WO2020074389A1 - Composant optoélectronique à semi-conducteur et procédé de fonctionnement pour composant optoélectronique à semi-conducteur - Google Patents

Composant optoélectronique à semi-conducteur et procédé de fonctionnement pour composant optoélectronique à semi-conducteur Download PDF

Info

Publication number
WO2020074389A1
WO2020074389A1 PCT/EP2019/076915 EP2019076915W WO2020074389A1 WO 2020074389 A1 WO2020074389 A1 WO 2020074389A1 EP 2019076915 W EP2019076915 W EP 2019076915W WO 2020074389 A1 WO2020074389 A1 WO 2020074389A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
semiconductor
light source
semiconductor light
semiconductor component
Prior art date
Application number
PCT/EP2019/076915
Other languages
German (de)
English (en)
Inventor
Sebastian Stigler
Uli Hiller
Martin Moritz
Original Assignee
Osram Opto Semiconductors Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors Gmbh filed Critical Osram Opto Semiconductors Gmbh
Publication of WO2020074389A1 publication Critical patent/WO2020074389A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2113/00Combination of light sources
    • F21Y2113/10Combination of light sources of different colours
    • F21Y2113/13Combination of light sources of different colours comprising an assembly of point-like light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • An optoelectronic semiconductor component is specified.
  • One problem to be solved is to specify an optoelectronic semiconductor component whose white light has a high color rendering index over a large one
  • Color temperature range is tunable.
  • white light means that a color locus of the mixed light deviates from the Planck curve in the CIE 1960 UCS standard color chart and / or in the CIE xy standard color chart by a maximum of 0.02 units or 0.01 units or 0.005 units.
  • Light in the CIE-uv display is at most 0.05 units from the Planck curve.
  • the correlated color temperature of this white mixed light can be tuned, in particular continuously tuned. Stepless means in particular that between two successive settings for the Mixed light the human eye no difference
  • this comprises
  • Semiconductor device a first semiconductor light source.
  • the white light is composed of spectrally narrow-band blue light and spectrally broad-band yellow, green yellow or yellow-orange light.
  • this comprises
  • Semiconductor device a second semiconductor light source.
  • the second semiconductor light source is set up to emit spectrally narrow-band blue light.
  • this comprises
  • Semiconductor device a third semiconductor light source.
  • the third semiconductor light source is set up to emit spectrally narrow-band green light.
  • this comprises
  • the semiconductor device a fourth semiconductor light source.
  • the fourth semiconductor light source is set up to emit spectrally narrow-band red light.
  • Semiconductor light sources each have one or more
  • the light emitted by the second, third and fourth semiconductor light source is preferably directly in the relevant one
  • the first semiconductor light source preferably has a partial conversion of blue light in yellow light.
  • the first semiconductor light source preferably comprises a phosphor or a mixture of a plurality of phosphors and at least one blue or UV light-emitting LED chip.
  • the optoelectronic semiconductor component is for emitting white mixed light with a tunable, correlated color temperature
  • a first semiconductor light source is for
  • Emission of white light set up preferably from spectrally narrow-band blue light and from spectral
  • the semiconductor component comprises a second, third and fourth semiconductor light source, which are set up to emit spectrally narrow-band blue, green and red light.
  • the semiconductor component it is possible for the semiconductor component to combine an RGB unit from ambient lighting with a white-emitting LED. This allows existing components such as RGB lighting or white
  • the white light from the first semiconductor light source has a low correlated color temperature, or CCT for short.
  • This color temperature of the white light of the first semiconductor light source is preferably at most 4500 K or 3200 K or 3100 K or 3000 K. Alternatively or additionally, this color temperature is at least 2100 K or 2300 K or 2500 K. This color temperature is particularly preferably between 2800 K inclusive and 3100 K or between and including 2900 K and 3100 K.
  • the first semiconductor light source emits warm white light.
  • the white light of the first semiconductor light source can
  • Half-widths of the blue light of the first light source, the blue, green and / or red light of the second, third and / or fourth semiconductor light sources each at least 15 nm or 20 nm. Alternatively or additionally, these half-widths are at most 50 nm or 40 nm or 30 nm.
  • the spectral half-width of the green light is the greatest.
  • Semiconductor light sources preferably have approximately the same spectral half-value widths, for example
  • the yellow light of the first semiconductor light source has a spectral one
  • the blue light of the second semiconductor light source has a dominant wavelength of 465 nm. This applies in particular with a tolerance of at most 10 nm or 5 nm or 3 nm.
  • the green light of the third semiconductor light source has a dominant wavelength of 532 nm. This applies preferably with a tolerance of at most 12 nm or 5 nm or 3 nm.
  • the red light of the fourth semiconductor light source has a dominant wavelength of 623 nm. This preferably applies with a tolerance of at most 10 nm or 5 nm or 3 nm.
  • the blue light from the second semiconductor light source has a dominant wavelength in the range from 440 nm to 470 nm.
  • the green light of the third semiconductor light source has a dominant wavelength in the range from 510 nm to 570 nm.
  • the red light indicates the fourth
  • Semiconductor light source has a dominant wavelength in the range from 600 nm to 640 nm.
  • the blue light from the first light source has a dominant wavelength of 452 nm. This applies, for example, with a tolerance of
  • Blue light from the first semiconductor light source can have a different, in particular a larger, dominant wavelength in front of the assigned phosphor, for example the dominant wavelength of the blue light of the second
  • the blue light of the first semiconductor light source has a dominant wavelength of in the range from 440 nm to 470 nm.
  • the yellow light from the first semiconductor light source has a dominant wavelength of 575 nm. This applies in particular with a tolerance of at most 25 nm or 15 nm or 7 nm.
  • the first semiconductor light source preferably has at least one phosphor, in particular from the class of orthosilicates doped with rare earths and / or from the class of
  • the first semiconductor light source comprises YAG: Ce as phosphor.
  • the yellow light has the wavelength conversion from the blue light
  • a correlated color temperature of the white mixed light can be tuned at least from 3000 K to 6000 K or at least from 2700 K to 7000 K.
  • a deviation of the color location of the mixed light from the Planck curve of the CIE standard color chart is preferably across this entire color temperature range at a maximum of 0.02 units or 0.01 units or 0.005 units. This applies in particular to the CIE standard color chart from 1931 in CIEx-CIEy representation.
  • Color rendering index of at least 80 or 90 or 93 or 95 is also called CRI for Color Rendering Index or Ra.
  • Red rendering index is also referred to as R9.
  • the color rendering indices are particularly in the
  • the second, third and fourth semiconductor light sources are combined in a first module.
  • the first semiconductor light source is
  • a second module preferably formed by a second module.
  • the respective modules can be handled separately and via their own
  • the second, third and fourth semiconductor light sources are preferably a subassembly that is installed in the semiconductor component.
  • the first module has its own Housing and / or via its own reflector for the light of the second, third and fourth semiconductor light source.
  • each of the semiconductor light sources can be formed by its own module.
  • individual, independent LEDs can be used for the semiconductor light sources.
  • the semiconductor light sources can only be one at a time
  • Semiconductor chip or include several of the semiconductor chips for generating radiation. This makes it possible to
  • Luminosity of the semiconductor component can be set efficiently via the number of semiconductor chips installed in each case.
  • the semiconductor light sources can be different from one another
  • this comprises
  • Semiconductor component one or more control units. With the at least one control unit
  • the control unit includes, for example, an integrated circuit, a current source such as a constant current source, a pulse width modulation device, an address unit, a memory chip and / or a data interface.
  • control unit is designed such that control of the
  • the control unit can be designed as a separate module. This means that the control unit is separate from the
  • Semiconductor light sources can also be independent
  • control unit is integrated in the first module or in the second module.
  • control unit is located in the module that all
  • the optoelectronic semiconductor component is operated in such a way that white mixed light is generated by means of the semiconductor light sources, whose color rendering index, CRI for short, is at least 93 and
  • Red rendering index, R9 for short, is at least 80.
  • a color temperature of the white mixed light is preferably adjustable over at least 1000 K or 2000 K or 3000 K.
  • Figure 1 is a schematic plan view of a here
  • Figures 2 to 13 are schematic representations of optical
  • Figures 17 to 21 are schematic representations of optical
  • Figure 1 is an embodiment of a
  • the semiconductor component 1 has a first semiconductor light source 21, which is set up to generate white light.
  • the first semiconductor source 21 preferably comprises a semiconductor chip for emitting blue light, the one
  • the first semiconductor light source 21 can be designed as a first module 41.
  • the semiconductor component 1 comprises a second one
  • Semiconductor light sources 22, 23, 24 can be generated directly from a semiconductor chip.
  • semiconductor light source 24 it is alternatively possible for semiconductor light source 24 to have a phosphor which completely or substantially completely converts a primary radiation such as blue light into red light.
  • a primary radiation such as blue light into red light.
  • Semiconductor light sources 22, 23, 24 for blue, green and red are combined in a first module 41.
  • the second module 42 is an LED of the SYNIOS E4014, KW DPLS32.EC type
  • a MULTILED of the LRTBGVSG type likewise from the manufacturer OSRAM Opto Semiconductors GmbH, can be used as the first module 41, for example.
  • the semiconductor light sources 21, 22, 23, 24 and thus the modules 41, 42 are optionally mounted on a common carrier 5, such as a printed circuit board.
  • the semiconductor component 1 additionally has a control unit 3 for the electrically independent control of the semiconductor light sources 21, 22, 23, 24.
  • the semiconductor light sources 21, 22, 23, 24 can each be formed by their own modules, so that at least four modules are present, or all the semiconductor light sources 21, 22, 23, 24 can also be combined in a single module.
  • the control unit 3 can be a separate module or can be integrated in the first module 41, in the second module 42 or in the module (not shown) with all semiconductor light sources 21, 22, 23, 24.
  • the corresponding individual spectra of the semiconductor light sources 21, 22, 23, 24 are illustrated in FIG. 3.
  • the wavelength L in nm is plotted against the intensity Iv in arbitrary units, briefly below. From Figure 3 is too
  • Semiconductor light sources 22, 23, 24 is spectrally narrow-band. The same applies to a blue component of the light from the first semiconductor light source 21.
  • a yellow component of the light from the first semiconductor source 21, on the other hand, is emitted in a spectrally broadband manner.
  • the luminous flux of the red light is, for example
  • the luminous flux of green light is 1.63 cd, for example at a dominant wavelength of 532 nm and the
  • Luminous flux of blue light is, for example, 0.37 cd at a dominant wavelength of 465 nm. These values can apply correspondingly to the semiconductor light sources 22, 23, 24 in all other exemplary embodiments.
  • the first semiconductor light source 21 emits white light with a light intensity of 14.8 cd at a color temperature of 3000 K.
  • the white light of the first semiconductor light source 21 emits white light with a light intensity of 14.8 cd at a color temperature of 3000 K.
  • Semiconductor light source 21 knows one, for example
  • FIG. 4 shows that over a range of
  • a red rendering index R9 around 95 can be achieved.
  • the color temperature CCT of the first semiconductor light source 21 of approximately 3000 K forms a kind of transition. Above about this
  • Semiconductor component 1 emitted, entered.
  • Semiconductor light sources 22, 23, 24 are still the largest.
  • FIGS. 8 and 9 show the individual spectra of the
  • Total spectrum of the white mixed light of the semiconductor component 1 is shown, specifically for a color temperature of the total emitted white mixed light of 3000 K.
  • Wavelength L is plotted in nm.
  • FIGS. 10 and 11 Corresponding representations can be seen in FIGS. 10 and 11 for a color temperature CCT of the total emitted white mixed light of 4500 K and in FIGS. 12 and 13 such representations are shown for a color temperature of the total emitted mixed light of 6000 K.
  • the luminous flux Fn in im relate to the luminous flux Fn in im and to the relative radiation power FQ in W / nm.
  • the light intensity Iv is given in cd.
  • FIGS. 17 to 21 The optical properties of a further exemplary embodiment of the semiconductor component 1 are illustrated in FIGS. 17 to 21. However, this exemplary embodiment is less preferred than the exemplary embodiment explained in connection with FIGS. 2 to 16.
  • Semiconductor light sources 21, 22, 23, 24 can be seen plotting the wavelength L in nm compared to the intensity in arbitrary units, see below.
  • Semiconductor light sources 22, 23, 24 preferably correspond to those from the exemplary embodiment in FIGS. 2 to 16.
  • the first semiconductor light source 21 emits white light with a higher color temperature CCT, namely from
  • Color temperature of the first semiconductor light source 21 is 3000 K.
  • Semiconductor light source 24 at low color temperatures CCT is not sufficient in terms of power to achieve high
  • the color temperature of the white light of the first semiconductor light source 21 should be chosen to be as low as possible.
  • the color temperature CCT of the white light of the first semiconductor light source 21 is preferably between
  • Semiconductor light source 21 have to accept losses in efficiency and a gain in terms of the color rendering indices CRI, R9 is only relatively weak.
  • the invention encompasses every new feature and every combination of features, which in particular includes every combination of features in the patent claims, even if this feature or this combination itself is not explicit is specified in the claims or exemplary embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Led Device Packages (AREA)

Abstract

Selon l'invention, dans un mode de réalisation, le composant à semi-conducteur optoélectronique (1) est conçu de sorte à émettre de la lumière mixte blanche avec une température de couleur corrélée variable (CCT). Une première source lumineuse à semi-conducteur (21) est destinée à émettre de la lumière blanche se composant de préférence de lumière bleue spectralement à bande étroite et de lumière jaune spectralement à bande étroite. Le composant à semi-conducteur comprend en outre une deuxième, une troisième et une quatrième source lumineuse à semi-conducteur (22, 23, 24) qui sont destinées à émettre de la lumière bleue, verte et rouge spectralement à bande étroite.
PCT/EP2019/076915 2018-10-12 2019-10-04 Composant optoélectronique à semi-conducteur et procédé de fonctionnement pour composant optoélectronique à semi-conducteur WO2020074389A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018125285.4A DE102018125285A1 (de) 2018-10-12 2018-10-12 Optoelektronisches Halbleiterbauteil und Betriebsverfahren für ein optoelektronisches Halbleiterbauteil
DE102018125285.4 2018-10-12

Publications (1)

Publication Number Publication Date
WO2020074389A1 true WO2020074389A1 (fr) 2020-04-16

Family

ID=68233970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/076915 WO2020074389A1 (fr) 2018-10-12 2019-10-04 Composant optoélectronique à semi-conducteur et procédé de fonctionnement pour composant optoélectronique à semi-conducteur

Country Status (2)

Country Link
DE (1) DE102018125285A1 (fr)
WO (1) WO2020074389A1 (fr)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10335077A1 (de) * 2003-07-31 2005-03-03 Osram Opto Semiconductors Gmbh LED-Modul
EP1657757A2 (fr) * 2004-11-12 2006-05-17 LumiLeds Lighting U.S., LLC Elément émetteur de lumière à semi-conducteur avec éléments optique fixé et sa méthode de fabrication
DE102008021572A1 (de) * 2007-05-02 2008-12-11 Cree, Inc. Multichip LED Leuchten
DE102007058700A1 (de) * 2007-08-31 2009-03-05 Ledtech Electronics Corp., Hsin-Tien Lichtemittierende Vorrichtung vom Feld-Typ mit hohem Farbwiedergabeindex
US20120099303A1 (en) * 2010-10-26 2012-04-26 Industrial Technology Research Institute Cct modulating method, led light source module, and package structure thereof
WO2017140534A1 (fr) * 2016-02-15 2017-08-24 Osram Opto Semiconductors Gmbh Procédé pour faire fonctionner une source lumineuse à semi-conducteur et source lumineuse à semi-conducteur

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013024910A1 (fr) * 2011-08-16 2013-02-21 삼성전자주식회사 Dispositif à del ayant une température de couleur ajustable

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10335077A1 (de) * 2003-07-31 2005-03-03 Osram Opto Semiconductors Gmbh LED-Modul
EP1657757A2 (fr) * 2004-11-12 2006-05-17 LumiLeds Lighting U.S., LLC Elément émetteur de lumière à semi-conducteur avec éléments optique fixé et sa méthode de fabrication
DE102008021572A1 (de) * 2007-05-02 2008-12-11 Cree, Inc. Multichip LED Leuchten
DE102007058700A1 (de) * 2007-08-31 2009-03-05 Ledtech Electronics Corp., Hsin-Tien Lichtemittierende Vorrichtung vom Feld-Typ mit hohem Farbwiedergabeindex
US20120099303A1 (en) * 2010-10-26 2012-04-26 Industrial Technology Research Institute Cct modulating method, led light source module, and package structure thereof
WO2017140534A1 (fr) * 2016-02-15 2017-08-24 Osram Opto Semiconductors Gmbh Procédé pour faire fonctionner une source lumineuse à semi-conducteur et source lumineuse à semi-conducteur

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
OSRAM OPTO SEMICONDUCTORS GMBH ET AL: "LATB G66B 6-lead MULTILED Enhanced optical Power LED (HOP2000 / ATON ) Lead (Pb) Free Product -RoHS", 16 March 2010 (2010-03-16), XP055651574, Retrieved from the Internet <URL:https://www.datasheet.directory/index.php?title=Special:PdfViewer&url=https%3A%2F%2Fdatasheet.iiic.cc%2Fdatasheets-0%2Fosram_opto_semiconductors%2FLATBG66B-ST-1_T7V-35_QS-36.pdf> [retrieved on 20191210] *
OSRAM OPTO SEMICONDUCTORS GMBH: "LW T673 binning FK0PN0", 3 August 2018 (2018-08-03), XP055651598, Retrieved from the Internet <URL:https://dammedia.osram.info/media/resource/hires/osram-dam-6455838/LW%20T673%20binning%20FK0PN0_EN.pdf> [retrieved on 20191210] *

Also Published As

Publication number Publication date
DE102018125285A1 (de) 2020-04-16

Similar Documents

Publication Publication Date Title
DE112015004033B4 (de) Optoelektronisches Halbleiterbauteil und Blitzlicht
DE102018123672B4 (de) Weißlicht-Leuchtvorrichtung
DE10335077A1 (de) LED-Modul
EP2335292A1 (fr) Moyen d éclairage
DE102015202159B4 (de) Halbleiter-Beleuchtungsvorrichtung
WO2016180930A1 (fr) Composant optoélectronique émetteur de rayonnement
DE102008025864A1 (de) LED Modul für die Allgemeinbeleuchtung
EP2912688A1 (fr) Module de diodes électroluminescentes
DE102008021662A1 (de) LED mit Mehrband-Leuchtstoffsystem
WO2017140534A1 (fr) Procédé pour faire fonctionner une source lumineuse à semi-conducteur et source lumineuse à semi-conducteur
DE102017123532A1 (de) Weisslichtquellenvorrichtung
DE102011013504B4 (de) Licht emittierende Vorrichtung
EP1970745A2 (fr) Module d&#39;éclairage, en particulier pour un microscope d&#39;opération
WO2017093140A1 (fr) Composant optoélectronique et dispositif de rétroéclairage pour un écran
WO2020074389A1 (fr) Composant optoélectronique à semi-conducteur et procédé de fonctionnement pour composant optoélectronique à semi-conducteur
DE102016123971B4 (de) Optoelektronisches Bauelement
DE202008018269U1 (de) LED Modul für die Allgemeinbeleuchtung
DE102010012040A1 (de) Konversionselement und optoelektronisches Halbleiterbauteil
EP2997609B1 (fr) Module à led à lumière blanche pour éclairer des objets
WO2020043709A1 (fr) Émetteur large bande pour rayonnement électromagnétique
AT14515U1 (de) LED-Modul mit hohem Farbwiedergabeindex
DE102017112222A1 (de) Einstellbare Leuchteinrichtung mit zwei Lichtquellen
DE102017122936A1 (de) Optoelektronisches Bauteil
WO2021052938A1 (fr) Procédé pour faire fonctionner un composant semi-conducteur optoélectronique et composant semi-conducteur optoélectronique
WO2012171721A1 (fr) Composant semi-conducteur optoélectronique et utilisation d&#39;un tel composant semi-conducteur

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19786741

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19786741

Country of ref document: EP

Kind code of ref document: A1