WO2020074470A1 - Method for determining the technology of a photovoltaic cell, associated sorting method, recycling method and device - Google Patents

Method for determining the technology of a photovoltaic cell, associated sorting method, recycling method and device Download PDF

Info

Publication number
WO2020074470A1
WO2020074470A1 PCT/EP2019/077148 EP2019077148W WO2020074470A1 WO 2020074470 A1 WO2020074470 A1 WO 2020074470A1 EP 2019077148 W EP2019077148 W EP 2019077148W WO 2020074470 A1 WO2020074470 A1 WO 2020074470A1
Authority
WO
WIPO (PCT)
Prior art keywords
technology
photovoltaic cell
photovoltaic
determining
chemical species
Prior art date
Application number
PCT/EP2019/077148
Other languages
French (fr)
Inventor
Marion SERASSET
Malek BENMANSOUR
Jean- Patrice RAKOTONIAINA
Original Assignee
Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique Et Aux Energies Alternatives filed Critical Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority to EP19780262.2A priority Critical patent/EP3864708A1/en
Publication of WO2020074470A1 publication Critical patent/WO2020074470A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/443Emission spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/718Laser microanalysis, i.e. with formation of sample plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • H02S50/15Testing of PV devices, e.g. of PV modules or single PV cells using optical means, e.g. using electroluminescence
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the technical field of the invention is that of sorting and recycling of photovoltaic modules
  • the present invention relates to a process for determining the technology of a photovoltaic cell and in particular a process in which a LIBS measurement is performed.
  • the invention also relates to a sorting process and a recycling process for at least one photovoltaic module using such a determination process as well as the associated device.
  • the oldest modules are dismantled and then stored or dismantled.
  • the easiest materials to recover are recycled.
  • This is the aluminum frame and the glass.
  • the most commonly used means of dismantling is grinding of the entire photovoltaic module (after removing the aluminum frame beforehand)
  • the glass fraction, representing 80% of the module's mass is then separated from the rest of the ground material and then recycled.
  • this method does not make it possible to recover the different layers which constitute the photovoltaic module separately (see FIG. 1).
  • the materials do not maintain their integrity and are contaminated.
  • the materials constituting the photovoltaic modules are therefore recovered in the form of a powder whose purity is greatly altered.
  • sorting by technology is impossible because of the small size of silicon, the different technologies of photovoltaic cells are therefore mixed. The separation of the different components is then tedious and generally accompanied by a high cost.
  • sorting by technology before the grinding stage is impossible because no follow-up has been carried out on the existing modules.
  • patent CN 103085116 deals with the dismantling of the different layers of a photovoltaic module by passing a metallic wire heated in EVA (Ethyl Vinyl Acetate). Others are looking to make modules made of materials that will be more easily dismantled than the materials that make up today's modules. But no convincing method has so far been presented.
  • EVA Ethyl Vinyl Acetate
  • the invention offers a solution to the problems mentioned above, by allowing analysis by laser ablation: LIBS (for Laser Induced Breakdown Spectroscopy in English).
  • a first aspect of the invention relates to a method for determining the technology of a photovoltaic cell among the silicon-based technologies, the CdTe type technology and the CIGS technology comprising:
  • a step of measurement by laser ablation of the photovoltaic cell comprising at least one laser pulse, preferably a plurality laser pulses, so as to obtain a spectrum characteristic of the chemical species present in the photovoltaic cell to be analyzed;
  • This analysis technique uses a short pulse laser to create plasma on the surface of a sample.
  • the radiation thus emitted is characteristic of the chemical species composing the ablated material and can be analyzed by optical spectroscopy.
  • characteristic spectrum is understood to mean at least one curve, preferably a plurality of curves, said curve or curves comprising one or more peaks and allowing, via the wavelength associated with each peak, the identification of the emitting species and via the surface under the curve associated with each peak the quantity of matter.
  • the method according to a first aspect of the invention may have one or more complementary characteristics among the following, considered individually or according to all technically possible combinations.
  • the photovoltaic cell is considered to be a photovoltaic cell of n-type technology
  • the photovoltaic cell is considered to be a p-type photovoltaic cell
  • the photovoltaic cell is considered to be a heterojunction type photovoltaic cell.
  • a chemical species shows that the intensity of the spectrum at the frequency associated with the chemical species in question is greater than a threshold value.
  • the threshold could for example be set at
  • the photovoltaic cell is considered to be a photovoltaic cell of CdTe technology
  • the photovoltaic cell is considered to be a C1GS photovoltaic cell
  • the step of determining, from said spectrum, the technology of the photovoltaic cell comprises:
  • the determination of the technology of a photovoltaic cell can be made using a single parameter.
  • the measurement step by laser ablation implements laser-induced plasma spectrometry (also called L1BS for “Laser Induced Breakdown Spectroscopy” in English).
  • a second aspect of the invention relates to a method for sorting at least one photovoltaic module according to the technology of the cells included in said module, comprising a step of determining the technology of the photovoltaic cells of the photovoltaic module using a determination method according to a first aspect of the invention.
  • the modules can be sorted according to the technology of the photovoltaic cells that compose it.
  • the step of determining the technology of the photovoltaic cells of the photovoltaic module using a determination method according to a first aspect of the invention is implemented on only part of these cells, or even a single cell.
  • the sorting method comprises, before the step of determining the technology of the photovoltaic cells of the photovoltaic module, a step of separating the layers making up the photovoltaic module.
  • components such as the aluminum frame or even the junction box can be removed before the step of determining the technology of the photovoltaic module.
  • a third aspect of the invention relates to a method for recycling at least one photovoltaic module comprising a sorting step implementing a method according to a second aspect of the invention.
  • a fourth aspect of the invention relates to a device comprising a laser, an optical spectrometer and means adapted to carry out a method according to a first, a second or a third aspect of the invention.
  • a fifth aspect of the invention relates to a computer program comprising instructions which lead the device according to a fourth aspect of the invention to execute a method according to a first, a second or a third aspect of the invention.
  • a sixth aspect of the invention relates to a computer-readable medium, on which the computer program is recorded according to a fifth aspect of the invention.
  • FIG. 1 shows a schematic representation of the composition of a photovoltaic module.
  • FIG. 2 shows a schematic representation of a flowchart of an embodiment of a method according to a first aspect of the invention.
  • FIG. 3 shows a schematic representation of an L1BS measurement performed on a p-type cell in an embodiment of a method according to a first aspect of the invention.
  • - Fig 4 shows a phosphorus doping profile of a p-type cell and boron of an n-type cell.
  • FIG. 5 shows an optical spectrum of an n-type cell obtained by a LIBS measurement.
  • FIG. 6 shows an optical spectrum of a p-type cell obtained by a LIBS measurement.
  • FIG. 7 shows a step of determining and sorting using an embodiment of a method according to a second aspect of the invention.
  • FIG. 8 shows a schematic representation of an embodiment of a method according to a second aspect of the invention.
  • a first aspect of the invention illustrated in FIG. 2 relates to a method 100 for determining the technology of a photovoltaic cell.
  • photovoltaic modules contain photovoltaic cells which can most often be divided into one of the following categories:
  • p-type cells based on a crystalline silicon substrate doped with Boron (so-called homojunction cells designated "p-type" cells);
  • n-type cells ⁇ based on a crystalline silicon substrate doped with phosphorus (so-called homojunction cells designated “n-type” cells);
  • H ET heterojunction
  • CdTe type cadmium and tellurium - cells having a thin film type technology based on CdTe (cadmium and tellurium - cells called “CdTe type”);
  • GIGS type copper, indium, gallium and selenium - cells
  • the method 100 comprises a step E1 of measuring by laser ablation of the photovoltaic cell comprising at least one laser pulse, preferably a plurality of laser pulses, so as to obtain a spectrum characteristic of the chemical species present in the photovoltaic cell to be analyzed (provided that said species is in sufficient quantity to be measured).
  • the measurement step by laser ablation implements laser-induced plasma spectrometry (also called L1BS for “Laser Induced Breakdown Spectroscopy” in English).
  • LIBS consists in subjecting the material to be analyzed to a short laser pulse so as to ablate part of the material and to create a plasma on the surface of said material.
  • the radiation emitted during this process is characteristic of the chemical species composing the material ablated by the laser pulse.
  • the radiation can therefore be analyzed by optical spectroscopy.
  • the number of laser pulses during the measurement can be varied so as to perform a surface analysis (when a low number of laser pulses is used) or a deep analysis (when a high number of laser pulses is used used).
  • the measurement step by laser ablation comprises a plurality of laser pulses.
  • This plurality of pulses makes it possible to pass through several layers of material (and possibly the encapsulant layer, the anti-reflection layer, etc., when the cell is integrated in a photovoltaic module) and to carry out a LIBS measurement on integrated photovoltaic cells. in modules still having the glass on the front face, the latter being able to be penetrated by the application of a plurality of laser pulses.
  • the power of the laser will then have to be adapted accordingly.
  • the method 100 also comprises a step E2 of determining, from said spectrum, the technology of the photovoltaic cell.
  • each chemical species is associated with at least one wavelength. It is therefore possible to detect the presence of a chemical species from the intensity of the spectrum at the wavelength or at the wavelengths corresponding to said species.
  • Such a spectrum is illustrated in FIG. 5 for a plurality of laser pulses (or shots) in the case of an n-type cell on which two peaks associated with silicon and a peak associated with boron are visible.
  • the photovoltaic cell when boron and silicon are present among the determined chemical species, the photovoltaic cell is considered to be a photovoltaic cell of n-type technology. Indeed, the sensitivity of the LIBS measurement does not make it possible to measure the low phosphorus content at the heart of the photovoltaic cell while it will make it possible to detect boron whose content in the front face is much higher. In general, for a total thickness of 0.8 ⁇ m, the boron content of the first 0.3 ⁇ m is between 300ppmwt and 200ppmwt, which corresponds to quantities detectable by the LIBS measurement.
  • the photovoltaic cell is considered to be a photovoltaic cell of p-type technology.
  • the sensitivity of the LIBS measurement does not make it possible to measure the low boron content at the heart of the photovoltaic cell while it will make it possible to detect phosphorus whose content in the front face is much higher.
  • the phosphorus content of the first 0.1 pm is between 0.07% and 1.3% which corresponds to quantities detectable by the L1BS measurement.
  • the chemical species detected is that present on the surface of the photovoltaic cell which is of a doping opposite to that of the substrate (" bulk ”) which characterizes globally the type of cell technology.
  • the photovoltaic cell is considered to be a photovoltaic cell of HET type technology.
  • this type of module is mainly composed of silicon and the dopant contents (boron and phosphorus) are too low to be detectable by the LiBS measurement.
  • the photovoltaic cell is considered to be a photovoltaic cell of CdTe technology.
  • the determination is only carried out on the presence of cadmium, the latter being more emissive than tellurium and therefore more easily detectable by emission spectroscopy.
  • the photovoltaic cell is considered to be a photovoltaic cell of CIGS technology.
  • the step E2 of determining the technology of the photovoltaic cell comprises a sub-step of determining the technology of the photovoltaic cell from the value of the analysis parameter x.
  • the photovoltaic cell is considered to be a photovoltaic cell of n type technology (provided the value [B] is significant, that is to say above a threshold value , e.g. a value corresponding to the detection threshold of the LIBS measurement).
  • a threshold value e.g. a value corresponding to the detection threshold of the LIBS measurement.
  • the photovoltaic cell is considered to be a photovoltaic cell of p-type technology (provided the value [P] is significant, that is to say above a value threshold, e.g. a value corresponding to the detection threshold of the LIBS measurement).
  • a method 100 according to a first aspect of the invention makes it possible to determine the technology of a photovoltaic cell. It can then be interesting to use this information to sort and possibly recycle the photovoltaic modules composed of said cells.
  • a second aspect of the invention illustrated in Figure 7 relates to a method of sorting at at least one lay otovol module as a function of the technology of the photovoltaic cells composing said module comprising a step of determining the technology of the photovoltaic cells of the photovoltaic module using a method 100 of determination according to a first aspect of the invention .
  • a conveyor belt can cause the modules to be sorted on the site for determining the photovoltaic cell technology of said photovoltaic module, then, depending on the result, the module will be redirected to an adequate conveyor belt, after which recycling of the materials suitable for each cell technology can be performed.
  • the sorting is carried out between modules comprising p-type cells and modules comprising n-type cells, but those skilled in the art will understand from the above that the sorting can be done by taking into account modules comprising CdTe or CIGS type cells.
  • the method according to a second aspect of the invention comprises, before the step of measuring by laser ablation, a step of separating the layers making up the photovoltaic module.
  • the step of determining the technology of the photovoltaic cells of the photovoltaic module using a determination method according to a first aspect of the invention is implemented on a part only these cells, or even a single cell.
  • the technology of a module only requires the measurement of a part of the cells, which makes it possible to speed up the sorting.
  • a third aspect of the invention relates to a method for recycling at least one photovoltaic module, characterized in that it comprises a sorting step implementing a method according to a second aspect of the invention.
  • a fourth aspect of the invention relates to a device comprising a laser and an optical spectrometer so as to be able to perform a LIBS measurement.
  • the device also comprises means suitable for carrying out the method according to a first aspect, a second aspect or a third aspect of the invention.
  • the device comprises a calculation means (for example a processor, an FPGA or an ASIC card) associated with a memory.
  • the memory can in particular contain the instructions as well as the data necessary for the execution of a method 100 according to a first aspect, a second aspect or a third aspect of the invention.
  • the calculation means also comprises means of connection to an optical spectrometer and to a laser so as to be able to carry out a LIBS measurement as detailed above.
  • the device comprises a transport system (for example a conveyor belt) making it possible to transport a module from a first point where the determination of the technology of the cells composing said module will be carried out at a second point where the sorting depending on what technology will be performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biochemistry (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Immunology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

One aspect of the invention relates to a method for determining the technology of a photovoltaic cell, comprising: a step of measuring by laser ablation the photovoltaic cell comprising at least one laser pulse so as to obtain a characteristic spectrum of the chemical species present in the photovoltaic cell to be analysed; and a step of determining, from said spectrum, the technology of the photovoltaic cell. The invention also relates to a sorting method, a recycling method and a device associated with said methods.

Description

PROCEDE DE DETERMINATION DE LA TECHNOLOGIE D’UNE CELLULE PHOTOVOLTAÏQUE, PROCEDE DE TRI, PROCEDE DE RECYCLAGE ET  METHOD FOR DETERMINING THE TECHNOLOGY OF A PHOTOVOLTAIC CELL, SORTING METHOD, RECYCLING METHOD AND
DISPOSITIF ASSOCIES  ASSOCIATED DEVICES
DOMAINE TECHNIQUE DE L’INVENTION Le domaine technique de l’invention est celui du tri et du recyclage des modules photovoltaïques La présente invention concerne un procédé de détermination de la technologie d’une cellule photovoltaïque et en particulier un procédé dans lequel une mesure LIBS est effectuée. L’invention concerne également un procédé de tri et un procédé de recyclage d’au moins un module photovoltaïque utilisant un tel procédé de détermination ainsi que le dispositif associé. TECHNICAL FIELD OF THE INVENTION The technical field of the invention is that of sorting and recycling of photovoltaic modules The present invention relates to a process for determining the technology of a photovoltaic cell and in particular a process in which a LIBS measurement is performed. The invention also relates to a sorting process and a recycling process for at least one photovoltaic module using such a determination process as well as the associated device.
ARRIERE-PLAN TECHNOLOGIQUE DE L’INVENTION TECHNOLOGICAL BACKGROUND OF THE INVENTION
Lors des quatre dernières décennies, l’installation de modules photovoltaïques dans le monde n’a fait que progresser. Environ 30 000 modules étaient produits par an en 1980 tandis qu’aujourd’hui 40 millions de modules photovoltaïques sont produits par an. Les modules photovoltaïques ont une durée de vie de 30 ans environ et la quantité de modules photovoltaïques en fin de vie en 2020 en Europe est estimée à plus de 2 millions de tonnes II est donc indispensable de développer la chaîne de recyclage des modules photovoltaïque dès maintenant Over the past four decades, the installation of photovoltaic modules around the world has only progressed. About 30,000 modules were produced per year in 1980 while today 40 million photovoltaic modules are produced per year. Photovoltaic modules have a lifespan of around 30 years and the quantity of photovoltaic modules at the end of their life in 2020 in Europe is estimated at more than 2 million tonnes It is therefore essential to develop the recycling chain for photovoltaic modules now
A l’heure actuelle, les plus anciens modules sont démontés puis stockés ou démantelés. Les matériaux les plus faciles à récupérer sont recyclés. II s’agit du cadre en aluminium et du verre. Le moyen de démantèlement le plus utilisé est le broyage de l’ensemble du module photovoltaïque (après avoir enlevé au préalable le cadre en aluminium) La fraction du verre, représentant 80% de la masse du module, est ensuite séparée du reste du broyât puis recyclée. Néanmoins, ce procédé ne permet pas de récupérer de façon distincte les différentes couches qui constituent le module photovoltaïque (voir figure 1 ). De plus, les matériaux ne conservent pas leur intégrité et sont contaminés. Les matériaux constituants les modules photovoltaïques (du silicium et métaux nobles dans le cas des cellules à base de silicium ou encore du cadmium et tellure dans le cas des couches minces CdTe) sont donc récupérés sous forme de poudre dont la pureté est fortement altérée. En outre, sous cette forme, un tri par technologie est impossible à cause de la petite taille du silicium, les différentes technologies de cellules photovoltaïques sont donc mélangées. La séparation des différents composants est alors fastidieuse et généralement accompagnée d’un coût élevé. De plus, un tri par technologie avant l’étape de broyage est impossible car aucun suivi n’a été effectué sur les modules existants. At present, the oldest modules are dismantled and then stored or dismantled. The easiest materials to recover are recycled. This is the aluminum frame and the glass. The most commonly used means of dismantling is grinding of the entire photovoltaic module (after removing the aluminum frame beforehand) The glass fraction, representing 80% of the module's mass, is then separated from the rest of the ground material and then recycled. However, this method does not make it possible to recover the different layers which constitute the photovoltaic module separately (see FIG. 1). In addition, the materials do not maintain their integrity and are contaminated. The materials constituting the photovoltaic modules (silicon and noble metals in the case of cells with silicon base or cadmium and tellurium in the case of thin layers CdTe) are therefore recovered in the form of a powder whose purity is greatly altered. In addition, in this form, sorting by technology is impossible because of the small size of silicon, the different technologies of photovoltaic cells are therefore mixed. The separation of the different components is then tedious and generally accompanied by a high cost. In addition, sorting by technology before the grinding stage is impossible because no follow-up has been carried out on the existing modules.
De nombreuses recherches sont actuellement menées afin de développer des procédés de recyclage permettant de récupérer les différents matériaux composant un module photovoltaïque. Par exemple, le brevet CN 103085116 traite du démantèlement des différentes couches d’un module photovoltaïque par passage d’un fil métallique chauffé dans l’EVA (Ethyl Vinyl Acetate). D’autres cherchent à fabriquer des modules composés de matériaux qui seront plus facilement démantelables que les matériaux composant les modules d’aujourd’hui. Mais aucune méthode convaincante n’a jusqu’ici été présentée. A lot of research is currently being carried out in order to develop recycling processes making it possible to recover the different materials making up a photovoltaic module. For example, patent CN 103085116 deals with the dismantling of the different layers of a photovoltaic module by passing a metallic wire heated in EVA (Ethyl Vinyl Acetate). Others are looking to make modules made of materials that will be more easily dismantled than the materials that make up today's modules. But no convincing method has so far been presented.
Il existe donc un besoin d’un procédé de tri qui permette de distinguer les modules photovoltaïques en fonction du type de technologie utilisé pour les cellules photovoltaïques contenus dans lesdits modules. RESUME DE L’INVENTION There is therefore a need for a sorting process which makes it possible to distinguish the photovoltaic modules according to the type of technology used for the photovoltaic cells contained in said modules. SUMMARY OF THE INVENTION
L’invention offre une solution aux problèmes évoqués précédemment, en permettant une analyse par ablation laser : LIBS (pour Laser Induced Breakdown Spectroscopy en anglais). The invention offers a solution to the problems mentioned above, by allowing analysis by laser ablation: LIBS (for Laser Induced Breakdown Spectroscopy in English).
Un premier aspect de l’invention concerne un procédé de détermination de la technologie d’une cellule photovoltaïque parmi les technologies à base de silicium, la technologie de type CdTe et la technologie CIGS comprenant : A first aspect of the invention relates to a method for determining the technology of a photovoltaic cell among the silicon-based technologies, the CdTe type technology and the CIGS technology comprising:
- une étape de mesure par ablation laser de la cellule photovoltaïque comprenant au moins une impulsion laser, de préférence une pluralité d’impulsions laser, de sorte à obtenir un spectre caractéristique des espèces chimiques présentes dans la cellule photovoltaïque à analyser ; a step of measurement by laser ablation of the photovoltaic cell comprising at least one laser pulse, preferably a plurality laser pulses, so as to obtain a spectrum characteristic of the chemical species present in the photovoltaic cell to be analyzed;
- une étape de détermination, à partir dudit spectre, de la technologie de la cellule photovoltaïque.  a step of determining, from said spectrum, the technology of the photovoltaic cell.
Grâce à l’invention, il est possible de distinguer des cellules en fonction de leur technologie à l’aide d’une analyse par ablation laser. Cette technique d’analyse utilise un laser de courte impulsion pour créer un plasma à la surface d’un échantillon. Le rayonnement ainsi émis est caractéristique des espèces chimiques composant le matériau ablaté et peut être analysé par spectroscopie optique. On entend par spectre caractéristique au moins une courbe, de préférence une pluralité de courbes, ladite ou lesdites courbes comprenant un ou plusieurs pics et permettant via la longueur d’onde associée à chaque pic l’identification de l’espèce émettrice et via la surface sous la courbe associée à chaque pic la quantité de matière. Thanks to the invention, it is possible to distinguish cells according to their technology using a laser ablation analysis. This analysis technique uses a short pulse laser to create plasma on the surface of a sample. The radiation thus emitted is characteristic of the chemical species composing the ablated material and can be analyzed by optical spectroscopy. The term “characteristic spectrum” is understood to mean at least one curve, preferably a plurality of curves, said curve or curves comprising one or more peaks and allowing, via the wavelength associated with each peak, the identification of the emitting species and via the surface under the curve associated with each peak the quantity of matter.
Outre les caractéristiques qui viennent d’être évoquées dans le paragraphe précédent, le procédé selon un premier aspect de l’invention peut présenter une ou plusieurs caractéristiques complémentaires parmi les suivantes, considérées individuellement ou selon toutes les combinaisons techniquement possibles. In addition to the characteristics which have just been mentioned in the preceding paragraph, the method according to a first aspect of the invention may have one or more complementary characteristics among the following, considered individually or according to all technically possible combinations.
Dans un mode de réalisation, lorsque le silicium est présent parmi les espèces chimiques déterminées : In one embodiment, when the silicon is present among the determined chemical species:
- si le bore est présent parmi les espèces chimiques déterminées, la cellule photovoltaïque est considérée comme étant une cellule photovoltaïque de technologie de type n ;  - if boron is present among the determined chemical species, the photovoltaic cell is considered to be a photovoltaic cell of n-type technology;
- si le phosphore est présent parmi les espèces chimiques déterminées, la cellule photovoltaïque est considérée comme étant une cellule photovoltaïque de technologie de type p ;  - if phosphorus is present among the determined chemical species, the photovoltaic cell is considered to be a p-type photovoltaic cell;
- sinon la cellule photovoltaïque est considérée comme étant une cellule photovoltaïque de technologie de type hétérojonction.  - otherwise the photovoltaic cell is considered to be a heterojunction type photovoltaic cell.
Ainsi, il est possible de distinguer trois technologies différentes parmi la technologie à base de silicium. On entend par une espèce chimique est considérée comme présente que l’intensité du spectre à la fréquence associée à l’espèce chimique en question est supérieure à une valeur seuil. Le seuil pourra par exemple être fixé àThus, it is possible to distinguish three different technologies among the silicon-based technology. By a chemical species is meant shows that the intensity of the spectrum at the frequency associated with the chemical species in question is greater than a threshold value. The threshold could for example be set at
3s. 3s.
Dans un mode de réalisation, lorsque ni le silicium, ni le bore, ni le phosphore ne sont présents parmi les espèces chimiques déterminées : In one embodiment, when neither silicon, nor boron, nor phosphorus are present among the determined chemical species:
- si le cadmium et/ou le tellure est présent parmi les espèces chimiques déterminées, la cellule photovoltaïque est considérée comme étant une cellule photovoltaïque de technologie CdTe ;  - if cadmium and / or tellurium is present among the determined chemical species, the photovoltaic cell is considered to be a photovoltaic cell of CdTe technology;
- si le cuivre, indium, gallium et/ou sélénium est présent parmi les espèces chimiques déterminées, la cellule photovoltaïque est considérée comme étant une cellule photovoltaïque de technologie C1GS  - if copper, indium, gallium and / or selenium is present among the determined chemical species, the photovoltaic cell is considered to be a C1GS photovoltaic cell
Ainsi, il est également possible de réaliser le tri des cellules utilisant des technologies de type CdTe ou CIGS. Thus, it is also possible to sort the cells using CdTe or CIGS type technologies.
Dans un mode de réalisation, l’étape de détermination, à partir dudit spectre, de la technologie de la cellule photovoltaïque comprend : In one embodiment, the step of determining, from said spectrum, the technology of the photovoltaic cell comprises:
- une sous-étape de calcul d’un paramètre d’analyse noté x dont la valeur est donné par : x = /( ?) + [B] + [P]  - a substep for calculating an analysis parameter noted x whose value is given by: x = / (?) + [B] + [P]
où [X] est l’intensité du spectre à la fréquence associée à l’espèce chimique X , /( ?) = 1 si b > fiseua et 0 si b £ /?seuü, b est égal à [Cd] ou à [Te] et b seuii est une valeur seuil; where [X] is the intensity of the spectrum at the frequency associated with the chemical species X, / (?) = 1 if b> fi seu a and 0 if b £ /? seuü , b is equal to [Cd] or to [Te] and b seuii is a threshold value;
- une sous-étape de détermination de la technologie de la cellule photovoltaïque à partir de la valeur du paramètre d’analyse.  - a sub-step of determining the technology of the photovoltaic cell from the value of the analysis parameter.
Ainsi, la détermination de la technologie d’une cellule photovoltaïque peut être faite à l’aide d’un unique paramètre. Thus, the determination of the technology of a photovoltaic cell can be made using a single parameter.
Dans un mode de réalisation, l’étape de mesure par ablation laser met en œuvre une spectrométrie plasma induite par laser (encore appelée L1BS pour « Laser Induced Breakdown Spectroscopy » en anglais). Un deuxième aspect de l’invention concerne un procédé de tri d’au moins un module photovoltaïque en fonction de la technologie des cellules comprises dans ledit module comprenant une étape de détermination de la technologie des cellules photovoltaïques du module photovoltaïque à l’aide d’un procédé de détermination selon un premier aspect de l’invention. In one embodiment, the measurement step by laser ablation implements laser-induced plasma spectrometry (also called L1BS for “Laser Induced Breakdown Spectroscopy” in English). A second aspect of the invention relates to a method for sorting at least one photovoltaic module according to the technology of the cells included in said module, comprising a step of determining the technology of the photovoltaic cells of the photovoltaic module using a determination method according to a first aspect of the invention.
Ainsi, les modules peuvent être triés en fonction de la technologie des cellules photovoltaïques qui le composent. Thus, the modules can be sorted according to the technology of the photovoltaic cells that compose it.
Dans un mode de réalisation, l’étape de détermination de la technologie des cellules photovoltaïques du module photovoltaïque à l’aide d’un procédé de détermination selon un premier aspect de l’invention est mise en œuvre sur une partie seulement de ces cellules, voire une seule cellule. In one embodiment, the step of determining the technology of the photovoltaic cells of the photovoltaic module using a determination method according to a first aspect of the invention is implemented on only part of these cells, or even a single cell.
Ainsi, la détermination de la technologie des cellules constituant un module nécessite seulement la mesure d’une partie des cellules, ce qui permet d’accélérer le tri. Dans un mode de réalisation, le procédé de tri comprend, avant l’étape de détermination de la technologie des cellules photovoltaïques du module photovoltaïque, une étape de séparation des couches composant le module photovoltaïque. Thus, the determination of the technology of the cells constituting a module requires only the measurement of a part of the cells, which makes it possible to speed up the sorting. In one embodiment, the sorting method comprises, before the step of determining the technology of the photovoltaic cells of the photovoltaic module, a step of separating the layers making up the photovoltaic module.
Ainsi, les composants tels que la cadre en aluminium ou bien encore la boite de jonction peuvent être retirés avant l’étape de détermination de la technologie du module photovoltaïque. Thus, components such as the aluminum frame or even the junction box can be removed before the step of determining the technology of the photovoltaic module.
Un troisième aspect de l’invention concerne un procédé de recyclage d’au moins un module photovoltaïque comprenant une étape de tri mettant en œuvre un procédé selon un deuxième aspect de l’invention. Un quatrième aspect de l’invention concerne un dispositif comprenant un laser, un spectromètre optique et des moyens adaptés pour exécuter un procédé selon un premier, un deuxième ou un troisième aspect de l’invention. A third aspect of the invention relates to a method for recycling at least one photovoltaic module comprising a sorting step implementing a method according to a second aspect of the invention. A fourth aspect of the invention relates to a device comprising a laser, an optical spectrometer and means adapted to carry out a method according to a first, a second or a third aspect of the invention.
Un cinquième aspect de l’invention concerne un programme d'ordinateur comprenant des instructions qui conduisent le dispositif selon un quatrième aspect de l’invention à exécuter un procédé selon un premier, un deuxième ou un troisième aspect de l’invention. A fifth aspect of the invention relates to a computer program comprising instructions which lead the device according to a fourth aspect of the invention to execute a method according to a first, a second or a third aspect of the invention.
Un sixième aspect de l’invention concerne un support lisible par ordinateur, sur lequel est enregistré le programme d'ordinateur selon un cinquième aspect de l’invention. A sixth aspect of the invention relates to a computer-readable medium, on which the computer program is recorded according to a fifth aspect of the invention.
L’invention et ses différentes applications seront mieux comprises à la lecture de la description qui suit et à l’examen des figures qui l’accompagnent. The invention and its various applications will be better understood on reading the description which follows and on examining the figures which accompany it.
BREVE DESCRIPTION DES FIGURES Les figures sont présentées à titre indicatif et nullement limitatif de l’invention. BRIEF DESCRIPTION OF THE FIGURES The figures are presented as an indication and in no way limit the invention.
- La figure 1 montre une représentation schématique de la composition d’un module photovoltaïque.  - Figure 1 shows a schematic representation of the composition of a photovoltaic module.
- La figure 2 montre une représentation schématique d’un ordinogramme d’un mode de réalisation d’un procédé selon un premier aspect de l’invention. - La figure 3 montre une représentation schématique d’une mesure L1BS effectuées sur une cellule de type p dans un mode de réalisation d’un procédé selon un premier aspect de l’invention.  - Figure 2 shows a schematic representation of a flowchart of an embodiment of a method according to a first aspect of the invention. - Figure 3 shows a schematic representation of an L1BS measurement performed on a p-type cell in an embodiment of a method according to a first aspect of the invention.
- La figue 4 montre un profil de dopage en phosphore d’une cellule de type p et en bore d’une cellule de type n.  - Fig 4 shows a phosphorus doping profile of a p-type cell and boron of an n-type cell.
- La figure 5 montre un spectre optique d’une cellule de type n obtenu par une mesure LIBS.  - Figure 5 shows an optical spectrum of an n-type cell obtained by a LIBS measurement.
- La figure 6 montre un spectre optique d’une cellule de type p obtenu par une mesure LIBS.  - Figure 6 shows an optical spectrum of a p-type cell obtained by a LIBS measurement.
- La figure 7 montre une étape de détermination et de tri à l’aide d’un mode de réalisation d’un procédé selon un deuxième aspect de l’invention.  - Figure 7 shows a step of determining and sorting using an embodiment of a method according to a second aspect of the invention.
- La figure 8 montre une représentation schématique d’un mode de réalisation d’un procédé selon un deuxième aspect de l’invention. DESCRIPTION DETAILLEE D’AU MOINS UN MODE DE REALISATION DE L’INVENTION - Figure 8 shows a schematic representation of an embodiment of a method according to a second aspect of the invention. DETAILED DESCRIPTION OF AT LEAST ONE EMBODIMENT OF THE INVENTION
Sauf précision contraire, un même élément apparaissant sur des figures différentes présente une référence unique. Unless otherwise specified, the same element appearing in different figures has a unique reference.
Un premier aspect de l’invention illustré à la figure 2 concerne un procédé 100 de détermination de la technologie d’une cellule photovoltaïque. Pour rappel, les modules photovoltaïques contiennent des cellules photovoltaïques qui peuvent le plus souvent être réparties parmi l’une des catégories suivantes : A first aspect of the invention illustrated in FIG. 2 relates to a method 100 for determining the technology of a photovoltaic cell. As a reminder, photovoltaic modules contain photovoltaic cells which can most often be divided into one of the following categories:
- les cellules à base de silicium se répartissant elles-mêmes en trois technologies :  - silicon-based cells, which are themselves divided into three technologies:
* à base d’un substrat en silicium cristallin dopé au Bore (cellules dites à homojonction désignées cellules « de type p ») ;  * based on a crystalline silicon substrate doped with Boron (so-called homojunction cells designated "p-type" cells);
à base d’un substrat en silicium cristallin dopé au Phosphore (cellules dites à homojonction désignées cellules « de type n ») ; based on a crystalline silicon substrate doped with phosphorus (so-called homojunction cells designated “n-type” cells);
à base d’un substrat en silicium amorphe (cellules dites à hétérojonction ou H ET) ; based on an amorphous silicon substrate (cells called heterojunction or H ET);
- les cellules ayant une technologie de type couches minces à base de CdTe (cadmium et tellure - cellules dites « de type CdTe ») ;  - cells having a thin film type technology based on CdTe (cadmium and tellurium - cells called “CdTe type”);
- les cellules ayant une technologie de type couches minces à base de CIGS (cuivre, indium, gallium et sélénium - cellules dites « de type GIGS »).  - cells having a thin film type technology based on CIGS (copper, indium, gallium and selenium - cells called "GIGS type").
H existe bien entendu d’autres types de cellules photovoltaïques (par exemple à base de matériaux semi-conducteurs organiques, de matériaux pérovskites, etc.) mais la présente invention ne vise à effectuer un tri que parmi les technologies détaillées précédemment. Il est intéressant de noter que les cellules de type EWT et MWT (qui sont des cellules avec du silicium cristallin mais avec des architectures particulières) peuvent être considérées comme des cellules à base de silicium au sens de l’invention. There are of course other types of photovoltaic cells (for example based on organic semiconductor materials, perovskite materials, etc.) but the present invention aims to sort only among the technologies detailed above. It is interesting to note that cells of the EWT and MWT type (which are cells with crystalline silicon but with particular architectures) can be considered as silicon-based cells within the meaning of the invention.
Le procédé 100 selon un premier aspect de l’invention comprend une étape E1 de mesure par ablation laser de la cellule photovoltaïque comprenant au moins une impulsion laser, de préférence une pluralité d’impulsions laser, de sorte à obtenir un spectre caractéristique des espèces chimiques présentes dans la cellule photovoltaïque à analyser (à condition que lesdites espèces soit en quantité suffisante pour être mesurée). De préférence, l’étape de mesure par ablation laser met en œuvre une spectrométrie plasma induite par laser (encore appelée L1BS pour « Laser Induced Breakdown Spectroscopy » en anglais). La LIBS consiste à soumettre le matériau à analyser à une courte impulsion laser de sorte à ablater une partie du matériau et à créer un plasma à la surface dudit matériau. Le rayonnement émis lors de ce processus est caractéristique des espèces chimiques composant le matériau ablaté par l’impulsion laser. Le rayonnement peut donc être analysé par spectroscopie optique. Le nombre d’impulsions laser lors de la mesure peut être varié de sorte à effectuer une analyse de surface (lorsqu’un faible nombre d’impulsions lasers est utilisé) ou une analyse en profondeur (lorsqu’un nombre élevé d’impulsions lasers est utilisé). The method 100 according to a first aspect of the invention comprises a step E1 of measuring by laser ablation of the photovoltaic cell comprising at least one laser pulse, preferably a plurality of laser pulses, so as to obtain a spectrum characteristic of the chemical species present in the photovoltaic cell to be analyzed (provided that said species is in sufficient quantity to be measured). Preferably, the measurement step by laser ablation implements laser-induced plasma spectrometry (also called L1BS for “Laser Induced Breakdown Spectroscopy” in English). LIBS consists in subjecting the material to be analyzed to a short laser pulse so as to ablate part of the material and to create a plasma on the surface of said material. The radiation emitted during this process is characteristic of the chemical species composing the material ablated by the laser pulse. The radiation can therefore be analyzed by optical spectroscopy. The number of laser pulses during the measurement can be varied so as to perform a surface analysis (when a low number of laser pulses is used) or a deep analysis (when a high number of laser pulses is used used).
Comme expliqué auparavant, chaque impulsion laser ablate le matériau à la surface de la cellule. Or, bien souvent, comme illustré à la figure 3, le matériau de la surface n’est pas représentatif de la technologie de la cellule et une analyse en profondeur est alors nécessaire. A cette fin, dans un mode de réalisation d’un procédé selon un premier aspect de l’invention, l’étape de mesure par ablation laser comprend une pluralité d’impulsions lasers. Cette pluralité d’impulsions permet de traverser plusieurs couches de matériaux (et éventuellement la couche d’encapsulant, la couche antireflet, etc., lorsque la cellule est intégrée dans un module photovoltaïque) et d’effectuer une mesure LIBS sur des cellules photovoltaïques intégrées dans des modules possédant encore le verre de la face avant, ce dernier pouvant être pénétré par l’application d’une pluralité d’impulsions lasers. Bien entendu, la puissance du laser devra alors être adaptée en conséquence. As explained before, each laser pulse ablates the material on the surface of the cell. However, very often, as illustrated in Figure 3, the surface material is not representative of the cell technology and an in-depth analysis is then necessary. To this end, in an embodiment of a method according to a first aspect of the invention, the measurement step by laser ablation comprises a plurality of laser pulses. This plurality of pulses makes it possible to pass through several layers of material (and possibly the encapsulant layer, the anti-reflection layer, etc., when the cell is integrated in a photovoltaic module) and to carry out a LIBS measurement on integrated photovoltaic cells. in modules still having the glass on the front face, the latter being able to be penetrated by the application of a plurality of laser pulses. Of course, the power of the laser will then have to be adapted accordingly.
Une fois le spectre caractéristique des différentes espèces chimiques présentes dans la cellule obtenu, il est possible de déterminer la technologie de la cellule. Pour cela, le procédé 100 selon un premier aspect de l’invention comprend également une étape E2 de détermination, à partir dudit spectre, de la technologie de la cellule photovoltaïque. Pour rappel, dans un spectre, chaque espèce chimique est associée à au moins une longueur d’onde. Il est donc possible de détecter la présence d’une espèce chimique à partir de l’intensité du spectre à la longueur d’onde ou aux longueurs d’onde correspondant à ladite espèce. Un tel spectre est illustré à la figure 5 pour une pluralité d’impulsions (ou tirs) laser dans le cas d’une cellule de type n sur lequel deux pics associés au silicium et un pic associé au bore sont visibles. On constate que l’intensité du pic associé au bore diminue au fur et à mesure des impulsions. Cette évolution se comprend facilement à la lecture du profil de dopage d’une cellule de type p et d’une cellule de type n en fonction de la profondeur illustré à la figure 4. Chaque impulsion atteignant un point plus profond de la cellule que l’impulsion précédente, la quantité de bore présente et mesurée par chaque impulsion diminue. Comme on peut le voir sur cette même figure, dans le cas d’une cellule dopé p, le dopage en phosphore chute de manière plus rapide en fonction de la profondeur. Cela est confirmé par te spectre obtenu et illustré à la figure 8 sur lequel le pic associé au phosphore n’est visible que lors de la première impulsion et disparait lors des impulsions suivantes, la quantité de phosphore étant alors sous le seuil de détection (ce dernier étant en général de l’ordre de 10 ppm dans le cas du phosphore et dépend de la chaîne de mesure utilisée). Once the characteristic spectrum of the different chemical species present in the cell has been obtained, it is possible to determine the technology of the cell. For this, the method 100 according to a first aspect of the invention also comprises a step E2 of determining, from said spectrum, the technology of the photovoltaic cell. As a reminder, in a spectrum, each chemical species is associated with at least one wavelength. It is therefore possible to detect the presence of a chemical species from the intensity of the spectrum at the wavelength or at the wavelengths corresponding to said species. Such a spectrum is illustrated in FIG. 5 for a plurality of laser pulses (or shots) in the case of an n-type cell on which two peaks associated with silicon and a peak associated with boron are visible. It can be seen that the intensity of the peak associated with boron decreases as the pulses progress. This evolution is easily understood on reading the doping profile of a p-type cell and an n-type cell as a function of the depth illustrated in FIG. 4. Each pulse reaching a point deeper in the cell than l 'previous pulse, the amount of boron present and measured by each pulse decreases. As can be seen in this same figure, in the case of a p-doped cell, the phosphorus doping drops more rapidly as a function of the depth. This is confirmed by the spectrum obtained and illustrated in FIG. 8 on which the peak associated with phosphorus is visible only during the first pulse and disappears during the following pulses, the quantity of phosphorus then being below the detection threshold (this the latter being generally around 10 ppm in the case of phosphorus and depends on the measurement chain used).
Dans un mode de réalisation, lorsque le bore et te silicium sont présents parmi les espèces chimiques déterminées, la cellule photovoltaïque est considérée comme étant une cellule photovoltaïque de technologie de type n. En effet, la sensibilité de la mesure LIBS ne permet pas de mesurer la faible teneur en phosphore au cœur de la cellule photovoltaïque tandis qu’elle permettra de détecter le bore dont la teneur dans la face avant est beaucoup plus élevée. De manière générale, pour une épaisseur totale de 0.8 pm, la teneur en bore des premiers 0.3 pm est comprise entre 300ppmwt et 200ppmwt ce qui correspond à des quantités détectables par la mesure LIBS. In one embodiment, when boron and silicon are present among the determined chemical species, the photovoltaic cell is considered to be a photovoltaic cell of n-type technology. Indeed, the sensitivity of the LIBS measurement does not make it possible to measure the low phosphorus content at the heart of the photovoltaic cell while it will make it possible to detect boron whose content in the front face is much higher. In general, for a total thickness of 0.8 µm, the boron content of the first 0.3 µm is between 300ppmwt and 200ppmwt, which corresponds to quantities detectable by the LIBS measurement.
De même, lorsque le phosphore et le silicium sont présents parmi les espèces chimiques déterminées, la cellule photovoltaïque est considérée comme étant une cellule photovoltaïque de technologie de type p. En effet, la sensibilité de la mesure LIBS ne permet pas de mesurer la faible teneur en bore au cœur de la cellule photovoltaïque tandis qu’elle permettra de détecter le phosphore dont la teneur dans la face avant est beaucoup plus élevée. De manière générale, pour une épaisseur totale de 0.3 mih, la teneur en phosphore des premiers 0.1 pm est comprise entre 0.07 % et 1 .3 % ce qui correspond à des quantités détectables par la mesure L1BS. Likewise, when phosphorus and silicon are present among the determined chemical species, the photovoltaic cell is considered to be a photovoltaic cell of p-type technology. Indeed, the sensitivity of the LIBS measurement does not make it possible to measure the low boron content at the heart of the photovoltaic cell while it will make it possible to detect phosphorus whose content in the front face is much higher. Generally, for a total thickness of 0.3 mih, the phosphorus content of the first 0.1 pm is between 0.07% and 1.3% which corresponds to quantities detectable by the L1BS measurement.
II est intéressant de noter dans ce qui précède que dans le cas de cellules de type p ou de type n, l’espèce chimique détectée est celle présente en surface de la cellule photovoltaïque qui est d’un dopage opposé à celui du substrat (« bulk ») qui caractérise de façon globale le type de la technologie de la cellule. It is interesting to note in the above that in the case of p-type or n-type cells, the chemical species detected is that present on the surface of the photovoltaic cell which is of a doping opposite to that of the substrate (" bulk ”) which characterizes globally the type of cell technology.
Enfin, lorsque le silicium est présent parmi les espèces chimiques déterminées mais que ni le bore ni le phosphore n’y figurent, la cellule photovoltaïque est considérée comme étant une cellule photovoltaïque de technologie de type HET. En effet ce type de modules est principalement composé de silicium et les teneurs en dopants (bore et phosphore) sont trop faibles pour être détectables par la mesure LiBS. Finally, when silicon is present among the determined chemical species but neither boron nor phosphorus is there, the photovoltaic cell is considered to be a photovoltaic cell of HET type technology. In fact, this type of module is mainly composed of silicon and the dopant contents (boron and phosphorus) are too low to be detectable by the LiBS measurement.
Bien entendu, il est possible d’appliquer le procédé selon un premier aspect de l’invention à des technologies autres que les technologies silicium. Pour cela, dans un mode de réalisation, lorsque ni le silicium, ni le bore, ni le phosphore ne sont présents parmi les espèces chimiques déterminées et si le cadmium et/ou le tellure est présent parmi les espèces chimiques déterminées, la cellule photovoltaïque est considérée comme étant une cellule photovoltaïque de technologie CdTe. De préférence, la détermination n’est effectuée que sur la présence de cadmium, ce dernier étant plus émissif que le tellure et donc plus facilement détectable par spectroscopie d’émission. De la même manière, lorsque ni le silicium, ni le bore, ni le phosphore ne sont présents parmi les espèces chimiques déterminées et si le cuivre, l’indium, le gallium et/ou le sélénium est présent parmi les espèces chimiques déterminées, la cellule photovoltaïque est considérée comme étant une cellule photovoltaïque de technologie CIGS. Of course, it is possible to apply the method according to a first aspect of the invention to technologies other than silicon technologies. For this, in one embodiment, when neither silicon, nor boron, nor phosphorus are present among the determined chemical species and if cadmium and / or tellurium is present among the determined chemical species, the photovoltaic cell is considered to be a photovoltaic cell of CdTe technology. Preferably, the determination is only carried out on the presence of cadmium, the latter being more emissive than tellurium and therefore more easily detectable by emission spectroscopy. Similarly, when neither silicon, boron, nor phosphorus is present among the determined chemical species and if copper, indium, gallium and / or selenium is present among the determined chemical species, the photovoltaic cell is considered to be a photovoltaic cell of CIGS technology.
Dans un mode de réalisation, la détermination, à partir dudit spectre, de la technologie de la cellule photovoltaïque se fait à l’aide d’un paramètre noté x. Afin de calculer ce paramètre, l’étape E2 de détermination de la technologie de la cellule photovoltaïque comprend une sous-étape E21 de calcul d’un paramètre d’analyse noté x dont la valeur est donnée par : x = /(/?) + [B] + [P] In one embodiment, the determination, from said spectrum, of the technology of the photovoltaic cell is done using a parameter denoted x. In order to calculate this parameter, step E2 of determining the technology of the photovoltaic cell comprises a sub-step E21 of calculating an analysis parameter denoted x whose value is given by: x = / (/?) + [B] + [P]
où [X] est l’intensité du spectre à la fréquence associée à l’espèce chimique X, /(/?) = 1 si b > b5bha et O si b £ b5bha, b est égal à [Cd] ou à [Te] et beehίΐ est une valeur seuil, par ex. une valeur correspondant au seuil de détection de la mesure LIBS. De préférence, b = [Cd], le cadmium étant plus émissif que le tellure et donc plus facilement détectable par spectroscopie d’émission. Puis, l’étape E2 de détermination de la technologie de la cellule photovoltaïque comprend une sous-étape de détermination de la technologie de la cellule photovoltaïque à partir de la valeur du paramètre d’analyse x. D’après ce qui précède, on comprend que lorsque x = 0 alors la cellule module est considéré comme étant une cellule photovoltaïque de technologie HET. En effet, cette dernière ne contient pas de cadmium et les teneurs en bore et en phosphore sont trop faibles pour être détectées. Lorsque x = 1, alors la cellule photovoltaïque est considérée comme étant une cellule photovoltaïque de technologie CdTe (à condition de la valeur [Cd] si b = [Cd] ou [Te] si b = [Te] soit significative, c’est-à-dire au-dessus d’une valeur seuil, par ex. une valeur correspondant au seuil de détection de la mesure LIBS). Lorsque x = [B] alors la cellule photo voltaïque est considérée comme étant une cellule photovoltaïque de technologie de type n (à condition de la valeur [B] soit significative, c’est-à-dire au-dessus d’une valeur seuil, par ex. une valeur correspondant au seuil de détection de la mesure LIBS). Enfin, lorsque x = [P] alors la cellule photovoltaïque est considérée comme étant une cellule photovoltaïque de technologie de type p (à condition de la valeur [P] soit significative, c’est-à-dire au- dessus d’une valeur seuil, par ex. une valeur correspondant au seuil de détection de la mesure LIBS). where [X] is the intensity of the spectrum at the frequency associated with the chemical species X, / (/?) = 1 if b> b 5bha and O if b £ b 5bha , b is equal to [Cd] or to [Te] and bee hίΐ is a threshold value, eg. a value corresponding to the detection threshold of the LIBS measurement. Preferably, b = [Cd], cadmium being more emissive than tellurium and therefore more easily detectable by emission spectroscopy. Then, the step E2 of determining the technology of the photovoltaic cell comprises a sub-step of determining the technology of the photovoltaic cell from the value of the analysis parameter x. From the above, it is understood that when x = 0 then the module cell is considered to be a photovoltaic cell of HET technology. Indeed, the latter does not contain cadmium and the boron and phosphorus contents are too low to be detected. When x = 1, then the photovoltaic cell is considered to be a photovoltaic cell of CdTe technology (provided the value [Cd] if b = [Cd] or [Te] if b = [Te] is significant, it is i.e. above a threshold value, e.g. a value corresponding to the detection threshold of the LIBS measurement). When x = [B] then the photovoltaic cell is considered to be a photovoltaic cell of n type technology (provided the value [B] is significant, that is to say above a threshold value , e.g. a value corresponding to the detection threshold of the LIBS measurement). Finally, when x = [P] then the photovoltaic cell is considered to be a photovoltaic cell of p-type technology (provided the value [P] is significant, that is to say above a value threshold, e.g. a value corresponding to the detection threshold of the LIBS measurement).
Comme cela vient d’être décrit, un procédé 100 selon un premier aspect de l’invention permet de déterminer la technologie d’une cellule photovoltaïque. Il peut ensuite être intéressant d’utiliser cette information pour trier et éventuellement recycler les modules photovoltaïques composés desdites cellules. Pour cela, un deuxième aspect de l’invention illustré à la figure 7 concerne un procédé de tri d’au moins un module p h otovol laïque en fonction de la technologie des cellules photovoltaïques composant ledit module comprenant une étape de détermination de la technologie des cellules photovoltaïques du module photovoltaïque à l’aide d’un procédé 100 de détermination selon un premier aspect de l’invention. Par exemple, un tapis roulant pourra amener les modules à trier sur le site de détermination de la technologie des cellules photovoltaïque dudit module photovoltaïque puis, en fonction du résultat, le module sera redirigé vers un tapis roulant adéquate à la suite de quoi un recyclage des matériaux adapté à chaque technologie de cellule pourra être effectuée. Sur la figure 7, le tri est effectué entre modules comprenant des cellules de type p et modules comprenant des cellules de type n, mais l’homme du métier comprendra de ce qui précède que le tri peut être fait en prenant en compte des modules comprenant des cellules de type CdTe ou CIGS. As has just been described, a method 100 according to a first aspect of the invention makes it possible to determine the technology of a photovoltaic cell. It can then be interesting to use this information to sort and possibly recycle the photovoltaic modules composed of said cells. For this, a second aspect of the invention illustrated in Figure 7 relates to a method of sorting at at least one lay otovol module as a function of the technology of the photovoltaic cells composing said module comprising a step of determining the technology of the photovoltaic cells of the photovoltaic module using a method 100 of determination according to a first aspect of the invention . For example, a conveyor belt can cause the modules to be sorted on the site for determining the photovoltaic cell technology of said photovoltaic module, then, depending on the result, the module will be redirected to an adequate conveyor belt, after which recycling of the materials suitable for each cell technology can be performed. In FIG. 7, the sorting is carried out between modules comprising p-type cells and modules comprising n-type cells, but those skilled in the art will understand from the above that the sorting can be done by taking into account modules comprising CdTe or CIGS type cells.
L’étape de détermination de la technologie des cellules composant le module photovoltaïque doit être effectuée avec ou sans encapsulant H est donc nécessaire, dans certains cas, de retirer différents composants du module gênant l’accès aux cellules. Pour cela, dans un mode de réalisation, le procédé selon un deuxième aspect de l’invention comprend, avant l’étape de mesure par ablation laser, une étape de séparation des couches composant le module photovoltaïque. The step of determining the technology of the cells making up the photovoltaic module must be carried out with or without an encapsulant H is therefore necessary, in certain cases, to remove different components of the module hindering access to the cells. For this, in one embodiment, the method according to a second aspect of the invention comprises, before the step of measuring by laser ablation, a step of separating the layers making up the photovoltaic module.
Dans un mode de réalisation illustré à la figure 8, l’étape de détermination de la technologie des cellules photovoltaïques du module photovoltaïque à l’aide d’un procédé de détermination selon un premier aspect de l’invention est mise en œuvre sur une partie seulement de ces cellules, voire une seule cellule. Ainsi, la technologie d’un module nécessite seulement la mesure d’une partie des cellules, ce qui permet d’accélérer le tri. In an embodiment illustrated in FIG. 8, the step of determining the technology of the photovoltaic cells of the photovoltaic module using a determination method according to a first aspect of the invention is implemented on a part only these cells, or even a single cell. Thus, the technology of a module only requires the measurement of a part of the cells, which makes it possible to speed up the sorting.
Un troisième aspect de l’invention concerne un procédé de recyclage d’au moins un module photovoltaïque caractérisé en ce qu’il comprend une étape de tri mettant en œuvre un procédé selon un deuxième aspect de l’invention. A third aspect of the invention relates to a method for recycling at least one photovoltaic module, characterized in that it comprises a sorting step implementing a method according to a second aspect of the invention.
Afin de pouvoir mettre en œuvre un procédé 100 selon un premier aspect, un deuxième aspect ou un troisième aspect de l’invention, un quatrième aspect de l’invention concerne un dispositif comprenant un laser et un spectromètre optique de sorte à pouvoir effectuer une mesure LIBS Le dispositif comprend également des moyens adaptés pour exécuter le procédé selon un premier aspect, un deuxième aspect ou un troisième aspect de l’invention. Dans un mode de réalisation, le dispositif comprend un moyen de calcul (par ex un processeur, un FPGA ou une carte ASIC) associé à une mémoire. La mémoire peut notamment contenir les instructions ainsi que les données nécessaires à l’exécution d’un procédé 100 selon un premier aspect, un deuxième aspect ou un troisième aspect de l’invention. Le moyen de calcul comporte également des moyens de connexion à un spectromètre optique et à un laser de sorte à pouvoir effectuer une mesure LIBS telle détaillée précédemment. Dans un mode de réalisation, le dispositif comprend un système de transport (par ex un tapis roulant) permettant de transporter un module d’un premier point où la détermination de la technologie des cellules composant ledit module sera effectuée à un deuxième point où le tri en fonction de cette technologie sera effectué. In order to be able to implement a method 100 according to a first aspect, a second aspect or a third aspect of the invention, a fourth aspect of the invention relates to a device comprising a laser and an optical spectrometer so as to be able to perform a LIBS measurement. The device also comprises means suitable for carrying out the method according to a first aspect, a second aspect or a third aspect of the invention. In one embodiment, the device comprises a calculation means (for example a processor, an FPGA or an ASIC card) associated with a memory. The memory can in particular contain the instructions as well as the data necessary for the execution of a method 100 according to a first aspect, a second aspect or a third aspect of the invention. The calculation means also comprises means of connection to an optical spectrometer and to a laser so as to be able to carry out a LIBS measurement as detailed above. In one embodiment, the device comprises a transport system (for example a conveyor belt) making it possible to transport a module from a first point where the determination of the technology of the cells composing said module will be carried out at a second point where the sorting depending on what technology will be performed.

Claims

REVENDICATIONS
1. Procédé (100) de détermination de la technologie d’une cellule photovoltaïque parmi les technologies à base de silicium, la technologie de type CdTe et la technologie CIGS caractérisé en ce qu’il comprend : 1. Method (100) for determining the technology of a photovoltaic cell among the silicon-based technologies, the CdTe type technology and the CIGS technology, characterized in that it comprises:
- une étape (E1 ) de mesure par ablation laser de la cellule photovoltaïque comprenant au moins une impulsion laser de sorte à obtenir un spectre caractéristique des espèces chimiques présentes dans la cellule photovoltaïque à analyser ;  a step (E1) of measurement by laser ablation of the photovoltaic cell comprising at least one laser pulse so as to obtain a spectrum characteristic of the chemical species present in the photovoltaic cell to be analyzed;
- une étape (E2) de détermination, à partir dudit spectre, de la technologie de la cellule photovoltaïque.  a step (E2) of determining, from said spectrum, the technology of the photovoltaic cell.
2 Procédé (100) selon la revendication précédente caractérisé en ce que lorsque le silicium est présent parmi les espèces chimiques déterminées : 2 Method (100) according to the preceding claim, characterized in that when the silicon is present among the determined chemical species:
- si le bore est présent parmi les espèces chimiques déterminées, la cellule photovoltaïque est considérée comme étant une cellule photovoltaïque de technologie de type n ;  - if boron is present among the determined chemical species, the photovoltaic cell is considered to be a photovoltaic cell of n-type technology;
- si le phosphore est présent parmi les espèces chimiques déterminées, la cellule photovoltaïque est considérée comme étant une cellule photovoltaïque de technologie de type p ;  - if phosphorus is present among the determined chemical species, the photovoltaic cell is considered to be a p-type photovoltaic cell;
- sinon la cellule photovoltaïque est considérée comme étant une cellule photo voltaïque de technologie de type hétérojonction.  - otherwise the photovoltaic cell is considered to be a photovoltaic cell of heterojunction type technology.
3. Procédé (100) selon l’une des revendications précédentes caractérisé en ce que, lorsque ni le silicium, ni le bore, ni le phosphore ne sont présents parmi les espèces chimiques déterminées : 3. Method (100) according to one of the preceding claims, characterized in that, when neither silicon, nor boron, nor phosphorus are present among the determined chemical species:
- si le cadmium et/ou le tellure est présent parmi les espèces chimiques déterminées, la cellule photo voltaïque est considérée comme étant un module photo voltaïque de technologie CdTe ;  - if cadmium and / or tellurium is present among the determined chemical species, the photovoltaic cell is considered to be a photovoltaic module of CdTe technology;
- si le cuivre, l’indium, le gallium et/ou le sélénium est présent parmi les espèces chimiques déterminées, la cellule photovoltaïque est considérée comme étant une cellule photovoltaïque de technologie CIGS. - if copper, indium, gallium and / or selenium is present among the determined chemical species, the photovoltaic cell is considered to be a photovoltaic cell of CIGS technology.
4. Procédé (100) selon la revendication 1 caractérisé en ce que l’étape (E2) de détermination, à partir dudit spectre, de la technologie de la cellule photovoltaïque comprend : 4. Method (100) according to claim 1 characterized in that the step (E2) of determining, from said spectrum, the technology of the photovoltaic cell comprises:
- une sous-étape (E21 ) de calcul d’un paramètre d’analyse noté x dont la valeur est donné par : x = /(/?) + [B] + [P]  - a substep (E21) for calculating an analysis parameter denoted x whose value is given by: x = / (/?) + [B] + [P]
où [X] est l’intensité du spectre à la fréquence associée à l’espèce chimique X, /(/?) = 1 si b > fiseua et 0 si b £ b3bha, b est égal à [Cd] ou à [Te] et fiseua est une valeur seuil ; where [X] is the intensity of the spectrum at the frequency associated with the chemical species X, / (/?) = 1 if b> fi seua and 0 if b £ b 3bha , b is equal to [Cd] or to [Te] and fi seua is a threshold value;
- une sous-étape (E22) de détermination de la technologie de la cellule photovoltaïque à partir de la valeur du paramètre d’analyse.  - a substep (E22) of determining the technology of the photovoltaic cell from the value of the analysis parameter.
5. Procédé selon l’une des revendications précédentes caractérisé en ce que l’étape (E1 ) de mesure par ablation laser met en œuvre une spectrométrie plasma induite par laser. 5. Method according to one of the preceding claims characterized in that the step (E1) of measurement by laser ablation implements laser-induced plasma spectrometry.
6 Procédé de tri d’au moins un module photovoltaïque en fonction de la technologie des cellules composant ledit module, caractérisé en ce qu’il comprend une étape de détermination de la technologie des cellules photovoltaïque dudit module photovoltaïque à l’aide d’un procédé (100) de détermination selon l’une des revendications précédentes. 6 Method of sorting at least one photovoltaic module according to the technology of the cells making up said module, characterized in that it comprises a step of determining the technology of the photovoltaic cells of said photovoltaic module using a method (100) of determination according to one of the preceding claims.
7. Procédé selon la revendication précédente caractérisé en ce que l’étape de détermination de la technologie des cellules photovoltaïques du module photovoltaïque à l’aide d’un procédé (100) de détermination selon un premier aspect de l’invention est mise en œuvre sur une partie seulement de ces cellules, voire une seule cellule. 7. Method according to the preceding claim characterized in that the step of determining the technology of the photovoltaic cells of the photovoltaic module using a method (100) of determination according to a first aspect of the invention is implemented on only part of these cells, even a single cell.
8. Procédé selon l’une des deux revendications précédentes caractérisé en ce qu’il comprend, avant étape de détermination de la technologie des cellules du module photovoltaïque, une étape de séparation des couches composant le module photovoltaïque. 8. Method according to one of the two preceding claims characterized in that it comprises, before the step of determining the technology of the cells of the photovoltaic module, a step of separating the layers making up the photovoltaic module.
9. Procédé de recyclage d’au moins un module photovoltaïque caractérisé en ce qu’il comprend une étape de tri mettant en œuvre un procédé selon l’une des trois revendications précédentes. 9. Method for recycling at least one photovoltaic module characterized in what it includes a sorting step implementing a method according to one of the three preceding claims.
10. Dispositif de tri comprenant un laser, un spectromètre optique et des moyens adaptés pour exécuter un procédé (100) selon l’une des revendications précédentes. 10. Sorting device comprising a laser, an optical spectrometer and means suitable for carrying out a method (100) according to one of the preceding claims.
1 1 . Programme d'ordinateur comprenant des instructions qui conduisent le dispositif selon la revendication précédente à exécuter un procédé (100) selon l’une des revendications 1 à 9. 1 1. Computer program comprising instructions which cause the device according to the preceding claim to execute a method (100) according to one of claims 1 to 9.
12. Support lisible par ordinateur, sur lequel est enregistré le programme d'ordinateur selon la revendication précédente. 12. Computer-readable medium, on which the computer program according to the preceding claim is recorded.
PCT/EP2019/077148 2018-10-08 2019-10-08 Method for determining the technology of a photovoltaic cell, associated sorting method, recycling method and device WO2020074470A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19780262.2A EP3864708A1 (en) 2018-10-08 2019-10-08 Method for determining the technology of a photovoltaic cell, associated sorting method, recycling method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1859301 2018-10-08
FR1859301A FR3087049A1 (en) 2018-10-08 2018-10-08 METHOD FOR DETERMINING THE TECHNOLOGY OF A PHOTOVOLTAIC CELL, SORTING METHOD, RECYCLING METHOD AND ASSOCIATED DEVICE

Publications (1)

Publication Number Publication Date
WO2020074470A1 true WO2020074470A1 (en) 2020-04-16

Family

ID=66286376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/077148 WO2020074470A1 (en) 2018-10-08 2019-10-08 Method for determining the technology of a photovoltaic cell, associated sorting method, recycling method and device

Country Status (3)

Country Link
EP (1) EP3864708A1 (en)
FR (1) FR3087049A1 (en)
WO (1) WO2020074470A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114798490B (en) * 2022-05-05 2024-02-06 赣州爱康光电科技有限公司 Sorting device for photovoltaic cell pieces

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2134164A1 (en) * 1997-12-10 1999-09-16 Univ Malaga Computerised analysis method using spectroscopy of plasmas produced by laser for quality control of solar cells
US20110100967A1 (en) * 2009-11-03 2011-05-05 Applied Spectra, Inc. Method for real-time optical diagnostics in laser ablation and laser processing of layered and structured materials
CN103085116A (en) 2013-01-15 2013-05-08 上海交通大学 Heating wire cutting device of ethylene vinyl acetate (EVA) layer in solar cell panel recovery processing
US20130158698A1 (en) * 2011-12-14 2013-06-20 Gwangju Institute Of Science And Technology Fabrication system of cigs thin film solar cell equipped with real-time analysis facilities for profiling the elemental components of cigs thin film using laser-induced breakdown spectroscopy
US20130264249A1 (en) * 2003-01-27 2013-10-10 Spectramet, Llc Sorting pieces of material based on photonic emissions resulting from multiple sources of stimuli
FR3017551A1 (en) * 2014-02-20 2015-08-21 Recyclage Valorisation Photovoltaique R V P METHOD AND INSTALLATION FOR RECYCLING PHOTOVOLTAIC PANELS
US20170205354A1 (en) * 2014-06-23 2017-07-20 Tsi, Incorporated Rapid material analysis using libs spectroscopy

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2134164A1 (en) * 1997-12-10 1999-09-16 Univ Malaga Computerised analysis method using spectroscopy of plasmas produced by laser for quality control of solar cells
US20130264249A1 (en) * 2003-01-27 2013-10-10 Spectramet, Llc Sorting pieces of material based on photonic emissions resulting from multiple sources of stimuli
US20110100967A1 (en) * 2009-11-03 2011-05-05 Applied Spectra, Inc. Method for real-time optical diagnostics in laser ablation and laser processing of layered and structured materials
US20130158698A1 (en) * 2011-12-14 2013-06-20 Gwangju Institute Of Science And Technology Fabrication system of cigs thin film solar cell equipped with real-time analysis facilities for profiling the elemental components of cigs thin film using laser-induced breakdown spectroscopy
CN103085116A (en) 2013-01-15 2013-05-08 上海交通大学 Heating wire cutting device of ethylene vinyl acetate (EVA) layer in solar cell panel recovery processing
FR3017551A1 (en) * 2014-02-20 2015-08-21 Recyclage Valorisation Photovoltaique R V P METHOD AND INSTALLATION FOR RECYCLING PHOTOVOLTAIC PANELS
US20170205354A1 (en) * 2014-06-23 2017-07-20 Tsi, Incorporated Rapid material analysis using libs spectroscopy

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Solar Panels and Photovoltaic Materials", 11 July 2018, INTECH, ISBN: 978-1-78923-435-0, article MARINA MONTEIRO LUNARDI ET AL: "A Review of Recycling Processes for Photovoltaic Modules", XP055609769, DOI: 10.5772/intechopen.74390 *
CORCELLI F ET AL: "End-of-life treatment of crystalline silicon photovoltaic panels. An emergy-based case study", JOURNAL OF CLEANER PRODUCTION, ELSEVIER, AMSTERDAM, NL, vol. 161, 7 May 2017 (2017-05-07), pages 1129 - 1142, XP085143153, ISSN: 0959-6526, DOI: 10.1016/J.JCLEPRO.2017.05.031 *
GRANATA G ET AL: "Recycling of photovoltaic panels by physical operations", SOLAR ENERGY MATERIALS AND SOLAR CELLS, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, vol. 123, 27 January 2014 (2014-01-27), pages 239 - 248, XP028615854, ISSN: 0927-0248, DOI: 10.1016/J.SOLMAT.2014.01.012 *
M. MASOUMIAN ET AL: "End-of-Life Management of Photovoltaic Modules", IFAC-PAPERSONLINE-8TH IFAC SYMPOSIUM ON ADVANCES IN AUTOMOTIVE CONTROL AAC 2016, NORRKÖPING, SWEDEN, 20-23 JUNE 2016, vol. 48, no. 24, 2015, pages 162 - 167, XP055609669, ISSN: 2405-8963, DOI: 10.1016/j.ifacol.2015.12.076 *
YAN XU ET AL: "Global status of recycling waste solar panels: A review", WASTE MANAGEMENT., vol. 75, 19 February 2018 (2018-02-19), US, pages 450 - 458, XP055611077, ISSN: 0956-053X, DOI: 10.1016/j.wasman.2018.01.036 *

Also Published As

Publication number Publication date
FR3087049A1 (en) 2020-04-10
EP3864708A1 (en) 2021-08-18

Similar Documents

Publication Publication Date Title
EP3510640B1 (en) Method for sorting silicon wafers according to their bulk lifetime
FR2776375A1 (en) Characterization of an ion implantation process especially for monitoring ion implantation of silicon wafers in IC manufacture
EP2880426B1 (en) Method for analysing the crystal structure of a polycrystalline semiconductor
WO2020074470A1 (en) Method for determining the technology of a photovoltaic cell, associated sorting method, recycling method and device
EP1004040B1 (en) Spectrometry measuring device in the field of photon gamma detection
EP2937902B1 (en) Cdhgte photodiode array
EP2981811B1 (en) Method and system for controlling the quality of a photovoltaic device
EP3084402A2 (en) Method and system for monitoring the quality of photovoltaic cells
CA2765336C (en) Method for discriminating a gamma component and a neutron component in an electronic signal
EP2803985A1 (en) Method for determining donor and acceptor dopant concentrations
EP1853898B1 (en) Method and system for physicochemical analysis using a laser pulsed ablation
FR2892194A1 (en) METHOD OF QUALITATIVE AND QUANTITATIVE ANALYSIS BY OPTICAL TRANSMISSION SPECTROSCOPY
EP2434752A2 (en) Method for determining and correcting the response stability of a semi-conductor matrix detector
EP3789759B1 (en) Mapping of impurities by electroluminescence in devices with semiconductor materials
WO2017036888A1 (en) Method and device for monitoring a cutting wire with bonded abrasives
EP4016596A1 (en) Method for determining the bulk carrier lifetime for a substrate and associated device
FR3024669A1 (en) DEVICE AND METHOD FOR SORTING SOLID MATERIALS, IN PARTICULAR PLASTIC MATERIALS, MARKED BY A MARKER
EP2939002B1 (en) Method and device for characterising a fluid medium using a photoelectric transducer
Zaunbrecher Imaging as characterization techniques for thin-film cadmium telluride photovoltaics
EP3407055A1 (en) Quantitative spectroscopy of the density of electronic defects in a thin-film photo-receptor, in particular in a solar cell
EP3413035B1 (en) Method for determining decay times of a luminescence signal
Foucher Evaluation annuelle du stock de coquilles Saint-Jacques (Pecten maximus) de la baie de Seine: résultats de la campagne COMOR 2017.
FR3041107A1 (en) DEVICE FOR IN SITU ANALYSIS OF A RADIOLOGICAL WASTE CONTAINING THE CARBON ISOTOPE 14
FR2982955A1 (en) METHOD AND SYSTEM FOR IDENTIFYING AND SORTING RECYCLING WOOD MATERIAL
EP4012786A1 (en) Method for determining a heating temperature of a heterojunction photovoltaic cell during a processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19780262

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019780262

Country of ref document: EP

Effective date: 20210510