WO2020075869A1 - 気象観測用ライダー - Google Patents

気象観測用ライダー Download PDF

Info

Publication number
WO2020075869A1
WO2020075869A1 PCT/JP2019/040470 JP2019040470W WO2020075869A1 WO 2020075869 A1 WO2020075869 A1 WO 2020075869A1 JP 2019040470 W JP2019040470 W JP 2019040470W WO 2020075869 A1 WO2020075869 A1 WO 2020075869A1
Authority
WO
WIPO (PCT)
Prior art keywords
scattered light
light
weather observation
diffraction grating
detector
Prior art date
Application number
PCT/JP2019/040470
Other languages
English (en)
French (fr)
Inventor
長谷川 壽一
竹内 栄治
塚本 誠
正教 矢吹
Original Assignee
英弘精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英弘精機株式会社 filed Critical 英弘精機株式会社
Priority to US17/283,145 priority Critical patent/US11650323B2/en
Priority to JP2020550563A priority patent/JPWO2020075869A1/ja
Priority to EP19870118.7A priority patent/EP3865836A4/en
Priority to CN201980065346.0A priority patent/CN112840188A/zh
Publication of WO2020075869A1 publication Critical patent/WO2020075869A1/ja
Priority to JP2023016041A priority patent/JP7477919B2/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/18Generating the spectrum; Monochromators using diffraction elements, e.g. grating
    • G01J3/1804Plane gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/95Lidar systems specially adapted for specific applications for meteorological use
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0208Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using focussing or collimating elements, e.g. lenses or mirrors; performing aberration correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/021Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using plane or convex mirrors, parallel phase plates, or particular reflectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0229Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using masks, aperture plates, spatial light modulators or spatial filters, e.g. reflective filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/18Generating the spectrum; Monochromators using diffraction elements, e.g. grating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2803Investigating the spectrum using photoelectric array detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0227Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using notch filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the present invention relates to a weather observation lidar.
  • lidar has been used as an observation means for observing the temperature distribution, water vapor concentration, wind direction and speed in the sky.
  • a rider that measures wind direction and speed has been commercialized as a Doppler lidar, and is used for wind condition surveys when constructing a wind power plant.
  • the Raman lidar is attracting attention as an observation device for measuring the temperature distribution and water vapor concentration in the sky.
  • the Raman lidar is an observation device that irradiates a laser beam of a certain wavelength to the sky and measures Raman scattered light by atmospheric molecules.
  • a Raman lidar using a wavelength of 266 nm which is the fourth harmonic of a YAG laser in the UVC region (wavelength of 200 to 280 nm) see Non-Patent Document 1 below.
  • the wavelengths of the vibrational Raman scattered light due to H 2 O and N 2 in the atmosphere are 295 nm and 284 nm, respectively.
  • Sunlight with a wavelength of 300 nm or less is absorbed by the ozone layer in the sky (altitude 10 to 50 km), hardly reaches the surface of the earth, and sunlight is less likely to become noise. Therefore, according to the Raman lidar, it was possible to eliminate the influence of sunlight and observe the weather even in the daytime.
  • the rotational Raman scattered light when the rotational Raman scattered light is the measurement target, the rotational Raman scattered light is the light scattered without undergoing the Raman effect, and the elastic scattered light (Mie scattered light, etc.) observed at the same time. It is very weak at 10 ⁇ 7 or less compared to the above). Further, the wavelengths of the rotating Raman scattered light are very close to each other with a wavelength of 1 nm or less as compared with the wavelength of the elastic scattered light, and thus it is difficult to separate the rotating Raman scattered light and the elastic scattered light. .
  • the Raman lidar currently commercialized is designed to disperse scattered light with a diffraction grating and then remove the rotating Raman scattered light including the elastic scattered light in the long wavelength region with an optical means such as a mirror to rotate in the short wavelength region. Two Raman scattered lights were extracted and the intensity ratio between them was detected to obtain meteorological observation information such as temperature.
  • the embodiment aims to provide a weather observation lidar with high measurement accuracy.
  • a meteorological observation lidar is a meteorological observation lidar that observes scattered light of laser light, and a diffraction grating that diffracts rotating Raman scattered light included in scattered light, and the diffracted rotating Raman scattered light.
  • a detector for detecting and a removing element for exclusively removing the elastic scattered light contained in the scattered light are provided.
  • elastic scattered light is exclusively removed, and rotational Raman scattered light is detected without being removed. Therefore, meteorological observation can be performed with high accuracy.
  • the block diagram of the weather observation lidar in embodiment. 3 is a configuration diagram of a temperature measuring spectroscopic unit of the meteorological observation lidar according to the first embodiment.
  • FIG. 6 is a configuration diagram of a temperature measuring spectroscopic unit of a meteorological observation lidar according to Embodiment 2.
  • FIG. 6 is a configuration diagram of a temperature measuring spectroscopic unit of a weather observation lidar according to a third embodiment.
  • FIG. 9 is a configuration diagram of a temperature measuring spectroscopic unit of a weather observation lidar according to a fourth embodiment.
  • FIG. 9 is a configuration diagram of a temperature measuring spectroscopic unit of a weather observation lidar according to a fifth embodiment.
  • FIG. 7 is a configuration diagram of a temperature measuring spectroscopic unit of a weather observation lidar according to a sixth embodiment.
  • FIG. 13 is a configuration diagram of a temperature measuring spectroscopic unit of a weather observation lidar according to a seventh embodiment.
  • FIG. 13 is a configuration diagram of a temperature measuring spectroscopic unit of a meteorological observation lidar in Embodiment 8.
  • FIG. It is a figure which shows the wavelength distribution of rotation Raman scattered light, (a) is a figure which shows the conventional detection wavelength, (b) is a figure which shows the detection wavelength of embodiment.
  • FIG. 1 shows the basic configuration of the meteorological observation lidar in this embodiment.
  • the meteorological observation lidar 100 of this embodiment is largely equipped with a transmitter 1 and a receiver 2.
  • the present embodiment particularly relates to details of the receiving device 2.
  • the transmission device 1 mainly includes a laser device 10, a mirror 12, and a beam expander 14.
  • the transmitter 1 has a function as a light emitting means for emitting a laser beam having a wavelength in the ultraviolet region to the sky.
  • the laser device 10 is a light emitting unit that emits a predetermined ultraviolet ray, for example, a laser light beam having a wavelength of 266 nm by combining optical elements such as a second harmonic crystal and a fourth harmonic crystal.
  • the wavelength of the laser light causes rotational Raman scattered light due to the Raman effect when it is irradiated to components in the atmosphere to be measured, such as water vapor (H 2 O) molecules, nitrogen (N 2 ) molecules, and oxygen (O 2 ) molecules.
  • the mirror 12 is an optical element that reflects the direction of the output laser light beam upward.
  • the beam expander 14 is an optical element that expands the diameter of a laser light beam that is incident as coherent parallel light and outputs it as emission light Lo.
  • the transmitter 1 may be provided with a precision air conditioner that keeps the dust level in a space including a part or the whole of the optical path of the laser light below a certain level. By providing the precision air conditioner, it is possible to suppress damage to the optical components and improve durability.
  • the transmitter 1 may include a temperature adjusting mechanism that keeps the temperature change of the optical components and the surrounding space at a certain level or less. By preventing a rapid temperature change of the optical system, it is possible to suppress damage to the optical components and improve durability.
  • the laser damage threshold (laser light density at which damage starts) of the optical element is smaller as the wavelength is shorter, and the damage of the optical element is generally larger. In particular, stable operation of the weather observation lidar is difficult with a laser having a wavelength in the UVC region, but stable operation in the region can be realized by providing the above configuration.
  • the receiving device 2 includes a telescope 20, a diaphragm 22, a spectroscopic unit 24, and a signal processing unit 26.
  • the emission light Lo emitted to the sky by the transmitter 1 is applied to the components in the atmosphere, for example, water vapor (H 2 O) molecules, nitrogen (N 2 ) molecules, and oxygen (O 2 ) molecules, so that Raman is emitted.
  • Rotational Raman scattered light is generated due to the effect, and part of it is incident on the meteorological observation lidar 100 as incident light Li.
  • the receiving device 2 has a function as scattered light detecting means for detecting the rotational Raman scattered light included in the incident light Li.
  • the telescope 20 makes the incident light Li enter and converges the light flux.
  • the diaphragm 22 passes the converged incident light Li and removes unnecessary light components.
  • the spectroscopic unit 24 disperses and detects the rotational Raman scattered light from the incident light Li and outputs a detection signal.
  • the spectroscopic unit 24 is included as a common optical element in all the embodiments, a diffraction grating that diffracts the rotating Raman scattered light included in the scattered light, a detector that detects the diffracted rotating Raman scattered light, and the scattered light.
  • a removing element for exclusively removing the elastically scattered light.
  • the signal processing unit 26 inputs and analyzes the detection signal obtained by detecting the rotating Raman scattered light, and based on the intensities of the rotating Raman scattered light of a plurality of wavelengths, detects the Raman effect of the atmosphere in the sky. Find ingredients and temperature.
  • the first embodiment particularly relates to an example in which, as the removing element, a slit that is arranged in a subsequent stage of the diffractive element and that removes elastically scattered light from scattered diffracted light is provided.
  • FIG. 2 shows a configuration of the spectroscopic unit 24 of the meteorological observation lidar 100 according to the first embodiment.
  • the spectroscope 24 of the first embodiment includes an entrance lens 202, a first slit 204, a concave mirror 206, a first diffraction grating 208, a concave mirror 210, a second slit 212, a mirror 214, a concave mirror 216, and a second mirror.
  • the first diffraction grating 208 and the second diffraction grating 218 correspond to the diffraction grating
  • the second slit 212 corresponds to the removing element
  • the detector 222 corresponds to the detector.
  • the incident lens 202 converges the incident light Li incident on the spectroscope 24.
  • the first slit 204 removes unnecessary components from the converged incident light Li.
  • the concave mirror 206 converts the diffused incident light Li that has passed through the first slit 204 into parallel light.
  • the first diffraction grating 208 causes parallel light to be diffracted according to the wavelength of the rotating Raman scattered light included in the incident light Li.
  • the diffracted light output from the first diffraction grating 208 includes rotational Raman scattered light Lr and elastic scattered light Le. Since the elastically scattered light Le does not generate the Raman effect, it has the same wavelength as the emission light Lo output from the transmitter 1. As shown in FIG. 10, the rotating Raman scattered light Lr generates the Raman effect, and thus the rotating Raman scattered light composed of a plurality of wavelengths slightly shorter than the wavelength of the emitted light Lo and the wavelength of the emitted light Lo. And rotating Raman scattered light composed of a plurality of slightly longer wavelengths.
  • the diffracted light from the first diffraction grating 208 becomes a bundle of rotating Raman scattered light dispersed in a short wavelength region and a long wavelength region around the elastic scattered light Le having the same wavelength as the emitted light Lo. There is.
  • the concave mirror 210 changes the direction of the diffracted light and appropriately makes it enter the second slit 212.
  • the second slit 212 exclusively removes the elastic scattered light Le from the incident diffracted light and reflects the remaining rotational Raman scattered light Lr.
  • the mirror 214 reflects the diffracted light from the second slit 212.
  • the concave mirror 216 causes the diffracted light reflected by the mirror 214 to be incident on the second diffracted light 218 as parallel light.
  • the second diffraction grating 218 diffracts the diffracted light that is incident again according to the wavelength.
  • the concave mirror 220 focuses the diffracted light from the second diffraction grating 218 on the detector 22.
  • the detector 220 is preferably configured as an array-type detector so that each of the rotating Raman scattered lights incident on different positions depending on the wavelength can be detected.
  • the detected rotational Raman scattered light is output as a detection signal.
  • the elastic scattered light Le having the same wavelength as the emitted light Lo emitted from the incident light Li having the spectrum shown in FIG.
  • a wide range including rotational Raman scattered light having a plurality of wavelengths different from the wavelength of elastic scattered light Le is removed, and two wavelengths ⁇ 1 and ⁇ 2 slightly shorter than the wavelength of elastic scattered light Le are removed. Only the rotating Raman scattered light having a value of 1 was detected.
  • the elastically scattered light Le is exclusively removed as shown in FIG. 10B, and the wavelength is shorter than the wavelength of the elastically scattered light Le.
  • FIG. 3 shows the configuration of the spectroscopic unit 24b of the meteorological observation lidar 100 according to the third embodiment.
  • the spectroscope 24b of the second embodiment includes an analyzer 201 in front of the entrance lens 202. Further, a mirror 211 is arranged instead of the second slit 212.
  • the other components are the same as those in the first embodiment, and the same reference numerals are given and the description thereof is omitted.
  • the analyzer 201 has a function of attenuating the scattered light that is incident, that is, the elastic scattered light Le from the incident light Li.
  • a known optical element such as a polarizer or a birefringent crystal can be applied.
  • the depolarization degree of the rotating Raman scattered light which is the measured light, is several tens of percent, whereas the depolarization degree of the elastic scattered light is 1% or less. Therefore, according to the second embodiment, since the analyzer 201 is installed so that the elastically scattered light is extinguished, the elastically scattered light can be suppressed more effectively.
  • the analyzer of this embodiment can be similarly applied to the following embodiments.
  • FIG. 4 shows the configuration of the spectroscopic unit 24c of the meteorological observation lidar 100 according to the third embodiment.
  • the spectroscope 24c of the third embodiment includes a notch filter 207 in front of the first diffraction grating 208.
  • the other components are the same as those in the first embodiment, and the same reference numerals are given and the description thereof is omitted.
  • the first diffraction grating 208 and the second diffraction grating 218 correspond to the diffraction grating
  • the notch filter 207 corresponds to the removing element
  • the detector 222 corresponds to the detector.
  • the notch filter 207 is an optical element having a filter function of blocking or suppressing passage of light of a specific wavelength, here, elastically scattered light Le, and known ones can be applied.
  • the elastic scattered light Le can be exclusively removed and a highly accurate detection signal can be output.
  • residual elastic scattered light Ler that cannot be completely removed may enter the detector 222 as shown in FIG.
  • such residual elastic scattered light Ler can be blocked or attenuated, blocked or suppressed by a mask described later in the seventh embodiment or a notch filter described later in the eighth embodiment.
  • FIG. 5 shows the configuration of the spectroscopic unit 24d of the meteorological observation lidar 100 according to the fourth embodiment.
  • the spectroscope 24d of the fourth embodiment includes a bandpass filter 209 in front of the first diffraction grating 208.
  • the other components are the same as those in the first embodiment, and the same reference numerals are given and the description thereof is omitted.
  • the concave mirror 210, the second slit 212, the mirror 214, and the concave mirror 216 are omitted.
  • the first diffraction grating 208 and the second diffraction grating 218 correspond to the diffraction grating
  • the bandpass filter 209 corresponds to the removing element
  • the detector 222 corresponds to the detector.
  • the elastic scattered light Le can be exclusively removed and a highly accurate detection signal can be output. Further, even if some optical elements such as a mirror and a concave mirror are omitted, the same function as that of the above embodiment can be achieved.
  • residual elastic scattered light Ler that cannot be completely removed may enter the detector 222 as shown in FIG. However, such residual elastic scattered light Ler can be blocked or attenuated, blocked or suppressed by a mask described later in the seventh embodiment or a notch filter described later in the eighth embodiment.
  • FIG. 6 shows the configuration of the spectroscopic unit 24e of the meteorological observation lidar 100 according to the fifth embodiment.
  • the spectroscope 24e of the fifth embodiment is the same as the third embodiment in that the notch filter 207 is provided in the preceding stage of the first diffraction grating 208, but the constituent elements after the first circuit grating 208 are the same.
  • the concave mirror 210, the mirror 211, the mirror 214, the concave mirror 216, and the second diffraction grating 218 are omitted.
  • the first diffraction grating 208 corresponds to the diffraction grating
  • the notch filter 207 corresponds to the removing element
  • the detector 222 corresponds to the detector.
  • the elastic scattered light Le can be exclusively removed and a highly accurate detection signal can be output. Further, even if some optical elements such as a mirror and a concave mirror are omitted, the same function as that of the above embodiment can be achieved.
  • the notch filter 207 residual elastic scattered light Ler that cannot be completely removed may enter the detector 222 as shown in FIG. However, such residual elastic scattered light Ler can be blocked or attenuated, blocked or suppressed by a mask described later in the seventh embodiment or a notch filter described later in the eighth embodiment.
  • FIG. 7 shows the configuration of the spectroscopic unit 24f of the meteorological observation lidar 100 according to the sixth embodiment.
  • the spectroscope 24f of the sixth embodiment is the same as the fourth embodiment in that the bandpass filter 209 is provided in the preceding stage of the first diffraction grating 208, but the constituent elements after the first circuit grating 208 are the same.
  • a mirror 217 is arranged in place of the second diffraction grating 218, which differs from the fourth embodiment.
  • the first diffraction grating 208 corresponds to the diffraction grating
  • the bandpass filter 209 corresponds to the removing element
  • the detector 222 corresponds to the detector.
  • notch filter described in Embodiment 5 above may be used in combination with the bandpass filter of Embodiment 5.
  • the elastically scattered light Le can be exclusively removed and a highly accurate detection signal can be output. Even if the additional second diffraction grating is omitted, the same function as in the above-described embodiment can be achieved.
  • residual elastic scattered light Ler that cannot be completely removed may enter the detector 222 as shown in FIG. However, such residual elastic scattered light Ler can be blocked or attenuated, blocked or suppressed by a mask described later in the seventh embodiment or a notch filter described later in the eighth embodiment.
  • FIG. 8 shows the configuration of the spectroscopic unit 24g of the meteorological observation lidar 100 according to the seventh embodiment.
  • the spectroscope 24g differs from the above-described embodiment in that a mask 224 is provided on the incident surface of the detector 222.
  • the configuration of the front stage of the concave mirror 220 is omitted, and the configurations of the above-described embodiment can be applied as appropriate.
  • the mask 224 is a light blocking means for blocking or attenuating the elastic scattered light Le remaining in the detection light incident on the detector 222.
  • a known material having a light shielding function can be applied to the mask 224.
  • the elastic scattered light Le may be removed at a constant rate depending on the performance of the optical element. To reach. Such residual elastically scattered light Le also becomes noise because it mixes with the individual detection elements of the rotating Raman signals that are adjacent to each other in the array detector.
  • the mask 224 is provided at a position corresponding to the elastically scattered light of the array detector, the influence of the residual elastically scattered light is reduced and a highly accurate detection signal is output. be able to.
  • FIG. 9 shows the configuration of the spectroscopic unit 24h of the meteorological observation lidar 100 according to the eighth embodiment. As shown in FIG. 9, the spectroscope 24h differs from the seventh embodiment in that the notch filter 226 is provided on the incident surface of the detector 222. In FIG. 9, the configuration of the front stage of the concave mirror 220 is omitted, and the configurations of the above-described embodiment can be applied as appropriate.
  • the notch filter 226 is a filtering unit that blocks or suppresses passage of the elastically scattered light Le remaining in the detection light incident on the detector 222.
  • a known material having a filtering function can be applied to the notch filter 226.
  • the notch filter 226 is provided immediately before the detector 222, the influence of residual elastic scattered light can be reduced, and a highly accurate detection signal can be output.
  • 266 nm is suitable for the wavelength of the laser beam, but the same effect can be obtained when using a laser with a longer wavelength, although there is a degree of difference.
  • long wavelengths include a third harmonic wavelength of 355 nm of YAG laser, 532 nm of second harmonic, and 248 nm, 308 nm, and 351 nm of excimer laser.

Abstract

弾性散乱光を専ら除去し、回転ラマン散乱光を除去しないで検出することにより、高い精度で気象観測を実施する気象観測用ライダーを提供すること。実施形態の気象観測ライダーは、レーザ光の散乱光を観測する気象観測ライダーであって、散乱光に含まれる回転ラマン散乱光の波長に応じて回転ラマン散乱光を回折させる回折格子(208)と、回折された回転ラマン散乱光を検出する検出器(222)と、散乱光に含まれる特定波長の弾性散乱光を専ら除去する除去素子(212)と、を備える。

Description

気象観測用ライダー
 本発明は、気象観測用ライダーに関する。
 近年、局地的な豪雨などの異常気象が続いており、気象予測の精度を向上させて異常気象の発生を早い段階で予測し、対策を取ることが望まれている。気象予測精度を向上させるには、地表での各種気象要素の観測、レーダによる上空の観測に加えて、大気境界層内の気温、水蒸気濃度、風向・風速の鉛直分布を観測し、このデータを気象予報モデルに投入して計算することが有効であることが知られている。
 近年、上空の気温分布や水蒸気濃度、風向・風速を観測するための観測手段として、ライダーが使われている。例えば、風向・風速を計測するライダーはドップラーライダーとして製品化され、風力発電所の建設にあたって風況調査を行うなどに使われている。
 一方、上空の気温分布や水蒸気濃度を計測する観測装置として、ラマンライダーが注目されている。ラマンライダーは、ある波長のレーザ光を上空に照射し、大気分子によるラマン散乱光を測定する観測装置である。例えば、UVC領域(波長200~280nm)にあるYAGレーザの4倍波である波長266nmを使ったラマンライダーがある(下記非特許文献1参照)。この波長のレーザを使うとき大気中のHO、Nによる振動ラマン散乱光の波長はそれぞれ295nm、284nmである。波長300nm以下の太陽光は上空のオゾン層(高度10~50km)で吸収され、地表にはほとんど届かず、太陽光はノイズになりにくい。このため、上記ラマンライダーによれば、太陽光の影響をなくし、昼間であっても気象観測をすることができていた。
M. Froidevaux、他6名、「A new lidar for water vapor and temperature measurements in the Atmospheric Boundary Layer」、AsiaFlux Newsletter Issue 28、13-17、2009年3月
 ここで、ラマンライダーにおいて、回転ラマン散乱光を測定対象とする場合には、回転ラマン散乱光はラマン効果を受けずに散乱された光であって同時に観測される弾性散乱光(ミー散乱光等)と比較すると10-7以下と非常に弱い。また、回転ラマン散乱光の波長は、弾性散乱光の波長に比べて1nm以下といった波長の差しかなく非常に近接しているため、回転ラマン散乱光と弾性散乱光を分離することは困難である。
 現在製品化されているラマンライダーでは、回折格子で散乱光を分光してから弾性散乱光を含む波長の長い領域の回転ラマン散乱光をミラー等の光学手段で取り除いて、波長の短い領域の回転ラマン散乱光を2つ取り出して両者の強度比を検出して気温等の気象観測情報を得ていた。
 しかしながら、このような方法では元来微弱な散乱光でしかない回転ラマン散乱光の一部のみを利用しているため、隣接または近接する波長を検出する検出器の出力信号にクロストークが生じてしまうため、測定精度が高くないという問題点があった。
 そこで、実施態様では、測定精度の高い気象観測用ライダーを提供することを目的とする。
 一態様に係る気象観測用ライダーは、レーザ光の散乱光を観測する気象観測ライダーであって、散乱光に含まれる回転ラマン散乱光を回折させる回折格子と、回折された前記回転ラマン散乱光を検出する検出器と、前記散乱光に含まれる弾性散乱光を専ら除去する除去素子と、を備える。
 上記態様によれば、弾性散乱光を専ら除去し、回転ラマン散乱光を除去しないで検出するので、高い精度で気象観測を実施することができる。
実施形態における気象観測用ライダーの構成図。 実施形態1における気象観測用ライダーの気温測定用の分光部の構成図。 実施形態2における気象観測用ライダーの気温測定用の分光部の構成図。 実施形態3における気象観測用ライダーの気温測定用の分光部の構成図。 実施形態4における気象観測用ライダーの気温測定用の分光部の構成図。 実施形態5における気象観測用ライダーの気温測定用の分光部の構成図。 実施形態6における気象観測用ライダーの気温測定用の分光部の構成図。 実施形態7における気象観測用ライダーの気温測定用の分光部の構成図。 実施形態8における気象観測用ライダーの気温測定用の分光部の構成図。 回転ラマン散乱光の波長分布を示す図であり、(a)は従来の検出波長を示す図であり、(b)は実施形態の検出波長を示す図。
 添付図面を参照して、本発明の好適な実施形態(以下「本実施形態」という。)について説明する(なお、各図において、同一の符号を付したものは、同一又は同様の構成を有する。)。
 (基本構成)
 まず以降の実施形態に共通する基本構成について説明する。図1に、本実施形態における気象観測ライダーの基本構成を示す。図1に示すように本実施形態の気象観測ライダー100は、大きく、送信装置1と受信装置2とを備える。本実施形態は、特に受信装置2の詳細に関する。
 図1に示すように、送信装置1は、レーザ装置10、ミラー12、ビームエクスパンダ14を主として備える。送信装置1は、紫外線領域の波長を有するレーザ光を上空に射出するための光射出手段としての機能を備える。
 レーザ装置10は、2倍波結晶、4倍波結晶などの光学素子の組み合わせにより、所定の紫外線、例えば、波長266nmのレーザ光ビームを射出する光射出手段である。当該レーザ光の波長は、測定したい大気中の成分、例えば水蒸気(HO)分子、窒素(N)分子、酸素(O)分子に照射されるとラマン効果による回転ラマン散乱光を生じさせるような波長を選択する。ミラー12は、出力されたレーザ光ビームの方向を上方に反射する光学素子である。ビームエキスパンダ14は、コヒーレントな平行光として入射したレーザ光ビームの径を拡大して射出光Loとして出力する光学素子である。
 送信装置1は、レーザ光の光路の一部または全体を含む空間の塵埃度を一定以下に保つ精密空調機を備えていてもよい。精密空調機を備えることにより光学部品の損傷を抑制し、耐久性を向上させることができる。また送信装置1は、光学部品及び周辺の空間の温度変化を一定以下に保つ温度調節機構を備えていてもよい。光学系の急激な温度変動を防止することによっても光学部品の損傷を抑制し、耐久性を向上させることができる。光学素子のレーザ損傷閾値(損傷が始まるレーザ光密度)は波長が短いほど小さく、光学素子の損傷は一般的には大きくなる。特に、UVC領域の波長のレーザにおいて気象観測用ライダーの安定稼働が難しいが、上記構成を備えることにより、当該領域での安定稼働が実現する。
 受信装置2は、望遠鏡20、絞り22、分光部24、及び信号処理部26を備える。上記送信装置1によって上空に射出された射出光Loは、大気中の成分、例えば水蒸気(HO)分子、窒素(N)分子、酸素(O)分子に照射されることによって、ラマン効果による回転ラマン散乱光を生じ、その一部が気象観測ライダー100に入射光Liとして入射する。当該受信装置2は、当該入射光Liに含まれる回転ラマン散乱光を検出する散乱光検出手段としての機能を備える。
 望遠鏡20は、入射光Liを入射させて光束を収束させる。絞り22は、収束した入射光Liを通過させて不要な光成分を除去する。
 分光部24は、本発明に係り、入射光Liから回転ラマン散乱光を分光して検出し、検出信号を出力する。分光部24は、全ての実施形態に共通光学要素として、散乱光に含まれる回転ラマン散乱光を回折させる回折格子と、回折された回転ラマン散乱光を検出する検出器と、散乱光に含まれる弾性散乱光を専ら除去する除去素子と、を備える。具体的構成については、図2以降を用いて実施形態1以降で詳述する。
 信号処理部26は、回転ラマン散乱光を検出することによって得られた検出信号を入力して解析し、複数波長の回転ラマン散乱光の強度に基づいて、ラマン効果を生じさせた上空の大気の成分や温度を求める。
 (実施形態1)
 実施形態1は、特に上記除去素子として、回折素子の後段に配置され、回折された散乱光のうち弾性散乱光を除去するスリットを備える例に関する。
 図2は、実施形態1における気象観測ライダー100の分光部24の構成を示す。図2に示すように、実施形態1の分光器24は、入射レンズ202、第1スリット204、凹面鏡206、第1回折格子208、凹面鏡210、第2スリット212、ミラー214、凹面鏡216、第2回折格子218、凹面鏡220、及び検出器220を備える。上記の共通光学要素としては、第1回折格子208及び第2回折格子218が上記回折格子に相当し、第2スリット212が上記除去素子に相当し、検出器222が上記検出器に相当する。
 入射レンズ202は分光器24に入射した入射光Liを収束させる。第1スリット204は収束された入射光Liから不要な成分を取り除く。凹面鏡206は、第1スリット204を通過した拡散した入射光Liを平行光に変換する。
 第1回折格子208は、平行光となって入射光Liに含まれる回転ラマン散乱光の波長に応じた回折を生じさる。第1回折格子208から出力される回折光には、回転ラマン散乱光Lrと弾性散乱光Leとが含まれる。弾性散乱光Leはラマン効果を生じていないので、送信装置1から出力された射出光Loと同じ波長を有する。図10に示すように、回転ラマン散乱光Lrは、ラマン効果を生じることにより、射出光Loの波長に対してわずかに短い複数の波長からなる回転ラマン散乱光と、射出光Loの波長に対してわずかに長い複数の波長からなる回転ラマン散乱光とを含む。よって第1回折格子208からの回折光は、射出光Loと同じ波長を有する弾性散乱光Leを中心に、波長の短い領域と波長の長い領域とに分散する回転ラマン散乱光の束となっている。
 凹面鏡210は、回折光の方向を変えて第2スリット212に適切に入射させる。第2スリット212は、入射した回折光のうち弾性散乱光Leを専ら除去し、残りの回転ラマン散乱光Lrを反射させる。ミラー214は、第2スリット212からの回折光を反射させる。凹面鏡216は、ミラー214で反射された回折光を平行光として第2回折光218に入射させる。第2回折格子218は、再び入射した回折光を波長に応じて回折させる。凹面鏡220は、第2回折格子218からの回折光を検出器22に集光させる。
 検出器220は、波長に応じて異なる位置に入射する回転ラマン散乱光の各々を検出可能なように、好ましくはアレー型検知器として構成される。検出された回転ラマン散乱光は検出信号として出力される。
 従来の気象観測ライダーでは、図10(a)に示すようなスペクトラムで入射した入射光Liのうち、射出された射出光Loと同じ波長を有する弾性散乱光Leを除去するために、弾性散乱光Leのほかに、弾性散乱光Leの波長に対して異なる複数の波長からなる回転ラマン散乱光を含む広い範囲が除去され、弾性散乱光Leの波長に対してわずかに短い2つの波長λ1及びλ2を有する回転ラマン散乱光のみを検出していた。この点、本実施形態1によれば、除去素子としてスリットを用いることにより、図10(b)に示すように、弾性散乱光Leを専ら除去して、弾性散乱光Leの波長に対して短い他の複数の波長及び断線散乱光Leに対して長い複数の波長からなる広範な範囲の回転ラマン散乱光をも検出する。このため、多数の回転ラマン散乱光に基づいて、高精度な検出信号を出力することができる。
 (実施形態2)
 実施形態2は、特に散乱光から前記弾性散乱光を減衰させる検光子をさらに備える点で上記実施形態1と異なる。
 図3は、実施形態3における気象観測ライダー100の分光部24bの構成を示す。図3に示すように、実施形態2の分光器24bは、入射レンズ202の前段に検光子201を備える。また第2スリット212に代えてミラー211を配置してある。その他の構成要素は、上記実施形態1と同じであり、同じ符号を付してその説明は省略する。
 検光子201は、入射する散乱光、すなわち入射光Liから弾性散乱光Leを減衰させる機能を有する。検光子201としては、偏光子や複屈折結晶など公知の光学素子を適用可能である。
 一般的に、被測定光である回転ラマン散乱光の偏光解消度は数十%であるのに対し、弾性散乱光の偏光解消度は1%以下である。よって、本実施形態2によれば、弾性散乱光が消光するように検光子201を設置したので、弾性散乱光をさらに効果的に抑制することができる。本実施形態の検光子は、以降の実施形態においても同様に適用可能である。
 (実施形態3)
 実施形態3は、特に除去素子としてノッチフィルタを用いた点で上記実施形態と異なる。
 図4は、実施形態3における気象観測ライダー100の分光部24cの構成を示す。図4に示すように、実施形態3の分光器24cは、第1回折格子208の前段にノッチフィルタ207を備える。その他の構成要素は、上記実施形態1と同じであり、同じ符号を付してその説明は省略する。上記の共通光学要素としては、第1回折格子208及び第2回折格子218が上記回折格子に相当し、ノッチフィルタ207が上記除去素子に相当し、検出器222が上記検出器に相当する。
 
 ノッチフィルタ207は、特定波長の光、ここでは弾性散乱光Leの通過を阻止したり抑制したりするフィルタ機能を有する光学素子であり、公知のものを適用可能である。
 本実施形態3によれば、除去素子としてノッチフィルタを用いることにより、弾性散乱光Leを専ら除去して、高精度な検出信号を出力することができる。なお、ノッチフィルタ207の性能次第では、図4に示すように除去しきれない残留弾性散乱光Lerが検出器222に入射することがある。しかし、このような残留弾性散乱光Lerは、実施形態7で後述するマスクや実施形態8で後述するノッチフィルタで遮断または減衰、阻止または抑制させることができる。
 (実施形態4)
 実施形態4は、特に除去素子としてバンドパスフィルタを用いた点で上記実施形態と異なる。
 図5は、実施形態4における気象観測ライダー100の分光部24dの構成を示す。図5に示すように、実施形態4の分光器24dは、第1回折格子208の前段にバンドパスフィルタ209を備える。その他の構成要素は、上記実施形態1と同じであり、同じ符号を付してその説明は省略する。但し、実施形態1の構成要素のうち、凹面鏡210、第2スリット212、ミラー214、凹面鏡216を削除してある。上記の共通光学要素としては、第1回折格子208及び第2回折格子218が上記回折格子に相当し、バンドパスフィルタ209が上記除去素子に相当し、検出器222が上記検出器に相当する。
 本実施形態4によれば、除去素子としてバンドパスフィルタを用いることにより、弾性散乱光Leを専ら除去して、高精度な検出信号を出力することができる。さらにミラーや凹面鏡という幾つかの光学要素を省略しても上記実施形態と同様の機能を達成可能である。なお、バンドパスフィルタ209の性能次第では、図5に示すように除去しきれない残留弾性散乱光Lerが検出器222に入射することがある。しかし、このような残留弾性散乱光Lerは、実施形態7で後述するマスクや実施形態8で後述するノッチフィルタで遮断または減衰、阻止または抑制させることができる。
 (実施形態5)
 実施形態5は、特に除去素子としてノッチフィルタを用いた変形例に関する。
 図6は、実施形態5における気象観測ライダー100の分光部24eの構成を示す。図6に示すように、実施形態5の分光器24eは、第1回折格子208の前段にノッチフィルタ207を備える点で実施形態3と同じであるが、第1回路格子208以降の構成要素のうち、凹面鏡210、ミラー211、ミラー214、凹面鏡216、第2回折格子218を削除してある。上記の共通光学要素としては、第1回折格子208が上記回折格子に相当し、ノッチフィルタ207が上記除去素子に相当し、検出器222が上記検出器に相当する。
 本実施形態5によれば、除去素子としてノッチフィルタを用いることにより、弾性散乱光Leを専ら除去して、高精度な検出信号を出力することができる。さらにミラーや凹面鏡という幾つかの光学要素を省略しても上記実施形態と同様の機能を達成可能である。なお、ノッチフィルタ207の性能次第では、図6に示すように除去しきれない残留弾性散乱光Lerが検出器222に入射することがある。しかし、このような残留弾性散乱光Lerは、実施形態7で後述するマスクや実施形態8で後述するノッチフィルタで遮断または減衰、阻止または抑制させることができる。
 (実施形態6)
 実施形態6は、特に除去素子としてバンドパスフィルタを用いた変形例に関する。
 図7は、実施形態6における気象観測ライダー100の分光部24fの構成を示す。図7に示すように、実施形態6の分光器24fは、第1回折格子208の前段にバンドパスフィルタ209を備える点で実施形態4と同じであるが、第1回路格子208以降の構成要素のうち、第2回折格子218に代えて、ミラー217を配置してある点で実施形態4と異なる。上記の共通光学要素としては、第1回折格子208が上記回折格子に相当し、バンドパスフィルタ209が上記除去素子に相当し、検出器222が上記検出器に相当する。
 なお、上記実施形態5で説明したノッチフィルタを当該実施形態のバンドパスフィルタと組み合わせて使用することも可能である。
 本実施形態6によれば、除去素子としてバンドパスフィルタを用いることにより、弾性散乱光Leを専ら除去して、高精度な検出信号を出力することができる。さらに追加の第2回折格子を省略しても上記実施形態と同様の機能を達成可能である。なお、バンドパスフィルタ209の性能次第では、図4に示すように除去しきれない残留弾性散乱光Lerが検出器222に入射することがある。しかし、このような残留弾性散乱光Lerは、実施形態7で後述するマスクや実施形態8で後述するノッチフィルタで遮断または減衰、阻止または抑制させることができる。
 (実施形態7)
 実施形態7は、特にマスクを備えた点で上記実施形態と異なる。
 図8は、実施形態7における気象観測ライダー100の分光部24gの構成を示す。図8に示すように、分光器24gは、検出器222の入射面にマスク224を備える点で、上記実施形態と異なる。図8では、凹面鏡220の前段の構成について図示を省略しており、上記実施形態の各構成を適宜適用可能である。
 マスク224は、検出器222に入射する検出光に残留する弾性散乱光Leを遮断または減衰させる遮光手段である。遮光機能を有する公知の材料をマスク224に適用可能である。
 回転ラマン散乱光Lrは、その波長ごとに強度を取得する必要があるため、検出器222には、アレイ検出器を用いることが好ましい。上記各実施形態で説明した分光部24により検出器222の前段までで弾性散乱光を相当程度除去することはできるが、光学素子の性能次第では、弾性散乱光Leは一定の割合で検出器222へ到達する。このような残留した弾性散乱光Leは、アレイ検出器で隣接する回転ラマン信号の個々の検出素子へも混入するためノイズとなる。
 この点、本実施形態7によれば、アレイ検出器の弾性散乱光に相当する箇所にマスク224を設けたので、残留する弾性散乱光の影響を軽減し、さらに高精度な検出信号を出力することができる。
 (実施形態8)
 実施形態8は、マスクに代えてノッチフィルタを備えた点で上記実施形態7と異なる。
 図9は、実施形態8における気象観測ライダー100の分光部24hの構成を示す。図9に示すように、分光器24hは、検出器222の入射面にノッチフィルタ226を備える点で、上記実施形態7と異なる。図9では、凹面鏡220の前段の構成について図示を省略しており、上記実施形態の各構成を適宜適用可能である。
 ノッチフィルタ226は、検出器222に入射する検出光に残留する弾性散乱光Leの通過を阻止または抑制するろ過手段である。ろ過機能を有する公知の材料をノッチフィルタ226に適用可能である。
 本実施形態8によれば、検出器222の直前にノッチフィルタ226を設けたので、残留する弾性散乱光の影響を軽減し、さらに高精度な検出信号を出力することができる。
 (その他の変形例)
 以上説明した実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。実施形態が備える各要素並びにその配置、材料、条件、形状及びサイズ等は、例示したものに限定されるわけではなく適宜変更することができる。また、異なる実施形態で示した構成同士を部分的に置換し又は組み合わせることが可能である。
 なお、レーザ光の波長は266nmが好適であるが、これより長い波長のレーザを使った場合にも程度の差はあるが同様な効果が得られる。長い波長の例として、YAGレーザの3倍波の波長355nm、2倍波532nm、エキシマレーザの248nm、308nm、351nmなどがある。
1…送信装置、2…受信装置、24、24b~24h…分光器24、201…検光子、202…入射レンズ、204…第1スリット、204、206、210、216、220…凹面鏡、207,226…ノッチフィルタ、208…第1回折格子208、209…バンドパスフィルタ、211,214、217…ミラー、212…第2スリット、218…第2回折格子、222…検出器、224…マスク、100…気象観測ライダー

Claims (11)

  1.  レーザ光の散乱光を観測する気象観測ライダーであって、
     散乱光に含まれる回転ラマン散乱光を回折させる回折格子と、
     回折された前記回転ラマン散乱光を検出する検出器と、
     前記散乱光に含まれる弾性散乱光を専ら除去する除去素子と、
    を備える、気象観測ライダー。
  2.  前記除去素子は、前記回折格子の後段に配置されるスリットであって、回折された前記散乱光のうち前記弾性散乱光を除去するスリットである、
    請求項1に記載の気象観測ライダー。
  3.  前記除去素子は、前記回折格子の前段に配置されるノッチフィルタであって、前記散乱光のうち前記弾性散乱光の通過を阻止または抑制するノッチフィルタである、
    請求項1または2に記載の気象観測ライダー。
  4.  前記除去素子は、前記回折格子の前段に配置されるバンドパスフィルタであって、前記散乱光のうち前記弾性散乱光の反射を阻止または抑制するバンドパスフィルタである、
    請求項1乃至3のいずれか一項に記載の気象観測ライダー。
  5.  前記散乱光から前記弾性散乱光を減衰させる検光子をさらに備える、
    請求項1乃至4のいずれか一項に記載の気象観測ライダー。
  6.  前記回折格子により回折された回折光をさらに回折させる追加回折格子をさらに備える、
    請求項1乃至5のいずれか一項に記載の気象観測ライダー。
  7.  前記検出器は、アレー型検知器である、
    請求項1乃至6のいずれか一項に記載の気象観測ライダー。
  8.  前記検出器に入射する検出光に残留する前記弾性散乱光を遮断または減衰させるマスクをさらに備える、
    請求項1乃至7のいずれか一項に記載の気象観測ライダー。
  9.  前記検出器に入射する検出光に残留する前記弾性散乱光の通過を阻止または抑制するノッチフィルタをさらに備える、
    請求項1乃至8のいずれか一項に記載の気象観測ライダー。
  10.  光路に沿って1以上の凹面鏡を備える、
    請求項1乃至9のいずれか一項に記載の気象観測ライダー。
  11.  光路に沿って1以上の平面鏡を備える、
    請求項1乃至10のいずれか一項に記載の気象観測ライダー。
     
     
PCT/JP2019/040470 2018-10-12 2019-10-15 気象観測用ライダー WO2020075869A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/283,145 US11650323B2 (en) 2018-10-12 2019-10-15 Meteorological lidar
JP2020550563A JPWO2020075869A1 (ja) 2018-10-12 2019-10-15 気象観測用ライダー
EP19870118.7A EP3865836A4 (en) 2018-10-12 2019-10-15 WEATHER OBSERVATION LIDAR
CN201980065346.0A CN112840188A (zh) 2018-10-12 2019-10-15 气象观测用激光雷达
JP2023016041A JP7477919B2 (ja) 2018-10-12 2023-02-06 気象観測用ライダー

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018193899 2018-10-12
JP2018-193899 2018-10-12

Publications (1)

Publication Number Publication Date
WO2020075869A1 true WO2020075869A1 (ja) 2020-04-16

Family

ID=70165068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/040470 WO2020075869A1 (ja) 2018-10-12 2019-10-15 気象観測用ライダー

Country Status (5)

Country Link
US (1) US11650323B2 (ja)
EP (1) EP3865836A4 (ja)
JP (2) JPWO2020075869A1 (ja)
CN (1) CN112840188A (ja)
WO (1) WO2020075869A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023248572A1 (ja) * 2022-06-24 2023-12-28 英弘精機株式会社 ライダー用受光装置、ライダー、及び気象観測ライダー

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62112322A (ja) * 1985-11-12 1987-05-23 Nippon Kogaku Kk <Nikon> レ−ザアニ−ル装置
JP2008026127A (ja) * 2006-07-20 2008-02-07 Eko Instruments Trading Co Ltd 分光ユニット、気象観測ライダーシステム
JP2008503733A (ja) * 2004-06-25 2008-02-07 ライカ ミクロジュステムス ツェーエムエス ゲーエムベーハー 光ビームの光のスペクトルを選択検出するための光学装置
WO2013079806A1 (en) * 2011-12-02 2013-06-06 Jyväskylän Yliopisto Method and device for determining gas concentration
CN107179308A (zh) * 2016-03-11 2017-09-19 中国科学院苏州纳米技术与纳米仿生研究所 一种偏振拉曼光谱的测定仪器及其测定方法
WO2018146456A1 (en) * 2017-02-07 2018-08-16 United Kingdom Research And Innovation Compact interferometer

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3951526A (en) * 1973-08-29 1976-04-20 Mcdonnell Douglas Corporation Line rejection mirror for filter spectrograph
JP3315805B2 (ja) * 1993-03-31 2002-08-19 旭光学工業株式会社 像面測定装置
JP2002062197A (ja) 2000-08-23 2002-02-28 National Institute Of Advanced Industrial & Technology 温度計測装置及び温度計測方法
US6583873B1 (en) * 2000-09-25 2003-06-24 The Carnegie Institution Of Washington Optical devices having a wavelength-tunable dispersion assembly that has a volume dispersive diffraction grating
CN201788020U (zh) * 2010-07-23 2011-04-06 北京普析通用仪器有限责任公司 能降低杂散光的光接收系统
CN102323596A (zh) * 2011-06-08 2012-01-18 西安理工大学 基于光栅技术分光结构的转动拉曼激光雷达系统
CN106772441B (zh) 2017-01-20 2020-08-07 武汉大学 一种紫外纯转动拉曼测温激光雷达系统
CN107024699B (zh) 2017-03-29 2018-04-20 武汉大学 基于紫外准单支纯转动拉曼谱提取的全天时测温激光雷达
US11788967B2 (en) * 2018-01-23 2023-10-17 Danmarks Tekniske Universitet Apparatus for carrying out Raman spectroscopy

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62112322A (ja) * 1985-11-12 1987-05-23 Nippon Kogaku Kk <Nikon> レ−ザアニ−ル装置
JP2008503733A (ja) * 2004-06-25 2008-02-07 ライカ ミクロジュステムス ツェーエムエス ゲーエムベーハー 光ビームの光のスペクトルを選択検出するための光学装置
JP2008026127A (ja) * 2006-07-20 2008-02-07 Eko Instruments Trading Co Ltd 分光ユニット、気象観測ライダーシステム
WO2013079806A1 (en) * 2011-12-02 2013-06-06 Jyväskylän Yliopisto Method and device for determining gas concentration
CN107179308A (zh) * 2016-03-11 2017-09-19 中国科学院苏州纳米技术与纳米仿生研究所 一种偏振拉曼光谱的测定仪器及其测定方法
WO2018146456A1 (en) * 2017-02-07 2018-08-16 United Kingdom Research And Innovation Compact interferometer

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BOYAN TATAROV, SUGIMOTO NOBUO, MATSUI ICHIRO: "Possibilities of the multi-channel lidar spectrometer technique for investigation of the atmospheric aerosols and pollutions", PROCEEDINGS OF SPIE , vol. 7860, 16 November 2010 (2010-11-16), pages 1 - 4, XP055700791 *
M. FROIDEVAUX: "A new lidar for water vapor and temperature measurements in the Atmospheric Boundary Layer", ASIA FLUX NEWS LETTER, March 2009 (2009-03-01), pages 13 - 17
MITEV V M: "Lidar measurement of the atmospheric temperature by rotational Raman scattering", ACTA PHYSICA POLONICA. A, vol. A66, no. 4, 30 September 1984 (1984-09-30), pages 311 - 322, XP009527520, ISSN: 0587-4246 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023248572A1 (ja) * 2022-06-24 2023-12-28 英弘精機株式会社 ライダー用受光装置、ライダー、及び気象観測ライダー

Also Published As

Publication number Publication date
US20210389471A1 (en) 2021-12-16
JPWO2020075869A1 (ja) 2021-09-02
JP2023064105A (ja) 2023-05-10
US11650323B2 (en) 2023-05-16
CN112840188A (zh) 2021-05-25
EP3865836A1 (en) 2021-08-18
JP7477919B2 (ja) 2024-05-02
EP3865836A4 (en) 2022-07-13

Similar Documents

Publication Publication Date Title
US20210349013A1 (en) Laser sensor for trace gas detection
US11243295B2 (en) Optical filter
CN106772438B (zh) 一种全天时准确测量大气温度和气溶胶参数的激光雷达系统
Spuler et al. MicroPulse DIAL (MPD)–a diode-laser-based lidar architecture for quantitative atmospheric profiling
Nott et al. A remotely operated lidar for aerosol, temperature, and water vapor profiling in the High Arctic
JP7477919B2 (ja) 気象観測用ライダー
CN106814371A (zh) 一种测量大气温度和水汽以及气溶胶的激光雷达系统
JP6986165B2 (ja) 気象観測用ライダー
CN106772441A (zh) 一种紫外纯转动拉曼测温激光雷达系统
WO2020138133A1 (ja) 気象観測ライダー用受光系
JP2008026127A (ja) 分光ユニット、気象観測ライダーシステム
Shayeganrad On the remote monitoring of gaseous uranium hexafluoride in the lower atmosphere using lidar
KR20060011504A (ko) 라만 신호를 이용하여 수증기와 물방울의 밀도를 동시에측정하기 위한 라만 라이다 수신광학계
WO2023248572A1 (ja) ライダー用受光装置、ライダー、及び気象観測ライダー
Ge et al. The double grating monochromator’s design for pure rotational Raman lidar
CN218917631U (zh) 一种大气探测激光雷达
Choi et al. The measurement of the lidar ratio by using the rotational Raman lidar
Birki et al. Stray radiation measurement on the Infrared Background Signature Survey (IBSS) telescope
JP3120905U (ja) レーザ回折式粒度分布測定装置
Mathur et al. A UV Raman lidar for monitoring water vapor
Sun et al. In-field stray light due to surface scattering effects in infrared imaging systems
Liu et al. High resolution full-spectrum water Raman lidar
JPH10253450A (ja) フィルター型分光器
Zhang et al. Double grating monochromator optical design of the pure rotational Raman-lidar
Mathur et al. Compact water-vapor Raman lidar

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19870118

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020550563

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019870118

Country of ref document: EP

Effective date: 20210512