A1 CN 2019074831 W CN2019074831 W CN 2019074831W WO 2020077920 A1 WO2020077920 A1 WO 2020077920A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflection
solution
substrate
guide plate
light guide
Prior art date
Application number
PCT/CN2019/074831
Other languages
English (en)
French (fr)
Inventor
王文龙
徐向阳
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Publication of WO2020077920A1 publication Critical patent/WO2020077920A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/06Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain multicolour or other optical effects
    • B05D5/061Special surface effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only

Definitions

  • the invention relates to the field of display, in particular to a preparation method of an anti-reflection coating and a backlight module having the anti-reflection coating.
  • the characteristics of digitization, high definition, and vivid color of the LCD display bring a lot of convenience to people's lives.
  • the quality of the LCD panel determines the final display effect of the LCD display.
  • the LCD panel is composed of a liquid crystal panel and a backlight module.
  • the working principle of the backlight module is as follows: the linear light source emitted by the LED light bar is incident on the light guide plate, and is converted into a surface light source through the role of the light guide plate, most of the light is refracted to the top, and then modulated by an optical diaphragm to form a uniform surface light source. A small part of the light is reflected by the reflection sheet before being used. However, every time there is light reflection, scattering and other phenomena on the side of the light guide plate close to the light bar, thereby reducing the light utilization rate.
  • the invention provides a preparation method of an anti-reflective coating and a backlight module, which is used to solve the problem that the linear light source emitted by the LED light bar in the backlight module passes through the light guide plate, the reflective sheet and the optical film due to reflection, scattering and other reasons Causes the problem of low light utilization.
  • the present invention provides a backlight module, at least comprising: a plastic frame, and a light source and a light guide plate located inside the plastic frame; the light source is located on the light incident side of the light guide plate;
  • the light incident side surface of the light guide plate is provided with an anti-reflection coating, which is used to reduce the amount of light emitted by the light source after entering the light guide plate and reflecting the light guide plate.
  • the anti-reflection coating covers the entire light incident side surface of the light guide plate.
  • the anti-reflection coating is made of a mixed solution of silicon dioxide and silicon nitride or a niobium pentoxide solution or an organic solution of PFA.
  • the present invention provides a method for preparing an anti-reflective coating, which includes the following steps:
  • Step 1 Provide silicon dioxide and silicon nitride powder, and add the silicon dioxide and silicon nitride powder to a volatile solvent;
  • Step 2 Stir the solution mixed with silicon dioxide powder and silicon nitride powder uniformly with a magnetic bar to form an anti-reflection solution;
  • Step 3 Apply the anti-reflection solution evenly on the surface of the substrate
  • Step 4 Place the substrate coated with the anti-reflection solution in a low-pressure environment below 100 ° C, so that the anti-reflection solution is cured on the surface of the substrate to form an anti-reflection film.
  • the curing temperature of the anti-reflection solution is 70 ° C to 90 ° C.
  • the thickness of the finally formed anti-reflection coating is 1 ⁇ 5um.
  • the invention also provides a method for preparing an anti-reflection coating, which includes the following steps:
  • Step 1 Provide niobium pentoxide powder, and add the niobium pentoxide powder to a volatile solvent;
  • Step 2 Stir the solution mixed with niobium pentoxide powder uniformly with a magnetic bar to form an anti-reflection solution;
  • Step 3 Apply the anti-reflection solution evenly on the surface of the substrate
  • Step 4 Place the substrate coated with the anti-reflection solution in a low-pressure environment below 100 ° C, so that the anti-reflection solution is cured on the surface of the substrate to form an anti-reflection film.
  • the curing temperature of the anti-reflection solution is 70 ° C to 90 ° C.
  • the thickness of the finally formed anti-reflection coating is 1 ⁇ 5um.
  • the present invention also provides another method for preparing an anti-reflection coating, which includes the following steps:
  • Step 1 Provide evaporation equipment and heat the substrate in the evaporation equipment;
  • Step 2 Provide a PFA organic solution, and place the PFA organic solution in an evaporation chamber of the evaporation equipment for heat treatment;
  • Step 3 The PFA organic solution is evaporated to form PFA molecules and deposited on the surface of the substrate.
  • the PFA molecules After cooling, the PFA molecules form an anti-reflection film on the surface of the substrate.
  • the thickness of the finally formed anti-reflection coating is 1 ⁇ 5um.
  • the reflective coating provided by the present invention is prepared by using a mixed solution of silicon dioxide and silicon nitride or a niobium pentoxide solution or an organic solution of PFA on the surface of the light guide plate near the LED light bar.
  • the high temperature resistance, stability, corrosion resistance and other properties make the anti-reflection coating prepared with high purity, high hardness, thin thickness and uniformity. The problem of lowering the utilization rate of light caused by this improves the transmittance of light on the side of the light guide plate and the final utilization rate.
  • FIG. 1 is a schematic cross-sectional structural diagram of a backlight module provided by an embodiment of the present invention.
  • FIG. 2 is a flowchart of a method for preparing an anti-reflection coating provided by an embodiment of the present invention.
  • FIG. 3 is a flowchart of another method for preparing an anti-reflection coating provided by an embodiment of the present invention.
  • FIG. 4 is a flowchart of another method for preparing an anti-reflection coating provided by an embodiment of the present invention.
  • the terms “thickness”, “width”, and “distance” are all neutral words, which do not mean that they are thick or thin, wide or narrow, long or short, but only objectively represent a certain attribute of the device, while the term “thin” It is clear that the distance between the upper and lower sides of a flat object is small.
  • FIG. 1 a schematic cross-sectional structure diagram of a backlight module provided by an embodiment of the present invention is shown.
  • the backlight module is constructed by a backplane 207 and a plastic frame 201 as an integrated frame.
  • the LED light bar 202 is laterally placed on either side of the four inner sides of the plastic frame; the reflective sheet 204, the light guide plate 205, and the optical film 206 are sequentially and horizontally attached to the upper surface of the back plate.
  • the side of the light guide plate 205 near the light entrance side is provided with an anti-reflection coating 203. It should be noted that the anti-reflection coating 203 uniformly covers the entire side of the light guide plate.
  • the essence of the anti-reflection coating 203 may be a mixed solution of silicon dioxide and silicon nitride or a thin film made of solution niobium pentoxide solution by solution gel method, and the thickness of this thin film is 1 ⁇ 5um;
  • the essence of the anti-reflective coating 203 may also be a thin film formed by a PFA organic solution by evaporation, and the thickness of this thin film is 1 to 5 ⁇ m.
  • an anti-reflection coating 203 is provided on the surface of the light guide plate 205 close to the LED light bar 202, which can directly increase the light transmittance and reduce the refractive index, further improve the utilization rate of the light source light, and also reduce Glare, the picture is clearer in the LCD display.
  • FIG. 2 shows a flow chart of the preparation method of the anti-reflection coating provided by the embodiment of the present invention.
  • the preparation method of the anti-reflection coating adopts the solution gel method and includes the following steps:
  • the proportion of silicon dioxide and silicon nitride powder in the solution here should not be too low, so as not to make the solution too thin in the later stage, and cannot achieve good anti-reflection function, nor should the ratio be too high, so as not to cause difficulty in mixing later. Therefore, it is necessary to reasonably control the proportion of powder according to the actual situation.
  • the volatile solvent may be water or some organic solvent with a relatively fast evaporation rate, such as methanol and ethanol.
  • the magnetic rod plays two roles in the stirring process: the powder and the solvent are fully and uniformly mixed and the ferromagnetic impurities in the mixture are removed, so it is necessary to periodically clean the impurities adsorbed on the magnetic rod during the stirring, This not only improves the uniformity of stirring, but also the purity of the solution.
  • the application should be in the same direction to avoid uneven application.
  • the thickness of the application must be 1 ⁇ 5um at the end, and it should not be too thin or too thick.
  • a low-pressure environment with a curing environment of less than 100 ° C can improve the uniformity of solvent volatilization, wherein the temperature can be set at 70 ° C to 90 ° C, and the curing time is about 30 minutes.
  • the above-mentioned silica powder and silicon nitride powder are replaced with niobium pentoxide, and the antireflection coating can also be prepared by the same process.
  • FIG. 4 shows a flowchart of another method for preparing the anti-reflective coating provided by the embodiment of the present invention.
  • the method for preparing the anti-reflective coating adopts a vapor deposition method and includes the following steps :
  • the substrate, substrate holder and vacuum chamber inner wall should be cleaned in advance, so as not to affect the purity and binding force of the later layer.
  • the PFA organic solution is evaporated to form PFA molecules deposited on the surface of the substrate, and an anti-reflection film is formed on the surface of the substrate after the PFA molecules are cooled.
  • the baffle can be removed to allow the vapor to deposit on the surface of the substrate.
  • the substrate temperature, the evaporation temperature of the plating material, and the deposition air pressure all affect the effect of evaporation.
  • Select suitable parameters for the evaporation material it should be noted that when the thickness of the film reaches the requirements, the thickness of the anti-reflection film here is 1 ⁇ 5um, cover the evaporation source with a baffle and stop heating, but do not introduce air immediately.
  • the reflective coating provided by the present invention is prepared by using a mixed solution of silicon dioxide and silicon nitride or a niobium pentoxide solution or PFA organic solution on the surface of the light guide plate near the LED light bar.
  • the high temperature resistance, stability, corrosion resistance and other properties of the above materials make the prepared anti-reflection coating with high purity, high hardness, thin thickness and uniformity, which solves the problem in the prior art that the light is close to the light bar on the light guide plate.
  • the problem of lowering the utilization rate of light due to reflection, scattering, etc. on the side increases the transmittance of light on the side of the light guide plate and the final utilization rate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Planar Illumination Modules (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

本发明提供一种背光模组,至少包括:胶框、以及位于胶框内部的光源和导光板,光源位于导光板的入光侧,其中,导光板的入光侧表面设有防反射涂层,用于减少所述光源的出射光进入所述导光板之后又反射出所述导光板的光量。

Description

防反射涂层的制备方法和具有该防反射涂层的背光模组 技术领域
本发明涉及显示领域,尤其涉及防反射涂层的制备方法和具有该防反射涂层的背光模组。
背景技术
液晶显示器数字化、高清晰度、色彩逼真等特点给人们生活带来了很多便利,而液晶面板的质量高低决定着液晶显示器最终的显示效果,液晶面板由液晶板和背光模组组成。背光模组的工作原理如下:LED灯条发出的线光源入射到导光板,经过导光板的作用转换为面光源,其中大部分光折射到上方,再经过光学膜片调制形成均匀的面光源,还有小部分光线通过反射片的作用反射后再被利用。但是每一次在导光板靠近灯条的侧面都会存在光的反射、散射等现象,从而降低了光的利用率。
现有技术中背光模组中存在着光在导光板靠近灯条的侧面由于反射、散射等原因而造成光的利用率低下的问题,因此,上述技术有改进的空间。
技术问题
本发明提供了防反射涂层的制备方法和背光模组,用于解决在背光模组中LED灯条发出的线光源在经过导光板、反射片和光学膜片时由于反射、散射等原因而造成光的利用率低下的问题。
技术解决方案
为解决上述问题,本发明提供一种背光模组,至少包括:胶框、以及位于所述胶框内部的光源和导光板;所述光源位于所述导光板的入光侧;
其中,所述导光板的入光侧表面设有防反射涂层,用于减少所述光源的出射光进入所述导光板之后又反射出所述导光板的光量。
其中,所述防反射涂层覆盖所述导光板的整个入光侧表面。
其中,所述防反射涂层由二氧化硅和氮化硅混合溶液或者五氧化二铌溶液或者PFA有机溶液制成。
相应地,对于上述背光模组,本发明提供一种防反射涂层的制备方法,包括如下步骤:
步骤一、提供二氧化硅和氮化硅的粉末,将所述二氧化硅和氮化硅的粉末加入到易挥发的溶剂中;
步骤二、用磁力棒将所述混有二氧化硅粉末和氮化硅粉末的溶液均匀地搅拌,形成防反射溶液;
步骤三、将所述防反射溶液均匀地涂在基片表面;
步骤四、将涂有所述防反射溶液的基片置于低于100℃的低压环境下,使得所述防反射溶液在所述基片表面固化形成防反射膜。
其中,所述防反射溶液的固化温度为70℃~90℃。
其中,所述最终形成的防反射涂层厚度为1~5um。
本发明还提供一种防反射涂层的制备方法,包括如下步骤:
步骤一、提供五氧化二铌的粉末,将所述五氧化二铌的粉末加入到易挥发的溶剂中;
步骤二、用磁力棒将所述混有五氧化二铌粉末的溶液均匀地搅拌,形成防反射溶液;
步骤三、将所述防反射溶液均匀地涂在基片表面;
步骤四、将涂有所述防反射溶液的基片置于低于100℃的低压环境下,使得所述防反射溶液在所述基片表面固化形成防反射膜。
其中,所述防反射溶液的固化温度为70℃~90℃。
其中,所述最终形成的防反射涂层厚度为1~5um。
本发明还提供另一种防反射涂层的制备方法,包括如下步骤:
步骤一、提供蒸镀设备,将基片置于蒸镀设备内加热;
步骤二、提供PFA有机溶液,将所述PFA有机溶液置于所述蒸镀设备的蒸发腔室内进行加热处理;
步骤三、所述PFA有机溶液蒸发形成PFA分子沉积在所述基片表面,待所述
PFA分子冷却后在所述基片表面形成防反射膜。
其中,所述最终形成的防反射涂层厚度为1~5um。
有益效果
本发明提供的反射涂层是通过在导光板靠近LED灯条的那一侧表面利用二氧化硅和氮化硅的混合溶液或者五氧化二铌溶液或者PFA有机溶制备而成,上述几种材料的耐高温、稳定、耐腐蚀等性质使得制备的防反射涂层纯度高、硬度高、厚度薄、均匀,解决了现有技术中因为光在导光板靠近灯条的侧面由于反射、散射等原因而造成的光的利用率降下的问题,提高了光在导光板侧面的透过率与最终的利用率。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的背光模组的截面结构示意图。
图2为本发明实施例提供的防反射涂层的制备方法的流程图。
图3为本发明实施例提供的防反射涂层的另一种制备方法的流程图。
图4为本发明实施例提供的防反射涂层的另一种制备方法的流程图。
本发明的最佳实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要理解的是,术语“上”、“下”、“内”、“外”、“横”、“竖”、“表面”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“厚度”、“宽度”、“距离”都是中性词,不表示偏向厚或薄、宽或窄、长或短,只是客观表示器件的某一属性,而术语“薄”则明确表示扁平物体上下两面之间的距离小。
另外,还需要说明的是,附图提供的仅仅是和本发明关系比较密切的结构和/或步骤,省略了一些与发明关系不大的细节,目的在于简化附图,使发明点一目了然,而不是表明实际中装置和/或方法就是和附图一模一样,不作为实际中装置和/或方法的限制。
如图1,表示了本发明实施例提供的背光模组的截面结构示意图,在该实施例中,背光模组由背板207和胶框201搭建了整体的框架。其中,LED灯条202横向置于胶框四个内侧的任一侧;反射片204、导光板205、光学膜片206依次水平贴合在背板的上表面。其中,在导光板205靠近入光侧的那一侧设有防反射涂层203,需要注意的是,所述防反射涂层203均匀地覆盖了整个所述导光板的侧面。其中,所述防反射涂层203的本质可以是二氧化硅和氮化硅混合溶液或者只有五氧化二铌溶液利用溶液凝胶法制成的一层薄膜,这层薄膜的厚度为1~5um;同理,所述防反射涂层203的本质也可以是PFA有机溶液通过蒸镀法形成的一层薄膜,这层薄膜的厚度为1~5um。
由于二氧化硅和氮化硅、五氧化二铌、PFA具有耐高温、稳定等性质,所以最终制成的防反射涂层具有硬度高、厚度薄等特点。因此,在导光板205靠近LED灯条202的那一侧表面上设有防反射涂层203,可以直接提高光线的透过率,减少折射率,进一步来提高光源光线的利用率,同时也减少眩光,在液晶显示中画面更加清晰。
如图2,表示了本发明实施例提供的防反射涂层的制备方法的流程图,在该实施例中,所述防反射涂层的制备方法,采用溶液凝胶法,包括如下步骤:
S101、提供二氧化硅和氮化硅的粉末,将所述二氧化硅和氮化硅的粉末加入到易挥发的溶剂中;
需要注意的是,此处二氧化硅和氮化硅粉末所占溶液比例不宜过低,以免后期溶液过于稀薄,无法实现良好的防反射功能,比例也不宜过高,以免造成后期难以搅拌均匀,因此需要根据实际情况合理的控制粉末的比例。
所述易挥发的溶剂可以是水或者是一些挥发速率比较快的有机溶剂,比如甲醇、乙醇。
S102、用磁力棒将所述混有二氧化硅粉末和氮化硅粉末的溶液均匀地搅拌,形成防反射溶液;
其中,磁力棒在搅拌过程中起到两个作用:分别是使粉末与溶剂充分且均匀混合和清除所述混合物中的铁磁性杂质,所以务必在搅拌期间定期清洗吸附在磁力棒上的杂质,这样不仅可以提高搅拌的均匀度,而且溶液的纯度也得以提高。
S103、将所述防反射溶液均匀地涂在基片表面;
其中,涂抹应顺着同一个方向,以免造成涂抹不均匀,涂抹的厚度最后要保证在1~5um,不宜过薄或者过厚。
S104、将涂有所述防反射溶液的基片置于低于100℃的低压环境下,使得所述防反射溶液在所述基片表面固化形成防反射膜。
可以理解的是,固化环境为低于100℃的低压环境可以提高溶剂挥发的均一性,其中,温度可以定为70℃~90℃,固化时间在30分钟左右。
如图3,将上述二氧化硅粉末和氮化硅粉末替换为五氧化二铌,也可以利用同样的流程制备防反射涂层。
如图4,表示了本发明实施例提供的防反射涂层的另一种制备方法的流程图,在该实施例中,所述防反射涂层的制备方法,采用蒸镀法,包括如下步骤:
S101、提供蒸镀设备,将基片置于蒸镀设备内加热;
其中,基片、基片架和真空室内壁应该提前进行清洗,以免影响后期膜层的纯度和结合力。
S102、提供PFA有机溶液,将所述PFA有机溶液置于所述蒸镀设备的蒸发腔室内进行加热处理;
需要注意的是,在PFA有机溶液达到蒸发效果之前必须用挡板盖住PFA有机溶液及其它会对基片造成污染的设备,在此期间要避免有液浆飞溅到基片上。
S103、所述PFA有机溶液蒸发形成PFA分子沉积在所述基片表面,待所述PFA分子冷却后在所述基片表面形成防反射膜。
可以理解的是,当PFA有机溶液开始汽化以后可以拿开挡板让蒸汽沉积在基片表面,在此期间,基片温度、镀料蒸发温度、沉积气压都影响着蒸镀的效果,所以要针对蒸镀材料选择适合的参数。应当注意,当膜层厚度达到要求以后,此处防反射膜厚度为1~5um,用挡板盖住蒸发源并停止加热,但不要马上导入空气。
以上对本发明实施例所提供的防反射涂层的制备方法和背光模组进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的技术方案及其核心思想;本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例的技术方案的范围。
本发明的有益效果为:本发明提供的反射涂层是通过在导光板靠近LED灯条的那一侧表面利用二氧化硅和氮化硅的混合溶液或者五氧化二铌溶液或者PFA有机溶制备而成,上述几种材料的耐高温、稳定、耐腐蚀等性质使得制备的防反射涂层纯度高、硬度高、厚度薄、均匀,解决了现有技术中因为光在导光板靠近灯条的侧面由于反射、散射等原因而造成的光的利用率降下的问题,提高了光在导光板侧面的透过率与最终的利用率。

Claims (11)

  1. 一种背光模组,其包括:胶框、以及位于所述胶框内部的光源和导光板;所述光源位于所述导光板的入光侧;
    其中,所述导光板的入光侧表面设有防反射涂层,用于减少所述光源的出射光进入所述导光板之后又反射出所述导光板的光量。
  2. 如权利要求1所述的背光模组,其中,所述防反射涂层覆盖所述导光板的整个入光侧表面。
  3. 如权利要求1所述的背光模组,其中,所述防反射涂层由二氧化硅和氮化硅混合溶液或者五氧化二铌溶液或者PFA有机溶液制成。
  4. 一种如权利要求1所述的防反射涂层的制备方法,其包括如下步骤:
    步骤一、提供二氧化硅和氮化硅的粉末,将所述二氧化硅和氮化硅的粉末加入到易挥发的溶剂中;
    步骤二、用磁力棒将所述混有二氧化硅粉末和氮化硅粉末的溶液均匀地搅拌,形成防反射溶液;
    步骤三、将所述防反射溶液均匀地涂在基片表面;
    步骤四、将涂有所述防反射溶液的基片置于低于100℃的低压环境下,使得所述防反射溶液在所述基片表面固化形成防反射膜。
  5. 如权利要求3所述的方法,其中,所述防反射溶液的固化温度为70℃~90℃。
  6. 如权利要求3所述的方法,其中,所述防反射膜厚度为1~5um。
  7. 一种如权利要求1所述的防反射涂层的制备方法,其包括如下步骤:
    步骤一、提供五氧化二铌的粉末,将所述五氧化二铌的粉末加入到易挥发的溶剂中;
    步骤二、用磁力棒将所述混有五氧化二铌粉末的溶液均匀地搅拌,形成防反射溶液;
    步骤三、将所述防反射溶液均匀地涂在基片表面;
    步骤四、将涂有所述防反射溶液的基片置于低于100℃的低压环境下,使得所述防反射溶液在所述基片表面固化形成防反射膜。
  8. 如权利要求6所述的方法,其中,所述防反射溶液的固化温度为70℃~90℃。
  9. 如权利要求6所述的方法,其中,所述防反射膜厚度为1~5um。
  10. 一种如权利要求1所述的防反射涂层的制备方法,其包括如下步骤:
    步骤一、提供蒸镀设备,将基片置于蒸镀设备内加热;
    步骤二、提供PFA有机溶液,将所述PFA有机溶液置于所述蒸镀设备的蒸发腔室内进行加热处理;
    步骤三、所述PFA有机溶液蒸发形成PFA分子沉积在所述基片表面,待所述PFA分子冷却后在所述基片表面形成防反射膜。
  11. 如权利要求9所述的方法,其中,所述防反射膜厚度为1~5um。
PCT/CN2019/074831 2018-10-17 2019-02-12 防反射涂层的制备方法和具有该防反射涂层的背光模组 WO2020077920A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811206420.X 2018-10-17
CN201811206420.XA CN109307907A (zh) 2018-10-17 2018-10-17 防反射涂层的制备方法和具有该防反射涂层的背光模组

Publications (1)

Publication Number Publication Date
WO2020077920A1 true WO2020077920A1 (zh) 2020-04-23

Family

ID=65225427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/074831 WO2020077920A1 (zh) 2018-10-17 2019-02-12 防反射涂层的制备方法和具有该防反射涂层的背光模组

Country Status (2)

Country Link
CN (1) CN109307907A (zh)
WO (1) WO2020077920A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109307907A (zh) * 2018-10-17 2019-02-05 深圳市华星光电半导体显示技术有限公司 防反射涂层的制备方法和具有该防反射涂层的背光模组

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1504767A (zh) * 2002-11-29 2004-06-16 鸿富锦精密工业(深圳)有限公司 导光板及采用该导光板的光源系统
CN1844985A (zh) * 2005-04-08 2006-10-11 鸿富锦精密工业(深圳)有限公司 导光板及背光模组
CN101770042A (zh) * 2010-01-22 2010-07-07 四川大学 低反射光学界面层及其制备方法
CN105529990A (zh) * 2016-02-24 2016-04-27 深圳市信太通讯有限公司 一种太阳能手机覆膜透光屏
CN108363234A (zh) * 2018-02-28 2018-08-03 深圳市华星光电技术有限公司 液晶显示装置
CN109307907A (zh) * 2018-10-17 2019-02-05 深圳市华星光电半导体显示技术有限公司 防反射涂层的制备方法和具有该防反射涂层的背光模组

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002077704A1 (fr) * 2001-03-22 2002-10-03 Sony Corporation Dispositif d'affichage reflechissant, plaque guide d'ondes optiques, et procede de realisation d'une plaque guide d'ondes optiques
CN2586971Y (zh) * 2002-11-28 2003-11-19 鸿富锦精密工业(深圳)有限公司 导光板
JP4689222B2 (ja) * 2004-09-22 2011-05-25 信越ポリマー株式会社 導電性塗布膜およびその製造方法
CN100557852C (zh) * 2005-05-31 2009-11-04 清华大学 一种有机电致发光器件
CN105585252A (zh) * 2014-10-22 2016-05-18 南昌欧菲光学技术有限公司 一种减反射膜、减反射膜制作方法及玻璃基板
CN205122588U (zh) * 2015-12-04 2016-03-30 信利半导体有限公司 一种oled显示器
CN107601919A (zh) * 2017-09-27 2018-01-19 广东星弛光电科技有限公司 一种增透射和减反射玻璃的制备方法
CN108409153B (zh) * 2018-03-14 2020-11-17 河南科技大学 一种电子用多功能三维纳米结构表面增透膜片的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1504767A (zh) * 2002-11-29 2004-06-16 鸿富锦精密工业(深圳)有限公司 导光板及采用该导光板的光源系统
CN1844985A (zh) * 2005-04-08 2006-10-11 鸿富锦精密工业(深圳)有限公司 导光板及背光模组
CN101770042A (zh) * 2010-01-22 2010-07-07 四川大学 低反射光学界面层及其制备方法
CN105529990A (zh) * 2016-02-24 2016-04-27 深圳市信太通讯有限公司 一种太阳能手机覆膜透光屏
CN108363234A (zh) * 2018-02-28 2018-08-03 深圳市华星光电技术有限公司 液晶显示装置
CN109307907A (zh) * 2018-10-17 2019-02-05 深圳市华星光电半导体显示技术有限公司 防反射涂层的制备方法和具有该防反射涂层的背光模组

Also Published As

Publication number Publication date
CN109307907A (zh) 2019-02-05

Similar Documents

Publication Publication Date Title
CN105301828A (zh) 液晶显示装置及其制作方法
WO2017202168A1 (zh) 显示面板及其制作方法、以及显示装置
JP5927743B2 (ja) 低屈折率膜形成用組成物の製造方法及び低屈折率膜の形成方法
CN105607158B (zh) 一种基板、基板制造方法、触摸屏和显示装置
WO2015109817A1 (zh) 半透半反液晶显示面板及其制作方法、显示装置
WO2002064524A1 (fr) Film irregulier et son procede de fabrication
WO2020077920A1 (zh) 防反射涂层的制备方法和具有该防反射涂层的背光模组
WO2021232625A1 (zh) 一种超窄边框液晶背光结构及组装方法
CN105174739A (zh) 具有抗菌防指纹增透三重功效的玻璃及其制备方法
CN110471209A (zh) 基板、制作方法及显示面板
JPH0798414A (ja) 偏光板および偏光板の製造方法
CN1752275A (zh) 宽光谱减反射薄膜的制备方法
CN112433279B (zh) 一种光扩散膜的制备方法
KR100373841B1 (ko) 디퓨징 기능을 갖는 엘씨디 반사층 베이스 코팅 조성물
WO2018120529A1 (zh) 一种显示面板制程和一种用于显示面板的烘烤装置
CN110437784B (zh) 低折射率oca光学胶及其使用方法
CN107140845A (zh) 用溶液化学法制备可调节的宽频减反增透镀膜玻璃的方法
US10274779B2 (en) Method for manufacturing display substrate, display substrate, and display device
CN206387980U (zh) 一种提高显示效果的液晶显示屏
WO2018176821A1 (zh) 导光板、制备导光板的方法以及显示装置
CN212586674U (zh) 液晶盒及空间光调制器和空间光调制系统
WO2021227621A1 (zh) 显示面板及其制备方法、显示装置
JPH11109328A (ja) 液晶装置及びその製造方法
CN108399963B (zh) 一种高透过率导电薄膜的制作工艺及其制成的液晶显示屏
CN100392435C (zh) 形成突起膜的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19874110

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19874110

Country of ref document: EP

Kind code of ref document: A1