WO2020077692A1 - 磁悬浮列车及其牵引控制方法、系统 - Google Patents

磁悬浮列车及其牵引控制方法、系统 Download PDF

Info

Publication number
WO2020077692A1
WO2020077692A1 PCT/CN2018/113529 CN2018113529W WO2020077692A1 WO 2020077692 A1 WO2020077692 A1 WO 2020077692A1 CN 2018113529 W CN2018113529 W CN 2018113529W WO 2020077692 A1 WO2020077692 A1 WO 2020077692A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
traction
transfer switch
electric transfer
contactor
Prior art date
Application number
PCT/CN2018/113529
Other languages
English (en)
French (fr)
Inventor
李颖华
刘曰峰
张丽
王永刚
崔玉萌
高明
任百峰
Original Assignee
中车唐山机车车辆有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车唐山机车车辆有限公司 filed Critical 中车唐山机车车辆有限公司
Publication of WO2020077692A1 publication Critical patent/WO2020077692A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L13/00Electric propulsion for monorail vehicles, suspension vehicles or rack railways; Magnetic suspension or levitation for vehicles
    • B60L13/04Magnetic suspension or levitation for vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L13/00Electric propulsion for monorail vehicles, suspension vehicles or rack railways; Magnetic suspension or levitation for vehicles
    • B60L13/04Magnetic suspension or levitation for vehicles
    • B60L13/06Means to sense or control vehicle position or attitude with respect to railway
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L13/00Electric propulsion for monorail vehicles, suspension vehicles or rack railways; Magnetic suspension or levitation for vehicles
    • B60L13/10Combination of electric propulsion and magnetic suspension or levitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present application relates to the technical field of maglev trains, in particular to a maglev train and its traction control method and system.
  • the magnetic levitation train uses electromagnetic force to achieve contactless suspension and guidance between the train and the track, and then uses the electromagnetic force generated by the linear motor to draw the train to run.
  • the polarity of the magnetic field generated by the ground coil is the same as the polarity of the car's electromagnet.
  • the repulsive force of the same sex repulsion makes the train levitate.
  • the backward electromagnets on the track are repelled, making the train move forward.
  • the magnetic levitation train uses electromagnetic force to complete the suspension, guidance and drive, when the power supply of the magnetic levitation train fails (for example: power outage / power outage), the magnetic levitation train cannot float and loses traction and cannot advance, and the safety of passengers cannot be guaranteed. Rescue and maintenance are also very difficult.
  • the magnetic levitation train adopts three or four rails for power supply, but all the three or four rails in the warehouse are relatively complicated, and the construction cost in the warehouse is relatively high.
  • the embodiments of the present application propose a magnetic levitation train and its traction control method and system to solve the above technical problems.
  • an embodiment of the present application provides a traction control method for a magnetic levitation train, including the following steps:
  • the electric transfer switch KM1 When the battery traction conditions are met, the electric transfer switch KM1 is controlled to close and open the MC vehicle contactor KM01; the first end of the electric transfer switch KM1 is connected to the positive electrode of the battery, and the second end of the electric transfer switch KM1 is connected to The negative pole of the battery is connected, and the third and fourth ends of the electric transfer switch KM1 are connected to the high-voltage electrical box; the contactor KM01 is located between the high-voltage electrical box and the three-position switch K1, and the high-voltage electrical box is correspondingly connected to the traction inverter Device
  • an embodiment of the present application provides a traction control system for a magnetic levitation train, including: a control module, an electric transfer switch KM1, and a contactor KM01 located in an MC car; the first end of the electric transfer switch KM1 and the battery The positive pole is connected, the second end is connected to the negative pole of the battery, and the third and fourth ends of the electric transfer switch KM1 are connected to the high-voltage electrical box; the contactor KM01 is located between the high-voltage electrical box and the three-position switch K1.
  • a traction inverter is correspondingly connected to the high-voltage electrical box;
  • the control module is used to control the electric transfer switch KM1 to close and the contactor KM01 to open when the battery traction conditions are satisfied, and the magnetic levitation train is powered by the battery and self-traction by the traction inverter.
  • an embodiment of the present application provides a magnetic levitation train, which is characterized by including the above-mentioned magnetic levitation train traction control system, a high-voltage electrical box, a traction inverter corresponding to the high-voltage electrical box, and a battery.
  • a magnetic levitation train which is characterized by including the above-mentioned magnetic levitation train traction control system, a high-voltage electrical box, a traction inverter corresponding to the high-voltage electrical box, and a battery.
  • the magnetic levitation train and the traction control method and system provided in the embodiments of the present application has a battery traction function, can get rid of the three or four rail power supply, realize low-speed short-distance self-traction, and greatly save the construction cost in the warehouse.
  • FIG. 1 is a schematic flowchart of the implementation of a traction control method for a maglev train in an embodiment of this application;
  • FIG. 2 is a schematic structural diagram of a traction control system of a magnetic suspension train in an embodiment of the present application
  • FIG. 3 is a schematic diagram of the main circuit structure of the traction control system of the maglev train in the embodiment of the present application.
  • subway trains use on-board batteries for emergency traction.
  • emergency traction When the train is running and there are special emergency situations such as power supply failure or pantograph failure, you can activate the battery traction function button / switch in the driver's cab to make the traction system powered by the on-board battery, allowing the train to self-service without high-voltage input Traction.
  • Solution 1 Use the existing two sets of DC110V batteries as the emergency traction DC input power supply, to meet the ability of the DC110V battery to draw the AW0 train to run ⁇ 1000m on the straight road when the train has no high voltage; at the same time, it can meet the emergency load of the train in 45 minutes After power supply, it can still use the ability of DC110V battery to pull AW0 train to move 100 meters on the straight road.
  • the 4M2T six-car group, eight motors of the two-segment motor car work in battery traction.
  • the DC110V battery is increased from a medium rate of 160Ah to a high rate of 200Ah.
  • Two battery pool traction boxes (BOP boxes) are equipped to realize the conversion of battery to traction converter. In this way, the torque provided by the motor is very small due to the low voltage, and the main current is large, and the line voltage drops.
  • Option two Use three additional sets of (six battery boxes) DC240V batteries as emergency traction DC input power sources, which are respectively arranged in 6-segment vehicles to meet the situation that the train has no high voltage, and use the DC240V battery to draw AW3 trains on the main line.
  • the train is composed of 6M2T eight cars, and 12 motors of three-segment trains work on battery traction.
  • Three battery traction boxes (BOP boxes) are configured to realize the energy conversion from battery to traction converter and energy management of the battery system. It is equipped with three sets (6 boxes) of DC240V batteries and three DC240V chargers to provide power and charge for battery traction. Equipped with traction converter fan power supply normal / emergency switching circuit to realize traction converter fan power supply during battery traction.
  • an embodiment of the present application proposes a magnetic levitation train and its traction control method and system, which will be described below.
  • FIG. 1 shows a schematic flow chart of the implementation of a traction control method for a maglev train in an embodiment of the present application.
  • an embodiment of the present application provides a traction control method for a maglev train, which may include the following steps:
  • the electric transfer switch KM1 When the battery traction conditions are met, the electric transfer switch KM1 is controlled to close and open the MC vehicle contactor KM01; the first end of the electric transfer switch KM1 is connected to the positive electrode of the battery, and the second end of the electric transfer switch KM1 is connected to The negative pole of the battery is connected, and the third and fourth ends of the electric transfer switch KM1 are connected to the high-voltage electrical box; the contactor KM01 is located between the high-voltage electrical box and the three-position switch K1, and the high-voltage electrical box is correspondingly connected to the traction inverter Device
  • the magnetic levitation train is powered by the battery and self-traction by the traction inverter.
  • the electric transfer switch KM1 may be placed in an electric transfer switch box.
  • the electric transfer switch box may further include a diode D1 and a fuse FU1 connected in series between the first end and the third end of the electric transfer switch KM1.
  • the contactor KM01 may be installed in the high-voltage distribution box of the MC car, one end is connected to the three-position switch in the high-voltage distribution box, and the other end is connected to the high-voltage electrical box.
  • the high-voltage electrical box of each car can be connected to the traction inverter.
  • the three-position switch K1 may include a storage position, an operation position and a grounding position, the storage position is used to connect the storage socket, the operation position is used to connect the power supply rail, and the ground position is used to connect the return rail ground.
  • the storage position is used to connect the storage socket
  • the operation position is used to connect the power supply rail
  • the ground position is used to connect the return rail ground.
  • the technical solution provided by the embodiments of the present application is used to switch the maglev train to battery power supply, and the traction inverter can realize the self-traction of the maglev train after receiving battery power supply.
  • the electric transfer switch KM1 is controlled to close and open the MC vehicle contactor KM01, including:
  • the electric transfer switch KM1 When there is no current input to the magnetic levitation train, the electric transfer switch KM1 is controlled to be closed, and the MC car contactor KM01 is opened.
  • the embodiment of the present application can detect the current of the magnetic levitation train in real time. If it is detected that there is no current input to the entire vehicle of the magnetic levitation train, it is considered that there may be an emergency failure. At this time, the electric transfer switch KM1 can be controlled to close and open The contactor KM01 of the MC car is automatically switched to battery power supply to ensure the safety of the user or the safety and stability of the train to continue to pull back to the warehouse.
  • the electric transfer switch KM1 is controlled to close and open the MC vehicle contactor KM01, including:
  • the electric transfer switch KM1 After receiving the user's battery traction instruction, the electric transfer switch KM1 is controlled to close, and the MC vehicle's contactor KM01 is opened.
  • the embodiment of the present application can perform battery power conversion according to the user's instructions.
  • a battery conversion button can be provided on the driver's platform, or a battery conversion function logo can be added on the display screen of the operating system.
  • Those skilled in the art can also use other In this way, the user's instruction is received, and this application will not give examples here.
  • the embodiment of the present application may also prompt the user when it detects that there is no current input from the magnetic levitation train, and then wait for the user's instruction. After receiving the user's battery traction instruction, control the electric transfer switch KM1 to close and open the MC Contactor KM01 of the car.
  • the battery traction enable signal is valid when the following conditions are met:
  • the battery voltage is higher than a certain limit (which can be a preset limit to satisfy battery traction);
  • the main control handle of the driver controller is in the non-traction position
  • the electric transfer switch KM1 is located outside the high-voltage electrical box and connected to the high-voltage electrical box of each car of the magnetic levitation train; the first end of the electric transfer switch KM1 is connected to the positive pole of the battery of each car and the second end Connected to the negative pole of the battery of each car.
  • the electric transfer switch KM1 of the embodiment of the present application may be arranged outside the high-voltage electrical box.
  • the electric transfer switch box is provided separately.
  • the electric transfer switch KM1 may be connected to the battery in the compartment where it is located, or may be connected to the battery in other compartments. Connected to achieve the purpose of not only towing the car where it is located, but also to pull other cars.
  • the electric transfer switch KM1 is located in the high-voltage electrical box of the current vehicle compartment.
  • the first end of the electric transfer switch KM1 is connected to the positive electrode of the battery in the current vehicle compartment, and the second end is connected to the negative electrode of the battery in the current vehicle compartment.
  • the electric transfer switch KM1 of the embodiment of the present application may be installed in the high-voltage electrical box of the vehicle compartment. At this time, since the electric transfer switch KM1 can only be connected to the battery of the vehicle compartment, this implementation method can usually be used to achieve The current car's battery power supply and the current car's traction inverter are used to achieve the current car's traction.
  • the first end of the electric transfer switch KM1 is connected to the positive electrode of the battery, and the second end is connected to the negative electrode of the battery, including: the first end of the electric transfer switch KM1 is connected to the battery through the diode in the first end of the floating power supply DD330V The positive pole of DC330V is connected, and the second end of the electric transfer switch KM1 and the second end of the floating power supply DD330V are both connected to the negative pole of the battery DC330V.
  • the existing power supply of the magnetic levitation train may include the power supply of the power supply rail / return rail, the power supply of the levitation power supply DD330V, and the power supply of the storage battery DC330V.
  • the internal diode is connected to the positive electrode of the battery DC330V, and the second end of the motorized switch KM1 and the second end of the floating power supply DD330V are both connected to the negative electrode of the battery DC330V.
  • the method may further include:
  • the embodiments of the present application may also control the magnetic levitation train to stop battery traction when the battery traction reset condition is satisfied, for example, when the driver's platform issues an instruction to stop battery traction, or the power supply to the power rail returns to normal.
  • the battery traction reset condition includes any one or more of the following:
  • the battery voltage is lower than the preset limit
  • the network judges that there is a traction command for a preset time and the braking remains unrelieved.
  • the battery traction reset condition in the embodiment of the present application may also be set to any one or more of the above combinations, and those skilled in the art may also set other conditions according to actual needs, which is not limited in this application.
  • the method may further include:
  • the method provided in the embodiment of the present application can also be used to test the power supply in the warehouse.
  • the three in the high-voltage distribution box at either end of the magnetic levitation train The position switch K1 hits the storage position and disconnects the contactor KM01 at the other end of the maglev train.
  • determining whether to conduct the power supply test in the library may be determined according to the pre-set judgment conditions, or may be determined according to the user's instructions, and the specific implementation will not be repeated here.
  • An embodiment of the present application provides a traction control system for a magnetic levitation train, which is characterized by comprising: a control module, an electric transfer switch KM1, and a contactor KM01 located in an MC car; the first end of the electric transfer switch KM1 and the positive electrode of the battery Connected, the second end is connected to the negative electrode of the battery, the third and fourth ends of the electric transfer switch KM1 are connected to the high-voltage electrical box; the contactor KM01 is located between the high-voltage electrical box and the three-position switch K1, the high voltage The electrical box is correspondingly connected with a traction inverter;
  • the control module is used to control the electric transfer switch KM1 to close and the contactor KM01 to open when the battery traction conditions are satisfied, and the magnetic levitation train is powered by the battery and self-traction by the traction inverter.
  • the traction control system of the magnetic levitation train provided by the embodiment of the present application can realize the conversion of the battery power supply of the magnetic levitation train by adding the electric conversion switch KM1 and the contactor KM01 added to the MC car, thereby getting rid of the power supply of the three or four rails and achieving self-traction Greatly saved the construction cost in the warehouse.
  • system may further include:
  • a current sensor is used to detect the current value of the magnetic levitation train; the battery traction condition includes that the magnetic levitation train has no current input.
  • the current sensor can detect the current value of the magnetic levitation train, feed it back to the train control and management system TCMS (Train Control and Management System), and can be displayed on the driver's display screen.
  • TCMS Train Control and Management System
  • system may further include:
  • a reminder used to prompt the user when there is no current input to the magnetic levitation train
  • the battery traction button is used to receive the user's battery traction instruction; the battery traction condition includes receiving the user's battery traction instruction.
  • the reminder may be a reminder lamp, a bell, etc., which can remind the user or the driver.
  • the electric transfer switch KM1 is located outside the high-voltage electrical box and connected to the high-voltage electrical box of each car of the magnetic levitation train; the first end of the electric transfer switch KM1 is connected to the positive pole of the battery of each car and the second end Connected to the negative pole of the battery of each car.
  • the electric transfer switch KM1 is located in the high-voltage electrical box of the current vehicle compartment.
  • the first end of the electric transfer switch KM1 is connected to the positive battery anode of the current vehicle compartment, and the second end is connected to the negative battery anode of the current vehicle compartment.
  • the first end of the electric transfer switch KM1 is connected to the positive electrode of the battery, and the second end is connected to the negative electrode of the battery, including: the first end of the electric transfer switch KM1 is connected to the The positive electrode is connected, and the second end of the electric transfer switch KM1 and the second end of the floating power supply are both connected to the negative electrode of the battery.
  • control module is further used to stop battery traction when the battery traction reset condition is satisfied.
  • control module may control the KM01 to close and the KM1 to open when the user's battery traction reset indication is received, or the maglev train has current.
  • the battery traction reset condition includes any one or more of the following:
  • the battery voltage is lower than the preset limit
  • the network judges that there is a traction command for a preset time and the braking remains unrelieved.
  • the electric transfer switch KM1 is located in the M car.
  • the embodiment of the present application may set the electric transfer switch KM1 in the M car.
  • the current sensor is located in the high-voltage distribution box of the MC car.
  • control module is further used to turn on the three-position switch K1 in the high-voltage distribution box at either end of the maglev train to the position of the garage and disconnect the maglev train during the power supply test in the library.
  • the contactor KM01 at the other end.
  • An embodiment of the present application proposes a magnetic levitation train, which includes the levitation control system of the magnetic levitation train as described above, a high-voltage electrical box, a traction inverter corresponding to the high-voltage electrical box, and a storage battery.
  • the contactor KM01 is opened, the storage battery supplies power to the maglev train, and the traction inverter draws the maglev train.
  • the magnetic levitation train may include one or two MC cars, and one or more M cars, for example: may include MC1 cars, M1 cars, M2 cars,... M8 cars and MC2 cars.
  • the electric transfer switch KM1 can be set in the M car, and the contactor KM01 can be set in the MC car.
  • the electric transfer switch can be set in the electric transfer switch box and connected with the high-voltage electrical boxes of other cars and other cars
  • the battery is connected, and the contactor KM01 can be installed in the high-voltage distribution box in the MC car and connected between the three-position switch and the high-voltage electrical box of the MC car.
  • the magnetic levitation train provided by the embodiment of the present application due to the addition of the electric transfer switch KM1 and the contactor KM01, can automatically switch to battery power supply and self-traction in case of an emergency, which can not only realize self-traction, ensure users and trains Safe, can also get rid of three or four rail power supply, saving construction costs in the warehouse.
  • the embodiment of the present application takes three cars as an example for illustration.
  • the traction control system may use three parallel DC330V batteries that have been supplied to the magnetic levitation train by the magnetic levitation train to achieve the traction power supply of the magnetic levitation train battery.
  • FIG. 2 shows a schematic structural diagram of the traction control system of the maglev train in the embodiment of the present application, as shown in the figure:
  • the three-position switch K1 in the high-voltage distribution box of the MC car is in the operating position (the position marked 2 in Figure 2), and the contactor KM01 is closed. At this time, the entire train is powered by the DC1500V power supply rail and the return rail Provide power.
  • a current sensor is provided in the high-voltage distribution box, and the current sensor detects the current value, and feeds back the detected current value to the train control and management system (TCMS, Train Control and Management System), and displays it on the display screen of the driver.
  • TCMS Train Control and Management System
  • the embodiment of the present application may prompt the driver to press the battery emergency traction mode button.
  • the embodiment of the present application can further determine whether the enabling condition of battery traction is satisfied, and if the condition is met, the train will switch to the battery traction state.
  • KM1 in the electric transfer switch box is closed, KM01 in the high-voltage electrical box is disconnected, and the maglev train enters the battery traction mode, which is powered by the DC330V battery.
  • the magnetic levitation train realizes self-traction back to the warehouse through the traction inverter of M car.
  • the traction inverter of the intermediate vehicle fails, the traction inverter of the MC1 vehicle or the MC2 vehicle is used.
  • the enabling conditions for battery traction can be:
  • the battery voltage is higher than a certain limit (meeting battery traction);
  • control module judges that the following conditions are met, it outputs a command to open the battery traction contactor KM01 and close the electric transfer switch KM1:
  • the main control handle of the driver controller is in the non-traction position
  • the embodiment of the present application may also set a battery traction reset condition.
  • the battery traction reset condition is satisfied, the battery traction is stopped.
  • the battery traction contactor KM01 is opened, and the electric transfer switch KM1 is closed.
  • the M vehicle traction inverter When the M vehicle traction inverter is normal, the M vehicle will automatically complete the intermediate circuit charging, waiting for the driver to issue a battery traction reference command.
  • the reset condition of the battery traction enable signal satisfies any one of the following is reset:
  • the full capacity of each battery can be 40 Ah.
  • the total battery capacity is 120 Ah.
  • Serial number project parameter Remarks 1 Number of batteries in series 120 pcs 4 parallel 120 strings by single cell 2 Battery pack voltage range 260V ⁇ 330V 3 Single battery voltage range 2.17V ⁇ 2.75V 5 Rated capacity of battery pack 40Ah 7 Maximum discharge current 10C 8 Recommended charging current 2C 9 Battery weight 144kg 10 Charging voltage 330V 11 Battery temperature range 0 °C ⁇ 55 °C Charge 12 Battery operating temperature range -20 °C ⁇ 55 °C Discharge 13 size 1072 * 566 * 630mm
  • FIG. 3 is a schematic diagram of the main circuit structure of the traction control system of the maglev train in the embodiment of the present application, including the connection relationship between the components in the electric transfer switch box and the high-voltage electrical box, and the traction converter (or traction inverter).
  • embodiment of the present application can also implement interlocking for storage, which is described as follows:
  • the three-position switch in the high-voltage distribution box of the MC car of the maglev train in the embodiment of the present application is a device that selects the three states of the current receiver, the power supply for the warehouse, and the ground switch to connect with the contactor KM01, and is equipped with an operating position (Figure 2 Mark 2), the workshop position (marked 1 in Figure 2) and the ground position (marked 3 in Figure 2), which correspond to the three modes of power supply for the current receiver, power supply for the warehouse socket, and maintenance and safety grounding.
  • the auxiliary contact of the position change switch detects the position state of the three position change switch and performs interlock control, and the state information is fed back to the vehicle system.
  • the embodiments of the present application can not only use the existing battery of the magnetic levitation train to provide power, but also increase the switch to realize the low-speed straight-track running self-traction function, and can also increase the high-voltage interlock during self-traction and the high-voltage for storage by adding a contactor. Interlock.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)

Abstract

一种磁悬浮列车及其牵引控制方法、系统,在满足蓄电池牵引条件时,控制电动转换开关KM1闭合、并断开MC车的接触器KM01;电动转换开关KM1的第一端与蓄电池正极相连,第二端与蓄电池负极相连,第三端和第四端与高压电器箱相连;接触器KM01位于高压电器箱与三位置开关K1之间,高压电器箱对应连接有牵引逆变器;在电动转换开关KM1闭合、接触器KM01断开时,磁悬浮列车由蓄电池供电、由牵引逆变器实现自牵引;该磁悬浮列车具备了蓄电池牵引功能,可以摆脱三四轨供电,实现低速短距离自牵引,大大节约库内建设费用。

Description

磁悬浮列车及其牵引控制方法、系统 技术领域
本申请涉及磁悬浮列车技术领域,尤其涉及一种磁悬浮列车及其牵引控制方法、系统。
背景技术
作为现代高科技轨道交通工具,磁悬浮列车通过电磁力实现列车与轨道之间的无接触的悬浮和导向,再利用直线电机产生的电磁力牵引列车运行。通电后,地面线圈产生的磁场极性与车厢的电磁体极性相同,同性相斥的排斥力使得列车悬浮起来;列车行驶时,车头的磁铁被轨道上靠前的电磁体所吸引、同时被轨道上靠后的电磁体所排斥,使得列车前进。
由于磁悬浮列车是利用电磁力完成悬浮、导向和驱动,当磁悬浮列车发生线网供电故障(例如:停电/断电)时,磁悬浮列车则无法悬浮而且失去了牵引力无法前进,乘客的安全无法保障,救援和维修也非常困难。
目前,磁悬浮列车采用三四轨供电,但是库内全部架设三四轨比较复杂,且库内建设费用较高。
发明内容
本申请实施例提出了一种磁悬浮列车及其牵引控制方法、系统,以解决上述技术问题。
第一个方面,本申请实施例提供了一种磁悬浮列车牵引控制方法,包括如下步骤:
在满足蓄电池牵引条件时,控制电动转换开关KM1闭合、并断开MC车的接触器KM01;所述电动转换开关KM1的第一端与蓄电池正极相连,所述电动转换开关KM1的第二端与蓄电池负极相连,所述电动转换开关KM1的第 三端和第四端与高压电器箱相连;所述接触器KM01位于高压电器箱与三位置开关K1之间,高压电器箱对应连接有牵引逆变器;
在所述电动转换开关KM1闭合、接触器KM01断开时,所述磁悬浮列车由蓄电池供电、由所述牵引逆变器实现自牵引。
第二个方面,本申请实施例提供了一种磁悬浮列车牵引控制系统,包括:控制模块、电动转换开关KM1、以及位于MC车的接触器KM01;所述电动转换开关KM1的第一端与蓄电池正极相连、第二端与蓄电池负极相连,所述电动转换开关KM1的第三端和第四端与高压电器箱相连;所述接触器KM01位于高压电器箱与三位置开关K1之间,所述高压电器箱对应连接有牵引逆变器;
所述控制模块,用于在满足蓄电池牵引条件时,控制所述电动转换开关KM1闭合、所述接触器KM01断开,所述磁悬浮列车由蓄电池供电、由牵引逆变器实现自牵引。
第三个方面,本申请实施例提供了一种磁悬浮列车,其特征在于,包括如上所述的磁悬浮列车牵引控制系统、高压电器箱、与高压电器箱对应连接的牵引逆变器、蓄电池,在所述电动转换开关KM1闭合、所述接触器KM01断开时,所述蓄电池为所述磁悬浮列车供电,所述牵引逆变器牵引所述磁悬浮列车。
有益效果如下:
本申请实施例所提供的磁悬浮列车及其牵引控制方法、系统,磁悬浮列车具备了蓄电池牵引功能,可以摆脱三四轨供电,实现低速短距离自牵引,大大节约库内建设费用。
附图说明
下面将参照附图描述本申请的具体实施例,其中:
图1为本申请实施例中磁悬浮列车牵引控制方法实施的流程示意图;
图2为本申请实施例中磁悬浮列车牵引控制系统的结构示意图;
图3为本申请实施例中磁悬浮列车牵引控制系统的主电路结构示意图。
具体实施方式
为了使本申请的技术方案及优点更加清楚明白,以下结合附图对本申请的示例性实施例进行进一步详细的说明,显然,所描述的实施例仅是本申请的一部分实施例,而不是所有实施例的穷举。并且在不冲突的情况下,本说明中的实施例及实施例中的特征可以互相结合。
技术人员在研发过程中注意到:
随着地铁运营及列车制造技术的不断创新,地铁列车采用车载蓄电池进行应急牵引。当列车运行发生线网供电故障或者受电弓失效等特殊应急情况下,可通过激活司机室的蓄电池牵引功能按钮/开关,使牵引系统由车载蓄电池供电,让列车在无高压输入的情况下自行牵引。
地铁列车采用蓄电池进行应急牵引可以有以下两种方案:
方案一、采用已有的两组DC110V蓄电池作为应急牵引直流输入电源,满足列车无高压的情况下,利用DC110V蓄电池牵引AW0列车在平直道运行≥1000m的能力;同时满足列车在45分钟紧急负载供电后,仍能利用DC110V蓄电池牵引AW0列车在平直道上移动100米的能力。4M2T六车编组,二节动车8台电机工作于蓄电池牵引,DC110V蓄电池由中倍率160Ah增加至高倍率200Ah,配置二台蓄电池池牵引箱(BOP箱),实现蓄电池至牵引变流器的电能转换。这种方式因电压较低,电机能提供的转矩很小,且主干线电流很大,线路电压降高。
方案二、采用单独增加的三组(6台蓄电池箱)DC240V蓄电池作为应急牵引直流输入电源,分别布置于6节动车,满足列车无高压的情况下,利用DC240V蓄电池牵引AW3列车在正线千分之十坡道和AW0列车在正线千分之二十坡道运行至下一站或退行至上一站的能力。列车为6M2T八车编组,三节动车12台电机工作于蓄电池牵引。配置三台蓄电池牵引箱(BOP箱),实现蓄 电池至牵引变流器的电能转换以及蓄电池系统的能量管理。配置三组(6台箱体)DC240V蓄电池,三台DC240V充电机,为蓄电池牵引提供电源及充电。配置牵引变流器风机供电正常/紧急切换电路,实现蓄电池牵引时牵引变流器风机供电。
下表示出了采用三组DC240V蓄电池作为应急牵引直流输入电源时的设备分布及重量增加情况:
设备 TC1 MP1 M1 Mp3 M3 M2 MP2 TC2 增加重量
蓄电箱(DC240V) 1 1 1 1 1 1 +7560kg
BOP箱 1 1 1 +450kg
D240V充电机 1 1 1 +510kg
牵引逆变器 1 1 1
牵引电机 4 4 4
电缆件等 +60kg
可以看出,采用这种方式应急牵引增加设备较多,重量增加很多、且增加了成本,利用率较低。
针对相关技术的不足,本申请实施例提出了一种磁悬浮列车及其牵引控制方法、系统,下面进行说明。
实施例1
图1示出了本申请实施例中磁悬浮列车牵引控制方法实施的流程示意图,如图所示,本申请实施例提供了一种磁悬浮列车牵引控制方法,可以包括如下步骤:
在满足蓄电池牵引条件时,控制电动转换开关KM1闭合、并断开MC车的接触器KM01;所述电动转换开关KM1的第一端与蓄电池正极相连,所述电动转换开关KM1的第二端与蓄电池负极相连,所述电动转换开关KM1的第三端和第四端与高压电器箱相连;所述接触器KM01位于高压电器箱与三位置开关K1之间,高压电器箱对应连接有牵引逆变器;
在所述电动转换开关KM1闭合、接触器KM01断开时,所述磁悬浮列车由蓄电池供电、由所述牵引逆变器实现自牵引。
具体实施时,所述电动转换开关KM1可以置于电动转换开关箱内。所述电动转换开关箱内还可以包括串联在所述电动转换开关KM1的第一端和第三端之间的二极管D1和熔断器FU1。
具体实施时,所述接触器KM01可以设置于MC车的高压分线箱内,一端与高压分线箱内的三位置开关相连,另一端与高压电器箱相连。每节车厢的高压电器箱均可以对应连接牵引逆变器。
其中,所述三位置开关K1可以包括库用位、运行位和接地位,库用位用于连接库用插座、运行位用于连接供电轨、接地位用于连接回流轨接地,具体可参见现有技术的连接关系,本申请在此不做赘述。
本申请实施例通过增加电动转换开关KM1以及接触器KM01,实现了三四轨供电与蓄电池供电的切换,在磁悬浮列车在无三四轨的库内运行或者发生线网供电故障或者受流器失效等特殊应急情况、需要蓄电池应急牵引时,采用本申请实施例所提供的技术方案将磁悬浮列车切换为蓄电池供电,牵引逆变器获得蓄电池供电后实现磁悬浮列车的自牵引。
实施中,在满足蓄电池牵引条件时,控制电动转换开关KM1闭合、并断开MC车的接触器KM01,包括:
检测磁悬浮列车的电流值;
在所述磁悬浮列车无电流输入时,控制电动转换开关KM1闭合、并断开MC车的接触器KM01。
具体实施时,本申请实施例可以实时检测磁悬浮列车的电流,如果检测到所述磁悬浮列车整车没有电流输入,则认为可能出现紧急故障,此时,可以控制电动转换开关KM1闭合、并断开MC车的接触器KM01,自动转换到蓄电池供电,确保用户安全、或列车安全平稳的实现继续牵引回库。
实施中,在满足蓄电池牵引条件时,控制电动转换开关KM1闭合、并断 开MC车的接触器KM01,包括:
接收用户的蓄电池牵引指示;
在接收到用户的蓄电池牵引指示后,控制电动转换开关KM1闭合、并断开MC车的接触器KM01。
本申请实施例可以根据用户的指示进行蓄电池供电转换,具体实施时,可以在司机台设置蓄电池转换按钮,也可以在操作系统的显示屏上增加蓄电池转换功能标识,本领域技术人员还可以采用其他方式实现接收用户的指示,本申请在此不再一一举例。
具体实施时,本申请实施例还可以在检测到磁悬浮列车无电流输入时,提示用户,然后等待用户的指示,在接收到用户的蓄电池牵引指示后,控制电动转换开关KM1闭合、并断开MC车的接触器KM01。
此外,本申请实施例还可以设置其他条件,具体如下:
在满足以下条件时蓄电池牵引使能信号有效:
(1)非自动驾驶ATO模式;
(2)司机控制器主控手柄位于非牵引位;
(3)列车静止;
(4)蓄电池电压高于某一限值(可以为预设的限值,满足蓄电池牵引);
(5)蓄电池输出母线接地检测正常。
以上蓄电池牵引使能条件满足后,控制系统判断以下条件均满足时,输出蓄电池牵引接触器KM01断开,电动转换开关KM1闭合指令:
(1)司机控制器主控手柄位于非牵引位置;
(2)司机控制器方向手柄不处于零位;
(3)高速断路器位于断开状态;
(4)隔离接地开关位于正常运行位;
实施中,所述电动转换开关KM1位于高压电器箱外、与磁悬浮列车的各节车厢的高压电器箱相连;所述电动转换开关KM1的第一端与各节车厢的蓄 电池正极相连、第二端与各节车厢的蓄电池负极相连。
具体实施时,本申请实施例的电动转换开关KM1可以设置于高压电器箱的外面,例如:单独设置电动转换开关箱,电动转换开关KM1可以与所在车厢的蓄电池相连,还可以与其他车厢的蓄电池相连,从而实现既可以牵引所在车厢、又可以实现牵引其他车厢的目的。
实施中,所述电动转换开关KM1位于当前车厢的高压电器箱内,所述电动转换开关KM1的第一端与当前车厢的蓄电池正极相连、第二端与当前车厢的蓄电池负极相连。
具体实施时,本申请实施例的电动转换开关KM1可以设置于所在车厢的高压电器箱内,此时,由于电动转换开关KM1只能与所在车厢的蓄电池相连,这种实现方式通常可以用来实现当前车厢的蓄电池供电以及利用当前车厢的牵引逆变器实现当前车厢的牵引。
实施中,所述电动转换开关KM1的第一端与蓄电池正极相连、第二端与蓄电池负极相连,包括:所述电动转换开关KM1的第一端经悬浮电源DD330V第一端内的二极管与蓄电池DC330V的正极相连,所述电动转换开关KM1的第二端以及悬浮电源DD330V的第二端均与所述蓄电池DC330V负极相连。
具体实施时,所述磁悬浮列车已有电源可以包括供电轨/回流轨的供电、悬浮电源DD330V的供电、以及蓄电池DC330V的供电,所述电动转换开关KM1的第一端经悬浮电源DD330V第一端内的二极管与蓄电池DC330V的正极相连,所述电动转换开关KM1的第二端以及悬浮电源DD330V的第二端均与所述蓄电池DC330V负极相连。
实施中,所述方法可以进一步包括:
在满足蓄电池牵引复位条件时,停止蓄电池牵引。
具体实施时,本申请实施例还可以在满足蓄电池牵引复位条件时,例如:司机台发出停止蓄电池牵引指示,或者供电轨供电恢复正常等情况下, 控制所述磁悬浮列车停止蓄电池牵引。
实施中,所述蓄电池牵引复位条件包括以下任意一个或多个:
自动驾驶ATO模式;
蓄电池电压低于预设限值;
蓄电池牵引母线接地检测到短路;
网络判断有牵引指令预设时间后保持制动仍未缓解。
本申请实施例中所述蓄电池牵引复位条件还可以设置为以上的任意一个或多个的组合,本领域技术人员也可以根据实际需要设置其他条件,本申请对此不作限制。
实施中,所述方法可以进一步包括:
在进行库内供电试验时,将所述磁悬浮列车的任意一端的高压分线箱内的三位置开关K1打到库用位并断开所述磁悬浮列车的另一端的接触器KM01。
本申请实施例所提供的方法还可以在进行库内供电试验时,为了避免高压电源串到受流器、受流柜造成危险,将所述磁悬浮列车的任意一端的高压分线箱内的三位置开关K1打到库用位并断开所述磁悬浮列车的另一端的接触器KM01。
具体实施时,可以将MC1车的高压分线箱内的三位置开关K1打到库用位、断开MC2车的接触器KM01、或者将MC2车的高压分线箱内的三位置开关K1打到库用位、断开MC1车的接触器KM01。
具体实施时,确定是否在进行库内供电试验,可以根据预先设置的判断条件确定,也可以根据用户的指示确定,具体实现本申请在此不做赘述。
实施例2
本申请实施例提供了一种磁悬浮列车牵引控制系统,其特征在于,包括:控制模块、电动转换开关KM1、以及位于MC车的接触器KM01;所述电动转换开关KM1的第一端与蓄电池正极相连、第二端与蓄电池负极相连,所 述电动转换开关KM1的第三端和第四端与高压电器箱相连;所述接触器KM01位于高压电器箱与三位置开关K1之间,所述高压电器箱对应连接有牵引逆变器;
所述控制模块,用于在满足蓄电池牵引条件时,控制所述电动转换开关KM1闭合、所述接触器KM01断开,所述磁悬浮列车由蓄电池供电、由牵引逆变器实现自牵引。
本申请实施例所提供的磁悬浮列车牵引控制系统,可以通过增加电动转换开关KM1以及在MC车增加的接触器KM01,实现磁悬浮列车的蓄电池供电转换,进而摆脱三四轨供电,实现自牵引的同时大大节约了库内建设费用。
实施中,所述系统可以进一步包括:
电流传感器,用于检测磁悬浮列车的电流值;所述蓄电池牵引条件包括所述磁悬浮列车无电流输入。
具体实施时,所述电流传感器可以检测磁悬浮列车的电流值,反馈给列车控制和管理系统TCMS(Train Control and Management System),并可以在司机显示屏上显示。
实施中,所述系统可以进一步包括:
提示器,用于在所述磁悬浮列车无电流输入时提示用户;
蓄电池牵引按钮,用于接收用户的蓄电池牵引指示;所述蓄电池牵引条件包括接收到用户的蓄电池牵引指示。
具体实施时,所述提示器可以为提示灯、响铃等可以提示用户或司机的装置。
实施中,所述电动转换开关KM1位于高压电器箱外、与磁悬浮列车的各节车厢的高压电器箱相连;所述电动转换开关KM1的第一端与各节车厢的蓄电池正极相连、第二端与各节车厢的蓄电池负极相连。
实施中,所述电动转换开关KM1位于当前车厢的高压电器箱内,所述电 动转换开关KM1的第一端与当前车厢的蓄电池正极相连、第二端与当前车厢的蓄电池负极相连。
实施中,所述电动转换开关KM1的第一端与蓄电池正极相连、第二端与蓄电池负极相连,包括:所述电动转换开关KM1的第一端经悬浮电源第一端内的二极管与蓄电池的正极相连,所述电动转换开关KM1的第二端以及悬浮电源的第二端均与所述蓄电池负极相连。
实施中,所述控制模块进一步用于在满足蓄电池牵引复位条件时,停止蓄电池牵引。
具体实施时,所述控制模块可以在接收到用户蓄电池牵引复位指示、或者磁悬浮列车存在电流时,控制所述KM01闭合、KM1断开。
实施中,所述蓄电池牵引复位条件包括以下任意一个或多个:
自动驾驶ATO模式;
蓄电池电压低于预设限值;
蓄电池牵引母线接地检测到短路;
网络判断有牵引指令预设时间后保持制动仍未缓解。
实施中,所述电动转换开关KM1位于M车内。
具体实施时,考虑到MC车的设备较多、空间较小,本申请实施例可以将所述电动转换开关KM1设置于M车内。
实施中,所述电流传感器位于MC车的高压分线箱内。
实施中,所述控制模块进一步用于在进行库内供电试验时,将所述磁悬浮列车的任意一端的高压分线箱内的三位置开关K1打到库用位并断开所述磁悬浮列车的另一端的接触器KM01。
实施例3
本申请实施例提出了一种磁悬浮列车,包括如上所述的磁悬浮列车牵引控制系统、高压电器箱、与高压电器箱对应连接的牵引逆变器、蓄电池,在所述电动转换开关KM1闭合、所述接触器KM01断开时,所述蓄电池为所述 磁悬浮列车供电,所述牵引逆变器牵引所述磁悬浮列车。
具体实施时,所述磁悬浮列车可以包括一节或两节MC车、以及一节或多节M车,例如:可以包括MC1车、M1车、M2车、……M8车和MC2车,所述电动转换开关KM1可以设置于M车内、接触器KM01可以设置于MC车内,所述电动转换开关可以设置于电动转换开关箱内,并与其他各节车厢的高压电器箱、其他各节车厢的蓄电池相连,所述接触器KM01可以设置于MC车内的高压分线箱内并连接于三位置开关和MC车的高压电器箱之间。
本申请实施例所提供的磁悬浮列车,由于增加了电动转换开关KM1以及接触器KM01,进而可以实现在出现紧急情况时自动切换为蓄电池供电以及自牵引,不仅可以实现自牵引、确保用户和列车的安全,还可以摆脱三四轨供电、节约库内建设费用。
实施例4
本申请实施例以三节车厢为例进行举例说明。
本申请实施例所提供的磁悬浮列车牵引控制系统可以采用磁悬浮列车已有给磁悬浮列车供电的三组并联的DC330V蓄电池实现磁悬浮列车蓄电池牵引供电,具体实现可以是:在M车增加电动转换开关箱,在MC车高压电器箱内增加接触器KM01,在司机台增加蓄电池牵引按钮实现蓄电池牵引模式转换控制。
图2示出了本申请实施例中磁悬浮列车牵引控制系统的结构示意图,如图所示:
磁悬浮列车正常运行时,MC车的高压分线箱内的三位置开关K1处于运行位(图2中标示2的位置),接触器KM01闭合,此时,全列车由DC1500V的供电轨和回流轨提供电源。
高压分线箱内设置有电流传感器,所述电流传感器检测电流值,将检测得到的电流值反馈给列车控制和管理系统(TCMS,Train Control and Management System),并在司机的显示屏上显示。
当电流传感器检测到整车无电流输入时,本申请实施例可以提示司机按下蓄电池应急牵引模式按钮。当所述蓄电池牵引按钮激活后,本申请实施例可以进一步判断蓄电池牵引的使能条件是否满足,若条件满足,列车则转入蓄电池牵引状态。
电动转换开关箱内KM1闭合,高压电器箱内KM01断开,磁悬浮列车则进入蓄电池牵引模式,由DC330V蓄电池提供电源。磁悬浮列车通过M车牵引逆变器实现自牵引回库。当中间车牵引逆变器故障时,采用MC1车或MC2车牵引逆变器实现。
蓄电池牵引的使能条件可以为:
(1)非自动驾驶ATO模式;
(2)司机控制器主控手柄位于非牵引位;
(3)列车静止;
(4)蓄电池电压高于某一限值(满足蓄电池牵引);
(5)蓄电池输出母线接地检测正常。
以上蓄电池牵引使能条件满足后,控制模块判断以下条件均满足时,输出蓄电池牵引接触器KM01断开,电动转换开关KM1闭合指令:
(1)司机控制器主控手柄位于非牵引位置;
(2)司机控制器方向手柄不处于零位;
(3)高速断路器位于断开状态;
(4)隔离接地开关位于正常运行位。
此外,本申请实施例还可以设置蓄电池牵引复位条件,当蓄电池牵引复位条件满足时,停止蓄电池牵引。
蓄电池牵引接触器KM01断开,电动转换开关KM1闭合,当M车牵引逆变器正常时,M车将自动完成中间回路充电,等待司机发出蓄电池牵引力参考命令。
蓄电池牵引使能信号的复位条件满足以下任一个即复位:
(1)ATO模式;
(2)蓄电池电压低于某一限值;
(3)蓄电池牵引母线接地检测到短路;
(4)网络判断有牵引指令几秒后,保持制动仍未缓解。
本申请实施例中每节蓄电池满容量可以为40Ah,以三节列车的蓄电池并联供电模式,蓄电池总容量为120Ah,具体参数如下表所示:
序号 项目 参数 备注
1 串联电池数量 120只 由单体电芯4并120串
2 电池组电压范围 260V~330V
3 单体电池电压范围 2.17V~2.75V
5 电池组额定容量 40Ah
7 最大放电电流 10C
8 推荐充电电流 2C
9 电池重量 144kg
10 充电电压 330V
11 电池温度范围 0℃~55℃ 充电
12 电池允许工作温度范围 -20℃~55℃ 放电
13 尺寸 1072*566*630mm
图3为本申请实施例中磁悬浮列车牵引控制系统的主电路结构示意图,包括电动转换开关箱与高压电器箱内各部件、以及牵引变流器(或牵引逆变器)之间的连接关系。
具体实施时,如图3所示,司机按下蓄电池牵引按钮后,电动转换开关箱内KM1闭合,列车由受流器供电变为DC330V蓄电池供电,牵引逆变器接收到指令后,判断各自状态并反馈,当M车牵引逆变器正常时,DC330V电经过转换开关进入M车高压电器柜内,电流传感器采集输入电流,高速断路器1QF1闭合,经预充电及短接电路进入牵引逆变器,经过整流逆变后给10台牵引电机供电。同时,断开MC1、MC2车高速断路器,切除两车牵引。
此外,本申请实施例还可以实现库用位联锁,具体说明如下:
本申请实施例磁悬浮列车的MC车的高压分线箱内的三位置开关为选择受流器、库用电源、接地开关三种状态与接触器KM01连接的器件,配置有运行位(图2中标示2)、车间位(图2中标示1)及接地位(图2中标示3)三个位置,分别对应于受流器供电、库用插座供电以及维护安全接地三种模式,内部通过三位置转换开关辅助触点检测三位置转换开关位置状态及进行联锁控制,状态信息反馈至车辆系统。
当需要进行库内供电试验时,将任意一端(例如:MC1车)高压分线箱内三位置开关K1打到库用位,系统检测到库用位信号,则断开另一端(例如:MC2车)接触器KM01,避免高压电源串到受流器、受流柜,造成危险。
本申请实施例不仅可以采用磁悬浮列车已有的蓄电池提供电源,通过增加转换开关实现列车的低速平直道运行自牵引功能,还可以通过增加接触器实现自牵引时高压联锁以及库用位高压联锁。
尽管已描述了本申请一些可选的实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括一些可选的实施例以及落入本申请范围的所有变更和修改。

Claims (21)

  1. 一种磁悬浮列车牵引控制方法,其特征在于,包括如下步骤:
    在满足蓄电池牵引条件时,控制电动转换开关KM1闭合、并断开MC车的接触器KM01;其中,所述电动转换开关KM1的第一端与蓄电池正极相连,所述电动转换开关KM1的第二端与蓄电池负极相连,所述电动转换开关KM1的第三端和第四端与高压电器箱相连;所述接触器KM01位于高压电器箱与三位置开关K1之间,高压电器箱对应连接有牵引逆变器;
    在所述电动转换开关KM1闭合、接触器KM01断开时,所述磁悬浮列车由蓄电池供电、由所述牵引逆变器实现自牵引。
  2. 如权利要求1所述的方法,其特征在于,在满足蓄电池牵引条件时,控制电动转换开关KM1闭合、并断开MC车的接触器KM01,包括:
    检测磁悬浮列车的电流值;
    在所述磁悬浮列车无电流输入时,控制电动转换开关KM1闭合、并断开MC车的接触器KM01。
  3. 如权利要求2所述的方法,其特征在于,在所述磁悬浮列车无电流输入时,控制电动转换开关KM1闭合、并断开MC车的接触器KM01,包括:
    在检测到磁悬浮列车无电流输入时,提示用户;
    接收用户的蓄电池牵引指示;
    在接收到用户的蓄电池牵引指示后,控制电动转换开关KM1闭合、并断开MC车的接触器KM01。
  4. 如权利要求1所述的方法,其特征在于,所述电动转换开关KM1位于高压电器箱外、与磁悬浮列车的各节车厢的高压电器箱相连;所述电动转换开关KM1的第一端与各节车厢的蓄电池正极相连、第二端与各节车厢的蓄电池负极相连。
  5. 如权利要求1所述的方法,其特征在于,所述电动转换开关KM1位于当前车厢的高压电器箱内,所述电动转换开关KM1的第一端与当前车厢的蓄 电池正极相连、第二端与当前车厢的蓄电池负极相连。
  6. 如权利要求1所述的方法,其特征在于,所述电动转换开关KM1的第一端与蓄电池正极相连、第二端与蓄电池负极相连,包括:所述电动转换开关KM1的第一端经悬浮电源DD330V第一端内的二极管与蓄电池DC330V的正极相连,所述电动转换开关KM1的第二端以及悬浮电源DD330V的第二端均与所述蓄电池DC330V负极相连。
  7. 如权利要求1所述的方法,其特征在于,进一步包括:
    在满足蓄电池牵引复位条件时,停止蓄电池牵引。
  8. 如权利要求7所述的方法,其特征在于,所述蓄电池牵引复位条件包括以下任意一个或多个:
    自动驾驶ATO模式;
    蓄电池电压低于预设限值;
    蓄电池牵引母线接地检测到短路;
    网络判断有牵引指令预设时间后保持制动仍未缓解。
  9. 如权利要求1所述的方法,其特征在于,进一步包括:
    在进行库内供电试验时,控制所述磁悬浮列车的任意一端的高压分线箱内三位置开关K1打到库用位,断开所述磁悬浮列车的另一端的接触器KM01。
  10. 一种磁悬浮列车牵引控制系统,其特征在于,包括:控制模块、电动转换开关KM1、以及位于MC车的接触器KM01;所述电动转换开关KM1的第一端与蓄电池正极相连、第二端与蓄电池负极相连,所述电动转换开关KM1的第三端和第四端与高压电器箱相连;所述接触器KM01位于高压电器箱与三位置开关K1之间,所述高压电器箱对应连接有牵引逆变器;
    所述控制模块,用于在满足蓄电池牵引条件时,控制所述电动转换开关KM1闭合、所述接触器KM01断开,所述磁悬浮列车由蓄电池供电、由牵引逆变器实现自牵引。
  11. 如权利要求10所述的系统,其特征在于,进一步包括:
    电流传感器,用于检测磁悬浮列车的电流值;所述蓄电池牵引条件包括所述磁悬浮列车无电流输入。
  12. 如权利要求11所述的系统,其特征在于,进一步包括:
    提示器,用于在所述磁悬浮列车无电流输入时提示用户;
    蓄电池牵引按钮,用于接收用户的蓄电池牵引指示;所述蓄电池牵引条件包括接收到用户的蓄电池牵引指示。
  13. 如权利要求10所述的系统,其特征在于,所述电动转换开关KM1位于高压电器箱外、与磁悬浮列车的各节车厢的高压电器箱相连;所述电动转换开关KM1的第一端与各节车厢的蓄电池正极相连、第二端与各节车厢的蓄电池负极相连。
  14. 如权利要求10所述的系统,其特征在于,所述电动转换开关KM1位于当前车厢的高压电器箱内,所述电动转换开关KM1的第一端与当前车厢的蓄电池正极相连、第二端与当前车厢的蓄电池负极相连。
  15. 如权利要求10所述的系统,其特征在于,所述电动转换开关KM1的第一端与蓄电池正极相连、第二端与蓄电池负极相连,包括:所述电动转换开关KM1的第一端经悬浮电源第一端内的二极管与蓄电池的正极相连,所述电动转换开关KM1的第二端以及悬浮电源的第二端均与所述蓄电池负极相连。
  16. 如权利要求10所述的系统,其特征在于,所述控制模块进一步用于在满足蓄电池牵引复位条件时,停止蓄电池牵引。
  17. 如权利要求16所述的系统,其特征在于,所述蓄电池牵引复位条件包括以下任意一个或多个:
    自动驾驶ATO模式;
    蓄电池电压低于预设限值;
    蓄电池牵引母线接地检测到短路;
    网络判断有牵引指令预设时间后保持制动仍未缓解。
  18. 如权利要求10所述的系统,其特征在于,所述电动转换开关KM1位于M车内。
  19. 如权利要求10所述的系统,其特征在于,所述电流传感器位于MC车的高压分线箱内。
  20. 如权利要求10所述的系统,其特征在于,所述控制模块进一步用于在进行库内供电试验时,将所述磁悬浮列车的任意一端的高压分线箱内的三位置开关K1打到库用位并断开所述磁悬浮列车的另一端的接触器KM01。
  21. 一种磁悬浮列车,其特征在于,包括如权利要求10至20所述的磁悬浮列车牵引控制系统、高压电器箱、与高压电器箱对应连接的牵引逆变器、蓄电池,在所述电动转换开关KM1闭合、所述接触器KM01断开时,所述蓄电池为所述磁悬浮列车供电,所述牵引逆变器牵引所述磁悬浮列车。
PCT/CN2018/113529 2018-10-19 2018-11-01 磁悬浮列车及其牵引控制方法、系统 WO2020077692A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811221477.7A CN111071057B (zh) 2018-10-19 2018-10-19 磁悬浮列车及其牵引控制方法、系统
CN201811221477.7 2018-10-19

Publications (1)

Publication Number Publication Date
WO2020077692A1 true WO2020077692A1 (zh) 2020-04-23

Family

ID=70282995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/113529 WO2020077692A1 (zh) 2018-10-19 2018-11-01 磁悬浮列车及其牵引控制方法、系统

Country Status (2)

Country Link
CN (1) CN111071057B (zh)
WO (1) WO2020077692A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112606698A (zh) * 2020-12-28 2021-04-06 川铁轨道交通装备(重庆)有限公司 一种适用于超级电容供电的小型磁浮微轨电车

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114013294A (zh) * 2021-10-19 2022-02-08 中车永济电机有限公司 一种高压电器箱

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1583452A (zh) * 2004-05-26 2005-02-23 上海磁浮交通工程技术研究中心 高速磁悬浮列车故障停车时的应急供电方法
CN201109373Y (zh) * 2007-12-11 2008-09-03 株洲南车时代电气股份有限公司 低速磁浮列车辅助电源装置
KR20100020659A (ko) * 2008-08-13 2010-02-23 현대로템 주식회사 자기부상열차의 보조전원장치
KR101002784B1 (ko) * 2010-09-08 2010-12-21 세종기술주식회사 자기부상열차의 전원공급시스템
CN102069726A (zh) * 2010-11-25 2011-05-25 北京控股磁悬浮技术发展有限公司 一种中低速磁浮列车的车载电源系统
CN103042945A (zh) * 2012-12-24 2013-04-17 唐山轨道客车有限责任公司 磁悬浮列车电源系统
CN107539162A (zh) * 2017-09-13 2018-01-05 中车株洲电力机车有限公司 一种中低速磁浮列车牵引系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS637113A (ja) * 1986-06-26 1988-01-13 Sumitomo Electric Ind Ltd 磁気浮上搬送車体
JPH05219610A (ja) * 1992-02-04 1993-08-27 Sumitomo Electric Ind Ltd 磁気浮上体の浮上間隔制御装置
JPH08289416A (ja) * 1995-04-12 1996-11-01 Sumitomo Electric Ind Ltd 磁気浮上搬送システムの充電管理装置
CN107571769A (zh) * 2017-09-22 2018-01-12 湖南磁浮交通发展股份有限公司 一种磁浮列车牵引系统及磁浮列车
CN108162989B (zh) * 2017-12-27 2020-04-17 北京交通大学 一种城市轨道交通车辆用牵引辅助一体化车载储能系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1583452A (zh) * 2004-05-26 2005-02-23 上海磁浮交通工程技术研究中心 高速磁悬浮列车故障停车时的应急供电方法
CN201109373Y (zh) * 2007-12-11 2008-09-03 株洲南车时代电气股份有限公司 低速磁浮列车辅助电源装置
KR20100020659A (ko) * 2008-08-13 2010-02-23 현대로템 주식회사 자기부상열차의 보조전원장치
KR101002784B1 (ko) * 2010-09-08 2010-12-21 세종기술주식회사 자기부상열차의 전원공급시스템
CN102069726A (zh) * 2010-11-25 2011-05-25 北京控股磁悬浮技术发展有限公司 一种中低速磁浮列车的车载电源系统
CN103042945A (zh) * 2012-12-24 2013-04-17 唐山轨道客车有限责任公司 磁悬浮列车电源系统
CN107539162A (zh) * 2017-09-13 2018-01-05 中车株洲电力机车有限公司 一种中低速磁浮列车牵引系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112606698A (zh) * 2020-12-28 2021-04-06 川铁轨道交通装备(重庆)有限公司 一种适用于超级电容供电的小型磁浮微轨电车

Also Published As

Publication number Publication date
CN111071057B (zh) 2021-05-04
CN111071057A (zh) 2020-04-28

Similar Documents

Publication Publication Date Title
US8810200B2 (en) Load system
US20200207377A1 (en) Railway power system and associated method
WO2019119495A1 (zh) 一种列车牵引救援方法及系统
CN109080464B (zh) 轨道车辆主电路拓扑结构及供电方法
CN107539162A (zh) 一种中低速磁浮列车牵引系统
CN109532501B (zh) 一种储能式多编组无轨电车主电路及控制方法
CN102774385B (zh) 一种电力机车及其供电系统和供电方法
US20200207376A1 (en) Power system and associated method
CN103481785A (zh) 增程式动力系统及其双电压保护方法
CN204452070U (zh) 用于电动车智能切换充电和储能充电控制装置
CN110562094A (zh) 机车电气系统及其电池组充放电方法
WO2020077692A1 (zh) 磁悬浮列车及其牵引控制方法、系统
CN112622646A (zh) 适用于弓网受流系统的整车控制方法、弓网受流系统
Ogura et al. A bidirectional DC-DC converter for battery electric light rail vehicle and its test run results
CN201833893U (zh) 用于地铁调车的电传动系统
CN212447128U (zh) 轨道交通车辆用应急牵引和辅助供电储能系统及供电系统
CN111660878B (zh) 制动能量回收和应急牵引储能系统、供电系统及控制方法
CN101700736B (zh) 电动公交车混合动力装置
Suzuki et al. Introduction and practical use of energy storage system with lithium-ion battery for DC traction power supply system
CN107054094A (zh) 弓网故障时轨道车辆的应急牵引系统
CN207631020U (zh) 一种磁浮列车牵引系统及磁浮列车
WO2020077688A1 (zh) 一种磁悬浮列车及其牵引控制方法
CN202764966U (zh) 一种电力机车及其供电系统
CN202213508U (zh) 一种矿用隔爆磷酸铁锂电机车
CN110768357B (zh) 轨道车辆的供电系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18937431

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18937431

Country of ref document: EP

Kind code of ref document: A1