WO2020074007A1 - 建链方法、装置和计算机可读存储介质 - Google Patents

建链方法、装置和计算机可读存储介质 Download PDF

Info

Publication number
WO2020074007A1
WO2020074007A1 PCT/CN2019/110874 CN2019110874W WO2020074007A1 WO 2020074007 A1 WO2020074007 A1 WO 2020074007A1 CN 2019110874 W CN2019110874 W CN 2019110874W WO 2020074007 A1 WO2020074007 A1 WO 2020074007A1
Authority
WO
WIPO (PCT)
Prior art keywords
negotiation
optical
optical link
channel
link auto
Prior art date
Application number
PCT/CN2019/110874
Other languages
English (en)
French (fr)
Inventor
杨巍
杨波
马焕南
陈祥荣
李玉峰
袁立权
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP19871803.3A priority Critical patent/EP3866440A4/en
Priority to US17/284,755 priority patent/US11445277B2/en
Publication of WO2020074007A1 publication Critical patent/WO2020074007A1/zh
Priority to US17/865,318 priority patent/US20220353591A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/24Negotiation of communication capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/14Session management
    • H04L67/141Setup of application sessions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0245Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU
    • H04J14/0246Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU using one wavelength per ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0267Optical signaling or routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0282WDM tree architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0064Arbitration, scheduling or medium access control aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0069Network aspects using dedicated optical channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • H04Q2011/0081Fault tolerance; Redundancy; Recovery; Reconfigurability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0088Signalling aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/13295Wavelength multiplexing, WDM

Definitions

  • Embodiments of the present disclosure relate to the field of optical communication, for example, to a chain building method, device, and computer-readable storage medium.
  • WDM Wavelength Division Multiplexing
  • the method of using the tunable optical module of the terminal device to scan wavelengths one by one will have the problems of a very long chain building process and crosstalk to other working wavelength channels.
  • the International Telecommunication Union Telecommunication Standardization Department International Telecommunication Union Telecommunication Standardization Sector, ITU-T
  • G.698.4 defines an auxiliary management channel (HTMC, Head-to-Tail Message) that carries wavelength information, but the auxiliary management channel passes
  • HTMC Head-to-Tail Message
  • the embodiments of the present disclosure provide a method, device and computer-readable storage medium for building a chain, which can realize the chain building of a business data channel without increasing the complexity and cost of the optical module and without degrading the signal quality of the business data channel.
  • An embodiment of the present disclosure provides a chain building method, including:
  • optical link auto-negotiation information is exchanged with the terminal equipment through the optical link auto-negotiation channel;
  • a service data channel and an auxiliary management channel are established: a service data channel and an auxiliary management channel;
  • the optical link auto-negotiation channel is independent of the service data channel or the auxiliary management channel;
  • the optical link auto-negotiation information includes at least one of the following: working wavelength channel information of the terminal equipment, between the central office equipment and the terminal equipment The state of the forward error correction switch, the type of forward error correction between the central office equipment and the terminal equipment, and the working mode of the auxiliary management channel.
  • An embodiment of the present disclosure proposes a chain building method, including:
  • a service data channel and an auxiliary management channel are established: a service data channel and an auxiliary management channel;
  • the optical link auto-negotiation channel is independent of the service data channel or the auxiliary management channel;
  • the optical link auto-negotiation information includes at least one of the following: working wavelength channel information of the terminal device, the terminal device and all The state of the forward error correction switch between the central office equipment, the type of forward error correction between the terminal equipment and the central office equipment, and the working mode of the auxiliary management channel.
  • An embodiment of the present disclosure provides a link building device, including: a first optical link auto-negotiation channel communication module and a first optical module, the first optical link auto-negotiation channel communication module and the first optical module constitute an optical link auto Negotiation channel
  • the first optical link auto-negotiation channel communication module is set to exchange optical link auto-negotiation information with the terminal device through the optical link auto-negotiation channel;
  • the optical link auto-negotiation channel is independent of the service data channel or the auxiliary management channel;
  • the optical link auto-negotiation information includes at least one of the following: working wavelength channel information of the terminal equipment, between the central office equipment and the terminal equipment The state of the forward error correction switch, the type of forward error correction between the central office equipment and the terminal equipment, and the working mode of the auxiliary management channel.
  • An embodiment of the present disclosure proposes a chain building device, including:
  • the second optical link auto-negotiation channel communication module and the second optical module, the second optical link auto-negotiation channel communication module and the second optical module constitute an optical link auto-negotiation channel
  • the second optical link auto-negotiation channel communication module is set to exchange optical link auto-negotiation information with the central office equipment through the optical link auto-negotiation channel;
  • the optical link auto-negotiation channel is independent of the service data channel or the auxiliary management channel;
  • the optical link auto-negotiation information includes at least one of the following: working wavelength channel information of the terminal device, the terminal device and the central office device The state of the forward error correction switch between them, the type of forward error correction between the terminal device and the central office device, and the working mode of the auxiliary management channel.
  • An embodiment of the present disclosure proposes a chain building device, including at least one processor and at least one computer-readable storage medium.
  • the computer-readable storage medium stores instructions, and when the instructions are executed by the processor, Implement any of the above methods.
  • An embodiment of the present disclosure proposes a computer-readable storage medium that stores a computer program on the computer-readable storage medium, and when the computer program is executed by a processor, implements any of the above methods.
  • Figure 1 is a schematic diagram of the related technology wavelength division multiplexing access network
  • FIG. 2 is a flowchart of a method for establishing a chain provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of an optical link auto-negotiation information frame format or frame format provided by an embodiment of the present disclosure
  • FIG. 4 is a flowchart of another chain building method proposed by an embodiment of the present disclosure.
  • Example 5 is a flowchart of an OLT side chain building method provided by Example 1 of an embodiment of the present disclosure
  • FIG. 6 is a flowchart of a method for establishing a chain on an ONU side according to Example 1 of an embodiment of the present disclosure
  • Example 7 is a flowchart of interactive optical link auto-negotiation information provided by Example 1 of an embodiment of the present disclosure
  • Example 8 is a flowchart of an OLT side chain building method provided by Example 2 of an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural composition diagram of a chain building device provided by an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of a first channel selection module provided by an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural composition diagram of a first optical module provided by an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a chain building device provided by another embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram of a second channel selection module provided by an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of a second optical module provided by an embodiment of the present disclosure.
  • Example 15 is a schematic structural diagram of a central office device provided in Example 4 of an embodiment of the present disclosure.
  • Example 16 is a schematic structural composition diagram of a terminal device provided by Example 4 of the embodiment of the present disclosure.
  • Example 17 is a schematic diagram of a management channel control optical signal provided by Example 4 of the embodiment of the present disclosure.
  • Example 18 is a sequence diagram of optical link auto-negotiation information provided by Example 5 of the embodiment of the present disclosure.
  • Example 19 is a schematic diagram of the internal structure of the optical link auto-negotiation information provided by Example 5 of the embodiment of the present disclosure.
  • FIG. 20 is a schematic diagram of optical link self-negotiation information formed by separately extracting bits corresponding to data pulses provided by Example 5 of an embodiment of the present disclosure
  • Example 21 is a schematic structural composition diagram of a chain building device provided in Example 6 of an embodiment of the present disclosure.
  • FIG. 1 is a schematic diagram of a WDM access network.
  • a wavelength division multiplexer (WDMer, Wavelength Division Multiplexer) is used at the central office and terminal equipment to combine multiple wavelengths of light into a backbone fiber.
  • the wavelength division multiplexer can be implemented using arrayed waveguide gratings (AWG, Arrayed Waveguide, Ratings) or other devices.
  • AWG arrayed waveguide gratings
  • the WDM access network is a WDM passive optical network (WDMPON , Wavelength Division Multiplexing Passive Optical Network).
  • the WDM access network can also be a centralized wireless fronthaul network (C-RAN, Centralized Radio Access Network), then the central office equipment is a baseband unit (BBU, Building Baseband Unit) or a distributed unit (Distributed Unite) , DU), the terminal device is a remote radio unit (RRU, Remote Radio Unit) or an active antenna unit (AAU, Active Antenna Unit).
  • C-RAN Centralized Radio Access Network
  • BBU Building Baseband Unit
  • Distributed Unite distributed Unit
  • DU distributed unit
  • the terminal device is a remote radio unit (RRU, Remote Radio Unit) or an active antenna unit (AAU, Active Antenna Unit).
  • RRU Remote Radio Unit
  • AAU Active Antenna Unit
  • terminal equipment uses dimmable modules to unify models, which is convenient for installation and maintenance.
  • dimmable modules requires the terminal device to adjust its dimmable module to the correct emission wavelength connected to the WDMer when it is turned on, so as to realize optical link wavelength building.
  • the method of using the tunable optical module of the terminal device to scan wavelengths one by one will have the problems of a very long chain building process and crosstalk to other working wavelength channels.
  • the International Telecommunication Union Telecommunication Standardization Department International Telecommunication Union Telecommunication Standardization Sector, ITU-T
  • G.698.4 defines an auxiliary management channel (HTMC, Head-to-Tail Message) that carries wavelength information, but the auxiliary management channel passes
  • HTMC Head-to-Tail Message
  • the realization of the optical signal top modulation technology increases the complexity and cost of the optical module, and deteriorates the signal quality of the optical link, introducing a non-negligible optical power cost.
  • the general rate is about 100 kilobits (kbps) lower.
  • the terminal equipment and the central office equipment are WDM PON equipment, they need to transparently transmit the wireless services carried. They are faced with the problem of a long wavelength chain building process of the tunable optical module of the terminal equipment, and they also need auxiliary management.
  • the channel realizes the transmission of management and maintenance information (OAM, Operation, Administration and Maintenance), error code statistics, and link loopback between the central office equipment and the terminal equipment.
  • OAM management and maintenance information
  • the ITU-T standard G.989.3 defines two types of auxiliary: point-to-point (PtP, Point-to-Point) WDM architecture transparent auxiliary management control channel (AMCC, Auxiliary Management and Control) and transcoded AMCC. Management technology route.
  • Transparent AMCC is similar to G.698.4, using optical signal top modulation technology to transmit auxiliary management information such as wavelength, transcoded AMCC in the physical coding sublayer (PCS, Physical Coding Sublayer) (including forward error correction code (FEC, Forward Error Correction) ) Sub-layer) implementation, where the service data channel is 8B / 10B encoding format using 8B / 10B to 32B / 34B transcoding technology to provide an auxiliary management channel, and the service data channel is 64B / 66B encoding format using RS (253,221) FEC
  • the parity synchronization header carries auxiliary management channel information.
  • transcoded AMCC not limited to the two defined in the G.989.3 standard
  • transcoded AMCC not limited to the two defined in the G.989.3 standard
  • WDM PON When WDM PON is used for wireless bearer, it will carry common public radio interface (CPRI, Common Public Radio Interface), enhanced common public radio interface (eCPRI, enhanced Common Public Radio Interface), Ethernet and other different service types, and WDM
  • the wireless devices such as BBU / DU and RRU / AAU that are connected to the PON central office equipment and terminal equipment also use different speed grades, coding formats, FEC types, and FEC switch states. Therefore, when required On the working wavelength channel, when the service type, rate grade, coding format, FEC type, FEC switch status, and WDM PON own FEC switch status are unclear, transcoded AMCC cannot resolve the auxiliary management channel information sent by the peer Therefore, the chain of auxiliary management channels and business data channels cannot be completed.
  • CPRI Common Public Radio Interface
  • eCPRI enhanced Common Public Radio Interface
  • Ethernet other different service types
  • WDM PON PON When WDM PON is used for wireless bearer, it will carry common public radio interface (CPRI, Common Public Radio Interface), enhanced common public
  • an embodiment of the present disclosure proposes a chain building method, which is applied to the central office equipment and includes:
  • Step 2000 Exchange optical link auto-negotiation information with a terminal device through an optical link auto-negotiation channel.
  • the optical link auto-negotiation channel is independent of the service data channel or the auxiliary management channel, that is,
  • only one of the service data channel and the optical link auto-negotiation channel can transmit data on the optical link; for example, the optical link auto-negotiation information can be transmitted before the service data channel message, or after the service data channel message is interrupted due to a fault , Or, the optical link auto-negotiation information is transmitted before the service data channel is shut down and restarted; the rate or frequency and coding method of the optical link auto-negotiation information transmitted by the optical link auto-negotiation channel are independent of the service data channel, that is, the optical link
  • the auto-negotiation information of the optical link transmitted by the auto-negotiation channel can adopt the same or different rate and coding method as the service data.
  • auxiliary management channel information When transmitting auxiliary management channel information, at the same time, only one of the optical link auto-negotiation channel and the auxiliary management channel transmits data on the optical link; the rate or frequency of the optical link auto-negotiation information transmitted by the optical link auto-negotiation channel ,
  • the coding method has nothing to do with the auxiliary management channel.
  • the business data channel is also called the user data (User Data) channel.
  • the auxiliary management channel is the WDM PON system management channel that works at different bandwidths between the central office equipment and terminal equipment in the WDM PON system and works normally with the service data channel at the same time as the service data channel.
  • the auxiliary management channel is used to transmit WDM PON system registration certification, OAM management messages, alarm reporting, performance statistics, link loopback, and optical link self-negotiation information feedback information.
  • the optical link auto-negotiation information includes at least one of the following:
  • the optical link auto-negotiation information further includes at least one of the following: communication protocol, rate information of the optical link auto-negotiation channel, and service information carried by the service data channel.
  • the service information carried by the service data channel includes at least one of the following:
  • Service type service data channel rate information
  • coding format FEC type (such as Reed-Solomon code (Reed-Solomon code) between the central office equipment or terminal equipment and service equipment (such as wireless equipment, etc.) RS) (528, 514), RS (544, 514), RS (255, 223), low density parity check code (Low Density, Parity, Check Code, LDPC), etc.), FEC switch between central office equipment or terminal equipment and service equipment Status etc.
  • exchanging optical link auto-negotiation information with a terminal device through an optical link auto-negotiation channel includes:
  • the interaction of all optical link auto-negotiation information can be completed at once, or the interaction of all optical link auto-negotiation information can be completed two or more times, that is, each part of the optical link auto-negotiation information (at least one Optical link auto-negotiation information), after receiving the feedback information of the part of the optical link auto-negotiation information, another part of the optical link auto-negotiation information is sent until all optical link auto-negotiation information interaction is completed.
  • the optical link auto-negotiation information may be sent periodically, or the optical link auto-negotiation information may be sent aperiodically, or the optical link self-negotiation information may also be sent periodically.
  • the optical link auto-negotiation information is sent periodically, if the feedback information is received within the period, the sent optical link auto-negotiation information interaction is completed; if the feedback information is not received within the period, the sent optical link Road auto-negotiation information interaction fails. In this case, you can continue to send the optical link auto-negotiation information or other optical link auto-negotiation information that failed to interact in the next cycle.
  • optical link auto-negotiation information When the optical link auto-negotiation information is sent aperiodically or periodically, if feedback information is received before the optical link auto-negotiation information is sent next time, the interaction of the sent optical link auto-negotiation information is completed; if the optical link is sent next time If the link auto-negotiation information has not received the feedback information before, the interaction of the sent optical link auto-negotiation information fails. At this time, the optical link auto-negotiation information of the previous interaction failure or other optical link auto-negotiation information can be exchanged.
  • the optical link auto-negotiation information frame (that is, a signal with a frame format) may be used to send the optical link auto-negotiation information; wherein, the optical link auto-negotiation information frame includes one of the following: preamble, at least one At least one of a plurality of contents included in the delimitation indicator and the optical link auto-negotiation information; a start identifier, an end identifier, at least one delimitation indicator, and a plurality of contents included in the optical link auto-negotiation information At least one.
  • the transmitted optical link auto-negotiation information may not have a frame format.
  • FIG. 3 is a schematic diagram of an optical link auto-negotiation information frame format or frame format.
  • the frame structure of the optical link auto-negotiation information frame includes a preamble and at least one optical link auto-negotiation information field, Each optical link auto-negotiation information field carries one of a plurality of contents included in the optical link auto-negotiation information.
  • the preamble is used to allow the terminal device to synchronize, for example, a sequence of 0101 ... alternating can be used.
  • Each optical link auto-negotiation information field has a delimiting indicator in front of it to isolate different optical link auto-negotiation information fields and at the same time indicate what kind of optical link auto-negotiation is in the next optical link auto-negotiation information field information.
  • a check field can be added to prevent errors.
  • Table 1 shows possible examples of multiple optical link auto-negotiation information fields of the optical link auto-negotiation information frame.
  • the examples given are not used to limit the value range of each field, and each field can also be used Other value methods are not used to limit the protection scope of the embodiments of the present disclosure, and will not be repeated here.
  • 1 or 0 information bits can be represented by high level or low level, respectively, or by "level rising edge” or “level falling edge”.
  • the working mode of the auxiliary management channel may include the working categories shown in Table 2.
  • the optical link auto-negotiation information is sent at any of the following rates: the agreed rate, the rate used to characterize the service data channel rate, the rate negotiated with the terminal device, and the clock data recovery reference clock Integer multiple rate.
  • the rate used to characterize the rate of the service data channel includes any of the following:
  • the rate corresponding to the rate of the service data channel the rate corresponding to the wavelength of the service data channel, and an integer multiple of the clock data recovery (CDR, Clock, Data Recovery) reference clock.
  • CDR clock data recovery
  • the optical link auto-negotiation channel rate is used to characterize the service data channel rate, and the optical link auto-negotiation information includes the The rate of the service data channel may not include the rate of the service data channel.
  • the optical link auto-negotiation channel rate does not represent the service data channel rate, and the optical link auto-negotiation information can be sent at a fixed rate , Or send at a different rate; when sending optical link auto-negotiation information at a rate that characterizes the rate of the service data channel, the rate of the optical link auto-negotiation channel represents the rate of the service data channel, and the optical link auto-negotiation channel Send at different rates to suit the rate of different business data channels.
  • the optical link auto-negotiation information When the optical link auto-negotiation information is sent at a rate that does not represent the rate of the service data channel, the optical link auto-negotiation information does not need to contain the rate information of the optical link auto-negotiation channel;
  • the central office equipment sends the optical link auto-negotiation information to the terminal equipment, and the rate of the optical link auto-negotiation information is the lowest rate that the terminal equipment can receive, so as to reduce the probability of errors in the transmission of the optical link auto-negotiation information.
  • the optical link auto-negotiation information includes a rate information field of the optical link auto-negotiation channel, and the rate information includes both the sending rate and the receiving rate.
  • the terminal device judges whether its own optical link auto-negotiation channel can work at the rate according to the content of the optical link auto-negotiation channel's rate field in the optical link auto-negotiation information, and if so, sends a feedback message to reply to the central office equipment, If not, the rate at which the optical link auto-negotiation channel of the terminal device can work is sent to the central office equipment.
  • the central office device selects a rate from the rate at which the received optical link auto-negotiation channel of the terminal device can work.
  • the optical link auto-negotiation information is sent to the terminal device at a rate. If there is no suitable rate, an error is reported.
  • the optical link auto-negotiation information may also be sent through an information pulse interleaved with a clock pulse; where the information pulse carries at least one of a plurality of contents included in the optical link auto-negotiation information.
  • the implementation process is shown in Example 5 and will not be repeated here.
  • the operating wavelength channel information of the terminal device is sent by the number of optical pulses; wherein the optical pulse number is used to characterize the operating wavelength channel information of the terminal device.
  • the implementation process is as in Example 6, and will not be repeated here.
  • Step 2010 the optical link self-negotiation information exchange is completed, and at least one of the following is established: a service data channel and an auxiliary management channel.
  • the embodiments of the present disclosure exchange optical link auto-negotiation information with the terminal device through the optical link auto-negotiation channel. Since the optical link auto-negotiation channel is independent of the service data channel and the auxiliary management channel, it does not increase the complexity and cost of the optical module On the premise of not degrading the signal quality of the service data channel, the independent optical link self-negotiation channel is used to realize the establishment of the service data channel.
  • FIG. 4 another embodiment of the present disclosure proposes a chain building method, which is applied to a terminal device and includes:
  • Step 4000 Exchange optical link auto-negotiation information with the central office equipment through the optical link auto-negotiation channel.
  • the optical link auto-negotiation channel is independent of the service data channel and the auxiliary management channel, that is,
  • the optical link auto-negotiation information can be transmitted before the service data channel message, or after the service data channel message is interrupted due to a fault , Or, the optical link auto-negotiation information is transmitted before the service data channel is shut down and restarted; the rate or frequency and coding method of the optical link auto-negotiation information transmitted by the optical link auto-negotiation channel are independent of the service data channel, that is, the optical link
  • the auto-negotiation information of the optical link transmitted by the auto-negotiation channel can adopt the same or different rate and coding method as the service data;
  • the auxiliary management channel When the information of the auxiliary management channel needs to be transferred, at the same time, only one of the optical link auto-negotiation channel and the auxiliary management channel transmits data on the optical link; the rate of the optical link auto-negotiation information transmitted by the optical link auto-negotiation channel or The frequency, coding method, etc. have nothing to do with the auxiliary management channel.
  • the auxiliary management channel is the WDM PON system management channel that works at different bandwidths between the central office equipment and terminal equipment in the WDM PON system and works normally with the service data channel at the same time as the service data channel.
  • the auxiliary management channel is used to transmit WDM PON system registration certification, OAM management messages, alarm reporting, performance statistics, link loopback, optical link self-negotiation information feedback information, etc.
  • the optical link auto-negotiation information includes at least one of the following:
  • the optical link auto-negotiation information further includes at least one of the following: communication protocol, rate information of the optical link auto-negotiation channel, and service information carried by the service data channel.
  • the service information carried by the service data channel includes at least one of the following:
  • Service type that is, service data channel rate information
  • coding format FEC type between central office equipment or terminal equipment and service equipment (such as RS (528,514), RS (544,514), RS (255,223) , LDPC, etc.), the FEC switch status between the central office equipment or terminal equipment and business equipment, etc.
  • exchanging optical link auto-negotiation information with the central office equipment through the optical link auto-negotiation channel includes:
  • the feedback information can be sent to the central office equipment through the optical link auto-negotiation channel or the auxiliary management channel.
  • receiving optical link auto-negotiation information includes:
  • optical link auto-negotiation information frame receives an optical link auto-negotiation information frame; wherein, the optical link auto-negotiation information frame includes one of the following meanings:
  • At least one of a plurality of contents included in the start identifier, the end identifier, at least one delimitation indicator, and the optical link auto-negotiation information At least one of a plurality of contents included in the start identifier, the end identifier, at least one delimitation indicator, and the optical link auto-negotiation information.
  • the received optical link auto-negotiation information includes any of the following:
  • the information pulse carries at least one of a plurality of contents included in the optical link auto-negotiation information
  • the service data channel rate may be determined according to the optical link auto-negotiation channel rate.
  • the rate information of the optical link auto-negotiation channel can be agreed in advance, or can be obtained in the process of synchronization according to the preamble, or from the optical link It is obtained directly from the auto-negotiation information frame.
  • the rate of the service data channel can be determined in any of the following ways:
  • the operating wavelength channel information, the rate of the optical link auto-negotiation channel and the rate of the service data channel are determined.
  • Step 4010 When the optical link self-negotiation information exchange is completed, at least one of the following is established: a service data channel and an auxiliary management channel.
  • the frame format shown in FIG. 3 may be used to send the feedback information.
  • the WDM system includes WDM PON OLT (that is, the central office equipment), WDM PON ONU (that is, the above terminal equipment), WDM PON ONU uses wavelength tunable optical modules, see Figure 5, WDM PON OLT business data channel
  • the establishment process includes:
  • Step 500 The OLT establishes an optical link auto-negotiation channel.
  • Step 501 The OLT periodically sends the optical link auto-negotiation information to the ONU through the optical link auto-negotiation channel, with a period of T test .
  • Step 502 it is determined whether the OLT received within T test time feedback information of the ONU when the OLT receiving the feedback information of the ONU within the time T test, the establishment of at least one of: a service data channel, the secondary channel management; when the OLT When no feedback information from the ONU is received within T test time, the OLT continues to periodically send optical link auto-negotiation information to the ONU through the optical link auto-negotiation channel in the next cycle.
  • the process of establishing the service data channel of WDM PON ONU includes:
  • Step 600 The ONU establishes an optical link auto-negotiation channel.
  • Step 601 The ONU waits to receive the optical link auto-negotiation information.
  • the optical link auto-negotiation information When receiving the optical link auto-negotiation information, it adjusts the working parameters according to the optical link auto-negotiation information, sends feedback information to the OLT through the optical link auto-negotiation channel, and establishes the following At least one of: service data channel and auxiliary management channel; when the optical link auto-negotiation information is not received, it continues to wait to receive the optical link auto-negotiation information.
  • optical link auto-negotiation channel in this example are the same as the foregoing embodiments, and the optical link auto-negotiation information is the same as the foregoing embodiments, and details are not described here.
  • the optical link auto-negotiation channel can be used to transmit optical link auto-negotiation information by using a signal with a frame format.
  • the frame format may be the format shown in FIG. 3.
  • the optical link auto-negotiation information frame includes at least one of the following:
  • WDM PON's own FEC switch status that is, FEC switch status between OLT and ONU
  • WDM PON's own FEC type that is, FEC type between OLT and ONU
  • auxiliary management channel working mode .
  • the optical link auto-negotiation information frame may also include at least one of the following: rate information of the optical link auto-negotiation channel, service information carried by the service data channel, and FEC switch status between the service device and the PON device.
  • all the optical link auto-negotiation information that needs to be interacted can be sent at the same time in a cycle, or part of the optical link auto-negotiation information that needs to be interacted can be sent within a cycle, and the part of the optical link auto-negotiation will be received After the feedback information of the information, another part of the optical link auto-negotiation information is sent in the next cycle until all optical link auto-negotiation information interaction is completed, as shown in FIG. 7.
  • the authority terminal equipment and the terminal equipment do not need to negotiate the operating wavelength channel information of the terminal equipment (for example, when the WDM system is an external seed optical system or a self-seed optical system, the terminal optical module does not need a dimmable module, Only the reflection modulator / reflection amplification modulator is used as the transmission signal), and the wavelength auto-negotiation process in the above steps may not be executed.
  • the chain building method also includes detecting the connection status of the terminal device.
  • the establishment process of the service data channel of the central office device includes:
  • Step 800 The central office equipment detects Loss Of Signal (LOS) at some ports, which proves that the terminal equipment of these ports has not successfully established a link, and these ports of the central office equipment periodically send optical links to these terminal equipment Self-negotiation information, the period is T test .
  • LOS Loss Of Signal
  • Step 801 the OLT determines whether the received terminal device T test time in the feedback information, authority terminal device receiving the feedback information in the terminal device T test time, establishing at least one of: a service data channel, the secondary management Channel; when the end device of the authority does not receive the feedback information from the terminal device within T test time, the terminal device may not be turned on, or the optical link auto-negotiation information is wrong during transmission, and the optical link auto-negotiation information is resent; judgment Whether the number of times the optical link auto-negotiation information is sent exceeds n test .
  • n test times such as 3 times
  • T test increase time
  • the terminal device may not have Turn on, increase T test in this way , for example to 1 minute, and then send the optical link auto-negotiation message again.
  • T test increases to a certain threshold, such as 10 minutes, or when no feedback information is received from the terminal device
  • the central office device stops sending the optical link Negotiation information, that there is no terminal device connected under this port.
  • a relatively large value such as 1 hour.
  • the optical link auto-negotiation information may not have a frame format, but the rate information is used to multiplex the wavelength control information and the rate information identification, and the terminal equipment's wavelength and Rate auto-negotiation.
  • This negotiation mechanism is implemented by the terminal device's Clock Data Recovery (CDR) data.
  • the central office device uses different integer multiples of the CDR reference clock (ie, frequency value) to send optical link self-negotiation information.
  • the terminal device can Identify the rate of the optical link auto-negotiation channel, and adjust the wavelength and adjust the service data channel rate according to the correspondence between the rate of the optical link auto-negotiation channel, the rate of the service data channel and the operating wavelength channel information.
  • the wavelength channel number 1 corresponds to the rate of two optical link auto-negotiation channels of 20.2Gbps and 10.1Gbps
  • the wavelength channel number 2 corresponds to 20.3Gbps and 10.15
  • the wavelength channel 32 corresponds to the rates of two optical link auto-negotiation channels of 23.3 Gbps and 11.65 Gbps.
  • the rate of the optical link auto-negotiation channel is 20.2 ⁇ 23.3Gbps, it means that the working rate of the service data channel is 25Gbps, and 10.1 ⁇ 11.65Gbps means that the working rate of the service data channel is 10Gbps. That is, when the rate of the optical link auto-negotiation channel is 10.1Gbps, it means that the service data channel works at the wavelength channel 1 and 10Gbps rate, and when the speed of the optical link auto-negotiation channel is 10.15Gbps, it means that the service data channel works at the wavelength channel 2 and 10Gbps. Rate, and so on.
  • the service data channel When the rate of the optical link auto-negotiation channel is 11.65Gbps, the service data channel is operating at the wavelength channel of 32 and 10Gbps; when the rate of the optical link auto-negotiation channel is 20.2Gbps, the service data channel is operating at the wavelength Channel 1 and 25Gbps rates.
  • the optical link auto-negotiation channel rate is 20.3Gbps, the service data channel is operating at the wavelength channel 2 and 25Gbps rate, and so on.
  • the optical link auto-negotiation channel rate is 23.3Gbps, the service data channel Working at 32 and 25Gbps wavelength channels.
  • the normal working speed of other WDM optical links can also be expressed by 1/4 of the speed of the optical link auto-negotiation channel.
  • a chain building device such as a central office equipment
  • a chain building device including: a first optical link auto-negotiation channel communication module 901 and a first optical module 902, the first optical link
  • the negotiation channel communication module 901 and the first optical module 902 form an optical link self-negotiation channel;
  • the first optical link auto-negotiation channel communication module 901 is configured to exchange optical link auto-negotiation information with the terminal device through the optical link auto-negotiation channel;
  • the optical link auto-negotiation channel is independent of the service data channel and the auxiliary management channel;
  • the optical link auto-negotiation information includes at least one of the following: working wavelength channel information of the terminal equipment, between the central office equipment and the terminal equipment The FEC switch status, the FEC type between the central office equipment and the terminal equipment, and the working mode of the auxiliary management channel.
  • optical link auto-negotiation channel the relevant features of the optical link auto-negotiation channel, service data channel, and auxiliary management channel are the same as those in the foregoing embodiment, and details are not repeated here.
  • the first optical link auto-negotiation channel communication module 901 is set to:
  • the first optical link auto-negotiation channel communication module 901 is configured to implement the sending of the optical link auto-negotiation information in one of the following ways:
  • Sending optical link auto-negotiation channel information to the transmit signal pins of the first transmitter of the first optical module for example, TD + / TD-, RD + / RD- pins
  • the first optical link auto-negotiation channel communication module 901 is configured to use one of the following manners to receive the feedback information:
  • the feedback information is obtained through an optical pulse or the number of optical pulses (that is, LOS alarm count) formed by the change of the light-on state and the light-off state received by the first receiver of the first optical module.
  • the first optical link auto-negotiation channel communication module 901 is configured to use any one of the following methods to implement sending optical pulses:
  • VOA Adjustable Optical Attenuator
  • the chain building device when the first optical link auto-negotiation channel communication module uses the method of sending optical link auto-negotiation channel information to the transmit signal pin of the first transmitter of the first optical module When the optical link auto-negotiation information is sent, and the feedback information is received by receiving the feedback information from the receiving signal pin of the first receiver of the first optical module, the chain building device further includes: a first channel The selection module 903 and the first service data communication module 904;
  • the first channel selection module 903 is connected to the first optical link auto-negotiation channel communication module 901, the first optical module 902, and the first service data communication module 904, respectively;
  • the first channel selection module 903 is configured to select one of the first optical link auto-negotiation channel communication module 901 or the first service data communication module 904 to connect with the first optical module 902; in one embodiment, the first optical The link auto-negotiation channel communication module 901 and the first optical module 902 are connected to establish an optical link auto-negotiation channel.
  • the first optical link auto-negotiation channel communication module 901 interacts with the terminal device through the optical link auto-negotiation channel
  • the first service data communication module 904 and the first optical module 902 are selected to connect to establish a service data channel;
  • the first service data communication module 904 is configured to send service data to the terminal device and receive service data sent by the terminal device.
  • the first channel selection module 903 selects the connection between the first optical link auto-negotiation channel communication module 901 and the first optical module 902, the first optical link auto-negotiation channel communication module 901, the first channel The selection module 903 and the first optical module 902 constitute an optical link auto-negotiation channel; when the first channel selection module 903 selects the connection between the first service data communication module 904 and the first optical module 902, the first service data communication module 904, the first A channel selection module 903 and a first optical module 902 constitute a service data channel.
  • the first service data communication module 904 and the first optical module 902 are in a non-connected state, and the service data channel or the auxiliary management channel cannot send / receive data to the WDM optical link through the optical module. Only the optical link auto-negotiation information is transmitted on the WDM optical link.
  • the optical link auto-negotiation channel signal rate / frequency, coding method, etc. have nothing to do with the business data channel and the auxiliary management channel.
  • the first channel selection module 903 implements an optical link auto-negotiation channel independent of the service data channel.
  • the first optical link auto-negotiation channel communication module 901 adopts the change of adjusting the first transmitter of the first optical module in a light state and a lightless state to send optical pulses Way to realize the transmission of the optical link self-negotiation information
  • the number of optical pulses or optical pulses formed by the change of the light state and the lightless state received by the first receiver of the first optical module is used to obtain the
  • the first optical link auto-negotiation channel communication module 901 is connected to the first optical module 902 through an integrated circuit bus interface;
  • the first optical link auto-negotiation channel communication module 901 performs a read operation or a write operation on the register of the first optical module 902 through the integrated circuit bus interface, so as to implement optical link auto-negotiation with the terminal device information.
  • the chain building device further includes:
  • the first auxiliary management channel communication module 905, built in the first service data communication module 904 or connected in series between the first service data communication module 904 and the first channel selection module 903, is configured to send auxiliary management channel data to the terminal device, And receive the auxiliary management channel data sent by the terminal device.
  • the first auxiliary management channel communication module 905 may be integrated with the first service data communication module 904 on the same chip, or may be connected in series as an independent chip between the first service data communication module 904 and the first channel selection module 903 Between business data transmission links composed.
  • the first auxiliary management channel communication module 905 is connected in series as a separate chip on the service data transmission link composed of the first service data communication module 904 and the first channel selection module 903, the first auxiliary management channel communication module 905 can also be built in In the first optical module 903.
  • the above business data and auxiliary management channel data can be transmitted simultaneously in the WDM system.
  • it further includes:
  • the first control module 906 is connected to the first optical link auto-negotiation channel communication module 901, and is set to:
  • Control the first optical link auto-negotiation channel communication module 901 to exchange optical link auto-negotiation information with the terminal device through the optical link auto-negotiation channel.
  • the first optical link auto-negotiation channel communication module when the first optical link auto-negotiation channel communication module is built in the first optical module, at least one of the first channel selection module, the first control module, and the first clock module Built into the first optical module;
  • the transmission of the optical link auto-negotiation information is realized by sending optical pulses, which is formed by the change of the light and light state received by the first receiver of the first optical module
  • the feedback information is obtained by optical pulses or the number of optical pulses
  • the connection is realized by the internal circuit of the first optical module.
  • it further includes:
  • the first control module 906 is connected to the first channel selection module 903, and is configured to control the first channel selection module 903 to select the first optical link auto-negotiation channel communication module 901 or the first service data communication module 904. One is connected to the first optical module 902.
  • the first optical module 902 is configured to convert the optical link auto-negotiation information output from the first channel selection module 903 into an optical signal for transmission to the WDM optical link, or to input the WDM optical link input
  • the optical signal is converted into an electrical signal and transmitted to the first channel selection module 903.
  • the central office equipment may include at least one first optical module 902, and the first optical module may be a fixed wavelength optical module or a wavelength tunable optical module.
  • the first auxiliary management channel communication module 905 may be implemented by at least one chip, and the foregoing modules may be implemented in one chip or multiple chips in any combination.
  • the first optical link auto-negotiation channel communication module 901 may be implemented in any of the following ways:
  • the first optical link auto-negotiation channel communication module 901 can be implemented using a separate field programmable gate array (FPGA, Field Programmable Gate Array) chip to encode, frame, and FEC the optical link auto-negotiation information. Send after parallel-to-serial conversion processing.
  • FPGA Field Programmable Gate Array
  • the first optical link auto-negotiation channel communication module 901 can be integrated with the first service data communication module 904's physical layer (PHY, Physical Layer) function chip or media access control (MAC, Media Access Control) function chip as a dedicated
  • PHY Physical Layer
  • MAC media access control
  • the application-specific ASIC Application Specific Integrated Circuit
  • the first optical link auto-negotiation channel communication module 901 can be integrated with the first control module 906 in a central processing unit (Central Processing Unit, CPU) unit, through an independent integrated circuit bus (I2C, Inter Integrated Integrated Circuit) interface Connected to the first channel selection module 903.
  • CPU Central Processing Unit
  • I2C Independent integrated circuit bus
  • the first channel selection module 903 may be implemented in any of the following ways:
  • the first channel selection module 903 uses a separate clock reconfiguration (Retimer) chip to implement channel selection between the optical link auto-negotiation channel and the service data channel or the auxiliary management channel, such as the Crosspoint switch function of the DS280DF810 chip.
  • Retimer clock reconfiguration
  • the first channel selection module 903 is integrated with the first optical link auto-negotiation channel communication module 901 or the first service data communication module 904 as an FPGA chip, and the first channel selection module 903 communicates with the first optical link auto-negotiation channel
  • the module 901 or the first service data communication module 904 adopts a high-speed parallel processing custom dedicated interface, the serdes interface is used between the first channel selection module 903 and the first optical module 902, and the channel selection function of the first channel selection module 903 passes
  • the wiring unit and crossbar switch in the FPGA chip are implemented, as shown in Figure 10.
  • the first optical module 902 includes an optical transmitter (fixed wavelength or adjustable wavelength), an optical receiver (fixed wavelength or adjustable wavelength), a multiplexer / demultiplexer, a laser driver (LDD, Laser Diode Driver), and transimpedance Amplifier (TIA, Trans-impedance Amplifier), limiting amplifier (LA, Limiting Amplifier), micro control unit (MCU, Microcontroller Unit), CDR and other devices, and the first channel selection module 903 through the differential data line TD + / TD -, RD + / RD- connection, convert the optical link self-negotiation information or service data information into optical signals and transmit them to the terminal equipment through the WDM optical link.
  • LDD Laser Diode Driver
  • TIA Trans-impedance Amplifier
  • LA Limiting Amplifier
  • MCU Microcontroller Unit
  • the first control module 906 can be implemented by CPU, MCU, complex programmable logic device (CPLD, Complex Programmable Logic Device) and other devices, and communicates with the first service data communication module 904 (or the first auxiliary management channel communication module 905 ),
  • the first optical link auto-negotiation channel communication module 901, the first channel selection module 903, and the first optical module 902 are connected by I2C and other types of control lines, and transmit multiple module control messages and control feedback messages.
  • the chain building device further includes:
  • the first clock module 907 is configured to provide a reference clock source for the operation of other functional modules.
  • the information transfer interface between multiple functional modules transfers clock information while transferring data information.
  • the WDM optical link includes wavelength division multiplexing / demultiplexing devices, optical fibers and optical splitters, etc., and is set to connect multiple first optical modules of the central office equipment and dimmable light of multiple terminal equipment Module.
  • the first optical module may include one or more sets of optical transmitters and optical receivers.
  • the first optical module includes multiple sets of optical transmitters and receivers, one or more sets of optical The transmitter and receiver load the auto-negotiation channel information.
  • the first optical link auto-negotiation channel communication module 901, the first channel selection module 903 (optical link auto-negotiation channel connectivity state) of the central office equipment, the first optical module 902, the first The two optical link auto-negotiation channel communication module 1101, the second channel selection module 1103 (optical link auto-negotiation channel connected state), the second optical module 1102, and the WDM optical link constitute an optical link auto-negotiation channel.
  • the first optical link auto-negotiation channel communication module, the first channel selection module, the first control module and the first clock module may also be built into the first optical module, and the first optical link auto-negotiation
  • the functions of the channel communication module and the first control module can be realized by the microprogrammed controller (MCU) of the first optical module
  • the first channel selection module can be realized by the CDR of the first optical module
  • the first clock module can be reused
  • the clock module of the first optical module may be recovered from the service data through the CDR chip.
  • the functional unit in which the central office equipment forms an optical link auto-negotiation channel and participates in auto-negotiation is the first optical module, as shown in FIG. 11.
  • the authority-side equipment and terminal equipment use the first channel selection module 903 and the second channel selection module 1103 to realize the connectivity status of the optical link auto-negotiation channel and establish the optical link auto-negotiation channel .
  • the first service data communication module 904, the first auxiliary management channel communication module 905 and the first optical module 902 (optical transmitter and optical receiver) are in a non-connected state, and the second service data The communication module 1104, the second auxiliary management channel communication module 1105 and the second optical module 1102 (optical transmitter and optical receiver) are in a disconnected state, and the first service data communication module 904 and the first auxiliary management channel communication module 905 cannot
  • the first optical module 902 sends data to the WDM optical link.
  • the second service data communication module 1104 and the second auxiliary management channel communication module 1105 cannot receive data from the WDM optical link through the second optical module 1102.
  • the negotiation information is transmitted on the WDM optical link.
  • the rate or frequency of the self-negotiation information of the optical link and the coding method are independent of the service data channel and the auxiliary management channel.
  • the electrical signal transmission and processing links outside the optical link included in the optical link auto-negotiation channel and the service data channel are independent of each other.
  • the first channel selection module 903 and the second channel selection module are used to realize the connection status of the service data channel, and the service data channel is established and opened.
  • a chain building device (such as a terminal device), including: a second optical link auto-negotiation channel communication module 1101 and a second optical module 1102, and a second optical link auto-negotiation
  • the channel communication module 1101 and the second optical module 1102 form an optical link auto-negotiation channel;
  • the second optical link auto-negotiation channel communication module 1101 is configured to exchange optical link auto-negotiation information with the central office equipment through the optical link auto-negotiation channel;
  • the optical link auto-negotiation channel is independent of the service data channel and the auxiliary management channel;
  • the optical link auto-negotiation information includes at least one of the following: working wavelength channel information of the terminal equipment, between the central office equipment and the terminal equipment The FEC switch status, the FEC type between the central office equipment and the terminal equipment, and the working mode of the auxiliary management channel.
  • optical link auto-negotiation channel the relevant features of the optical link auto-negotiation channel, service data channel, and auxiliary management channel are the same as those in the foregoing embodiment, and details are not repeated here.
  • the negotiation channel communication module 1101 constitutes an optical link self-negotiation channel.
  • the second optical link auto-negotiation channel communication module 1101 is set to:
  • the second optical link auto-negotiation channel communication module 1101 After receiving the optical link auto-negotiation information, adjust the working parameters according to the optical link auto-negotiation information; the second optical link auto-negotiation channel communication module 1101 sends the optical link auto-negotiation channel to the central office equipment Send feedback information or the second auxiliary management channel communication module 1105 sends feedback information to the central office equipment through the auxiliary management channel, and the received optical link self-negotiation information interaction is completed; repeat the above process until all optical link self-negotiation information interaction is completed .
  • the working parameter adjustment instruction is generated according to the optical link auto-negotiation information, and the working parameter adjustment instruction is sent to the second optical module 1102 Or the second auxiliary management channel communication module 1105.
  • the second optical link auto-negotiation channel communication module 1101 is configured to use one of the following ways to achieve the reception of the optical link auto-negotiation information:
  • optical link auto-negotiation channel information through the optical pulse or the number of optical pulses (that is, LOS alarm count) formed by the change of the light and light-free state received by the second receiver of the second optical module;
  • the second optical link auto-negotiation channel communication module 1101 is configured to implement the sending of the feedback information in any of the following ways:
  • the second transmitter of the second optical module is adjusted to change between a lighted state and a lightless state to send light pulses.
  • the second optical link auto-negotiation channel communication module 1101 is configured to implement any one of the following ways to transmit optical pulses:
  • the second VOA of the second optical module 1102 is controlled to be turned on and off.
  • the chain building device when the second optical link auto-negotiation channel communication module 1101 adopts a manner of receiving optical link auto-negotiation channel information from the receiving signal pin of the second receiver of the second optical module 1102
  • the chain building device when receiving the optical link auto-negotiation information and sending the feedback information by using the transmit signal pin method of sending the optical link auto-negotiation channel information to the second transmitter of the second optical module, the chain building device further includes: The second channel selection module 1103 and the second service data communication module 1104;
  • the second channel selection module 1103 is connected to the second optical link auto-negotiation channel communication module 1001, the second optical module 1102, and the second service data communication module 1104, respectively;
  • the second channel selection module 1103 is configured to select one of the second optical link auto-negotiation channel communication module 1101 or the second service data communication module 1104 to connect to the second optical module 1102; in one embodiment, the second optical The link auto-negotiation channel communication module 1101 and the second optical module 1102 are connected to establish an optical link auto-negotiation channel.
  • the second optical link auto-negotiation channel communication module 1101 interacts with the central office device through the optical link auto-negotiation channel
  • the second service data communication module 1104 and the second optical module 1102 are selected to connect to establish a service data channel;
  • the second service data communication module 1104 is configured to send service data to the central office equipment and receive service data sent by the central office equipment.
  • the second optical link auto-negotiation channel communication module 1101 when the second optical link auto-negotiation channel communication module 1101 receives light pulses formed by changes in the light and light-free states received by the second receiver of the second optical module 1102 Or the number of optical pulses to obtain the information of the optical link auto-negotiation channel, and adjust the second transmitter of the second optical module to be in the state of light and lightless according to the feedback information, to send the light pulse, the first The two optical link auto-negotiation channel communication module 1101 is connected to the second optical module 1102 through an integrated circuit bus interface;
  • the second optical link auto-negotiation channel communication module 1101 performs a read operation or a write operation on the register of the second optical module 1102 through the integrated circuit bus interface, so as to realize an optical link interaction with the central office equipment Negotiation information.
  • the second channel selection module 1103 selects the connection between the second optical link auto-negotiation channel communication module 1101 and the second optical module 1102, the second optical link auto-negotiation channel communication module 1101, the second channel The selection module 1103 and the second optical module 1102 form an optical link auto-negotiation channel; when the second channel selection module 1103 selects the connection between the second service data communication module 1104 and the second optical module 1102, the second service data communication module 1104, the first The two-channel selection module 1103 and the second optical module 1102 constitute a service data channel.
  • the embodiment of the present disclosure implements the optical link auto-negotiation channel independent of the service data channel through the second channel selection module 1103.
  • the chain building device further includes:
  • the second auxiliary management channel communication module 1105 built in the second service data communication module 1104 or connected in series between the second service data communication module 1104 and the second channel selection module 1103, is set to send auxiliary management channel data to the central office equipment , And receive auxiliary management channel data sent by the central office equipment.
  • the second auxiliary management channel communication module 1105 may be integrated with the second service data communication module 1104 on the same chip, or may be connected in series as an independent chip between the second service data communication module 1104 and the second channel selection module 1103 Between business data transmission links composed.
  • the second auxiliary management channel communication module 1105 is connected in series as a separate chip on the service data transmission link composed of the second service data communication module 1104 and the second channel selection module 1103, the second auxiliary management channel communication module 1105 can also be built in The second optical module 1103.
  • the above business data and auxiliary management channel data can be transmitted simultaneously in the WDM system.
  • it further includes:
  • the second control module 1106 is connected to the second optical link auto-negotiation channel communication module 1101 and the second service data communication module 1104.
  • the second optical link auto-negotiation channel communication module 1101 is also set to:
  • the second control module 1102 is further configured to:
  • it further includes:
  • the second control module 1106 is connected to the second channel selection module 1103, and is configured to control the second channel selection module 1103 to select the second optical link auto-negotiation channel communication module 1101 or the second service data communication module 1104. One is connected to the second optical module 1102.
  • the second optical link auto-negotiation channel communication module when the second optical link auto-negotiation channel communication module is built in the second optical module, at least one of the second channel selection module, the second control module, and the second clock module is built in Second optical module;
  • the second optical link auto-negotiation channel communication module When the second optical link auto-negotiation channel communication module is built into the second optical module, and the second optical link auto-negotiation channel communication module receives the light received by the second receiver of the second optical module And the number of optical pulses or the number of optical pulses formed by the change of the non-light state to obtain the information of the optical link auto-negotiation channel, and adjust the change of the second transmitter of the second optical module in the light and light state according to the feedback information
  • the connection of the optical link auto-negotiation channel communication module, the second transmitter of the second optical module, and the second receiver is implemented by the internal circuit of the second optical module.
  • the second optical module 1102 is configured to convert the optical link self-negotiation information output from the second channel selection module 1103 into an optical signal for transmission to the WDM optical link, or to input the WDM optical link input
  • the optical signal is converted into an electrical signal and transmitted to the second channel selection module 1103.
  • the terminal device may include at least one second optical module 1102, and the second optical module 1102 may be a fixed wavelength optical module or a wavelength tunable optical module.
  • the service data sending / receiving module is connected to the channel selection module, and is used for sending service data to the central office equipment and receiving service data sent by the central office equipment.
  • the above business data and auxiliary management channel data can be transmitted simultaneously in the WDM system.
  • the second optical link auto-negotiation channel communication module 1101 is implemented in any of the following ways:
  • the second optical link auto-negotiation channel communication module 1101 can be implemented by using a separate FPGA chip to synchronize the optical link auto-negotiation information, decoding, frame analysis, FEC decoding, serial-to-parallel conversion, etc. to obtain the optical link Self-negotiation information.
  • the second optical link auto-negotiation channel communication module 1101 can be integrated with the PHY function chip or MAC function chip of the second service data communication module as an ASIC chip, and connected to the second channel selection module 1103 through two independent serdes interfaces .
  • the second optical link auto-negotiation channel communication module 1101 may be integrated with the second control module 1106 in the CPU unit, and connected to the second channel selection module 1103 through an independent I2C interface.
  • the second channel selection module 1103 may be implemented in any of the following ways:
  • the second channel selection module 1103 uses a separate Retimer chip to realize the channel selection between the optical link auto-negotiation channel and the service data channel or the auxiliary management channel, such as the Cross point switch function of the DS280DF810 chip.
  • Method 2 The second channel selection module 1103 and the second optical link auto-negotiation channel communication module 1101 or the second service data communication module 1104 are integrated into an FPGA chip, and the second channel selection module 1103 communicates with the second optical link auto-negotiation channel
  • the module 1101 or the second service data communication module 1104 uses a high-speed parallel processing custom dedicated interface
  • the second channel selection module 1103 and the second optical module 1102 use a serdes interface
  • the channel selection function of the second channel selection module 1103 passes
  • the wiring unit and crossbar switch in the FPGA chip are implemented, as shown in Figure 13.
  • the second optical module 1102 includes an optical transmitter (fixed wavelength or wavelength adjustable), an optical receiver (fixed wavelength or wavelength adjustable), a multiplexer / divider, LDD, TIA, LA, micro control Units (MCU, Microcontroller Unit), CDR and other devices are connected to the second channel selection module 1103 through differential data lines TD + / TD-, RD + / RD- to convert the optical link self-negotiation information or service data information into optical The signal is transmitted to the terminal equipment through the WDM optical link.
  • an optical transmitter fixed wavelength or wavelength adjustable
  • an optical receiver fixed wavelength or wavelength adjustable
  • a multiplexer / divider LDD, TIA, LA
  • MCU Microcontroller Unit
  • CDR micro control Units
  • the second control module 1106 may be implemented by devices such as CPU, MCU, Complex Programmable Logic Device (CPLD, Complex Programmable Logic Device), etc., and communicates with the second service data communication module 1104 (or second auxiliary management Channel communication module 1105), the second optical link auto-negotiation channel communication module 1101, the second channel selection module 1103, the second optical module is connected by I2C and other types of control lines, and transmits multiple module control messages and control feedback messages.
  • CPLD Complex Programmable Logic Device
  • the second optical module is connected by I2C and other types of control lines, and transmits multiple module control messages and control feedback messages.
  • the chain building device further includes:
  • the second clock module 1107 is configured to provide a reference clock source for the operation of other functional modules.
  • the information transfer interface between multiple functional modules transfers clock information while transferring data information.
  • the WDM optical link includes wavelength division multiplexing / demultiplexing devices, optical fibers and optical splitters, etc., for connecting multiple first optical modules of the central office equipment and second optical fibers of multiple terminal equipment Module.
  • the second optical module may include one or more sets of optical transmitters and optical receivers.
  • the second optical module includes multiple sets of optical transmitters and receivers, one or more sets of optical The transmitter and receiver load the auto-negotiation channel information.
  • the first optical link auto-negotiation channel communication module 901, the first channel selection module 903 (optical link auto-negotiation channel connectivity state) of the central office equipment, the first optical module 902, the first The two optical link auto-negotiation channel communication module 1101, the second channel selection module 1103 (optical link auto-negotiation channel connected state), the second optical module 1102, and the WDM optical link constitute an optical link auto-negotiation channel.
  • the authority-side equipment and terminal equipment use the first channel selection module 903 and the second channel selection module 1103 to realize the connectivity status of the optical link auto-negotiation channel and establish the optical link auto-negotiation channel .
  • the first service data communication module 904, the first auxiliary management channel communication module 905 and the first optical module 902 (optical transmitter and optical receiver) are in a non-connected state, and the second service data The communication module 1104, the second auxiliary management channel communication module 1105 and the second optical module 1102 (optical transmitter and optical receiver) are in a disconnected state, and the first service data communication module 904 and the first auxiliary management channel communication module 905 cannot
  • the first optical module 902 sends data to the WDM optical link.
  • the second service data communication module 1104 and the second auxiliary management channel communication module 1105 cannot receive data from the WDM optical link through the second optical module 1102.
  • the negotiation information is transmitted on the WDM optical link.
  • the rate or frequency of the self-negotiation information of the optical link and the coding method are independent of the service data channel and the auxiliary management channel.
  • the electrical signal transmission and processing links outside the optical link included in the optical link auto-negotiation channel and the service data channel are independent of each other.
  • the first channel selection module 903 and the second channel selection module 1103 realize the connection status of the service data channel, and establish and open the service data channel.
  • the second optical link auto-negotiation channel communication module 1101, the second channel selection module 1103, the second control module 1106 and the second clock module 1107 can also be built into the second optical module 1102, the second The functions of the optical link auto-negotiation channel communication module and the second control module can be realized by the optical module MCU, the second channel selection module can be realized by the optical module CDR, the second clock module can reuse the optical module clock module, or use the CDR chip Data recovery.
  • the functional unit that the terminal device forms the optical link auto-negotiation channel to participate in the auto-negotiation is the second optical module 1102.
  • the second optical module 1102 reserves the auxiliary management channel and the service data information control and feedback information interface.
  • the WDM system when the WDM system does not need to negotiate the working wavelength channel information of the terminal device, for example, the WDM system is an external seed optical system or a self-seed optical system, the second optical module of the terminal device does not need to use wavelength-tunable emission
  • the transmitter only uses the reflection modulator / reflection amplification modulator as the transmitter to send the signal.
  • the second control module 1106 adjusts the working rate of the transmitter according to the optical link auto-negotiation information.
  • the second optical link auto-negotiation channel communication module, the second channel selection module, the second control module and the first clock module may also be built into the second optical module, and the second optical link auto-negotiation
  • the functions of the channel communication module and the second control module can be realized by the microprogrammed control unit (MCU) of the second optical module
  • the second channel selection module can be realized by the CDR of the second optical module
  • the second clock module can be reused
  • the clock module of the second optical module may be recovered from the service data through the CDR chip.
  • the functional unit in which the central office equipment forms the optical link auto-negotiation channel and participates in the auto-negotiation is the second optical module, as shown in FIG. 14.
  • the central office equipment used to establish the optical link auto-negotiation channel adds the first channel selection module 903, the terminal equipment adds the second channel selection module 1103, the first channel selection module 903 and the second channel selection
  • the module 1103 is implemented by an additional high-speed electrical processing chip.
  • the existing module structure is not changed, and the interface between the existing module and the device is not changed.
  • the central office equipment includes:
  • the first optical link auto-negotiation channel communication module 901 is connected to the first optical module 902 through an I2C interface.
  • the functions and implementations of the foregoing multiple modules are consistent with the corresponding modules of the central office equipment of the foregoing embodiments.
  • the difference is that the central office equipment of this example does not include the first channel selection module 903.
  • the first optical link auto-negotiation channel communication module 901 communicates with the SDA and SCL control pins of the first optical module 902 through the I2C interface.
  • the terminal equipment exchanges optical link auto-negotiation information and clock information.
  • the optical link auto-negotiation information sent by the first optical link auto-negotiation channel communication module 901 can be implemented by a CPLD device.
  • the first optical link auto-negotiation channel communication module 901 completes the framing and encoding of the optical link auto-negotiation information (Including scrambling code), FEC coding (not necessary), and sending the corresponding "1, 0" digital sequence to the SDA and SCL control pins of the first optical module 902 after parallel-to-serial conversion.
  • the control pins of the first optical module 902 can pass through the laser dull and bright states, or "light-no light” "none
  • the two states of light and light indicate bit “1” and bit "0".
  • the "no light” state refers to the LOS alarm of the optical module receiver caused by the optical power transmitted by the optical module transmitter being lower than a certain threshold, and the "light” state on the contrary. The changes of the laser light and light state are reflected as light pulses.
  • the same clock as the optical link self-negotiation information is used to write "1" or "0" to the "Address A2h, Byte 110, Bit 6" register bits of the first optical module 902 through the I2C interface (see SFF -8472 standard) realizes two states of the first optical module 902 without light and with light.
  • the first optical link auto-negotiation channel communication module 901 reads the "1, 0" digital sequence from the SDA and SCL control pins of the first optical module 902, and through serial-to-parallel conversion, FEC decoding (not required), decoding (including Synchronization and descrambling codes), frame analysis and other steps to obtain feedback information sent by the terminal device.
  • the first optical link auto-negotiation channel communication module 901 reads the bit value of the "Address A2h, Byte 110, Bit 1" register of the first optical module 902 through the I2C interface (this value represents the receiver LOS of the first optical module 902 Status), to obtain the "1, 0" digital sequence sent by the terminal device.
  • the terminal equipment includes:
  • the second optical link auto-negotiation channel communication module 1101 is connected to the second optical module 1102 through an I2C interface.
  • the functions and implementations of the above multiple modules are consistent with the corresponding modules of the terminal device of the foregoing embodiments.
  • the difference is that the terminal device in this example does not include the second channel selection module 1103.
  • the second optical link auto-negotiation channel communication module 1101 communicates with the SDA and SCL control pins of the second optical module 1102 through the I2C interface.
  • the end equipment exchanges optical link auto-negotiation information and clock information.
  • the optical link auto-negotiation information sent by the second optical link auto-negotiation channel communication module 1101 can be implemented by the CPLD device, and the second optical link auto-negotiation channel communication module 1101 controls the SDA and SCL control pins of the second optical module 1102 Read the "1,0" digital sequence, and obtain the optical link auto-negotiation information sent by the central office equipment through serial-to-parallel conversion, FEC decoding (non-essential), decoding (including synchronization and descrambling codes), frame analysis, etc. "1,0" number sequence.
  • the second optical link auto-negotiation channel communication module 1101 reads the bit value of the "Address A2h, Byte 110, Bit 1" register of the second optical module 1102 through the I2C interface (this value represents the receiver LOS of the second optical module 1102 Status) to obtain the "1, 0" digital sequence sent by the central office equipment.
  • the second optical link auto-negotiation channel communication module 1101 completes the framing, encoding (including scrambling), FEC encoding (not required) of the feedback information, and sends the corresponding "1, 0" digital sequence to the second after serial-to-serial conversion
  • the control pin of the second optical module 1102 can receive the corresponding "1, 0" digital sequence of the feedback information, and can pass through the two states of the laser without light and with light, or "with light-without light” "without light-with light “Two states to represent bit” 1 "and bit” 0 ".
  • the same clock as the feedback information is used to write "1" or "0" to the "Address A2h, Byte 110, Bit 6" register bits of the second optical module 1102 through the I2C interface (see SFF-8472 standard)
  • the two states of the second optical module 1102 without light and with light are realized.
  • the central office equipment and the terminal equipment can use the same fixed clock, and the clock information sent by the terminal equipment can be recovered from the received optical link self-negotiation information sent by the central office equipment.
  • the central office equipment sends a regular, non-optical optical signal to the terminal equipment.
  • the optical signal forms a signal loss (LOS) alarm at the terminal equipment and forms a code.
  • the terminal equipment parses out the optical link self-negotiation information according to the code.
  • the link self-negotiation information adjusts its own working parameters, and then sends a regular and dull optical signal to the central office equipment.
  • the optical signal forms a LOS alarm at the central office equipment and forms a code.
  • the central office equipment parses the feedback information through this code .
  • FIG. 17 is a schematic diagram of an optical link auto-negotiation signal.
  • the embodiment of the present disclosure sends optical link auto-negotiation information through an optical link auto-negotiation signal.
  • the optical link auto-negotiation signal has a start identifier and an end identifier, which are "010" and "01010", respectively. ", The middle is the corresponding optical link auto-negotiation information coding (ie optical link auto-negotiation information).
  • the duration of "0" and "1" in the start identifier and end identifier is ⁇ t, which can be defined as 1ms, and the duration of "0" and "1" in the coding part of the control optical link auto-negotiation information is ⁇ T, It can be defined as 3ms.
  • Table 4 gives possible examples of optical link auto-negotiation information encoding. Multiple parts of the control optical link auto-negotiation information are separated by a delimiter indicator.
  • the delimiter indicator serves as an interval and indicates the definition of the next field.
  • the terminal device After the terminal device receives the management channel control signal, the terminal device uses the LOS alarm signal to extract the optical link self-negotiation information, adjust its own working parameters, and sends a feedback message to the central office device. After the central office device receives the feedback information Start normal communication with the terminal device.
  • the negotiation process is the same as the negotiation process described in Example 1 and Example 2. The difference from Example 1 and Example 2 is that the rate of the optical link auto-negotiation channel in this example cannot be negotiated through the preamble of the optical link auto-negotiation information frame, and can only be defined in the information field.
  • the first optical link auto-negotiation channel communication module 901 and the first optical module 902 of the central office equipment communicate via an I2C interface
  • the second optical link auto-negotiation channel communication module 1101 of the terminal device communicates with the second optical
  • the modules 1102 communicate through an I2C interface and perform register read and write operations of the first optical module 902 and the second optical module 1102 to transfer optical link self-negotiation information.
  • the first business data communication module 904 and the first optical module 902 are connected by a high-speed data signal line, and the first business data communication module 904 and the first optical module are reused between the first auxiliary management channel module 905 and the first optical module 902
  • the second service data communication module 1104 and the second optical module 1102 are connected by a high-speed data signal line, and the second auxiliary management channel module 1105 and the second optical module 1102 reuse the second service data communication module
  • the interface between 1104 and the second optical module 1102. Therefore, the optical link auto-negotiation channel described in this embodiment is independent of the service data channel and the auxiliary management channel.
  • the data channel is irrelevant.
  • the first optical link auto-negotiation channel communication module 901 sends the optical link auto-negotiation information to the first optical module 902 through the I2C interface, and converts the first optical module 902 into an optical link
  • the auto-negotiation optical signal is transmitted on the WDM optical link. Due to the transmission of the optical signal switch of the first optical module 902, at the same time, the service data cannot be transmitted on the WDM optical link, and the service data channel or the auxiliary management channel cannot pass the An optical module 902 sends or receives data to the WDM optical link, and only the optical link auto-negotiation information is transmitted on the WDM optical link.
  • the electrical signal transmission and processing links outside the optical link included in the optical link auto-negotiation channel and the service data channel are independent of each other.
  • the transmission method of the optical link auto-negotiation information is similar to that of Example 1 and Example 2.
  • the optical link auto-negotiation information frame (that is, a signal with a frame format) is used to transmit the optical link auto-negotiation information, and the feedback information frame is used. (That is, a signal with a frame format) to convey feedback information.
  • the second control module 1106 after receiving and parsing the optical link auto-negotiation information, the second control module 1106 also adjusts the operating parameters of the terminal device. After the adjustment of the operating parameters, the optical link auto-negotiation channel stops sending information and the service data channel Create and open.
  • this example does not require the introduction of additional IM modulation signals, which increases the complexity and cost of the optical module, and is independent of the service data optical link, does not deteriorate the signal quality of the service data optical link, and introduces the cost of optical power.
  • the optical link auto-negotiation information frame is composed of a preamble and information bits containing various negotiation information.
  • the preamble carries optical link auto-negotiation for optical link auto-negotiation channel reception frequency synchronization, synchronization No more clock information will be sent afterwards.
  • another structure of optical link auto-negotiation information is proposed.
  • the optical link auto-negotiation information is transmitted using information pulses interleaved with clock pulses (as shown in FIG. 19).
  • the negotiation information is sent in cycles according to time (as shown in Figure 19).
  • the clock pulse and the information pulse are composed of light pulses at certain time intervals.
  • the central office device sends optical link auto-negotiation information to the terminal device, and different optical link auto-negotiation signals (such as the first auto-negotiation signal and the second auto-negotiation signal in FIG. 18) represent different optical links
  • Channel auto-negotiation information such as the first optical link auto-negotiation information (such as the first auto-negotiation signal in FIG. 18) can be working wavelength channel information
  • the second optical link auto-negotiation information (such as the second auto-negotiation information in FIG. 18) Negotiation signal) may be the rate of the optical link auto-negotiation channel and so on.
  • the optical link auto-negotiation information has the same duration, T4, and the time interval between the optical link auto-negotiation information is T5.
  • FIG. 19 is a schematic diagram of the internal structure of an optical link auto-negotiation information.
  • there are (2n + 1) optical pulse positions in one optical link auto-negotiation information where n is the number of bits of the optical link auto-negotiation information.
  • the beginning and ending light pulses are clock pulses
  • the interval between clock pulses is T3
  • the position of the information pulse is interposed between the clock pulses
  • the duration of the information pulse and the clock pulse are both T1
  • the position of the information pulse and the clock pulse The time interval is T2.
  • there are 33 pulse positions there are 17 clock pulses and 16 information pulse positions.
  • At the information pulse position if there is a light pulse, it means that the bit is "1", if not, it means that the bit is "0", the bold parts in Fig. 19 indicate "1" and "0".
  • FIG. 20 is a schematic diagram of optical link self-negotiation information formed by separately extracting bits corresponding to data pulses.
  • the number of bits of the optical link auto-negotiation information is 16, which are D0 to D15, respectively.
  • the first 5 bits, S0 ⁇ S4 are the selection fields, indicating which optical link auto-negotiation information is in the future, A0 ⁇ A6 are the control content fields, indicating the value of the optical link auto-negotiation information, and R is the reserved bit , NP indicates whether there is optical link auto-negotiation information after that.
  • NP When NP is 1, it indicates that there is optical link auto-negotiation information afterwards; when NP is 0, it indicates that the optical link auto-negotiation information is sent.
  • the last bit is the cyclic redundancy check (Cyclic Redundancy Check, CRC) check bit.
  • Table 5 gives a possible example of T1 ⁇ T5
  • Table 6 gives a possible example of D0 ⁇ D15.
  • the sending process is the same as the previous example.
  • the terminal device adjusts its own working parameters and sends feedback information to the central office device.
  • the central office device receives the feedback information and establishes and opens a business data channel. Start normal communication. If the central office equipment does not receive the feedback information, it continues to send the optical link auto-negotiation information.
  • the optical link auto-negotiation information may be implemented by the central office optical module (ie, the first optical module) and the terminal optical module (ie, the second optical module).
  • the optical link auto-negotiation information only includes working wavelength channel information.
  • the optical link auto-negotiation information is transmitted through the optical switch status and the LOS alarm signal. Since only the working wavelength channel information is transmitted, no complicated circuit is required to perform data processing and frame analysis on the optical link auto-negotiation information.
  • the optical link auto-negotiation channel information transmission can be realized by counting the optical pulses within a fixed time period.
  • the implementation device is a local optical module and a terminal optical module, which can be implemented in any of the following ways.
  • the first is to realize the exchange of optical link auto-negotiation information by adjusting the bias current value.
  • the local end optical module is opened within a fixed time period by adjusting the size of the first transmitter bias current (Biascurrent) value through the first control circuit in the first optical link auto-negotiation channel communication module provided in the first optical module Or turn off the first transmitter to transmit the optical link auto-negotiation information; in an embodiment, when the size of the first transmitter bias current value is adjusted below the threshold current, turn off the first transmitter; when the first transmitter When the magnitude of the bias current value is adjusted above the threshold current, the first transmitter is turned on to transmit the optical signal to the terminal optical module;
  • Biascurrent bias current
  • the terminal optical module obtains working wavelength channel information through the second LOS counting circuit in the second optical link auto-negotiation channel communication module provided in the second optical module to count the LOS alarm of the second receiver; by setting it in the second optical module
  • the second control circuit in the second optical link auto-negotiation channel communication module in adjusts the wavelength of the second transmitter according to the obtained wavelength negotiation information;
  • the terminal optical module adjusts the size of the second transmitter bias current value through the second control circuit within a fixed time to turn on or off the second transmitter to transmit feedback information; in one embodiment, when the second transmitter bias current value When the size is adjusted below the threshold current, the second transmitter is turned off; when the size of the second transmitter bias current value is adjusted above the threshold current, the second transmitter is turned on to transmit the optical signal to the local optical module;
  • the central office optical module obtains feedback information by counting the LOS alarm of the first receiver; it starts to work normally.
  • the auto-negotiation information exchange of the optical link is realized by adjusting the bias value.
  • the local optical module adjusts the bias value of the first transmitter through the first control circuit within a fixed time period to turn on or turn off the first transmitter to transmit optical link auto-negotiation information; in one embodiment, when When the size of the first transmitter bias value is adjusted below the threshold voltage, the first transmitter is turned off; when the size of the first transmitter bias value is adjusted above the threshold voltage, the first transmitter is turned on to transmit the optical signal to the terminal Optical module
  • the terminal optical module obtains working wavelength channel information by counting the LOS alarm of the second receiver; adjusts the wavelength of the second transmitter according to the obtained wavelength negotiation information;
  • the terminal optical module adjusts the bias value of the second transmitter through the second control circuit within a fixed time to turn on or off the second transmitter to transmit feedback information; in an embodiment, when the second transmitter is biased When the value is adjusted below the threshold voltage, the second transmitter is turned off; when the size of the second transmitter bias value is adjusted above the threshold voltage, the second transmitter is turned on to transmit the optical signal to the local optical module;
  • the central office optical module obtains feedback information by counting the LOS alarm of the first receiver; it starts to work normally.
  • the third is to realize the interaction of optical link auto-negotiation information by controlling the opening and closing of the optical switch or SOA or VOA.
  • the central office optical module controls the opening or closing of the first optical switch or the first SOA or the first VOA through a first control circuit within a fixed time period to turn on or off the first transmitter to transmit optical link auto-negotiation information;
  • the first transmitter when the first optical switch or the first SOA or the first VOA is controlled to be turned off, the first transmitter is turned off; when the first optical switch or the first SOA or the first VOA is controlled to be turned on, the first transmitter is turned on Transmit optical signals to terminal optical modules;
  • the terminal optical module obtains working wavelength channel information by counting the LOS alarm of the second receiver; adjusts the wavelength of the second transmitter according to the obtained wavelength negotiation information;
  • the terminal optical module controls the opening or closing of the second optical switch or the second SOA or the second VOA through the second control circuit within a fixed time to turn on or off the second transmitter to transmit feedback information; in one embodiment, when When the second optical switch or the second SOA or the second VOA is controlled to be turned off, the second transmitter is turned off; when the second optical switch or the second SOA or the second VOA is controlled to be turned on, the second transmitter is turned on to transmit the optical signal to the central office Optical module
  • the central office optical module obtains feedback information by counting the LOS alarm of the first receiver; it starts to work normally.
  • the optical module can obtain the working wavelength channel information that needs to be negotiated through the central office equipment or terminal equipment, or try to send the transmitter wavelength when the optical link auto-negotiation channel works and adjust the transmitter according to whether feedback information is received Wavelength and renegotiate.
  • the second control circuit in the second optical module adjusts the operating parameters of the second transmitter to obtain the optical signal switch state.
  • the required optical link self-negotiation information is transmitted on the WDM optical link, and the second LOS counts
  • the circuit recognizes the number of optical signal switches to obtain the optical link auto-negotiation information, and establishes the optical link auto-negotiation channel.
  • the service data channel message cannot be transmitted on the WDM optical link at the same time due to the operation of the optical signal switch on the optical transmitter, and the service data channel or the auxiliary management channel cannot pass through the first optical module Or the second optical module sends or receives data to the WDM optical link, and only the optical link auto-negotiation information is transmitted on the WDM optical link. That is to say, at the same moment, the optical link auto-negotiation channel and the electrical data transmission and processing links outside the optical link included in the service data channel are independent of each other.
  • the operating parameters of the second optical module are also adjusted through the second control circuit. After the adjustment of the operating parameters, the optical link auto-negotiation channel stops sending information, and the service data channel Create and open.
  • Another embodiment of the present disclosure also provides a chain building device, including a processor and a computer-readable storage medium, where the computer-readable storage medium stores instructions, which are implemented when the instructions are executed by the processor Any of the above methods.
  • Another embodiment of the present disclosure further proposes a computer-readable storage medium having a computer program stored on the computer-readable storage medium.
  • the computer program is executed by a processor to implement any of the above methods.
  • All or some of the steps, systems, and functional modules / units in the method disclosed above may be implemented as software, firmware, hardware, and appropriate combinations thereof.
  • the division between the functional modules / units mentioned in the above description does not necessarily correspond to the division of physical components; for example, a physical component may have multiple functions, or a function or step may be composed of multiple The physical components are executed in cooperation.
  • Some or all components may be implemented as software executed by a processor, such as a digital signal processor or microprocessor, or as hardware, or as an integrated circuit, such as an application specific integrated circuit.
  • Such software may be distributed on computer-readable media, which may include computer storage media (or non-transitory media) and communication media (or transitory media).
  • Computer storage media includes both volatile and nonvolatile, removable and non-removable media implemented in the method or technology for storing information, such as computer readable instructions, data structures, program modules, or other data.
  • Computer storage media include random access memory (Random Access Memory, RAM), read-only memory (Read-Only Memory, ROM), electrically erasable read-only memory (Electrically, Erasable Programmable Read-Only Memory, EEPROM), flash memory or other memory Technology, portable compact disk read-only memory (Compact Disc Read Only Memory, CD-ROM), digital multi-function disk (Digital Video Disk, DVD) or other optical disk storage, magnetic box, magnetic tape, disk storage or other magnetic storage device, or Other media that can be used to store desired information and can be accessed by a computer.
  • communication media typically contains computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transmission mechanism, and may include information delivery media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Security & Cryptography (AREA)
  • Optical Communication System (AREA)

Abstract

本公开实施例公开了一种建链方法、装置和计算机可读存储介质,所述建链方法包括:通过光链路自协商通道与终端设备交互光链路自协商信息;在光链路自协商信息交互完成的情况下,建立以下至少之一:业务数据通道、辅助管理通道;其中,所述光链路自协商通道独立于业务数据通道或辅助管理通道;光链路自协商信息包括以下至少之一:终端设备的工作波长通道信息、与所述终端设备之间的前向纠错开关状态、与所述终端设备之间的前向纠错类型、辅助管理通道的工作模式。

Description

建链方法、装置和计算机可读存储介质
本申请要求在2018年10月12日提交中国专利局、申请号为201811189142.1的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本公开实施例涉及光通讯领域,例如涉及一种建链方法、装置和计算机可读存储介质。
背景技术
随着第五代移动通信技术(the 5th Generation Mobile Communication Technology,5G)时代的到来,用户对数据带宽和时延的要求不断增高,相应地对于用于无线前传的光接入设备的要求也不断增高。提高带宽的方法之一是利用波分复用(WDM,Wavelength Division Multiplexing)技术将数据调制到多个波长通道上去,每个波长通道拥有一定的带宽,多个波长通道就增加了通信容量。WDM带来的另一个好处是与时分复用(TDM,Time Division Multiplexing)相比不存在时隙分配,相当于点对点传输,降低了时延。因此波分复用十分适合用于5G前传网络中。
相关技术中,采用终端设备的可调光模块逐个扫描波长寻找的方法会存在建链过程非常长以及对其他工作波长通道产生串扰等问题。国际电信联盟电信标准化部门(International Telecommunication Union Telecommunication Standardization Sector,ITU-T)标准G.698.4中定义了携带波长信息的辅助管理通道(HTMC,Head-to-Tail Message Channel),但该辅助管理通道通过光信号顶调制技术实现,增加了光模块的复杂度和成本,并且会劣化光链路的信号质量,引入不可忽略的光功率代价。
发明内容
本公开实施例提供了一种建链方法、装置和计算机可读存储介质,能够在不增加光模块复杂度和成本,且不劣化业务数据通道信号质量的前提下实现业务数据通道的建链。
本公开实施例提供了一种建链方法,包括:
通过光链路自协商通道与终端设备交互光链路自协商信息;
在光链路自协商信息交互完成的情况下,建立以下至少之一:业务数据通道、辅助管理通道;
其中,所述光链路自协商通道独立于业务数据通道或辅助管理通道;光链路自协商信息包括以下至少之一:终端设备的工作波长通道信息、局端设备与所述终端设备之间的前向纠错开关状态、局端设备与所述终端设备之间的前向纠错类型、辅助管理通道的工作模式。
本公开实施例提出了一种建链方法,包括:
通过光链路自协商通道与局端设备交互光链路自协商信息;
在光链路自协商信息交互完成的情况下,建立以下至少之一:业务数据通道、辅助管理通道;
其中,所述光链路自协商通道独立于所述业务数据通道或所述辅助管理通道;光链路自协商信息包括以下至少之一:终端设备的工作波长通道信息、所述终端设备与所述局端设备之间的前向纠错开关状态、所述终端设备与所述局端设备之间的前向纠错类型、辅助管理通道的工作模式。
本公开实施例提出了一种建链装置,包括:第一光链路自协商通道通信模块和第一光模块,第一光链路自协商通道通信模块和第一光模块构成光链路自协商通道;
其中,所述第一光链路自协商通道通信模块,设置为通过光链路自协商通道与终端设备交互光链路自协商信息;
其中,所述光链路自协商通道独立于业务数据通道或辅助管理通道;光链路自协商信息包括以下至少之一:终端设备的工作波长通道信息、局端设备与所述终端设备之间的前向纠错开关状态、局端设备与所述终端设备之间的前向纠错类型、辅助管理通道的工作模式。
本公开实施例提出了一种建链装置,包括:
第二光链路自协商通道通信模块和第二光模块,第二光链路自协商通道通信模块和第二光模块构成光链路自协商通道;
其中,所述第二光链路自协商通道通信模块,设置为通过光链路自协商通 道与局端设备交互光链路自协商信息;
其中,所述光链路自协商通道独立于业务数据通道或辅助管理通道;光链路自协商信息包括以下至少之一:终端设备的工作波长通道信息、所述终端设备与所述局端设备之间的前向纠错开关状态、所述终端设备与所述局端设备之间的前向纠错类型、辅助管理通道的工作模式。
本公开实施例提出了一种建链装置,包括至少一个处理器和至少一个计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令被所述处理器执行时,实现上述任一种方法。
本公开实施例提出了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现上述任一种方法。
附图说明
图1为相关技术波分复用接入网络示意图;
图2为本公开实施例提供的一种建链方法的流程图;
图3为本公开实施例提供的光链路自协商信息帧的格式或帧格式的示意图;
图4为本公开实施例提出的另一种建链方法的流程图;
图5为本公开实施例示例1提供的OLT侧建链方法的流程图;
图6为本公开实施例示例1提供的ONU侧建链方法的流程图;
图7为本公开实施例示例1提供的交互光链路自协商信息的流程图;
图8为本公开实施例示例2提供的OLT侧建链方法的流程图;
图9为本公开实施例提供的一种建链装置的结构组成示意图;
图10为本公开实施例提供的第一通道选择模块的示意图;
图11为本公开实施例提供的第一光模块的结构组成示意图;
图12为本公开另一个实施例提供的建链装置的结构组成示意图;
图13为本公开实施例提供的第二通道选择模块的示意图;
图14为本公开实施例提供的第二光模块的结构组成示意图;
图15为本公开实施例示例4提供的局端设备的结构组成示意图;
图16为本公开实施例示例4提供的终端设备的结构组成示意图;
图17为本公开实施例示例4提供的管理通道控制光信号的示意图;
图18为本公开实施例示例5提供的光链路自协商信息的时序图;
图19为本公开实施例示例5提供的光链路自协商信息内部的结构示意图;
图20为本公开实施例示例5提供的将数据脉冲对应的比特单独提取出来形成的光链路自协商信息的示意图;
图21为本公开实施例示例6提供的建链装置的结构组成示意图。
具体实施方式
下文中将结合附图对本公开实施例进行说明。在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
图1为波分复用接入网络示意图。如图1所示,为了节约主干光纤,在局端设备和终端设备处分别使用了一个波分复用器(WDMer,Wavelength Division Multiplexer)将多个波长的光波合到一根主干光纤中。波分复用器可以使用阵列波导光栅(AWG,Arrayed Waveguide Gratings)或其它器件实现。当局端设备是光线路终端(OLT,Optical Line Terminal),终端设备是光网络单元(ONU,Optical Network Unit)时,该波分复用接入网络就是一个波分复用无源光网络(WDMPON,Wavelength Division Multiplexing Passive Optical Network)。该波分复用接入网络也可以是中心化无线前传网络(C-RAN,Centralized Radio Access Network),那么,局端设备为基带单元(BBU,Building Base band Unit)或分布式单元(Distributed Unite,DU),终端设备为射频拉远单元(RRU,Remote Radio Unit)或有源天线单元(AAU,Active Antenna Unit)。不同波长的光信号发送和接收由不同波长的光模块实现,不同波长的光模块连接WDMer的不同端口。
通常为了节约仓储和运维成本,终端设备使用可调光模块以统一型号,方便安装和维护。但是使用可调光模块需要终端设备在开启时将自身的可调光模 块调到与WDMer相连接的正确的发射波长上,实现光链路波长建链。相关技术中,采用终端设备的可调光模块逐个扫描波长寻找的方法会存在建链过程非常长以及对其他工作波长通道产生串扰等问题。国际电信联盟电信标准化部门(International Telecommunication Union Telecommunication Standardization Sector,ITU-T)标准G.698.4中定义了携带波长信息的辅助管理通道(HTMC,Head-to-Tail Message Channel),但该辅助管理通道通过光信号顶调制技术实现,增加了光模块的复杂度和成本,并且会劣化光链路的信号质量,引入不可忽略的光功率代价,一般速率较低约100千比特率(kbps)。
另一方面,当终端设备和局端设备是WDM PON设备时,需要对承载的无线业务透明传输,面临着终端设备的可调光模块波长建链过程长的问题的同时,另外还需要辅助管理通道实现局端设备和终端设备之间操作维护管理(OAM,Operation Administration and Maintenance)信息,误码统计,链路环回等管理消息的传递。ITU-T标准G.989.3中定义了点对点(PtP,Point-to-Point)WDM架构透传(transparent)辅助管理控制通道(AMCC,Auxiliary Management and Control Channel)和转码(transcoded)AMCC两种辅助管理技术路线。
其中,Transparent AMCC与G.698.4类似,采用光信号顶调制技术传输波长等辅助管理信息,transcoded AMCC在物理编码子层(PCS,Physical Coding Sublayer)(包含前向纠错码(FEC,Forward Error Correction)子层)实现,其中业务数据通道为8B/10B编码格式时采用8B/10B转32B/34B的转码技术提供辅助管理通道,业务数据通道为64B/66B编码格式时采用RS(253,221)FEC校验位同步头携带辅助管理通道信息。
除上述标准定义的两种方案之外,还可以利用PCS其他冗余信息(如空闲(Idle)控制字)携带辅助管理通道信息。相比transparent AMCC而言,基于PCS实现的WDM PON辅助管理通道(后文统称为transcoded AMCC,不仅限于G.989.3标准中定义的两种)不会引入额外的光功率代价,能提供更高速率的辅助管理通道,管理运维功能更完善,因此更具应用优势。但transcoded AMCC技术方案与编码格式以及FEC类型,FEC开关状态密切相关。而当WDM PON用于无线承载时,会承载通用公共无线电接口(CPRI,Common Public Radio Interface),增强型通用公共无线电接口(eCPRI,enhanced Common Public Radio Interface),以太网等不同业务类型,与WDM PON局端设备和终端设备相连的 无线设备如BBU/DU,RRU/AAU所传输的业务数据通道采用的速率等级,编码格式,FEC类型,FEC开关状态等也皆不相同,因此,在所需工作的波长通道上,当对WDM PON承载的业务类型,速率等级,编码格式,FEC类型,FEC开关状态,WDM PON自身FEC开关状态不清楚时,transcoded AMCC无法解析对端发送的辅助管理通道信息,从而无法完成辅助管理通道和业务数据通道的建链。
相关技术中采用transparent AMCC或通过业务数据通道实现(如以太网标准IEEE802.3 Clause定义PCS光口自协商机制)对辅助管理通道信息的解析需要修改承载的业务协议标准,引入可调光模块复杂度提升,光链路的传输性能下降或无法实现业务的透明传输等问题。
参见图2,本公开一个实施例提出了一种建链方法,应用于局端设备,包括:
步骤2000、通过光链路自协商通道与终端设备交互光链路自协商信息。
在本公开实施例中,光链路自协商通道独立于业务数据通道或辅助管理通道,也就是说,
在同一时刻,仅业务数据通道和光链路自协商通道之一能够在光链路传输数据;例如光链路自协商信息可以在业务数据通道消息传输之前,或,业务数据通道消息因故障中断后,或,业务数据通道关断后重启之前传输光链路自协商信息;光链路自协商通道传递的光链路自协商信息的速率或频率、编码方式等与业务数据通道无关,即光链路自协商通道传递的光链路自协商信息可采用与业务数据相同或不同的速率,编码方式等。
当传递辅助管理通道信息时,在同一时刻,仅光链路自协商通道和辅助管理通道之一在光链路传输数据;光链路自协商通道传递的光链路自协商信息的速率或频率、编码方式等与辅助管理通道无关。
其中,业务数据通道也称为用户数据(User Data)通道。
其中,辅助管理通道为WDM PON系统中局端设备和终端设备之间,与业务数据通道同时正常工作时,与业务数据通道采用不同的带宽工作的WDM PON系统管理通道。
其中,辅助管理通道用于传输WDM PON系统注册认证、OAM管理消息、告警上报、性能统计、链路环回、以及光链路自协商信息反馈信息等。
在本公开实施例中,光链路自协商信息包括以下至少之一:
终端设备的工作波长通道信息、局端设备与终端设备之间的前向纠错(FEC,Forward Error Correction)开关状态、局端设备与终端设备之间的FEC类型、辅助管理通道的工作模式。
在本公开另一个实施例中,光链路自协商信息还包括以下至少之一:通信协议、光链路自协商通道的速率信息、业务数据通道承载的业务信息。
其中,业务数据通道承载的业务信息包括以下至少之一:
业务类型、速率信息(即业务数据通道的速率信息)、编码格式、局端设备或终端设备与业务设备(如无线设备等)之间的FEC类型(如里德-所罗门码(Reed-Solomon,RS)(528,514),RS(544,514),RS(255,223),低密度奇偶校验码(Low Density Parity Check Code,LDPC)等)、局端设备或终端设备与业务设备之间的FEC开关状态等。
在本公开实施例中,通过光链路自协商通道与终端设备交互光链路自协商信息,包括:
通过所述光链路自协商通道向所述终端设备发送所述光链路自协商信息中包括的多个内容中的至少一个;当接收到所述终端设备的反馈信息时,所发送的光链路自协商信息包括的内容交互完成;重复上述过程,直到光链路自协商信息包括的所有内容交互完成。
其中,可以一次性完成所有光链路自协商信息的交互,或者也可以两次或两次以上完成所有光链路自协商信息的交互,即每次交互部分光链路自协商信息(至少一个光链路自协商信息),待接收到该部分光链路自协商信息的反馈信息后,再发送另一部分光链路自协商信息,直到所有光链路自协商信息交互完成。
其中,可以周期性发送光链路自协商信息,或者也可以非周期性发送光链路自协商信息,或者也可以定时发送光链路自协商信息。
当周期性发送光链路自协商信息时,如果在周期内接收到反馈信息,则所发送的光链路自协商信息交互完成;如果在周期内未接收到反馈信息,则所发送的光链路自协商信息交互失败,此时可以在下一周期继续发送交互失败的光链路自协商信息或其他光链路自协商信息。
当非周期性发送或定时发送光链路自协商信息时,如果在下一次发送光链路自协商信息之前接收到反馈信息,则所发送的光链路自协商信息交互完成;如果在下一次发送光链路自协商信息之前未接收到反馈信息,则所发送的光链路自协商信息交互失败,此时可以重新交互之前交互失败的光链路自协商信息或发送其他光链路自协商信息。
在本公开实施例中,可以采用光链路自协商信息帧(即具备帧格式的信号)发送光链路自协商信息;其中,光链路自协商信息帧包括以下之一:前导、至少一个定界指示符、光链路自协商信息中包括的多个内容中的至少一个;开始标识符、结束标识符、至少一个定界指示符、光链路自协商信息中包括的多个内容中的至少一个。
或者,发送的光链路自协商信息可以不具备帧格式。
其中,图3为光链路自协商信息帧的格式或帧格式的示意图。当采用光链路自协商信息帧发送光链路自协商信息时,如图3所示,在光链路自协商信息帧的帧结构中,包括前导和至少一个光链路自协商信息字段,每个光链路自协商信息字段中携带光链路自协商信息中包括的多个内容中的一个。
其中,前导用来让终端设备进行同步,例如可以使用0101...交替的序列。
每个光链路自协商信息字段前面都有一个定界指示符,用于隔离不同的光链路自协商信息字段,同时指示下一个光链路自协商信息字段是何种光链路自协商信息。
光链路自协商信息字段的末尾可以增加校验字段防止出错。
表1给出了光链路自协商信息帧多个光链路自协商信息字段可能的例子,当然,所给出的例子并不用于限定每个字段的取值范围,每个字段也可以采用其他的取值方式,取值方式不用于限定本公开实施例的保护范围,这里不再赘述。
Figure PCTCN2019110874-appb-000001
Figure PCTCN2019110874-appb-000002
表1
上述光链路自协商信息帧结构中,1或0信息位可分别通过高电平或低电平表示,或,通过“电平上升沿”或“电平下降沿”表示。
其中,辅助管理通道的工作模式可包括如表2所示工作类别。
Figure PCTCN2019110874-appb-000003
Figure PCTCN2019110874-appb-000004
表2
在本公开实施例中,采用以下任一个速率发送所述光链路自协商信息:约定的速率、用于表征业务数据通道的速率的速率、与终端设备协商的速率、时钟数据恢复参考时钟的整数倍速率。
其中,用于表征业务数据通道的速率的速率包括以下任一个:
与所述业务数据通道的速率对应的速率、与业务数据通道的波长对应的速率、时钟数据恢复(CDR,Clock Data Recovery)参考时钟的整数倍速率。
当采用用于表征业务数据通道的速率的速率发送光链路自协商信息时,光链路自协商通道的速率用于表征所述业务数据通道的速率,光链路自协商信息中包括所述业务数据通道的速率或不包括业务数据通道的速率。
当不采用用于表征业务数据通道的速率的速率发送光链路自协商信息时,光链路自协商通道的速率不表征业务数据通道的速率,光链路自协商信息可以采用固定的速率发送,或者采用不同的速率发送;当采用用于表征业务数据通道的速率的速率发送光链路自协商信息时,光链路自协商通道的速率表征业务数据通道的速率,光链路自协商通道采用不同的速率发送,以适应不同的业务数据通道的速率。
当不采用用于表征业务数据通道的速率的速率发送光链路自协商信息时,光链路自协商信息不需要包含光链路自协商通道的速率信息;当采用用于表征业务数据通道的速率的速率发送光链路自协商信息时,可以在光链路自协商信息中加入光链路自协商通道的速率信息,在光链路自协商信息交互开始阶段协商好光链路自协商通道的速率。例如,局端设备向终端设备发送光链路自协商 信息,光链路自协商信息的速率为终端设备能够接收的最低速率,以降低光链路自协商信息在传输过程中发生错误的概率。光链路自协商信息中包含光链路自协商通道的速率信息字段,所述速率信息既包含发送速率,又包含接收速率。终端设备根据光链路自协商信息中光链路自协商通道的速率字段的内容判断自身的光链路自协商通道是否可以工作在该速率下,如果可以,则发送反馈消息回复局端设备,如果不行,则发送自身的光链路自协商通道可以工作的速率给局端设备,局端设备从接收到的终端设备的光链路自协商通道可以工作的速率中选择一个速率,采用选择的速率发送光链路自协商信息给终端设备。如果没有合适的速率,则报错。
在本公开实施例中,还可以通过与时钟脉冲交织的信息脉冲发送光链路自协商信息;其中,信息脉冲携带光链路自协商信息中包括的多个内容中的至少一个。实现过程如示例5所示,这里不再赘述。
或者,通过光脉冲数目发送所述终端设备的工作波长通道信息;其中,光脉冲数目用于表征所述终端设备的工作波长通道信息。实现过程如示例6,这里不再赘述。
步骤2010、光链路自协商信息交互完成,建立以下至少之一:业务数据通道、辅助管理通道。
本公开实施例通过光链路自协商通道与终端设备交互光链路自协商信息,由于光链路自协商通道独立于业务数据通道和辅助管理通道,因此,在不增加光模块复杂度和成本,且不劣化业务数据通道信号质量的前提下,采用独立的光链路自协商通道实现了业务数据通道的建链。
参见图4,本公开另一个实施例提出了一种建链方法,应用于终端设备,包括:
步骤4000、通过光链路自协商通道与局端设备交互光链路自协商信息。
在本公开实施例中,光链路自协商通道独立于业务数据通道和辅助管理通道,也就是说,
在同一时刻,仅业务数据通道和光链路自协商通道之一能够在光链路传输数据;例如光链路自协商信息可以在业务数据通道消息传输之前,或,业务数据通道消息因故障中断后,或,业务数据通道关断后重启之前传输光链路自协 商信息;光链路自协商通道传递的光链路自协商信息的速率或频率、编码方式等与业务数据通道无关,即光链路自协商通道传递的光链路自协商信息可采用与业务数据相同或不同的速率,编码方式等;
当需要传递辅助管理通道信息时,在同一时刻,仅光链路自协商通道和辅助管理通道之一在光链路传输数据;光链路自协商通道传递的光链路自协商信息的速率或频率、编码方式等与辅助管理通道无关。
其中,辅助管理通道为WDM PON系统中局端设备和终端设备之间,与业务数据通道同时正常工作时,与业务数据通道采用不同的带宽工作的WDM PON系统管理通道。
其中,辅助管理通道用于传输WDM PON系统注册认证、OAM管理消息、告警上报、性能统计、链路环回、光链路自协商信息反馈信息等。
在本公开实施例中,光链路自协商信息包括以下至少之一:
终端设备的工作波长通道信息、局端设备与终端设备之间的前向纠错(FEC,Forward Error Correction)开关状态、局端设备与终端设备之间的FEC类型、辅助管理通道的工作模式。
在本公开另一个实施例中,光链路自协商信息还包括以下至少之一:通信协议、光链路自协商通道的速率信息、业务数据通道承载的业务信息。
其中,业务数据通道承载的业务信息包括以下至少之一:
业务类型、速率信息(即业务数据通道的速率信息)、编码格式、局端设备或终端设备与业务设备之间的FEC类型(如RS(528,514),RS(544,514),RS(255,223),LDPC等)、局端设备或终端设备与业务设备之间的FEC开关状态等。
在本公开实施例中,通过光链路自协商通道与局端设备交互光链路自协商信息,包括:
接收到所述光链路自协商信息,根据所述光链路自协商信息调整工作参数;向所述局端设备发送反馈信息,所接收的光链路自协商信息交互完成;重复上述过程,直到所有光链路自协商信息交互完成。
其中,可以通过光链路自协商通道或辅助管理通道向局端设备发送反馈信 息。
其中,接收光链路自协商信息,包括:
接收光链路自协商信息帧;其中,所述光链路自协商信息帧包括以下意一个:
前导、至少一个定界指示符、光链路自协商信息中包括的多个内容中的至少一个;
开始标识符、结束标识符、至少一个定界指示符、光链路自协商信息中包括的多个内容中的至少一个。
其中,接收光链路自协商信息包括以下任意一个:
接收与时钟脉冲交织的信息脉冲;所述信息脉冲携带所述光链路自协商信息中包括的多个内容中的至少一个;
接收并计算光脉冲数目;其中,所述光脉冲数目用于表征所述终端设备的工作波长通道信息。
在本公开实施例中,当接收到的光链路自协商信息中不包含业务数据通道的速率时,业务数据通道的速率可以根据光链路自协商通道的速率确定。
其中,当光链路自协商信息采用如图3所示的帧格式发送时,光链路自协商通道的速率信息可以预先约定,或可以在根据前导进行同步的过程中获得,或者从光链路自协商信息帧中直接获得。
其中,可以采用以下任一种方式确定业务数据通道的速率:
确定光链路自协商通道的速率为业务数据通道的速率;
根据工作波长通道信息、光链路自协商通道的速率和业务数据通道的速率之间的对应关系,确定光链路自协商通道的速率对应的工作波长通道信息和业务数据通道的速率。
步骤4010、在光链路自协商信息交互完成的情况下,建立以下至少之一:业务数据通道、辅助管理通道。
在本公开实施例中,可以采用如图3所示的帧格式发送反馈信息。
下面通过示例说明本公开实施例的实现方式,所举的例子不用于限定本公 开实施例的保护范围。
示例1
在本示例中,WDM系统包括WDM PON OLT(即上述局端设备),WDM PON ONU(即上述终端设备),WDM PON ONU采用波长可调谐光模块,参见图5,WDM PON OLT的业务数据通道的建立过程包括:
步骤500、OLT建立光链路自协商通道。
步骤501、OLT通过光链路自协商通道周期性向ONU发送光链路自协商信息,周期为T test
步骤502、判断OLT在T test时间内是否接收到ONU的反馈信息,当OLT在T test时间内接收到ONU的反馈信息时,建立以下至少之一:业务数据通道、辅助管理通道;当OLT在T test时间内未接收到ONU的反馈信息时,OLT在下一个周期继续通过光链路自协商通道周期性向ONU发送光链路自协商信息。
参见图6,WDM PON ONU的业务数据通道的建立过程包括:
步骤600、ONU建立光链路自协商通道。
步骤601、ONU等待接收光链路自协商信息,当接收到光链路自协商信息时,根据光链路自协商信息调整工作参数,通过光链路自协商通道向OLT发送反馈信息,建立以下至少之一:业务数据通道、辅助管理通道;当未接收到光链路自协商信息时,继续等待接收光链路自协商信息。
本示例中的光链路自协商通道的特性与前述实施例相同,光链路自协商信息与前述实施例相同,这里不再赘述。
在本示例中,可以通过光链路自协商通道采取具备帧格式的信号来传递光链路自协商信息。帧格式可以是如图3所示的格式。
其中,光链路自协商信息帧包括以下至少之一:
终端设备的工作波长通道信息、WDM PON自身FEC开关状态(即OLT与ONU之间的FEC开关状态)、WDM PON自身FEC类型(即OLT与ONU之间的FEC类型)、辅助管理通道的工作模式。
光链路自协商信息帧还可以包括以下至少之一:光链路自协商通道的速率信息、业务数据通道承载的业务信息、业务设备与PON设备之间的FEC开关状 态。
在本示例中,可以在一个周期内同时发送所有需要交互的光链路自协商信息,或者在一个周期内发送部分需要交互的光链路自协商信息,待接收到该部分光链路自协商信息的反馈信息后,再在下一个周期内发送另一部分光链路自协商信息,直到所有光链路自协商信息交互完成,如图7所示。
上述建链方法中,当局端设备和终端设备不需要协商终端设备的工作波长通道信息时(例如,当WDM系统为外种子光系统或自种子光系统,终端光模块不需要可调光模块,仅采用反射调制器/反射放大调制器作为发送信号),上述步骤中波长自协商流程可不执行。
示例2
本示例中,建链方法还包括检测终端设备的连接状态,参见图8,局端设备的业务数据通道的建立过程包括:
步骤800、局端设备在某些端口监测到信号丢失(Loss Of Signal,LOS),证明这些端口的终端设备没有建链成功,局端设备的这些端口周期性地向这些终端设备发送光链路自协商信息,周期为T test
步骤801、判断局端设备在T test时间内是否接收到终端设备的反馈信息,当局端设备在T test时间内接收到终端设备的反馈信息时,建立以下至少之一:业务数据通道、辅助管理通道;当局端设备在T test时间内没有接收到终端设备的反馈信息时,则可能终端设备没有开启,或光链路自协商信息在传输过程中出错,重新发送光链路自协商信息;判断发送光链路自协商信息的次数是否超过n test,当发送光链路自协商信息的次数超过n test次,比如3次,都没有收到终端设备的反馈信息时,认为终端设备可能还没有开启,如此增大T test,比如增大到1分钟,然后再次发送光链路自协商信息。继续上述过程,判断T test是否超过某个阈值,当T test增大到某个阈值,比如10分钟,还是没有收到终端设备的反馈信息时,局端设备停止向终端设备发送光链路自协商信息,认为该端口下没有终端设备连接。直到下次上级设备或人工指示发送光链路自协商信息,或将T test增大到比较大的值,比如1小时。
示例3
当局端设备和终端设备之间只涉及波长和速率协商时,光链路自协商信息 可以不具备帧格式,而利用速率信息复用波长控制信息,以及速率信息识别,同时进行终端设备的波长和速率自协商。这种协商机制利用终端设备的时钟数据恢复(CDR,Clock Data Recovery)芯片来实现,局端设备采用CDR参考时钟(即频率值)的不同整数倍速率发送光链路自协商信息,终端设备可以识别光链路自协商通道的速率,并根据光链路自协商通道的速率与业务数据通道的速率和工作波长通道信息的对应关系调节波长和调整业务数据通道的速率。
以CDR参考时钟为25MHz为例,一种对应关系可以如表3所示,波长通道号1对应20.2Gbps和10.1Gbps两种光链路自协商通道的速率,波长通道号2对应20.3Gbps和10.15Gbps两种光链路自协商通道的速率,依次类推,波长通道32对应23.3Gbps和11.65Gbps两种光链路自协商通道的速率。当光链路自协商通道的速率为20.2~23.3Gbps,则表示业务数据通道的工作速率为25Gbps,10.1~11.65Gbps则表示务数据通道的工作速率为10Gbps。即当光链路自协商通道的速率为10.1Gbps时表示业务数据通道工作在波长通道1和10Gbps速率,光链路自协商通道的速率为10.15Gbps时表示业务数据通道工作在波长通道2和10Gbps速率,依次类推,光链路自协商通道的速率为11.65Gbps时表示业务数据通道工作在波长通道32和10Gbps速率;当光链路自协商通道的速率为20.2Gbps时表示业务数据通道工作在波长通道1和25Gbps速率,光链路自协商通道的速率为20.3Gbps时表示业务数据通道工作在波长通道2和25Gbps速率,依次类推,光链路自协商通道的速率为23.3Gbps时表示业务数据通道工作在波长通道32和25Gbps速率。同理,还可通过光链路自协商通道的速率的1/4表示其他的WDM光链路的正常工作速率。
Figure PCTCN2019110874-appb-000005
Figure PCTCN2019110874-appb-000006
表3
参见图9,本公开另一个实施例提出了一种建链装置(如局端设备),包括:第一光链路自协商通道通信模块901和第一光模块902,第一光链路自协商通道通信模块901和第一光模块902构成光链路自协商通道;
其中,第一光链路自协商通道通信模块901,设置为通过光链路自协商通道与终端设备交互光链路自协商信息;
其中,所述光链路自协商通道独立于业务数据通道和辅助管理通道;光链路自协商信息包括以下至少之一:终端设备的工作波长通道信息、局端设备与所述终端设备之间的FEC开关状态、局端设备与所述终端设备之间的FEC类型、辅助管理通道的工作模式。
在本公开实施例中,光链路自协商通道、业务数据通道、辅助管理通道的相关特征与前述实施例相同,这里不再赘述。
在本公开实施例中,第一光链路自协商通道通信模块901是设置为:
通过所述光链路自协商通道向所述终端设备发送所述光链路自协商信息中包括的多个内容中的至少一个;当第一光链路自协商通道通信模块901或第一辅助管理通道通信模块905接收到所述终端设备的反馈信息时,所发送的光链路自协商信息交互完成;重复上述过程,直到所有光链路自协商信息交互完成。
在本公开实施例中,第一光链路自协商通道通信模块901是设置为采用以下方式之一实现所述光链路自协商信息的发送:
发送光链路自协商通道信息至所述第一光模块的第一发射机的发射信号管 脚(例如,TD+/TD-,RD+/RD-管脚);
根据所述光链路自协商信息,调整所述第一光模块的第一发射机处于有光状态和无光状态的变化中,以发送光脉冲;
所述第一光链路自协商通道通信模块901是设置为采用以下方式之一实现所述反馈信息的接收:
从第一光模块的第一接收机的接收信号管脚接收反馈信息;
通过所述第一光模块的第一接收机接收到的有光状态和无光状态的变化所形成的光脉冲或光脉冲数目(即LOS告警计数)获得所述反馈信息。
在本公开实施例中,第一光链路自协商通道通信模块901是设置为采用以下任一种方式实现发送光脉冲:
调整第一光模块的第一发射机偏流值的大小;
调整第一光模块的第一发射机偏压值的大小;
控制第一光模块的第一光开关打开与关闭;
控制第一光模块的第一半导体光放大器(SOA,Semiconductor Optical Amplifier)打开与关闭;
控制第一光模块的第一可调光衰减器(VOA,Adjustable Optical Attenuator)打开与关闭。
在本公开另一个实施例中,当所述第一光链路自协商通道通信模块采用发送光链路自协商通道信息至第一光模块的第一发射机的发射信号管脚的方式实现所述光链路自协商信息的发送,从第一光模块的第一接收机的接收信号管脚接收反馈信息的方式实现所述反馈信息的接收时,所述建链装置还包括:第一通道选择模块903和第一业务数据通信模块904;
其中,第一通道选择模块903分别与第一光链路自协商通道通信模块901、第一光模块902和第一业务数据通信模块904连接;
第一通道选择模块903,设置为选择第一光链路自协商通道通信模块901或第一业务数据通信模块904中的一个和第一光模块902连接;在一实施例中,选择第一光链路自协商通道通信模块901和第一光模块902连接以建立光链路自协商通道,当第一光链路自协商通道通信模块901通过光链路自协商通道与 终端设备交互光链路自协商信息完成时,选择第一业务数据通信模块904和第一光模块902连接以建立业务数据通道;
第一业务数据通信模块904,设置为向终端设备发送业务数据,以及接收终端设备发送的业务数据。
在本公开实施例中,当第一通道选择模块903选择第一光链路自协商通道通信模块901和第一光模块902连接时,第一光链路自协商通道通信模块901、第一通道选择模块903和第一光模块902构成光链路自协商通道;当第一通道选择模块903选择第一业务数据通信模块904和第一光模块902连接时,第一业务数据通信模块904、第一通道选择模块903和第一光模块902构成业务数据通道。当光链路自协商通道工作时第一业务数据通信模块904与第一光模块902之间处于非连通状态,业务数据通道或辅助管理通道无法通过光模块向WDM光链路发送/接收数据,仅光链路自协商信息在WDM光链路传输。光链路自协商通道信号的速率/频率,编码方式等与业务数据通道以及辅助管理通道无关。本公开实施例通过第一通道选择模块903实现了独立于业务数据通道的光链路自协商通道。
在本公开实施例中,当所述第一光链路自协商通道通信模块901采用调整所述第一光模块的第一发射机处于有光状态和无光状态的变化中,以发送光脉冲的方式实现所述光链路自协商信息的发送,通过所述第一光模块的第一接收机接收到的有光状态和无光状态的变化所形成的光脉冲或光脉冲数目获得所述反馈信息时,所述第一光链路自协商通道通信模块901通过集成电路总线接口与所述第一光模块902连接;
所述第一光链路自协商通道通信模块901通过所述集成电路总线接口对所述第一光模块902的寄存器做读操作或写操作,以实现与所述终端设备交互光链路自协商信息。
实现过程如示例4所述,这里不再赘述。
在本公开实施例中,建链装置还包括:
第一辅助管理通道通信模块905,内置于第一业务数据通信模块904中或串联在第一业务数据通信模块904和第一通道选择模块903之间,设置为向终端设备发送辅助管理通道数据,以及接收终端设备发送的辅助管理通道数据。
在本公开实施例中,第一辅助管理通道通信模块905可与第一业务数据通信模块904集成在同一芯片,或,作为独立芯片串联在第一业务数据通信模块904与第一通道选择模块903之间组成的业务数据传输链路上。当第一辅助管理通道通信模块905作为独立芯片串联在第一业务数据通信模块904与第一通道选择模块903组成的业务数据传输链路上时,第一辅助管理通道通信模块905同样可内置于第一光模块903中。
上述业务数据和辅助管理通道数据可在WDM系统中同时传输。
在本公开另一个实施例中,还包括:
第一控制模块906,与所述第一光链路自协商通道通信模块901连接,设置为:
控制所述第一光链路自协商通道通信模块901通过光链路自协商通道与终端设备交互光链路自协商信息。
在本公开另一个实施例中,当所述第一光链路自协商通道通信模块内置于第一光模块时,第一通道选择模块、第一控制模块、第一时钟模块中的至少之一内置于第一光模块;
当所述第一光链路自协商通道通信模块内置于第一光模块,且所述第一光链路自协商通道通信模块采用调整所述第一光模块的发射机处于有光状态和无光状态的变化中,以发送光脉冲的方式实现所述光链路自协商信息的发送,通过所述第一光模块的第一接收机接收到的有光和无光状态的变化所形成的光脉冲或光脉冲数目获得所述反馈信息时,所述光链路自协商通道通信模块以及所述光链路自协商通道通信模块、第一光模块的第一发射机和第一接收机的连接由第一光模块的内部电路实现。
在本公开另一个实施例中,还包括:
第一控制模块906,与第一通道选择模块903连接,设置为控制第一通道选择模块903选择所述第一光链路自协商通道通信模块901或所述第一业务数据通信模块904中的一个和所述第一光模块902连接。
在本公开实施例中,第一光模块902,设置为将从第一通道选择模块903输出的光链路自协商信息转换为光信号传输至WDM光链路,或将WDM光链路输入的光信号转换为电信号传输至第一通道选择模块903。
局端设备可包含至少一个第一光模块902,第一光模块可为固定波长光模块或波长可调光模块。
在本公开实施例中,第一光链路自协商通道通信模块901、第一光模块902、第一通道选择模块903、第一控制模块906、第一时钟模块907、第一业务数据通道模块904、第一辅助管理通道通信模块905可以通过至少一个芯片实现,上述模块可以以任意组合方式在一个芯片或多个芯片中实现。
例如,第一光链路自协商通道通信模块901可以采用以下任一种方式实现:
方式一、第一光链路自协商通道通信模块901可以采用单独的现场可编程门阵列(FPGA,Field Programmable Gate Array)芯片实现,对光链路自协商信息进行编码、成帧、FEC编码、并串转换等处理后发送。
方式二、第一光链路自协商通道通信模块901可与第一业务数据通信模块904的物理层(PHY,Physical Layer)功能芯片或媒体访问控制(MAC,Media Access Control)功能芯片集成为专门应用的基础电量(ASIC,Application Specific Integrated Circuit)芯片,通过两个独立的高速串并转换(serdes)接口与第一通道选择模块903连接。
方式三、第一光链路自协商通道通信模块901可与第一控制模块906集成在中央处理器(Central Processing Unit,CPU)单元中,通过独立的集成电路总线(I2C,Inter Integrated Circuit)接口与第一通道选择模块903连接。
又如,第一通道选择模块903可以采用以下任一种方式实现:
方式一、第一通道选择模块903采用单独的时钟重构(Retimer)芯片实现光链路自协商通道和业务数据通道或辅助管理通道之间的通道选择,如DS280DF810芯片的Cross point switch功能。
方式二、第一通道选择模块903与第一光链路自协商通道通信模块901或第一业务数据通信模块904集成为FPGA芯片,第一通道选择模块903与第一光链路自协商通道通信模块901或第一业务数据通信模块904之间采用高速并行处理自定义专用接口,第一通道选择模块903与第一光模块902之间采用serdes接口,第一通道选择模块903的通道选择功能通过FPGA芯片中的连线单元和交叉开关实现,如图10所示。
又如,第一光模块902包括光发射机(固定波长或波长可调),光接收机 (固定波长或波长可调),合分波器,激光器驱动器(LDD,Laser Diode Driver),跨阻放大器(TIA,Trans-impedance Amplifier),限幅放大器(LA,Limiting Amplifier),微控制单元(MCU,Microcontroller Unit),CDR等器件,与第一通道选择模块903之间通过差分数据线TD+/TD-,RD+/RD-连接,将光链路自协商信息或业务数据信息转换为光信号通过WDM光链路传送给终端设备。
又如,第一控制模块906,可通过CPU,MCU,复杂可编程逻辑器件(CPLD,Complex Programmable Logic Device)等器件实现,与第一业务数据通信模块904(或第一辅助管理通道通信模块905),第一光链路自协商通道通信模块901,第一通道选择模块903,第一光模块902通过I2C等类型控制线连接,传递多个模块控制消息和控制反馈消息。
在本公开实施例中,建链装置还包括:
第一时钟模块907,设置为为其他功能模块的工作提供参考时钟源。
其中,其他功能模块包括以下至少之一:
第一光链路自协商通道通信模块901、第一光模块902、第一通道选择模块903、第一业务数据通信模块904、第一辅助管理通道通信模块905、第一控制模块906。
在本公开实施例中,多个功能模块之间的信息传递接口在传递数据信息的同时还传递时钟信息。
在本公开实施例中,WDM光链路包括波分复用/解复用器件,光纤和分光器等,设置为连接局端设备的多个第一光模块和多个终端设备的可调光模块。
在本公开实施例中,第一光模块可包括一组或多组光发射机和光接收机,当第一光模块包括多组光发射机、接收机时,可通过其中一组或多组光发射机、接收机加载自协商通道信息。
在本公开实施例中,局端设备的第一光链路自协商通道通信模块901、第一通道选择模块903(光链路自协商通道连通状态)、第一光模块902,终端设备的第二光链路自协商通道通信模块1101、第二通道选择模块1103(光链路自协商通道连通状态)、第二光模块1102,以及WDM光链路构成光链路自协商通道。
在本公开实施例中,第一光链路自协商通道通信模块,第一通道选择模块,第一控制模块和第一时钟模块还可内置于第一光模块中,第一光链路自协商通道通信模块和第一控制模块功能可通过第一光模块的微程序控制器(MCU,Microprogrammed Control Unit)实现,第一通道选择模块可通过第一光模块的CDR实现,第一时钟模块可重用第一光模块的时钟模块,或通过CDR芯片从业务数据中恢复。此时,局端设备组成光链路自协商通道参与自协商的功能单元为第一光模块,见图11。
当局端设备和终端设备在在业务数据通道或辅助管理通道建立之前,通过第一通道选择模块903和第二通道选择模块1103实现光链路自协商通道的连通状态,建立光链路自协商通道。当光链路自协商通道工作时第一业务数据通信模块904、第一辅助管理通道通信模块905与第一光模块902(光发射机和光接收机)之间处于非连通状态,第二业务数据通信模块1104、第二辅助管理通道通信模块1105与第二光模块1102(光发射机和光接收机)之间处于非连通状态,第一业务数据通信模块904、第一辅助管理通道通信模块905无法通过第一光模块902向WDM光链路发送数据,第二业务数据通信模块1104、第二辅助管理通道通信模块1105无法通过第二光模块1102从WDM光链路接收数据,仅光链路自协商信息在WDM光链路传输。光链路自协商信息的速率或频率,编码方式等与业务数据通道以及辅助管理通道无关。也就是说,在同一时刻,光链路自协商通道与业务数据通道所包含的光链路之外的电信号传递和处理链路相互独立。
在局端设备和终端设备完成光链路自协商信息的交互后,通过第一通道选择模块903和第二通道选择模块实现业务数据通道的连通状态,建立并开启业务数据通道。
在本公开实施例中,不需要引入额外的顶调制信号,增加光模块复杂度和成本,同时与业务数据光链路独立,不会劣化业务数据光链路信号质量,引入光功率代价。
参见图12、本公开另一个实施例提出了一种建链装置(如终端设备),包括:第二光链路自协商通道通信模块1101和第二光模块1102,第二光链路自协商通道通信模块1101和第二光模块1102构成光链路自协商通道;
其中,第二光链路自协商通道通信模块1101,设置为通过光链路自协商通道与局端设备交互光链路自协商信息;
其中,所述光链路自协商通道独立于业务数据通道和辅助管理通道;光链路自协商信息包括以下至少之一:终端设备的工作波长通道信息、局端设备与所述终端设备之间的FEC开关状态、局端设备与所述终端设备之间的FEC类型、辅助管理通道的工作模式。
在本公开实施例中,光链路自协商通道、业务数据通道、辅助管理通道的相关特征与前述实施例相同,这里不再赘述。
在本公开上述实施例中,局端设备的第一光链路自协商通道通信模块901、第一光模块902,WDM光链路,终端设备的第二光模块1102、第二光链路自协商通道通信模块1101构成光链路自协商通道。
在本公开实施例中,第二光链路自协商通道通信模块1101是设置为:
接收到所述光链路自协商信息,根据所述光链路自协商信息调整工作参数;第二光链路自协商通道通信模块1101通过所述光链路自协商通道向所述局端设备发送反馈信息或第二辅助管理通道通信模块1105通过辅助管理通道向局端设备发送反馈信息,所接收的光链路自协商信息交互完成;重复上述过程,直到所有光链路自协商信息交互完成。
其中,第二光链路自协商通道通信模块1101根据光链路自协商信息调整工作参数时,根据光链路自协商信息生成工作参数调整指令,将工作参数调整指令发送给第二光模块1102或第二辅助管理通道通信模块1105。
在本公开实施例中,第二光链路自协商通道通信模块1101是设置为采用以下方式之一实现所述光链路自协商信息的接收:
从第二光模块1102的第二接收机的接收信号管脚接收光链路自协商通道信息;
通过所述第二光模块的第二接收机接收到的有光和无光状态的变化所形成的光脉冲或光脉冲数目(即LOS告警计数)获得所述光链路自协商通道信息;
所述第二光链路自协商通道通信模块1101是设置为采用以下任一种方式实现所述反馈信息的发送:
发送光链路自协商通道信息至第二光模块1102的第二发射机的发射信号管脚(例如,TD+/TD-,RD+/RD-管脚);
根据反馈信息,调整所述第二光模块的第二发射机处于有光状态和无光状态的变化中,以发送光脉冲。
在本公开实施例中,第二光链路自协商通道通信模块1101是设置为采用以下任一种方式实现发送光脉冲:
调整所述第二光模块1102的第二发射机偏流值的大小;
调整所述第二光模块1102的第二发射机偏压值的大小;
控制第二光模块1102的第二光开关打开与关闭;
控制第二光模块1102的第二SOA打开与关闭;
控制第二光模块1102的第二VOA打开与关闭。
在本公开另一个实施例中,当所述第二光链路自协商通道通信模块1101采用从第二光模块1102的第二接收机的接收信号管脚接收光链路自协商通道信息的方式接收所述光链路自协商信息,采用发送光链路自协商通道信息至第二光模块的第二发射机的发射信号管脚方式发送所述反馈信息时,所述建链装置还包括:第二通道选择模块1103和第二业务数据通信模块1104;
其中,第二通道选择模块1103分别与第二光链路自协商通道通信模块1001、第二光模块1102和第二业务数据通信模块1104连接;
第二通道选择模块1103,设置为选择第二光链路自协商通道通信模块1101或第二业务数据通信模块1104中的一个和第二光模块1102连接;在一实施例中,选择第二光链路自协商通道通信模块1101和第二光模块1102连接以建立光链路自协商通道,当第二光链路自协商通道通信模块1101通过所述光链路自协商通道与局端设备交互光链路自协商信息完成时,选择第二业务数据通信模块1104和第二光模块1102连接以建立业务数据通道;
第二业务数据通信模块1104,设置为向局端设备发送业务数据,以及接收局端设备发送的业务数据。
在本公开实施例中,当所述第二光链路自协商通道通信模块1101通过所述第二光模块1102的第二接收机接收到的有光和无光状态的变化所形成的光脉冲 或光脉冲数目获得所述光链路自协商通道信息,根据反馈信息调整所述第二光模块的第二发射机处于有光和无光状态的变化中,以发送光脉冲时,所述第二光链路自协商通道通信模块1101通过集成电路总线接口与所述第二光模块1102连接;
所述第二光链路自协商通道通信模块1101通过所述集成电路总线接口对所述第二光模块1102的寄存器做读操作或写操作,以实现与所述局端设备交互光链路自协商信息。
实现过程如示例4所述,这里不再赘述。
在本公开实施例中,当第二通道选择模块1103选择第二光链路自协商通道通信模块1101和第二光模块1102连接时,第二光链路自协商通道通信模块1101、第二通道选择模块1103和第二光模块1102构成光链路自协商通道;当第二通道选择模块1103选择第二业务数据通信模块1104和第二光模块1102连接时,第二业务数据通信模块1104、第二通道选择模块1103和第二光模块1102构成业务数据通道。本公开实施例通过第二通道选择模块1103实现了独立于业务数据通道的光链路自协商通道。
在本公开实施例中,建链装置还包括:
第二辅助管理通道通信模块1105,内置于第二业务数据通信模块1104中或串联在第二业务数据通信模块1104和第二通道选择模块1103之间,设置为向局端设备发送辅助管理通道数据,以及接收局端设备发送的辅助管理通道数据。
在本公开实施例中,第二辅助管理通道通信模块1105可与第二业务数据通信模块1104集成在同一芯片,或,作为独立芯片串联在第二业务数据通信模块1104与第二通道选择模块1103之间组成的业务数据传输链路上。当第二辅助管理通道通信模块1105作为独立芯片串联在第二业务数据通信模块1104与第二通道选择模块1103组成的业务数据传输链路上时,第二辅助管理通道通信模块1105同样可内置于第二光模块1103中。
上述业务数据和辅助管理通道数据可在WDM系统中同时传输。
在本公开另一个实施例中,还包括:
第二控制模块1106与所述第二光链路自协商通道通信模块1101和第二业务数据通信模块1104连接,第二光链路自协商通道通信模块1101还设置为:
将接收到的光链路自协商信息发送给所述第二控制模块1102;
所述第二控制模块1102还设置为:
接收到光链路自协商信息,根据光链路自协商信息调整第二业务数据模块的工作参数,向所述第二光链路自协商通道通信模块发送所述反馈信息。
在本公开另一个实施例中,还包括:
第二控制模块1106,与第二通道选择模块1103连接,设置为控制第二通道选择模块1103选择所述第二光链路自协商通道通信模块1101或所述第二业务数据通信模块1104中的一个和所述第二光模块1102连接。
在本公开实施例中,当所述第二光链路自协商通道通信模块内置于第二光模块时,第二通道选择模块、第二控制模块、第二时钟模块中的至少之一内置于第二光模块;
当所述第二光链路自协商通道通信模块内置于第二光模块,且所述第二光链路自协商通道通信模块通过所述第二光模块的第二接收机接收到的有光和无光状态的变化所形成的光脉冲或光脉冲数目获得所述光链路自协商通道信息,根据反馈信息调整所述第二光模块的第二发射机处于有光和无光状态的变化中,以发送光脉冲时,所述光链路自协商通道通信模块、第二光模块的第二发射机和第二接收机的连接由第二光模块的内部电路实现。
在本公开实施例中,第二光模块1102,设置为将从第二通道选择模块1103输出的光链路自协商信息转换为光信号传输至WDM光链路,或将WDM光链路输入的光信号转换为电信号传输至第二通道选择模块1103。
终端设备可包含至少一个第二光模块1102,第二光模块1102可为固定波长光模块或波长可调光模块。
业务数据发送/接收模块与通道选择模块连接,用于向局端设备发送业务数据,以及接收局端设备发送的业务数据。
上述业务数据和辅助管理通道数据可在WDM系统中同时传输。
在本公开实施例中,第二光链路自协商通道通信模块1101采用以下任一种方式实现:
方式一、第二光链路自协商通道通信模块1101可以采用单独的FPGA芯片 实现,对光链路自协商信息进行同步,解码,帧解析,FEC解码,串并转换等处理后得到光链路自协商信息。
方式二、第二光链路自协商通道通信模块1101可与第二业务数据通信模块的PHY功能芯片或MAC功能芯片集成为ASIC芯片,通过两个独立的serdes接口与第二通道选择模块1103连接。
方式三、第二光链路自协商通道通信模块1101可与第二控制模块1106集成在CPU单元中,通过独立的I2C接口与第二通道选择模块1103连接。
在本公开实施例中,第二通道选择模块1103可以采用以下任一种方式实现:
方式一、第二通道选择模块1103采用单独的Retimer芯片实现光链路自协商通道和业务数据通道或辅助管理通道之间的通道选择,如DS280DF810芯片的Cross point switch功能。
方式二、第二通道选择模块1103与第二光链路自协商通道通信模块1101或第二业务数据通信模块1104集成为FPGA芯片,第二通道选择模块1103与第二光链路自协商通道通信模块1101或第二业务数据通信模块1104之间采用高速并行处理自定义专用接口,第二通道选择模块1103与第二光模块1102之间采用serdes接口,第二通道选择模块1103的通道选择功能通过FPGA芯片中的连线单元和交叉开关实现,如图13所示。
在本公开实施例中,第二光模块1102包括光发射机(固定波长或波长可调),光接收机(固定波长或波长可调),合分波器,LDD,TIA,LA,微控制单元(MCU,Microcontroller Unit),CDR等器件,与第二通道选择模块1103之间通过差分数据线TD+/TD-,RD+/RD-连接,将光链路自协商信息或业务数据信息转换为光信号通过WDM光链路传送给终端设备。
在本公开实施例中,第二控制模块1106,可通过CPU,MCU,复杂可编程逻辑器件(CPLD,Complex Programmable Logic Device)等器件实现,与第二业务数据通信模块1104(或第二辅助管理通道通信模块1105),第二光链路自协商通道通信模块1101,第二通道选择模块1103,第二光模块通过I2C等类型控制线连接,传递多个模块控制消息和控制反馈消息。
在本公开实施例中,建链装置还包括:
第二时钟模块1107,设置为为其他功能模块的工作提供参考时钟源。
其中,其他功能模块包括以下至少之一:
第二光链路自协商通道通信模块1101、第二光模块1102、第二通道选择模块1103、第二业务数据通信模块1104、第二辅助管理通道通信模块1105、第二控制模块1106。
在本公开实施例中,多个功能模块之间的信息传递接口在传递数据信息的同时还传递时钟信息。
在本公开实施例中,WDM光链路包括波分复用/解复用器件,光纤和分光器等,用于连接局端设备的多个第一光模块和多个终端设备的第二光模块。
在本公开实施例中,第二光模块可包括一组或多组光发射机和光接收机,当第二光模块包括多组光发射机、接收机时,可通过其中一组或多组光发射机、接收机加载自协商通道信息。
在本公开实施例中,局端设备的第一光链路自协商通道通信模块901、第一通道选择模块903(光链路自协商通道连通状态)、第一光模块902,终端设备的第二光链路自协商通道通信模块1101、第二通道选择模块1103(光链路自协商通道连通状态)、第二光模块1102,以及WDM光链路构成光链路自协商通道。
当局端设备和终端设备在在业务数据通道或辅助管理通道建立之前,通过第一通道选择模块903和第二通道选择模块1103实现光链路自协商通道的连通状态,建立光链路自协商通道。当光链路自协商通道工作时第一业务数据通信模块904、第一辅助管理通道通信模块905与第一光模块902(光发射机和光接收机)之间处于非连通状态,第二业务数据通信模块1104、第二辅助管理通道通信模块1105与第二光模块1102(光发射机和光接收机)之间处于非连通状态,第一业务数据通信模块904、第一辅助管理通道通信模块905无法通过第一光模块902向WDM光链路发送数据,第二业务数据通信模块1104、第二辅助管理通道通信模块1105无法通过第二光模块1102从WDM光链路接收数据,仅光链路自协商信息在WDM光链路传输。光链路自协商信息的速率或频率,编码方式等与业务数据通道以及辅助管理通道无关。也就是说,在同一时刻,光链路自协商通道与业务数据通道所包含的光链路之外的电信号传递和处理链路相互独立。
在局端设备和终端设备完成光链路自协商信息的交互后,通过第一通道选择模块903和第二通道选择模块1103实现业务数据通道的连通状态,建立并开启业务数据通道。
在本公开实施例中,第二光链路自协商通道通信模块1101,第二通道选择模块1103,第二控制模块1106和第二时钟模块1107还可内置于第二光模块1102中,第二光链路自协商通道通信模块和第二控制模块功能可通过光模块MCU实现,第二通道选择模块可通过光模块CDR实现,第二时钟模块可重用光模块时钟模块,或通过CDR芯片从业务数据中恢复。此时,终端设备组成光链路自协商通道参与自协商的功能单元为第二光模块1102。当需要协商辅助管理通道的工作模式时,第二光模块1102保留辅助管理通道以及业务数据信息控制与反馈信息接口。
在本公开实施例中,当WDM系统不需要协商终端设备的工作波长通道信息时,例如WDM系统为外种子光系统或自种子光系统,终端设备的第二光模块不需要采用波长可调发射机,仅采用反射调制器/反射放大调制器作为发射机发送信号。此时,第二控制模块1106根据光链路自协商信息调整发射机工作速率等。
在本公开实施例中,第二光链路自协商通道通信模块,第二通道选择模块,第二控制模块和第一时钟模块还可内置于第二光模块中,第二光链路自协商通道通信模块和第二控制模块功能可通过第二光模块的微程序控制器(MCU,Microprogrammed Control Unit)实现,第二通道选择模块可通过第二光模块的CDR实现,第二时钟模块可重用第二光模块的时钟模块,或通过CDR芯片从业务数据中恢复。此时,局端设备组成光链路自协商通道参与自协商的功能单元为第二光模块,见图14。
在本公开实施例中,不需要引入额外的顶调制信号,增加光模块复杂度和成本,同时与业务数据光链路独立,不会劣化业务数据光链路信号质量,引入光功率代价。
示例4
上述示例1和示例2中,用于建立光链路自协商通道的局端设备增加第一通道选择模块903,终端设备增加第二通道选择模块1103,第一通道选择模块 903和第二通道选择模块1103通过额外的高速电处理芯片实现,对于终端设备特别是当第一通道选择模块903内置于第一光模块902,第二通道选择模块1103内置于第二光模块1102时终端设备实现的集成度提出了一定的挑战。本实施例中不改变现有模块结构,并且不改变现有模块与设备之间的接口,通过复用第一光模块902和第二光模块1102的控制管脚串行数据线(Serial Data,SDA),串行时钟线(Serial Clock,SCL)来传递光链路自协商信息。
参见图15,局端设备包括:
第一光链路自协商通道通信模块901、第一光模块902、第一业务数据通信模块904、第一控制模块906;
其中,第一光链路自协商通道通信模块901通过I2C接口与第一光模块902相连。
上述多个模块功能与实现与前述实施例的局端设备对应模块一致。不同之处在于,本示例的局端设备中,不包含第一通道选择模块903,第一光链路自协商通道通信模块901通过I2C接口与第一光模块902的SDA,SCL控制管脚与终端设备交互光链路自协商信息和时钟信息。
其中,第一光链路自协商通道通信模块901发送的光链路自协商信息可由CPLD器件实现,第一光链路自协商通道通信模块901在完成光链路自协商信息的成帧,编码(包括扰码),FEC编码(非必需),并串转换后发送相应的“1,0”数字序列至第一光模块902的SDA,SCL控制管脚。第一光模块902的控制管脚收到光链路自协商信息相应的“1,0”数字序列后,可通过激光器无光和有光两种状态,或“有光-无光”“无光-有光”两种状态来表示比特“1”和比特“0”。本公开中,“无光”状态,指光模块发射机发射光功率低于某一门限值而引起光模块接收机LOS告警,相反则为“有光”状态。激光器有光和无光状态的变化则体现为光脉冲。
实现时,采用与光链路自协商信息相同的时钟,通过I2C接口对第一光模块902的“Address A2h,Byte 110,Bit 6”寄存器位做“1”或“0”写操作(参见SFF-8472标准)实现第一光模块902的无光和有光两种状态。
第一光链路自协商通道通信模块901从第一光模块902的SDA,SCL控制管脚读取“1,0”数字序列,并通过串并转换,FEC解码(非必需),解码(包 括同步和解扰码),帧解析等步骤获得终端设备发送的反馈信息。
实现时,第一光链路自协商通道通信模块901通过I2C接口读取第一光模块902“Address A2h,Byte 110,Bit 1”寄存器位值(该值表征第一光模块902的接收机LOS状态),获得终端设备发送的“1,0”数字序列。
参见图16,终端设备包括:
第二光链路自协商通道通信模块1101、第二光模块1102、第二业务数据通信模块1104、第二控制模块1106;
其中,第二光链路自协商通道通信模块1101通过I2C接口与第二光模块1102相连。
上述多个模块功能与实现与前述实施例的终端设备对应模块一致。不同之处在于,本示例的终端设备中,不包含第二通道选择模块1103,第二光链路自协商通道通信模块1101通过I2C接口与第二光模块1102的SDA,SCL控制管脚与局端设备交互光链路自协商信息和时钟信息。
其中,第二光链路自协商通道通信模块1101发送的光链路自协商信息可由CPLD器件实现,第二光链路自协商通道通信模块1101从第二光模块1102的SDA,SCL控制管脚读取“1,0”数字序列,并通过串并转换,FEC解码(非必需),解码(包括同步和解扰码),帧解析等步骤获得局端设备发送的光链路自协商信息相应的“1,0”数字序列。
实现时,第二光链路自协商通道通信模块1101通过I2C接口读取第二光模块1102“Address A2h,Byte 110,Bit 1”寄存器位值(该值表征第二光模块1102的接收机LOS状态),获得局端设备发送的“1,0”数字序列。
第二光链路自协商通道通信模块1101在完成反馈信息的成帧,编码(包括扰码),FEC编码(非必需),并串转换后发送相应的“1,0”数字序列至第二光模块1102的SDA,SCL控制管脚。第二光模块1102的控制管脚收到反馈信息相应的“1,0”数字序列后,可通过激光器无光和有光两种状态,或“有光-无光”“无光-有光”两种状态来表示比特“1”和比特“0”。
实现时,采用与反馈信息相同的时钟,通过I2C接口对第二光模块1102的“Address A2h,Byte 110,Bit 6”寄存器位做“1”或“0”写操作(参见SFF-8472标准)实现第二光模块1102的无光和有光两种状态。
本示例中,局端设备和终端设备可采用固定的相同的时钟,终端设备发送时钟信息可从收到的局端设备发送的光链路自协商信息中恢复得到。
上述通过光链路有光和无光来传递光链路自协商信息或反馈信息实现如下。
局端设备通过向终端设备发送有规律无光的光信号,该光信号在终端设备处形成信号丢失(LOS)告警,并形成编码,终端设备通过该编码解析出光链路自协商信息,根据光链路自协商信息调整自身工作参数,再通过向局端设备发送有规律无光的光信号,该光信号在局端设备形成LOS告警,并形成编码,局端设备通过该编码解析出反馈信息。
图17为光链路自协商信号的示意图。如图17所示,本公开实施例通过光链路自协商信号来发送光链路自协商信息,该光链路自协商信号有开始标识符和结束标识符,分别为“010”和“01010”,中间为相应的光链路自协商信息编码(即光链路自协商信息)。开始标识符和结束标识符中的“0”和“1”的持续时间为δt,可以定义为1ms,控制光链路自协商信息编码部分的“0”和“1”的持续时间为δT,可以定义为3ms。
表4给出光链路自协商信息编码可能的例子,多个部分的控制光链路自协商信息由定界指示符隔开,定界指示符起到间隔和指示下一字段定义的作用。
Figure PCTCN2019110874-appb-000007
Figure PCTCN2019110874-appb-000008
表4
终端设备接收到该管理通道控制信号后,终端设备利用LOS告警信号将光链路自协商信息提取出来,调节自身的工作参数,给局端设备发送一个反馈信息,局端设备接收到反馈信息后开始与终端设备进行正常通信。协商流程与示例1和示例2所述的协商流程一致。与示例1和示例2不同之处在于,本示例中光链路自协商通道的速率不能通过光链路自协商信息帧的前导协商,只能在信息字段中定义。
本示例中,局端设备的第一光链路自协商通道通信模块901和第一光模块902之间通过I2C接口通信,终端设备的第二光链路自协商通道通信模块1101与第二光模块1102之间通过I2C接口通信,并做第一光模块902和第二光模块1102的寄存器读写操作来传递光链路自协商信息。第一业务数据通信模块904与第一光模块902之间通过高速数据信号线连接,第一辅助管理通道模块905与第一光模块902之间重用第一业务数据通信模块904与第一光模块902之间 的接口,第二业务数据通信模块1104与第二光模块1102之间通过高速数据信号线连接,第二辅助管理通道模块1105与第二光模块1102之间重用第二业务数据通信模块1104与第二光模块1102之间的接口,因此本实施例所述光链路自协商通道独立于业务数据通道以及辅助管理通道,光链路自协商信息的速率或频率,编码方式等与业务数据通道无关。
本示例中,在业务数据通道建立之前,第一光链路自协商通道通信模块901通过I2C接口向第一光模块902发送光链路自协商信息,并通过第一光模块902转化为光链路自协商光信号在WDM光链路上传输,由于对第一光模块902进行发射光信号开关工作,同一时刻,业务数据不能在WDM光链路传递,业务数据通道或辅助管理通道无法通过第一光模块902向WDM光链路发送或接收数据,仅光链路自协商信息在WDM光链路传输。也就是说,在同一时刻,光链路自协商通道与业务数据通道所包含的光链路之外的电信号传递和处理链路相互独立。
本示例中,光链路自协商信息的发送方法与示例1和示例2类似,通过光链路自协商信息帧(即具备帧格式的信号)来传递光链路自协商信息,通过反馈信息帧(即具备帧格式的信号)来传递反馈信息。
本示例中,在接收并解析光链路自协商信息后,同样通过第二控制模块1106调整完终端设备的工作参数,工作参数调整完成后,光链路自协商通道停止发送信息,业务数据通道建立并开启。
同样,本示例不需要引入额外的顶调制信号,增加光模块复杂度和成本,同时与业务数据光链路独立,不会劣化业务数据光链路信号质量,引入光功率代价。
示例5
示例1、示例2和示例4中光链路自协商信息帧由前导和包含多种协商信息的信息比特位组成,前导携带光链路自协商用于光链路自协商通道接收频率同步,同步后不再发送时钟信息。本示例中,提出另一种光链路自协商信息的结构,该结构中,光链路自协商信息采用与时钟脉冲交织的信息脉冲发送(如图19所示),不同种类光链路自协商信息按时间先后分周期发送(如图19所示)。时钟脉冲和信息脉冲由一定时间间隔的光脉冲组成。
如图18所示,局端设备向终端设备发送光链路自协商信息,不同光链路自协商信号(如图18中的第一自协商信号和第二自协商信号)代表不同的光链路自协商信息,如第一光链路自协商信息(如图18中的第一自协商信号)可以是工作波长通道信息,第二光链路自协商信息(如图18中的第二自协商信号)可以是光链路自协商通道的速率等。光链路自协商信息具有相同的持续时间,为T4,光链路自协商信息间的时间间隔为T5。
图19为一个光链路自协商信息内部的结构示意图。如图19所示,一个光链路自协商信息共有(2n+1)个光脉冲位置,其中,n为光链路自协商信息的比特数。其中,开始和结束的光脉冲为时钟脉冲,时钟脉冲的间隔时间为T3,信息脉冲位置间插于时钟脉冲之间,信息脉冲与时钟脉冲的持续时间均为T1,信息脉冲位置与时钟脉冲的时间间隔为T2。如果共有33个脉冲位置,则时钟脉冲有17个,信息脉冲位置有16个,在信息脉冲位置,如果有光脉冲,则表示该比特位为“1”,如果没有,则表示该比特位为“0”,如图19中加粗的部分表示“1”和“0”。
图20为将数据脉冲对应的比特单独提取出来形成的光链路自协商信息的示意图。如图20所示,对于33个光脉冲位置的光链路自协商信息,光链路自协商信息的比特数为16个,分别为D0~D15。开始的5个比特,S0~S4为选择字段,表示之后的内容是哪一个光链路自协商信息,A0~A6为控制内容字段,表示光链路自协商信息的取值,R表示保留比特,NP表示之后是否还有光链路自协商信息,当NP为1时,表示之后还有光链路自协商信息;当NP为0时,表示光链路自协商信息发送完毕。最后一位为循环冗余校验(Cyclic Redundancy Check,CRC)校验位。
表5给出了T1~T5可能的一个例子,表6给出了D0~D15可能的一个例子。
Figure PCTCN2019110874-appb-000009
Figure PCTCN2019110874-appb-000010
表5
Figure PCTCN2019110874-appb-000011
表6
发送流程与前述示例相同,终端设备在接收到光链路自协商信息时,调整自身的工作参数,并向局端设备发送反馈信息,局端设备收到反馈信息,建立并开启业务数据通道,开始正常通信。如果局端设备没有收到反馈信息,则继续发送光链路自协商信息。
示例6
当WDM系统为无源WDM系统,不包括PON OLT和ONU设备时。本实施例光链路自协商信息可通过局端光模块(即第一光模块)和终端光模块(即第二光模块)实现,此时光链路自协商信息仅包含工作波长通道信息。本示例中,与示例4和示例5类似,通过光开关状态和LOS告警信号传递光链路自协商信息。由于只传递工作波长通道信息,不需要复杂的电路对光链路自协商信息进行数据处理和帧解析,光链路自协商通道信息传递可通过固定时间周期内, 光脉冲计数来实现。
如图21所示,实现装置为局端光模块和终端光模块,可以采用以下任一种方式实现。
第一种,通过调整偏流值大小实现光链路自协商信息的交互。
局端光模块在固定时间周期内通过设置在第一光模块中的第一光链路自协商通道通信模块中的第一控制电路调整第一发射机偏流(Bias current)值的大小,来打开或关闭第一发射机以传递光链路自协商信息;在一实施例中,当将第一发射机偏流值的大小调整到阈值电流以下时,关闭第一发射机;当将第一发射机偏流值的大小调整到阈值电流以上时,打开第一发射机传递光信号至终端光模块;
终端光模块通过设置在第二光模块中的第二光链路自协商通道通信模块中的第二LOS计数电路对第二接收机LOS告警计数获得工作波长通道信息;通过设置在第二光模块中的第二光链路自协商通道通信模块中的第二控制电路根据获得的波长协商信息调整第二发射机波长;
终端光模块在固定时间内通过第二控制电路调整第二发射机偏流值的大小,来打开或关闭第二发射机以传递反馈信息;在一实施例中,当将第二发射机偏流值的大小调整到阈值电流以下时,关闭第二发射机;当将第二发射机偏流值的大小调整到阈值电流以上时,打开第二发射机传递光信号至局端光模块;
局端光模块通过对第一接收机LOS告警计数获得反馈信息;开始正常工作。
第二种,通过调整偏压值大小实现光链路自协商信息的交互。
局端光模块在固定时间周期内通过第一控制电路调整第一发射机偏压值的大小,来打开或关闭第一发射机以传递光链路自协商信息;在一实施例中,当将第一发射机偏压值的大小调整到阈值电压以下时,关闭第一发射机;当将第一发射机偏压值的大小调整到阈值电压以上时,打开第一发射机传递光信号至终端光模块;
终端光模块通过对第二接收机LOS告警计数获得工作波长通道信息;根据获得的波长协商信息调整第二发射机波长;
终端光模块在固定时间内通过第二控制电路调整第二发射机偏压值的大 小,来打开或关闭第二发射机以传递反馈信息;在一实施例中,当将第二发射机偏压值的大小调整到阈值电压以下时,关闭第二发射机;当将第二发射机偏压值的大小调整到阈值电压以上时,打开第二发射机传递光信号至局端光模块;
局端光模块通过对第一接收机LOS告警计数获得反馈信息;开始正常工作。
第三种,通过控制光开关或SOA或VOA的打开与关闭实现光链路自协商信息的交互。
局端光模块在固定时间周期内通过第一控制电路控制第一光开关或第一SOA或第一VOA的打开或关闭,来打开或关闭第一发射机以传递光链路自协商信息;在一实施例中,当控制第一光开关或第一SOA或第一VOA关闭时,关闭第一发射机;当控制第一光开关或第一SOA或第一VOA打开时,打开第一发射机传递光信号至终端光模块;
终端光模块通过对第二接收机LOS告警计数获得工作波长通道信息;根据获得的波长协商信息调整第二发射机波长;
终端光模块在固定时间内通过第二控制电路控制第二光开关或第二SOA或第二VOA的打开或关闭,来打开或关闭第二发射机以传递反馈信息;在一实施例中,当控制第二光开关或第二SOA或第二VOA关闭时,关闭第二发射机;当控制第二光开关或第二SOA或第二VOA打开时,打开第二发射机传递光信号至局端光模块;
局端光模块通过对第一接收机LOS告警计数获得反馈信息;开始正常工作。
本示例中,光模块可通过局端设备或终端设备获取需要协商的工作波长通道信息,或尝试发送光链路自协商通道工作时的发射机波长并根据是否收到反馈信息来调整调整发射机波长并重新协商。
本示例中,通过第二光模块中的第二控制电路调整第二发射机的工作参数获得光信号开关状态在WDM光链路上传输需要的光链路自协商信息,并通过第二LOS计数电路识别光信号开关次数获得光链路自协商信息,建立光链路自协商通道。在光链路自协商通道建立后,由于对光发射机进行发射光信号开关工作,同一时刻,业务数据通道消息不能在WDM光链路传递,业务数据通道或辅助管理通道无法通过第一光模块或第二光模块向WDM光链路发送或接收数据,仅光链路自协商信息在WDM光链路传输。也就是说,在同一时刻,光 链路自协商通道与业务数据通道所包含的光链路之外的电信号传递和处理链路相互独立。本示例中,在接收并解析光链路自协商信息后,同样通过第二控制电路调整第二光模块的工作参数,工作参数调整完成后,光链路自协商通道停止发送信息,业务数据通道建立并开启。
本公开另一个实施例还提出了一种建链装置,包括处理器和计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令被所述处理器执行时,实现上述任一种方法。
本公开另一个实施例还提出了一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现上述任一种方法。
上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由多个物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括随机存取存储器(Random Access Memory,RAM)、只读存储器(Read-Only Memory,ROM)、电可擦只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、闪存或其他存储器技术、便携式紧凑磁盘只读存储器(Compact Disc Read Only Memory,CD-ROM)、数字多功能盘(Digital Video Disk,DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的其他的介质。此外,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括信息递送介质。

Claims (35)

  1. 一种建链方法,包括:
    通过光链路自协商通道与终端设备交互光链路自协商信息;
    在所述光链路自协商信息交互完成的情况下,建立以下至少之一:业务数据通道、辅助管理通道;
    其中,所述光链路自协商通道独立于所述业务数据通道或所述辅助管理通道;所述光链路自协商信息包括以下至少之一:所述终端设备的工作波长通道信息、局端设备与所述终端设备之间的前向纠错开关状态、局端设备与所述终端设备之间的前向纠错类型、所述辅助管理通道的工作模式。
  2. 根据权利要求1所述的方法,其中,所述光链路自协商通道独立于所述业务数据通道,包括:
    在同一时刻,仅所述光链路自协商通道和所述业务数据通道之一在光链路传输数据;
    所述光链路自协商通道独立于所述辅助管理通道,包括:在同一时刻,仅所述光链路自协商通道和所述辅助管理通道之一在所述光链路传输数据。
  3. 根据权利要求2所述的方法,其中,所述光链路自协商通道独立于所述业务数据通道,还包括:
    所述光链路自协商通道传递的光链路自协商信息的速率或频率、编码方式与所述业务数据通道无关;
    所述光链路自协商通道独立于所述辅助管理通道,还包括:所述光链路自协商通道传递的光链路自协商信息的速率或频率、编码方式与所述辅助管理通道无关。
  4. 根据权利要求1所述的方法,其中,所述光链路自协商信息还包括以下至少之一:通信协议、所述光链路自协商通道的速率信息、所述业务数据通道承载的业务信息;其中,所述业务数据通道承载的业务信息包括以下至少之一:
    业务类型、速率信息、编码格式、所述局端设备或所述终端设备与业务设备之间的前向纠错类型、所述局端设备或所述终端设备与业务设备之间的前向纠错开关状态。
  5. 根据权利要求1所述的方法,其中,所述通过光链路自协商通道与终端设备交互光链路自协商信息,包括:
    通过所述光链路自协商通道向所述终端设备发送所述光链路自协商信息中包括的多个内容中的至少一个;
    在接收到所述终端设备的反馈信息的情况下,所发送的光链路自协商信息包括的内容交互完成;
    重复上述过程,直到所述光链路自协商信息包括的所有内容交互完成。
  6. 根据权利要求5所述的方法,其中,所述发送光链路自协商信息,包括:
    采用光链路自协商信息帧发送所述光链路自协商信息;其中,所述光链路自协商信息帧包括以下之一:
    前导、至少一个定界指示符、所述光链路自协商信息中包括的多个内容中的至少一个;
    开始标识符、结束标识符、至少一个定界指示符、所述光链路自协商信息中包括的多个内容中的至少一个。
  7. 根据权利要求5所述的方法,其中,所述发送光链路自协商信息包括以下之一:
    通过与时钟脉冲交织的信息脉冲发送所述光链路自协商信息,其中,所述信息脉冲携带所述光链路自协商信息中包括的多个内容中的至少一个;
    通过光脉冲数目发送所述终端设备的工作波长通道信息,其中,所述光脉冲数目用于表征所述终端设备的工作波长通道信息。
  8. 根据权利要求5所述的方法,其中,所述发送光链路自协商信息,包括:
    采用以下任一个速率发送所述光链路自协商信息:约定的速率、用于表征所述业务数据通道的速率的速率、与终端设备协商的速率、时钟数据恢复参考时钟的整数倍速率;
    其中,在采用用于表征所述业务数据通道的速率的速率发送所述光链路自协商信息的情况下,所述光链路自协商信息包括所述业务数据通道的速率或不包括所述业务数据通道的速率。
  9. 根据权利要求8所述的方法,其中,所述用于表征业务数据通道的速率的速率包括以下至少之一:
    与所述业务数据通道的速率对应的速率、与所述业务数据通道的波长对应的速率、时钟数据恢复参考时钟的整数倍速率。
  10. 一种建链方法,包括:
    通过光链路自协商通道与局端设备交互光链路自协商信息;
    在所述光链路自协商信息交互完成的情况下,建立以下至少之一:业务数据通道、辅助管理通道;
    其中,所述光链路自协商通道独立于所述业务数据通道或所述辅助管理通道;所述光链路自协商信息包括以下至少之一:终端设备的工作波长通道信息、所述终端设备与所述局端设备之间的前向纠错开关状态、所述终端设备与所述局端设备之间的前向纠错类型、所述辅助管理通道的工作模式。
  11. 根据权利要求10所述的方法,其中,所述通过光链路自协商通道与局端设备交互光链路自协商信息,包括:
    接收到所述光链路自协商信息,根据所述光链路自协商信息调整工作参数;
    向所述局端设备发送反馈信息,所接收的光链路自协商信息交互完成;
    重复上述过程,直到所有光链路自协商信息交互完成。
  12. 根据权利要求11所述的方法,其中,所述接收光链路自协商信息,包括:
    接收光链路自协商信息帧;其中,所述光链路自协商信息帧包括以下之一:
    前导、至少一个定界指示符、所述光链路自协商信息中包括的多个内容中的至少一个;
    开始标识符、结束标识符、至少一个定界指示符、所述光链路自协商信息中包括的多个内容中的至少一个。
  13. 根据权利要求12所述的方法,还包括:
    在所述光链路自协商信息中不包括所述业务数据通道的速率的情况下,根据所述光链路自协商通道的速率确定所述业务数据通道的速率;
    其中,所述光链路自协商通道的速率为预先约定的速率,或在根据所述前导进行同步的过程中获得。
  14. 根据权利要求13所述的方法,其中,所述根据光链路自协商通道的速率确定业务数据通道的速率包括以下任一种:
    确定所述光链路自协商通道的速率为所述业务数据通道的速率;
    根据工作波长通道信息、所述光链路自协商通道的速率和所述业务数据通道的速率之间的对应关系,确定所述光链路自协商通道的速率对应的工作波长通道信息和所述业务数据通道的速率。
  15. 根据权利要求11所述的方法,其中,所述接收光链路自协商信息包括以下之一:
    接收与时钟脉冲交织的信息脉冲,所述信息脉冲携带所述光链路自协商信息中包括的多个内容中的至少一个;
    接收并计算光脉冲数目,其中,所述光脉冲数目用于表征所述终端设备的工作波长通道信息。
  16. 一种建链装置,包括:光链路自协商通道通信模块和光模块,所述光链路自协商通道通信模块和所述光模块构成光链路自协商通道;
    其中,所述光链路自协商通道通信模块,设置为通过光链路自协商通道与终端设备交互光链路自协商信息;
    其中,所述光链路自协商通道独立于业务数据通道或辅助管理通道;所述光链路自协商信息包括以下至少之一:终端设备的工作波长通道信息、局端设备与所述终端设备之间的前向纠错开关状态、局端设备与所述终端设备之间的前向纠错类型、所述辅助管理通道的工作模式。
  17. 根据权利要求16所述的装置,其中,所述光链路自协商通道通信模块是设置为:
    通过所述光链路自协商通道向所述终端设备发送所述光链路自协商信息中包括的多个内容中的至少一个;
    在接收到所述终端设备的反馈信息的情况下,所发送的光链路自协商信息交互完成;
    重复上述过程,直到所有光链路自协商信息交互完成。
  18. 根据权利要求16所述的装置,其中,所述光链路自协商通道通信模块是设置为采用以下方式之一实现所述光链路自协商信息的发送:
    发送所述光链路自协商通道信息至所述光模块的发射机的发射信号管脚;
    根据所述光链路自协商信息,调整所述光模块的发射机处于有光状态和无光状态的变化中,以发送光脉冲;
    所述光链路自协商通道通信模块是设置为采用以下方式之一实现反馈信息的接收:
    从所述光模块的接收机的接收信号管脚接收所述反馈信息;
    通过所述光模块的接收机接收到的有光状态和无光状态的变化所形成的光脉冲或光脉冲数目获得所述反馈信息。
  19. 根据权利要求18所述的装置,其中,所述光链路自协商通道通信模块是设置为采用以下任一种方式实现所述发送光脉冲:
    调整所述光模块的发射机偏流值的大小;
    调整所述光模块的发射机偏压值的大小;
    控制所述光模块的光开关打开与关闭;
    控制所述光模块的半导体光放大器打开与关闭;
    控制所述光模块的可调光衰减器打开与关闭。
  20. 根据权利要求18所述的装置,其中,在所述光链路自协商通道通信模块采用发送所述光链路自协商通道信息至所述光模块的发射机的发射信号管脚的方式实现所述光链路自协商信息的发送,从所述光模块的接收机的接收信号管脚接收所述反馈信息的方式实现所述反馈信息的接收的情况下,还包括:通道选择模块和业务数据通信模块;
    其中,所述通道选择模块分别与所述光链路自协商通道通信模块、所述光模块和所述业务数据通信模块连接;
    所述通道选择模块,设置为选择所述光链路自协商通道通信模块或所述业务数据通信模块中的一个和所述光模块连接;
    所述业务数据通信模块,设置为向所述终端设备发送业务数据,以及接收所述终端设备发送的业务数据。
  21. 根据权利要求18所述的装置,其中,在所述光链路自协商通道通信模块采用调整所述光模块的发射机处于有光状态和无光状态的变化中,以发送光脉冲的方式实现所述光链路自协商信息的发送,通过所述光模块的接收机接收到的有光状态和无光状态的变化所形成的光脉冲或光脉冲数目获得所述反馈信息的情况下,所述光链路自协商通道通信模块通过集成电路总线接口与所述光模块连接;
    所述光链路自协商通道通信模块通过所述集成电路总线接口对所述光模块的寄存器做读操作或写操作,以实现与所述终端设备交互所述光链路自协商信息。
  22. 根据权利要求16或20所述的装置,还包括:
    控制模块,与所述光链路自协商通道通信模块连接,设置为:
    控制所述光链路自协商通道通信模块通过所述光链路自协商通道与所述终端设备交互所述光链路自协商信息。
  23. 根据权利要求22所述的装置,其中,所述控制模块,还与所述通道选择模块连接,还设置为控制所述通道选择模块选择所述光链路自协商通道通信模块或所述业务数据通信模块中的一个和所述光模块连接。
  24. 根据权利要求16~21任一项所述的装置,其中,
    在所述光链路自协商通道通信模块内置于所述光模块的情况下,通道选择 模块、控制模块、时钟模块中的至少之一内置于所述光模块;
    在所述光链路自协商通道通信模块内置于所述光模块,且所述光链路自协商通道通信模块采用调整所述光模块的发射机处于有光状态和无光状态的变化中,以发送光脉冲的方式实现所述光链路自协商信息的发送,通过所述光模块的接收机接收到的有光状态和无光状态的变化所形成的光脉冲或光脉冲数目获得所述反馈信息的情况下,所述光链路自协商通道通信模块以及所述光链路自协商通道通信模块、所述光模块的发射机和接收机的连接由所述光模块的内部电路实现。
  25. 一种建链装置,包括:光链路自协商通道通信模块和光模块,光链路自协商通道通信模块和光模块构成光链路自协商通道;
    其中,所述光链路自协商通道通信模块,设置为通过所述光链路自协商通道与局端设备交互光链路自协商信息;
    其中,所述光链路自协商通道独立于业务数据通道或辅助管理通道;所述光链路自协商信息包括以下至少之一:终端设备的工作波长通道信息、所述终端设备与所述局端设备之间的前向纠错开关状态、所述终端设备与所述局端设备之间的前向纠错类型、所述辅助管理通道的工作模式。
  26. 根据权利要求25所述的装置,其中,所述光链路自协商通道通信模块是设置为:
    接收到所述光链路自协商信息,根据所述光链路自协商信息调整工作参数;
    通过所述光链路自协商通道向所述局端设备发送反馈信息,所接收的光链路自协商信息交互完成;
    重复上述过程,直到所有光链路自协商信息交互完成。
  27. 根据权利要求25所述的装置,其中,所述光链路自协商通道通信模块是设置为采用以下方式之一实现所述光链路自协商信息的接收:
    从光模块的接收机的接收信号管脚接收所述光链路自协商通道信息;
    通过所述光模块的接收机接收到的有光状态和无光状态的变化所形成的光脉冲或光脉冲数目获得所述光链路自协商通道信息;
    所述光链路自协商通道通信模块是设置为采用以下任一种方式实现反馈信息的发送:
    发送所述光链路自协商通道信息至所述光模块的发射机的发射信号管脚;
    根据所述反馈信息,调整所述光模块的发射机处于有光状态和无光状态的变化中,以发送光脉冲。
  28. 根据权利要求27所述的建链装置,其中,所述光链路自协商通道通信模块是设置为采用以下任一种方式实现所述发送光脉冲:
    调整所述光模块的发射机偏流值的大小;
    调整所述光模块的发射机偏压值的大小;
    控制所述光模块的光开关打开与关闭;
    控制所述光模块的半导体光放大器打开与关闭;
    控制所述光模块的可调光衰减器打开与关闭。
  29. 根据权利要求27所述的装置,其中,在所述光链路自协商通道通信模块采用从光模块的接收机的接收信号管脚接收所述光链路自协商通道信息的方式接收所述光链路自协商信息,采用发送所述光链路自协商通道信息至光模块的发射机的发射信号管脚方式发送所述反馈信息的情况下,还包括:通道选择模块和业务数据通信模块;
    其中,所述通道选择模块分别与所述光链路自协商通道通信模块、所述光模块和所述业务数据通信模块连接;
    所述通道选择模块,设置为选择所述光链路自协商通道通信模块或所述业务数据通信模块中的一个和所述光模块连接;
    所述业务数据通信模块,设置为向所述局端设备发送业务数据,以及接收所述局端设备发送的业务数据。
  30. 根据权利要求27所述的装置,其中,在所述光链路自协商通道通信模块通过所述光模块的接收机接收到的有光状态和无光状态的变化所形成的光脉冲或光脉冲数目获得所述光链路自协商通道信息,根据反馈信息调整所述光模块的发射机处于有光状态和无光状态的变化中,以发送光脉冲的情况下,所述光链路自协商通道通信模块通过集成电路总线接口与所述光模块连接;
    所述光链路自协商通道通信模块通过所述集成电路总线接口对所述光模块的寄存器做读操作或写操作,以实现与所述局端设备交互所述光链路自协商信息。
  31. 根据权利要求25或29所述的装置,还包括:
    控制模块与所述光链路自协商通道通信模块和业务数据通信模块连接,所述光链路自协商通道通信模块还设置为:
    将接收到的光链路自协商信息发送给所述控制模块;
    所述控制模块还设置为:
    接收到所述光链路自协商信息,根据所述光链路自协商信息调整业务数据模块的工作参数,向所述光链路自协商通道通信模块发送反馈信息。
  32. 根据权利要求31所述的装置,其中,所述控制模块,还与所述通道选择模块连接,还设置为控制所述通道选择模块选择所述光链路自协商通道通信模块或所述业务数据通信模块中的一个和所述光模块连接。
  33. 根据权利要求25~28任一项所述的装置,其中,
    在所述光链路自协商通道通信模块内置于所述光模块的情况下,通道选择模块、控制模块、时钟模块中的至少之一内置于所述光模块;
    在所述光链路自协商通道通信模块内置于所述光模块,且所述光链路自协商通道通信模块通过所述光模块的接收机接收到的有光状态和无光状态的变化所形成的光脉冲或光脉冲数目获得所述光链路自协商通道信息,根据反馈信息调整所述光模块的发射机处于有光状态和无光状态的变化中,以发送光脉冲的情况下,所述光链路自协商通道通信模块、所述光模块的发射机和接收机的连接由所述光模块的内部电路实现。
  34. 一种建链装置,包括至少一个处理器和至少一个计算机可读存储介质,所述计算机可读存储介质中存储有指令,所述指令被所述处理器执行,实现如权利要求1~15任一项所述的方法。
  35. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1~15任一项所述的方法。
PCT/CN2019/110874 2018-10-12 2019-10-12 建链方法、装置和计算机可读存储介质 WO2020074007A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19871803.3A EP3866440A4 (en) 2018-10-12 2019-10-12 METHOD AND APPARATUS FOR ESTABLISHING LINK AND COMPUTER READABLE STORAGE MEDIA
US17/284,755 US11445277B2 (en) 2018-10-12 2019-10-12 Link establishment method and apparatus, and computer readable storage medium
US17/865,318 US20220353591A1 (en) 2018-10-12 2022-07-14 Link establishment method and apparatus, and computer readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811189142.1 2018-10-12
CN201811189142.1A CN111049865B (zh) 2018-10-12 2018-10-12 一种建链方法、装置和系统

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/284,755 A-371-Of-International US11445277B2 (en) 2018-10-12 2019-10-12 Link establishment method and apparatus, and computer readable storage medium
US17/865,318 Continuation US20220353591A1 (en) 2018-10-12 2022-07-14 Link establishment method and apparatus, and computer readable storage medium

Publications (1)

Publication Number Publication Date
WO2020074007A1 true WO2020074007A1 (zh) 2020-04-16

Family

ID=70163616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/110874 WO2020074007A1 (zh) 2018-10-12 2019-10-12 建链方法、装置和计算机可读存储介质

Country Status (4)

Country Link
US (2) US11445277B2 (zh)
EP (1) EP3866440A4 (zh)
CN (1) CN111049865B (zh)
WO (1) WO2020074007A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111970061A (zh) * 2020-08-11 2020-11-20 电子科技大学中山学院 一种前传网络、数据传输方法及装置
CN113556176A (zh) * 2021-06-29 2021-10-26 深圳市联洲国际技术有限公司 光组件发射光控制方法、装置、光组件、光模块及收发器

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111049865B (zh) * 2018-10-12 2023-05-02 中兴通讯股份有限公司 一种建链方法、装置和系统
US11239919B2 (en) * 2018-12-20 2022-02-01 Acacia Communications, Inc. Side channel communication for an optical coherent transceiver
CN113810115B (zh) * 2020-06-11 2023-02-17 青岛海信宽带多媒体技术有限公司 一种光模块
CN113839708B (zh) * 2020-06-24 2023-03-31 中国移动通信有限公司研究院 前传网络的光模块的测试系统及方法
CN112165660B (zh) * 2020-09-22 2022-07-19 深圳市瑞吉联通信科技有限公司 一种基于gpon由olt创建onu管理通道方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040077250A (ko) * 2003-02-28 2004-09-04 주식회사 케이티 수동광통신망 시스템 및 그의 채널 할당방법
CN1925370A (zh) * 2005-08-01 2007-03-07 日立通讯技术株式会社 Wdm型pon系统
CN101355387A (zh) * 2007-07-26 2009-01-28 华为技术有限公司 光网络单元接入网络的方法、设备及系统
CN102104812A (zh) * 2009-12-22 2011-06-22 华为技术有限公司 一种波长自动选择的方法和光模块

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE39812E1 (en) * 1992-11-02 2007-09-04 National Semiconductor Corporation Method and apparatus which allows devices with multiple protocol capabilities to configure to a common protocol configuration
US8521026B2 (en) * 2009-01-19 2013-08-27 Cisco Technology, Inc. Registration of device characteristics with optical layer for use in establishing connections through an optical network
CN101795174A (zh) * 2010-01-20 2010-08-04 华为技术有限公司 10g epon系统中的数据传输方法、装置及系统
CN102340352B (zh) * 2010-07-20 2016-03-02 中兴通讯股份有限公司 一种光口速率自协商的方法及装置
US9780906B2 (en) * 2014-10-07 2017-10-03 Futurewei Technologies, Inc. Multiple-wavelength passive optical network (PON) power saving
JP6482043B2 (ja) 2014-11-05 2019-03-13 ホアウェイ・テクノロジーズ・カンパニー・リミテッド 光ポートオートネゴシエーション方法、光モジュール、中央局終端デバイス、及び終端デバイス
JP5822038B1 (ja) * 2015-02-20 2015-11-24 沖電気工業株式会社 光送信器、加入者側装置、及び光源の温度変化抑制方法。
JP6690347B2 (ja) * 2016-03-25 2020-04-28 富士通株式会社 光通信システム、送信局及び光通信方法
US20200072806A1 (en) * 2018-08-29 2020-03-05 Stmicroelectronics S.R.L. Environmental sensor with integrated arithmetical processing core
EP3834310A4 (en) * 2018-09-24 2021-10-20 Huawei Technologies Co., Ltd. OPTICAL COMMUNICATION SYSTEM
CN111049865B (zh) * 2018-10-12 2023-05-02 中兴通讯股份有限公司 一种建链方法、装置和系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040077250A (ko) * 2003-02-28 2004-09-04 주식회사 케이티 수동광통신망 시스템 및 그의 채널 할당방법
CN1925370A (zh) * 2005-08-01 2007-03-07 日立通讯技术株式会社 Wdm型pon系统
CN101355387A (zh) * 2007-07-26 2009-01-28 华为技术有限公司 光网络单元接入网络的方法、设备及系统
CN102104812A (zh) * 2009-12-22 2011-06-22 华为技术有限公司 一种波长自动选择的方法和光模块

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3866440A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111970061A (zh) * 2020-08-11 2020-11-20 电子科技大学中山学院 一种前传网络、数据传输方法及装置
CN113556176A (zh) * 2021-06-29 2021-10-26 深圳市联洲国际技术有限公司 光组件发射光控制方法、装置、光组件、光模块及收发器
CN113556176B (zh) * 2021-06-29 2022-07-05 成都市联洲国际技术有限公司 光组件发射光控制方法、装置、光组件、光模块及收发器

Also Published As

Publication number Publication date
EP3866440A4 (en) 2022-08-03
US20220353591A1 (en) 2022-11-03
US11445277B2 (en) 2022-09-13
EP3866440A1 (en) 2021-08-18
US20220007092A1 (en) 2022-01-06
CN111049865A (zh) 2020-04-21
CN111049865B (zh) 2023-05-02

Similar Documents

Publication Publication Date Title
WO2020074007A1 (zh) 建链方法、装置和计算机可读存储介质
US20200014610A1 (en) Ethernet signal transport method and scheduling method, and apparatus and system thereof
US7580635B2 (en) Method, apparatus and system for optical communications
US10257596B2 (en) Systems and methods for managing excess optical capacity and margin in optical networks
US8238754B2 (en) System and method for pluggable optical modules for passive optical networks
US8107821B2 (en) Systems and methods for Ethernet extension and demarcation
US9225462B2 (en) Method, apparatus and system for transmitting and receiving client signals
US8095004B2 (en) Passive optical network system and operation method of the same
US8107820B2 (en) Systems and methods for the integration of framing, OAM&P, and forward error correction in SFP optical transceiver devices
US8126335B2 (en) Methods and apparatus for next generation access passive optical networks
WO2018090856A1 (zh) 用于建立灵活以太网群组的方法和设备
US9048967B2 (en) Asymmetric OTN network traffic support
US20110318001A1 (en) Method and device for sending and receiving service data
US20200403698A1 (en) Method And Apparatus For Processing Ethernet Data In Optical Network, And System
US20060092988A1 (en) Optical transponder having switching function
CN114866883B (zh) 一种用于宽带确定性通信的局端设备
US11632176B2 (en) Automatic negotiation of optical transceiver configuration parameters
US20120141123A1 (en) Adapting apparatus and method
WO2024045813A1 (zh) 一种数据传输方法,相关设备以及系统
WO2024045812A1 (zh) 一种数据传输方法,相关设备以及光通信系统
JP2009159481A (ja) 光切替方法および光切替システム
WO2014124587A1 (zh) 光通道开销管理方法和装置以及光信号接收节点
Zhou et al. Design and implementation of a novel 100G optical interface protocol converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19871803

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019871803

Country of ref document: EP

Effective date: 20210512