WO2020077894A1 - 一种小角度多色混光照明系统 - Google Patents

一种小角度多色混光照明系统 Download PDF

Info

Publication number
WO2020077894A1
WO2020077894A1 PCT/CN2019/070758 CN2019070758W WO2020077894A1 WO 2020077894 A1 WO2020077894 A1 WO 2020077894A1 CN 2019070758 W CN2019070758 W CN 2019070758W WO 2020077894 A1 WO2020077894 A1 WO 2020077894A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical waveguide
small
waveguide column
lamp beads
Prior art date
Application number
PCT/CN2019/070758
Other languages
English (en)
French (fr)
Inventor
高鞠
曹彭溪
Original Assignee
苏州晶品新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州晶品新材料股份有限公司 filed Critical 苏州晶品新材料股份有限公司
Publication of WO2020077894A1 publication Critical patent/WO2020077894A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S10/00Lighting devices or systems producing a varying lighting effect
    • F21S10/02Lighting devices or systems producing a varying lighting effect changing colors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • F21V19/001Fastening of light sources or lamp holders the light sources being semiconductors devices, e.g. LEDs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • F21V23/003Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/02Refractors for light sources of prismatic shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V2200/00Use of light guides, e.g. fibre optic devices, in lighting devices or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2113/00Combination of light sources
    • F21Y2113/10Combination of light sources of different colours
    • F21Y2113/13Combination of light sources of different colours comprising an assembly of point-like light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the invention relates to a landscape lighting device, in particular to a small-angle multi-color light mixing lighting system.
  • the light mixing lens uses the principle of light refraction and light collection to mix light. Due to the limitation of its optical principle, the light mixing lens cannot illuminate light at a small angle after light mixing. The minimum light emitting angle of the light mixing lens on the market also reaches 15 degrees, and the effect of light mixing is also poor.
  • the irradiation distance is usually 3 to 5 meters, the light spot is large, the light is divergent, and the brightness is small.
  • the present invention provides a small-angle multi-color mixing lighting system with a small emission angle and a long irradiation distance.
  • the specific technical solution is:
  • a small-angle multi-color mixed lighting system includes a radiator, a housing, colorful lamp beads and a lens, the radiator and the lens are installed at the bottom and top of the housing, respectively, the colorful lamp beads are fixed on the circuit board, the circuit The board is fixed on the heat sink, and the colorful lamp beads and the lens are located inside the housing; the colorful lamp beads are colorful LED lamp beads; and further include an optical waveguide column, the optical waveguide column is a light-transmitting cylinder, the The optical waveguide column is fixed on the top of the heat sink and is located between the colorful lamp beads and the lens, and the optical waveguide column, the lens and the colorful lamp beads are arranged coaxially.
  • colorful LED lamp beads can emit multi-colored light, but the light emitted from the surface of the LED is only light of multiple colors, and the various colors of light do not merge; and the angle of illumination of the colorful LED lamp beads is 120 degrees. Therefore, the colorful LED lamp beads emit light with a large angle and unfused colors.
  • the optical waveguide column is used for mixing and condensing light.
  • the optical waveguide column mixes the multi-color light emitted by the colorful LED lamp beads into a single-color light, and at the same time gathers the light of the colorful lamp beads and transmits the collected light to the lens. Refraction, to focus the light, so that the light is emitted at a small angle, to achieve non-imaging projection.
  • the optical waveguide column distorts the light, even if the light is refracted in all directions, thereby further improving the blending of the light and mixing the multi-colored light into the light of the desired color.
  • the lens uses a plane convex lens.
  • the lens can focus the light into parallel light and the angle of the parallel light is 0 degrees.
  • the smaller the spot on the focal point the smaller the angle of the emitted light.
  • the emitted light is 0 degrees.
  • the smaller the light exit surface on the top of the optical waveguide column which is actually impossible to achieve, so the top surface of the optical waveguide column has a certain area, so the top surface of the optical waveguide column is placed on a plane
  • the light emitted from the focal point of the convex lens still has a certain angle.
  • the angle is 3 degrees, that is, the emitted light is very close to the parallel light, the light irradiation distance is far, the spot is small, the brightness is high, and the light irradiation The distance reaches 50 meters. If the light exit point on the top surface of the optical waveguide column is defocused, the light exit angle is greater.
  • a plurality of colorful lamp beads there are a plurality of colorful lamp beads, and a plurality of colorful lamp beads are arranged in an array, that is, a plurality of colorful lamp beads are evenly distributed on the circuit board.
  • the colorful lamp beads can adopt various array methods such as 2X2 and 3X3, and the use of multiple lamp beads can improve the light intensity.
  • the colorful lamp beads are connected to a multi-channel driving device.
  • the multi-channel driving device is the prior art, and will not be described in detail here.
  • the multi-channel control device can make the power of each channel meet the design requirements, and can control which color light emitted by the colorful LED lamp beads, such as the need for purple light, the multi-channel drive device controls the colorful LED lamp beads to emit red and blue light, red light and Blue light is mixed into purple light.
  • the colorful lamp beads are fixed on the ceramic circuit board.
  • the function of the ceramic circuit board is as follows: 1. High thermal conductivity: the thermal conductivity is 20W / (m ⁇ K), which is ten times that of the traditional aluminum substrate.
  • the ceramic circuit board can reduce the difference between the junction temperature of the LED lamp beads and the surface of the heat sink. When the LED junction temperature is ensured within the safe temperature range, the heat sink can be reduced, thereby reducing the overall weight and volume of the lamp. 2.
  • Good pressure resistance The high-voltage resistance of ceramic circuit board with a thickness of 1mm is 10000V, while the conventional aluminum substrate with a thickness of 2mm is only 3000V. The use of ceramic circuit boards can greatly improve the electrical safety of lamps.
  • the optical waveguide column has a top surface, a bottom surface and a side surface; the bottom surface of the optical waveguide column is a polygon or a circle, the top surface of the optical waveguide column is a polygon or a circle; the bottom surface and the top of the optical waveguide column
  • the surfaces are all flat and parallel to each other; the side surfaces are composed of multiple curved surfaces or planes.
  • the top surface and the bottom surface are both flat and parallel to each other, which is conducive to the entry and exit of light.
  • the side of the optical waveguide column reflects or refracts the light.
  • the side of the optical waveguide column can adopt a regular or irregular curved surface, especially an irregular curved surface.
  • the angle of the irregular curved surface reflecting or refracting light constantly changes , So that the light blends with each other.
  • the optical waveguide column mixes different colors of light, so that the multi-color light passes through the optical waveguide column and is mixed into a single-color light, and the specified color can be mixed as needed.
  • the optical waveguide column combines multiple LED light lines to achieve light gathering and improve light intensity.
  • the light is reflected multiple times in the optical waveguide column, and due to space limitations, the multi-color light can only be reflected in a relatively narrow space in the optical waveguide column. After multiple reflections, part of the light is combined. Because the optical waveguide column transitions from a flat surface to a curved surface, the light is twisted, and the predetermined direction of the light is changed, which further blends the light. The bottom of the optical waveguide column is small, and the top is large. After the light is reflected multiple times inside, the reflection angle becomes smaller and smaller, and then a light-gathering effect is formed. When the top of the optical waveguide column is reached, the light exit angle is far less than 120 degrees.
  • the area of the bottom surface of the optical waveguide column is proportional to the area of the top surface and the height of the optical waveguide column. The larger the area of the bottom surface, the larger the area of the top surface. The higher the height of the optical waveguide column.
  • a plurality of curved surfaces intersect to form a plurality of edges, one end of the edge is located on the circumference of the bottom surface or the vertex or edge of the polygon, and the other end of the edge is located on the circumference of the top surface or the vertex or edge of the polygon.
  • the edge can further improve the blending of light.
  • the bottom surface of the optical waveguide column is polygonal, the top surface is circular, and the curved surface is a curved surface formed by transitioning from a plane to a curved surface.
  • the top of the optical waveguide column is designed to be circular.
  • the bottom surface of the optical waveguide column is set to a rectangular shape so that all light enters the optical waveguide column without increasing the extra bottom area and reducing light leakage.
  • the combination of a rectangle and a circle makes it easy to control the shape of the curved surface, thereby facilitating the control of light blending.
  • the area of the bottom surface of the optical waveguide column is larger than the area of the top surface, and the heights of the bottom surface, the top surface and the optical waveguide column are proportional.
  • one end of the edge is located at the vertex of the bottom surface, and the other end of the edge is located at the circumference of the top surface; wherein the plane where the end points of both ends of not less than one edge is not parallel to the axis of the optical waveguide column, The plane where the endpoints of both ends are located is parallel to the axis of the optical waveguide column.
  • the blended light rays can form a single color light.
  • the direction of the control edge also makes the structural design simple.
  • the light guide bracket is opaque, and the center of the light guide bracket is provided with a light guide hole, and the optical waveguide column is fixed in the light guide hole.
  • the light guide bracket can not only facilitate the installation of the optical waveguide column, but also enable more light to be reflected or refracted in the optical waveguide column to avoid light loss.
  • it further includes an atomizing film, which is located on the top surface of the optical waveguide column.
  • the surface of the atomizing film is densely covered with uneven small dots, which can cause light to be scattered and reflected. Make the light even.
  • the light coming out of the optical waveguide column has been blended, but still not completely blended.
  • the atomizing film the light can be further blended into a light of a desired color.
  • a combined small-angle multi-color light mixing lighting system includes a small-angle multi-color light mixing lighting system and a connecting plate, the connecting plate is provided with a plurality of screw holes; the top of the housing is provided with threaded holes, There are not less than two threaded holes, the threaded holes are arranged in a circular array around the axis of the housing, and the connection plate is fixed on the threaded hole by screws; the small angle multi-color mixing lighting system and the connection plate are not less than two The connection plate is used for connection between a plurality of small-angle multi-color mixing lighting systems.
  • a plurality of small-angle multi-color mixed-light illumination system arrays or ring arrays are arranged.
  • the present invention has the following beneficial effects:
  • the optical waveguide column provided by the invention has good light mixing effect, and can mix various monochromatic lights.
  • a small-angle multi-color mixing lighting system has a small light emitting angle, a long range, a small light spot, high brightness, and is convenient for combined use.
  • Fig. 1 is a schematic diagram of an explosion structure of a small-angle multi-color mixed light illumination system
  • FIG. 2 is a schematic diagram of the explosion structure of the optical waveguide column, the atomizing film and the light guide bracket;
  • Figure 3 is a schematic view of the axonometric structure of the optical waveguide column
  • FIG. 6 is a structural schematic diagram of a plurality of small-angle multi-color mixing lighting systems assembled into a combined small-angle multi-color mixing lighting system.
  • a small-angle multi-color mixed-lighting system includes a heat sink 7, a housing 5, colorful lamp beads 61 and a lens 4.
  • the heat sink 7 and the lens 4 are installed on the housing 5 respectively At the bottom and top, the colorful lamp beads 61 are fixed on the circuit board 62, and the circuit board 62 is fixed on the heat sink 7.
  • the colorful lamp beads 61 and the lens 4 are both located inside the housing 5; the colorful lamp beads 61 are Colorful LED lamp beads; also includes an optical waveguide column 1, the optical waveguide column 1 is a light-transmitting cylinder, the optical waveguide column 1 is fixed on the top of the heat sink 7, and is located between the colorful lamp beads 61 and the lens 4, The optical waveguide column 1, the lens 4 and the colorful lamp beads 61 are arranged coaxially.
  • a bottom waterproof rubber ring 51 is installed between the housing 5 and the radiator 7, and a top waterproof rubber ring 42 is installed between the lens 4 and the housing 5.
  • Colorful LED lamp beads can emit multiple colors of colored light, but after the light is emitted from the surface of the LED, it is only light of multiple colors, and the various colors of light do not merge; and the luminous angle of the colorful LED lamp beads is 120 degrees. Therefore, the colorful LED lamp beads emit light with a large angle and unfused colors.
  • the optical waveguide column 1 is used for mixing and condensing light.
  • the optical waveguide column 1 mixes the multi-color light emitted by the colorful LED lamp beads into a single color light, and at the same time gathers the light of the colorful lamp beads 61 and transmits the collected light to the lens 4,
  • the lens 4 refracts the light, focuses the light, and emits the light at a small angle to realize non-imaging projection.
  • the optical waveguide column 1 distorts the light, even if the light is refracted in all directions, thereby further improving the blending of the light and mixing the multi-colored light into the light of the desired color.
  • the lens 4 is a plane convex lens.
  • the lens 4 can focus the light into parallel light, and the angle of the parallel light is 0 degrees.
  • the imaging principle of the lens 4 the smaller the light spot on the focal point, the smaller the angle of the emitted light, and when it reaches a theoretical point, the emitted light is 0 degrees.
  • the light exit surface on the top of the optical waveguide column 1 is smaller, which is actually impossible to achieve, so the top surface 11 of the optical waveguide column 1 has a certain area, so the top of the optical waveguide column 1 After the surface 11 is placed on the focal point of the planar convex lens 4, the light emitted still has a certain angle.
  • the angle is 3 degrees, that is, the emitted light is very close to the parallel light, the light irradiation distance is far, and the light spot is small.
  • the brightness is high, and the light irradiation distance reaches 50 meters. If the light exit point of the top surface 11 of the optical waveguide column 1 is defocused, the light exit angle is greater.
  • the colorful lamp beads 61 can adopt various array methods such as 2X2 and 3X3. The use of multiple lamp beads can improve the light intensity.
  • the colorful lamp beads 61 are connected to the multi-channel driving device.
  • the multi-channel driving device is the prior art, and will not be described in detail here.
  • the multi-channel control device can make the power of each channel meet the design requirements, and can control which color light emitted by the colorful LED lamp beads, such as the need for purple light, the multi-channel drive device controls the colorful LED lamp beads to emit red and blue light, red light and Blue light is mixed into purple light.
  • the colorful lamp beads 61 are fixed on the ceramic circuit board 62.
  • the functions of the ceramic circuit board 62 are: 1. High thermal conductivity: the thermal conductivity is 20 W / (m ⁇ K), which is ten times that of the traditional aluminum substrate. The use of ceramic circuit board 62 can reduce the temperature difference between the junction temperature of the LED lamp beads and the surface of the heat sink 7. When ensuring that the LED junction temperature is within the safe temperature range, the heat sink 7 can be reduced, thereby reducing the overall weight and volume of the lamp Decrease. 2. Good pressure resistance: The high voltage resistance of 621mm thick ceramic circuit board is 10000V, while the conventional aluminum substrate with 2mm thickness is only 3000V. Using the ceramic circuit board 62 can greatly improve the electrical safety performance of the lamp.
  • the optical waveguide column 1 has a top surface 11, a bottom surface 12 and side surfaces 13; the bottom surface 12 of the optical waveguide column 1 is polygonal or circular, and the top surface 11 of the optical waveguide column 1 is polygonal or circular ; The bottom surface 12 and the top surface 11 of the optical waveguide column 1 are both flat and parallel to each other; the side surface 13 is composed of multiple curved surfaces or planes.
  • the top surface 11 and the bottom surface 12 are both flat and parallel to each other, which facilitates the entry and exit of light.
  • the side 13 of the optical waveguide column 1 can reflect or refract the light if it is flat, but the light is not easy to intersect, that is, the light is easy to form a parallel state, the parallel light is not easy to mix, and the color light mixing effect is poor.
  • the side surface 13 of the optical waveguide column 1 may be a regular curved surface or an irregular curved surface.
  • the curved surface makes the angle of reflection or refraction of light constantly change.
  • the side 13 of the optical waveguide column 1 reflects or refracts light, especially the reflection or refraction of irregular curved surfaces is better.
  • the angle of reflection or refraction of light on irregular surfaces continuously changes, which greatly enhances the light interleaving. So that different colors of light blend with each other.
  • the optical waveguide column 1 mixes a plurality of LED light lines to achieve light focusing and improve light intensity.
  • a plurality of curved surfaces intersect to form a plurality of edges 14, one end of the edge 14 is located on the circumference of the bottom surface 12 or the vertex or edge of the polygon, and the other end of the edge 14 is located on the circumference of the top surface 11 or the vertex or edge of the polygon.
  • the edge 14 can further improve the blending of light.
  • the bottom surface 12 of the optical waveguide column 1 is polygonal, the top surface 11 is circular, and the curved surface is a curved surface formed by transitioning from a plane to a curved surface.
  • the bottom surface 12 of the optical waveguide column 1 is square.
  • the top of the optical waveguide column 1 is designed to be circular.
  • the top surface 11 of the optical waveguide column 1 may be determined according to design requirements, or may be polygonal. When the top surface 11 is polygonal, the light spot is also polygonal.
  • the bottom surface 12 of the optical waveguide column 1 is set to a rectangular shape, so that all the light enters the optical waveguide column 1, without increasing the extra bottom surface area and reducing light leakage.
  • the combination of a rectangle and a circle makes it easy to control the shape of the curved surface, thereby facilitating the control of light blending.
  • the bottom surface 12 of the optical waveguide column 1 is square, there are four curved surfaces.
  • the four curved surfaces intersect to form four edges 14, one end of which is located at the four vertices of the square, and the other end is located at the circumference of the top surface 11 on.
  • the center of the square of the bottom surface 12 is on the same axis as the center of the top surface 11.
  • the area of the bottom surface 12 of the optical waveguide column 1 is larger than the area of the top surface 11, and the heights of the bottom surface 12, the top surface 11 and the optical waveguide column 1 are proportional.
  • One end of the rib 14 is located on the vertex of the bottom surface 12, and the other end of the rib 14 is located on the circumference of the top surface 11; the plane where the end points of both ends of not less than one rib 14 is not parallel to the axis of the optical waveguide column 1, the remaining The plane where the end points of both ends of 14 are located is parallel to the axis of the optical waveguide column 1.
  • the three ribs 14 are all parallel to the axis of the optical waveguide column 1, that is, the planes at the ends of the two ends of the three ribs 14 all pass through the axis of the optical waveguide column 1, or the axis of the optical waveguide column 1 is in these three edges 14 ends on the plane formed by the ends.
  • the axis of the optical waveguide column 1 is not on a plane of the end shape of both ends of the other rib 14.
  • the plane where the end points of both ends of one rib 14 are located is not parallel to the axis of the optical waveguide column, which causes the side surface 13 of the optical waveguide column 1 to form at least two irregular curved surfaces.
  • the blended light rays can form a single color light.
  • the direction of the control edge 14 also simplifies the structural design.
  • FIG. 2 it also includes an atomizing film 3 and an opaque light guide bracket 2.
  • a light guide hole 21 is provided in the center of the light guide bracket 2, the optical waveguide column 1 is fixed in the light guide hole 21, and the atomizing film 3 is located on the top surface 11 of the optical waveguide column 1 and on top of the light guide hole 21.
  • the atomizing film 3 covers the top surface 11 of the optical waveguide column 1.
  • the surface of the atomizing film 3 is densely dotted with uneven dots, which can scatter and reflect light. Make the light even.
  • the light from the optical waveguide column 1 has been blended, but still not completely blended. Through the atomizing film 3, the light can be further blended into a light of a desired color.
  • the light guide bracket 2 can not only facilitate the installation of the optical waveguide column 1, but also enable more light to be reflected or refracted in the optical waveguide column 1 to avoid loss of light.
  • the optical waveguide column 1 can be processed with transparent acrylic.
  • the side surface 13 of the optical waveguide column 1 reflects or refracts the light. Since the side surface 13 is an irregular curved surface, the angle of reflection or refraction of the light continuously changes, thereby enhancing the mutual blending of the light.
  • the optical waveguide column 1 mixes different colors of light, so that the multi-color light passes through the optical waveguide column 1 and is mixed into a single color light of a desired color.
  • the red and blue lights on the colorful lamp beads 61 are bright, the red and blue lights pass through the optical waveguide column 1 and become a single purple light, which perfectly mixes the red and blue lights.
  • the side surface 13 of the optical waveguide column 1 reflects or refracts light. Since the side surface 13 is an irregular curved surface, the angle of reflection or refraction of the light continuously changes, so that the light rays blend with each other.
  • the optical waveguide column 1 mixes different colors of light, so that the multi-color light passes through the optical waveguide column 1 to be mixed into a single color of light, and can be mixed out as needed The specified color.
  • the light is reflected multiple times in the optical waveguide column 1, and due to space limitations, the polychromatic light can only be reflected in a relatively narrow space in the optical waveguide column 1, and after multiple reflections, part of the light is combined. Since the optical waveguide column 1 transitions from a plane to a curved surface, the light is twisted, and the predetermined propagation direction of the light is changed, which further blends the light. The bottom surface 12 of the optical waveguide column 1 is small, and the top surface 11 is large. After the light is reflected multiple times in the inside, the reflection angle becomes smaller and smaller, and then a condensing effect is formed. When the top of the optical waveguide column 1 is reached, the light exit angle is much smaller 120 degrees.
  • the area of the bottom surface 12 of the optical waveguide column 1 is proportional to the area of the top surface 11 and the height of the optical waveguide column 1.
  • the light guide bracket 2 will absorb part of the stray light leaking from the optical waveguide column 1, so that the entire optical waveguide column 1 system has only the top of the optical waveguide column 1 Glowing, no remaining light is exposed. At this time, the light-emitting point is equivalent to the surface on the top of the optical waveguide column 1 and is clean and free of remaining stray light.
  • the light After the light reaches the top of the optical waveguide column 1, it then passes through the atomizing film 3 on the top of the optical waveguide column 1, so that the various colors of light are further integrated into a desired color of light.
  • the lens 4 is a plane convex lens.
  • the lens 4 can focus the light into parallel light, and the angle of the parallel light is 0 degrees.
  • the imaging principle of the lens 4 the smaller the light spot on the focal point, the smaller the angle of the emitted light, and when it reaches a theoretical point, the emitted light is 0 degrees.
  • the light exit surface on the top of the optical waveguide column 1 is smaller, which is actually impossible to achieve, so the top surface 11 of the optical waveguide column 1 has a certain area, so the top of the optical waveguide column 1 After the surface 11 is placed on the focal point of the planar convex lens 4, the light emitted still has a certain angle.
  • the angle is 3 degrees, that is, the emitted light is very close to the parallel light, the light irradiation distance is far, and the light spot is small.
  • the brightness is high, and the light irradiation distance reaches 50 meters. If the light exit point of the top surface 11 of the optical waveguide column 1 is defocused, the light exit angle is greater.
  • a combined small-angle multi-color light mixing lighting system includes a small-angle multi-color light mixing lighting system and a connecting plate, the connecting plate is provided with a plurality of screw holes; the top of the housing 5 is provided There are not less than two threaded holes.
  • the threaded holes are arranged in a circular array around the axis of the housing 5.
  • the connecting plate 8 is fixed on the threaded hole by screws; a small-angle multi-color mixing lighting system and connecting plate are not less than Two, connecting plates are used for the connection between multiple small angle multi-color mixing lighting systems.
  • the top surface 11 and the bottom surface 12 of the housing 5 are both rectangular.
  • the top of the housing 5 is provided with threaded holes.
  • the threaded holes are provided with four, and are located on the four corners of the top surface 11 of the housing 5.
  • a small-angle multi-color mixing lighting system can be spliced according to a regular pattern, or spliced according to an irregular pattern, and the shape of the connecting plate or the position of the screw hole can be adjusted during splicing.
  • a plurality of small-angle multi-color mixed light illumination system array settings or ring array settings are provided.
  • Array setting refers to a combination of multiple small-angle multi-color mixing lighting systems that can be spliced in a single row, that is, there are multiple rows, 1X2, 1X3, 1X4 ... or multiple rows, that is, 2X2, 2X3, 2X4, 3X3 , 3X4, 3X5, 4X4, etc.
  • the setting of a ring array refers to that a plurality of small-angle multi-color mixing lighting systems form a circular ring, which can form a ring or multiple concentric rings.
  • More than one kind of small-angle multi-color mixing lighting system can be spliced into various shapes, and the specific shapes are spliced according to the design requirements.
  • the invention solves the problem that the colorful floodlights on the market do not have small-angle lamps.
  • the mixing angle of a small-angle multi-color mixing lighting system is at least 3 degrees, and it is modularized. It can be assembled freely and can be combined into wall washes and flood lights of different powers and sizes.
  • a small-angle multi-color mixing lighting system is spliced through the connecting plate 8 without affecting its light-emitting angle. Through the distribution photometer, it can be tested that the overall light-emitting angle of the splicing is consistent with the light-emitting angle of a single lamp.

Abstract

一种小角度多色混光照明系统,包括散热器(7)、外壳(5)、多彩灯珠(61)和透镜(4),散热器(7)和透镜(4)分别安装在外壳(5)的底部和顶部,多彩灯珠(61)固定在线路板(62)上,线路板(62)固定在散热器(7)上,多彩灯珠(61)和透镜(4)均位于外壳(5)的内部;多彩灯珠(61)为多彩LED灯珠;还包括光波导柱(1),光波导柱(1)为透光柱体,光波导柱(1)固定在散热器(7)的顶部,且位于多彩灯珠(61)与透镜(4)之间,光波导柱(1)、透镜(4)和多彩灯珠(61)同轴线设置。光波导柱(1)混光效果好、能混出多种单色光。小角度多色混光照明系统光线发出角度小、射程远、光斑小、亮度高、方便组合使用。

Description

一种小角度多色混光照明系统 技术领域
本发明涉及一种景观照明装置,尤其是一种小角度多色混光照明系统。
背景技术
目前市场上的投光灯、洗墙灯和景观灯均使用混光透镜,混光透镜利用光的折射和聚光原理进行混光。由于其光学原理的限制,该混光透镜无法实现混光后以小角度照射光线。市场上的混光透镜最小的发光角度也达到15度,并且混光的效果也较差,照射距离通常为3~5米,光斑大,光线发散厉害,亮度小。
发明内容
为解决上述问题,本发明提供一种发射角度小、照射距离远的一种小角度多色混光照明系统,具体技术方案为:
一种小角度多色混光照明系统,包括散热器、外壳、多彩灯珠和透镜,所述散热器和透镜分别安装在外壳的底部和顶部,所述多彩灯珠固定在线路板上,线路板固定在散热器上,所述多彩灯珠和透镜均位于外壳的内部;所述多彩灯珠为多彩LED灯珠;还包括光波导柱,所述光波导柱为透光柱体,所述光波导柱固定在散热器的顶部,且位于多彩灯珠与透镜之间,光波导柱、透镜和多彩灯珠同轴线设置。
通过采用上述技术方案,多彩LED灯珠能发出多种颜色的彩色光,但是光从在LED表面发出后仅仅是多种颜色的光线,各色光线并不融合;而且多彩LED灯珠的发光角度是120度。因此,多彩LED灯珠发出的是大角度且色彩不融合的光线。
光波导柱用于混光和聚光,光波导柱将多彩LED灯珠发出的多色光混成颜色单一的光,同时聚集多彩灯珠的光线,并将聚集的光线传送给透镜,透镜对光线进行折射,让光线聚焦,使光线以较小的角度发出,实现非成像投光。光波导柱对光线的进行了扭曲,即使光线向各个方向折射,从而进一步提高了光线的糅合,使多色光线混成所需颜色的光线。
透镜采用平面凸透镜。当光线集中在焦点上时,透镜可以将光线聚焦成平行光发出,平行光的角度为0度。根据透镜成像原理,焦点上的光点越小,则发出的光的角度越小,当达到理论上的一个点时,则发出的光为0度。为了能使光线 角度小,则光波导柱顶部的出光面要越小,而实际上是无法实现的,因此光波导柱的顶面具有一定的面积,因此将光波导柱的顶面置于平面凸透镜的焦点上后发出的光线仍然具有一定的角度,进过实际测量,该角度为3度,即发出的光线与平行光很接近,光线的照射距离远,光斑小,亮度高,光线的照射距离达到50米。如果将光波导柱的顶面出光点进行离焦,则出光角度越大。
优选的,所述多彩灯珠设有多个,多个多彩灯珠阵列设置,即多个多彩灯珠均布在线路板上。
通过采用上述技术方案,多彩灯珠可以采用2X2、3X3等多种阵列方式,采用多个灯珠能够提高光照强度。
优选的,所述多彩灯珠与多通道驱动装置连接。
通过采用上述技术方案,多通道驱动装置为现有技术,在此不做详细描述。多通道控制装置能够使每个通道的功率都符合设计要求,并且能够控制多彩LED灯珠发出哪些色光,比如需要紫色光,多通道驱动装置控制多彩LED灯珠发出红光和蓝光,红光和蓝光混合成紫色光。
优选的,所述多彩灯珠固定在陶瓷线路板上。
通过采用上述技术方案,陶瓷线路板的作用为:1、高导热:导热率为20W/(m·K),是传统铝基板的十倍。采用陶瓷线路板,可以减小LED灯珠的结温与散热器表面的温差,在确保LED结温在安全温度范围内时,可以减小散热器,从而使灯具整体重量减轻,体积减小。2、耐压性能好:陶瓷线路板1mm厚的耐高压为10000V,而传统铝基板2mm厚的耐压,常规的只有3000V。采用陶瓷线路板,可以使灯具的电气安全性能大大提高。
优选的,所述光波导柱具有顶面、底面和侧面;所述光波导柱的底面为多边形或圆形,光波导柱的顶面为多边形或圆形;所述光波导柱的底面和顶面均为平面,且相互平行;所述侧面由多个曲面或平面组成。
通过采用上述技术方案,顶面和底面均为平面,且相互平行,有利于光线的进入和射出。
光波导柱的侧面对光线进行反射或折射,光波导柱的侧面可以采用规则或不规则的曲面,尤其是不规则的曲面更好,不规则的曲面对光线的反射或折射的角度不断变化,从而使光线之间相互糅合。
当光波导柱的底面装有多彩灯时,光波导柱把不同颜色的光进行糅合,使多色光经过光波导柱之后混合成颜色单一的光,并且可以根据需要混合出指定的颜色。
光波导柱将多个LED灯光线进行糅合,实现了聚光,提高了光强度。
光线在光波导柱中多次反射,且由于空间限制,多色光线在光波导柱中只能在相对窄小的空间中反射,多次反射后,部分光线进行了糅合。由于光波导柱是由平面过渡成曲面,从而使光线进行扭曲,并改变光线既定的传播方向,进一步使光线进行了糅合。光波导柱底部小,顶部大,光线在里面进行多次反射后,反射角度越来越小,则形成聚光作用,在到达光波导柱顶部时,出光角度远远小于120度。
光波导柱为了能达到将光线很好的糅合在一起,光波导柱的底面的面积与顶面的面积以及光波导柱的高度是成正比关系,底面面积越大,则顶面面积越大,光波导柱的高度越高。
优选的,多个曲面相交形成多个棱,所述棱的一端位于底面的圆周上或多边形的顶点或边上,棱的另一端于顶面的圆周上或多边形的顶点或边上。
通过采用上述技术方案,棱能够进一步提高光线的糅合。
优选的,所述光波导柱的底面为多边形,顶面为圆形,所述曲面为平面过渡成曲面形成的曲面。
通过采用上述技术方案,由于透镜具有成像作用,而光斑所需的为圆形,所以光波导柱顶部设计成圆形。
由于多彩LED灯珠通常为矩形,因此将光波导柱的底面设置成矩形使光线全部进入光波导柱,不增大多余的底部面积,减少漏光。
同时,矩形与圆形配合便于控制曲面的形状,从而方便控制光线的糅合。
优选的,所述光波导柱底面的面积大于顶面的面积,所述底面、顶面和光波导柱的高度成正比。
优选的,所述棱的一端位于底面的顶点上,棱的另一端位于顶面的圆周上;其中不少于一个棱的两端的端点所在的平面与光波导柱的轴线不平行,其余棱的两端的端点所在的平面与光波导柱的轴线平行。
通过采用上述技术方案,通过控制棱的走向从而控制光线的糅合,使糅合的 光线能够形成单一色光。控制棱的走向也使结构设计简单。
其中一个棱的两端的端点所在的平面与光波导柱的轴线不平行,这就使光波导柱的侧面至少形成两个不规则的曲面。
优选的,还包括不透光的导光支架,导光支架的中心设有导光孔,光波导柱固定在导光孔中。
通过采用上述技术方案,光波导柱外有不透光的黑色导光支架,会吸收部分从光波导柱中漏出来的杂光的作用,使整个光波导柱系统只有光波导柱顶部发光,没有其余的光线露出。此时,发光点就相当于在光波导柱的顶部的面,且干净无其余杂光。
导光支架既能方便光波导柱的安装,同时能够使更多的光线在光波导柱中发生反射或折射,避免光线损失。
优选的,还包括雾化膜,所述雾化膜位于光波导柱的顶面。
通过采用上述技术方案,雾化膜表面密布高低不平小圆点,可以使光进行散射和反射。使光线进行匀合作用。光波导柱出来的光,已经进行了糅合,但还是没有完全糅合。通过雾化膜,可以使光线进一步糅合成一种所需颜色的光线。
一种组合式小角度多色混光照明系统,包括一种小角度多色混光照明系统和连接板,所述连接板上设有多个螺钉孔;所述外壳的顶部设有螺纹孔,螺纹孔不少于两个,螺纹孔绕外壳的轴线环形阵列设置,所述连接板通过螺钉固定在螺纹孔上;所述一种小角度多色混光照明系统和连接板均不少于两个,所述连接板用于多个一种小角度多色混光照明系统之间的连接。
优选的,多个一种小角度多色混光照明系统阵列设置或环形阵列设置。
与现有技术相比本发明具有以下有益效果:
本发明提供的光波导柱混光效果好、能混出多种单色光。一种小角度多色混光照明系统光线发出角度小、射程远、光斑小、亮度高、方便组合使用。
附图说明
图1是一种小角度多色混光照明系统的爆炸结构示意图;
图2是光波导柱、雾化膜和导光支架的爆炸结构示意图;
图3是光波导柱的轴测结构示意图;
图4是光波导柱的主视图;
图5是光波导柱的仰视图;
图6是多个一种小角度多色混光照明系统拼装成一种组合式小角度多色混光照明系统的结构示意图。
具体实施方式
现结合附图对本发明作进一步说明。
如图1至图5所示,一种小角度多色混光照明系统,包括散热器7、外壳5、多彩灯珠61和透镜4,所述散热器7和透镜4分别安装在外壳5的底部和顶部,所述多彩灯珠61固定在线路板62上,线路板62固定在散热器7上,所述多彩灯珠61和透镜4均位于外壳5的内部;所述多彩灯珠61为多彩LED灯珠;还包括光波导柱1,所述光波导柱1为透光柱体,所述光波导柱1固定在散热器7的顶部,且位于多彩灯珠61与透镜4之间,光波导柱1、透镜4和多彩灯珠61同轴线设置。
外壳5与散热器7之间装有底部防水胶圈51,透镜4与外壳5之间装有顶部防水胶圈42。
多彩LED灯珠能发出多种颜色的彩色光,但是光从在LED表面发出后仅仅是多种颜色的光线,各色光线并不融合;而且多彩LED灯珠的发光角度是120度。因此,多彩LED灯珠发出的是大角度且色彩不融合的光线。
光波导柱1用于混光和聚光,光波导柱1将多彩LED灯珠发出的多色光混成颜色单一的光,同时聚集多彩灯珠61的光线,并将聚集的光线传送给透镜4,透镜4对光线进行折射,让光线聚焦,使光线以较小的角度发出,实现非成像投光。光波导柱1对光线的进行了扭曲,即使光线向各个方向折射,从而进一步提高了光线的糅合,使多色光线混成所需颜色的光线。
透镜4采用平面凸透镜。当光线集中在焦点上时,透镜4可以将光线聚焦成平行光发出,平行光的角度为0度。根据透镜4成像原理,焦点上的光点越小,则发出的光的角度越小,当达到理论上的一个点时,则发出的光为0度。为了能使光线角度小,则光波导柱1顶部的出光面要越小,而实际上是无法实现的,因此光波导柱1的顶面11具有一定的面积,因此将光波导柱1的顶面11置于平面凸透镜4的焦点上后发出的光线仍然具有一定的角度,进过实际测量,该角度为3度,即发出的光线与平行光很接近,光线的照射距离远,光斑小,亮度高,光 线的照射距离达到50米。如果将光波导柱1的顶面11出光点进行离焦,则出光角度越大。
多彩灯珠61设有多个,多个多彩灯珠61阵列设置,即多个多彩灯珠61均布在线路板62上。多彩灯珠61可以采用2X2、3X3等多种阵列方式,采用多个灯珠能够提高光照强度。
多彩灯珠61与多通道驱动装置连接。多通道驱动装置为现有技术,在此不做详细描述。多通道控制装置能够使每个通道的功率都符合设计要求,并且能够控制多彩LED灯珠发出哪些色光,比如需要紫色光,多通道驱动装置控制多彩LED灯珠发出红光和蓝光,红光和蓝光混合成紫色光。
多彩灯珠61固定在陶瓷线路板62上。
陶瓷线路板62的作用为:1、高导热:导热率为20W/(m·K),是传统铝基板的十倍。采用陶瓷线路板62,可以减小LED灯珠的结温与散热器7表面的温差,在确保LED结温在安全温度范围内时,可以减小散热器7,从而使灯具整体重量减轻,体积减小。2、耐压性能好:陶瓷线路板621mm厚的耐高压为10000V,而传统铝基板2mm厚的耐压,常规的只有3000V。采用陶瓷线路板62,可以使灯具的电气安全性能大大提高。
如图3至图5所示,光波导柱1具有顶面11、底面12和侧面13;光波导柱1的底面12为多边形或圆形,光波导柱1的顶面11为多边形或圆形;光波导柱1的底面12和顶面11均为平面,且相互平行;侧面13由多个曲面或平面组成。
顶面11和底面12均为平面,且相互平行,有利于光线的进入和射出。
光波导柱1的侧面13如果采用平面也能实现光线的反射或折射,但是光线不容易交错,即各个光线容易形成平行的状态,平行光不容易发生糅合,彩色光混合效果较差。
光波导柱1的侧面13可以为规则的曲面或不规则的曲面。曲面容易使光线的反射或折射的角度不断发生变化。光波导柱1的侧面13对光线进行反射或折射,尤其是不规则的曲面反射或折射的效果更好,不规则的曲面对光线的反射或折射的角度不断变化,大大加强了光线交错,从而使不同颜色的光线之间相互糅合。
光波导柱1将多个LED灯光线进行糅合,实现了聚光,提高了光强度。
多个曲面相交形成多个棱14,所述棱14的一端位于底面12的圆周上或多边形的顶点或边上,棱14的另一端于顶面11的圆周上或多边形的顶点或边上。棱14能够进一步提高光线的糅合。
光波导柱1的底面12为多边形,顶面11为圆形,曲面为平面过渡成曲面形成的曲面。
光波导柱1的底面12为正方形。
由于透镜4具有成像作用,而光斑所需的为圆形,所以光波导柱1顶部设计成圆形。光波导柱1的顶面11可以根据设计要求进行确定,也可以为多边形,顶面11为多边形时光斑也为多边形。
由于多彩LED灯珠通常为矩形,在该灯具中为正方形,因此将光波导柱1的底面12设置成矩形,从而使光线全部进入光波导柱1,不增大多余的底面面积,减少漏光。同时,矩形与圆形配合便于控制曲面的形状,从而方便控制光线的糅合。
由于光波导柱1的底面12为正方形,因此有四个曲面,四个曲面相交形成四个棱14,四个棱14的一端分别位于正方形的四个顶点,另一端均位于顶面11的圆周上。
底面12的正方形的中心与顶面11的中心在同一轴线上。
光波导柱1底面12的面积大于顶面11的面积,所述底面12、顶面11和光波导柱1的高度成正比。
棱14的一端位于底面12的顶点上,棱14的另一端位于顶面11的圆周上;其中不少于一个棱14的两端的端点所在的平面与光波导柱1的轴线不平行,其余棱14的两端的端点所在的平面与光波导柱1的轴线平行。
其中三个棱14均与光波导柱1的轴线平行,即这三个棱14的两端的端点所在的平面均穿过光波导柱1轴线,或者说光波导柱1的轴线在这三个棱14的两端的端点所形成的平面上。光波导柱1的轴线不在另一个棱14的两端的端点形的一平面上。其中一个棱14的两端的端点所在的平面与光波导柱的轴线不平行,这就使光波导柱1的侧面13至少形成两个不规则的曲面。
通过控制棱14的走向从而控制光线的糅合,使糅合的光线能够形成单一色光。控制棱14的走向也使结构设计简单。
如图2所示,还包括雾化膜3和不透光的导光支架2。导光支架2的中心设有导光孔21,光波导柱1固定在导光孔21中,雾化膜3位于光波导柱1的顶面11,且位于导光孔21的顶部。雾化膜3覆盖光波导柱1的顶面11。
雾化膜3表面密布高低不平小圆点,可以使光进行散射和反射。使光线进行匀合作用。光波导柱1出来的光,已经进行了糅合,但还是没有完全糅合。通过雾化膜3可以使光线进一步糅合成一种所需颜色的光线。
导光支架2既能方便光波导柱1的安装,同时能够使更多的光线在光波导柱1中发生反射或折射,避免光线损失。
光波导柱1可采用透明的亚克力加工。光波导柱1的侧面13对光线进行反射或折射,由于侧面13为不规则的曲面,不规则的曲面使对光线的反射或折射的角度不断变化,从而增强了光线之间相互糅合。
当光波导柱1的底面12装有多彩灯珠61时,光波导柱1把不同颜色的光进行糅合,使多色光经过光波导柱1之后混合成所需颜色的单一色光。
例如当多彩灯珠61上红和蓝都亮时,红光和蓝光经光波导柱1后变成单一的紫色光,将红蓝两色光进行了完美的混合。
光波导柱1的侧面13对光线进行反射或折射,由于侧面13为不规则的曲面,不规则的曲面使对光线的反射或折射的角度不断变化,从而使光线之间相互糅合。
当光波导柱1的底面12装有多彩灯珠61时,光波导柱1把不同颜色的光进行糅合,使多色光经过光波导柱1之后混合成颜色单一的光,并且可以根据需要混合出指定的颜色。
光线在光波导柱1中多次反射,且由于空间限制,多色光线在光波导柱1中只能在相对窄小的空间中反射,多次反射后,部分光线进行了糅合。由于光波导柱1是由平面过渡成曲面,从而使光线进行扭曲,并改变光线既定的传播方向,进一步使光线进行了糅合。光波导柱1的底面12小,顶面11大,光线在里面进行多次反射后,反射角度越来越小,则形成聚光作用,在到达光波导柱1顶部时,出光角度远远小于120度。
光波导柱1为了能达到将光线很好的糅合在一起,光波导柱1的底面12的面积与顶面11的面积以及光波导柱1的高度是成正比关系,底面12面积越大,则顶面11面积越大,光波导柱1的高度越高。
光波导柱1外有不透光的黑色导光支架2,导光支架2会吸收部分从光波导柱1中漏出来的杂光的作用,使整个光波导柱1系统只有光波导柱1顶部发光,没有其余的光线露出。此时,发光点就相当于在光波导柱1的顶部的面,且干净无其余杂光。
光线到达光波导柱1顶部后,再通过光波导柱1顶部的雾化膜3,使各色光线进一步糅合成一种所需颜色的光线。
透镜4采用平面凸透镜。当光线集中在焦点上时,透镜4可以将光线聚焦成平行光发出,平行光的角度为0度。根据透镜4成像原理,焦点上的光点越小,则发出的光的角度越小,当达到理论上的一个点时,则发出的光为0度。为了能使光线角度小,则光波导柱1顶部的出光面要越小,而实际上是无法实现的,因此光波导柱1的顶面11具有一定的面积,因此将光波导柱1的顶面11置于平面凸透镜4的焦点上后发出的光线仍然具有一定的角度,进过实际测量,该角度为3度,即发出的光线与平行光很接近,光线的照射距离远,光斑小,亮度高,光线的照射距离达到50米。如果将光波导柱1的顶面11出光点进行离焦,则出光角度越大。
如图6所示,一种组合式小角度多色混光照明系统,包括一种小角度多色混光照明系统和连接板,连接板上设有多个螺钉孔;外壳5的顶部设有螺纹孔,螺纹孔不少于两个,螺纹孔绕外壳5的轴线环形阵列设置,连接板8通过螺钉固定在螺纹孔上;一种小角度多色混光照明系统和连接板均不少于两个,连接板用于多个一种小角度多色混光照明系统之间的连接。
外壳5的顶面11和底面12均为矩形,外壳5的顶部设有螺纹孔,螺纹孔设有四个,且位于外壳5顶面11的四个角上。
一种小角度多色混光照明系统可以按照规则的图形拼接,或按照不规则的图形拼接,拼接时调整连接板的形状或螺钉孔的位置即可。
多个一种小角度多色混光照明系统阵列设置或环形阵列设置。
阵列设置指多个一种组合式小角度多色混光照明系统可以采用单排拼接,即一排有多个,1X2、1X3、1X4……或多排拼接,即2X2、2X3、2X4、3X3、3X4、3X5、4X4等等。
环形阵列设置指多个一种小角度多色混光照明系统组成圆环状,可以组成一 个圆环,或多个同心圆环等。
多个一种小角度多色混光照明系统可拼接成多种形状,具体形状根据设计要求进行拼接。
本发明解决了市场上多彩投光灯没有小角度灯具的问题。一种小角度多色混光照明系统的混光角度最小为3度,并且为模组化,可以自由拼装,可以组合成不同功率,不同尺寸的洗墙灯,投光灯。一种小角度多色混光照明系统通过连接板8拼接之后,不影响其出光角度,通过分布光度计,可以测试出拼接成的整体的出光角度与单个灯的出光角度一致。

Claims (13)

  1. 一种小角度多色混光照明系统,包括散热器(7)、外壳(5)、多彩灯珠(61)和透镜(4),所述散热器(7)和透镜(4)分别安装在外壳(5)的底部和顶部,所述多彩灯珠(61)固定在线路板(62)上,线路板(62)固定在散热器(7)上,所述多彩灯珠(61)和透镜(4)均位于外壳(5)的内部;
    其特征在于,所述多彩灯珠(61)为多彩LED灯珠;
    还包括光波导柱(1),所述光波导柱(1)为透光柱体,所述光波导柱(1)固定在散热器(7)的顶部,且位于多彩灯珠(61)与透镜(4)之间,光波导柱(1)、透镜(4)和多彩灯珠(61)同轴线设置。
  2. 根据权利要求1所述的一种小角度多色混光照明系统,其特征在于,
    所述多彩灯珠(61)设有多个,多个多彩灯珠(61)阵列设置,即多个多彩灯珠(61)均布在线路板(62)上。
  3. 根据权利要求2所述的一种小角度多色混光照明系统,其特征在于,
    所述多彩灯珠(61)与多通道驱动装置连接。
  4. 根据权利要求2所述的一种小角度多色混光照明系统,其特征在于,
    所述多彩灯珠(61)固定在陶瓷线路板(62)上。
  5. 根据权利要求1所述的一种小角度多色混光照明系统,其特征在于,
    所述光波导柱(1)具有顶面(11)、底面(12)和侧面(13);
    所述光波导柱(1)的底面(12)为多边形或圆形,光波导柱(1)的顶面(11)为多边形或圆形;
    所述光波导柱(1)的底面(12)和顶面(11)均为平面,且相互平行;
    所述侧面(13)由多个曲面或平面组成。
  6. 根据权利要求5所述的一种小角度多色混光照明系统,其特征在于,多个曲面相交形成多个棱(14),所述棱(14)的一端位于底面(12)的圆周上或多边形的顶点或边上,棱(14)的另一端于顶面(11)的圆周上或多边形的顶点或边上。
  7. 根据权利要求5或6所述的一种小角度多色混光照明系统,其特征在于,
    所述光波导柱(1)的底面(12)为多边形,顶面(11)为圆形,所述曲面为平面过渡成曲面形成的曲面。
  8. 根据权利要求7所述的一种小角度多色混光照明系统,其特征在于,
    所述棱(14)的一端位于底面(12)的顶点上,棱(14)的另一端位于顶面(11)的圆周上;
    其中不少于一个棱(14)的两端的端点所在的平面与光波导柱(1)的轴线不平行,其余棱(14)的两端的端点所在的平面与光波导柱(1)的轴线平行。
  9. 根据权利要求5或6所述的一种小角度多色混光照明系统,其特征在于,
    所述光波导柱(1)底面(12)的面积大于顶面(11)的面积,所述底面(12)、顶面(11)和光波导柱(1)的高度成正比。
  10. 根据权利要求5或6所述的一种小角度多色混光照明系统,其特征在于,还包括不透光的导光支架(2),导光支架(2)的中心设有导光孔(21),光波导柱(1)固定在导光孔(21)中。
  11. 根据权利要求1所述的一种小角度多色混光照明系统,其特征在于,还包括雾化膜(3),所述雾化膜(3)位于光波导柱(1)的顶面(11)。
  12. 一种组合式小角度多色混光照明系统,其特征在于,包括权利要求1至10任一项所述的一种小角度多色混光照明系统和连接板(8);
    所述连接板(8)上设有多个螺钉孔;
    所述外壳(5)的顶部设有螺纹孔,螺纹孔不少于两个,螺纹孔绕外壳(5)的轴线环形阵列设置,所述连接板(8)通过螺钉固定在螺纹孔上;
    所述一种小角度多色混光照明系统和连接板(8)均不少于两个,所述连接板(8)用于多个一种小角度多色混光照明系统之间的连接。
  13. 根据权利要求12所述的一种组合式小角度多色混光照明系统,其特征在于,多个一种小角度多色混光照明系统阵列设置或环形阵列设置。
PCT/CN2019/070758 2018-10-15 2019-01-08 一种小角度多色混光照明系统 WO2020077894A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811195030.7 2018-10-15
CN201811195030.7A CN109185821A (zh) 2018-10-15 2018-10-15 一种小角度多色混光照明系统

Publications (1)

Publication Number Publication Date
WO2020077894A1 true WO2020077894A1 (zh) 2020-04-23

Family

ID=64944956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/070758 WO2020077894A1 (zh) 2018-10-15 2019-01-08 一种小角度多色混光照明系统

Country Status (2)

Country Link
CN (1) CN109185821A (zh)
WO (1) WO2020077894A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0094598A1 (en) * 1982-05-17 1983-11-23 Kei Mori Solar ray collection apparatus
CN203231244U (zh) * 2013-05-06 2013-10-09 蕙萰科技股份有限公司 导光透镜模组
CN204026342U (zh) * 2014-07-25 2014-12-17 广州励时电子有限公司 一种舞台灯
CN204534205U (zh) * 2015-03-06 2015-08-05 浙江银信博荣电子科技股份有限公司 Led灯
CN204665034U (zh) * 2015-06-05 2015-09-23 深圳市圳佳光电科技有限公司 一种带有方形效果导光柱的变焦led舞台灯
CN205504862U (zh) * 2016-02-02 2016-08-24 广州博锐电子有限公司 一种led光学成像装置
CN207455309U (zh) * 2017-10-30 2018-06-05 赛尔富电子有限公司 一种led灯具

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204026343U (zh) * 2014-07-25 2014-12-17 广州励时电子有限公司 一种舞台灯投光器
JP2017103025A (ja) * 2015-11-30 2017-06-08 日精テクノロジー株式会社 ライトガイド及び照明装置
CN206269060U (zh) * 2016-12-27 2017-06-20 深圳市大族元亨光电股份有限公司 一种对3合1贴片led灯进行混色的透镜

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0094598A1 (en) * 1982-05-17 1983-11-23 Kei Mori Solar ray collection apparatus
CN203231244U (zh) * 2013-05-06 2013-10-09 蕙萰科技股份有限公司 导光透镜模组
CN204026342U (zh) * 2014-07-25 2014-12-17 广州励时电子有限公司 一种舞台灯
CN204534205U (zh) * 2015-03-06 2015-08-05 浙江银信博荣电子科技股份有限公司 Led灯
CN204665034U (zh) * 2015-06-05 2015-09-23 深圳市圳佳光电科技有限公司 一种带有方形效果导光柱的变焦led舞台灯
CN205504862U (zh) * 2016-02-02 2016-08-24 广州博锐电子有限公司 一种led光学成像装置
CN207455309U (zh) * 2017-10-30 2018-06-05 赛尔富电子有限公司 一种led灯具

Also Published As

Publication number Publication date
CN109185821A (zh) 2019-01-11

Similar Documents

Publication Publication Date Title
CN102859257B (zh) 紧凑型混光led光引擎和窄束白色led灯以及使用其的高cri
JP6806775B2 (ja) 大面積光源および大面積照明器具
US8287147B2 (en) LED based omni-directional light engine
US10627637B2 (en) Optical system and light fixture using the same
US20160195243A1 (en) Optical system for producing uniform illumination
JP6821064B2 (ja) 極薄直接点灯バックライト用の光学レンズ
US8439526B2 (en) Variable-color lighting system
JP6924514B2 (ja) 大面積光源および大面積照明器具
US20110188244A1 (en) Gap member, lens and lighting device having the same
JP6116563B2 (ja) 照明モジュール
US8915612B2 (en) Illumination system for spot illumination with reduced symmetry
RU2597792C2 (ru) Светильник, излучающий свет различных цветов
CN105318278B (zh) 发光组件
WO2020077894A1 (zh) 一种小角度多色混光照明系统
CN103982855B (zh) 透镜及发光装置
KR20120083424A (ko) 조명 기구 및 광학 컴포넌트
US7878682B2 (en) Mixed light apparatus
CA3061625C (en) Total internal reflection lens to lessen glare and maintain color mixing and beam control
CN209309879U (zh) 小角度多色混光照明系统及组合式多色混光照明系统
TW202020364A (zh) 發光機構、背光模組及其顯示裝置
WO2015082575A1 (en) Optical device, lighting device and lighting system
CN211574873U (zh) 一种多色光源混光系统
US20200158313A1 (en) Illumination device with element having annular coating
JP5723985B2 (ja) 特に道路照明のための最適化放射を備えた照明モジュール
TWI667499B (zh) 微型透鏡導光板及發光裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19873504

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19873504

Country of ref document: EP

Kind code of ref document: A1