WO2020075639A1 - Steering column and steering device - Google Patents

Steering column and steering device Download PDF

Info

Publication number
WO2020075639A1
WO2020075639A1 PCT/JP2019/039262 JP2019039262W WO2020075639A1 WO 2020075639 A1 WO2020075639 A1 WO 2020075639A1 JP 2019039262 W JP2019039262 W JP 2019039262W WO 2020075639 A1 WO2020075639 A1 WO 2020075639A1
Authority
WO
WIPO (PCT)
Prior art keywords
column
steering
peripheral surface
outer column
inner column
Prior art date
Application number
PCT/JP2019/039262
Other languages
French (fr)
Japanese (ja)
Inventor
傑 杉下
勝 大澤
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Publication of WO2020075639A1 publication Critical patent/WO2020075639A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D1/00Steering controls, i.e. means for initiating a change of direction of the vehicle
    • B62D1/02Steering controls, i.e. means for initiating a change of direction of the vehicle vehicle-mounted
    • B62D1/16Steering columns
    • B62D1/18Steering columns yieldable or adjustable, e.g. tiltable
    • B62D1/187Steering columns yieldable or adjustable, e.g. tiltable with tilt adjustment; with tilt and axial adjustment
    • B62D1/189Steering columns yieldable or adjustable, e.g. tiltable with tilt adjustment; with tilt and axial adjustment the entire column being tiltable as a unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D1/00Steering controls, i.e. means for initiating a change of direction of the vehicle
    • B62D1/02Steering controls, i.e. means for initiating a change of direction of the vehicle vehicle-mounted
    • B62D1/16Steering columns
    • B62D1/18Steering columns yieldable or adjustable, e.g. tiltable
    • B62D1/19Steering columns yieldable or adjustable, e.g. tiltable incorporating energy-absorbing arrangements, e.g. by being yieldable or collapsible

Definitions

  • the present invention relates to a steering column having a function of absorbing an impact load at the time of a secondary collision, and a steering device equipped with the steering column.
  • FIG. 25 shows an example of a steering device for an automobile.
  • a steering wheel 1 operated by a driver is attached to a rear end portion of a steering shaft 2.
  • the steering shaft 2 is rotatably supported on the inner diameter side of a tubular steering column 3 supported by the vehicle body.
  • the rotational movement of the steering wheel 1 is transmitted to the pinion shaft 7 constituting the steering gear unit 6 via the steering shaft 2, the universal joint 4a, the intermediate shaft 5, and another universal joint 4b.
  • the rotational movement of the pinion shaft 7 is converted into a linear movement of a rack shaft (not shown) that constitutes the steering gear unit 6.
  • the pair of tie rods 8 are pushed and pulled, and the pair of left and right steered wheels is provided with a steering angle according to the operation amount of the steering wheel 1.
  • the front-rear direction, the width direction, and the up-down direction are the front-rear direction, the width direction, and the up-down direction of the vehicle body on which the steering device is assembled.
  • 26 to 28 show a more specific structure of the steering device described in Japanese Patent Laid-Open No. 2013-136385.
  • This steering device has a function of absorbing an impact load at the time of a secondary collision caused by a collision accident of an automobile.
  • the steering column 3a includes a cylindrical inner column 9 arranged on the front side and a cylindrical outer column 10 arranged on the rear side.
  • the rear side portion of the inner column 9 is fitted into the front side portion of the outer column 10 by press fitting.
  • the inner column 9 has ridges 11 projecting outward in the radial direction and extending in the axial direction at four locations on the outer peripheral surface of the rear side portion at equal intervals in the circumferential direction.
  • the outer peripheral surface of the inner column 9 is in contact with the inner peripheral surface of the outer column 10 with a tightening margin only at the portions corresponding to the tops of the protrusions 11.
  • the inner column 9 is supported so as not to move forward with respect to the vehicle body not only during normal operation but also during a secondary collision. For this reason, the front end of the inner column 9 is fixedly coupled to the rear end of the gear housing 13 that constitutes the electric assist device 12 supported by the vehicle body.
  • the axially intermediate portion of the outer column 10 is supported via a vehicle body side bracket 14 attached to the vehicle body and the like so that it can be displaced forward by an impact at the time of a secondary collision.
  • the steering wheel 1 (see FIG. 25), the rear shaft that constitutes the rear side portion of the steering shaft 2a, and the outer column 10 are caused by the inner column 9 due to the impact load at the time of the secondary collision. Displace forward with respect to. Then, at this time, the impact load at the time of the secondary collision is absorbed due to the outer peripheral surface of the inner column 9 and the inner peripheral surface of the outer column 10 sliding in the axial direction.
  • the contact points of the outer peripheral surface of the inner column 9 with the inner peripheral surface of the outer column 10 are limited to the portions corresponding to the tops of the protrusions 11. That is, at the time of a secondary collision, only the portion of the outer peripheral surface of the inner column 9 corresponding to the tops of the protrusions 11 slides axially with the inner peripheral surface of the outer column 10. Therefore, at the time of a secondary collision, the outer peripheral surface of the inner column 9 and the inner peripheral surface of the outer column 10 can be stably slid in the axial direction, and the impact load absorbing performance can be made stable. .
  • FIGS. 26 to 28 The conventional structure shown in FIGS. 26 to 28 has room for improvement in the following points.
  • the shock load at the time of a secondary collision is absorbed by sliding the outer peripheral surface of the inner column 9 and the inner peripheral surface of the outer column 10 in the axial direction. Therefore, from the viewpoint of sufficiently protecting the driver, the sliding resistance in the axial direction between the inner column 9 and the outer column 10, that is, the press fit of the outer peripheral surface of the inner column 9 to the inner peripheral surface of the outer column 10. It is important to keep the load F within an appropriate range.
  • the inner column 9 and the outer column 10 have the same thickness dimension, and each has sufficiently high rigidity. Therefore, even if the tightening margin ⁇ of the fitting portion between the inner column 9 and the outer column 10 is slightly changed, the press-fit load F on the outer peripheral surface of the inner column 9 with respect to the inner peripheral surface of the outer column 10 is likely to be greatly changed. . In other words, the allowable range of the interference ⁇ for keeping the press-fit load F within the proper range tends to be narrowed.
  • the inner column 9 and the outer column 10 are provided with highly accurate equipment in order to reduce the variation width of the tightening margin ⁇ .
  • An object of the present invention is to realize a structure of a steering column in which the sliding resistance in the axial direction between the inner column and the outer column can be easily kept within an appropriate range.
  • the steering column of the present invention includes a tubular outer column and a tubular inner column that is fitted in and supported by the outer column.
  • the inner peripheral surface of the outer column and the outer peripheral surface of the inner column are in contact with each other only at a plurality of locations that are separated from each other in the circumferential direction, directly or through other members in a state of having a tightening margin.
  • the rigidity of at least a portion of the inner column that fits with the outer column in the radial direction is lower than the rigidity of at least a portion of the outer column that fits with the inner column in the radial direction.
  • the thickness dimension of at least a portion of the inner column that fits with the outer column is greater than the thickness dimension of at least a portion of the outer column that fits with the inner column.
  • the inner column has, at a plurality of circumferentially spaced positions on the outer peripheral surface, ridges that project radially outward and extend in the axial direction.
  • ridges that project radially outward and extend in the axial direction.
  • the protrusion is also present in a portion of the inner column that fits with the outer column as a secondary collision progresses. It is also possible to adopt a configuration in which the protrusion is formed over the entire length of the inner column.
  • the inner column is further provided with a plurality of reinforcing ribs protruding inward in the radial direction and extending in the axial direction at a plurality of locations spaced apart in the circumferential direction.
  • At least a portion of the outer column that fits with the inner column is formed of a part of a raw pipe that is an intermediate material of the outer column.
  • a steering device of the present invention includes a steering column, a steering shaft that is rotatably supported on an inner diameter side of the steering column, and has a rear end portion to which a steering wheel can be attached, and the steering column with respect to a vehicle body. And a vehicle-body-side bracket for supporting.
  • the steering column is composed of the steering column of the present invention.
  • the inner column is arranged on the front side of the outer column and is supported in a state in which the forward displacement with respect to the vehicle body is prevented.
  • FIG. 1 is a side view of a steering device according to a first example of an embodiment of the present invention.
  • FIG. 2 is a sectional view taken along the line AA of FIG. 1 with a part thereof omitted.
  • FIG. 3 is a diagram showing only the steering column from FIG.
  • FIG. 4 is a perspective view of the steering column as seen from above according to the first example of the embodiment of the present invention.
  • FIG. 5 is a side view of the steering column according to the first example of the embodiment of the present invention.
  • FIG. 6 is a sectional view taken along line BB of FIG. 2, showing only the steering column in the first example of the embodiment of the present invention.
  • FIG. 7 is a perspective view which looked at the front side column from the upper part regarding the 1st example of embodiment of this invention.
  • FIG. 8A is a diagram of the front column and the mounting plate as seen from the rear side in the first example of the embodiment of the present invention
  • FIG. 8B is an enlarged view of the C portion of FIG. 8A.
  • FIG. 9 shows the tightening margins of the ridges on the inner peripheral surface of the outer column and the sliding resistance (press-fitting) of the inner column to the outer column regarding the structure of the first example of the embodiment of the present invention and the structure of the comparative example. It is a diagram which shows the correlation with a load.
  • FIG. 10 is a diagram corresponding to FIG. 6 regarding the second example of the exemplary embodiment of the present invention.
  • FIG. 11 is a diagram corresponding to FIG.
  • FIG. 12 is a view, which corresponds to FIG. 6 and relates to the third example of the embodiment of the present invention.
  • FIG. 13 is a diagram corresponding to FIG. 7 regarding a third example of the exemplary embodiment of the present invention.
  • FIG. 14A is a diagram of the front column and the mounting plate as seen from the rear side regarding the third example of the embodiment of the present invention, and
  • FIG. 14B is an enlarged view of part D of FIG. 14A. It is a figure and FIG.14 (c) is the E section enlarged view of FIG.14 (a).
  • FIG. 15 is a diagram corresponding to FIG. 6 and relating to the fourth example of the embodiment of the present invention.
  • FIG. 16 is a diagram corresponding to FIG.
  • FIG. 17 is a diagram corresponding to FIG. 6 and relating to the fifth example of the embodiment of the present invention.
  • FIG. 18 is a diagram corresponding to FIG. 7 regarding a fifth example of the exemplary embodiment of the present invention.
  • FIG. 19 is a diagram corresponding to FIG. 6 regarding a sixth example of the embodiment of the present invention.
  • FIG. 20 is a diagram corresponding to FIG. 7 regarding the sixth example of the embodiment of the present invention.
  • FIG. 21 is a diagram corresponding to FIG. 6 and relating to the seventh example of the embodiment of the present invention.
  • 22 is a diagram corresponding to FIG. 7 regarding the seventh example of the embodiment of the present invention.
  • FIG. 23 is a diagram corresponding to FIG.
  • FIG. 24 is a diagram corresponding to FIG. 7 regarding the eighth example of the embodiment of the present invention.
  • FIG. 25 is a perspective view showing an example of a conventional structure of a steering device.
  • FIG. 26 is a side view showing an example of a more specific structure of the steering device.
  • FIG. 27 is a cross-sectional view taken along the line FF of FIG. 26 with a part omitted. 28 is a sectional view similar to FIG. 27, showing only the inner column and the outer column.
  • the steering apparatus of this example includes a steering shaft 15, a steering column 16, and a vehicle body side bracket 18, as shown in FIGS. 1 and 2, for example.
  • the steering shaft 15 is rotatably supported on the inner diameter side of a cylindrical steering column 16.
  • the steering wheel 1 (see FIG. 25) operated by the driver is attached to the rear end of the steering shaft 15.
  • the vehicle body side bracket 18 is for supporting the steering column 16 with respect to the vehicle body.
  • the steering device of this example includes a tilt mechanism that allows the height position of the steering wheel 1 to be adjusted. Therefore, the steering device of this example includes the clamp mechanism 19.
  • the clamp mechanism 19 In order to adjust the height position of the steering wheel 1, the clamp mechanism 19 is in an unlocked state in which the steering column 16 is vertically displaced with respect to the vehicle body side bracket 18, and the steering column 16 is in the vehicle body. This is for switching between a locked state that prevents the side bracket 18 from being displaced in the vertical direction.
  • the present invention is also applicable to a structure that does not have a tilt mechanism (whether or not it has a telescopic function).
  • the steering column 16 includes an inner column 23 arranged on the front side, an outer column 24 arranged on the rear side, and a column side bracket 17 connected and fixed to the outer column 24. Equipped with.
  • the present invention is not limited to the application to the steering column 16 having such a structure, and is also applicable to a steering column having a structure in which the inner column is arranged on the rear side and the outer column is arranged on the front side. In such a case, in the following description, the description about the front-back direction will be reversed in principle.
  • Each of the inner column 23 and the outer column 24 is a substantially cylindrical member made of metal such as steel, alloy steel, aluminum, and aluminum alloy.
  • each of the inner column 23 and the outer column 24 is formed by subjecting a raw pipe such as a drawn pipe, which is an intermediate material, to plastic working such as hydroforming or drawing so that the axial direction of the raw pipe is reduced. It is manufactured by a predetermined manufacturing method including a step of changing an inner diameter dimension and an outer diameter dimension of a part.
  • each of the inner column 23 and the outer column 24 can be manufactured by another manufacturing method such as casting.
  • the thickness dimension of the inner column 23 is substantially constant as a whole, and the thickness dimension of the outer column 24 is substantially the same in the remaining portion except the rear end portion (bearing holding portion 36 described later). It is constant.
  • the rear side portion of the inner column 23 is press fitted into the front side portion of the outer column 24. In other words, the rear side portion of the inner column 23 is internally fitted to the front side portion of the outer column 24 by an interference fit.
  • the inner column 23 includes a cylindrical large-diameter tubular portion 25 and a cylindrical small-diameter tubular portion 26 located in front of the large-diameter tubular portion 25.
  • the outer diameter dimension of the small diameter tubular portion 26 is smaller than the outer diameter dimension of the large diameter tubular portion 25.
  • the front end of the large-diameter tubular portion 25 and the rear end of the small-diameter tubular portion 26 are connected by a conical tubular connecting portion 27 whose outer diameter size decreases toward the front side.
  • the large-diameter tubular portion 25 has ridges 28 that project radially outward and extend axially at a plurality of locations (three or more locations) that are spaced apart in the circumferential direction on the outer peripheral surface.
  • the protrusions 28 are arranged at four locations on the outer peripheral surface of the large-diameter cylindrical portion 25 at equal intervals in the circumferential direction.
  • each of the ridges 28 is, in the large-diameter cylindrical portion 25, an axial range in which the steering column 16 is fitted to the outer column 24, specifically, a rear portion in the axial direction of the large-diameter cylindrical portion 25. It lies in a continuous axial range corresponding to the side edges and the middle portion.
  • each of the ridges 28 is formed by plastically deforming a part of the large-diameter tubular portion 25 toward the outside in the radial direction. For this reason, a concave groove extending in the axial direction is present on the back surface side of each of the ridges 28.
  • press working can be adopted as the plastic working for forming the protrusions 28, for example, press working can be adopted.
  • the radially outer surface of the protrusion 28 has a convex arc-shaped cross-sectional shape.
  • the radial height dimension H 28 of the ridge 28 is 0.5% or more of the outer diameter dimension D 25 of the outer peripheral surface of the large-diameter tubular portion 25, which is off the ridge 28, 7.0. % Or less (see FIG. 3).
  • the radial height H 28 of the protrusion 28 0.5 mm ⁇ It can be 1.0 mm.
  • the inner column 23 is supported so as not to move forward with respect to the vehicle body not only during normal operation but also during a secondary collision. For this reason, the front end of the inner column 23 is coupled and fixed to the rear end of the gear housing 21 that constitutes the electric assist device 20 supported by the vehicle body.
  • the electric assist device 20 applies the auxiliary power generated from the electric motor 40 as a power source to the steering force transmission path that connects the steering wheel 1 to the steered wheels, and thereby the force required for the driver to operate the steering wheel 1. Is to reduce.
  • the gear housing 21 is supported with respect to the vehicle body so as to be swingable about the tilt shaft 22.
  • the steering column 16 further includes a mounting plate 29 for coupling and fixing the front end of the inner column 23 to the rear end of the gear housing 21.
  • the mounting plate 29 is an annular flat plate member, and is externally fitted and fixed to the front end of the small-diameter tubular portion 26 of the inner column 23.
  • the mounting plate 29 has mounting holes 30 at a plurality of locations (three locations in the illustrated example) spaced apart in the circumferential direction.
  • the gear housing 21 has screw holes (not shown) in the rear end portion at positions that are aligned with the mounting holes 30 of the mounting plate 29.
  • the front end portion of the inner column 23 has a rear end portion of the gear housing 21 formed by screwing unillustrated bolts, which are inserted into the mounting holes 30 of the mounting plate 29 from the rear side, into the screw holes of the gear housing 21. It is fixedly connected to the section.
  • the circumferential positions of the plurality of ridges 28 with respect to the gear housing 21, that is, the plurality of ridges 28 in the used state are used.
  • the phase of the arrangement of the mounting holes 30 of the mounting plate 29 in the circumferential direction is regulated so that the circumferential position of the ridge 28 is uniquely determined.
  • the mounting holes 30 are arranged at unequal intervals in the circumferential direction.
  • the circumferential positions of the plurality of ridges 28 in use are, as shown in FIGS. 2 and 3, two positions that are offset from the upper end by 45 ° on both sides in the circumferential direction, and the circumferential position from the lower end. There are a total of four positions, with two positions offset by 45 ° on each side of the direction.
  • the circumferential positions of the plurality of protrusions 28 in the use state may be different from those in the illustrated example.
  • the circumferential positions of the plurality of ridges 28 in the use state are circumferential positions rotated by 45 ° from the circumferential position of this example, that is, two positions at the upper end and the lower end and both ends in the width direction. It is also possible to set a total of four positions, that is, two positions.
  • the number of the ridges 28 can be different from this example.
  • the outer column 24 includes a cylindrical front small-diameter cylindrical portion 31, a cylindrical large-diameter cylindrical portion 32 located rearward of the front small-diameter cylindrical portion 31, and a rear large-diameter cylindrical portion 32 rearward. And a small side tubular portion 33.
  • the inner diameter dimension of the large diameter tubular portion 32 is larger than the inner diameter dimension of each of the front small diameter tubular portion 31 and the rear small diameter tubular portion 33.
  • the front end of the large-diameter tubular portion 32 and the rear end of the front-small-diameter tubular portion 31 are connected by a conical tubular front connecting portion 34 whose inner diameter decreases toward the front side.
  • the rear end of the large-diameter tubular portion 32 and the front end of the rear-small-diameter tubular portion 33 are connected by a conical tubular rear connecting portion 35 whose inner diameter decreases toward the rear side. .
  • the rear small-diameter cylindrical portion 33 has a bearing holding portion 36 in the rear half portion.
  • the bearing holding portion 36 is a portion in which a rolling bearing (not shown) for rotatably supporting the steering shaft 15 (a rear shaft 39 described later) is fitted and held on the inner diameter side of the outer column 24.
  • the inner diameter of the bearing holding portion 36 is larger than the inner diameter of the front half of the rear small diameter cylindrical portion 33. Therefore, the thickness dimension of the bearing holding portion 36 is smaller than the thickness dimension of the front half of the rear small diameter cylindrical portion 33.
  • the large-diameter cylindrical portion 32 has a key lock hole 37 for inserting a lock pin of a steering lock mechanism at one circumferential position of an axially intermediate portion.
  • the front small-diameter tubular portion 31 is a portion into which the rear portion of the inner column 23 is press fitted. That is, in this example, the axially middle portion and the rear side portion of the large diameter tubular portion 25, which is the rear side portion of the inner column 23, are fitted into the front small diameter tubular portion 31, which is the front side portion of the outer column 24, by press fitting. Has been done. Further, in this state, the outer peripheral surface of the large-diameter cylindrical portion 25 is in contact with the inner peripheral surface of the front small-diameter cylindrical portion 31 only with a portion corresponding to each apex of the ridge 28 in a state having a tight margin. .
  • the front-side small-diameter cylindrical portion 31 is a part of the raw pipe that is an intermediate material of the outer column 24.
  • the thickness dimension T in of the inner column 23 is made smaller than the thickness dimension T out of the outer column 24 (excluding the bearing holding portion 36) (T in ⁇ T out ).
  • the thickness dimension T in of the large-diameter tubular portion 25 of the inner column 23 is 90% or less and 50% or more of the thickness dimension T out of the front-side small-diameter tubular portion 31 of the outer column 24.
  • the thickness dimension T out of the outer column 24 is 2.3 mm
  • the thickness dimension T in of the inner column 23 can be set to 1.6 mm to 1.8 mm.
  • the column-side bracket 17 is made of metal such as steel and has a U-shape. That is, the column-side bracket 17 includes a pair of side plate portions 41 that are spaced apart in the width direction and arranged in parallel with each other, and a connecting plate portion 42 that connects the lower end portions of the pair of side plate portions 41. Each of the side plate portions 41 has a circular through hole 43 at a position aligned with each other in the width direction.
  • the column-side bracket 17 is joined and fixed to the outer column 24 by welding and joining the upper ends of the pair of side plate portions 41 to the widthwise both sides of the front small-diameter tubular portion 31 of the outer column 24. Further, in this state, the widthwise outer side surfaces of the pair of side plate portions 41 project outward in the widthwise direction with respect to the outer peripheral surface of the front small-diameter tubular portion 31.
  • the steering shaft 15 includes a front shaft 38 arranged on the front side and a rear shaft 39 arranged on the rear side.
  • the front shaft 38 and the rear shaft 39 are spline-fitted so that torque can be transmitted and relative displacement in the axial direction is possible.
  • the rear shaft 39 is rotatably supported on the outer column 24 by a rolling bearing (not shown) internally fitted and held in the bearing holding portion 36.
  • a key lock collar (not shown) of the steering lock mechanism is externally fitted and fixed to a portion of the rear shaft 39 which is aligned with the key lock hole 37 of the outer column 24 in the axial direction.
  • the rear end of the rear shaft 39 projects in the axial direction from the inner diameter side of the outer column 24.
  • the steering wheel 1 is attached to the rear end of the rear shaft 39.
  • the front shaft 38 is rotatably supported by the inner column 23 and the gear housing 21 by a rolling bearing (not shown).
  • the front end of the front shaft 38 projects axially from the inner diameter side of the inner column 23 and is inserted inside the gear housing 21.
  • the vehicle body side bracket 18 is made of metal such as steel and includes a mounting plate portion 44 and a pair of support plate portions 45.
  • the mounting plate portion 44 constitutes the upper side portion of the vehicle body side bracket 18, and is arranged in the width direction.
  • the mounting plate portion 44 is supported on the vehicle body so that the mounting plate portion 44 can be detached forward by an impact at the time of a secondary collision.
  • the pair of support plate portions 45 are arranged substantially parallel to each other at positions sandwiching the column-side bracket 17 from both sides in the width direction.
  • the upper end portion of each of the support plate portions 45 is fixedly coupled to the widthwise intermediate portion of the mounting plate portion 44.
  • Each of the support plate portions 45 has a tilt adjusting elongated hole 46 extending in the vertical direction at a position aligned with each other in the width direction and aligned with the through hole 43 of the column-side bracket 17.
  • Each of the tilt adjusting slots 46 has an arc shape with the tilt shaft 22 as the center.
  • the clamp mechanism 19 includes an adjusting rod 47, an adjusting nut 48, a cam device 49, an adjusting lever 50, and a thrust bearing 51.
  • the adjusting rod 47 is inserted through the pair of tilt adjusting long holes 46 and the pair of through holes 43 in the width direction.
  • the adjusting rod 47 has a head portion 52 at the base end portion (left end portion in FIG. 2) and a male screw portion 53 at the tip end portion (right end portion in FIG. 2).
  • the adjusting nut 48 is screwed into the male screw portion 53.
  • the cam device 49 is arranged between the head portion 52 and one (left side in FIG. 2) support plate portion 45.
  • the cam device 49 has a driving side cam 54 located outside in the width direction and a driven side cam 55 located inside in the width direction.
  • the adjustment lever 50 has its base end fixed to the drive side cam 54.
  • the driven side cam 55 is engaged with the tilt adjusting elongated hole 46 of the one supporting plate portion 45 so as not to be able to rotate relatively.
  • the axial dimension of the cam device 49 expands or contracts based on the pressing force of the cam surfaces).
  • the thrust bearing 51 is arranged between the adjusting nut 48 and the other (right side in FIG. 2) support plate portion 45.
  • the clamp mechanism 19 is unlocked by swinging the adjustment lever 50 in a predetermined direction. That is, when the adjusting lever 50 is swung in a predetermined direction (for example, downward), the dimension of the cam device 49 in the axial direction decreases, and the distance between the driven side cam 55 and the thrust bearing 51 increases. As a result, the frictional force acting between the inner surface of the pair of support plate portions 45 in the width direction and the outer surface of the pair of side plate portions 41 in the width direction is reduced or lost, and the column side bracket 17 with respect to the vehicle body side bracket 18 is reduced. It becomes an unlocked state in which the displacement of is possible. In this unlocked state, the steering column 16a is pivotally displaced about the tilt shaft 22, so that the height position of the steering wheel 1 is within a range in which the adjusting rod 47 can move inside the pair of tilt adjusting long holes 46. Can be adjusted.
  • the clamp mechanism 19 is locked by swinging the adjustment lever 50 in a direction opposite to the predetermined direction (for example, upward). That is, when the adjusting lever 50 is swung in the direction opposite to the predetermined direction, the axial dimension of the cam device 49 increases and the distance between the driven side cam 55 and the thrust bearing 51 decreases. As a result, the frictional force acting between the inner side surfaces of the pair of support plate portions 45 in the width direction and the outer side surfaces of the pair of side plate portions 41 in the width direction increases, and the displacement of the column side bracket 17 with respect to the vehicle body side bracket 18 increases. Will be locked. Then, in this locked state, the steering wheel 1 is held at the adjusted height position.
  • the predetermined direction for example, upward
  • the contact points of the outer peripheral surface of the large-diameter cylindrical portion 25 of the inner column 23 with the inner peripheral surface of the front small-diameter cylindrical portion 31 of the outer column 24 are located at the portions corresponding to the respective tops of the ridges 28. Limited. That is, at the time of a secondary collision, of the outer peripheral surface of the large-diameter cylindrical portion 25 of the inner column 23, only the portions corresponding to the respective tops of the protrusions 28 are the inner peripheral surface of the front small-diameter cylindrical portion 31 of the outer column 24. It slides in the axial direction.
  • the outer peripheral surface of the large-diameter cylindrical portion 25 of the inner column 23 and the inner peripheral surface of the front small-diameter cylindrical portion 31 of the outer column 24 can be slid in the axial direction stably, and the impact load The absorption performance of can be made stable.
  • the steering device of this example as described above absorbs the impact load at the time of a secondary collision based on the axial sliding of the outer peripheral surface of the inner column 23 and the inner peripheral surface of the outer column 24. Therefore, from the viewpoint of sufficiently protecting the driver, the sliding resistance in the axial direction between the inner column 23 and the outer column 24, that is, the press-fit load F on the outer peripheral surface of the inner column 23 with respect to the inner peripheral surface of the outer column 24 is set. It is important to stay within the proper range. In this regard, in the steering device of this example, it is easy to keep the press-fitting load F on the outer peripheral surface of the inner column 23 with respect to the inner peripheral surface of the outer column 24 within an appropriate range. The reason for this will be described below.
  • the front small-diameter tubular portion 31 of the outer column 24 is a part of a raw pipe that is an intermediate material of the outer column 24.
  • the inner peripheral surface of the raw pipe is a cylindrical surface having high shape accuracy and small variation in inner diameter. Therefore, the inner peripheral surface of the front-side small-diameter cylindrical portion 31 is also a cylindrical surface with high shape accuracy and small variation in inner diameter. Therefore, the tightening margin of the contact portion between the inner peripheral surface of the front small-diameter tubular portion 31 and the plurality of protrusions 28 corresponds to the large-diameter tubular portion 25 of the inner column 23 and the front small-diameter tubular portion 31 of the outer column 24.
  • the variation in the tightening margin ⁇ of the fitting portion can be reduced, and the press-fitting load F on the outer peripheral surface of the large-diameter cylindrical portion 25 of the inner column 23 with respect to the inner peripheral surface of the front small-diameter cylindrical portion 31 of the outer column 24 is within an appropriate range. It becomes easy to fit in.
  • the thickness dimension T in of the inner column 23 is made smaller than the thickness dimension T out of the outer column 24 (T in ⁇ T out ). That is, in this example, a difference in rigidity (spring constant) in the radial direction is intentionally generated between the large-diameter cylindrical portion 25 of the inner column 23 and the front-side small-diameter cylindrical portion 31 of the outer column 24 that are fitted to each other. I am letting you. Specifically, the radial rigidity of the large-diameter tubular portion 25 of the inner column 23 is positively made lower than the radial rigidity of the front small-diameter tubular portion 31 of the outer column 24.
  • the interference ⁇ of the fitting portion between the large-diameter cylindrical portion 25 of the inner column 23 and the front small-diameter cylindrical portion 31 of the outer column 24 and the inner small-diameter cylindrical portion 31 of the outer column 24 Regarding the correlation with the press-fitting load F of the outer peripheral surface of the large-diameter cylindrical portion 25 of the inner column 23 with respect to the peripheral surface, it is possible to reduce the variation of the press-fitting load F with respect to the variation of the interference ⁇ , as compared with the structure of the comparative example.
  • FIG. 9 is an image diagram visualizing this point. Specifically, specifically, the interference ⁇ of the fitting portion between the large-diameter tubular portion 25 of the inner column 23 and the front small-diameter tubular portion 31 of the outer column 24 and the outer diameter. 8 is a graph showing a correlation with the press-fit load F on the outer peripheral surface of the large-diameter cylindrical portion 25 of the inner column 23 with respect to the inner peripheral surface of the front small-diameter cylindrical portion 31 of the column 24. As shown in the graph of FIG. 9, in the structure of the present example (solid line ⁇ ), the press-fit load F changes more gently with respect to the change of the tightening margin ⁇ than in the structure of the comparative example (broken line ⁇ ). ing. That is, in the structure of this example, the allowable range of the interference ⁇ for keeping the press-fit load F in the appropriate range is wider than that of the structure of the comparative example.
  • the thickness dimension T in of the inner column 23 is made smaller than the thickness dimension T out of the outer column 24, and conversely, the thickness dimension T out of the outer column 24 is set to the inner column 23. Since the thickness is larger than the thickness dimension T in , the rigidity of the outer column 24 can be easily secured. Therefore, for example, even when a large force acts from the column-side bracket 17 to the front small-diameter cylindrical portion 31 of the outer column 24 while the clamp mechanism 19 is locked, the deformation amount of the front small-diameter cylindrical portion 31 is sufficiently suppressed and the front side small-diameter cylindrical portion 31 is suppressed.
  • the contact state between the inner peripheral surface of the small-diameter cylindrical portion 31 and the plurality of protrusions 28 of the inner column 23 can be maintained in a desired contact state. Further, by operating the steering lock mechanism and rotating the steering wheel 1 with a large force in a state where the tip of the lock pin inserted through the key lock hole 37 is engaged with the engaging recess of the key lock collar, Even when a large force in the rotational direction is applied from the pin to the inner peripheral edge of the key lock hole 37, damage to the outer column 24 such as cracks can be prevented.
  • each of the ridges 28 included in the inner column 23a that forms the steering column 16a is formed over the entire length of the large-diameter tubular portion 25a.
  • each of the ridges 28 is not limited to the axial range in which the outer column 24 fits in the assembled state of the steering column 16a (FIG. 10) in the large-diameter tubular portion 25a, and also to the progress of the secondary collision. Along with this, it extends to the axial range where it fits with the outer column 24 and exists.
  • the outer column 24 starts to be displaced forward with respect to the inner column 23, and for a while, specifically, the front small-diameter tubular portion of the outer column 24.
  • the front small-diameter cylinder of the outer column 24 until the front end of 31 reaches the same front-rear position as the front end of each large-diameter tubular portion 25a of the inner column 23 (the front end of each protrusion 28).
  • the contact area between the inner peripheral surface of the portion 31 and each of the ridges 28 is kept constant without decreasing. Therefore, it is possible to increase the stroke for highly efficient shock absorption and to exhibit higher shock absorption performance.
  • each of the ridges 28 exists over the entire length of the large-diameter tubular portion 25a. Therefore, although the thickness of the inner column 23a is smaller than that of the outer column 24 (excluding the bearing holding portion 36), the bending rigidity of the entire large-diameter tubular portion 25a of the inner column 23a is reduced. Easy to secure. Other configurations and operational effects are the same as those of the first embodiment.
  • FIGS. 12 to 14 A third example of the embodiment will be described with reference to FIGS. 12 to 14.
  • This example is a modification of the first example of the embodiment.
  • the large-diameter tubular portion 25b of the inner column 23b that forms the steering column 16b has reinforcing ribs 56 that project inward in the radial direction and extend in the axial direction at a plurality of locations that are spaced apart in the circumferential direction.
  • each of the reinforcing ribs 56 is arranged at the center position in the circumferential direction between the pair of ridges 28 adjacent to each other in the circumferential direction.
  • each of the reinforcing ribs 56 exists in the axial range of the large-diameter tubular portion 25b except the front end portion. More specifically, each of the reinforcing ribs 56 includes an axial range that includes, in the large-diameter tubular portion 25b, each of the ridges 28, and that extends slightly forward of the axial range. It exists in the directional range.
  • each of the reinforcing ribs 56 is a plastically deformable portion formed by plastically deforming a part of the large-diameter cylindrical portion 25b toward the inner side in the radial direction, and has an arc shape that is convex inward in the radial direction. It has a cross-sectional shape.
  • press working can be adopted as the plastic working for forming the reinforcing rib 56.
  • the inner column 23b has a smaller thickness than the outer column 24 (excluding the bearing holding portion 36), but the inner column 23b has a large diameter tube. It is easy to secure bending rigidity in the axial range of the portion 25b where the reinforcing ribs 56 are present. Other configurations and operational effects are the same as those of the first embodiment.
  • FIGS. 15 and 16 A fourth example of the embodiment will be described with reference to FIGS. 15 and 16.
  • This example is a modification of the third example of the embodiment.
  • the protrusions 28 and the reinforcing ribs 56 included in the inner column 23c that configures the steering column 16c are formed over the entire length of the large-diameter tubular portion 25c. Therefore, the bending rigidity of the large-diameter tubular portion 25c can be more easily ensured.
  • Other configurations and operational effects are similar to those of the second and third examples of the embodiment.
  • FIGS. 17 and 18 A fifth example of the embodiment will be described with reference to FIGS. 17 and 18.
  • This example is a modification of the first example of the embodiment.
  • the inner column 23d that forms the steering column 16d has a cylindrical shape whose diameter does not change over the entire length except for the portion where the protrusion 28 is formed.
  • the number of steps for manufacturing the inner column 23d can be reduced, so that the manufacturing cost can be suppressed.
  • Other configurations and operational effects are the same as those of the first embodiment.
  • FIGS. 19 and 20 A sixth example of the embodiment will be described with reference to FIGS. 19 and 20.
  • This example is a modification of the fifth example of the embodiment.
  • each of the ridges 28 included in the inner column 23e forming the steering column 16e is formed over the entire length of the inner column 23e.
  • the cross-sectional shape of the inner column 23e is the same at any position in the axial direction. Therefore, the inner column 23e can be manufactured at low cost by, for example, manufacturing a long intermediate material having the same cross-sectional shape as the inner column 23e and then cutting this intermediate material into a predetermined length.
  • Other configurations and operational effects are similar to those of the second and fifth examples of the embodiment.
  • a seventh example of the embodiment will be described with reference to FIGS. 21 and 22.
  • This example is a modification of the fifth example of the embodiment.
  • the inner column 23f which constitutes the steering column 16f, has the protrusions 28 at a plurality of circumferential circumferential positions of the rear end portion and the intermediate portion in the axial direction, and the circumferential direction of the front end portion and the intermediate portion in the axial direction.
  • Reinforcing ribs 56 are provided at a plurality of locations.
  • the axial range in which the protrusions 28 are formed and the axial range in which the reinforcing ribs 56 are formed overlap only at the axially intermediate portion of the inner column 23f, and the inner column 23f is formed. There is no overlap on the front and rear sides of the. Therefore, it is easy to improve the shape accuracy of the inner column 23f in the front side portion and the rear side portion of the inner column 23f.
  • Other configurations and operational effects are similar to those of the third and fifth examples of the embodiment.
  • FIGS. 23 and 24 An eighth example of the embodiment will be described with reference to FIGS. 23 and 24.
  • This example is a modification of the seventh example of the embodiment.
  • each of the protrusions 28 and the reinforcing ribs 56 included in the inner column 23g that configures the steering column 16g is formed over the entire length of the inner column 23g.
  • Other configurations and operational effects are similar to those of the second and sixth examples of the embodiment.
  • the inner peripheral surface of the outer column and the outer peripheral surface of the inner column are contacted with each other only at a plurality of positions separated in the circumferential direction in a state with a tightening margin via other members. It is also possible to adopt the structure which has.
  • the other member for example, a metal wire rod arranged in the axial direction can be used.
  • the thickness dimension T in of the inner column is made smaller than the thickness dimension T out of the outer column (excluding the bearing holding portion) (T in ⁇ T out ), so that The radial rigidity of at least a portion of the inner column that fits with the outer column is lower than the radial rigidity of at least a portion of the outer column that fits with the inner column.
  • the outer column and the inner column have the same thickness, but the outer column is made of steel or alloy steel, and the inner column is made of aluminum or an aluminum alloy.
  • the rigidity of at least a portion of the outer column that fits with the outer column in the radial direction may be lower than the rigidity of the portion of the outer column that fits with the inner column in the radial direction.
  • the outer column and the inner column are made of the same material, and the outer column and the inner column have the same thickness dimension, but within a range that does not reduce the shape accuracy of the inner peripheral surface of the outer column. Even by providing a reinforcing member such as a reinforcing ring on the outer peripheral surface of the column, the rigidity in the radial direction of at least the portion of the inner column that fits with the outer column is at least the inner column of the outer column.
  • the rigidity can be made lower than the rigidity of the fitting portion in the radial direction.

Abstract

[Problem] To provide a structure in which the axial sliding resistance between an inner column and an outer column can be easily set in an appropriate range. [Solution] The present invention is provided with a cylindrical outer column 24 and a cylindrical inner column 23 which is fitted in and supported by the outer column 24. The inner peripheral surface of the outer column 24 and the outer peripheral surface of the inner column 23 are in contact with each other while only a plurality of portions separated from each other in a circumferential direction have a fastening allowance. The rigidity in a radial direction of at least the portion of the inner column 23, which fits to the outer column 24, is lower than the rigidity in the radial direction of at least the portion of the outer column 24, which fits to the inner column 23.

Description

ステアリングコラムおよびステアリング装置Steering column and steering device
 本発明は、二次衝突時の衝撃荷重の吸収機能を有するステアリングコラム、および、該ステアリングコラムを備えたステアリング装置に関する。 The present invention relates to a steering column having a function of absorbing an impact load at the time of a secondary collision, and a steering device equipped with the steering column.
 図25は、自動車用のステアリング装置の1例を示している。運転者により操作されるステアリングホイール1は、ステアリングシャフト2の後側端部に取り付けられている。ステアリングシャフト2は、車体に支持された筒状のステアリングコラム3の内径側に回転自在に支持されている。ステアリングホイール1の回転運動は、ステアリングシャフト2、自在継手4a、中間シャフト5、および別の自在継手4bを介して、ステアリングギヤユニット6を構成するピニオン軸7に伝達される。ピニオン軸7の回転運動は、ステアリングギヤユニット6を構成する図示しないラック軸の直線運動に変換される。これにより、1対のタイロッド8が押し引きされ、左右1対の操舵輪に、ステアリングホイール1の操作量に応じた舵角が付与される。 FIG. 25 shows an example of a steering device for an automobile. A steering wheel 1 operated by a driver is attached to a rear end portion of a steering shaft 2. The steering shaft 2 is rotatably supported on the inner diameter side of a tubular steering column 3 supported by the vehicle body. The rotational movement of the steering wheel 1 is transmitted to the pinion shaft 7 constituting the steering gear unit 6 via the steering shaft 2, the universal joint 4a, the intermediate shaft 5, and another universal joint 4b. The rotational movement of the pinion shaft 7 is converted into a linear movement of a rack shaft (not shown) that constitutes the steering gear unit 6. As a result, the pair of tie rods 8 are pushed and pulled, and the pair of left and right steered wheels is provided with a steering angle according to the operation amount of the steering wheel 1.
 なお、ステアリング装置に関して、前後方向、幅方向、および上下方向は、ステアリング装置が組み付けられる車体の前後方向、幅方向、および上下方向である。 Regarding the steering device, the front-rear direction, the width direction, and the up-down direction are the front-rear direction, the width direction, and the up-down direction of the vehicle body on which the steering device is assembled.
 図26~図28は、特開2013-136385号公報に記載された、ステアリング装置のより具体的な構造を示している。このステアリング装置は、自動車の衝突事故に伴う二次衝突時の衝撃荷重の吸収機能を有する。 26 to 28 show a more specific structure of the steering device described in Japanese Patent Laid-Open No. 2013-136385. This steering device has a function of absorbing an impact load at the time of a secondary collision caused by a collision accident of an automobile.
 ステアリングコラム3aは、前側に配された筒状のインナコラム9と、後側に配された筒状のアウタコラム10とを備える。インナコラム9の後側部は、アウタコラム10の前側部に圧入により内嵌されている。インナコラム9は、後側部の外周面の周方向等間隔となる4箇所に、径方向外側に突出しかつ軸方向に伸長する突条11を有する。インナコラム9の外周面は、突条11のそれぞれの頂部に対応する部分のみで、アウタコラム10の内周面と締め代を有する状態で接触している。 The steering column 3a includes a cylindrical inner column 9 arranged on the front side and a cylindrical outer column 10 arranged on the rear side. The rear side portion of the inner column 9 is fitted into the front side portion of the outer column 10 by press fitting. The inner column 9 has ridges 11 projecting outward in the radial direction and extending in the axial direction at four locations on the outer peripheral surface of the rear side portion at equal intervals in the circumferential direction. The outer peripheral surface of the inner column 9 is in contact with the inner peripheral surface of the outer column 10 with a tightening margin only at the portions corresponding to the tops of the protrusions 11.
 インナコラム9は、通常時だけでなく、二次衝突時にも、車体に対して前方へ変位しないように支持されている。このために、インナコラム9の前側端部は、車体に支持された電動アシスト装置12を構成するギヤハウジング13の後側端部に結合固定されている。アウタコラム10の軸方向中間部は、車体に取り付けられる車体側ブラケット14などを介して、二次衝突時の衝撃により前方への変位が可能となるように支持されている。 The inner column 9 is supported so as not to move forward with respect to the vehicle body not only during normal operation but also during a secondary collision. For this reason, the front end of the inner column 9 is fixedly coupled to the rear end of the gear housing 13 that constitutes the electric assist device 12 supported by the vehicle body. The axially intermediate portion of the outer column 10 is supported via a vehicle body side bracket 14 attached to the vehicle body and the like so that it can be displaced forward by an impact at the time of a secondary collision.
 衝突事故の際には、二次衝突時の衝撃荷重によって、ステアリングホイール1(図25参照)と、ステアリングシャフト2aの後側部を構成する後側シャフトと、アウタコラム10とが、インナコラム9に対して前方へ変位する。そして、この際に、インナコラム9の外周面とアウタコラム10の内周面とが軸方向に摺動することに基づいて、二次衝突時の衝撃荷重が吸収される。 In the event of a collision accident, the steering wheel 1 (see FIG. 25), the rear shaft that constitutes the rear side portion of the steering shaft 2a, and the outer column 10 are caused by the inner column 9 due to the impact load at the time of the secondary collision. Displace forward with respect to. Then, at this time, the impact load at the time of the secondary collision is absorbed due to the outer peripheral surface of the inner column 9 and the inner peripheral surface of the outer column 10 sliding in the axial direction.
 特に、上述したステアリング装置では、アウタコラム10の内周面に対するインナコラム9の外周面の接触箇所が、突条11のそれぞれの頂部に対応する部分に限定されている。すなわち、二次衝突時には、インナコラム9の外周面のうち、突条11のそれぞれの頂部に対応する部分のみが、アウタコラム10の内周面と軸方向に摺動する。このため、二次衝突時にインナコラム9の外周面とアウタコラム10の内周面とを軸方向に安定して摺動させることができ、衝撃荷重の吸収性能を安定したものとすることができる。 In particular, in the above-described steering device, the contact points of the outer peripheral surface of the inner column 9 with the inner peripheral surface of the outer column 10 are limited to the portions corresponding to the tops of the protrusions 11. That is, at the time of a secondary collision, only the portion of the outer peripheral surface of the inner column 9 corresponding to the tops of the protrusions 11 slides axially with the inner peripheral surface of the outer column 10. Therefore, at the time of a secondary collision, the outer peripheral surface of the inner column 9 and the inner peripheral surface of the outer column 10 can be stably slid in the axial direction, and the impact load absorbing performance can be made stable. .
特開2013-136385号公報JP, 2013-136385, A
 図26~図28に示した従来構造は、以下のような点で、改良の余地がある。 The conventional structure shown in FIGS. 26 to 28 has room for improvement in the following points.
 すなわち、図26~図28に示した従来構造は、インナコラム9の外周面とアウタコラム10の内周面とを軸方向に摺動させることに基づいて二次衝突時の衝撃荷重を吸収するものであるため、運転者の保護を十分に図る観点から、インナコラム9とアウタコラム10との軸方向の摺動抵抗、すなわち、アウタコラム10の内周面に対するインナコラム9の外周面の圧入荷重Fを適正範囲に収めることが重要となる。 That is, in the conventional structure shown in FIGS. 26 to 28, the shock load at the time of a secondary collision is absorbed by sliding the outer peripheral surface of the inner column 9 and the inner peripheral surface of the outer column 10 in the axial direction. Therefore, from the viewpoint of sufficiently protecting the driver, the sliding resistance in the axial direction between the inner column 9 and the outer column 10, that is, the press fit of the outer peripheral surface of the inner column 9 to the inner peripheral surface of the outer column 10. It is important to keep the load F within an appropriate range.
 ここで、図26~図28に示した従来構造では、インナコラム9とアウタコラム10とは、厚さ寸法が互いに等しくなっており、それぞれが十分に高い剛性を有する。このため、インナコラム9とアウタコラム10との嵌合部の締め代λがわずかに変化しただけでも、アウタコラム10の内周面に対するインナコラム9の外周面の圧入荷重Fが大きく変化しやすい。換言すれば、圧入荷重Fを適正範囲に収めるための、締め代λの許容範囲が狭くなりやすい。 Here, in the conventional structure shown in FIGS. 26 to 28, the inner column 9 and the outer column 10 have the same thickness dimension, and each has sufficiently high rigidity. Therefore, even if the tightening margin λ of the fitting portion between the inner column 9 and the outer column 10 is slightly changed, the press-fit load F on the outer peripheral surface of the inner column 9 with respect to the inner peripheral surface of the outer column 10 is likely to be greatly changed. . In other words, the allowable range of the interference λ for keeping the press-fit load F within the proper range tends to be narrowed.
 したがって、図26~図28に示した従来構造では、圧入荷重Fを適正範囲に収めるために、締め代λのばらつき幅を小さくすべく、インナコラム9およびアウタコラム10を高精度な設備を用いて製造したり、インナコラム9とアウタコラム10とを選択的に組み合わせたりするといった、製造コストが嵩む手段を採用しなければならない可能性がある。 Therefore, in the conventional structure shown in FIGS. 26 to 28, in order to keep the press-fit load F within an appropriate range, the inner column 9 and the outer column 10 are provided with highly accurate equipment in order to reduce the variation width of the tightening margin λ. There is a possibility that it is necessary to adopt means for increasing the manufacturing cost, such as manufacturing by manufacturing or selectively combining the inner column 9 and the outer column 10.
 本発明の目的は、インナコラムとアウタコラムとの軸方向の摺動抵抗を適正範囲に収めることが容易なステアリングコラムの構造を実現することにある。 An object of the present invention is to realize a structure of a steering column in which the sliding resistance in the axial direction between the inner column and the outer column can be easily kept within an appropriate range.
 本発明のステアリングコラムは、筒状のアウタコラムと、前記アウタコラムに内嵌支持された筒状のインナコラムとを備える。 The steering column of the present invention includes a tubular outer column and a tubular inner column that is fitted in and supported by the outer column.
 前記アウタコラムの内周面と前記インナコラムの外周面とは、周方向に離隔した複数箇所でのみ直接または他の部材を介して締め代を有する状態で接触している。 The inner peripheral surface of the outer column and the outer peripheral surface of the inner column are in contact with each other only at a plurality of locations that are separated from each other in the circumferential direction, directly or through other members in a state of having a tightening margin.
 前記インナコラムのうちで少なくとも前記アウタコラムと嵌合する部分の径方向に関する剛性は、前記アウタコラムのうちで少なくとも前記インナコラムと嵌合する部分の径方向に関する剛性よりも低い。 The rigidity of at least a portion of the inner column that fits with the outer column in the radial direction is lower than the rigidity of at least a portion of the outer column that fits with the inner column in the radial direction.
 本発明のステアリングコラムにおいては、前記インナコラムのうちで少なくとも前記アウタコラムと嵌合する部分の厚さ寸法が、前記アウタコラムのうちで少なくとも前記インナコラムと嵌合する部分の厚さ寸法よりも小さい構成を採用することができる。 In the steering column of the present invention, the thickness dimension of at least a portion of the inner column that fits with the outer column is greater than the thickness dimension of at least a portion of the outer column that fits with the inner column. A small configuration can be adopted.
 本発明のステアリングコラムにおいては、前記インナコラムが、外周面の周方向に離隔した複数箇所に、径方向外側に突出しかつ軸方向に伸長する突条を有しており、前記インナコラムの外周面が、前記突条のそれぞれの頂部に対応する部分のみで前記アウタコラムの内周面と締め代を有する状態で接触する構成を採用することができる。 In the steering column of the present invention, the inner column has, at a plurality of circumferentially spaced positions on the outer peripheral surface, ridges that project radially outward and extend in the axial direction. However, it is possible to employ a configuration in which only the portions corresponding to the tops of the protrusions are in contact with the inner peripheral surface of the outer column in a state having a tight margin.
 本発明のステアリングコラムにおいては、前記突条が、前記インナコラムのうち、二次衝突の進行に伴って前記アウタコラムと嵌合する部分にも存在する構成を採用することができる。また、前記突条が、前記インナコラムの全長にわたって形成されている構成を採用することもできる。 In the steering column of the present invention, it is possible to adopt a configuration in which the protrusion is also present in a portion of the inner column that fits with the outer column as a secondary collision progresses. It is also possible to adopt a configuration in which the protrusion is formed over the entire length of the inner column.
 本発明のステアリングコラムにおいては、前記インナコラムが、周方向に離隔した複数箇所に、径方向内側に突出しかつ軸方向に伸長する補強リブをさらに備えた構成を採用することができる。 In the steering column of the present invention, it is possible to adopt a configuration in which the inner column is further provided with a plurality of reinforcing ribs protruding inward in the radial direction and extending in the axial direction at a plurality of locations spaced apart in the circumferential direction.
 前記アウタコラムのうちで少なくとも前記インナコラムと嵌合する部分は、該アウタコラムの中間素材となる素管の一部により構成されていることが好ましい。 It is preferable that at least a portion of the outer column that fits with the inner column is formed of a part of a raw pipe that is an intermediate material of the outer column.
 本発明のステアリング装置は、ステアリングコラムと、該ステアリングコラムの内径側に回転自在に支持され、ステアリングホイールを取り付け可能な後側端部を有するステアリングシャフトと、および、前記ステアリングコラムを車体に対して支持するための車体側ブラケットと、を備える。 A steering device of the present invention includes a steering column, a steering shaft that is rotatably supported on an inner diameter side of the steering column, and has a rear end portion to which a steering wheel can be attached, and the steering column with respect to a vehicle body. And a vehicle-body-side bracket for supporting.
 前記ステアリングコラムは、本発明のステアリングコラムにより構成されている。 The steering column is composed of the steering column of the present invention.
 また、前記インナコラムが、前記アウタコラムの前側に配され、かつ、前記車体に対して前方への変位を阻止された状態で支持されている。 Also, the inner column is arranged on the front side of the outer column and is supported in a state in which the forward displacement with respect to the vehicle body is prevented.
 本発明によれば、インナコラムとアウタコラムとの軸方向の摺動抵抗を適正範囲に収めることが容易となる。 According to the present invention, it becomes easy to keep the sliding resistance in the axial direction between the inner column and the outer column within an appropriate range.
図1は、本発明の実施の形態の第1例に関する、ステアリング装置の側面図である。FIG. 1 is a side view of a steering device according to a first example of an embodiment of the present invention. 図2は、一部を省略して示す、図1のA-A断面図である。FIG. 2 is a sectional view taken along the line AA of FIG. 1 with a part thereof omitted. 図3は、図2からステアリングコラムのみを取り出して示す図である。FIG. 3 is a diagram showing only the steering column from FIG. 図4は、本発明の実施の形態の第1例に関する、ステアリングコラムを上方から見た斜視図である。FIG. 4 is a perspective view of the steering column as seen from above according to the first example of the embodiment of the present invention. 図5は、本発明の実施の形態の第1例に関する、ステアリングコラムの側面図である。FIG. 5 is a side view of the steering column according to the first example of the embodiment of the present invention. 図6は、本発明の実施の形態の第1例に関して、ステアリングコラムのみを取り出して示す、図2のB-B断面図である。FIG. 6 is a sectional view taken along line BB of FIG. 2, showing only the steering column in the first example of the embodiment of the present invention. 図7は、本発明の実施の形態の第1例に関する、前側コラムを上方から見た斜視図である。FIG. 7: is a perspective view which looked at the front side column from the upper part regarding the 1st example of embodiment of this invention. 図8(a)は、本発明の実施の形態の第1例に関する、前側コラムおよび取付板を後側から見た図であり、図8(b)は、図8(a)のC部拡大図である。FIG. 8A is a diagram of the front column and the mounting plate as seen from the rear side in the first example of the embodiment of the present invention, and FIG. 8B is an enlarged view of the C portion of FIG. 8A. It is a figure. 図9は、本発明の実施の形態の第1例の構造、および、比較例の構造に関して、アウタコラムの内周面に対する突条の締め代と、アウタコラムに対するインナコラムの摺動抵抗(圧入荷重)との相関を示す線図である。FIG. 9 shows the tightening margins of the ridges on the inner peripheral surface of the outer column and the sliding resistance (press-fitting) of the inner column to the outer column regarding the structure of the first example of the embodiment of the present invention and the structure of the comparative example. It is a diagram which shows the correlation with a load. 図10は、本発明の実施の形態の第2例に関する、図6に相当する図である。FIG. 10 is a diagram corresponding to FIG. 6 regarding the second example of the exemplary embodiment of the present invention. 図11は、本発明の実施の形態の第2例に関する、図7に相当する図である。FIG. 11 is a diagram corresponding to FIG. 7 regarding the second example of the exemplary embodiment of the present invention. 図12は、本発明の実施の形態の第3例に関する、図6に相当する図である。FIG. 12 is a view, which corresponds to FIG. 6 and relates to the third example of the embodiment of the present invention. 図13は、本発明の実施の形態の第3例に関する、図7に相当する図である。FIG. 13 is a diagram corresponding to FIG. 7 regarding a third example of the exemplary embodiment of the present invention. 図14(a)は、本発明の実施の形態の第3例に関する、前側コラムおよび取付板を後側から見た図であり、図14(b)は、図14(a)のD部拡大図であり、図14(c)は、図14(a)のE部拡大図である。FIG. 14A is a diagram of the front column and the mounting plate as seen from the rear side regarding the third example of the embodiment of the present invention, and FIG. 14B is an enlarged view of part D of FIG. 14A. It is a figure and FIG.14 (c) is the E section enlarged view of FIG.14 (a). 図15は、本発明の実施の形態の第4例に関する、図6に相当する図である。FIG. 15 is a diagram corresponding to FIG. 6 and relating to the fourth example of the embodiment of the present invention. 図16は、本発明の実施の形態の第4例に関する、図7に相当する図である。FIG. 16 is a diagram corresponding to FIG. 7 regarding the fourth example of the exemplary embodiment of the present invention. 図17は、本発明の実施の形態の第5例に関する、図6に相当する図である。FIG. 17 is a diagram corresponding to FIG. 6 and relating to the fifth example of the embodiment of the present invention. 図18は、本発明の実施の形態の第5例に関する、図7に相当する図である。FIG. 18 is a diagram corresponding to FIG. 7 regarding a fifth example of the exemplary embodiment of the present invention. 図19は、本発明の実施の形態の第6例に関する、図6に相当する図である。FIG. 19 is a diagram corresponding to FIG. 6 regarding a sixth example of the embodiment of the present invention. 図20は、本発明の実施の形態の第6例に関する、図7に相当する図である。FIG. 20 is a diagram corresponding to FIG. 7 regarding the sixth example of the embodiment of the present invention. 図21は、本発明の実施の形態の第7例に関する、図6に相当する図である。FIG. 21 is a diagram corresponding to FIG. 6 and relating to the seventh example of the embodiment of the present invention. 図22は、本発明の実施の形態の第7例に関する、図7に相当する図である。22 is a diagram corresponding to FIG. 7 regarding the seventh example of the embodiment of the present invention. 図23は、本発明の実施の形態の第8例に関する、図6に相当する図である。FIG. 23 is a diagram corresponding to FIG. 6 regarding the eighth example of the embodiment of the present invention. 図24は、本発明の実施の形態の第8例に関する、図7に相当する図である。FIG. 24 is a diagram corresponding to FIG. 7 regarding the eighth example of the embodiment of the present invention. 図25は、ステアリング装置の従来構造の1例を示す斜視図である。FIG. 25 is a perspective view showing an example of a conventional structure of a steering device. 図26は、ステアリング装置のより具体的な構造の1例を示す側面図である。FIG. 26 is a side view showing an example of a more specific structure of the steering device. 図27は、一部を省略して示す、図26のF-F断面図である。FIG. 27 is a cross-sectional view taken along the line FF of FIG. 26 with a part omitted. 図28は、インナコラムおよびアウタコラムのみを取り出して示す、図27と同様の断面図である。28 is a sectional view similar to FIG. 27, showing only the inner column and the outer column.
 [実施の形態の第1例]
 実施の形態の第1例について、図1~図9を用いて説明する。
[First Example of Embodiment]
A first example of the embodiment will be described with reference to FIGS. 1 to 9.
 本例のステアリング装置は、たとえば図1および図2に示すように、ステアリングシャフト15と、ステアリングコラム16と、車体側ブラケット18とを備える。 The steering apparatus of this example includes a steering shaft 15, a steering column 16, and a vehicle body side bracket 18, as shown in FIGS. 1 and 2, for example.
 ステアリングシャフト15は、筒状のステアリングコラム16の内径側に回転自在に支持されている。運転者により操作されるステアリングホイール1(図25参照)は、ステアリングシャフト15の後側端部に取り付けられる。車体側ブラケット18は、ステアリングコラム16を車体に対して支持するためのものである。 The steering shaft 15 is rotatably supported on the inner diameter side of a cylindrical steering column 16. The steering wheel 1 (see FIG. 25) operated by the driver is attached to the rear end of the steering shaft 15. The vehicle body side bracket 18 is for supporting the steering column 16 with respect to the vehicle body.
 本例のステアリング装置は、ステアリングホイール1の高さ位置を調節可能とするチルト機構を備える。このため、本例のステアリング装置は、クランプ機構19を備える。クランプ機構19は、ステアリングホイール1の高さ位置を調節可能とするために、ステアリングコラム16が車体側ブラケット18に対して上下方向に変位することを許容するアンロック状態と、ステアリングコラム16が車体側ブラケット18に対して上下方向に変位することを阻止するロック状態とを切り換えるためのものである。ただし、本発明は、チルト機構を備えない構造(テレスコピック機能を備えるか否かは問われない)にも適用可能である。 The steering device of this example includes a tilt mechanism that allows the height position of the steering wheel 1 to be adjusted. Therefore, the steering device of this example includes the clamp mechanism 19. In order to adjust the height position of the steering wheel 1, the clamp mechanism 19 is in an unlocked state in which the steering column 16 is vertically displaced with respect to the vehicle body side bracket 18, and the steering column 16 is in the vehicle body. This is for switching between a locked state that prevents the side bracket 18 from being displaced in the vertical direction. However, the present invention is also applicable to a structure that does not have a tilt mechanism (whether or not it has a telescopic function).
このような本例のステアリング装置について、以下、より具体的に説明する。 The steering device of this example will be described more specifically below.
 ステアリングコラム16は、たとえば図4~図6に示すように、前側に配されたインナコラム23と、後側に配されたアウタコラム24と、アウタコラム24に結合固定されたコラム側ブラケット17とを備える。ただし、本発明は、かかる構造のステアリングコラム16への適用に限定されず、インナコラムが後側に配され、アウタコラムが前側に配される構造を有するステアリングコラムにも適用可能である。かかる場合、下記の説明において、前後方向に関する記述に関して、原則として、その前後が逆となる。 As shown in, for example, FIGS. 4 to 6, the steering column 16 includes an inner column 23 arranged on the front side, an outer column 24 arranged on the rear side, and a column side bracket 17 connected and fixed to the outer column 24. Equipped with. However, the present invention is not limited to the application to the steering column 16 having such a structure, and is also applicable to a steering column having a structure in which the inner column is arranged on the rear side and the outer column is arranged on the front side. In such a case, in the following description, the description about the front-back direction will be reversed in principle.
 インナコラム23およびアウタコラム24のそれぞれは、鋼、合金鋼、アルミニウム、アルミニウム合金などの金属製の略円筒状部材である。本例では、インナコラム23およびアウタコラム24のそれぞれは、中間素材である引抜き管などの素管に対して、ハイドロフォーミングや絞り加工などの塑性加工を施すことにより、この素管の軸方向の一部分の内径寸法および外径寸法を変化させる工程を含む、所定の製造方法によって造られている。なお、本発明を実施する場合、インナコラム23およびアウタコラム24のそれぞれは、鋳造などの他の製造方法によって製造することもできる。本例では、インナコラム23の厚さ寸法は、全体的にほぼ一定であり、アウタコラム24の厚さ寸法は、後側端部(後述する軸受保持部36)を除いた残りの部分でほぼ一定である。インナコラム23の後側部は、アウタコラム24の前側部に、圧入により内嵌されている。換言すれば、インナコラム23の後側部は、アウタコラム24の前側部に、締り嵌めにより内嵌されている。 Each of the inner column 23 and the outer column 24 is a substantially cylindrical member made of metal such as steel, alloy steel, aluminum, and aluminum alloy. In the present example, each of the inner column 23 and the outer column 24 is formed by subjecting a raw pipe such as a drawn pipe, which is an intermediate material, to plastic working such as hydroforming or drawing so that the axial direction of the raw pipe is reduced. It is manufactured by a predetermined manufacturing method including a step of changing an inner diameter dimension and an outer diameter dimension of a part. When the present invention is implemented, each of the inner column 23 and the outer column 24 can be manufactured by another manufacturing method such as casting. In this example, the thickness dimension of the inner column 23 is substantially constant as a whole, and the thickness dimension of the outer column 24 is substantially the same in the remaining portion except the rear end portion (bearing holding portion 36 described later). It is constant. The rear side portion of the inner column 23 is press fitted into the front side portion of the outer column 24. In other words, the rear side portion of the inner column 23 is internally fitted to the front side portion of the outer column 24 by an interference fit.
 インナコラム23は、円筒状の大径筒部25と、大径筒部25よりも前側に位置する円筒状の小径筒部26とを備える。小径筒部26の外径寸法は、大径筒部25の外径寸法よりも小さい。また、大径筒部25の前側端部と小径筒部26の後側端部とは、前側に向かうほど外径寸法が小さくなる円すい筒状の連結部27により連結されている。 The inner column 23 includes a cylindrical large-diameter tubular portion 25 and a cylindrical small-diameter tubular portion 26 located in front of the large-diameter tubular portion 25. The outer diameter dimension of the small diameter tubular portion 26 is smaller than the outer diameter dimension of the large diameter tubular portion 25. Further, the front end of the large-diameter tubular portion 25 and the rear end of the small-diameter tubular portion 26 are connected by a conical tubular connecting portion 27 whose outer diameter size decreases toward the front side.
 大径筒部25は、外周面の周方向に離隔した複数箇所(3箇所以上)に、径方向外側に突出しかつ軸方向に伸長する突条28を有する。本例では、突条28は、大径筒部25の外周面の周方向等間隔となる4箇所に配されている。また、突条28のそれぞれは、大径筒部25のうち、ステアリングコラム16の組立状態でアウタコラム24と嵌合する軸方向範囲、具体的には、大径筒部25の軸方向の後側端部および中間部に対応する連続した軸方向範囲に存在している。 The large-diameter tubular portion 25 has ridges 28 that project radially outward and extend axially at a plurality of locations (three or more locations) that are spaced apart in the circumferential direction on the outer peripheral surface. In this example, the protrusions 28 are arranged at four locations on the outer peripheral surface of the large-diameter cylindrical portion 25 at equal intervals in the circumferential direction. In addition, each of the ridges 28 is, in the large-diameter cylindrical portion 25, an axial range in which the steering column 16 is fitted to the outer column 24, specifically, a rear portion in the axial direction of the large-diameter cylindrical portion 25. It lies in a continuous axial range corresponding to the side edges and the middle portion.
 本例では、突条28のそれぞれは、大径筒部25の一部を径方向外側に向けて塑性変形させることで形成されている。このため、突条28のそれぞれの背面側には、軸方向に伸長する凹溝が存在している。なお、突条28を形成するための塑性加工としては、たとえばプレス加工などを採用することができる。 In this example, each of the ridges 28 is formed by plastically deforming a part of the large-diameter tubular portion 25 toward the outside in the radial direction. For this reason, a concave groove extending in the axial direction is present on the back surface side of each of the ridges 28. As the plastic working for forming the protrusions 28, for example, press working can be adopted.
 また、突条28の径方向外側面は、凸円弧形の断面形状を有する。なお、本例では、突条28の径方向高さ寸法H28を、大径筒部25の外周面の突条28から外れた箇所の外径寸法D25の0.5%以上7.0%以下としている(図3参照)。たとえば、大径筒部25の外周面の突条28から外れた箇所の外径寸法D25が38.5mmである場合には、突条28の径方向高さ寸法H28を0.5mm~1.0mmとすることができる。 Further, the radially outer surface of the protrusion 28 has a convex arc-shaped cross-sectional shape. In this example, the radial height dimension H 28 of the ridge 28 is 0.5% or more of the outer diameter dimension D 25 of the outer peripheral surface of the large-diameter tubular portion 25, which is off the ridge 28, 7.0. % Or less (see FIG. 3). For example, when the outer diameter D 25 of a portion deviated from the outer peripheral surface of the projection 28 of the large diameter cylindrical portion 25 is 38.5mm, the radial height H 28 of the protrusion 28 0.5 mm ~ It can be 1.0 mm.
 インナコラム23は、通常時だけでなく、二次衝突時にも、車体に対して前方へ変位しないように支持されている。このために、インナコラム23の前側端部は、車体に支持された電動アシスト装置20を構成するギヤハウジング21の後側端部に結合固定されている。電動アシスト装置20は、ステアリングホイール1から操舵輪につながる操舵力伝達経路に、電動モータ40を動力源として発生した補助動力を付与することにより、運転者がステアリングホイール1を操作するのに要する力を低減するものである。本例では、ステアリングホイール1の高さ位置を調節可能とするために、ギヤハウジング21は、車体に対し、チルト軸22を中心とする揺動変位を可能に支持されている。 The inner column 23 is supported so as not to move forward with respect to the vehicle body not only during normal operation but also during a secondary collision. For this reason, the front end of the inner column 23 is coupled and fixed to the rear end of the gear housing 21 that constitutes the electric assist device 20 supported by the vehicle body. The electric assist device 20 applies the auxiliary power generated from the electric motor 40 as a power source to the steering force transmission path that connects the steering wheel 1 to the steered wheels, and thereby the force required for the driver to operate the steering wheel 1. Is to reduce. In this example, in order to adjust the height position of the steering wheel 1, the gear housing 21 is supported with respect to the vehicle body so as to be swingable about the tilt shaft 22.
 また、本例では、ステアリングコラム16は、インナコラム23の前側端部をギヤハウジング21の後側端部に結合固定するための取付板29をさらに備える。取付板29は、環状の平板部材であり、インナコラム23の小径筒部26の前側端部に外嵌固定されている。取付板29は、周方向に離隔した複数箇所(図示の例では3箇所)に、取付孔30を有する。一方、ギヤハウジング21は、後側端部のうち、取付板29の取付孔30のそれぞれと整合する箇所に、図示しないねじ孔を有する。インナコラム23の前側端部は、取付板29の取付孔30のそれぞれに後側から挿通した図示しないボルトを、ギヤハウジング21の前記ねじ孔に螺合することによって、ギヤハウジング21の後側端部に結合固定されている。 Further, in this example, the steering column 16 further includes a mounting plate 29 for coupling and fixing the front end of the inner column 23 to the rear end of the gear housing 21. The mounting plate 29 is an annular flat plate member, and is externally fitted and fixed to the front end of the small-diameter tubular portion 26 of the inner column 23. The mounting plate 29 has mounting holes 30 at a plurality of locations (three locations in the illustrated example) spaced apart in the circumferential direction. On the other hand, the gear housing 21 has screw holes (not shown) in the rear end portion at positions that are aligned with the mounting holes 30 of the mounting plate 29. The front end portion of the inner column 23 has a rear end portion of the gear housing 21 formed by screwing unillustrated bolts, which are inserted into the mounting holes 30 of the mounting plate 29 from the rear side, into the screw holes of the gear housing 21. It is fixedly connected to the section.
 本例では、インナコラム23の前側端部がギヤハウジング21の後側端部に結合固定された状態で、ギヤハウジング21に対する複数の突条28の周方向位置、すなわち、使用状態での複数の突条28の周方向位置が一義的に決まるように、取付板29が備える取付孔30の周方向に関する配置の位相が規制されている。具体的には、取付孔30が周方向に関して不等間隔に配されている。 In this example, in the state where the front end of the inner column 23 is fixedly coupled to the rear end of the gear housing 21, the circumferential positions of the plurality of ridges 28 with respect to the gear housing 21, that is, the plurality of ridges 28 in the used state are used. The phase of the arrangement of the mounting holes 30 of the mounting plate 29 in the circumferential direction is regulated so that the circumferential position of the ridge 28 is uniquely determined. Specifically, the mounting holes 30 are arranged at unequal intervals in the circumferential direction.
 本例では、使用状態での複数の突条28の周方向位置を、図2および図3に示すように、上端部から周方向両側にそれぞれ45゜ずれた2箇所位置と、下端部から周方向両側にそれぞれ45゜ずれた2箇所位置との、合計4箇所位置としている。なお、使用状態での複数の突条28の周方向位置は、図示の例と異ならせることもできる。たとえば、使用状態での複数の突条28の周方向位置は、本例の周方向位置から45゜回転した周方向位置、すなわち、上端部および下端部の2箇所位置と、幅方向両端部の2箇所位置との、合計4箇所位置とすることもできる。また、本例を実施する場合には、突条28の数を、本例と異ならせることもできる。 In this example, the circumferential positions of the plurality of ridges 28 in use are, as shown in FIGS. 2 and 3, two positions that are offset from the upper end by 45 ° on both sides in the circumferential direction, and the circumferential position from the lower end. There are a total of four positions, with two positions offset by 45 ° on each side of the direction. The circumferential positions of the plurality of protrusions 28 in the use state may be different from those in the illustrated example. For example, the circumferential positions of the plurality of ridges 28 in the use state are circumferential positions rotated by 45 ° from the circumferential position of this example, that is, two positions at the upper end and the lower end and both ends in the width direction. It is also possible to set a total of four positions, that is, two positions. Moreover, when implementing this example, the number of the ridges 28 can be different from this example.
 アウタコラム24は、円筒状の前側小径筒部31と、前側小径筒部31よりも後側に位置する円筒状の大径筒部32と、大径筒部32よりも後側に位置する後側小径筒部33とを備える。大径筒部32の内径寸法は、前側小径筒部31および後側小径筒部33のそれぞれの内径寸法よりも大きい。また、大径筒部32の前側端部と前側小径筒部31の後側端部とは、前側に向かうほど内径寸法が小さくなる円すい筒状の前側連結部34により連結されている。また、大径筒部32の後側端部と後側小径筒部33の前側端部とは、後側に向かうほど内径寸法が小さくなる円すい筒状の後側連結部35により連結されている。 The outer column 24 includes a cylindrical front small-diameter cylindrical portion 31, a cylindrical large-diameter cylindrical portion 32 located rearward of the front small-diameter cylindrical portion 31, and a rear large-diameter cylindrical portion 32 rearward. And a small side tubular portion 33. The inner diameter dimension of the large diameter tubular portion 32 is larger than the inner diameter dimension of each of the front small diameter tubular portion 31 and the rear small diameter tubular portion 33. Further, the front end of the large-diameter tubular portion 32 and the rear end of the front-small-diameter tubular portion 31 are connected by a conical tubular front connecting portion 34 whose inner diameter decreases toward the front side. The rear end of the large-diameter tubular portion 32 and the front end of the rear-small-diameter tubular portion 33 are connected by a conical tubular rear connecting portion 35 whose inner diameter decreases toward the rear side. .
 後側小径筒部33は、後側半部に、軸受保持部36を有する。軸受保持部36は、アウタコラム24の内径側にステアリングシャフト15(後述する後側シャフト39)を回転自在に支持するための図示しない転がり軸受が内嵌保持される部位である。軸受保持部36の内径寸法は、後側小径筒部33の前側半部の内径寸法よりも大きい。したがって、軸受保持部36の厚さ寸法は、後側小径筒部33の前側半部の厚さ寸法よりも小さい。 The rear small-diameter cylindrical portion 33 has a bearing holding portion 36 in the rear half portion. The bearing holding portion 36 is a portion in which a rolling bearing (not shown) for rotatably supporting the steering shaft 15 (a rear shaft 39 described later) is fitted and held on the inner diameter side of the outer column 24. The inner diameter of the bearing holding portion 36 is larger than the inner diameter of the front half of the rear small diameter cylindrical portion 33. Therefore, the thickness dimension of the bearing holding portion 36 is smaller than the thickness dimension of the front half of the rear small diameter cylindrical portion 33.
 大径筒部32は、軸方向中間部の周方向1箇所に、ステアリングロック機構のロックピンを挿通するためのキーロック孔37を有する。 The large-diameter cylindrical portion 32 has a key lock hole 37 for inserting a lock pin of a steering lock mechanism at one circumferential position of an axially intermediate portion.
 前側小径筒部31は、インナコラム23の後側部が圧入により内嵌される部位である。すなわち、本例では、アウタコラム24の前側部である前側小径筒部31に、インナコラム23の後側部である大径筒部25の軸方向中間部および後側部が、圧入により内嵌されている。また、この状態で、大径筒部25の外周面は、突条28のそれぞれの頂部に対応する部分のみが、前側小径筒部31の内周面に締め代を有する状態で接触している。本例では、前側小径筒部31は、アウタコラム24の中間素材となる前記素管の一部となっている。 The front small-diameter tubular portion 31 is a portion into which the rear portion of the inner column 23 is press fitted. That is, in this example, the axially middle portion and the rear side portion of the large diameter tubular portion 25, which is the rear side portion of the inner column 23, are fitted into the front small diameter tubular portion 31, which is the front side portion of the outer column 24, by press fitting. Has been done. Further, in this state, the outer peripheral surface of the large-diameter cylindrical portion 25 is in contact with the inner peripheral surface of the front small-diameter cylindrical portion 31 only with a portion corresponding to each apex of the ridge 28 in a state having a tight margin. . In this example, the front-side small-diameter cylindrical portion 31 is a part of the raw pipe that is an intermediate material of the outer column 24.
 また、本例では、たとえば図3に示すように、インナコラム23の厚さ寸法Tinを、アウタコラム24(軸受保持部36を除く)の厚さ寸法Toutよりも小さくしている(Tin<Tout)。本例では、インナコラム23の大径筒部25の厚さ寸法Tinは、アウタコラム24の前側小径筒部31の厚さ寸法Toutの90%以下50%以上としている。たとえば、アウタコラム24の厚さ寸法Toutが2.3mmである場合には、インナコラム23の厚さ寸法Tinを1.6mm~1.8mmとすることができる。 Further, in this example, as shown in FIG. 3, for example, the thickness dimension T in of the inner column 23 is made smaller than the thickness dimension T out of the outer column 24 (excluding the bearing holding portion 36) (T in <T out ). In this example, the thickness dimension T in of the large-diameter tubular portion 25 of the inner column 23 is 90% or less and 50% or more of the thickness dimension T out of the front-side small-diameter tubular portion 31 of the outer column 24. For example, when the thickness dimension T out of the outer column 24 is 2.3 mm, the thickness dimension T in of the inner column 23 can be set to 1.6 mm to 1.8 mm.
 コラム側ブラケット17は、鋼などの金属製で、U字形状を有する。すなわち、コラム側ブラケット17は、幅方向に離隔して互いに平行に配された1対の側板部41と、1対の側板部41の下端部同士を連結した連結板部42とを備える。側板部41のそれぞれは、幅方向に関して互いに整合する箇所に、円形の通孔43を有する。コラム側ブラケット17は、1対の側板部41のそれぞれの上端部を、アウタコラム24の前側小径筒部31の幅方向両側部に溶接接合することにより、アウタコラム24に結合固定されている。また、この状態で、1対の側板部41のそれぞれの幅方向外側面は、前側小径筒部31の外周面よりも幅方向外側に張り出している。 The column-side bracket 17 is made of metal such as steel and has a U-shape. That is, the column-side bracket 17 includes a pair of side plate portions 41 that are spaced apart in the width direction and arranged in parallel with each other, and a connecting plate portion 42 that connects the lower end portions of the pair of side plate portions 41. Each of the side plate portions 41 has a circular through hole 43 at a position aligned with each other in the width direction. The column-side bracket 17 is joined and fixed to the outer column 24 by welding and joining the upper ends of the pair of side plate portions 41 to the widthwise both sides of the front small-diameter tubular portion 31 of the outer column 24. Further, in this state, the widthwise outer side surfaces of the pair of side plate portions 41 project outward in the widthwise direction with respect to the outer peripheral surface of the front small-diameter tubular portion 31.
 ステアリングシャフト15は、図1に示すように、前側に配された前側シャフト38と、後側に配された後側シャフト39とを備える。前側シャフト38と後側シャフト39とは、トルク伝達を可能に、かつ、軸方向の相対変位を可能にスプライン嵌合している。 As shown in FIG. 1, the steering shaft 15 includes a front shaft 38 arranged on the front side and a rear shaft 39 arranged on the rear side. The front shaft 38 and the rear shaft 39 are spline-fitted so that torque can be transmitted and relative displacement in the axial direction is possible.
 後側シャフト39は、アウタコラム24に対し、軸受保持部36に内嵌保持された図示しない転がり軸受により、回転のみを可能に支持されている。後側シャフト39のうち、軸方向に関してアウタコラム24のキーロック孔37と整合する箇所には、ステアリングロック機構の図示しないキーロックカラーが外嵌固定されている。後側シャフト39の後側端部は、アウタコラム24の内径側から軸方向に突出している。ステアリングホイール1は、後側シャフト39の後側端部に取り付けられる。 The rear shaft 39 is rotatably supported on the outer column 24 by a rolling bearing (not shown) internally fitted and held in the bearing holding portion 36. A key lock collar (not shown) of the steering lock mechanism is externally fitted and fixed to a portion of the rear shaft 39 which is aligned with the key lock hole 37 of the outer column 24 in the axial direction. The rear end of the rear shaft 39 projects in the axial direction from the inner diameter side of the outer column 24. The steering wheel 1 is attached to the rear end of the rear shaft 39.
 前側シャフト38は、図示しない転がり軸受により、インナコラム23およびギヤハウジング21に対して、回転のみを可能に支持されている。前側シャフト38の前側端部は、インナコラム23の内径側から軸方向に突出するとともに、ギヤハウジング21の内側に挿入されている。 The front shaft 38 is rotatably supported by the inner column 23 and the gear housing 21 by a rolling bearing (not shown). The front end of the front shaft 38 projects axially from the inner diameter side of the inner column 23 and is inserted inside the gear housing 21.
 車体側ブラケット18は、鋼などの金属製で、取付板部44と、1対の支持板部45とを備える。取付板部44は、車体側ブラケット18の上側部を構成するもので、幅方向に配されている。取付板部44は、車体に対し、二次衝突時の衝撃によって前方への離脱が可能となるように支持されている。1対の支持板部45は、コラム側ブラケット17を幅方向両側から挟む位置に、互いに略平行に配されている。支持板部45のそれぞれは、上端部が取付板部44の幅方向中間部に結合固定されている。支持板部45のそれぞれは、幅方向に関して互いに整合し、かつ、コラム側ブラケット17の通孔43と整合する箇所に、上下方向に伸長するチルト調節用長孔46を有する。チルト調節用長孔46のそれぞれは、チルト軸22を中心とする円弧形状を有する。 The vehicle body side bracket 18 is made of metal such as steel and includes a mounting plate portion 44 and a pair of support plate portions 45. The mounting plate portion 44 constitutes the upper side portion of the vehicle body side bracket 18, and is arranged in the width direction. The mounting plate portion 44 is supported on the vehicle body so that the mounting plate portion 44 can be detached forward by an impact at the time of a secondary collision. The pair of support plate portions 45 are arranged substantially parallel to each other at positions sandwiching the column-side bracket 17 from both sides in the width direction. The upper end portion of each of the support plate portions 45 is fixedly coupled to the widthwise intermediate portion of the mounting plate portion 44. Each of the support plate portions 45 has a tilt adjusting elongated hole 46 extending in the vertical direction at a position aligned with each other in the width direction and aligned with the through hole 43 of the column-side bracket 17. Each of the tilt adjusting slots 46 has an arc shape with the tilt shaft 22 as the center.
 クランプ機構19は、図2に示すように、調節ロッド47と、調節ナット48と、カム装置49と、調節レバー50と、スラスト軸受51とを備える。 As shown in FIG. 2, the clamp mechanism 19 includes an adjusting rod 47, an adjusting nut 48, a cam device 49, an adjusting lever 50, and a thrust bearing 51.
 調節ロッド47は、1対のチルト調節用長孔46と1対の通孔43とを幅方向に挿通している。調節ロッド47は、基端部(図2の左端部)に頭部52を有し、先端部(図2の右端部)に雄ねじ部53を有する。調節ナット48は、雄ねじ部53に螺合している。カム装置49は、頭部52と一方(図2の左方)の支持板部45との間に配されている。カム装置49は、幅方向外側に位置する駆動側カム54と、幅方向内側に位置する被駆動側カム55とを有する。調節レバー50は、その基端部が、駆動側カム54に固定されている。被駆動側カム55は、一方の支持板部45のチルト調節用長孔46に対し、相対回転不能に係合している。調節ロッド47を中心として調節レバー50を揺動させることにより、駆動側カム54と被駆動側カム55とを相対回転させると、駆動側カム54と被駆動側カム55との互いに対向する側面(カム面)同士の押し付け合いに基づいて、カム装置49の軸方向寸法が拡縮する。本例では、調節レバー50を所定方向に揺動させた場合にカム装置49の軸方向寸法が増大し、調節レバー50を所定方向と反対方向に揺動させた場合にカム装置49の軸方向寸法が減少する。スラスト軸受51は、調節ナット48と他方(図2の右方)の支持板部45との間に配されている。 The adjusting rod 47 is inserted through the pair of tilt adjusting long holes 46 and the pair of through holes 43 in the width direction. The adjusting rod 47 has a head portion 52 at the base end portion (left end portion in FIG. 2) and a male screw portion 53 at the tip end portion (right end portion in FIG. 2). The adjusting nut 48 is screwed into the male screw portion 53. The cam device 49 is arranged between the head portion 52 and one (left side in FIG. 2) support plate portion 45. The cam device 49 has a driving side cam 54 located outside in the width direction and a driven side cam 55 located inside in the width direction. The adjustment lever 50 has its base end fixed to the drive side cam 54. The driven side cam 55 is engaged with the tilt adjusting elongated hole 46 of the one supporting plate portion 45 so as not to be able to rotate relatively. When the drive side cam 54 and the driven side cam 55 are relatively rotated by swinging the adjustment lever 50 around the adjustment rod 47, the side faces of the drive side cam 54 and the driven side cam 55 that face each other ( The axial dimension of the cam device 49 expands or contracts based on the pressing force of the cam surfaces). In this example, when the adjusting lever 50 is swung in the predetermined direction, the axial dimension of the cam device 49 increases, and when the adjusting lever 50 is swung in the direction opposite to the predetermined direction, the axial direction of the cam device 49 increases. The size is reduced. The thrust bearing 51 is arranged between the adjusting nut 48 and the other (right side in FIG. 2) support plate portion 45.
 ステアリングホイール1の高さ位置を調節する際には、調節レバー50を所定方向に揺動させることにより、クランプ機構19をアンロック状態とする。すなわち、調節レバー50を所定方向(たとえば下方)に揺動させると、カム装置49の軸方向寸法が減少し、被駆動側カム55とスラスト軸受51との間隔が拡がる。この結果、1対の支持板部45の幅方向内側面と1対の側板部41の幅方向外側面との間に作用する摩擦力が低下または喪失し、車体側ブラケット18に対するコラム側ブラケット17の変位が可能なアンロック状態となる。このアンロック状態では、ステアリングコラム16aをチルト軸22を中心として揺動変位させることにより、調節ロッド47が1対のチルト調節用長孔46の内側で動ける範囲で、ステアリングホイール1の高さ位置が調節可能となる。 When adjusting the height position of the steering wheel 1, the clamp mechanism 19 is unlocked by swinging the adjustment lever 50 in a predetermined direction. That is, when the adjusting lever 50 is swung in a predetermined direction (for example, downward), the dimension of the cam device 49 in the axial direction decreases, and the distance between the driven side cam 55 and the thrust bearing 51 increases. As a result, the frictional force acting between the inner surface of the pair of support plate portions 45 in the width direction and the outer surface of the pair of side plate portions 41 in the width direction is reduced or lost, and the column side bracket 17 with respect to the vehicle body side bracket 18 is reduced. It becomes an unlocked state in which the displacement of is possible. In this unlocked state, the steering column 16a is pivotally displaced about the tilt shaft 22, so that the height position of the steering wheel 1 is within a range in which the adjusting rod 47 can move inside the pair of tilt adjusting long holes 46. Can be adjusted.
 ステアリングホイール1の高さ位置の調節後は、調節レバー50を所定方向と逆方向(たとえば上方)に揺動させることにより、クランプ機構19をロック状態とする。すなわち、調節レバー50を所定方向と反対方向に揺動させると、カム装置49の軸方向寸法が増大し、被駆動側カム55とスラスト軸受51との間隔が縮まる。この結果、1対の支持板部45の幅方向内側面と1対の側板部41の幅方向外側面との間に作用する摩擦力が増大し、車体側ブラケット18に対するコラム側ブラケット17の変位が不能なロック状態となる。そして、このロック状態とすることで、ステアリングホイール1を、調節後の高さ位置に保持する。 After adjusting the height position of the steering wheel 1, the clamp mechanism 19 is locked by swinging the adjustment lever 50 in a direction opposite to the predetermined direction (for example, upward). That is, when the adjusting lever 50 is swung in the direction opposite to the predetermined direction, the axial dimension of the cam device 49 increases and the distance between the driven side cam 55 and the thrust bearing 51 decreases. As a result, the frictional force acting between the inner side surfaces of the pair of support plate portions 45 in the width direction and the outer side surfaces of the pair of side plate portions 41 in the width direction increases, and the displacement of the column side bracket 17 with respect to the vehicle body side bracket 18 increases. Will be locked. Then, in this locked state, the steering wheel 1 is held at the adjusted height position.
 自動車が衝突事故を起こし、運転者の身体がステアリングホイール1に衝突する二次衝突が発生すると、ステアリングホイール1から後側シャフト39を介して、アウタコラム24および車体側ブラケット18に前方に向いた衝撃荷重が加わる。そして、この衝撃荷重により、車体側ブラケット18が車体に対して前方へ離脱するとともに、アウタコラム24、後側シャフト39、およびステアリングホイール1が、インナコラム23および前側シャフト38に対して前方へ変位する。また、この際に、インナコラム23の大径筒部25の外周面と、アウタコラム24の前側小径筒部31の内周面とが軸方向に摺動することに基づいて、二次衝突時の衝撃荷重が吸収される。 When a secondary collision occurs in which a vehicle has a collision accident and the driver's body collides with the steering wheel 1, the steering wheel 1 is directed forward through the rear shaft 39 to the outer column 24 and the vehicle body side bracket 18. Impact load is applied. Then, due to this impact load, the vehicle body side bracket 18 is separated from the vehicle body forward, and the outer column 24, the rear shaft 39, and the steering wheel 1 are displaced forward with respect to the inner column 23 and the front shaft 38. To do. At this time, when the outer peripheral surface of the large-diameter cylindrical portion 25 of the inner column 23 and the inner peripheral surface of the front small-diameter cylindrical portion 31 of the outer column 24 slide in the axial direction, a secondary collision occurs. The impact load of is absorbed.
 特に、本例では、アウタコラム24の前側小径筒部31の内周面に対する、インナコラム23の大径筒部25の外周面の接触箇所が、突条28のそれぞれの頂部に対応する部分に限定されている。すなわち、二次衝突時には、インナコラム23の大径筒部25の外周面のうち、突条28のそれぞれの頂部に対応する部分のみが、アウタコラム24の前側小径筒部31の内周面と軸方向に摺動する。このため、二次衝突時にインナコラム23の大径筒部25の外周面とアウタコラム24の前側小径筒部31の内周面とを軸方向に安定して摺動させることができ、衝撃荷重の吸収性能を安定したものとすることができる。 In particular, in this example, the contact points of the outer peripheral surface of the large-diameter cylindrical portion 25 of the inner column 23 with the inner peripheral surface of the front small-diameter cylindrical portion 31 of the outer column 24 are located at the portions corresponding to the respective tops of the ridges 28. Limited. That is, at the time of a secondary collision, of the outer peripheral surface of the large-diameter cylindrical portion 25 of the inner column 23, only the portions corresponding to the respective tops of the protrusions 28 are the inner peripheral surface of the front small-diameter cylindrical portion 31 of the outer column 24. It slides in the axial direction. Therefore, at the time of a secondary collision, the outer peripheral surface of the large-diameter cylindrical portion 25 of the inner column 23 and the inner peripheral surface of the front small-diameter cylindrical portion 31 of the outer column 24 can be slid in the axial direction stably, and the impact load The absorption performance of can be made stable.
 上述したような本例のステアリング装置は、インナコラム23の外周面とアウタコラム24の内周面とを軸方向に摺動させることに基づいて二次衝突時の衝撃荷重を吸収するものであるため、運転者の保護を十分に図る観点から、インナコラム23とアウタコラム24との軸方向の摺動抵抗、すなわち、アウタコラム24の内周面に対するインナコラム23の外周面の圧入荷重Fを適正範囲に収めることが重要となる。この点に関して、本例のステアリング装置では、アウタコラム24の内周面に対するインナコラム23の外周面の圧入荷重Fを適正範囲に収めることが容易である。この理由について、以下に説明する。 The steering device of this example as described above absorbs the impact load at the time of a secondary collision based on the axial sliding of the outer peripheral surface of the inner column 23 and the inner peripheral surface of the outer column 24. Therefore, from the viewpoint of sufficiently protecting the driver, the sliding resistance in the axial direction between the inner column 23 and the outer column 24, that is, the press-fit load F on the outer peripheral surface of the inner column 23 with respect to the inner peripheral surface of the outer column 24 is set. It is important to stay within the proper range. In this regard, in the steering device of this example, it is easy to keep the press-fitting load F on the outer peripheral surface of the inner column 23 with respect to the inner peripheral surface of the outer column 24 within an appropriate range. The reason for this will be described below.
 本例では、アウタコラム24の前側小径筒部31は、アウタコラム24の中間素材となる素管の一部である。素管の内周面は、形状精度が高く、内径寸法のばらつきが小さい円筒面である。このため、前側小径筒部31の内周面も、形状精度が高く、内径寸法のばらつきが小さい円筒面となっている。したがって、その分、前側小径筒部31の内周面と複数の突条28との接触部の締め代である、インナコラム23の大径筒部25とアウタコラム24の前側小径筒部31との嵌合部の締め代λのばらつきを小さくすることができ、アウタコラム24の前側小径筒部31の内周面に対するインナコラム23の大径筒部25の外周面の圧入荷重Fを適正範囲に収めることが容易となる。 In this example, the front small-diameter tubular portion 31 of the outer column 24 is a part of a raw pipe that is an intermediate material of the outer column 24. The inner peripheral surface of the raw pipe is a cylindrical surface having high shape accuracy and small variation in inner diameter. Therefore, the inner peripheral surface of the front-side small-diameter cylindrical portion 31 is also a cylindrical surface with high shape accuracy and small variation in inner diameter. Therefore, the tightening margin of the contact portion between the inner peripheral surface of the front small-diameter tubular portion 31 and the plurality of protrusions 28 corresponds to the large-diameter tubular portion 25 of the inner column 23 and the front small-diameter tubular portion 31 of the outer column 24. The variation in the tightening margin λ of the fitting portion can be reduced, and the press-fitting load F on the outer peripheral surface of the large-diameter cylindrical portion 25 of the inner column 23 with respect to the inner peripheral surface of the front small-diameter cylindrical portion 31 of the outer column 24 is within an appropriate range. It becomes easy to fit in.
 また、本例では、インナコラム23の厚さ寸法Tinを、アウタコラム24の厚さ寸法Toutよりも小さくしている(Tin<Tout)。すなわち、本例では、互いに嵌合する、インナコラム23の大径筒部25とアウタコラム24の前側小径筒部31との間に、径方向に関する剛性(ばね定数)の差を意図的に生じさせている。具体的には、インナコラム23の大径筒部25の径方向に関する剛性を、アウタコラム24の前側小径筒部31の径方向に関する剛性よりも、積極的に低くしている。このため、本例の構造では、インナコラムの厚さ寸法Tinとアウタコラムの厚さ寸法Toutとを互いに等しくした比較例の構造(Tin=Tout)に比べて、アウタコラム24の前側小径筒部31の内周面にインナコラム23の大径筒部25の外周面を圧入する際に、インナコラム23の大径筒部25にたわみが生じやすくなっている。具体的には、インナコラム23の大径筒部25のうち、周方向に隣り合う突条28同士の間部分に、たわみが生じやすくなっている。この結果、本例の構造では、インナコラム23の大径筒部25とアウタコラム24の前側小径筒部31との嵌合部の締め代λと、アウタコラム24の前側小径筒部31の内周面に対するインナコラム23の大径筒部25の外周面の圧入荷重Fとの相関に関して、比較例の構造よりも、締め代λのばらつきに対する、圧入荷重Fのばらつきを小さくすることができる。 Further, in this example, the thickness dimension T in of the inner column 23 is made smaller than the thickness dimension T out of the outer column 24 (T in <T out ). That is, in this example, a difference in rigidity (spring constant) in the radial direction is intentionally generated between the large-diameter cylindrical portion 25 of the inner column 23 and the front-side small-diameter cylindrical portion 31 of the outer column 24 that are fitted to each other. I am letting you. Specifically, the radial rigidity of the large-diameter tubular portion 25 of the inner column 23 is positively made lower than the radial rigidity of the front small-diameter tubular portion 31 of the outer column 24. Therefore, in the structure of the present example, the outer column 24 has a thickness T in equal to that of the outer column 24 in comparison with the structure (T in = T out ) in which the thickness T out of the outer column is equal to each other. When the outer peripheral surface of the large-diameter cylindrical portion 25 of the inner column 23 is press-fitted into the inner peripheral surface of the front-side small-diameter cylindrical portion 31, the large-diameter cylindrical portion 25 of the inner column 23 is likely to bend. Specifically, the large-diameter cylindrical portion 25 of the inner column 23 is likely to be bent at a portion between the protrusions 28 adjacent to each other in the circumferential direction. As a result, in the structure of this example, the interference λ of the fitting portion between the large-diameter cylindrical portion 25 of the inner column 23 and the front small-diameter cylindrical portion 31 of the outer column 24 and the inner small-diameter cylindrical portion 31 of the outer column 24 Regarding the correlation with the press-fitting load F of the outer peripheral surface of the large-diameter cylindrical portion 25 of the inner column 23 with respect to the peripheral surface, it is possible to reduce the variation of the press-fitting load F with respect to the variation of the interference λ, as compared with the structure of the comparative example.
 図9は、この点を視覚化したイメージ図であり、具体的には、インナコラム23の大径筒部25とアウタコラム24の前側小径筒部31との嵌合部の締め代λと、アウタコラム24の前側小径筒部31の内周面に対するインナコラム23の大径筒部25の外周面の圧入荷重Fとの相関を表したグラフである。図9のグラフに示すように、本例の構造(実線α)では、比較例の構造(破線β)に比べて、締め代λの変化に対し、圧入荷重Fが緩やかに変化するようになっている。すなわち、本例の構造では、比較例の構造に比べて、圧入荷重Fを適正範囲に収めるための、締め代λの許容範囲が広くなっている。 FIG. 9 is an image diagram visualizing this point. Specifically, specifically, the interference λ of the fitting portion between the large-diameter tubular portion 25 of the inner column 23 and the front small-diameter tubular portion 31 of the outer column 24 and the outer diameter. 8 is a graph showing a correlation with the press-fit load F on the outer peripheral surface of the large-diameter cylindrical portion 25 of the inner column 23 with respect to the inner peripheral surface of the front small-diameter cylindrical portion 31 of the column 24. As shown in the graph of FIG. 9, in the structure of the present example (solid line α), the press-fit load F changes more gently with respect to the change of the tightening margin λ than in the structure of the comparative example (broken line β). ing. That is, in the structure of this example, the allowable range of the interference λ for keeping the press-fit load F in the appropriate range is wider than that of the structure of the comparative example.
 したがって、本例の構造では、比較例の構造に比べて、圧入荷重Fを適正範囲に収めるために、インナコラム23およびアウタコラム24の精度を高くする必要がない。また、圧入荷重Fを適正範囲に収めるために、インナコラム23とアウタコラム24とを選択的に組み合わせる作業が不要になるか、あるいは、この作業が必要になる場合でも、その作業時間を短くすることができる。したがって、ステアリング装置の製造コストを低く抑えることができる。 Therefore, in the structure of this example, it is not necessary to increase the precision of the inner column 23 and the outer column 24 in order to keep the press-fitting load F within an appropriate range, as compared with the structure of the comparative example. Further, the work of selectively combining the inner column 23 and the outer column 24 in order to keep the press-fit load F within an appropriate range becomes unnecessary, or even when this work is required, the work time is shortened. be able to. Therefore, the manufacturing cost of the steering device can be kept low.
 また、本例では、インナコラム23の厚さ寸法Tinをアウタコラム24の厚さ寸法Toutよりも小さくしており、逆に言えば、アウタコラム24の厚さ寸法Toutをインナコラム23の厚さ寸法Tinよりも大きくしているため、アウタコラム24の剛性を確保しやすい。したがって、たとえば、クランプ機構19のロック状態で、コラム側ブラケット17からアウタコラム24の前側小径筒部31に大きな力が作用した場合でも、前側小径筒部31の変形量を十分に抑えて、前側小径筒部31の内周面とインナコラム23の複数の突条28との接触状態を、所望の接触状態に維持することができる。また、ステアリングロック機構を作動させ、キーロック孔37を挿通したロックピンの先端部をキーロックカラーの係合凹部に係合させた状態で、ステアリングホイール1を大きな力で回転させることにより、ロックピンからキーロック孔37の内周縁部に回転方向の大きな力が加わった場合でも、アウタコラム24に亀裂などの損傷が生じることを防止できる。 Further, in this example, the thickness dimension T in of the inner column 23 is made smaller than the thickness dimension T out of the outer column 24, and conversely, the thickness dimension T out of the outer column 24 is set to the inner column 23. Since the thickness is larger than the thickness dimension T in , the rigidity of the outer column 24 can be easily secured. Therefore, for example, even when a large force acts from the column-side bracket 17 to the front small-diameter cylindrical portion 31 of the outer column 24 while the clamp mechanism 19 is locked, the deformation amount of the front small-diameter cylindrical portion 31 is sufficiently suppressed and the front side small-diameter cylindrical portion 31 is suppressed. The contact state between the inner peripheral surface of the small-diameter cylindrical portion 31 and the plurality of protrusions 28 of the inner column 23 can be maintained in a desired contact state. Further, by operating the steering lock mechanism and rotating the steering wheel 1 with a large force in a state where the tip of the lock pin inserted through the key lock hole 37 is engaged with the engaging recess of the key lock collar, Even when a large force in the rotational direction is applied from the pin to the inner peripheral edge of the key lock hole 37, damage to the outer column 24 such as cracks can be prevented.
 [実施の形態の第2例]
 実施の形態の第2例について、図10および図11を用いて説明する。
 本例は、実施の形態の第1例の変形例である。本例では、ステアリングコラム16aを構成するインナコラム23aが備える突条28のそれぞれは、大径筒部25aの全長にわたって形成されている。換言すれば、突条28のそれぞれは、大径筒部25aのうち、ステアリングコラム16aの組立状態(図10)でアウタコラム24と嵌合する軸方向範囲だけでなく、二次衝突の進行に伴ってアウタコラム24と嵌合する軸方向範囲にまで延長して存在している。
[Second Example of Embodiment]
A second example of the embodiment will be described with reference to FIGS. 10 and 11.
This example is a modification of the first example of the embodiment. In this example, each of the ridges 28 included in the inner column 23a that forms the steering column 16a is formed over the entire length of the large-diameter tubular portion 25a. In other words, each of the ridges 28 is not limited to the axial range in which the outer column 24 fits in the assembled state of the steering column 16a (FIG. 10) in the large-diameter tubular portion 25a, and also to the progress of the secondary collision. Along with this, it extends to the axial range where it fits with the outer column 24 and exists.
 このような本例の構造では、二次衝突の発生後、アウタコラム24がインナコラム23に対して前側に変位し始めてから、しばらくの間、具体的には、アウタコラム24の前側小径筒部31の前側端部が、インナコラム23の大径筒部25aの前側端部(突条28のそれぞれの前側端部)と同じ前後方向位置に到達するまでの間、アウタコラム24の前側小径筒部31の内周面と突条28のそれぞれとの接触面積が、減少することなく、一定に保たれる。したがって、高効率な衝撃吸収を行えるストロークを長くして、より高い衝撃吸収性能を発揮することができる。 In the structure of this example as described above, after the occurrence of the secondary collision, the outer column 24 starts to be displaced forward with respect to the inner column 23, and for a while, specifically, the front small-diameter tubular portion of the outer column 24. The front small-diameter cylinder of the outer column 24 until the front end of 31 reaches the same front-rear position as the front end of each large-diameter tubular portion 25a of the inner column 23 (the front end of each protrusion 28). The contact area between the inner peripheral surface of the portion 31 and each of the ridges 28 is kept constant without decreasing. Therefore, it is possible to increase the stroke for highly efficient shock absorption and to exhibit higher shock absorption performance.
 また、本例では、突条28のそれぞれが大径筒部25aの全長にわたって存在している。このため、アウタコラム24(軸受保持部36を除く)の厚さ寸法よりもインナコラム23aの厚さ寸法を小さくした構造でありながらも、インナコラム23aの大径筒部25aの全体の曲げ剛性を確保しやすい。
 その他の構成および作用効果は、実施の形態の第1例と同様である。
Further, in this example, each of the ridges 28 exists over the entire length of the large-diameter tubular portion 25a. Therefore, although the thickness of the inner column 23a is smaller than that of the outer column 24 (excluding the bearing holding portion 36), the bending rigidity of the entire large-diameter tubular portion 25a of the inner column 23a is reduced. Easy to secure.
Other configurations and operational effects are the same as those of the first embodiment.
 [実施の形態の第3例]
 実施の形態の第3例について、図12~図14を用いて説明する。
 本例は、実施の形態の第1例の変形例である。本例では、ステアリングコラム16bを構成するインナコラム23bの大径筒部25bは、周方向に離隔した複数箇所に、径方向内側に突出しかつ軸方向に伸長する補強リブ56を有する。本例では、補強リブ56のそれぞれは、周方向に隣り合う1対の突条28同士の間の周方向中央位置に配されている。また、補強リブ56のそれぞれは、大径筒部25bのうち、前側端部を除く軸方向範囲に存在している。より具体的には、補強リブ56のそれぞれは、大径筒部25bのうち、突条28のそれぞれが存在する軸方向範囲を含み、かつ、該軸方向範囲よりも若干前側に延長された軸方向範囲に存在している。本例では、補強リブ56のそれぞれは、大径筒部25bの一部を径方向内側に向けて塑性変形させることで形成された塑性変形部であり、径方向内側に凸となる円弧形の断面形状を有する。なお、補強リブ56を形成するための塑性加工としては、たとえばプレス加工などを採用することができる。
[Third Example of Embodiment]
A third example of the embodiment will be described with reference to FIGS. 12 to 14.
This example is a modification of the first example of the embodiment. In this example, the large-diameter tubular portion 25b of the inner column 23b that forms the steering column 16b has reinforcing ribs 56 that project inward in the radial direction and extend in the axial direction at a plurality of locations that are spaced apart in the circumferential direction. In the present example, each of the reinforcing ribs 56 is arranged at the center position in the circumferential direction between the pair of ridges 28 adjacent to each other in the circumferential direction. Further, each of the reinforcing ribs 56 exists in the axial range of the large-diameter tubular portion 25b except the front end portion. More specifically, each of the reinforcing ribs 56 includes an axial range that includes, in the large-diameter tubular portion 25b, each of the ridges 28, and that extends slightly forward of the axial range. It exists in the directional range. In this example, each of the reinforcing ribs 56 is a plastically deformable portion formed by plastically deforming a part of the large-diameter cylindrical portion 25b toward the inner side in the radial direction, and has an arc shape that is convex inward in the radial direction. It has a cross-sectional shape. As the plastic working for forming the reinforcing rib 56, for example, press working can be adopted.
 上述のような本例の構造では、アウタコラム24(軸受保持部36を除く)の厚さ寸法よりもインナコラム23bの厚さ寸法を小さくした構造でありながらも、インナコラム23bの大径筒部25bのうち、補強リブ56が存在する軸方向範囲で、曲げ剛性を確保しやすい。
 その他の構成および作用効果は、実施の形態の第1例と同様である。
In the structure of the present example as described above, the inner column 23b has a smaller thickness than the outer column 24 (excluding the bearing holding portion 36), but the inner column 23b has a large diameter tube. It is easy to secure bending rigidity in the axial range of the portion 25b where the reinforcing ribs 56 are present.
Other configurations and operational effects are the same as those of the first embodiment.
 [実施の形態の第4例]
 実施の形態の第4例について、図15および図16を用いて説明する。
 本例は、実施の形態の第3例の変形例である。本例では、ステアリングコラム16cを構成するインナコラム23cが備える突条28および補強リブ56のそれぞれは、大径筒部25cの全長にわたって形成されている。このため、大径筒部25cの曲げ剛性を、より確保しやすくできる。
 その他の構成および作用効果は、実施の形態の第2例および第3例と同様である。
[Fourth Example of Embodiment]
A fourth example of the embodiment will be described with reference to FIGS. 15 and 16.
This example is a modification of the third example of the embodiment. In this example, the protrusions 28 and the reinforcing ribs 56 included in the inner column 23c that configures the steering column 16c are formed over the entire length of the large-diameter tubular portion 25c. Therefore, the bending rigidity of the large-diameter tubular portion 25c can be more easily ensured.
Other configurations and operational effects are similar to those of the second and third examples of the embodiment.
 [実施の形態の第5例]
 実施の形態の第5例について、図17および図18を用いて説明する。
 本例は、実施の形態の第1例の変形例である。本例では、ステアリングコラム16dを構成するインナコラム23dは、突条28が形成された箇所を除き、全長にわたり径寸法が変化しない円筒形状を有する。このような本例の構造では、インナコラム23dを製造する際の工数を少なくできるため、製造コストを抑えられる。
 その他の構成および作用効果は、実施の形態の第1例と同様である。
[Fifth Example of Embodiment]
A fifth example of the embodiment will be described with reference to FIGS. 17 and 18.
This example is a modification of the first example of the embodiment. In this example, the inner column 23d that forms the steering column 16d has a cylindrical shape whose diameter does not change over the entire length except for the portion where the protrusion 28 is formed. In the structure of this example as described above, the number of steps for manufacturing the inner column 23d can be reduced, so that the manufacturing cost can be suppressed.
Other configurations and operational effects are the same as those of the first embodiment.
 [実施の形態の第6例]
 実施の形態の第6例について、図19および図20を用いて説明する。
 本例は、実施の形態の第5例の変形例である。本例では、ステアリングコラム16eを構成するインナコラム23eが備える突条28のそれぞれは、インナコラム23eの全長にわたって形成されている。このような本例の構造では、インナコラム23eの断面形状が軸方向の何れの箇所においても同一である。このため、インナコラム23eは、たとえばインナコラム23eと同一の断面形状を有する長尺な中間素材を造った後、この中間素材を所定の長さに切断することによって、低コストで造ることができる。
 その他の構成および作用効果は、実施の形態の第2例および第5例と同様である。
[Sixth Example of Embodiment]
A sixth example of the embodiment will be described with reference to FIGS. 19 and 20.
This example is a modification of the fifth example of the embodiment. In this example, each of the ridges 28 included in the inner column 23e forming the steering column 16e is formed over the entire length of the inner column 23e. In such a structure of this example, the cross-sectional shape of the inner column 23e is the same at any position in the axial direction. Therefore, the inner column 23e can be manufactured at low cost by, for example, manufacturing a long intermediate material having the same cross-sectional shape as the inner column 23e and then cutting this intermediate material into a predetermined length. .
Other configurations and operational effects are similar to those of the second and fifth examples of the embodiment.
 [実施の形態の第7例]
 実施の形態の第7例について、図21および図22を用いて説明する。
 本例は、実施の形態の第5例の変形例である。本例では、ステアリングコラム16fを構成するインナコラム23fは、軸方向の後側端部および中間部の周方向複数箇所に突条28を有し、軸方向の前側端部および中間部の周方向複数箇所に補強リブ56を有する。このような本例の構造では、突条28が形成された軸方向範囲と、補強リブ56が形成された軸方向範囲とが、インナコラム23fの軸方向中間部でのみ重畳し、インナコラム23fの前側部および後側部では重畳していない。このため、インナコラム23fの前側部および後側部において、インナコラム23fの形状精度を良好にしやすい。
 その他の構成および作用効果は、実施の形態の第3例および第5例と同様である。
[Seventh Example of Embodiment]
A seventh example of the embodiment will be described with reference to FIGS. 21 and 22.
This example is a modification of the fifth example of the embodiment. In this example, the inner column 23f, which constitutes the steering column 16f, has the protrusions 28 at a plurality of circumferential circumferential positions of the rear end portion and the intermediate portion in the axial direction, and the circumferential direction of the front end portion and the intermediate portion in the axial direction. Reinforcing ribs 56 are provided at a plurality of locations. In the structure of this example as described above, the axial range in which the protrusions 28 are formed and the axial range in which the reinforcing ribs 56 are formed overlap only at the axially intermediate portion of the inner column 23f, and the inner column 23f is formed. There is no overlap on the front and rear sides of the. Therefore, it is easy to improve the shape accuracy of the inner column 23f in the front side portion and the rear side portion of the inner column 23f.
Other configurations and operational effects are similar to those of the third and fifth examples of the embodiment.
 [実施の形態の第8例]
 実施の形態の第8例について、図23および図24を用いて説明する。
 本例は、実施の形態の第7例の変形例である。本例では、ステアリングコラム16gを構成するインナコラム23gが備える突条28および補強リブ56のそれぞれは、インナコラム23gの全長にわたって形成されている。
 その他の構成および作用効果は、実施の形態の第2例および第6例と同様である。
[Eighth Example of Embodiment]
An eighth example of the embodiment will be described with reference to FIGS. 23 and 24.
This example is a modification of the seventh example of the embodiment. In this example, each of the protrusions 28 and the reinforcing ribs 56 included in the inner column 23g that configures the steering column 16g is formed over the entire length of the inner column 23g.
Other configurations and operational effects are similar to those of the second and sixth examples of the embodiment.
 なお、実施の形態の各例の構造は、矛盾を生じない限り、適宜組み合わせて実施することができる。 Note that the structures of the respective examples of the embodiments can be appropriately combined and implemented as long as no contradiction occurs.
 また、本発明を実施する場合には、アウタコラムの内周面とインナコラムの外周面とが、周方向に離隔した複数箇所でのみ、他の部材を介して締め代を有する状態で接触している構成を採用することもできる。この場合に、他の部材としては、たとえば、軸方向に配された金属製の線材などを用いることができる。 Further, in the case of carrying out the present invention, the inner peripheral surface of the outer column and the outer peripheral surface of the inner column are contacted with each other only at a plurality of positions separated in the circumferential direction in a state with a tightening margin via other members. It is also possible to adopt the structure which has. In this case, as the other member, for example, a metal wire rod arranged in the axial direction can be used.
 また、実施の形態の各例では、インナコラムの厚さ寸法Tinを、アウタコラム(軸受保持部を除く)の厚さ寸法Toutよりも小さくする(Tin<Tout)ことにより、前記インナコラムのうちで少なくとも前記アウタコラムと嵌合する部分の径方向に関する剛性を、前記アウタコラムのうちで少なくとも前記インナコラムと嵌合する部分の径方向に関する剛性よりも低くしている。代替的に、たとえば、アウタコラムとインナコラムの厚さ寸法は同一であるが、アウタコラムを鋼または合金鋼などにより構成し、インナコラムをアルミニウムあるいはアルミニウム合金などにより構成することにより、前記インナコラムのうちで少なくとも前記アウタコラムと嵌合する部分の径方向に関する剛性を、前記アウタコラムのうちで少なくとも前記インナコラムと嵌合する部分の径方向に関する剛性よりも低くすることもできる。あるいは、たとえば、アウタコラムとインナコラムを同一の素材により構成し、かつ、アウタコラムとインナコラムの厚さ寸法を同一とするが、アウタコラムの内周面の形状精度を低下させない範囲で、アウタコラムの外周面に補強リングなどの補強部材を備えることによっても、前記インナコラムのうちで少なくとも前記アウタコラムと嵌合する部分の径方向に関する剛性を、前記アウタコラムのうちで少なくとも前記インナコラムと嵌合する部分の径方向に関する剛性よりも低くすることができる。 Further, in each example of the embodiments, the thickness dimension T in of the inner column is made smaller than the thickness dimension T out of the outer column (excluding the bearing holding portion) (T in <T out ), so that The radial rigidity of at least a portion of the inner column that fits with the outer column is lower than the radial rigidity of at least a portion of the outer column that fits with the inner column. Alternatively, for example, the outer column and the inner column have the same thickness, but the outer column is made of steel or alloy steel, and the inner column is made of aluminum or an aluminum alloy. The rigidity of at least a portion of the outer column that fits with the outer column in the radial direction may be lower than the rigidity of the portion of the outer column that fits with the inner column in the radial direction. Alternatively, for example, the outer column and the inner column are made of the same material, and the outer column and the inner column have the same thickness dimension, but within a range that does not reduce the shape accuracy of the inner peripheral surface of the outer column. Even by providing a reinforcing member such as a reinforcing ring on the outer peripheral surface of the column, the rigidity in the radial direction of at least the portion of the inner column that fits with the outer column is at least the inner column of the outer column. The rigidity can be made lower than the rigidity of the fitting portion in the radial direction.
 1 ステアリングホイール
 2、2a ステアリングシャフト
 3、3a ステアリングコラム
 4a、4b 自在継手
 5 中間シャフト
 6 ステアリングギヤユニット
 7 ピニオン軸
 8 タイロッド
 9 インナコラム
 10 アウタコラム
 11 突条
 12 電動アシスト装置
 13 ギヤハウジング
 14 車体側ブラケット
 15 ステアリングシャフト
 16、16a~16g ステアリングコラム
 17 コラム側ブラケット
 18 車体側ブラケット
 19 クランプ機構
 20 電動アシスト装置
 21 ギヤハウジング
 22 チルト軸
 23、23a~23g インナコラム
 24 アウタコラム
 25、25a~25c 大径筒部
 26 小径筒部
 27 連結部
 28 突条
 29 取付板
 30 取付孔
 31 前側小径筒部
 32 大径筒部
 33 後側小径筒部
 34 前側連結部
 35 後側連結部
 36 軸受保持部
 37 キーロック孔
 38 前側シャフト
 39 後側シャフト
 40 電動モータ
 41 側板部
 42 連結板部
 43 通孔
 44 取付板部
 45 支持板部
 46 チルト調節用長孔
 47 調節ロッド
 48 調節ナット
 49 カム装置
 50 調節レバー
 51 スラスト軸受
 52 頭部
 53 雄ねじ部
 54 駆動側カム
 55 被駆動側カム
 56 補強リブ
1 Steering Wheel 2, 2a Steering Shaft 3, 3a Steering Column 4a, 4b Universal Joint 5 Intermediate Shaft 6 Steering Gear Unit 7 Pinion Shaft 8 Tie Rod 9 Inner Column 10 Outer Column 11 Ridge 12 Electric Assist Device 13 Gear Housing 14 Body Side Bracket 15 Steering shaft 16, 16a to 16g Steering column 17 Column side bracket 18 Body side bracket 19 Clamp mechanism 20 Electric assist device 21 Gear housing 22 Tilt shaft 23, 23a to 23g Inner column 24 Outer column 25, 25a to 25c Large diameter cylinder 26 small-diameter tubular portion 27 connecting portion 28 ridge 29 mounting plate 30 mounting hole 31 front small-diameter tubular portion 32 large-diameter tubular portion 33 rear small-diameter tubular portion 34 front-side connecting portion 35 rear-side coupling 36 Bearing Retaining Part 37 Key Lock Hole 38 Front Shaft 39 Rear Shaft 40 Electric Motor 41 Side Plate Part 42 Connecting Plate Part 43 Through Hole 44 Mounting Plate Part 45 Support Plate Part 46 Tilt Adjusting Long Hole 47 Adjusting Rod 48 Adjusting Nut 49 Cam Device 50 Adjustment lever 51 Thrust bearing 52 Head portion 53 Male screw portion 54 Drive side cam 55 Driven side cam 56 Reinforcement rib

Claims (7)

  1.  筒状のアウタコラムと、
     前記アウタコラムに内嵌支持された筒状のインナコラムと、を備え、
     前記アウタコラムの内周面と前記インナコラムの外周面とが、周方向に離隔した複数箇所でのみ直接または他の部材を介して締め代を有する状態で接触しており、
     前記インナコラムのうちで少なくとも前記アウタコラムと嵌合する部分の径方向に関する剛性が、前記アウタコラムのうちで少なくとも前記インナコラムと嵌合する部分の径方向に関する剛性よりも低い、
    ステアリングコラム。
    A cylindrical outer column,
    A tubular inner column that is fitted and supported in the outer column,
    The inner peripheral surface of the outer column and the outer peripheral surface of the inner column are in contact with each other only at a plurality of positions separated in the circumferential direction directly or through other members in a state with a tightening margin,
    The radial rigidity of at least a portion of the inner column that fits with the outer column is lower than the radial rigidity of at least a portion of the outer column that fits with the inner column.
    Steering column.
  2.  前記インナコラムのうちで少なくとも前記アウタコラムと嵌合する部分の厚さ寸法が、前記アウタコラムのうちで少なくとも前記インナコラムと嵌合する部分の厚さ寸法よりも小さい、
     請求項1に記載のステアリングコラム。
    The thickness dimension of at least a portion of the inner column that fits with the outer column is smaller than the thickness dimension of at least a portion of the outer column that fits with the inner column,
    The steering column according to claim 1.
  3.  前記インナコラムは、外周面の周方向に離隔した複数箇所に、径方向外側に突出しかつ軸方向に伸長する突条を有しており、
     前記インナコラムの外周面は、前記突条のそれぞれの頂部に対応する部分のみで前記アウタコラムの内周面と締め代を有する状態で接触する、
    請求項1または2に記載のステアリングコラム。
    The inner column has, at a plurality of locations spaced apart from each other in the circumferential direction of the outer peripheral surface, ridges that project radially outward and extend in the axial direction,
    The outer peripheral surface of the inner column comes into contact with the inner peripheral surface of the outer column with a tightening margin only at a portion corresponding to each top of the protrusion.
    The steering column according to claim 1 or 2.
  4.  前記突条が、前記インナコラムのうち、二次衝突の進行に伴って前記アウタコラムと嵌合する部分にも存在する、請求項3に記載のステアリングコラム。 The steering column according to claim 3, wherein the protrusion is also present in a portion of the inner column that fits with the outer column as a secondary collision progresses.
  5.  前記インナコラムは、周方向に離隔した複数箇所に、径方向内側に突出しかつ軸方向に伸長する補強リブをさらに備える、請求項1~4のうちの何れか1項に記載のステアリングコラム。 The steering column according to any one of claims 1 to 4, wherein the inner column is further provided with a plurality of reinforcing ribs protruding inward in the radial direction and extending in the axial direction at a plurality of locations spaced apart from each other in the circumferential direction.
  6.  前記アウタコラムのうちで少なくとも前記インナコラムと嵌合する部分は、該アウタコラムの中間素材となる素管の一部により構成される、請求項1~5のうちの何れか1項に記載のステアリングコラム。 6. The outer column according to claim 1, wherein at least a portion of the outer column that fits with the inner column is formed by a part of a raw pipe that is an intermediate material of the outer column. Steering column.
  7.  ステアリングコラムと、該ステアリングコラムの内径側に回転自在に支持され、ステアリングホイールを取り付け可能な後側端部を有するステアリングシャフトと、および、前記ステアリングコラムを車体に対して支持するための車体側ブラケットと、を備え、
     前記ステアリングコラムは、請求項1~6のうちの何れか1項に記載のステアリングコラムにより構成されており、および、
     前記インナコラムが、前記アウタコラムの前側に配され、かつ、前記車体に対して前方への変位を阻止された状態で支持されている、
    ステアリング装置。
    A steering column, a steering shaft that is rotatably supported on the inner diameter side of the steering column, and has a rear end portion to which a steering wheel can be attached, and a vehicle body side bracket for supporting the steering column with respect to the vehicle body. And
    The steering column comprises the steering column according to any one of claims 1 to 6, and
    The inner column is arranged on the front side of the outer column, and is supported in a state in which forward displacement with respect to the vehicle body is prevented.
    Steering device.
PCT/JP2019/039262 2018-10-09 2019-10-04 Steering column and steering device WO2020075639A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018191124A JP2021070327A (en) 2018-10-09 2018-10-09 Steering column and steering unit
JP2018-191124 2018-10-09

Publications (1)

Publication Number Publication Date
WO2020075639A1 true WO2020075639A1 (en) 2020-04-16

Family

ID=70164930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039262 WO2020075639A1 (en) 2018-10-09 2019-10-04 Steering column and steering device

Country Status (2)

Country Link
JP (1) JP2021070327A (en)
WO (1) WO2020075639A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003252209A (en) * 2002-03-05 2003-09-10 Koyo Seiko Co Ltd Impact absorbing steering device
JP2003261037A (en) * 2002-03-11 2003-09-16 Koyo Seiko Co Ltd Shock-absorbing steering device
JP2004082758A (en) * 2002-08-22 2004-03-18 Nsk Ltd Shock absorbing type steering column device
JP2005280622A (en) * 2004-03-30 2005-10-13 Koyo Seiko Co Ltd Steering device
JP2006069524A (en) * 2004-08-05 2006-03-16 Nsk Ltd Steering column device
JP2008230555A (en) * 2007-03-23 2008-10-02 Nsk Ltd Steering device
JP2008302751A (en) * 2007-06-06 2008-12-18 Nsk Ltd Steering column device
JP2010115950A (en) * 2008-11-11 2010-05-27 Nsk Ltd Steering column and electric power steering device using this
WO2012017853A1 (en) * 2010-08-05 2012-02-09 日本精工株式会社 Shock-absorbing steering device
WO2012017854A1 (en) * 2010-08-06 2012-02-09 日本精工株式会社 Shock-absorbing steering device
JP2012040904A (en) * 2010-08-17 2012-03-01 Nsk Ltd Shock absorbing type steering device
JP2012066779A (en) * 2010-09-27 2012-04-05 Nsk Ltd Shock absorption type steering device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003252209A (en) * 2002-03-05 2003-09-10 Koyo Seiko Co Ltd Impact absorbing steering device
JP2003261037A (en) * 2002-03-11 2003-09-16 Koyo Seiko Co Ltd Shock-absorbing steering device
JP2004082758A (en) * 2002-08-22 2004-03-18 Nsk Ltd Shock absorbing type steering column device
JP2005280622A (en) * 2004-03-30 2005-10-13 Koyo Seiko Co Ltd Steering device
JP2006069524A (en) * 2004-08-05 2006-03-16 Nsk Ltd Steering column device
JP2008230555A (en) * 2007-03-23 2008-10-02 Nsk Ltd Steering device
JP2008302751A (en) * 2007-06-06 2008-12-18 Nsk Ltd Steering column device
JP2010115950A (en) * 2008-11-11 2010-05-27 Nsk Ltd Steering column and electric power steering device using this
WO2012017853A1 (en) * 2010-08-05 2012-02-09 日本精工株式会社 Shock-absorbing steering device
WO2012017854A1 (en) * 2010-08-06 2012-02-09 日本精工株式会社 Shock-absorbing steering device
JP2012040904A (en) * 2010-08-17 2012-03-01 Nsk Ltd Shock absorbing type steering device
JP2012066779A (en) * 2010-09-27 2012-04-05 Nsk Ltd Shock absorption type steering device

Also Published As

Publication number Publication date
JP2021070327A (en) 2021-05-06

Similar Documents

Publication Publication Date Title
EP1661789B1 (en) Position adjustment type steering column device for vehicles
JP5293825B2 (en) Shock absorbing steering device
EP2915720B1 (en) Outer column and steering column device
US11148703B2 (en) Support bracket for steering apparatus and steering apparatus
JP6112015B2 (en) Tilt-type steering device
US10093340B2 (en) Steering device
EP3257721B1 (en) Telescopic steering device
JP5076673B2 (en) Steering device
WO2014119630A1 (en) Steering column
EP3315381B1 (en) Outer column with bracket, steering column with bracket, and steering device
WO2020075639A1 (en) Steering column and steering device
JP3233908U (en) Steering column and steering device
JP7314951B2 (en) steering column and steering gear
JP5233246B2 (en) Electric telescopic adjustment type steering device
JP2022138946A (en) Steering column and steering unit
JP7375768B2 (en) Steering column and steering device
JP6668619B2 (en) Telescopic steering column device
JP2023019570A (en) steering column device
JP2012236578A (en) Vehicular position adjustable steering column device
JP2008284891A (en) Electric power steering device
JP2013071725A (en) Position adjustment type steering column device for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19870234

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021600099

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19870234

Country of ref document: EP

Kind code of ref document: A1