WO2020075947A1 - 내화학성 및 투명도가 우수한 폴리에스테르 공중합체 - Google Patents

내화학성 및 투명도가 우수한 폴리에스테르 공중합체 Download PDF

Info

Publication number
WO2020075947A1
WO2020075947A1 PCT/KR2019/005998 KR2019005998W WO2020075947A1 WO 2020075947 A1 WO2020075947 A1 WO 2020075947A1 KR 2019005998 W KR2019005998 W KR 2019005998W WO 2020075947 A1 WO2020075947 A1 WO 2020075947A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
polyester copolymer
pressure
temperature
mixture
Prior art date
Application number
PCT/KR2019/005998
Other languages
English (en)
French (fr)
Inventor
이유진
김성기
황다영
Original Assignee
에스케이케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이케미칼 주식회사 filed Critical 에스케이케미칼 주식회사
Priority to US17/263,247 priority Critical patent/US20210163734A1/en
Priority to EP19872029.4A priority patent/EP3865528A4/en
Priority to CN201980062621.3A priority patent/CN112752785A/zh
Priority to JP2021519667A priority patent/JP2022504586A/ja
Publication of WO2020075947A1 publication Critical patent/WO2020075947A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • C08G63/668Polyesters containing oxygen in the form of ether groups derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/672Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/199Acids or hydroxy compounds containing cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/40Polyesters derived from ester-forming derivatives of polycarboxylic acids or of polyhydroxy compounds, other than from esters thereof
    • C08G63/42Cyclic ethers; Cyclic carbonates; Cyclic sulfites; Cyclic orthoesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/52Polycarboxylic acids or polyhydroxy compounds in which at least one of the two components contains aliphatic unsaturation
    • C08G63/56Polyesters derived from ester-forming derivatives of polycarboxylic acids or of polyhydroxy compounds other than from esters thereof
    • C08G63/58Cyclic ethers; Cyclic carbonates; Cyclic sulfites ; Cyclic orthoesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/025Polyesters derived from dicarboxylic acids and dihydroxy compounds containing polyether sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2390/00Containers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials

Definitions

  • Polyester copolymer with excellent chemical resistance and transparency
  • the present invention relates to a polyester copolymer that is excellent in chemical resistance and transparency, and is applicable to various containers.
  • PEKpolyethylene terephthalate which is representative of polyester resins, is widely used commercially due to its low price and excellent physical / chemical properties.
  • high crystallinity requires high temperature during processing and there is a problem in that transparency of the molded product is poor.
  • PET has poor heat resistance, which causes a problem in that the shape of the bottle molded from PET is deformed during the high temperature filling process of the beverage. To prevent this, the heat resistance of the bottle is increased through a crystallization process before and after bottle molding and a heat setting process, but the transparency of the bottle is reduced.
  • PETGCglycol -modified polyethylene terephthalate which is an amorphous resin, is known as a highly transparent resin.
  • the present invention is to provide a polyester copolymer having excellent chemical resistance and transparency.
  • the present invention provides an article comprising the polyester copolymer 2020/075947 1 »(: 1 ⁇ 1 ⁇ 2019/005998
  • the present invention is a first repeating unit represented by the following formula (1); And a second repeating unit represented by the following Chemical Formula 2 and a third repeating unit represented by the following Chemical Formula 3,-as a polyester copolymer, wherein the polyester copolymer satisfies Equation 1 below: Provides a polyester copolymer:
  • the table refers to the value of 1 26 measured according to 1003-97 after the specimen (thickness: 6 ⁇ 11) of the physical ester copolymer was immersed in ethanol and stored at 60 degrees for 24 hours, ⁇
  • X, 7, and 2 are mole fractions in the copolymer, respectively, and the sum of and is 5 mol% or more and less than 20 mol%.
  • the repeating unit according to the present invention is prepared by reacting terephthalic acid or a derivative thereof with a diol compound to be described later.
  • a diol compound to be described later.
  • the derivative of the terephthalic acid isophthalic acid, dimethyl isophthalate, phthalic acid, dimethyl phthalate, phthalic anhydride, etc. are mentioned as a compound capable of forming the repeating unit.
  • terephthalic acid or a derivative thereof may be used by using one type or two or more types.
  • the first repeating unit according to the present invention is prepared by reacting terephthalic acid or a derivative thereof with ethylene glycol, and is a main repeating unit of the polyester copolymer according to the present invention.
  • X is a mole fraction in the polyester copolymer of the first repeating unit, and is preferably 80 mol% or more and 95 mol% or less.
  • the second repeating unit according to the present invention is prepared by reacting terephthalic acid or its derivatives with isosorbide
  • the third repeating unit according to the present invention is prepared by reacting terephthalic acid or its derivatives with cyclonucleic acid dimethanol.
  • At least one of the second repeating unit and the third repeating unit is included in the polyester copolymer according to the present invention, and preferably includes both the second repeating unit and the third repeating unit.
  • the mole fraction in the polyester copolymer of the second repeating unit, and in Formula 3, 2 is the mole fraction in the polyester copolymer of the third repeating unit.
  • the sum of and 2 is 5 mol% or more and less than 20 mol%.
  • the polyester copolymer according to the present invention is excellent in chemical resistance, and the molar fractions of the second repeating unit and the third repeating unit have an important effect on the chemical resistance.
  • the molar fraction of the above-described second repeating unit and third repeating unit is found, it can be confirmed that the chemical resistance is remarkably superior to that of the case where it is not.
  • the repeating units may be prepared by (3) esterification or transesterification of terephthalic acid or its derivatives with ethylene glycol, isosorbide and / or cyclonucleic acid dimethanol, and (polycondensation reaction. Specifically, (3) esterification or transesterification of terephthalic acid or a derivative thereof, ethylene glycol, and isosorbide and / or cyclonucleic acid dimethanol; And (10) the polyester copolymer may be prepared through a polycondensation reaction of the esterification or transesterification product.
  • the production method may be carried out batchwise), semi-continuously or continuously, and the esterification reaction or transesterification reaction and polycondensation reaction is preferably performed under an inert gas atmosphere, and the polyester
  • the mixing of the copolymer and other additives can be simple mixing or mixing through extrusion. Additionally, if necessary, a solid phase polymerization reaction can be continued.
  • the production method of the polyester copolymer according to an embodiment of the present invention is a polymer prepared by a polycondensation reaction (melt polymerization) after step ((: :) 2020/075947 1 »(: 1 ⁇ 1 ⁇ 2019/005998
  • a catalyst may be used.
  • Such catalysts include sodium and magnesium methylate (methyl ate); acetates such as Zn, Cd, Mn, Co, Ca, Ba, Ti, Sn, borates, fatty acid salts, carbonates, alkoxy salts; metal Mg; examples of oxides such as Pb, Zn, Sb, Ge, Sn, etc.
  • the (a) esterification reaction or transesterification reaction may be carried out in a batch type, semi-continuous type or continuous type, and each raw material may be separately added, but may be added to diol in dicar.
  • the carboxylic acid or a derivative thereof in the form of a mixed slurry (a) In the slurry before the start of the esterification reaction or the transesterification reaction, or to the product after the completion of the reaction, a heavy-skinned group, stabilizer, colorant, and crystallizer Antioxidants, branching agents, etc. may be added, but the timing of the addition of the above-mentioned additives is not limited to this, and may be added at any time during the production stage of the polyester copolymer.
  • the catalyst one or more of titanium, germanium, antimony, aluminum, tin compounds, etc.
  • useful catalysts such as tetraethyl titanate, acetyltripropyl titanate, and tetrapropyl titanate.
  • Tetrabutyl titanate, Polybutyl titanate, 2-Ethylhexyl titanate, Octylene glycol titanate, Lactate titanate, Triethanolamine titanate, Acetyl acetonate titanate, Ethyl acetoacetic ester titanate, Isoste Aryl titanate, titanium dioxide, titanium dioxy / Silicon dioxide copolymer, and the like can be given titanium dioxide / zirconium dioxide copolymer.
  • useful germanium-based catalysts include germanium dioxide and a copolymer using the same. 2020/075947 1 »(: 1 ⁇ 1 ⁇ 2019/005998
  • phosphorus-based compounds such as phosphoric acid, trimethyl phosphate, and triethyl phosphate can be generally used, and the added amount is 10 to 200 based on the weight of the final polymer (polyester copolymer) based on the amount of phosphorus element. to be.
  • the amount of the stabilizer added 10 If less than, the stabilizing effect is insufficient, and the color of the polymer may turn yellow. 200 If exceeded, there is a fear that a polymer having a desired high polymerization degree may not be obtained.
  • a colorant added to improve the color of the polymer common colorants such as cobalt acetate and cobalt propionate can be exemplified, and the amount added is the final polymer (polyester copolymer) based on the amount of cobalt element. ) To 10 to 200 by weight to be. If necessary, anthraquinone (1 ⁇ 21 ⁇ vs. 3 ⁇ 41110110116) -based compounds, perinone (sub) -based compounds, azo (show) -based compounds, methine-based compounds, etc. can be used as organic compound colorants. ⁇ ⁇ Or this 31 ⁇ 011; company 3 ⁇ 4 ⁇ example ⁇ 61 ⁇ !!! Toners such as 66 can be used.
  • the amount of the organic compound colorant added can be adjusted to 0 to 50 ppm relative to the final polymer weight. If the colorant is used in an amount outside the above range, the yellow color of the polyester copolymer may not be sufficiently covered or the properties may be deteriorated.
  • the crystallization agent include a crystal nucleating agent, an ultraviolet absorber, a polyolefin-based resin, and a polyamide resin.
  • the antioxidants include hindered phenol-based antioxidants, phosphite-based antioxidants, thioether-based antioxidants, or mixtures thereof.
  • the branching agent is a conventional branching agent having 3 or more functional groups, for example, trimellitic anhydride, trimethylol propane, and trimellitic acid. Or mixtures thereof.
  • the ( a ) esterification reaction or transesterification reaction is a temperature of 150 to 300 ° C or 200 to 270 ° C and 0 to 10.0 kgf / cm 2 (0 to 2020/075947 1 »(: 1 ⁇ 1 ⁇ 2019/005998
  • the pressure in parentheses here means gauge pressure, In units), the pressure in parentheses means absolute pressure (in ⁇ ).
  • the reaction time (average residence time) is usually 1 hour to 24 hours or 2 hours to 8 hours, and may vary depending on the reaction temperature, pressure, and the molar ratio of diol to dicarboxylic acid or derivatives used.
  • the product obtained through the esterification or transesterification reaction can be made of a polyester copolymer having a higher degree of polymerization through a polycondensation reaction.
  • the polycondensation reaction is carried out at a temperature of 150 to 300 ° 0, 200 to 290 c or 250 to 290 and 0.01 to 400 _3 ⁇ 4, 0.05 to 100 _3 ⁇ 4 or 0.1 to 10 1 3 ⁇ 4 under reduced pressure.
  • pressure means a range of absolute pressure. 0.01 to 400 above
  • the reduced pressure condition is for removing glycol, which is a by-product of the polycondensation reaction, and isosorbide, which is not reacted.
  • the depressurization condition is outside the above range, there is a concern that removal of by-products and unreacted products is insufficient.
  • the polycondensation reaction temperature is outside the above range, there is a fear that the physical properties of the polyester copolymer are lowered.
  • the polycondensation reaction is carried out for a necessary time until a desired intrinsic viscosity is reached, for example, an average residence time of 1 hour to 24 hours.
  • the end of the esterification reaction or the transesterification reaction or the early stage of the polycondensation reaction, i.e., the vacuum reaction is intentionally performed while the viscosity of the resin is not sufficiently high. By keeping it long, unreacted raw materials can be flowed out of the system. When the viscosity of the resin increases, it remains in the reactor. 2020/075947 1 »(: 1 ⁇ 1 ⁇ 2019/005998
  • the reaction product obtained through the esterification reaction or transesterification reaction before the polycondensation reaction is about 400 to 1 Or about 200 to It is allowed to stand for 0.2 to 3 hours under reduced pressure to effectively remove unreacted substances such as isosorbide remaining in the polyester copolymer.
  • the temperature of the product may be adjusted to a temperature equal to or between the esterification reaction or transesterification reaction temperature and the polycondensation reaction temperature.
  • the process content for releasing unreacted raw materials out of the system by adding the process content for releasing unreacted raw materials out of the system, it is possible to reduce the content of unreacted substances such as isosorbide remaining in the polyester copolymer, and as a result, physical properties of one embodiment. It is possible to obtain a polyester copolymer satisfying more effectively.
  • the intrinsic viscosity of the polymer after the polycondensation reaction is 0.45 to 0.75.
  • the intrinsic viscosity of the polymer after the polycondensation reaction is 0.45 to 0.75 dl / g, 0.45 to 0.70 dl / g or 0.50 to 0.65 dl / g. Can be adjusted. If the intrinsic viscosity of the polymer after the polycondensation reaction is less than 0.45 dl / g, the reaction rate in the solid phase polymerization reaction is significantly lowered, and a polyester copolymer having a very wide molecular weight distribution is obtained, and the intrinsic viscosity is 0.75 dl / g.
  • the intrinsic viscosity of the polymer after the polycondensation reaction can be adjusted to 0.65 to 0.75 dl / g. If the intrinsic viscosity is less than 0.65 dl / g, it is difficult to provide a polyester copolymer having excellent heat resistance and transparency due to the increase in crystallization rate due to the low-molecular-weight polymer, and melt polymerization during intrinsic viscosity exceeds 0.75 dl / g As the melt viscosity increases, the likelihood of polymer discoloration increases due to shear stress between the stirrer and the reactor, and side reaction materials such as acetaldehyde also increase.
  • a polyester copolymer according to one embodiment may be prepared. And, if necessary, after (b) polycondensation reaction step, (c) crystallization step and (d) solid phase polymerization step may be further performed to provide a polyester copolymer having a higher degree of polymerization. Specifically, in the crystallization step (c), the polymer obtained through the polycondensation reaction (b) is discharged out of the reactor to be granulated.
  • the method of granulating can be a strand cutt ing method of extruding into a strand type and then solidifying in a coolant and then cutting with a cutter, or an underwater cut t ing method of immersing a die hole in the coolant and pressing directly into the coolant to cut with a cutter.
  • the temperature of the coolant is kept low, so that the Strand is solidified well, so there is no problem in cutting.
  • the underwater cutt ing method it is good to maintain the temperature of the coolant to match the polymer, so that the shape of the polymer is uniform.
  • the temperature of the water is preferably equal to or lower than the glass transition temperature of the polymer, or about 5 to 20 ° C. At higher temperatures, fusion may occur, which is not preferable. If the particles of the polymer that induce crystallization during discharge, fusion does not occur even at a temperature higher than the glass transition temperature, so the water temperature can be set according to the degree of crystallization.
  • the particles are approximately 14 It can be manufactured to have an average weight below 3 ⁇ 4.
  • the granulated polymer undergoes a crystallization step to prevent fusion during solid phase polymerization. It can proceed in the atmosphere, inert gas, water vapor, an inert gas atmosphere containing water vapor or a solution, and crystallization is performed at 1101: 1801: or 1201: 180. When the temperature is low, the rate at which crystals of particles are formed becomes too slow.
  • the solid-phase polymerization reaction may be performed under an inert gas atmosphere such as nitrogen, carbon dioxide, argon, or a decompression condition of 400 to 0.01 ⁇ 3 ⁇ 4 and a temperature of 180 to 2201: for an average residence time of 1 hour or more, preferably 10 hours or more.
  • an inert gas atmosphere such as nitrogen, carbon dioxide, argon, or a decompression condition of 400 to 0.01 ⁇ 3 ⁇ 4 and a temperature of 180 to 2201: for an average residence time of 1 hour or more, preferably 10 hours or more.
  • solid phase polymerization may be performed until the intrinsic viscosity reaches a value of 0.10 to 0.40 d ⁇ / g higher than the intrinsic viscosity of the resin obtained in the polycondensation reaction step.
  • the difference between the intrinsic viscosity of the resin after the solid-phase polymerization reaction and the intrinsic viscosity of the resin before the solid-phase polymerization reaction is less than 10.10 (a sufficient polymerization degree improvement effect cannot be obtained, and after the solid-phase polymerization reaction, the intrinsic viscosity of the resin and solid-phase polymerization
  • the difference between the intrinsic viscosity of the resin before the reaction exceeds 0.40, the molecular weight distribution is wide, so that sufficient heat resistance cannot be exhibited, and the content of the low molecular weight polymer is relatively increased.
  • the intrinsic viscosity of the resin is higher than the intrinsic viscosity of the resin before the solid-phase polymerization reaction is 0. 10 to 0.40 (11 / dragon higher, 0.70 or more, 0.70 to 1.0 (11 / 3 ⁇ 4 or 0.70 to 0.95 line 1 ⁇ value)
  • the solid phase polymerization is performed until the intrinsic viscosity in this range is reached, the molecular weight distribution of the polymer is narrowed, so that the crystallization rate during molding can be lowered.
  • the intrinsic viscosity of the resin after the solid phase polymerization reaction is less than the above range, it may be difficult to provide a polyester copolymer having excellent heat resistance and transparency due to an increase in crystallization rate by a low molecular weight polymer. .
  • the polyester copolymer according to the present invention is excellent in chemical resistance and transparency, and thus satisfies Equation 1 above.
  • Equation 1 means that the specimen to be measured 1 «26 is immersed in ethanol for a certain period of time, and if the chemical resistance is poor, the value of 326 after ethanol immersion tends to increase rapidly.
  • the polyester copolymer according to the present invention has excellent chemical resistance and satisfies Equation 1 above.
  • the polyester copolymer according to the present invention showed a value of 5 or less when measuring the loose root value after storing the specimen in ethanol for 24 hours at 601: All of the examples showed values exceeding 6.
  • II in Equation 1 is 5 or less.
  • the theoretical lower limit of the 11326 value is 0, for example, the II value may be 0.01 or more, 0.1 or more, 0.5 or more, or 1 or more.
  • the polyester copolymer according to the present invention is a specimen (thickness: 6 2020/075947 1 »(: 1 ⁇ 1 ⁇ 2019/005998
  • the polyester copolymer according to the present invention has a number average molecular weight (Mn) of 10, 000 to 40, 000, more preferably 15, 000 to 35, 000.
  • Mn number average molecular weight
  • the article may be a container that can hold an object, such as a cosmetic container, a food container, etc., a bottle, a hot fillj ar, a high-pressure container, a medical article, and a sheet and plate-shaped article Etc.
  • the article can be made of an injection article, such as a lid, a cover, a toothbrush stand, or a multi-layered material.
  • the polyester copolymer according to the present invention is excellent in chemical resistance and transparency, and can be usefully applied to the production of various containers.
  • Intrinsic Viscosity After dissolving 0.36 + 0.0002 g of sample in 30 mL of 15CTC ortho-chlorophenol for 15 minutes, the intrinsic viscosity of the sample was measured using a Ubbelodhe viscometer in a 35 ° C thermostat. 2020/075947 1 »(: 1 ⁇ 1 ⁇ 2019/005998
  • a terephthalic acid (3257.4 g), ethylene glycol (1423.4 g) and isosorbide (229.2 g) were added to a 10 L volume reactor connected to a column and a condenser capable of being cooled by water.
  • Ge0 2 (1.0 g) phosphoric acid (1.46 g) as a stabilizer, and cobalt acetate (0.7 g) as a colorant.
  • nitrogen was injected into the reactor to make the pressure of the reactor as high as 1.0 kgf / cm 2 above atmospheric pressure (absolute pressure: 1495.6 _Hg).
  • the temperature of the reactor was raised to 220 ° C over 90 minutes, maintained at 22 CTC for 2 hours, and then raised to 260 ° C over 2 hours. Then, the mixture in the reactor was observed with the naked eye to maintain the temperature of the reactor at 260 until the mixture became transparent, and the esterification reaction proceeded. In this process, by-products flowed out through the column and condenser.
  • nitrogen in the reactor under pressure was discharged to the outside to lower the pressure of the reactor to normal pressure, and then the mixture in the reactor was transferred to a 7 L reactor capable of vacuum reaction.
  • the pressure of the reactor was reduced from normal pressure to 5 Torr (absolute pressure: 5 _Hg) over 30 minutes, and at the same time, the temperature of the reactor was raised to 280 ° C over 1 hour, and the pressure of the reactor was increased to 1 Torr (absolute pressure: 1 rnrnHg) or less, a heavy bamboo reaction was carried out.
  • the stirring speed is quickly set, but as the polycondensation reaction progresses, the stirring speed may be appropriately adjusted when the stirring force is weakened due to an increase in the viscosity of the reactant or the temperature of the reactant rises above a set temperature. .
  • the intrinsic viscosity (IV) of the mixture (melt) in the reactor will be 0.55 dl / g. 2020/075947 1 »(: 1 ⁇ 1 ⁇ 2019/005998
  • the mixture is discharged to the outside of the reactor to form strands (vs. 11 (1)), and after solidifying it with a coolant, the average weight is 12 to 12 It was granulated to a degree.
  • the particles were allowed to crystallize by standing at 1501 for 1 hour, they were charged into a 20-volume solid-phase polymerization reactor. Then, nitrogen was flowed into the reactor at a rate of 50 1 11.
  • the temperature of the reactor was raised from room temperature to 140 ° (: 40 ° (: / hour at a rate, and then maintained at 1401: 3 hours, then until 2001: 401: / hour at a rate of 200 and maintained at 200.
  • Terephthalic acid (3189. 1 ⁇ ), ethylene glycol (1334. 1 ⁇ ), and a catalyst are added to a 10-volume reactor connected to a column and a condenser that can be cooled by water.
  • cobalt acetate ( «light acetate, for 0.7) was used as a colorant.
  • nitrogen is injected into the reactor so that the pressure in the reactor is 1.0 above atmospheric pressure. It was brought to a state (absolute pressure: 1495.6 _3 ⁇ 4 ⁇ ).
  • the mixture was discharged to the outside of the reactor to form strands (vs. 11 (1)), and after solidifying it with a coolant, the average weight was 12 to 12 It was granulated to a degree.
  • the particles were then stored in 7010 water for 5 hours, then taken out and dried. After the particles were allowed to crystallize by standing at 150 ° for 1 hour, they were charged into a 20 I volume solid phase polymerization reactor. Then, nitrogen was flowed into the reactor at a rate of 50 1 / ⁇ .
  • the mixture is discharged to the outside of the reactor to form strands (vs. 11 (1)), solidified with a coolant, and granulated to have an average weight of about 12 to 14 2020/075947 1 »(: 1 ⁇ 1 ⁇ 2019/005998
  • Trimellitic anhydrate (22 g) was used. Subsequently, nitrogen was injected into the reactor so that the pressure in the reactor was 1 kgf / cm 2 higher than normal pressure (absolute pressure: 1495.6 mmHg). And the temperature of the reactor was raised to 220 ° C over 90 minutes, maintained at 220 ° C for 2 hours, and then raised to 250 ° C over 2 hours. Then, the mixture in the reactor was observed with the naked eye to maintain the temperature of the reactor at 25 CTC until the mixture became transparent, and the esterification reaction was performed. In this process, by-products flowed out through the column and condenser.
  • the stirring speed can be appropriately adjusted.
  • the polycondensation reaction was performed until the intrinsic viscosity (IV) of the mixture (melt) in the reactor became 0.60 (11 / ⁇ ).
  • the mixture was discharged to the outside of the reactor to form strands (vs. 11 (1)), and 5 solidified with a coolant to form an average weight of 12 to 14 11 ⁇ . .
  • Terephthalic acid (3316.0 ⁇ ⁇ ), ethylene glycol (1164.2) in a 10 I 15 volume reactor with a column and a condenser that can be cooled by water.
  • Cyclonucleic acid- 1,4-diyldimethanol 230. 1 g
  • isosorbide for 87.5
  • 060 2 for 1.0
  • phosphoric acid as a stabilizer
  • Terephthalic acid (3124.0 g), ethylene glycol (1330.2 g), cyclonucleic acid-1,4-diyldimethanol (216.8 g), isoiso in a 10 L volume reactor connected to a column and a condenser that can be cooled by water.
  • Vide (219.8 g) was added and the catalyst was GeCM l.
  • O g phosphoric acid (phosphoric ic acid, 1.46 g) as a stabilizer, cobalt acetate (1.0 g) as a colorant, and Iganox 1076 (15.4 g) as an oxidation stabilizer were used.
  • the stirring speed is quickly set, but when the polycondensation reaction progresses, the stirring speed may be appropriately adjusted when the stirring force weakens due to the increase in the viscosity of the reactant or the temperature of the reactant rises above the set temperature. .
  • the polycondensation reaction was carried out until the intrinsic viscosity (IV) of the mixture (melt) in the reactor became 0.60 ⁇ .
  • the intrinsic viscosity of the mixture in the reactor reaches the desired level, the mixture is discharged to the outside of the reactor to form strands (large: years). It was granulated to a degree. The particles were allowed to stand at 1501 for 1 hour to crystallize, and then charged into a 20 I volume solid phase polymerization reactor. Then, nitrogen was added to the reactor.
  • Terephthalic acid (3371.0 ⁇ ), ethylene glycol (1435.3) in a 10 I volume reactor connected to a column and a condenser that can be cooled by water.
  • the pressure of the reactor was 5 (Absolute pressure: 5 yo) to 30 minutes down, at the same time to increase the temperature of the reactor to 275 ° (: over 1 hour, the pressure of the reactor is 1 3 ⁇ 41 ⁇ ! (Absolute pressure: 1 While maintaining below, it carried out the heavy bamboo reaction.
  • the stirring speed is quickly set, but as the polycondensation reaction progresses, the stirring speed may be appropriately adjusted when the stirring force is weakened due to the increase in the viscosity of the reactant or the temperature of the reactant rises above the set temperature. .
  • the polycondensation reaction proceeded until the intrinsic viscosity (IV) of the mixture (melt) in the reactor reached 0.70 (11 ⁇ ).
  • IV intrinsic viscosity
  • the mixture was discharged to the outside of the reactor to strand (large), solidified with a coolant, and the average weight was 12 to Particulate to the extent 2020/075947 1 »(: 1 ⁇ 1 ⁇ 2019/005998
  • Terephthalic acid (3158.8 ⁇ ), etalene glycol (1427.5 ⁇ ), cyclonucleic acid-1, 4-diyldimethanol (in a 10 I volume reactor connected to a column and a condenser that can be cooled by water)
  • a catalyst 0 6 0 2 (1.0 ⁇ ) as a catalyst, phosphoric acid as a stabilizer (for babies 801 (for 1 and 1.46))
  • the stirring speed can be appropriately adjusted.
  • the polycondensation reaction proceeded until the intrinsic viscosity (IV) of the mixture (melt) in the reactor reached 0.80 (11 / dragon.)
  • the intrinsic viscosity of the mixture in the reactor reached a desired level, the mixture was discharged out of the reactor to strand (Large), and after solidifying with coolant, the average weight is 12 to It was granulated to a degree.
  • Dimethyl phthalate (3727.0 g), ethylene glycol (2620.5 g), and isosorbide (841.5 g) were added to a 10 L reactor connected to a column and a condenser capable of being cooled by water.
  • Mn (II ) acetate tetrahydrate (1.5 g), and 3 ⁇ 4 2 3 ⁇ 4 (1.8 g), phosphoric acid (phosphoric ic acid, 1.46 g) as a stabilizer, and cobalt acetate (cobal t acetate, 0.7 g) as a colorant were used.
  • the pressure of the reactor was 5 Torr at normal pressure (absolute pressure: 5 2020/075947 1 »(: 1 ⁇ 1 ⁇ 2019/005998 seedlings) lowered over 30 minutes, and at the same time, the temperature of the reactor was raised to 265 ° (: over 1 hour, and the pressure of the reactor was increased by 1 3 ⁇ 41 ⁇ ! ⁇ (Absolutely pressure:
  • the polycondensation reaction was performed while maintaining the following. In the initial stage of the polycondensation reaction, the stirring speed is quickly set, but when the polycondensation reaction progresses, the stirring speed may be appropriately adjusted when the stirring force is weakened due to an increase in the viscosity of the reactant or the temperature of the reactant rises above a set temperature.
  • the polycondensation reaction proceeded until the intrinsic viscosity (IV) of the mixture (melt) in the reactor reached 0.50 (11).
  • the mixture was discharged to the outside of the reactor to form a strand (vs. 11 (1)), and after solidifying it with a coolant, the average weight was 12 to 12 It was granulated to a degree. After the particles were allowed to crystallize by standing at 150 ° for 1 hour, they were charged into a 20 I volume solid phase polymerization reactor. Thereafter, nitrogen was flowed into the reactor at a rate of 50 1 11.
  • the temperature of the reactor was increased from room temperature to 1401: 40 ° (at a rate of: / hour, maintained at 14010 for 3 hours, then multiplied at a rate of 40 c / hour to 200 ⁇ and maintained at 20010.
  • the solid phase polymerization reaction proceeded until the intrinsic viscosity (IV) of the particles in the reactor became 0.95 (11).
  • Residues derived from dimethyl phthalate were 100 mol% with respect to the total acid-derived residues contained in the polyester copolymer, and the residues derived from isosorbide were 10 mol% with respect to the total diol-derived residues.
  • Example 10 Preparation of polyester copolymer
  • Terephthalic acid (3029.7 ⁇ ⁇ ), isophthalic acid (159.5) in a 10 L volume reactor connected to a column and a condenser that can be cooled by water.
  • Ethylene glycol (1334. 1 g), isosorbide (for 504.9), 0 6 0 2 (for 1.0) as catalyst, phosphoric acid (for baby, for 1.46) as stabilizer, and cobalt acetate (for «311 root, 0.7] as colorant) Used. 2020/075947 1 »(: 1 ⁇ 1 ⁇ 2019/005998
  • the stirring speed is quickly set, but when the polycondensation reaction progresses, the stirring speed may be appropriately adjusted when the stirring force weakens due to the increase in the viscosity of the reactant or the temperature of the reactant rises above the set temperature. .
  • the polycondensation reaction proceeded until the intrinsic viscosity (IV) of the mixture (melt) in the reactor reached 0.50 (11).
  • the intrinsic viscosity of the mixture in the reactor reaches the desired level, the mixture is discharged to the outside of the reactor to form strands (large: years). It was granulated to a degree.
  • the particles were allowed to crystallize by standing at 150 ° for 1 hour, they were charged into a 20 I volume solid phase polymerization reactor. Afterwards, nitrogen in the reactor was 50 N / !! Flowed at speed. At this time, the temperature of the reactor was raised from room temperature to 1401: at a rate of 401: / hour, maintained at 140 ° (: for 3 hours, then multiplied at 40 ° (at: / hour) until 2001: and maintained at 2001: . The solid phase polymerization reaction is performed until the intrinsic viscosity (IV) of the particles in the reactor reaches 0.95 (11 / ⁇ ). 2020/075947 1 »(: 1 ⁇ 1 ⁇ 2019/005998
  • a terephthalic acid (3000.5 ⁇ ), ethylene glycol (1064.6 8 ), isosorbide (1187.5) was added to a 10 I volume reactor connected to a column and a condenser capable of being cooled by water, and the catalyst was 0 6 0 2 (1.0 Dragon), as a stabilizer, 1.46 seedlings), as a blue toner 1 3 01 3 111; 1 611 0.017 per) , and Solvaperm with red toner
  • the stirring speed is set quickly, but as the polycondensation reaction progresses, the stirring speed may be appropriately adjusted when the stirring force is weakened due to an increase in viscosity of the reactant or when the temperature of the reactant rises above a set temperature.
  • the polycondensation reaction proceeded until the intrinsic viscosity (IV) of the mixture (melt) in the reactor became 0.60 dl / g.
  • the intrinsic viscosity of the mixture in the reactor reached a desired level, the mixture was discharged to the outside of the reactor to be stranded, and solidified with a coolant to form an average weight of 12 to 14 mg.
  • a terephthalic acid (3275.3 g), ethylene glycol (1217.2 g), and cyclonucleic acid-1,4-diyldimethanol (582.5 g) were added to a 10 L volume reactor connected to a column and a condenser capable of being cooled by water.
  • nitrogen was injected into the reactor so that the pressure of the reactor was 1 kgf / cm 2 higher than normal pressure (absolute pressure: 1495.6 _Hg).
  • the pressure of the reactor was reduced from normal pressure to 5 kPa (absolute pressure: 5 min 3) over 30 minutes, and at the same time, the temperature of the reactor was raised to 280 ° (over 1 hour until the pressure of the reactor was increased to 1 kPa! ⁇ : ⁇ (Absolute pressure: While maintaining below, it carried out the heavy bamboo reaction.
  • the stirring speed is quickly set, but the stirring speed can be appropriately adjusted when the agitation reaction weakens due to the increase in the viscosity of the reactant or the temperature of the reactant rises above the set temperature as the polycondensation reaction progresses. .
  • a terephthalic acid (2953.7 ⁇ ), ethylene glycol (717.1 g), and cyclonucleic acid-1,4-diyldimethanol (1024.9) were charged into a 10-volume reactor connected to a column and a condenser that could be cooled by water.
  • 0 6 0 2 (1.0 ⁇ ) phosphoric acid as stabilizer 11031] 101 1 301 (for 1, 1.46), as blue toner? 01737111 ⁇ 611 3 ⁇ 6, oh 1: 4, 0.012 yo), as red toner 13 ⁇ 4 (1 88 ((: 1306111:
  • the stirring speed is quickly set, but when the polycondensation reaction progresses, the stirring speed may be appropriately adjusted when the stirring force weakens due to the increase in the viscosity of the reactant or the temperature of the reactant rises above the set temperature. .
  • the polycondensation reaction proceeded until the intrinsic viscosity (IV) of the mixture (melt) in the reactor reached 0.80 (11.
  • the stirring speed is quickly set, but when the polycondensation reaction progresses, the stirring speed may be appropriately adjusted when the stirring force is weakened due to an increase in the viscosity of the reactant or the temperature of the reactant rises above a set temperature. .
  • the polycondensation reaction was carried out until the intrinsic viscosity (IV) of the mixture (melt) in the reactor reached 0.65 (11 / ⁇ ).
  • the intrinsic viscosity of the mixture in the reactor reached the desired level, the mixture was discharged to the outside of the reactor to strand (large), and solidified with a coolant, and then granulated to have an average weight of about 12 to 14 1 ⁇ .
  • Terephthalic acid (3631.3 g) and ethylene glycol (1763.1 g) were added to the reactor volume, GeCMl.O g as a catalyst, phosphoric acid (1.50 g) as a stabilizer, and cobalt acetate (0.7 g) as a colorant.
  • And Irganox 1076 (17.5 g) was used as an oxidation stabilizer.
  • nitrogen was injected into the reactor so that the pressure in the reactor was 2 kgf / cm 2 higher than normal pressure (absolute pressure: 2231.1 mmHg).
  • the temperature of the reactor was raised to 220 ° C over 90 minutes, maintained at 220 ° C for 2 hours, and then raised to 265 ° C over 2 hours.
  • the pressure of the reactor was reduced from normal pressure to 5 Torr (absolute pressure: 5 mmHg) over 30 minutes, and at the same time, the temperature of the reactor was raised to 270 ° C over 1 hour, and the pressure of the reactor was increased to 1 Torr (absolute pressure: 1 mmHg) or less, the polycondensation reaction was performed.
  • the stirring speed is quickly set, but when the polycondensation reaction progresses, the stirring speed may be appropriately adjusted when the stirring force is weakened due to an increase in the viscosity of the reactant or the temperature of the reactant rises above a set temperature. .
  • the polycondensation reaction proceeded until the intrinsic viscosity (IV) of the mixture (melt) in the reactor became 0.60 dl / g.
  • IV intrinsic viscosity
  • the mixture was discharged to the outside of the reactor and stranded, and solidified with a coolant to form an average weight of 12 to 14 mg.
  • the particles were left standing at 150X for 1 hour to crystallize, and then charged into a 20 I volume solid phase polymerization reactor. Then, nitrogen was added to the reactor. 2020/075947 1 »(: 1 ⁇ 1 ⁇ 2019/005998
  • a terephthalic acid (3329.2 g), ethylene glycol (1517.0 g), and cyclonucleic acid-1,4-diyldimethanol (86.6 g) were added to a 10 L volume reactor connected to a column and a condenser that could be cooled by water.
  • the stirring speed is quickly set, but as the polycondensation reaction progresses, the stirring speed may be appropriately adjusted when the stirring force is weakened due to the increase in the viscosity of the reactant or the temperature of the reactant rises above the set temperature. .
  • the polycondensation reaction proceeded until the intrinsic viscosity (IV) of the mixture (melt) in the reactor reached 0.65 (11 / ⁇ .) When the intrinsic viscosity of the mixture in the reactor reached a desired level, the mixture was discharged out of the reactor. Stranded (vs. 11 (1)), and solidified with ⁇ solution to be granulated to have an average weight of 12 to 14 1 ⁇ .
  • the total acid-derived residue contained in the polyester copolymer thus prepared was derived from terephthalic acid.
  • the residue was 100 mol%, and the residue derived from cyclonucleic acid dimethanol was 3 mol% relative to the total diol-derived residue.
  • polyester copolymers prepared in Examples and Comparative Examples the following physical properties were measured.
  • the melting point was measured through a thermal analysis method ( ⁇ method).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

본 발명에 따른 폴리에스테르 공중합체는, 내화학성 및 투명도가 우수하여 각종 용기 제조에 유용하게 적용할 수 있다.

Description

2020/075947 1»(:1^1{2019/005998
【명세서】
【발명의 명칭】
내화학성 및 투명도가 우수한 폴리에스테르 공중합체
【기술분야】
본 발명은 내화학성 및 투명도가 우수하여 각종 용기 제조에 유용하게 적용 가능한 폴리에스테르 공중합체에 관한 것이다.
【배경기술】
폴리에스테르 수지로 대표되는 PEKpolyethylene terephthalate)는 저렴한 가격 및 우수한 물리/화학적 성질로 인해 상업적으로 널리 사용되고 있다. 하지만, 결정성이 높아 가공 시 높은 온도를 요구하며 성형 제품의 투명성이 떨어지는 문제가 있다. 또한, PET는 내열성이 좋지 않아 음료의 고온 충진 과정에서 PET로 성형된 병의 형태가 변형되는 문제를 초래하게 된다. 이를 막기 위해 병 성형 전/후 병목 결정화 공정 및 Heat sett ing 공정을 거쳐 병의 내열도를 높이기도 하나, 이로 인해 병의 투명도는 감소하게 된다. 투명도가 높은 수지로서 비결정 수지인 PETGCglycol -modi f ied polyethylene terephthalate)가 알려져 있는데, 투명도는 우수하나 화학 물질의 내부 침투가 용이하여 내화학성이 좋지 않다는 단점이 있다. 특히, 자외선 차단제 성분이 포함된 선볼락 제품이나, 알코올 성분이 다량 포함된 향수 제품과 같은 화장품 용기, 또는 각종 화학 약품의 용기는, 높은 투명도와 함께 내화학성도 함께 요구된다. 이에 종래 알려진 PETG 수지에 비하여 투명도가 동등 또는 개선될 뿐만 아니라, 내화학성이 향상된 신규한 수지의 개발이 필요하다.
【발명의 내용】
【해결하려는 과제】
본 발명은 내화학성 및 투명도가 우수한 폴리에스테르 공중합체를 제공하기 위한 것이다.
또한, 본 발명은 상기 폴리에스테르 공중합체를 포함하는 물품을 2020/075947 1»(:1^1{2019/005998
제공하기 위한 것이다.
【과제의 해결 수단】
상기 과제를 해결하기 위하여, 본 발명은 하기 화학식 1로 표시되는 제 1 반복단위; 및 하기 화학식 2로 표시되는 제 2 반복단위 및 하기 화학식 3으로 표시되는 제 3 반복단위 중 어느 하나 이상을 포함하는, - 폴리에스테르 공중합체로서, 상기 폴리에스테르 공중합체는 하기 수학식 1을 만족하는, 폴리에스테르 공중합체를 제공한다:
[수학식 1]
II £ 6
상기 수학식 1에서,
표는 상기 물리에스테르 공중합체의 시편(두께: 6 ^11)을 에탄올에 침지 후 60도에서 24시간 보관한 후 쇼況 1)1003-97에 의거하여 측정한 1 26 값을 의미하고, ·
[화학식 1 ]
Figure imgf000003_0001
2020/075947 1»(:1^1{2019/005998
상기 화학식 1내지 3에서,
X, 7, 및 2는 각각 공중합체 내 몰분율로서 , 및 의 합이 5 몰% 이상 20몰%미만이다. 이하, 본 발명을상세히 설명한다.
(반복단위)
본 발명에 따른 반복단위는, 테레프탈산 또는 이의 유도체와 후술할 디올 화합물이 반응하여 제조된다. 상기 테레프탈산의 유도체란, 상기 반복단위를 형성할 수 있는 화합물로서, 이소프탈산, 디메틸 이소프탈레이트, 프탈산, 디메틸 프탈레이트, 프탈산 무수물 등을 들 수 있다. 또한, 각 반복단위의 제조시 테레프탈산 또는 이의 유도체를 1종 또는 2종 이상사용하여 제조할수 있다. 본 발명에 따른 제 1 반복단위는, 테레프탈산 또는 이의 유도체와 에틸렌 글리콜이 반응하여 제조되는 것으로, 본 발명에 따른 폴리에스테르 공중합체의 주요 반복단위이다. 상기 화학식 1에서 X는 상기 제 1 반복단위의 폴리에스테르 공중합체 내 몰 분율로서, 바람직하게는 80 몰% 이상 95몰% 이하이다. 본 발명에 따른 제 2 반복단위는 테레프탈산 또는 이의 유도체와 아이소소바이드가 반응하여 제조되며, 본 발명에 따른 제 3 반복단위는 테레프탈산 또는 이의 유도체와사이클로핵산디메탄올이 반응하여 제조된다. 상기 제 2 반복단위 및 제 3 반복단위 중 적어도 하나 이상이 본 발명에 따른 폴리에스테르 공중합체에 포함되며, 바람직하게는 상기 제 2 반복단위 및 제 3 반복단위 모두 포함한다. 상기 화학식 2에서 는 상기 제 2 반복단위의 폴리에스테르 공중합체 내 몰 분율이고, 상기 화학식 3에서 2는 상기 제 3 반복단위의 폴리에스테르 공중합체 내 몰분율이다. 바람직하게는, 및 2의 합이 5 몰% 이상 20 몰% 미만이다. 이때, 2020/075947 1»(:1^1{2019/005998
상기 폴리에스테르 공중합체 내에 상기 제 2 반복단위만 포함될 경우 는 0이고, 상기 폴리에스테르 공중합체 내에 상기 제 3 반복단위만 포함될 경우 는 0이다. 특히, 본 발명에 따른 폴리에스테르 공중합체는 내화학성이 우수한 것으로, 상기 제 2 반복단위 및 제 3 반복단위의 몰 분율이 이러한 내화학성에 중요한 영향을 미친다. 후술할 실시예와 같이, 상술한 제 2 반복단위 및 제 3 반복단위의 몰 분율을 가지는 경우, 그렇지 않은 경우에 비하여 내화학성이 현저히 우수함을 확인할수 있다.
(폴리에스테르공중합체의 제조방법)
상기 반복단위들은 테레프탈산 또는 이의 유도체와 에틸렌 글리콜, 아이소소바이드 및/또는 사이클로핵산디메탄올의 (3) 에스테르화 반응 또는 에스테르교환반응, 및 ( 중축합 반응으로 제조할수 있다 . 구체적으로, (3) 테레프탈산 또는 이의 유도체, 에틸렌 글리콜, 및 아이소소바이드 및/또는 사이클로핵산디메탄올의 에스테르화 반응 또는 에스테르 교환 반응 단계; 및 (10 상기 에스테르화 또는 에스테르 교환 반응 생성물을 중축합 반응하는 단계를 통해 상기 폴리에스테르 공중합체를 제조할수 있다. 여기서 , 상기 제조 방법은 배치 此)식, 반-연속식 또는 연속식으로 수행될 수 있고, 상기 에스테르화 반응 또는 에스테르 교환 반응과 중축합 반응은 불활성 기체 분위기 하에서 수행되는 것이 바람직하며, 상기 폴리에스테르 공중합체와 기타 첨가제의 혼합은 단순 혼합이거나, 압출을통한혼합일 수 있다. 추가적으로 필요에 따라, 고상 중합 반응을 이어서 진행할 수 있다. 구체적으로, 본 발명의 일 구현예에 따른 폴리에스테르 공중합체의 제조 방법은 ( 단계 후에 ((:) 중축합 반응(용융 중합)으로 제조된 폴리머를 2020/075947 1»(:1^1{2019/005998
결정화하는 단계; 및 ((1) 결정화된 폴리머를 고상 중합하는 단계를 추가로 포함할수 있다. 상기 (a) 에스테르화 반응 또는 에스테르 교환 반응에서는 촉매가 사용될 수 있다. 이러한 촉매로는 나트륨, 마그네슘의 메틸레이트 (methyl ate) ; Zn , Cd , Mn , Co , Ca , Ba , Ti , Sn 등의 초산염 , 붕산염, 지방산염, 탄산염, 알콕시염; 금속 Mg; Pb , Zn , Sb , Ge , Sn 등의 산화물 등을 예시할 수 있다. 상기 (a) 에스테르화 반응. 또는 에스테르 교환 반응은 배치 (batch)식 , 반-연속식 또는 연속식으로 수행될 수 있고, 각각의 원료는 별도로 투입될 수 있으나, 디올에 디카르복실산 또는 이의 유도체를 혼합한 슬러리 형태로 투입하는 것이 바람직하다. 상기 (a) 에스테르화 반응 또는 에스테르 교환 반응 시작 전 슬러리에 또는 반응 완료 후 생성물에 중죽합 족매, 안정제, 정색제, 결정화제, 산화방지제, 가지화제 (branching agent ) 등을 첨가할 수 있다. 그러나, 상술한 첨가제들의 투입 시기가 이에 한정되는 것은 아니며 폴리에스테르 공중합체의 제조 단계 중 임의의 시점에 투입될 수도 있다. 상기 중축합 촉매로는, 통상의 티타늄, 게르마늄, 안티몬, 알루미늄, 주석계 화합물 등을 하나 이상 적절히 선택하여 사용할 수 있다. 유용한 티타늄계 촉매로는, 테트라에틸티타네이트, 아세틸트리프로필티타네이트, 테트라프로필티타네이트, 테트라부틸티타네이트 , 폴리부틸티타네이트, 2- 에틸핵실 티타네이트, 옥틸렌글리콜티타네이트, 락테이트티타네이트, 트리에탄올아민 티타네이트, 아세틸 아세토네이트티타네이트, 에틸아세토아세틱에스테르티타네이트 , 이소스테아릴티타네이트 , 티타늄디옥사이드, 티타늄디옥사이드/실리콘디옥사이드공중합체 , 티타늄디옥사이드/지르코늄디옥사이드 공중합체 등을 예시할 수 있다. 또한, 유용한 게르마늄계 촉매로는 게르마늄 디옥사이드 및 이를 이용한 공중합체 2020/075947 1»(:1^1{2019/005998
등이 있다. 상기 안정제로는, 일반적으로 인산, 트리메틸포스페이트, 트리에틸포스페이트 등의 인계 화합물을 사용할 수 있으며, 그 첨가량은 인 원소량을 기준으로 최종 폴리머 (폴리에스테르 공중합체)의 중량 대비 10 내지 200
Figure imgf000007_0001
이다. 상기 안정제의 첨가량이 10
Figure imgf000007_0002
미만이면, 안정화 효과가 미흡하여, 폴리머의 색상이 노랗게 변할 우려가 있으며, 200
Figure imgf000007_0003
초과하면 원하는 고중합도의 폴리머를 얻지 못할 우려가 있다. 또한, 폴리머의 색상을 향상시키기 위해 첨가되는 정색제로는, 코발트 아세테이트, 코발트 프로피오네이트 등의 통상의 정색제를 예시할 수 있고, 그 첨가량은 코발트 원소량을 기준으로 최종 폴리머 (폴리에스테르 공중합체)의 중량 대비 10 내지 200
Figure imgf000007_0004
이다. 필요에 따라, 유기화합물 정색제로서 안트라퀴논 (½1±대¾1110110116)계 화합물 , 페린온 ( 아 )계 화합물 , 아조 (쇼 )계 화합물, 메틴 )계 화합물 등을 사용할 수 있으며, 시판되는 제품으로는 □ 位사의
Figure imgf000007_0005
또는 이31^011;사의 ¾八예}61·!!!
Figure imgf000007_0006
66 등의 토너를 사용할 수 있다. 상기 유기화합물 정색제의 첨가량은 최종 폴리머 중량 대비 0 내지 50 ppm으로 조절될 수 있다. 만일 정색제를 상기 범위 밖의 함량으로 사용하면 폴리에스테르 공중합체의 황색을 충분히 가리지 못하거나 물성을 저하시킬 수 있다. 상기 결정화제로는 결정핵제, 자외선 흡수제, 폴리올레핀계 수지, 폴리아마이드 수지 등을 예시할 수 있다. 상기 산화방지제로는 힌더드 페놀계 산화방지제 , 포스파이트계 산화방지제, 티오에테르계 산화방지제 또는 이들의 혼합물 등을 예시할 수 있다. 상기 가지화제로는 3 이상의 관능기를 가지는 통상의 가지화제로서, 예를 들면, 무수트리멜리틱산 (trimel l i t ic anhydr ide) , 트리메틸올 프로판 (tr imethylol propane) , 트리멜리틱산 (tr imel l i t i c acid) 또는 이들의 혼합물 등을 예시할수 있다. 상기 (a) 에스테르화 반응 또는 에스테르 교환 반응은 150 내지 300 °C 또는 200 내지 270 °C의 온도 및 0 내지 10.0 kgf/cm2 (0 내지 2020/075947 1»(:1^1{2019/005998
7355.6빼¾), 0 내지 5.0
Figure imgf000008_0001
3677.8_¾) 또는 0. 1 내지 3.0 1¾ /(:012 (73.6 내지 2206.71^¾)의 압력 조건에서 실시될 수 있다. 여기서 괄호 밖에 기재된 압력은 게이지 압력을 의미하며
Figure imgf000008_0002
단위로 기재됨), 괄호 안에 기재된 압력은 절대 압력을 의미한다( §단위로 기재됨). 상기 반응 온도 및 압력이 상기 범위를 벗어날 경우, 폴리에스테르 공중합체의 물성이 저하될 우려가 있다. 상기 반응 시간(평균 체류시간)은 통상 1시간 내지 24시간 또는 2시간 내지 8시간이며, 반응 온도, 압력, 사용하는 디카르복실산 또는 이의 유도체 대비 디올의 몰비에 따라 달라질 수 있다. 상기 에스테르화 또는 에스테르 교환 반응을 통해 얻은 생성물은 중축합 반응을 통해 보다 높은 중합도의 폴리에스테르 공중합체로 제조될 수 있다. 일반적으로, 상기 중축합 반응은 150 내지 300 °0 , 200 내지 290ᄃ 또는 250 내지 290 의 온도 및 0.01 내지 400 _¾, 0.05 내지 100 _¾ 또는 0. 1 내지 10 1 ¾의 감압 조건에서 수행된다. 여기서 압력은 절대 압력의 범위를 의미한다. 상기 0.01 내지 400
Figure imgf000008_0003
감압 조건은 중축합 반응의 부산물인 글리콜 등과 미반응물인 아이소소바이드 등을 제거하기 위한 것이다. 따라서, 상기 감압 조건이 상기 범위를 벗어날 경우, 부산물 및 미반응물의 제거가 불충분할 우려가 있다. 또한, 상기 중축합 반응 온도가 상기 범위를 벗어날 경우, 폴리에스테르 공중합체의 물성이 저하될 우려가 있다. 상기 중축합 반응은, 원하는 고유점도에 도달할 때까지 필요한 시간 동안, 예를 들면, 평균 체류시간 1시간 내지 24시간 동안 실시된다. 폴리에스테르 공중합체 내에 잔류하는 아이소소바이드 등의 미반응물의 함량을 감소시킬 목적으로 에스테르화 반응 또는 에스테르 교환 반응 말기 또는 중축합 반응 초기, 즉 수지의 점도가 충분히 높지 않은 상태에서 진공 반응을 의도적으로 길게 유지하여 미반응된 원료를 계외로 유출 시킬 수 있다. 수지의 점도가 높아지면, 반응기 내 잔류하고 있는 2020/075947 1»(:1^1{2019/005998
원료가 계외로 빠져나오기 어렵게 된다. 일 예로, 중축합 반응 전 에스테르화 반응 또는 에스테르 교환 반응을 통해 얻은 반응 생성물을 약 400 내지 1
Figure imgf000009_0001
또는 약 200 내지
Figure imgf000009_0002
감압 조건에서 0.2시간 내지 3시간 동안 방치하여 폴리에스테르 공중합체 내에 잔류하는 아이소소바이드 등의 미반응물을 효과적으로 제거할 수 있다. 이때, 상기 생성물의 온도는 에스테르화 반응 또는 에스테르 교환 반응 온도와 중축합 반응 온도와 같거나또는 그 사이의 온도로 조절될 수 있다. 위 진공 반응의 제어를 통해 미반응 원료를 계외로 유출시키는 공정 내용을 추가함에 따라, 폴리에스테르 공중합체 내에 잔류하는 아이소소바이드 등의 미반응물의 함량을 감소시킬 수 있고, 그 결과 일 구현예의 물성을 충족하는 폴리에스테르 공중합체를 더욱 효과적으로 얻을 수 있다. 한편, 중축합 반응 후 폴리머의 고유점도는 0.45 내지 0.75 이 인 것이 적당하다. 특히, 전술한 (c) 결정화 단계 및 (d) 고상 중합 단계를 채용한다면, 중축합 반응 후 폴리머의 고유점도를 0.45 내지 0.75 dl/g, 0.45 내지 0.70 dl /g 또는 0.50 내지 0.65 dl/g으로 조절할 수 있다. 만일 중축합 반응 후 폴리머의 고유점도가 0.45 dl /g 미만이면, 고상 중합 반응에서의 반응 속도가 현저히 낮아지게 되며, 분자량 분포가 매우 넓은 폴리에스테르 공중합체가 얻어지고, 고유점도가 0.75 dl/g를 초과하면, 용융 중합 중 용융물의 점도가 상승됨에 따라 교반기와 반응기 사이에서의 전단 응력 (Shear Stress)에 의해 폴리머가 변색될 가능성이 증가하며, 아세트알데히드와 같은 부반응 물질도 증가하게 된다. 또한 결정화 속도가 현저히 느려져서 결정화 과정 중 융착이 발생하고, 펠렛 모양도 변형되기 쉽다. 한편, 전술한 ((:) 결정화 단계 및 ( 고상 중합 단계를 채용하지 2020/075947 1»(:1^1{2019/005998
않는다면, 중축합 반응 후 폴리머의 고유점도를 0.65 내지 0.75 dl/g로 조절할 수 있다. 만일 고유점도가 0.65 dl /g 미만이면, 저분자량의 고분자로 인해 결정화 속도가 상승하여 우수한 내열성과 투명성을 갖는 폴리에스테르 공중합체를 제공하기 어렵고, 고유점도가 0.75 dl /g을 초과하면 용융 중합 중 용융물의 점도가 상승됨에 따라 교반기와 반응기 사이에서의 전단 응력 (Shear Stress)에 의해 폴리머가 변색될 가능성이 증가하며, 아세트알데히드와같은부반응물질도증가하게 된다. 상기 (a) 및 (b) 단계를 통해 일 구현예에 따른 폴리에스테르 공중합체를 제조할 수 있다. 그리고, 필요에 따라 (b) 중축합 반응 단계 후에 (c) 결정화 단계 및 (d) 고상중합 단계를 추가로 진행하여 보다높은 중합도를 갖는폴리에스테르공중합체를 제공할수 있다. 구체적으로, 상기 (c) 결정화 단계에서는 (b) 중축합 반응을 통해 얻은 폴리머를 반응기 밖으로 토출하여 입자화한다. 입자화하는 방법은 Strand형으로 압출 후 냉각액에서 고화 후 커터로 절단하는 Strand cutt ing법이나, 다이 홀을 냉각액에 침지시켜, 냉각액 중으로 직접 압줄하여 커터로 절단하는 underwater cut t ing법을 사용할 수 있다. 일반적으로 Strand cutt ing법에서는 냉각액의 온도를 낮게 유지하여, Strand가 잘 고화되어야 커팅에 문제가 없다. underwater cutt ing법에서는 냉각액의 온도를 폴리머에 맞게 유지하여, 폴리머의 형상이 균일하게 하는 것이 좋다. 하지만 결정성 폴리머의 경우, 토출 중 결정화를 유도하기 위해서 일부러 냉각액의 온도를높게 유지할수도 있다. 한편, 입자화된 폴리머를 추가적으로 수세정하는 것도 가능하다. 수세정 시 물의 온도는 폴리머의 유리전이온도와 같거나또는 약 5 내지 20 °C 정도 낮은 것이 바람직하며, 그 이상의 온도에서는 융착이 발생될 수 있어 바람직하지 않다. 토출 시 결정화를 유도한 폴리머의 입자라면 유리전이온도 보다 높은 온도에서도 융착이 발생되지 않으므로 결정화 정도에 따라 물의 온도를 설정할 수 있다. 입자화된 폴리머의 수세정을 2020/075947 1»(:1^1{2019/005998
통해 미반응된 원료 중 물에 용해되는 원료의 제거가 가능하다. 입자가 작을수록 입자의 무게 대비 표면적이 넓어지기 때문에 입자의 크기는 작을수록 유리하다. 이러한 목적을 달성하기 위해 입자는 약 14
Figure imgf000011_0001
이하의 평균무게를 갖도록 제조될 수 ¾다. 입자화된 폴리머는 고상 중합 반응 중 융착되는 것을 방지하기 위해 결정화 단계를 거친다. 대기, 불활성 가스, 수증기, 수증기 함유 불활성 가스 분위기 또는 용액 속에서 진행이 가능하며, 1101: 내지 1801: 또는 1201: 내지 180 에서 결정화 처리를 한다. 온도가 낮으면 입자의 결정이 생성되는 속도가 너무 느려지며, 온도가 높으면 결정이 만들어지는 속도보다 입자의 표면이 용융되는 속도가 빨라 입자끼리 붙어 융착을 발생시킨다. 입자가 결정화됨에 따라 입자의 내열도가 상승되게 되므로 결정화를 여러 단계로 나누어 단계별로 온도를 상승시켜 결정화 하는 것도 가능하다. 고상 중합 반응은 질소, 이산화탄소, 아르곤 등 불활성 가스 분위기 하 또는 400 내지 0.01 ■¾의 감압 조건 및 180 내지 2201:의 온도에서 평균 체류시간 1시간 이상, 바람직하게는 10시간 이상 동안 진행될 수 있다. 이러한 고상 중합 반응을 통해 분자량이 추가적으로 상승되며, 용융 반응에서 반응되지 않고 잔존해 있는 원료 물질과 반응 중 생성된 환상올리고머, 아세트알데하이드등이 제거될 수 있다. 상기 일 구현예에 따른 폴리에스테르 공중합체를 제공하기 위해서는 고유점도가 ( 중축합 반응 단계에서 얻은 수지의 고유점도 보다 0.10내지 0.40 d\/g높은 값에 도달할 때까지 고상 중합을 수행할 수 있다. 만일 고상 중합 반응 후 수지의 고유점도와 고상 중합 반응 전 수지의 고유점도 간의 차이가 0. 10 (11八 미만이면 충분한 중합도 향상 효과를 얻을 수 없고, 고상 중합 반응 후 수지의 고유점도와 고상 중합 반응 전 수지의 고유점도 간의 차이가 0.40 을 초과하면 분자량 분포가 넓어져 충분한 내열도를 나타낼 수 없고 저분자량 고분자의 함량이 상대적으로 증가하여 2020/075947 1»(:1^1{2019/005998
결정화 속도가 증가함에 따라 헤이즈가 발생할 가능성이 높아진다. 상기 고상 중합 반응은 수지의 고유점도가 고상 중합 반응 전의 수지의 고유점도 보다 0. 10 내지 0.40 (11 /용 높으며, 0.70 이 이상, 0.70 내지 1.0 (11 /¾ 또는 0.70 내지 0.95 선1八의 값에 도달할 때까지 수행할 수 있다. 이러한 범위의 고유점도에 도달할 때까지 고상 중합하면 고분자의 분자량 분포가 좁아져 성형 시 결정화 속도를 낮출 수 있다. 이에 따라, 투명도를 저하시키지 않으면서 내열도 및 결정화도를 향상시킬 수 있다. 만일 고상 중합 반응 후 수지의 고유점도가 상기 범위 미만이면 저분자량의 고분자에 의한 결정화 속도 증가로 인해 우수한 내열성과 투명성을 갖는 폴리에스테르 공중합체를 제공하기 어려워질 수 있다.
(폴리에스테르공중합체의 특성)
본 발명에 따른 폴리에스테르 공중합체는 내화학성과 투명성이 우수한 것으로, 이에 따라상기 수학식 1을 만족한다. 상기 수학식 1은 1«26를 측정하고자 하는 시편을 에탄올에 일정 시간 동안 침지시킨 후 측정하는 것을 의미하는 것으로, 내화학성이 좋지 않은 경우에는 에탄올 침지 후 느326 값이 급격히 증가하는 경향이 있다. 그러나, 본 발명에 따른 폴리에스테르 공중합체는 내화학성이 우수하여, 상기 수학식 1을 만족한다. 후술할 실시예 및 비교예와 같이, 본 발명에 따른 폴리에스테르 공중합체는 시편을 에탄올에 침지 후 601:에서 24시간 동안 보관한 후 느크근 값을 측정하였을 때 5 이하의 값을 나타내었으나, 비교예는 모두 6을 초과하는 값을 나타내었다. 바람직하게는, 상기 수학식 1의 II가 5 이하이다. 또한, 11326 값의 이론적인 하한은 0이며, 일례로 상기 II 값은 0.01 이상, 0. 1 이상, 0.5 이상, 또는 1 이상일 수 있다. 또한, 본 발명에 따른 폴리에스테르 공중합체는 시편 (두께: 6 2020/075947 1»(:1^1{2019/005998
mm)을 ASTM D1003-97에 의거하여 측정한 haze 값이 4 이하이고, 보다 바람직하게는 3.5 이하, 또는 3 이하이다. 또한, haze 값의 이론적인 하한은 0이며, 일례로 상기 haze 값은 0.01 이상, 0. 1 이상, 0.5 이상, 또는 1 이상일 수 있다. 한편, 본 발명에 따른 폴리에스테르 공중합체는 수평균분자량 (Mn)이 10 , 000 내지 40 , 000이고, 보다 바람직하게는 15 , 000 내지 35 , 000이다. 또한, 본 발명은 상기 폴리에스테르 공중합체로부터 형성된 물품을 제공한다. 상기 물품은 물건을 담을 수 있는 용기, 이를 테면 화장품용 용기, 식품용 용기 등일 수 있으며, 병 (Bott le) , 고온 병 (hot f i l l j ar ) , 고압용기, 의료용 물품 및 Sheet 및 판상형으로 제작된 물품 등일 수 있다. 또한 상기 물품은 뚜껑, 커버, 칫솔대 등의 사출 물품 등으로 제작할 수 있으며, 이종의 물질과다층으로 제작할수도 있다.
【발명의 효과】
본 발명에 따른 폴리에스테르 공중합체는, 내화학성 및 투명도가 우수하여 각종용기 제조에 유용하게 적용할수 있다.
【발명을실시하기 위한구체적인 내용】
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 이에 의해 본 발명의 내용이 한정되는 것은 아니다. 하기 실시예 및 비교예 제조 과정에서 언급되는 물성 혹은 분석은 다음과 같은방법에 따라평가혹은수행되었다.
(1) 고유점도 (IV) : 시료 0.36 + 0.0002 g을 15CTC의 오르토- 클로로페놀 30 mL에 15분간 용해시킨 후, 35°C의 항온조에서 Ubbelodhe 점도계를사용하여 시료의 고유점도를측정하였다. 2020/075947 1»(:1^1{2019/005998
(2) 폴리에스테르 공중합체 내의 산 및 디올 유래의 잔기 조성은 시료를 CDCls 용매에 3 mg/mL의 농도로 용해한 후 핵자기 공명 장치 (JE0L, 600MHz FT-NMR)를 이용하여 25°C에서 얻은 1H-N· 스펙트럼을 통해 확인하였다. 실시예 1: 폴리에스테르공중합체의 제조
컬럼과, 물에 의해 냉각이 가능한 콘덴서가 연결되어 있는 10 L 용적의 반응기에 테레프탈산(3257.4 g) , 에틸렌 글리콜(1423.4 g) , 아이소소바이드(229.2 g)을 투입하고, 촉매로 Ge02(1.0 g), 안정제로 인산(phosphoric acid, 1.46 g), 정색제로 코발트 아세테이트(cobalt acetate, 0.7 g)를사용하였다. 이어서, 반응기에 질소를 주입하여 반응기의 압력이 상압 보다 1.0 kgf/cm2 만큼 높은 가압 상태로 만들었다 (절대 압력: 1495.6 _Hg). 그리고 반응기의 온도를 220°C까지 90분에 걸쳐 올리고, 22CTC에서 2시간 유지한 후, 260°C까지 2시간에 걸쳐 올렸다. 그 다음, 반응기 내의 혼합물을 육안으로 관찰하여 혼합물이 투명해질 때까지 반응기의 온도를 260 로 유지하며 에스테르화 반응을 진행하였다. 이 과정에서 컬럼과 콘덴서를 거쳐 부산물이 유출되었다. 에스테르화 반응이 완료되면, 가압 상태의 반응기 내의 질소를 외부로 배출하여 반응기의 압력을 상압으로 낮춘 후, 반응기 내의 혼합물을 진공 반응이 가능한 7 L용적의 반응기로 이송시켰다. 그리고, 반응기의 압력을 상압 상태에서 5 Torr (절대 압력: 5 _Hg)까지 30분에 걸쳐 낮추고, 동시에 반응기의 온도를 280°C까지 1시간에 걸쳐서 올리고, 반응기의 압력을 1 Torr (절대 압력: 1 rnrnHg) 이하로 유지하면서 중죽합 반응을 실시하였다. 중죽합 반응의 초기에는 교반 속도를 빠르게 설정하나, 중축합 반응이 진행됨에 따라 반응물의 점도 상승으로 인해 교반력이 약해지거나 또는 반응물의 온도가 설정한 온도 이상으로 올라갈 경우 교반 속도를 적절히 조절할 수 있다. 상기 중축합 반응은 반응기 내의 혼합물 (용융물)의 고유점도 (IV)가 0.55 dl/g이 될 2020/075947 1»(:1^1{2019/005998
때까지 진행하였다. 반응기 내의 혼합물의 고유점도가 원하는 수준에 도달하면, 혼합물을 반응기 외부로 토출하여 스트랜드 ( 대11(1)화 하였으며, 이를 냉각액으로 고화후 평균 무게가 12 내지
Figure imgf000015_0001
정도가 되도록 입자화 하였다. 상기 입자를 1501:에서 1시간 동안 방치하여 결정화 한 후, 20 느 용적의 고상 중합 반응기에 투입하였다. 이후, 상기 반응기에 질소를 50 1 11 속도로 흘려주었다. 이때, 반응기의 온도를 상온에서 140°(:까지 40°(:/시간의 속도로 올리고, 1401:에서 3시간 유지한 후, 2001:까지 401: /시간의 속도로 승은하여 200 에서 유지하였다. 상기 고상 중합 반응은 반응기 내의 입자의 고유점도 ( IV)가 0.75 (11八이 될 때까지 진행하였다. 이렇게 제조된 폴리에스테르 공중합체에 포함된 전체 산 유래 잔기에 대하여 테레프탈산 유래의 잔기는 100 몰%이었으며, 전체 디올 유래의 잔기에 대하여 아이소소바이드유래의 잔기는 5몰%이었다. 실시예 2: 폴리에스테르공중합체의 제조
컬럼과, 물에 의해 냉각이 가능한 콘덴서가 연결되어 있는 10 느 용적의 반응기에 테레프탈산 (3189. 1 §) , 에틸렌 글리콜 (1334. 1 §) , 투입하고, 촉매로 0602(1.0 §) , 안정제로
Figure imgf000015_0002
46 요) , 정색제로 코발트 아세테이트 («光 acetate , 0.7용)를사용하였다. 이어서, 반응기에 질소를 주입하여 반응기의 압력이 상압 보다 1.0
Figure imgf000015_0003
상태로 만들었다 (절대 압력: 1495.6 _¾§) . 그리고 반응기의 온도를 2201:까지 90분에 걸쳐 올리고, 220°(:에서 2시간 유지한 후, 2601:까지 2시간에 걸쳐 올렸다. 그 다음, 반응기 내의 혼합물을 육안으로 관찰하여 혼합물이 투명해질 때까지 반응기의 온도를 2601:로 유지하며 에스테르화 반응을 진행하였다. 이 과정에서 컬럼과 콘덴서를 2020/075947 1»(:1^1{2019/005998
거쳐 부산물이 유출되었다. 에스테르화 반응이 완료되면, 가압 상태의 반응기 내의 질소를 외부로 배출하여 반응기의 압력을 상압으로 낮춘 후, 반응기 내의 혼합물을 진공 반응이 가능한 7느 용적의 반응기로 이송시켰다. 그리고, 반응기의 압력을 상압 상태에서 5 ¾ (절대 압력: 5
1때^¾)까지 30분에 걸쳐 낮추고, 동시에 반응기의 온도를 280°(:까지 1시간에 걸쳐서 올리고, 반응기의 압력을 1 孔:·!(절대 압력: 1 용) 이하로 유지하면서 중축합 반응을 실시하였다. 중축합 반응의 초기에는 교반 속도를 빠르게 설정하나, 중축합 반응이 진행됨에 따라 반응물의 점도 상승으로 인해 교반력이 약해지거나 또는 반응물의 온도가 설정한 온도 이상으로 올라갈 경우 교반 속도를 적절히 조절할 수 있다. 상기 중축합 반응은 반응기 내의 혼합물(용융물)의 고유점도(IV)가 0.50 (11/§이 될 때까지 진행하였다. 반응기 내의 혼합물의 고유점도가 원하는 수준에 도달하면, 혼합물을 반응기 외부로 토출하여 스트랜드( 대11(1)화 하였으며, 이를 냉각액으로 고화후 평균 무게가 12 내지
Figure imgf000016_0001
정도가 되도록 입자화 하였다. 이어 상기 입자를 7010의 물에서 5시간 동안 보관한 후 꺼내어 건조시켰다. 상기 입자를 150°(:에서 1시간 동안 방치하여 결정화 한 후, 20 I 용적의 고상 중합 반응기에 투입하였다. 이후, 상기 반응기에 질소를 50 1/^ 속도로 흘려주었다. 이때, 반응기의 온도를 상온에서 140 까지 401: /시간의 속도로 올리고, 1401:에서 3시간 유지한 후, 200°(:까지 40°(:/시간의 속도로 승은하여 2001:에서 유지하였다. 상기 고상 중합 반응은 반응기 내의 입자의 고유점도(IV)가 0.95 (11 /용이 될 때까지 진행하였다. 이렇게 제조된 폴리에스테르 공중합체에 포함된 전체 산 유래 잔기에 대하여 테레프탈산 유래의 잔기는 100 몰%이었으며, 전체 디올 유래의 잔기에 대하여 아이소소바이드유래의 잔기는 10몰%이었다. 2020/075947 1»(:1^1{2019/005998
실시예 3: 폴리에스테르공중합체의 제조
컬럼과, 물에 의해 냉각이 가능한 콘덴서가 연결되어 있는 10 느 용적의 반응기에 테레프탈산(3356.5 용), 에틸렌 글리콜(1341.4 g) , 아이소소바이드(826.6 2)을 투입하고, 촉매로 0602(1.0 §), 안정제로
Figure imgf000017_0001
이어서, 반응기에 질소를 주입하여 반응기의 압력아 상압 보다 0.5
1¾군八에2 만큼 높은 가압 상태로 만들었다(절대 압력 : 1127.8 ^§). 그리고 반응기의 온도를 2201:까지 90분에 걸쳐 올리고, 2201:에서 2시간 유지한 후, 260°(:까지 2 시간에 걸쳐 올렸다. 그 다음, 반응기 내의 혼합물을 육안으로 관찰하여 혼합물이 투명해질 때까지 반응기의 온도를 2601:로 유지하며 에스테르화 반응을 진행하였다. 이 과정에서 컬럼과 콘덴서를 거쳐 부산물이 유출되었다. 에스테르화 반응이 완료되면, 가압 상태의 반응기 내의 질소를 외부로 배출하여 반응기의 압력을 상암으로 낮춘 후, 반응기 내의 혼합물을 진공 반응이 가능한 7 I 용적의 반응기로 이송시켰다. 그리고, 반응기의 압력을 상압 상태에서 5 ¾ (절대 압력: 5
1 1¾)까지 30분에 걸쳐 낮추고, 동시에 반응기의 온도를 275°(:까지 1시간에 걸쳐서 올리고, 반응기의 압력을 1 孔! ! ·(절대 압력: 1 용) 이하로 유지하면서 중축합 반응을 실시하였다. 중축합 반응의 초기에는 교반 속도를 빠르게 설정하나, 중축합 반응이 진행됨에 따라 반응물의 점도 상승으로 인해 교반력이 약해지거나 또는 반응물의 온도가 설정한 온도 이상으로 올라갈 경우 교반 속도를 적절히 조절할 수 있다. 상기 중축합 반응은 반응기 내의 혼합물(용융물)의 고유점도(IV)가 0.60 (11 /§이 될 때까지 진행하였다. 반응기 내의 혼합물의 고유점도가 원하는 수준에 도달하면, 혼합물을 반응기 외부로 토출하여 스트랜드( 대11(1)화 하였으며, 이를 냉각액으로 고화후 평균 무게가 12 내지 14阿 정도가 되도록 입자화 2020/075947 1»(:1^1{2019/005998
하였다. 이렇게 제조된 폴리에스테르 공중합체에 포함된 전체 산 유래 잔기에 대하여 테레프탈산 유래의 잔기는 loo 몰%이었으며, 전체 디올 유래의 잔기에 대하여 아이소소바이드유래의 잔기는 5몰%이었다. 실시예 4: 폴리에스테르공중합체의 제조
컬럼과, 물에 의해 냉각이 가능한 콘덴서가 연결되어 있는 10 L 용적의 반응기에 테레프탈산(4297.3 g), 에틸렌 글리콜(1845.8 g), 사이클로핵산-1,4 -디일디메탄올(186.4 g), 아이소소바이드(189.0 g)을 투입하고, 촉매로 Ge¾(1.0 g), 안정제로 인산(phosphoric acid, 1.46 g), 정색제로 코발트 아세테이트(cobalt acetate, 1.1 g) , 및 가지화제로
TMA(Trimellitic anhydrate, 22 g)를사용하였다. 이어서, 반응기에 질소를 주입하여 반응기의 압력이 상압 보다 1 kgf/cm2 만큼 높은 가압 상태로 만들었다 (절대 압력 : 1495.6 mmHg) . 그리고 반응기의 온도를 220°C까지 90분에 걸쳐 올리고, 220°C에서 2시간 유지한 후, 250°C까지 2시간에 걸쳐 올렸다. 그 다음, 반응기 내의 혼합물을 육안으로 관찰하여 혼합물이 투명해질 때까지 반응기의 온도를 25CTC로 유지하며 에스테르화 반응을 진행하였다. 이 과정에서 컬럼과 콘덴서를 거쳐 부산물이 유출되었다. 에스테르화 반응이 완료되면, 가압 상태의 반응기 내의 질소를 외부로 배출하여 반응기의 압력을 상암으로 낮춘 후, 반응기 내의 혼합물을 진공 반응이 가능한 7 L용적의 반응기로 이송시켰다. 그리고, 반응기의 압력을 상압 상태에서 5 Torr (절대 압력: 5 mmHg)까지 30분에 걸쳐 낮추고, 동시에 반응기의 온도를 265°C까지 1시간에 걸쳐서 올리고, 반응기의 압력을 1 Torr (절대 압력: 1 mmHg) 이하로 유지하면서 중축합 반응을 실시하였다. 중축합 반응의 초기에는 교반 속도를 빠르게 설정하나, 중축합 반응이 진행됨에 따라 반응물의 점도 상승으로 인해 교반력이 약해지거나 또는 반응물의 온도가 설정한 온도 2020/075947 1»(:1^1{2019/005998
이상으로 올라갈 경우 교반 속도를 적절히 조절할 수 있다. 상기 중축합 반응은 반응기 내의 혼합물(용융물)의 고유점도(IV)가 0.60 (11/§이 될 때까지 진행하였다. 반응기 내의 혼합물의 고유점도가 원하는 수준에 도달하면, 혼합물을 반응기 외부로 토출하여 스트랜드( 대11(1)화 하였으며, 5 이를 냉각액으로 고화후 평균 무게가 12 내지 14 11^ 정도가 되도록 입자화 하였다. 이렇게 제조된 폴리에스테르 공중합체에 포함된 전체 산 유래 잔기에 대하여 테레프탈산 유래의 잔기는 100 몰%이었으며, 전체 디올 10 유래의 잔기에 대하여 아이소소바이드 유래의 잔기는 2 몰%, 사이클로핵산디메탄올유래의 잔기는 5몰%이었다. 실시예 5: 폴리에스테르공중합체의 제조
컬럼과, 물에 의해 냉각이 가능한 콘덴서가 연결되어 있는 10 I 15 용적의 반응기에 테레프탈산(3316.0 §), 에틸렌 글리콜(1164.2
Figure imgf000019_0001
사이클로핵산- 1 ,4 -디일디메탄올(230. 1 g) 아이소소바이드(87.5 용)을 투입하고, 촉매로 0602(1.0 용), 안정제로 인산( 애 아 301(1, 1.46 용), 정색제로코발트 아세테이트
Figure imgf000019_0002
0.8묘)를사용하였다.
20 이어서, 반응기에 질소를 주입하여 반응기의 압력이 상압 보다 2
1¾八:미2 만큼 높은 가압 상태로 만들었다(절대 압력: 2231.1 1^§). 그리고 · 반응기의 온도를 220°(:까지 90분에 걸쳐 올리고, 220°(:에서 2시간 유지한 후, 2551:까지 2시간에 걸쳐 올렸다. 그 다음, 반응기 내의 혼합물을 육안으로 관찰하여 혼합물이 투명해질 때까지 반응기의 온도를 2551:로 25 유지하며 에스테르화 반응을 진행하였다. 이 과정에서 컬럼과 콘덴서를 거쳐 부산물이 유출되었다. 에스테르화 반응이 완료되면, 가압 상태의 반응기 내의 질소를 외부로 배출하여 반응기의 압력을 상압으로 낮춘 후, 반응기 내의 혼합물을 진공 반응이 가능한 7느 용적의 반응기로 이송시켰다.
30 그리고, 반응기의 압력을 상압 상태에서 5
Figure imgf000019_0003
(절대 압력: 5 2020/075947 1»(:1^1{2019/005998
■}¾)까지 30분에 걸쳐 낮추고, 동시에 반응기의 온도를 285° (:까지 1시간에 걸쳐서 올리고, 반응기의 압력을 1 (절대 압력:
Figure imgf000020_0001
이하로 유지하면서 중축합 반응을 실시하였다. 중축합 반응의 초기에는 교반 속도를 빠르게 설정하나, 중축합 반응이 진행됨에 따라 반응물의 점도 상승으로 인해 교반력이 약해지거나 또는 반응물의 온도가 설정한 온도 이상으로 올라갈 경우 교반 속도를 적절히 조절할 수 있다. 상기 중축합 반응은 반응기 내의 혼합물 (용융물)의 고유점도 ( IV)가 0.55 이/묘이 될 때까지 진행하였다. 반응기 내의 혼합물의 고유점도가 원하는 수준에 도달하면, 혼합물을 반응기 외부로 토출하여 스트랜드 ( 대끄 화 하였으며, 이를 냉각액으로 고화후 평균 무게가 12 내지 14 1收정도가 되도록 입자화 하였다. 이렇게 제조된 폴리에스테르 공중합체에 포함된 전체 산 유래 잔기에 대하여 테레프탈산 유래의 잔기는 loo 몰%이었으며, 전체 디올 유래의 잔기에 대하여 아이소소바이드 유래의 잔기는 2 몰%, 사이클로핵산디메탄올유래의 잔기는 8몰%이었다. 실시예 6:폴리에스테르공중합체의 제조
컬럼과, 물에 의해 냉각이 가능한 콘덴서가 연결되어 있는 10 L 용적의 반응기에 테레프탈산 (3124.0 g) , 에틸렌 글리콜 ( 1330.2 g) , 사이클로핵산- 1 ,4 -디일디메탄올 (216.8 g) , 아이소소바이드 (219.8 g)을 투입하고, 촉매로 GeCM l . O g) 안정제로 인산 (phosphor ic acid, 1.46 g) , 정색제로 코발트 아세테이트 (cobal t acetate , 1.0 g) , 및 산화안정제로 Iganox 1076(15.4 g)을사용하였다. 이어서, 반응기에 질소를 주입하여 반응기의 압력이 상압 보다 1.5 kgf/cm2 만큼 높은 가압 상태로 만들었다 (절대 압력 : 1715.5 mmHg) . 그리고 반응기의 온도를 220°C까지 90분에 걸쳐 올리고, 22CTC에서 2시간 유지한 후, 250°C까지 2시간에 걸쳐 올렸다. 그 다음, 반응기 내의 혼합물을 육안으로 관찰하여 혼합물이 투명해질 때까지 반응기의 온도를 250°C로 2020/075947 1»(:1^1{2019/005998
유지하며 에스테르화 반응을 진행하였다. 이 과정에서 컬럼과 콘덴서를 거쳐 부산물이 유출되었다/ 에스테르화 반응이 완료되면, 가압 상태의 반응기 내의 질소를 외부로 배출하여 반응기의 압력을 상압으로 낮춘 후, 반응기 내의 혼합물을 진공 반응이 가능한 7 I 용적의 반응기로 이송시켰다. 그리고, 반응기의 압력을 상압 상태에서 5 ¾ (절대 압력: 5 ■¾)까지 30분에 걸쳐 낮추고, 동시에 반응기의 온도를 2701:까지 1시간에 걸쳐서 올리고, 반응기의 압력을 1 孔 (절대 압력: 1 _¾) 이하로 유지하면서 중축합 반응을 실시하였다. 중축합 반응의 초기에는 교반 속도를 빠르게 설정하나, 중축합 반응이 진행됨에 따라 반응물의 점도 상승으로 인해 교반력이 약해지거나 또는 반응물의 온도가 설정한 온도 이상으로 올라갈 경우 교반 속도를 적절히 조절할 수 있다. 상기 중축합 반응은 반응기 내의 혼합물(용융물)의 고유점도(IV)가 0.60 비八이 될 때까지 진행하였다. 반응기 내의 혼합물의 고유점도가 원하는 수준에 도달하면, 혼합물을 반응기 외부로 토출하여 스트랜드( 대:년)화 하였으며, 이를 냉각액으로 고화후 평균 무게가 12 내지
Figure imgf000021_0001
정도가 되도록 입자화 하였다. 상기 입자를 1501:에서 1시간 동안 방치하여 결정화 한 후, 20 I 용적의 고상 중합 반응기에 투입하였다. 이후, 상기 반응기에 질소를 50
1 11 속도로 흘려주었다. 이때, 반응기의 온도를 상온에서 140°(:까지
40 /시간의 속도로 올리고, 140 에서 3시간 유지한 후, 200°(:까지 40 /시간의 속도로 승은하여 200°(:에서 유지하였다. 상기 고상 중합 반응은 반응기 내의 입자의 고유점도(IV)가 0.75 (11 이 될 때까지 진행하였다. 이렇게 제조된 폴리에스테르 공중합체에 포함된 전체 산 유래 잔기에 대하여 테레프탈산 유래의 잔기는 100 몰%이었으며, 전체 디올 유래의 잔기에 대하여 아아소소바이드 유래의 잔기는 4 몰%, 사이클로핵산디메탄올유래의 잔기는 8몰%이었다. 2020/075947 1»(:1^1{2019/005998
실시예 7: 폴리에스테르공중합체의 제조
컬럼과, 물에 의해 냉각이 가능한 콘덴서가 연결되어 있는 10 I 용적의 반응기에 테레프탈산(3371.0 §) , 에틸렌 글리콜(1435.3
Figure imgf000022_0001
사이클로핵산- 1 , 4 -디일디메탄올(438.6 §), 아이소소바이드(177.9
Figure imgf000022_0002
투입하고, 촉매로 0602(1.0 용), 안정제로 인산 犯?!!。!· : 301(1 , 1.46 용), 블루토너로 1¾1737111上 11 미 1¾名(0131^ 6111;사, 0.013 요), 및 레드토너로 30 ,¾½1 1¾(1묘8((:1 사, 0.004요)를 사용하였다. 이어서, 반응기에 질소를 주입하여 반응기의 압력이 상압 보다 1
1¾ /0112 만큼 높은 가압 상태로 만들었다(절대 압력: 1495.6 1^§). 그리고 반응기의 온도를 2201:까지 90분에 걸쳐 올리고, 2201:에서 2시간 유지한 후, 2651:까지 2시간에 걸쳐 올렸다. 그 다음, 반응기 내의 혼합물을 육안으로 관찰하여 혼합물이 투명해질 때까지 반응기의 온도를 2651:로 유지하며 에스테르화 반응을 진행하였다. 이 과정에서 컬럼과 콘덴서를 거쳐 부산물이 유출되었다. 에스테르화 반응이 완료되면, 가압 상태의 반응기 내의 질소를 외부로 배출하여 반응기의 압력을 상압으로 낮춘 후, 반응기 내의 혼합물을 진공 반응이 가능한 7 I 용적의 반응기로 이송시켰다. 그리고, 반응기의 압력을 상암 상태에서 5
Figure imgf000022_0003
(절대 압력: 5 요)까지 30분에 걸쳐 낮추고, 동시에 반응기의 온도를 275°(:까지 1시간에 걸쳐서 올리고, 반응기의 압력을 1 ¾1·!(절대 압력: 1
Figure imgf000022_0004
이하로 유지하면서 중죽합 반응을 실시하였다. 중죽합 반응의 초기에는 교반 속도를 빠르게 설정하나, 중축합 반응이 진행됨에 따라 반응물의 점도 상승으로 인해 교반력이 약해지거나 또는 반응물의 온도가 설정한 온도 이상으로 올라갈 경우 교반 속도를 적절히 조절할 수 있다. 상기 중축합 반응은 반응기 내의 혼합물(용융물)의 고유점도(IV)가 0.70 (11八이 될 때까지 진행하였다. 반응기 내의 혼합물의 고유점도가 원하는 수준에 도달하면, 혼합물을 반응기 외부로 토출하여 스트랜드( 대 )화 하였으며, 이를 냉각액으로 고화 후 평균 무게가 12 내지
Figure imgf000022_0005
정도가 되도록 입자화 2020/075947 1»(:1^1{2019/005998
하였다. 이렇게 제조된 폴리에스테르 공중합체에 포함된 전체 산 유래 잔기에 대하여 테레프탈산 유래의 잔기는 100 몰%이었으며, 전체 디올 유래의 잔기에 대하여 아이소소바이드 유래의 잔기는 3 몰%, 사이클로핵산디메탄올 유래의 잔기는 15몰%이었다. 실시예 8:폴리에스테르공중합체의 제조
컬럼과, 물에 의해 냉각이 가능한 콘덴서가 연결되어 있는 10 I 용적의 반응기에 테레프탈산(3158.8 §), 에탈렌 글리콜(1427.5 §), 사이클로핵산- 1 , 4 -디일디메탄올(
Figure imgf000023_0001
투입하고, 촉매로 0602(1.0 §), 안정제로 인산( 애 아 801(1 , 1.46 용), 블루토너로
Figure imgf000023_0002
Figure imgf000023_0003
0.008 §)를 사용하였다. 이어서, 반응기에 질소를 주입하여 반응기의 압력이 상압 보다 0.5 1¾"에2 만큼 높은 가압 상태로 만들었다(절대 압력: 1127.8 1^§). 그리고 반응기의 온도를 220 °(:까지 90분에 걸쳐 올리고, 2201:에서 2시간 유지한 후, 2601:까지 2시간에 걸쳐 올렸다. 그 다음, 반응기 내의 혼합물을 육안으로 관찰하여 혼합물이 투명해질 때까지 반응기의 온도를 26010로 유지하며 에스테르화 반응을 진행하였다. 이 과정에서 컬럼과 콘덴서를 거쳐 부산물이 유출되었다. 에스테르화 반응이 완료되면, 가압 상태의 반응기 내의 질소를 외부로 배출하여 반응기의 압력을 상압으로 낮춘 후, 반응기 내의 혼합물을 진공 반응이 가능한 7느 용적의 반응기로 이송시켰다. 그리고, 반응기의 압력을 상압 상태에서 5
Figure imgf000023_0004
(절대 압력: 5
^내용)까지 30분에 걸쳐 낮추고, 동시에 반응기의 온도를 275 °(:까지 1시간에 걸쳐서 올리고, 반응기의 압력을 1 孔!·!·(절대 압력:
Figure imgf000023_0005
이하로 유지하면서 중축합 반응을 실시하였다. 중죽합 반응의 초기에는 교반 속도를 빠르게 설정하나, 중축합 반응이 진행됨에 따라 반응물의 점도 2020/075947 1»(:1^1{2019/005998
상승으로 인해 교반력이 약해지거나 또는 반응물의 온도가 설정한 온도 이상으로 올라갈 경우 교반 속도를 적절히 조절할 수 있다. 상기 중축합 반응은 반응기 내의 혼합물 (용융물)의 고유점도 ( IV)가 0.80 (11/용이 될 때까지 진행하였다. 반응기 내의 혼합물의 고유점도가 원하는 수준에 도달하면, 혼합물을 반응기 외부로 토출하여 스트랜드 ( 대 )화 하였으며, 이를 냉각액으로 고화후 평균 무게가 12 내지
Figure imgf000024_0001
정도가 되도록 입자화 하였다. 이렇게 제조된 폴리에스테르 공중합체에 포함된 전체 산 유래 잔기에 대하여 테레프탈산 유래의 잔기는 100 몰%이었으며, 전체 디올 유래의 잔기에 대하여 사이클로핵산디메탄올유래의 잔기는 18몰%이었다. 실시예 9: 폴리에스테르공중합체의 제조
컬럼과, 물에 의해 냉각이 가능한 콘덴서가 연결되어 있는 10 L 용적의 반응기에 디메틸 프탈레이트 (3727.0 g) , 에틸렌 글리콜 (2620.5 g) , 아이소소바이드 (841.5 g)을 투입하고, 촉매로 Mn( I I ) acetate tetrahydrate(1.5 g) , 및 ¾2¾( 1.8 g) , 안정제로 인산 (phosphor i c acid, 1.46 g) , 정색제로 코발트 아세테이트 (cobal t acetate , 0.7 g)를 사용하였다. 이어서, 반응기에 질소를 주입하여 반응기의 압력을 상압으로 하고, 반응기의 온도를 220°C까지 90분에 걸쳐 올리고, 220°C에서 2시간 유지한 후, 24CTC까지 2 시간에 걸쳐 올렸다. 그 다음, 반응기 내의 혼합물을 육안으로 관찰하여 혼합물이 투명해질 때까지 반응기의 온도를 240°C로 유지하며 에스테르화 반응을 진행하였다. 이 과정에서 컬럼과 콘덴서를 거쳐 부산물이 유출되었다. 에스테르화 반응이 완료되면, 가압 상태의 반응기 내의 질소를 외부로 배출하여 반응기의 압력을 상암으로 낮춘 후, 반응기 내의 혼합물을 진공 반응이 가능한 7 L용적의 반응기로 이송시켰다. 그리고, 반응기의 압력을 상압 상태에서 5 Torr (절대 압력: 5 2020/075947 1»(:1^1{2019/005998 묘)까지 30분에 걸쳐 낮추고, 동시에 반응기의 온도를 265°(:까지 1시간에 걸쳐서 올리고, 반응기의 압력을 1 ¾1·!·(절대 압력:
Figure imgf000025_0001
이하로 유지하면서 중축합 반응을 실시하였다. 중축합 반응의 초기에는 교반 속도를 빠르게 설정하나, 중축합 반응이 진행됨에 따라 반응물의 점도 상승으로 인해 교반력이 약해지거나 또는 반응물의 온도가 설정한 온도 이상으로 올라갈 경우 교반 속도를 적절히 조절할 수 있다. 상기 중축합 반응은 반응기 내의 혼합물(용융물)의 고유점도(IV)가 0.50 (11 이 될 때까지 진행하였다. 반응기 내의 혼합물의 고유점도가 원하는 수준에 도달하면, 혼합물을 반응기 외부로 토출하여 스트랜드( 대11(1)화 하였으며, 이를 냉각액으로 고화후 평균 무게가 12 내지
Figure imgf000025_0002
정도가 되도록 입자화 하였다. 상기 입자를 150°(:에서 1시간 동안 방치하여 결정화 한 후, 20 I 용적의 고상 중합 반응기에 투입하였다. 이후, 상기 반응기에 질소를 50 1 11 속도로 흘려주었다. 이때, 반응기의 온도를 상온에서 1401:까지 40°(:/시간의 속도로 올리고, 14010에서 3시간 유지한 후, 200方까지 40ᄃ/시간의 속도로 승은하여 20010에서 유지하였다. 상기 고상 중합 반응은 반응기 내의 입자의 고유점도(IV)가 0.95 (11 이 될 때까지 진행하였다. 이렇게 제조된 폴리에스테르 공중합체에 포함된 전체 산 유래 잔기에 대하여 디메틸 프탈레이트 유래의 잔기는 100 몰%이었으며, 전체 디올유래의 잔기에 대하여 아이소소바이드유래의 잔기는 10몰%이었다. 실시예 10: 폴리에스테르공중합체의 제조
컬럼과, 물에 의해 냉각이 가능한 콘덴서가 연결되어 있는 10 L 용적의 반응기에 테레프탈산(3029.7 §) , 이소프탈산(159.5
Figure imgf000025_0003
에틸렌 글리콜(1334. 1 g), 아이소소바이드(504.9 용)을 투입하고, 촉매로 0602(1.0 용), 안정제로 인산( 애 아 , 1.46 용), 정색제로 코발트 아세테이트(« 311 근, 0.7용)를사용하였다. 2020/075947 1»(:1^1{2019/005998
이어서, 반응기에 질소를 주입하여 반응기의 압력이 상압 보다 1.0
Figure imgf000026_0001
상태로 만들었다(절대 압력: 1495.6 _묘용). 그리고 반응기의 온도를 220°(:까지 90분에 걸쳐 올리고, 220°(:에서 2시간 유지한 후, 2601:까지 2 시간에 걸쳐 올렸다. 그 다음, 반응기 내의 혼합물을 육안으로 관찰하여 혼합물이 투명해질 때까지 반응기의 온도를 2601:로 유지하며 에스테르화 반응을 진행하였다. 이 과정에서 컬럼과 콘덴서를 거쳐 부산물이 유출되었다. 에스테르화 반응이 완료되면, 가압 상태의 반응기 내의 질소를 외부로 배출하여 반응기의 압력을 상암으로 낮춘 후, 반응기 내의 혼합물을 진공 반응이 가능한 7 I 용적의 반응기로 이송시켰다. 그리고, 반응기의 압력을 상압 상태에서 5 孔 (절대 압력: 5 1 1¾)까지 30분에 걸쳐 낮추고, 동시에 반응기의 온도를 280°(:까지 1시간에 걸쳐서 올리고, 반응기의 압력을 1 ¾ (절대 압력: 1 1에1¾) 이하로 유지하면서 중축합 반응을 실시하였다. 중축합 반응의 초기에는 교반 속도를 빠르게 설정하나, 중축합 반응이 진행됨에 따라 반응물의 점도 상승으로 인해 교반력이 약해지거나 또는 반응물의 온도가 설정한 온도 이상으로 올라갈 경우 교반 속도를 적절히 조절할 수 있다. 상기 중축합 반응은 반응기 내의 혼합물(용융물)의 고유점도(IV)가 0.50 (11 이 될 때까지 진행하였다. 반응기 내의 혼합물의 고유점도가 원하는 수준에 도달하면, 혼합물을 반응기 외부로 토출하여 스트랜드( 대:년)화 하였으며, 이를 냉각액으로 고화후 평균 무게가 12 내지
Figure imgf000026_0002
정도가 되도록 입자화 하였다. 상기 입자를 150°(:에서 1시간 동안 방치하여 결정화 한 후, 20 I 용적의 고상 중합 반응기에 투입하였다. 이후, 상기 반응기에 질소를 50 느/ !! 속도로 흘려주었다. 이때, 반응기의 온도를 상온에서 1401:까지 401:/시간의 속도로 올리고, 140°(:에서 3시간 유지한 후, 2001:까지 40°(:/시간의 속도로 승은하여 2001:에서 유지하였다. 상기 고상 중합 반응은 반응기 내의 입자의 고유점도(IV)가 0.95 (11/§이 될 때까지 2020/075947 1»(:1^1{2019/005998
진행하였다. 이렇게 제조된 폴리에스테르 공중합체에 포함된 전체 산 유래 잔기에 대하여 테레프탈산 및 이소프탈산 유래의 잔기는 총 100 몰%이었으며, 전체 디올 유래의 잔기에 대하여 아이소소바이드 유래의 잔기는 10 몰%이었다. 비교예 1: 폴리에스테르공중합체의 제조
컬럼과, 물에 의해 냉각이 가능한 콘덴서가 연결되어 있는 10 I 용적의 반응기에 테레프탈산(3000.5 §), 에틸렌 글리콜(1064.6 8), 아이소소바이드(1187.5 을 투입하고, 촉매로 0602(1.0 용), 안정제로 , 1.46 묘), 블루토너로 1301 3 111;1 611
Figure imgf000027_0001
Figure imgf000027_0002
0.017 당), 및 레드토너로 Solvaperm
Figure imgf000027_0003
0.006 를 사용하였다. 이어서, 반응기에 질소를 주입하여 반응기의 압력이 상압 보다 0.5 1¾은/0112 만큼 높은 가압 상태로 만들었다(절대 압력: 1127.8 ^), 그리고 반응기의 온도를 2201:까지 90분에 걸쳐 올리고, 220 °(:에서 2시간 유지한 후, 2601:까지 2시간에 걸쳐 올렸다. 그 다음, 반응기 내의 혼합물을 육안으로 관찰하여 혼합물이 투명해질 때까지 반응기의 온도를 2601:로 유지하며 에스테르화 반응을 진행하였다. 이 과정에서 컬럼과 콘덴서를 거쳐 부산물이 유출되었다. 에스테르화 반응이 완료되면, 가압 상태의 반응기 내의 질소를 외부로 배출하여 반응기의 압력을 상암으로 낮춘 후, 반응기 내의 혼합물을 진공 반응이 가능한 7 느 용적의 반응기로 이송시켰다. 그리고, 반응기의 압력을 상압 상태에서 100 ¾ (절대 압력 : 100
Figure imgf000027_0004
10분에 걸쳐 낮추고, 1시간 동안 압력을 유지한 후, 5 孔 (절대 압력: 5 용)까지 30분에 걸쳐 낮추고, 동시에 반응기의 온도를 280°(:까지 1시간에 걸쳐서 올리고, 반응기의 압력을 1 ¾!·!(절대 압력: 1 이하로 유지하면서 중축합 반응을 실시하였다. 중축합 반응의 2020/075947 1»(:1^1{2019/005998
초기에는 교반 속도를 빠르게 설정하나, 중축합 반응이 진행됨에 따라 반응물의 점도 상승으로 인해 교반력이 약해지거나 또는 반응물의 온도가 설정한 온도 이상으로 올라갈 경우 교반 속도를 적절히 조절할 수 있다. 상기 중축합 반응은 반응기 내의 혼합물 (용융물)의 고유점도 ( IV)가 0.60 dl/g이 될 때까지 진행하였다. 반응기 내의 혼합물의 고유점도가 원하는 수준에 도달하면, 혼합물을 반응기 외부로 토출하여 스트랜드 (strand)화 하였으며, 이를 냉각액으로 고화 후 평균 무게가 12 내지 14 mg 정도가 되도록 입자화 하였다. 이렇게 제조된 폴리에스테르 공중합체에 포함된 전체 산 유래 잔기에 대하여 테레프탈산 유래의 잔기는 100 몰%이었으며, 전체 디올 유래의 잔기에 대하여 아이소소바이드유래의 잔기는 25몰%이었다. 비교예 2:폴리에스테르공중합체의 제조
컬럼과, 물에 의해 냉각이 가능한 콘덴서가 연결되어 있는 10 L 용적의 반응기에 테레프탈산 (3275.3 g) , 에틸렌 글리콜 ( 1217.2 g) , 사이클로핵산- 1,4 -디일디메탄올 (582.5 g)을 투입하고, 촉매로 Ge02( 1.0 g), 안정제로 인산 (phosphor i c acid, 1.46 g) , 정색제로 코발트 아세테이트 (cobalt acetate , 0.7 g)를사용하였다. 이어서, 반응기에 질소를 주입하여 반응기의 압력이 상압 보다 1 kgf/cm2 만큼 높은 가압 상태로 만들었다 (절대 압력: 1495.6 _Hg) . 그리고 반응기의 온도를 220°C까지 90분에 걸쳐 올리고, 220°C에서 2시간 유지한 후, 260°C까지 2시간에 걸쳐 올렸다. 그 다음, 반응기 내의 혼합물을 육안으로 관찰하여 혼합물이 투명해질 때까지 반응기의 온도를 260 °C로 유지하며 에스테르화 반응을 진행하였다. 이 과정에서 컬럼과 콘덴서를 거쳐 부산물이 유출되었다. 에스테르화 반응이 완료되면, 가압 상태의 반응기 내의 질소를 외부로 배출하여 반응기의 압력을 상암으로 낮춘 후, 반응기 내의 혼합물을 진공 반응이 가능한 7 L 용적의 반응기로 이송시켰다. 2020/075947 1»(:1^1{2019/005998
그리고, 반응기의 압력을 상압 상태에서 5 孔 (절대 압력: 5 빼¾)까지 30분에 걸쳐 낮추고, 동시에 반응기의 온도를 280°(:까지 1시간에 걸쳐서 올리고, 반응기의 압력을 1 孔!·: ·(절대 압력:
Figure imgf000029_0001
이하로 유지하면서 중죽합 반응을 실시하였다. 중죽합 반응의 초기에는 교반 속도를 빠르게 설정하나, 중죽합 반응이 진행됨에 따라 반응물의 점도 상승으로 인해 교반력이 약해지거나 또는 반응물의 온도가 설정한 온도 이상으로 올라갈 경우 교반 속도를 적절히 조절할 수 있다. 상기 중축합 반응은 반응기 내의 혼합물 (용융물)의 고유점도 ( IV)가 0.60 (11 /요이 될 때까지 진행하였다. 반응기 내의 혼합물의 고유점도가 원하는 수준에 도달하면, 혼합물을 반응기 외부로 토출하여 스트랜드 ( 대11(1)화 하였으며, 이를 냉각액으로 고화후 평균 무게가 12 내지
Figure imgf000029_0002
정도가 되도록 입자화 하였다. 이렇게 제조된 폴리에스테르 공중합체에 포함된 전체 산 유래 잔기에 대하여 테레프탈산 유래의 잔기는 100 몰%이었으며, 전체 디올 유래의 잔기에 대하여 사이클로핵산디메탄올 유래의 잔기는 20.5 몰%이었다. 비교예 3: 폴리에스테르공중합체의 제조
컬럼과, 물에 의해 냉각이 가능한 콘덴서가 연결되어 있는 10 느 용적의 반응기에 테레프탈산 (2953.7 §) , 에틸렌 글리콜 (717.1 g) , 사이클로핵산- 1 ,4 -디일디메탄올 ( 1024.9 을투입하고, 촉매로 0602( 1.0 §) , 안정제로 인산 11031)]101 1 301(1, 1.46 용) , 블루토너로 ?01737111 ^611 3^6 이 오 1:사, 0.012 요), 레드토너로
Figure imgf000029_0003
1¾(1 88((:1306111:사,
0.004 §) , 및 산화안정제로 1대 ¥( 1076(4 §)를사용하였다. 이어서, 반응기에 질소를 주입하여 반응기의 압력이 상압 보다 0.5 1¾은八:미2 만큼 높은 가압 상태로 만들었다 (절대 압력: 1127.8 mίi{g) . 그리고 반응기의 온도를 2201:까지 90분에 걸쳐 올리고, 2201:에서 2시간 유지한 후, 255°(:까지 2시간에 걸쳐 올렸다. 그 다음, 반응기 내의 혼합물을 육안으로 관찰하여 혼합물이 투명해질 때까지 반응기의 온도를 255°(:로 2020/075947 1»(:1^1{2019/005998
유지하며 에스테르화 반응을 진행하였다. 이 과정에서 컬럼과 콘덴서를 거쳐 부산물이 유출되었다. 에스테르화 반응이 완료되면, 가압 상태의 반응기 내의 질소를 외부로 배출하여 반응기의 압력을 상암으로 낮춘 후, 반응기 내의 혼합물을 진공 반응이 가능한 7느 용적의 반응기로 이송시켰다. 그리고, 반응기의 압력을 상압 상태에서 5 ¾ (절대 압력: 5 까지 30분에 걸쳐 낮추고, 동시에 반응기의 온도를 280公까지 1시간에 걸쳐서 올리고, 반응기의 압력을 1 아! (절대 압력: 1
Figure imgf000030_0001
이하로 유지하면서 중죽합 반응을 실시하였다. 중축합 반응의 초기에는 교반 속도를 빠르게 설정하나, 중축합 반응이 진행됨에 따라 반응물의 점도 상승으로 인해 교반력이 약해지거나 또는 반응물의 온도가 설정한 온도 이상으로 올라갈 경우 교반 속도를 적절히 조절할 수 있다. 상기 중축합 반응은 반응기 내의 혼합물 (용융물)의 고유점도 ( IV)가 0.80 (11 이 될 때까지 진행하였다. 반응기 내의 혼합물의 고유점도가 원하는 수준에 도달하면, 혼합물을 반응기 외부로 토출하여 스트랜드 ( 대:년)화 하였으며, 이를 냉각액으로 고화후 평균 무게가 12 내지 14 1收 정도가 되도록 입자화 하였다. 이렇게 제조된 폴리에스테르 공중합체에 포함된 전체 산 유래 잔기에 대하여 테레프탈산 유래의 잔기는 100 몰%이었으며, 전체 디올 유래의 잔기에 대하여 사이클로핵산디메탄올유래의 잔기는 40몰%이었다. 비교예 4: 폴리에스테르공중합체의 제조
컬럼과, 물에 의해 냉각이 가능한 콘덴서가 연결되어 있는 10 L 용적의 반응기에 테레프탈산 (2518.5 g) , 에틸렌 글리콜 ( 1044. 1 g), 사이클로핵산- 1 , 4 -디일디메탄올 (240.3 g) , 아이소소바이드 (398.7 g)을 투입하고, 촉매로 Ge02(1.0 g) , 안정제로 인산 (phosphor ic acid, 1.46 g) , 블루토너로 Polysynthren Blue RLS(Clar ient사, 0.010 g) , 및 레드토너로 Solvaperm Red BB Clar ient사, 0.003 g)를사용하였다. 2020/075947 1»(:1^1{2019/005998
이어서, 반응기에 질소를 주입하여 반응기의 압력이 상압 보다 1.5 1¾군八: 만큼 높은 가압 상태로 만들었다(절대 압력: 1715.5 ^), 그리고 반응기의 온도를 220°(:까지 90분에 걸쳐 올리고, 220°(:에서 2시간 유지한 후, 260°(:까지 2시간에 걸쳐 올렸다. 그 다음, 반응기 내의 혼합물을 육안으로 관찰하여 혼합물이 투명해질 때까지 반응기의 온도를 2601:로 유지하며 에스테르화 반응을 진행하였다. 이 과정에서 컬럼과 콘덴서를 거쳐 부산물이 유출되었다. 에스테르화 반응이 완료되면, 가압 상태의 반응기 내의 질소를 외부로 배출하여 반응기의 압력을 상압으로 낮춘 후, 반응기 내의 혼합물을 진공 반응이 가능한 7느 용적의 반응기로 이송시켰다. 그리고, 반응기의 압력을 상압 상태에서 5 孔 (절대 압력: 5 용)까지 30분에 걸쳐 낮추고, 동시에 반응기의 온도를 270 X:까지 1시간에 걸쳐서 올리고, 반응기의 압력을 1 (절대 압력:
Figure imgf000031_0001
이하로 유지하면서 중축합 반응을 실시하였다. 중축합 반응의 초기에는 교반 속도를 빠르게 설정하나, 중축합 반응이 진행됨에 따라 반응물의 점도 상승으로 인해 교반력이 약해지거나 또는 반응물의 온도가 설정한 온도 이상으로 올라갈 경우 교반 속도를 적절히 조절할 수 있다. 상기 중축합 반응은 반응기 내의 혼합물(용융물)의 고유점도(IV)가 0.65 (11 /§이 될 때까지 진행하였다. 반응기 내의 혼합물의 고유점도가 원하는 수준에 도달하면, 혼합물을 반응기 외부로 토출하여 스트랜드( 대 )화 하였으며, 이를 냉각액으로 고화후 평균 무게가 12 내지 14 1眼 정도가 되도록 입자화 하였다. 이렇게 제조된 폴리에스테르 공중합체에 포함된 전체 산 유래 잔기에 대하여 테레프탈산 유래의 잔기는 100 몰%이었으며, 전체 디올 유래의 잔기에 대하여 아이소소바이드 유래의 잔기는 11 몰%, 사이클로핵산디메탄올유래의 잔기는 11몰%이었다. 비교예 5: 폴리에스테르공중합체의 제조
컬럼과, 물에 의해 넁각이 가능한 콘덴서가 연결되어 있는 10 I 2020/075947 1»(:1^1{2019/005998
용적의 반응기에 테레프탈산(3631.3 g), 에틸렌 글리콜(1763.1 g)을 투입하고, 촉매로 GeCMl.O g) , 안정제로 인산(phosphoric acid, 1.50 g) , 정색제로 코발트 아세테이트(cobalt acetate, 0.7 g) , 및 산화안정제로 Irganox 1076(17.5 g)를사용하였다. 이어서, 반응기에 질소를 주입하여 반응기의 압력이 상압 보다 2 kgf/cm2 만큼 높은 가압 상태로 만들었다 (절대 압력: 2231.1 mmHg). 그리고 반응기의 온도를 220°C까지 90분에 걸쳐 올리고, 220°C에서 2시간 유지한 후, 265°C까지 2시간에 걸쳐 올렸다. 그 다음, 반응기 내의 혼합물을 육안으로 관찰하여 혼합물이 투명해질 때까지 반응기의 온도를 265°C로 유지하며 에스테르화 반응을 진행하였다. 이 과정에서 컬럼과 콘덴서를 거쳐 부산물이 유출되었다. 에스테르화 반응이 완료되면, 가압 상태의 반응기 내의 질소를 외부로 배출하여 반응기의 압력을 상압으로 낮춘 후, 반응기 내의 혼합물을 진공 반응이 가능한 7 L용적의 반응기로 이송시켰다. 그리고, 반응기의 압력을 상압 상태에서 5 Torr (절대 압력: 5 mmHg)까지 30분에 걸쳐 낮추고, 동시에 반응기의 온도를 270°C까지 1시간에 걸쳐서 올리고, 반응기의 압력을 1 Torr (절대 압력: 1 mmHg) 이하로 유지하면서 중축합 반응을 실시하였다. 중축합 반응의 초기에는 교반 속도를 빠르게 설정하나, 중축합 반응이 진행됨에 따라 반응물의 점도 상승으로 인해 교반력이 약해지거나 또는 반응물의 온도가 설정한 온도 이상으로 올라갈 경우 교반 속도를 적절히 조절할 수 있다. 상기 중축합 반응은 반응기 내의 혼합물 (용융물)의 고유점도(IV)가 0.60 dl/g이 될 때까지 진행하였다. 반응기 내의 혼합물의 고유점도가 원하는 수준에 도달하면, 혼합물을 반응기 외부로 토출하여 스트랜드(strand)화 하였으며, 이를 냉각액으로 고화후 평균 무게가 12내지 14 mg정도가 되도록 입자화 하였다. 상기 입자를 150X:에서 1시간 동안 방치하여 결정화 한 후, 20 I 용적의 고상 중합 반응기에 투입하였다. 이후, 상기 반응기에 질소를 50 2020/075947 1»(:1^1{2019/005998
1/111111 속도로 흘려주었다. 이때, 반응기의 온도를 상온에서 1401:까지 401: /시간의 속도로 올리고, 1401:에서 3시간 유지한 후, 2001:까지 401:/시간의 속도로 승은하여 2001:에서 유지하였다. 상기 고상 중합 반응은 반응기 내의 입자의 고유점도 ( IV)가 0.75 비八이 될 때까지 진행하였다. 이렇게 제조된 폴리에스테르 공중합체에 포함된 전체 산 유래 잔기에 대하여 테레프탈산 유래의 잔기는 100 몰%이었으며, 전체 디올 유래의 잔기에 대하여 에틸렌 글리콜 및 디에틸렌 글리콜 유래의 잔기는 100몰%이었다. 비교예 6:폴리에스테르공중합체의 제조
컬럼과, 물에 의해 냉각이 가능한 콘덴서가 연결되어 있는 10 L 용적의 반응기에 테레프탈산 (3329.2 g) , 에틸렌 글리콜 (1517.0 g) , 사이클로핵산- 1 ,4 -디일디메탄올 (86.6 g)을 투입하고, 촉매로 Ge02( 1.0 g) , 안정제로 인산 (phosphor ic acid, 1.46 g) , 정색제로 코발트 아세테이트 (cobal t acetate , 0.8 g) , 및 결정화제로 폴리에틸렌 (LUTENE-H ME1000 , 주식회사 엘지화학, 0.016 g)을사용하였다. 이어서, 반응기에 질소를 주입하여 반응기의 압력이 상압 보다 1.5 1¾군八:며2 만큼 높은 가압 상태로 만들었다 (절대 압력: 1715.5 _}¾) . 그리고 반응기의 온도를 2201:까지 90분에 걸쳐 올리고, 2201:에서 2시간 유지한 후, 2701:까지 2시간에 걸쳐 올렸다. 그 다음, 반응기 내의 혼합물을 육안으로 관찰하여 혼합물이 투명해질 때까지 반응기의 온도를 270公로 유지하며 에스테르화 반응을 진행하였다. 이 과정에서 컬럼과 콘덴서를 거쳐 부산물이 유출되었다. 에스테르화 반응이 완료되면, 가압 상태의 반응기 내의 질소를 외부로 배출하여 반응기의 압력을 상압으로 낮춘 후, 반응기 내의 혼합물을 진공 반응이 가능한 7느용적의 반응기로 이송시켰다. 그리고, 반응기의 압력을 상암 상태에서 5 孔 (절대 압력: 5 2020/075947 1»(:1^1{2019/005998 용)까지 30분에 걸쳐 낮추고, 동시에 반응기의 온도를 2751:까지 1시간에 걸쳐서 올리고, 반응기의 압력을 1 切 (절대 압력:
Figure imgf000034_0001
이하로 유지하면서 중죽합 반응을 실시하였다. 중죽합 반응의 초기에는 교반 속도를 빠르게 설정하나, 중축합 반응이 진행됨에 따라 반응물의 점도 상승으로 인해 교반력이 약해지거나 또는 반응물의 온도가 설정한 온도 이상으로 올라갈 경우 교반 속도를 적절히 조절할 수 있다. 상기 중축합 반응은 반응기 내의 혼합물 (용융물)의 고유점도 ( IV)가 0.65 (11 /§이 될 때까지 진행하였다. 반응기 내의 혼합물의 고유점도가 원하는 수준에 도달하면, 혼합물을 반응기 외부로 토출하여 스트랜드 ( 대11(1)화 하였으며, 이를 넁각액으로 고화후 평균무게가 12 내지 14 1犯 정도가 되도록 입자화 하였다. 이렇게 제조된 폴리에스테르 공중합체에 포함된 전체 산 유래 잔기에 대하여 테레프탈산 유래의 잔기는 100 몰%이었으며, 전체 디올 유래의 잔기에 대하여 사이클로핵산디메탄올유래의 잔기는 3몰%이었다. 실험예
상기 실시예 및 비교예에서 제조한 폴리에스테르 공중합체에 대하여, 이하의 물성을측정하였다.
1) 수평균분자량: GPC(Gel Permeat ion Chromatography)를 통해 측정하였다. 구체적으로, 3 의 o-chlorophenol에 분자량을 확인하고자 하는 폴리에스테르 공중합체 0.03용을 넣고, 150°C에서 15분간 용해시킨 후 상온으로 냉각한 상태에서 클로로포름 9 mL를 추가하여 시료를 준비하였다. 그리고, 2개의 컬럼 (Shodex LF804)을 사용하여 40°C의 온도에서 0.7 mL/min의 유속으로 상기 시료에 대한 겔 투과 크로마토그래피를 진행하였다. 폴리스티렌을 표준물질로 하여 수평균분자량 (Mn)을산출하였다.
2) 결정화 후 ¾: 상기 실시예 및 비교예에서 제조한 폴리에스테르 공중합체를 18010에서 100분 동안 결정화 한 후, 시차 주사 2020/075947 1»(:1^1{2019/005998
열분석법 就법)을 통하여 용융점을 측정하였다.
3) Haze: 두께 6 mm의 시편을 준비하고, 이를 에탄올에 침지한 후 60 °C에서 24시간 동안 보관하였다. 이후 시편을 물로 세척한 후 ASTM D1003-97 측정법으로 Minol ta社의 CM-3600A 측정기를 이용하여 시편의
Haze를 측정하였다.
4) 반결정화 시간: 시차 주사 열분석법(DSC법)으로 측정하였다. 먼저, 상기 실시예 및 비교예에서 제조한 폴리에스테르 공중합체를 완전히 용융시킨 후 결정화가 되는 온도에서 그 온도를 유지하였으며, 이 때 결정화하면서 발열되는 전체 발열량의 절반의 발열량이 나타나는 시간(분)을 측정하였다. 상기 결과를 하기 표 1에 나타내었다.
【표 1]
Figure imgf000035_0001

Claims

2020/075947 1»(:1^1{2019/005998 【특허청구범위】
【청구항 1】
하기 화학식 1로 표시되는 제 1 반복단위; 및 하기 화학식 2로 표시되는 제 2 반복단위 및 하기 화학식 3으로 표시되는 제 3 반복단위 중 어느 하나 이상을 포함하는, 폴리에스테르 공중합체로서 ,
상기 폴리에스테르 공중합체는 하기 수학식 1을 만족하는, 폴리에스테르 공중합체:
[수학식 1]
II £ 6
상기 수학식 1에서,
II는 상기 돌리에스테르 공중합체의 시편(두께: 6 01111)을 에탄올에 침지 후 60도에서 24시간 보관한 후 쇼況 £)1003-97에 의거하여 측정한 느크 근 값을 의미하고,
[화학식 1]
Figure imgf000036_0001
2020/075947 1»(:1^1{2019/005998
상기 화학식 1내지 3에서,
X , V , 및 ¾는각각공중합체 내 몰분율로서, 7및 å의 합이 5몰% 이상 20몰%미만이다.
【청구항 2]
제 1항에 있어서,
상기 H가 5이하인,
폴리에스테르공중합체.
【청구항 3】
제 1항에 있어서,
상기 폴리에스테르 공중합체는 상기 제 2 반복단위 및 제 3 반복단위를모두포함하는,
폴리에스테르공중합체.
【청구항 4]
제 3항에 있어서,
는 1몰%이상 5몰%이하이고,
å는 5몰%이상 15몰%이하인,
폴리에스테르공중합체.
【청구항 5]
제 1항에 있어서,
상기 폴리에스테르 공중합체의 수평균분자량은 10 , 000 내지 40 , 000인,
폴리에스테르공중합체 .
【청구항 6】
제 1항에 있어서,
상기 폴리에스테르 공중합체는 1801:에서 100분 동안 결정화 후 2020/075947 1»(:1^1{2019/005998
용융점이 2401: 이하인,
폴리에스테르공중합체 .
【청구항 7]
제 1항에 있어서,
상기 폴리에스테르공중합체는반결정화시간이 100분이하인, 폴리에스테르공중합체 .
【청구항 8】
제 1항내지 제 7항 중 어느 한 항에 따른 폴리에스테르 공중합체를 포함하는, 물품.
PCT/KR2019/005998 2018-10-10 2019-05-09 내화학성 및 투명도가 우수한 폴리에스테르 공중합체 WO2020075947A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/263,247 US20210163734A1 (en) 2018-10-10 2019-05-09 Polyester copolymer having excellent chemical resistance and transparency
EP19872029.4A EP3865528A4 (en) 2018-10-10 2019-05-09 POLYESTER COPOLYMER WITH EXCELLENT CHEMICAL RESISTANCE AND EXCELLENT TRANSPARENCY
CN201980062621.3A CN112752785A (zh) 2018-10-10 2019-05-09 具有优良的耐化学性和透明度的聚酯共聚物
JP2021519667A JP2022504586A (ja) 2018-10-10 2019-05-09 耐化学性および透明度に優れたポリエステル共重合体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0120750 2018-10-10
KR1020180120750A KR20200040615A (ko) 2018-10-10 2018-10-10 내화학성 및 투명도가 우수한 폴리에스테르 공중합체

Publications (1)

Publication Number Publication Date
WO2020075947A1 true WO2020075947A1 (ko) 2020-04-16

Family

ID=70164915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/005998 WO2020075947A1 (ko) 2018-10-10 2019-05-09 내화학성 및 투명도가 우수한 폴리에스테르 공중합체

Country Status (7)

Country Link
US (1) US20210163734A1 (ko)
EP (1) EP3865528A4 (ko)
JP (1) JP2022504586A (ko)
KR (1) KR20200040615A (ko)
CN (1) CN112752785A (ko)
TW (1) TWI791114B (ko)
WO (1) WO2020075947A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100535850B1 (ko) * 1998-04-23 2005-12-12 이 아이 듀폰 디 네모아 앤드 캄파니 폴리에스테르 용기 및 그의 제조 방법
KR20140092113A (ko) * 2013-01-15 2014-07-23 에스케이케미칼주식회사 폴리에스테르계 열수축 필름
KR101826812B1 (ko) * 2016-09-23 2018-02-08 롯데케미칼 주식회사 열적 특성이 향상된 저결정성 폴리에스테르 수지 제조방법
KR20180058526A (ko) * 2016-11-24 2018-06-01 에스케이케미칼 주식회사 내열성 mdo 열수축 필름
WO2018101320A1 (ja) * 2016-11-30 2018-06-07 株式会社クラレ ポリエステル、その製造方法及びそれからなる成形品

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5484632A (en) * 1993-10-07 1996-01-16 Eastman Chemical Company Non-oriented, heat-sealing polyester film
KR101639631B1 (ko) * 2009-12-28 2016-07-14 에스케이케미칼주식회사 장식 물질을 포함하는 열가소성 성형제품
KR102553772B1 (ko) * 2016-04-06 2023-07-07 에스케이케미칼 주식회사 폴리에스테르 수지
US11447603B2 (en) * 2017-05-31 2022-09-20 Sk Chemicals Co., Ltd. Polyester resin, method for preparing same, and resin molded product formed therefrom
KR20200044553A (ko) * 2018-10-19 2020-04-29 에스케이케미칼 주식회사 폴리에스테르 필름 및 이의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100535850B1 (ko) * 1998-04-23 2005-12-12 이 아이 듀폰 디 네모아 앤드 캄파니 폴리에스테르 용기 및 그의 제조 방법
KR20140092113A (ko) * 2013-01-15 2014-07-23 에스케이케미칼주식회사 폴리에스테르계 열수축 필름
KR101826812B1 (ko) * 2016-09-23 2018-02-08 롯데케미칼 주식회사 열적 특성이 향상된 저결정성 폴리에스테르 수지 제조방법
KR20180058526A (ko) * 2016-11-24 2018-06-01 에스케이케미칼 주식회사 내열성 mdo 열수축 필름
WO2018101320A1 (ja) * 2016-11-30 2018-06-07 株式会社クラレ ポリエステル、その製造方法及びそれからなる成形品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3865528A4 *

Also Published As

Publication number Publication date
EP3865528A1 (en) 2021-08-18
US20210163734A1 (en) 2021-06-03
CN112752785A (zh) 2021-05-04
JP2022504586A (ja) 2022-01-13
TW202028290A (zh) 2020-08-01
KR20200040615A (ko) 2020-04-20
TWI791114B (zh) 2023-02-01
EP3865528A4 (en) 2022-04-20

Similar Documents

Publication Publication Date Title
KR102571703B1 (ko) 폴리에스테르 수지, 이의 제조 방법 및 이로부터 형성된 수지 성형품
US11787901B2 (en) Polyester container and manufacturing method therefor
KR102553772B1 (ko) 폴리에스테르 수지
US11447603B2 (en) Polyester resin, method for preparing same, and resin molded product formed therefrom
WO2020080634A1 (ko) 폴리에스테르 필름 및 이의 제조방법
TW202110994A (zh) 聚酯樹脂共混物
WO2020075947A1 (ko) 내화학성 및 투명도가 우수한 폴리에스테르 공중합체
EP4023719A1 (en) Polyester resin mixture

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19872029

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021519667

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019872029

Country of ref document: EP

Effective date: 20210510