WO2020075948A1 - 유류지하저장시설의 모니터링 방법 - Google Patents

유류지하저장시설의 모니터링 방법 Download PDF

Info

Publication number
WO2020075948A1
WO2020075948A1 PCT/KR2019/006400 KR2019006400W WO2020075948A1 WO 2020075948 A1 WO2020075948 A1 WO 2020075948A1 KR 2019006400 W KR2019006400 W KR 2019006400W WO 2020075948 A1 WO2020075948 A1 WO 2020075948A1
Authority
WO
WIPO (PCT)
Prior art keywords
earthquake sensor
oil
analysis step
storage facility
monitoring
Prior art date
Application number
PCT/KR2019/006400
Other languages
English (en)
French (fr)
Inventor
천대성
정용복
Original Assignee
한국지질자원연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국지질자원연구원 filed Critical 한국지질자원연구원
Publication of WO2020075948A1 publication Critical patent/WO2020075948A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/26Government or public services

Definitions

  • the present invention relates to a method for monitoring an oil underground storage facility.
  • the types of oil storage bases are largely classified into ground storage and underground storage.
  • the ground storage facility has a short construction period and easy location selection, but it is vulnerable to safety and has a problem of high operation cost.
  • underground storage facilities have the advantages of high stability, semi-permanent life, and relatively low construction cost.
  • 1 and 2 schematically show a schematic diagram of an oil underground storage facility.
  • the oil underground storage facility receives and stores the oil through the connection pipe 15 to the underground cavity 10.
  • the underground cavity 10 accommodates oil in the exposed rock without a separate facility.
  • This underground storage facility uses oil that is lighter than water and does not mix with water.
  • the oil in the liquid (l) or gas (g) state stored in the underground cavity 10 floats on the water by the incoming groundwater, and does not leak out of the underground cavity 10 by the water pressure of the incoming groundwater.
  • a water curtain (20) is installed on the upper part of the underground cavity 10 to maintain the stability of the groundwater of the surrounding rock.
  • the oil accommodated in the underground cavity 10 is prevented from leaking out of the underground cavity 10 by the water pressure W of the incoming water.
  • Gas (g) is gathered at the upper part of the underground cavity (10), and when crack (C) occurs, gas (g) leaks to the ground along the crack (C) and may cause fire.
  • the present invention is to solve the above problems and to provide a method for monitoring an oil underground storage facility capable of confirming the occurrence of rock fallouts and cracks occurring underground.
  • a method of monitoring an oil underground storage facility for achieving the above object is disposed in an underground cavity capable of accommodating oil therein and on top of the underground cavity, and the oil received in the underground cavity is leaked It is performed by using a plurality of micro-earthquake sensors installed in an underground oil storage facility including a water-wall tunnel that provides a water-wall to prevent it from becoming.
  • the monitoring method of the oil underground storage facility may include a first analysis step of analyzing a signal received by the micro-earthquake sensor to determine whether a rock damage event has occurred; And a second analysis step performed when a rock damage event occurs in the first analysis step, and analyzing a signal received by the microscopic earthquake sensor to determine whether a fluid leakage event has occurred.
  • the frequency band by the combination of the micro-vibration sensor and the pre-amplifier may be characterized in that 10 Hz to 10 kHz. .
  • the first analysis step is the first smile It is performed by analyzing the signal received by the earthquake sensor
  • the second analysis step may be performed by analyzing the signal received by the second microscopic earthquake sensor.
  • the first micro Earthquake sensor installed by drilling the side wall of the underground cavity and the second micro Earthquake Sensor installed by drilling the bottom surface of the water tunnel, the first micro Earthquake sensor and the first 2 time synchronization of the micro Earthquake sensor; And tracking a location where damage has occurred from a point in time at which the signals received by the first and second earthquake sensors are received.
  • it may be characterized in that it further comprises the step of confirming that the water pressure gauge installed in the water wall tunnel further comprises, after performing the second analysis step, the water pressure of the water pressure gauge has decreased.
  • the method further includes collecting noise before performing the first analysis step, and collecting noise comprises: performing test monitoring; And classifying the noise waveform collected in the test monitoring, and the same waveform as the noise waveform in the first analysis step and the second analysis step is excluded from a rock damage event or a fluid leakage event. can do.
  • the method of monitoring the oil underground storage facility analyzes the signal received through the micro-earthquake sensor to determine whether or not the leaked gas leaks from the oil underground storage facility due to cracking due to rock fall. Can be monitored.
  • 1 is a schematic diagram of an oil underground storage facility capable of accommodating oil in an underground cavity.
  • Figure 2 is a schematic schematic diagram of an oil underground storage facility equipped with a microscopic earthquake sensor of a method for monitoring an oil underground storage facility according to an embodiment of the present invention.
  • FIG. 3 is a schematic configuration diagram of a monitoring system used in a method for monitoring an oil underground storage facility according to an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of a method for monitoring an oil underground storage facility according to an embodiment of the present invention.
  • FIG. 5 (a) schematically shows the shape of a signal received when rock falls or cracks occur
  • FIG. 5 (b) schematically shows the shape of a signal received when gas leaks due to cracks.
  • FIG. 6 schematically illustrates various signal types corresponding to noise in addition to gas leakage signals due to rock damage and cracks.
  • FIG. 1 is a schematic schematic diagram of an oil underground storage facility capable of accommodating oil in an underground cavity
  • FIG. 2 is a view of an oil underground storage facility equipped with a microscopic earthquake sensor of a method for monitoring an oil underground storage facility according to an embodiment of the present invention
  • 3 is a schematic schematic diagram of a monitoring system used in a method for monitoring an oil underground storage facility of the present invention.
  • the oil underground storage facility consists of two parts. One is an underground cavity 10 capable of accommodating oil, and the other is a water wall tunnel 20 located above the underground cavity 10.
  • the water wall tunnel 20 serves to maintain a water pressure above a certain level so that the underground cavity 10 can stably receive oil, and the water wall tunnel 20 may be equipped with a water pressure gauge capable of detecting water pressure.
  • the oil underground storage facility monitoring system used in the present invention may include microscopic earthquake sensors 31a and 31b, a signal controller 33 and a monitoring computer 34. If necessary, the oil underground storage facility monitoring system may further include a signal processor 32. At this time, the signal processor 32 may include a preamplifier.
  • the micro earthquake sensors 31a, 32b are installed in the oil underground storage facility.
  • the micro-vibration sensors 31a and 32b used in the present invention refer to sensors capable of detecting elastic waves having a frequency between tens of Hz to 10 kHz among elastic waves generated by the deformation energy being opened when the material is deformed or destroyed.
  • the microscopic earthquake sensors 31a and 31b used in the present invention have sufficient sensitivity to detect signals during operation of the oil underground storage facility, and those having sufficient durability against temperature, humidity and mechanical vibration can be used. You can.
  • an accelerometer or a geophone may be used as the micro-vibration sensors 31a and 31b that can be used in the present invention.
  • the installation positions of the micro-earthquake sensors 31a and 31b may be determined by a semi-emprical method, or through an intelligent algorithm such as a genetic algorithm.
  • microscopic earthquake sensors 31a and 31b may be disposed to surround the underground cavity 10.
  • the first microscopic earthquake sensor 10a may be installed in the inner wall of the underground cavity 10 by drilling the inner wall, and the second microscopic earthquake sensor 31b may be installed by drilling the inner wall of the water tunnel 20. You can.
  • the perforated hole may be sealed using a grouting material having an acoustic impedance similar to that of a rock. The grouting process should be carried out at a constant and slow rate until the sealing material hardens.
  • the first micro earthquake sensor 31a may be installed by drilling a side wall of the underground cavity 10
  • the second micro earthquake sensor 31b may be installed by drilling the bottom surface of the water wall tunnel 20.
  • the micro-vibration sensors 31a and 31b can be arranged to surround the underground cavity 10 as shown in FIG. 1. In this way, the durability of the ceiling of the underground cavity 10 is lowered during the installation process of the microscopic earthquake sensor by arranging the bottom of the water wall tunnel 20 to place the second microscopic earthquake sensor 31b on the upper part of the underground cavity 10. Can be prevented.
  • the present invention is not limited to this, and in the case of an already installed oil underground storage facility, it is also possible to install the microscopic earthquake sensors 31a and 31b in the ground by drilling on the surface.
  • the micro earthquake sensors 31a and 31b may be connected to a signal processor 32 having a preamplifier.
  • the preamplifier When the preamplifier is installed, the preamplifier is preferably installed as close as possible to the microscopic vibration sensor.
  • the measurement frequency band may be determined by a combination of a micro-earthquake sensor and a preamplifier.
  • the oil underground storage facility is installed on a rock, and the oil underground storage facility monitoring system according to an embodiment of the present invention has a frequency band of 10 Hz ⁇ Can be selected at 10 kHz.
  • the signal processor 32 is connected to the signal controller 33.
  • the signal controller 33 may include an analog-to-digital converter, a data measurement board, an external power supply, and a transmission module.
  • the external power supply in case of power failure, it may further include an auxiliary power supply UPS.
  • the signal measured through the transmission module is transmitted to the monitoring computer 34.
  • the monitoring computer 34 includes a processor and a central processing unit in which storage is performed, an input unit capable of controlling the computer, and a display unit capable of checking measurement results.
  • the central processing unit serves to determine whether rock damage and fluid leakage have occurred in the oil underground storage facility by the monitoring method of the oil underground storage facility, which will be described later.
  • the monitoring computer 34 may further include an alarm unit to warn the user when rock damage or fluid leakage occurs in the oil underground storage facility by the monitoring method of the oil underground storage facility.
  • FIG. 4 is a schematic flowchart of a method for monitoring an oil underground storage facility according to an embodiment of the present invention.
  • a method of monitoring an oil underground storage facility is a first analysis step (S120) and a first analysis step to determine whether a rock damage event has occurred by analyzing a signal received by a micro earthquake sensor It is performed when a rock damage event occurs in the analysis step, and includes a second analysis step (S130) of analyzing the signal received by the micro earthquake sensor to determine whether a fluid leakage event has occurred.
  • the rock damage event means that an event such as rock dropping or cracking occurs on the wall of the underground cavity of the oil underground storage facility due to aging of the facility or external impact.
  • the rock damage event generates a short-lived, short-lived, strong signal (see FIG. 5 (a)).
  • the fluid leakage event means that an event such as leakage of high-pressure gas contained in the upper portion of the underground cavity occurs along the crack in the wall of the underground cavity due to a rock damage event.
  • the fluid leakage event has a weak intensity, but generates a long duration signal (see Fig. 5 (b)).
  • a fluid leak event also generates a signal that loses its strength over time.
  • Analyzing a signal in a method of monitoring an oil underground storage facility may be to analyze the shape of a waveform.
  • Analyzing the shape of the waveform means analyzing the duration, rise time, or average frequency of the signal.
  • the present invention is not limited thereto, and it is also possible to analyze the signal by analyzing the size of the signal waveform, that is, amplitude, ring-down count, and acoustic micro-vibration energy.
  • the oil underground storage facility monitoring method according to an embodiment of the present invention, the oil underground is more efficiently used through the signal characteristics of the rock damage event and the fluid leakage event.
  • the storage facility can be monitored.
  • a problem in the oil underground storage facility is a fluid leakage such as gas due to cracks due to damage to the rock, but the dropping of the rock does not immediately lead to fluid leakage due to cracks.
  • the leakage of the fluid is weak as described above, it is difficult to detect because it is disturbed by noise.
  • the first analysis step (S120) may be performed.
  • the micro-vibration sensor may be analyzed as a rock damage event when the duration is less than a predetermined time set by the user and the signal strength is greater than or equal to a predetermined intensity set by the user.
  • a second analysis step (S130) is performed to check whether a fluid leakage event has occurred. That is, if it is not determined that a rock damage event occurred in the first analysis step (S120), the second analysis step (S130) is not performed.
  • the second analysis step (S130) may determine whether a fluid leakage event has occurred by comparing a signal received by the microscopic earthquake sensor with a predetermined time unit before and after the time of the rock damage event.
  • a step (S135) of checking whether the water pressure change in the water pressure gauge may be performed. That is, it is possible to double check whether a fluid leakage event actually occurs by checking whether a water wall tunnel changes a water pressure.
  • the first analysis step ( S120) is performed by analyzing the signal received by the first micro Earthquake sensor
  • the second analysis step (S130) can be performed by analyzing the signal received by the second micro Earthquake sensor.
  • the first analysis step (S120) is performed using the first microscopic earthquake sensor
  • the second analysis step (S130) is performed using the second microscopic earthquake sensor.
  • the microscopic earthquake sensor installed by drilling the side wall of the underground cavity is called the first microscopic earthquake sensor, and the microscopic earthquake sensor installed by drilling the bottom surface of the water tunnel is called the second microscopic earthquake sensor.
  • the second microscopic earthquake sensor may be arranged to surround the underground cavity.
  • the time synchronization means that a plurality of small earthquake sensors are related based on the measurement time.
  • a noise collecting step S110 may be further performed before performing the first analysis step S120.
  • the oil underground storage facility uses natural rock, so even if the oil underground storage facility is installed in the same way, there is a difference in noise generated in the surroundings. Therefore, it is possible to further improve the reliability of the monitoring method by performing the step of collecting noise (S110) before performing the first analysis step (S120).
  • the step of collecting noise (S110) may include performing a test monitoring and classifying the noise waveform collected in the test monitoring.
  • the noise waveform may include electrical noise (Fig. 6 (a) and Fig. 6 (b)), blasting (Fig. 6 (c)), crushing (Fig. 6 (d)), and the like.
  • Each oil underground storage facility may have different types of noise and noise waveforms.
  • noise waveform collected in this way and the waveforms received in the first analysis step (S120) and the second analysis step (S130) are identical to each other, these waveforms are excluded from rock damage events or fluid leakage events to reduce the reliability of the monitoring method. It can be further improved.
  • the monitoring computer performs an alert step (S140) informing the user that a fluid such as gas has leaked.
  • the method of monitoring an oil underground storage facility may be implemented in a form of a program readable through various computer means and recorded in a computer-readable recording medium.
  • the recording medium may include program instructions, data files, data structures, or the like alone or in combination.
  • the program instructions recorded on the recording medium may be specially designed and configured for the present invention or may be known and usable by those skilled in computer software.
  • the recording medium includes magnetic media such as hard disks, floppy disks, and magnetic tapes, optical media such as CD-ROMs, DVDs, and magnetic-optical media such as floptical disks ( magnetooptical media, and hardware devices specifically configured to store and execute program instructions such as ROM, RAM, flash memory, and the like.
  • program instructions may include high-level language code that can be executed by a computer using an interpreter, etc., as well as machine language codes produced by a compiler.
  • Such hardware devices may be configured to operate as one or more software modules to perform the operation of the present invention, and vice versa.

Landscapes

  • Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Human Resources & Organizations (AREA)
  • General Business, Economics & Management (AREA)
  • Economics (AREA)
  • Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Development Economics (AREA)
  • Educational Administration (AREA)
  • Automation & Control Theory (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

본 발명은 내부에 유류를 수용할 수 있는 지하공동 및 상기 지하공동의 상부에 배치되어 상기 지하공동에 수용된 유류가 유출되는 것을 방지하기 위한 수벽을 제공하는 수벽 터널을 포함하는 지하유류저장시설에 설치되는 복수의 미소지진센서를 이용한 유류지하저장시설의 모니터링 방법에 있어서, 상기 유류지하저장시설의 모니터링 방법은, 상기 미소지진센서로 수신된 신호를 분석하여 암반손상 이벤트가 발생했는지 확인하는 제1분석단계; 및 상기 제1분석단계에서 암반손상 이벤트가 발생한 경우에 수행되며, 상기 미소지진센서로 수신된 신호를 분석하여 유체누설 이벤트가 발생했는지 확인하는 제2분석단계;를 포함하는 것을 특징으로 하는 유류지하저장시설의 모니터링 방법에 관한 것이다.

Description

유류지하저장시설의 모니터링 방법
본 발명은 유류지하저장시설의 모니터링 방법에 관한 것이다.
대한민국은 1980년 6월부터 석유비축계획을 수립하고 원유비축기지와 제품비축기지를 건설하는 등의 석유비축사업에 착수하였다.
석유비축기지의 유형은 크게 지상저장과 지하저장으로 분류된다.
지상저장시설은 건설기간이 짧고 입지선택이 용이하지만 안전에 취약하고 운영비용이 많이 소요되는 문제가 있다.
이에 비해 지하저장시설은 안정성이 높고, 수명이 반영구적이며 공사비가 상대적으로 저렴하다는 장점이 있다.
도 1 및 2는 유류지하저장시설의 모식도를 개략적으로 도시한 것이다.
도 1 및 2를 참조하면, 유류지하저장시설은 지하공동(10)에 연결관(15)을 통해 유류를 공급받아 저장하게 된다. 지하공동(10)은 별도의 시설없이 노출된 암반에 유류를 수용하게 된다. 이러한 지하저장시설은 유류가 물보다 가볍고 물과 섞이지 않는 성질을 이용한 것이다.
즉, 지하공동(10)에 저장된 액체(l)나 가스(g) 상태의 유류는 유입되는 지하수에 의해 물위에 뜨게 되며, 유입되는 지하수의 수압에 의해 지하공동(10) 바깥으로 새어나가지 못한다.
또한, 지하공동(10)의 상부에는 주변 암반의 지하수 안정성을 유지하기 위해 수벽터널(20, Water curtain)을 설치하게 된다
즉, 지하공동(10)에 수용된 유류는 유입되는 물의 수압(W)에 의해 지하공동(10) 바깥으로 새어나가지 못하게 된다.
이와 같은 지하저장시설은 높은 안정성과 별개로 지하에 위치하기 때문에 유지 · 관리가 어렵다. 지하공동(10)의 상부에는 가스(g)가 모여있는데, 크랙(C)이 발생한 경우에 가스(g)가 크랙(C)을 따라 지상으로 누출되어 화재의 원인이 되기도 한다.
하지만 지하공동(10)에서 노후화 또는 지진 등에 의해 암반(P)이 탈락되거나 크랙(C)이 발생해도, 이를 실시간으로 확인할 방법이 없다.
따라서 이와 같은 유류의 지하저장시설과 같은 유류지하저장시설의 유지 · 관리를 위한 모니터링 방법이 필요한 실정이다.
본 발명은 상기한 문제점을 해결하기 위한 것으로서 지하에서 발생하는 암반 탈락 및 크랙의 발생을 확인할 수 있는 유류지하저장시설의 모니터링 방법을 제공하고자 한다.
한편, 본 발명의 명시되지 않은 또 다른 목적들은하기의 상세한 설명 및 그 효과로부터 용이하게 추론할 수 있는 범위 내에서 추가적으로 고려될 것이다.
상기 일 목적을 달성하기 위한 본 발명의 일 실시예에 따른 유류지하저장시설의 모니터링 방법은 내부에 유류를 수용할 수 있는 지하공동 및 상기 지하공동의 상부에 배치되어 상기 지하공동에 수용된 유류가 유출되는 것을 방지하기 위한 수벽을 제공하는 수벽 터널을 포함하는 지하유류저장시설에 설치되는 복수의 미소지진센서를 이용하여 수행된다. 이때, 상기 유류지하저장시설의 모니터링 방법은 상기 미소지진센서로 수신된 신호를 분석하여 암반손상 이벤트가 발생했는지 확인하는 제1분석단계; 및 상기 제1분석단계에서 암반손상 이벤트가 발생한 경우에 수행되며, 상기 미소지진센서로 수신된 신호를 분석하여 유체누설 이벤트가 발생했는지 확인하는 제2분석단계;를 포함하는 것을 특징으로 한다.
일 예에 있어서, 상기 미소지진센서로 수신된 신호를 증폭하는 전치증폭기를 더 포함하고, 상기 미소진동센서 및 상기 전치증폭기의 조합에 의한 주파수 대역은 10 Hz ~ 10 kHz인 것을 특징으로 할 수 있다.
일 예에 있어서, 상기 지하공동의 내벽을 천공하여 설치되는 제1미소지진센서 및 상기 수벽 터널의 내벽을 천공하여 설치되는 제2미소지진센서를 포함하고, 상기 제1분석단계는 상기 제1미소지진센서로 수신된 신호를 분석하여 수행되며, 상기 제2분석단계는 상기 제2미소지진센서로 수신된 신호를 분석하여 수행되는 것을 특징으로 할 수 있다.
일 예에 있어서, 상기 지하공동의 측벽을 천공하여 설치되는 제1미소지진센서 및 상기 수벽 터널의 바닥면을 천공하여 설치되는 제2미소지진센서를 포함하고, 상기 제1미소지진센서 및 상기 제2미소지진센서를 서로 시간동기화하는 단계; 및 상기 제1미소지진센서 및 상기 제2미소지진센서에 수신된 신호의 수신 시점으로부터 손상이 발생한 위치를 추적하는 단계;를 포함하는 것을 특징으로 할 수 있다.
일 예에 있어서, 상기 수벽 터널에 설치되는 수압계를 더 포함하고, 상기 제2분석단계를 수행한 후에 상기 수압계의 수압이 감소하였는지 확인하는 단계를 더 포함하는 것을 특징으로 할 수 있다.
일 예에 있어서, 상기 제1분석단계를 수행하기 전에 잡음을 수집하는 단계를 더 포함하고, 상기 잡음을 수집하는 단계는, 시험 모니터링을 수행하는 단계; 및 상기 시험 모니터링에서 수집된 잡음 파형을 분류하는 단계를 더 포함하고, 상기 제1분석단계 및 상기 제2분석단계에서 상기 잡음 파형과 동일한 파형은 암반손상 이벤트 또는 유체누설 이벤트에서 제외하는 것을 특징으로 할 수 있다.
본 발명의 일 실시예에 따른 유류지하저장시설의 모니터링 방법은 미소지진센서를 통해 수신된 신호를 분석하여 유류지하저장시설에서 암반탈락으로 인한 크랙이 발생하여, 수용하고 있던 가스가 누출되는지 여부를 모니터링할 수 있다.
한편, 여기에서 명시적으로 언급되지 않은 효과라하더라도, 본 발명의 기술적 특징에 의해 기대되는 이하의 명세서에서 기재된 효과 및 그 잠정적인 효과는 본 발명의 명세서에 기재된 것과 같이 취급됨을 첨언한다.
도 1은 지하공동에 유류를 수용할 수 있는 유류지하저장시설의 개략적 모식도이다.
도 2는 본 발명의 일 실시예에 따른 유류지하저장시설의 모니터링 방법의 미소지진센서가 설치된 유류지하저장시설의 개략적 모식도이다.
도 3은 본 발명의 일 실시예에 따른 유류지하저장시설의 모니터링 방법에 이용되는 모니터링 시스템의 개략적 구성도이다.
도 4는 본 발명의 일 실시예에 따른 유류지하저장시설의 모니터링 방법의 개략적 흐름도이다.
도 5(a)는 암반탈락 또는 균열 발생시에 수신된 신호의 형태를 개략적으로 도시한 것이며, 도 5(b)는 크랙에 의한 가스 누출시에 수신된 신호의 형태를 개략적으로 도시한 것이다.
도 6은 암반손상 및 크랙으로 인한 가스 누출 신호 외에 잡음에 해당하는 다양한 신호 형태를 개략적으로 도시한 것이다.
본 발명을 설명함에 있어서 관련된 공지기능에 대하여 이 분야의 기술자에게 자명한 사항으로서 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 상세한 설명을 생략한다.
본 발명의 일 실시예에 따른 유류지하저장시설의 모니터링 방법에 대해 설명하기에 앞서, 도 1 내지 도 3을 참조하여 본 발명의 일 실시예에 따른 유류지하저장시설의 모니터링 방법에 이용될 수 있는 유류지하저장시설 모니터링 시스템에 대해 설명하도록 한다.
도 1은 지하공동에 유류를 수용할 수 있는 유류지하저장시설의 개략적 모식도이며, 도 2는 본 발명의 일 실시예에 따른 유류지하저장시설의 모니터링 방법의 미소지진센서가 설치된 유류지하저장시설의 개략적 모식도이며, 도 3는 본 발명의 유류지하저장시설의 모니터링 방법에 이용되는 모니터링 시스템의 개략적 구성도이다.
유류지하저장시설은 크게 두가지 부분으로 구성됨을 알 수 있다. 하나는 유류를 수용할 수 있는 지하공동(10)이며, 다른 하나는 지하공동(10)의 상부에 위치하는 수벽 터널(20)이다.
수벽 터널(20)은 지하공동(10)이 안정적으로 유류를 수용할 수 있도록 일정 이상의 수압을 유지시켜주는 역할을 하며, 수벽 터널(20)에는 수압을 감지할 수 있는 수압계가 설치될 수 있다.
도 3을 참조하면, 본 발명에서 이용되는 유류지하저장시설 모니터링 시스템은 미소지진센서(31a, 31b), 신호제어기(33) 및 모니터링 컴퓨터(34)를 포함할 수 있다. 필요에 따라, 유류지하저장시설 모니터링 시스템은 신호처리기 (32)를 더 포함할 수 있다. 이때, 신호처리기(32)는 전치증폭기를 구비할 수 있다.
미소지진센서(31a, 32b)는 유류지하저장시설에 설치된다. 본 발명에서 이용되는 미소지진센서(31a, 32b)는 재료의 변형 또는 파괴시 변형 에너지가 개방되어 발생한 탄성파 중 수십 Hz 에서 10 kHz 사이의 주파수를 가지는 탄성파를 감지할 수 있는 센서를 의미한다. 특히, 본 발명에서 이용되는 미소지진센서(31a, 31b)는 유류지하저장시설의 운영중에 신호를 검출할 수 있는 충분한 감도를 가지는 것으로서, 온도, 습도 및 기계적 진동 등에 대하여 충분한 내구성을 확보한 것을 이용할 수 있다. 예를 들어, 본 발명에서 이용될 수 있는 미소지진센서(31a, 31b)로 가속도계 또는 지오폰 등을 이용할 수 있다.
미소지진센서(31a, 31b)의 설치 위치는 반경험적(semi-emprical) 방법에 의해 결정되거나, 유전자 알고리즘 등과 같은 지능형 알고리즘을 통해 결정될 수 있다.
다만, 본 발명의 유류지하저장시설 모니터링 시스템은 지하공동(10)을 감싸도록 미소지진센서(31a, 31b)를 배치할 수 있다.
예를 들어, 지하공동(10)의 내벽을 천공하여 그 내부에 제1미소지진센서(10a)를 설치할 수 있으며, 수벽 터널(20)의 내벽을 천공하여 제2미소지진센서(31b)를 설치할 수 있다. 이때, 천공한 구멍은 암석과 유사한 음향 임피던스를 가지는 그라우팅 재료를 이용하여 밀봉할 수 있다. 그라우팅 과정은 밀봉 재료가 거의 경화될 때까지 일정하고 느린 속도로 수행하여야 한다.
한편, 제1미소지진센서(31a)는 지하공동(10)의 측벽을 천공하여 설치될 수 있으며, 제2미소지진센서(31b)는 수벽터널(20)의 바닥면을 천공하여 설치될 수 있다. 이처럼 미소지진센서(31a, 31b)를 배치함으로써, 도 1에 도시한 바와 같이 지하공동(10)을 감싸도록 미소지진센서(31a, 31b)를 배치할 수 있다. 이와 같이, 수벽터널(20)의 바닥을 천공하여 지하공동(10)의 상부에 제2미소지진센서(31b)를 배치하여 미소지진센서의 설치과정에서 지하공동(10)의 천장의 내구성이 저하되는 것을 예방할 수 있다.
다만, 이에 제한되는 것은 아니며, 이미 설치된 유류지하저장시설의 경우에는 지표면에서 시추하여 미소지진센서(31a, 31b)를 지중에 설치하는 것도 가능하다.
미소지진센서(31a, 31b)는 전치증폭기를 구비하고 있는 신호처리기(32)와 연결될 수 있다. 전치증폭기가 설치될 경우, 전치증폭기는 미소진동센서와 가능한 가까운 위치에 설치되는 것이 바람직하다. 측정주파수 대역은 미소지진센서 및 전치증폭기의 조합에 의해 결정될 수 있는데, 유류지하저장시설은 암반에 설치되는 바, 본 발명의 일 실시예에 따른 유류지하저장시설 모니터링 시스템은 주파수 대역은 10 Hz ~ 10 kHz에서 선정될 수 있다.
신호처리기(32)는 신호제어기(33)와 연결된다. 신호제어기(33)는 아날로그-디지털 변환기, 자료계측보드, 외부전원 공급장치 및 송신모듈을 포함할 수 있다. 한편, 정전에 대비하여 외부전원공급장치 외에 보조전원장치인 UPS를 더 포함할 수 있다.
송신모듈을 통해 측정된 신호는 모니터링 컴퓨터(34)로 송신된다. 모니터링 컴퓨터(34)는 프로세서 및 저장이 수행되는 중앙처리유닛, 컴퓨터를 콘트롤할 수 있는 입력 유닛, 및 측정결과를 확인할 수 있는 디스플레이 유닛을 포함한다. 중앙처리유닛은 후술하는 유류지하저장시설의 모니터링 방법에 의해 유류지하저장시설에 암반손상 및 유체누설이 발생하였는지 판단하는 역할을 수행한다.
한편, 모니터링 컴퓨터(34)는 알람 유닛을 더 포함하여, 유류지하저장시설의 모니터링 방법에 의해 유류지하저장시설에 암반손상 및 유체누설이 발생한 경우에 사용자에게 경고를 할 수 있다.
이하, 전술한 본 발명의 유류지하저장시설 모니터링 시스템을 이용한 유류지하저장시설의 모니터링 방법에 대해 설명하도록 한다.
도 4는 본 발명의 일 실시예예 따른 유류지하저장시설의 모니터링 방법의 개략적 흐름도이다.
도 4를 참조하면, 본 발명의 일 실시예에 따른 유류지하저장시설의 모니터링 방법은 미소지진센서로 수신된 신호를 분석하여 암반손상 이벤트가 발생했는지 확인하는 제1분석단계(S120) 및 제1분석단계에서 암반손상 이벤트가 발생한 경우에 수행되며, 상기 미소지진센서로 수신된 신호를 분석하여 유체누설 이벤트가 발생했는지 확인하는 제2분석단계(S130)를 포함한다.
여기서 암반손상 이벤트란 시설의 노화 또는 외부의 충격에 의해 유류지하저정시설의 지하공동의 벽면에서 암반이 탈락되거나 크랙이 발생하는 등의 사건이 발생하는 것을 의미한다. 암반손상 이벤트는 지속시간이 짧고 단발적이며, 강도가 강한 신호(도 5(a) 참조)를 발생시킨다.
이와 달리 유체누설 이벤트란 암반손상 이벤트에 의하여 지하공동의 벽면에 발생한 크랙을 따라 지하공동의 상부에 수용되어 있던 고압의 가스가 누설되는 등의 사건이 발생하는 것을 의미한다. 유체누설 이벤트는 강도가 약하지만, 지속시간이 긴 신호(도 5(b) 참조)를 발생시킨다. 경우에 따라서, 유체누설 이벤트는 시간이 지남에 따라 강도가 약해지는 신호를 발생시키기도 한다. 특히, 유체누설 이벤트의 경우, 누설 발생시에 에너지의 양이 증가하는 특성을 보이므로, 수신된 신호의 세부 파라미터(micro-parameter) 중 에너지와 관련된 파라미터를 검토함으로써 유체누설 이벤트의 발생여부를 확인할 수 있다.
본 발명의 일 실시예에 따른 유류지하저장시설의 모니터링 방법에서 신호를 분석하는 것은 파형의 형상을 분석하는 것 일 수 있다. 파형의 형상의 분석을 한다는 것은 신호의 지속시간(Duration), 상승시간(Rise time), 또는 평균주파수 등을 분석하는 것을 의미한다. 다만, 이에 제한되는 것은 아니며, 신호 파형의 크기, 즉 진폭, 링다운 카운트, 음향미소진동에너지 등을 분석하여 신호를 분석하는 것도 가능하다.
무엇보다 중요한 것은 어떠한 방법으로 신호를 분석하는 것인지가 아니라, 본 발명의 일 실시예에 따른 유류지하저장시설의 모니터링 방법에서 암반손상 이벤트와 유체누설 이벤트의 각각의 신호 특성을 통해 보다 효율적으로 유류지하저장시설을 모니터링 할 수 있다는 점이다.
즉, 유류지하저장시설에서 문제되는 것은 암반의 손상에 따른 크랙에 의한 가스와 같은 유체 누설인데, 암반의 탈락이 곧바로 크랙에 의한 유체 누설으로 이어지는 것은 아니다. 그리고 유체 누설은 전술한 바와 같이 강도가 약하기 때문에, 잡음에 의해 교란되어 검출이 어렵다.
따라서 암반손상 이벤트만으로 검사자가 직접 가스의 누설여부를 확인하는 것은 비효율적이며, 유체누설 이벤트는 검출이 어렵다는 문제가 있다.
이와 같은 문제를 해결할 수 있는 본 발명의 일 실시예에 따른 유류지하저장시설의 모니터링 방법에 대해 구체적으로 살펴보도록 한다.
먼저, 암반 탈락과 같은 암반손상 이벤트가 발생하였다고 가정한다. 암반손상 이벤트시 발생한 음향방출음이 미소지진센서에서 감지되면 제1분석단계(S120)가 수행될 수 있다. 이때, 미소지진센서는 지속시간이 사용자가 설정한 소정의 시간 미만이고, 신호의 강도가 사용자가 설정한 소정의 강도 이상인 경우에 암반손상 이벤트가 발생한 것으로 분석할 수 있다.
제1분석단계(S120)에서 암반손상 이벤트가 발생한 것으로 판단된 경우에 유체누설 이벤트가 발생하였는지 확인하는 제2분석단계(S130)가 진행된다. 즉, 제1분석단계(S120)에서 암반손상 이벤트가 발생한 것으로 판단되지 않은 경우에는 제2분석단계(S130)가 진행되지 않는다.
제2분석단계(S130)는 암반손상 이벤트 시점을 전후로 미소지진센서에 수신된 신호를 소정의 시간 단위로 비교하여 유체누설 이벤트의 발생 여부를 판단할 수 있다.
이때, 수벽 터널에 수압계가 설치되어 있다면, 제2분석단계(S130)에서 유체누설 이벤트가 발생한 것으로 판단한 경우에 수압계에서 수압변화여부를 확인하는 단계(S135)가 수행될 수 있다. 즉, 수벽 터널의 수압변화여부 확인을 통해, 유체누설 이벤트의 실제 발생여부를 이중으로 확인할 수 있다.
한편, 지하공동의 내벽을 천공하여 설치되는 미소지진센서를 제1미소지진센서라 하고, 수벽 터널의 내벽을 천공하여 설치되는 미소지진센서를 제2미소지진센서라 할 때, 제1분석단계(S120)는 제1미소지진센서로 수신된 신호를 분석하여 수행되며, 제2분석단계(S130)는 제2미소지진센서로 수신된 신호를 분석하여 수행될 수 있다. 제1분석단계(S120)를 제1미소지진센서로를 이용하여 수행하고, 제2분석단계(S130)를 제2미소지진센서를 이용하여 수행하도록 한 것은 암반손상 이벤트는 지하공동에서 발생하고, 유체누출 이벤트는 지면을 향하여 발생한 크랙에 의해 발생한다는 점을 고려한 것이다.
지하공동의 측벽을 천공하여 설치되는 미소지진센서를 제1미소지진센서라 하고, 수벽 터널의 바닥면을 천공하여 설치되는 미소지진센서를 제2미소지진센서라 할 때, 제1미소지진센서와 제2미소지진센서는 지하공동을 감싸도록 배치될 수 있다.
이 경우 제1미소지진센서와 제2미소지진센서를 전체를 시간동기화하면 신호의 도달시간의 차이에 관한 정보를 분석하여 이벤트가 발생한 위치를 특정하는 것도 가능하다. 즉, 제1미소지진센서와 제2미소지진센서를 구분하지 않고, 복수의 미소지진센서가 서로 측정시간이 정확히 특정될 수 있다면 3차원 공간에서의 신호의 도달시간차이를 이용하여 이벤트 발생 위치가 특정이 가능하다. 여기서 시간동기화란 복수의 미소지진센서들을 측정시간을 기준으로 관련시키는 것을 의미한다.
본 발명의 일 실시예에 따른 유류지하저장시설의 모니터링 방법의 신뢰성을 향상시키기 위해, 제1분석단계(S120)를 수행하기 전에 잡음을 수집하는 단계(S110)를 더 포함할 수 있다.
유류지하저장시설은 자연의 암반을 이용하는 것이기 때문에, 동일한 방법으로 유류지하저장시설을 설치하였다고 하더라도 주변에서 발생하는 잡음에 차이가 있다. 따라서 제1분석단계(S120)를 수행하기 전에 잡음을 수집하는 단계(S110)를 수행하여 모니터링 방법의 신뢰성을 더욱 향상시킬 수 있다.
잡음을 수집하는 단계(S110)는 시험 모니터링을 수행하는 단계 및 시험 모니터링에서 수집된 잡음 파형을 분류하는 단계를 포함하여 수행될 수 있다.
잡음 파형은 도 6에 도시한 것과 같이, 전기 잡음(도 6(a) 및 도 6(b)), 발파(도 6(c)), 파쇄(도 6(d)) 등이 있을 수 있으며, 각각의 유류지하저장시설마다 잡음의 종류 및 잡음 파형에 차이가 있을 수 있다.
이처럼 수집한 잡음파형과 제1분석단계(S120) 및 제2분석단계(S130)에서 수신된 파형이 서로 동일한 파형인 경우, 이러한 파형은 암반손상 이벤트 또는 유체누설 이벤트에서 제외하여 모니터링 방법의 신뢰성을 더욱 향상시킬 수 있다.
마지막으로, 제2분석단계(S130)에서 유체누설 이벤트가 발생한 것으로 판단되면, 모니터링 컴퓨터는 사용자에게 가스와 같은 유체가 누출되었음을 알리는 경보 단계(S140)가 수행된다.
본 발명의 일 실시예에 따른 유류지하저장시설의 모니터링 방법은 다양한 컴퓨터 수단을 통하여 판독 가능한 프로그램 형태로 구현되어 컴퓨터로 판독 가능한 기록매체에 기록될 수 있다. 여기서, 기록매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 기록매체에 기록되는 프로그램 명령은 본 발명을 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다.
예컨대 기록매체는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광 기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magnetooptical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치를 포함한다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함할 수 있다. 이러한 하드웨어 장치는 본 발명의 동작을 수행하기 위해 하나이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
발명의 보호범위가 이상에서 명시적으로 설명한 실시예의 기재와 표현에 제한되는 것은 아니다. 또한, 본 발명이 속하는 기술분야에서 자명한 변경이나 치환으로 말미암아 본 발명이 보호범위가 제한될 수도 없음을 다시 한 번 첨언한다.

Claims (6)

  1. 내부에 유류를 수용할 수 있는 지하공동 및 상기 지하공동의 상부에 배치되어 상기 지하공동에 수용된 유류가 유출되는 것을 방지하기 위한 수벽을 제공하는 수벽 터널을 포함하는 지하유류저장시설에 설치되는 복수의 미소지진센서를 이용한 유류지하저장시설의 모니터링 방법에 있어서,
    상기 유류지하저장시설의 모니터링 방법은,
    상기 미소지진센서로 수신된 신호를 분석하여 암반손상 이벤트가 발생했는지 확인하는 제1분석단계; 및
    상기 제1분석단계에서 암반손상 이벤트가 발생한 경우에 수행되며, 상기 미소지진센서로 수신된 신호를 분석하여 유체누설 이벤트가 발생했는지 확인하는 제2분석단계;를 포함하는 것을 특징으로 하는 유류지하저장시설의 모니터링 방법.
  2. 제1항에 있어서,
    상기 제2분석단계는 암반손상 이벤트의 발생 시점을 전후로 미소지진센서에 수신된 신호를 소정의 시간 단위로 비교하여 유체누설 이벤트가 발생했는지 확인하는 것을 특징으로 하는 유류지하저장시설의 모니터링 방법.
  3. 제1항에 있어서,
    상기 지하공동의 내벽을 천공하여 설치되는 제1미소지진센서 및 상기 수벽 터널의 내벽을 천공하여 설치되는 제2미소지진센서를 포함하고,
    상기 제1분석단계는 상기 제1미소지진센서로 수신된 신호를 분석하여 수행되며, 상기 제2분석단계는 상기 제2미소지진센서로 수신된 신호를 분석하여 수행되는 것을 특징으로 하는 유류지하저장시설의 모니터링 방법.
  4. 제1항에 있어서,
    상기 지하공동의 측벽을 천공하여 설치되는 제1미소지진센서 및 상기 수벽 터널의 바닥면을 천공하여 설치되는 제2미소지진센서를 포함하고,
    상기 제1미소지진센서 및 상기 제2미소지진센서를 서로 시간동기화하는 단계; 및
    상기 제1미소지진센서 및 상기 제2미소지진센서에 수신된 신호의 수신 시점으로부터 손상이 발생한 위치를 추적하는 단계;를 포함하는 것을 특징으로 하는 유류지하저장시설의 모니터링 방법.
  5. 제1항에 있어서,
    상기 수벽 터널에 설치되는 수압계를 더 포함하고,
    상기 제2분석단계를 수행한 후에 상기 수압계의 수압이 감소하였는지 확인하는 단계를 더 포함하는 것을 특징으로 하는 유류지하저장시설의 모니터링 방법.
  6. 제1항에 있어서,
    상기 제1분석단계를 수행하기 전에 잡음을 수집하는 단계를 더 포함하고,
    상기 잡음을 수집하는 단계는,
    시험 모니터링을 수행하는 단계; 및
    상기 시험 모니터링에서 수집된 잡음 파형을 분류하는 단계를 더 포함하고,
    상기 제1분석단계 및 상기 제2분석단계에서 상기 잡음 파형과 동일한 파형은 암반손상 이벤트 또는 유체누설 이벤트에서 제외하는 것을 특징으로 하는 유류지하저장시설의 모니터링 방법.
PCT/KR2019/006400 2018-10-08 2019-05-29 유류지하저장시설의 모니터링 방법 WO2020075948A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0120048 2018-10-08
KR1020180120048A KR102090744B1 (ko) 2018-10-08 2018-10-08 유류지하저장시설의 모니터링 방법

Publications (1)

Publication Number Publication Date
WO2020075948A1 true WO2020075948A1 (ko) 2020-04-16

Family

ID=69999391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/006400 WO2020075948A1 (ko) 2018-10-08 2019-05-29 유류지하저장시설의 모니터링 방법

Country Status (2)

Country Link
KR (1) KR102090744B1 (ko)
WO (1) WO2020075948A1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006266866A (ja) * 2005-03-24 2006-10-05 Chikyu Kagaku Sogo Kenkyusho:Kk 地中内観測システムおよび地中内観測方法
KR101769105B1 (ko) * 2016-06-27 2017-08-17 주식회사세연이앤에스 암반 붕괴 감지시스템
KR101794789B1 (ko) * 2016-11-18 2017-11-08 (주)동명엔터프라이즈 관정에 포집된 유류에서 발생하는 유해가스를 이용하여 유류저장시설의 누유를 검출하는 누유검출장치

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101843339B1 (ko) * 2017-11-27 2018-03-29 주식회사 지오그린21 유류 지하저장공동 주변의 지하수위 위험도 평가방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006266866A (ja) * 2005-03-24 2006-10-05 Chikyu Kagaku Sogo Kenkyusho:Kk 地中内観測システムおよび地中内観測方法
KR101769105B1 (ko) * 2016-06-27 2017-08-17 주식회사세연이앤에스 암반 붕괴 감지시스템
KR101794789B1 (ko) * 2016-11-18 2017-11-08 (주)동명엔터프라이즈 관정에 포집된 유류에서 발생하는 유해가스를 이용하여 유류저장시설의 누유를 검출하는 누유검출장치

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEON, DAE-SUNG ET AL.: "Guideline for the Diagnose of Geotechnical Structure (Underground Oil Storage Cavern) Using a Microseismic Monitoring System", TUNNEL & UNDERGROUND SPACE, vol. 28, no. 4, August 2018 (2018-08-01), pages 293 - 303, XP055703926 *
OH, SEONG DEOK: "Fusion Cluster for Disaster Prevention and Reaction Technique of Infrastructure", 20 April 2015 (2015-04-20), pages 2 - 6, Retrieved from the Internet <URL:www.ctman.kr/paper/news/print.php?newsno=8973> [retrieved on 20190828] *

Also Published As

Publication number Publication date
KR102090744B1 (ko) 2020-03-18

Similar Documents

Publication Publication Date Title
AU2016203553B2 (en) Fracture monitoring
KR100903949B1 (ko) 지반구조물의 파괴 예측방법
WO2005091791A2 (en) Fiber optic sensor for detecting partial discharge
US9903972B2 (en) Seismic cable, system and method for acquiring information about seismic, microseismic and mechanical vibration incidents in a well
JP4324126B2 (ja) 地中内観測システムおよび地中内観測方法
CN103728374B (zh) 地下工程围岩灾害非钻孔超声波无损实时监测方法
CN103061813B (zh) 矿井围岩顶板灾害超声波多点实时监测方法
CN111042866A (zh) 一种多物理场协同的突水监测方法
CN105332395B (zh) 一种机械成孔混凝土灌注桩桩底持力层检测方法
WO2020075948A1 (ko) 유류지하저장시설의 모니터링 방법
KR100921382B1 (ko) 지반구조물의 파괴 예측방법
KR102196534B1 (ko) Mems 네트워크를 이용한 실시간 지진동 감시 및 분포 지도 작성을 위한 장치 및 방법
CN113093271B (zh) 利用地质钻孔布置微震传感器进行煤层ct探测的方法
CN112881526A (zh) 一种同源监测的位移和声发射集成传感器
Mohsen et al. Structural health monitoring of oil pipeline using wireless sensor networks
CN101587625A (zh) 一种地震报警装置
Madziarz MONITORING SYSTEM OF ROCKBOLTING INTERACTION IN ROCK MASS CONDUCT UNDER SEISMIC ACTIVITY IN UNDEGROUND MINES
Nadim et al. Monitoring of ground failures in subsurface complex cavities
Voutsinas et al. Development of an IoT Structural Damage Monitoring system
CN115126487A (zh) 一种用于隧道水压爆破开挖的智能监测装置及系统
CN116202618A (zh) 一种封存co2全周期安全性监测方法和系统
CN102537671A (zh) 用于监测天然气输气管道泄漏的传感器组件
Denney Monitoring the Oil Field With Live-Well Microseismics
JPS63304899A (ja) ロックボルトの施工方法
Cherukuri et al. Real time stability evaluation of large underground powerhouse caverns-application of microseismics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19871144

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19871144

Country of ref document: EP

Kind code of ref document: A1