WO2020073622A1 - 一种反馈环路补偿切换电路及驱动电源 - Google Patents

一种反馈环路补偿切换电路及驱动电源 Download PDF

Info

Publication number
WO2020073622A1
WO2020073622A1 PCT/CN2019/080581 CN2019080581W WO2020073622A1 WO 2020073622 A1 WO2020073622 A1 WO 2020073622A1 CN 2019080581 W CN2019080581 W CN 2019080581W WO 2020073622 A1 WO2020073622 A1 WO 2020073622A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
loop compensation
voltage
feedback loop
signal
Prior art date
Application number
PCT/CN2019/080581
Other languages
English (en)
French (fr)
Inventor
邹超洋
邓志远
Original Assignee
深圳市崧盛电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市崧盛电子股份有限公司 filed Critical 深圳市崧盛电子股份有限公司
Publication of WO2020073622A1 publication Critical patent/WO2020073622A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the present invention relates to the technical field of driving power, and more specifically, to a feedback loop compensation switching circuit and driving power.
  • the control mode of the power supply generally has fixed frequency and variable frequency control, that is, the so-called PWM control mode (pulse width duty cycle modulation mode) and PFM (variable frequency modulation mode).
  • PWM control mode pulse width duty cycle modulation mode
  • PFM variable frequency modulation mode
  • PFM pulse width duty cycle modulation mode
  • PFM variable frequency modulation mode
  • dimming control methods such as: 0-10V DC dimming, 0-100% duty cycle dimming or other dimming methods.
  • the dimming method outputs a relatively low signal, for example, when the DC dimming signal is set to 1.5V, the output current of the switch-mode power supply becomes unstable, which appears on the h of the LED lamp: the human eye can see more obvious flicker.
  • the switching power supply of the LED light source has reached the maximum operating frequency, and its loop feedback compensation is generally optimized for the maximum output power (the advantage is that when the maximum output power is increased Stability), usually has the lowest operating frequency at the maximum output power, so the loop feedback compensation response speed is relatively slow, this slow loop response speed can not track the LED control device when the dimming signal is very low
  • the highest operating frequency causes the power supply device to be in an unstable working state.
  • the existing LED drive power supply has a relatively large operating frequency range, which increases the difficulty of compensating the feedback loop design and debugging, and also reduces the reliability and stability.
  • the technical problem to be solved by the present invention is to provide a feedback loop compensation switching circuit and a driving power supply in view of the above-mentioned defects of the prior art.
  • the technical solution adopted by the present invention to solve its technical problem is to construct a feedback loop compensation switching circuit, which is applied to a driving power supply, and includes: multiple feedback loop compensation switching modules connected to an input signal and the multiple feedback Frequency conversion control circuit connected with loop compensation switching module;
  • Each of the feedback loop compensation switching modules includes: a signal detection circuit connected to the input signal and outputting a detection signal, a voltage reference circuit for generating a reference voltage, and a connection to the signal detection circuit and the voltage reference circuit A comparison circuit, a controlled switch connected to the comparison circuit, and a first loop compensation circuit and a second loop compensation circuit connected to the controlled switch;
  • the comparison circuit is used to compare the voltage of the detection signal with the reference voltage, and control the controlled switch to be turned on or off according to the comparison result, so as to gate the first loop compensation circuit or all The second loop compensation circuit, so that the feedback control circuit outputs a compensation signal to the variable frequency control circuit according to the first loop compensation circuit or the second loop compensation circuit.
  • the signal detection circuit includes: a first voltage dividing circuit and a filter circuit connected to the first voltage dividing circuit;
  • the first end of the first voltage dividing circuit is connected to the input signal, and the second end of the first voltage dividing circuit is connected to the first input end of the comparison circuit.
  • the voltage reference circuit includes: a second voltage divider circuit
  • the first end of the second voltage divider circuit is connected to the power supply signal, and the second end of the second voltage divider circuit is connected to the second input end of the comparison circuit.
  • the voltage reference circuit includes: a reference voltage generator and a current limiting circuit
  • the first end of the current limiting circuit is connected to the power supply signal, the second end of the current limiting circuit is connected to the first end and the second end of the reference voltage generator, and the second end of the reference voltage generator is also connected The second input terminal of the comparison circuit, the third terminal of the reference voltage generator is grounded.
  • the comparison circuit includes: a voltage comparator
  • the non-inverting input terminal of the voltage comparator is connected to the signal detection circuit, the inverting input terminal of the voltage comparator is connected to the voltage reference circuit, and the output terminal of the voltage comparator is connected to the controlled switch.
  • the controlled switch includes a photocoupler or a relay.
  • the first loop compensation circuit includes: a conduction control part of the controlled switch and a first RC circuit;
  • the feedback loop of the feedback control circuit is connected.
  • the second loop compensation circuit includes: a second RC circuit
  • the second RC circuit is serially connected to the feedback loop of the feedback control circuit.
  • the multiple feedback loop compensation switching modules are connected in parallel.
  • the invention also provides a driving power supply including the feedback loop compensation switching circuit described above.
  • Implementation of the feedback loop compensation switching circuit of the present invention has the following beneficial effects: including multiple feedback loop compensation switching modules connected to the input signal and a frequency conversion control circuit connected to the multiple feedback loop compensation switching modules; each feedback loop
  • the circuit compensation switching module includes a signal detection circuit that accesses the input signal and outputs a detection signal, a voltage reference circuit that generates a reference voltage, a comparison circuit connected to the signal detection circuit and the voltage reference circuit, a controlled switch connected to the comparison circuit, and a receiver A first loop compensation circuit and a second loop compensation circuit connected to the control switch.
  • the invention uses hierarchical loop compensation, which changes the traditional variable frequency feedback control circuit to only use a slow speed compensation loop to adapt to its wide operating frequency range, so that the variable frequency feedback control circuit has different loop compensation at different operating frequencies
  • the response speed solves the problem of LED lamps flickering visible to the human eye, and at the same time improves the stability and reliability of working under different loads.
  • FIG. 1 is a schematic structural diagram of a feedback loop compensation switching circuit provided by an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a single feedback loop compensation switching module provided by an embodiment of the present invention.
  • FIG. 3 is a circuit schematic diagram of a single feedback loop compensation switching module provided by an embodiment of the present invention.
  • FIG. 1 it is a schematic structural diagram of a feedback loop compensation switching circuit provided by an embodiment of the present invention.
  • the feedback loop compensation switching circuit can be applied to an LED driving power supply adopting a variable frequency adjustment mode.
  • the feedback loop compensation switching circuit includes: a plurality of feedback loop compensation switching modules 100 connected to the input signal and a frequency conversion control circuit 200 connected to the plurality of feedback loop compensation switching modules 100.
  • the input signal may be a dimming signal or a feedback signal of the frequency conversion control circuit 200.
  • the dimming signal or the feedback signal of the frequency conversion control circuit 200 can be connected to the signal detection circuit 11 through a resistor or a wire.
  • the dimming signal here may be provided by an external dimming circuit, where the external dimming circuit includes but is not limited to a current dimming circuit, a PWM dimming circuit, a resistance dimming circuit, or a dimming circuit of other dimming methods.
  • the frequency conversion control circuit 200 is a main control circuit inside the drive power supply.
  • Each feedback loop compensation switching module 100 includes a plurality of different loop compensation circuits, wherein each feedback loop compensation switching module 100 is used to automatically gate different loop compensation circuits according to the input signal, and the feedback control circuit 17 is based on The selected loop compensation circuit outputs the corresponding compensation signal to the frequency conversion control circuit 200, and the frequency conversion control circuit 200 adjusts accordingly according to the received compensation signal, so as to improve the stability of the driving power supply at the maximum operating frequency.
  • the feedback loop compensation switching circuit may be composed of multiple feedback loop compensation switching modules 100 connected in parallel, thereby forming a plurality of feedback loop compensation switching modules 100 and formed in a control manner to achieve hierarchical adjustment Loop compensation parameters corresponding to different operating frequencies.
  • the response speed of the loop control of the driving power supply can be automatically and stepwise adjusted according to the size of the dimming signal or the feedback signal of the variable frequency control circuit 200, and automatically based on the dimming signal or the feedback signal of the variable frequency control circuit 200 Switch the size of the different loop compensation circuits to improve the stability of the drive power supply at the maximum operating frequency, and completely solve the problem of the LED light flickering during the dimming of the switch-mode drive power supply of the LED light source.
  • FIG. 2 it is a schematic structural diagram of a single feedback loop compensation switching module 100 provided by an embodiment of the present invention.
  • each feedback loop compensation switching module 100 includes: a signal detection circuit 11 connected to an input signal and outputting a detection signal, a voltage reference circuit 12 for generating a reference voltage, a signal detection circuit 11 and a voltage reference
  • the comparison circuit 13 connected to the circuit 12, the controlled switch 14 connected to the comparison circuit 13, the first loop compensation circuit 15 and the second loop compensation circuit 16 connected to the controlled switch 14, and the first loop compensation respectively
  • the circuit 15 and the second loop compensation circuit 16 are connected to the feedback control circuit 17.
  • the comparison circuit 13 is used to compare the voltage of the detection signal with the reference voltage, and control the controlled switch 14 to be turned on or off according to the comparison result to gate the first loop compensation circuit 15 or the second loop compensation circuit 16, In turn, the feedback control circuit 17 outputs the corresponding compensation signal according to the first loop compensation circuit 15 or the second loop compensation circuit 16.
  • the first loop compensation circuit 15 is a loop compensation circuit with a slow response speed
  • the second loop compensation circuit 16 is a loop compensation circuit with a fast response speed
  • the reference voltage generated by the voltage reference circuit 12 is a reference voltage for reflecting the magnitude of the input signal.
  • the voltage of the detection signal is less than the reference voltage, it means that the dimming signal or the feedback signal of the frequency conversion control circuit 200 has been lower than the preset threshold, which means that the frequency conversion control circuit 200 has entered the maximum operating frequency state, and a faster loop needs to be selected
  • the loop compensation circuit of the response speed that is, the second loop compensation circuit 16 is gated; when the voltage of the detection signal is greater than the reference voltage, it indicates that the dimming signal or the feedback signal of the frequency conversion control circuit 200 is greater than the preset threshold, frequency conversion
  • the control circuit 200 can be adapted to a loop compensation circuit with a slow response speed.
  • the signal detection circuit 11 includes a first voltage dividing circuit 111 and a filter circuit 112 connected to the first voltage dividing circuit 111.
  • the first terminal of the first voltage dividing circuit 111 is connected to the input signal, and the second terminal of the first voltage dividing circuit 111 is connected to the first input terminal of the comparison circuit 13.
  • the first voltage dividing circuit 111 may be realized by a plurality of resistors divided in series. Among them, the number of resistors and the resistance value need to be determined according to a specific circuit, and the invention is not specifically limited.
  • the filter circuit 112 can be realized by a capacitor.
  • the voltage reference circuit 12 includes: a second voltage dividing circuit.
  • the first end of the second voltage divider circuit is connected to the power supply signal, and the second end of the second voltage divider circuit is connected to the second input end of the comparison circuit 13.
  • the second voltage divider circuit may also be implemented by multiple resistors connected in series. Among them, the number of resistors and the resistance value need to be determined according to a specific circuit, and the invention is not specifically limited.
  • the voltage reference circuit 12 includes a reference voltage generator 122 and a current limiting circuit 121.
  • the first end of the current limiting circuit 121 is connected to the power supply signal, the second end of the current limiting circuit 121 is connected to the first end and the second end of the reference voltage generator 122, and the second end of the reference voltage generator 122 is also connected to the The second input terminal, the third terminal of the reference voltage generator 122 is grounded.
  • the reference voltage generator 122 may use TL431. Of course, it can be understood that the reference voltage generator 122 may also use other voltage generators having the same function.
  • the current limiting circuit 121 can be realized by a resistor.
  • the comparison circuit 13 includes a voltage comparator.
  • the non-inverting input of the voltage comparator is connected to the signal detection circuit 11, the inverting input of the voltage comparator is connected to the voltage reference circuit 12, and the output of the voltage comparator is connected to the controlled switch 14.
  • the non-inverting input terminal of the voltage comparator is the first input terminal of the comparison circuit 13
  • the inverting input terminal of the voltage comparator is the second input terminal of the comparison circuit 13
  • the output terminal of the voltage comparator is the output of the comparison circuit 13 end.
  • the controlled switch 14 includes a photocoupler or a relay.
  • the first loop compensation circuit 15 includes: a conduction control part of the controlled switch 14 and a first RC circuit.
  • the first loop compensation circuit 15 composed of the conduction control portion of the controlled switch 14 and the first RC circuit is a loop compensation circuit with a slow response speed.
  • the second loop compensation circuit 16 includes: a second RC circuit.
  • the second RC circuit is serially connected to the feedback loop of the feedback control circuit 17.
  • the second loop compensation circuit 16 is a loop compensation circuit with a fast response speed.
  • FIG. 3 it is a circuit schematic diagram of a preferred embodiment of a single feedback loop compensation switching module 100 of the present invention.
  • the first voltage dividing circuit 111 includes: a resistor R1 and a resistor R2; the filter circuit 112 includes: a capacitor C1.
  • the voltage reference circuit 12 includes a current limiting resistor R3 and a reference voltage generator 122U2.
  • the comparison circuit 13 includes: a voltage comparator U1-A; the controlled switch 14 includes: a photocoupler U3; the first RC circuit includes: a resistor R7 and a capacitor C3; the second RC circuit includes: a capacitor C4 of a resistor R8; a feedback control circuit 17 includes the comparator U4-A.
  • the first end of the resistor R1 is connected to the input signal (INPUT) as the first end of the first voltage divider circuit 111, and the connection node of the resistor R1 and the resistor R2 is connected to the voltage comparator U1- as the second end of the first voltage divider circuit 111
  • the same-direction input terminal of A, the second terminal of the resistor R2 is grounded, and the capacitor C1 is connected in parallel at both ends of the resistor R2.
  • the first end of the current limiting resistor R3 is connected to the power supply signal (VCC) as the first end of the current limiting circuit 121, and the second end of the current limiting resistor R3 is connected to the inverting input terminal of the voltage comparator U1-A through the resistor R5, and the reference voltage
  • the first end and the second end of the generator 122U2 are connected to the second end of the current limiting resistor R3, the third end of the reference voltage generator 122U2 is grounded, and the inverting input of the voltage comparator U1-A is also grounded through the resistor R4 .
  • the output terminal of the voltage comparator U1-A is connected to the anode of the conducting part U3-A of the photocoupler U3 through a resistor R6, and the cathode of the conducting part U3-A of the photocoupler U3 is grounded; the conduction control of the photocoupler U3
  • the first end of the unit U3-B is connected to the inverting input terminal of the comparator U4-A through the capacitor C3 and the resistor R7 in turn, and the second end of the conduction control unit U3-B of the photocoupler U3 is connected to the comparator U4-A Output terminal; after resistor R8 and capacitor C4 are connected in series, they are connected in parallel to the inverting input terminal and output terminal of comparator U4-A.
  • the dimming signal or the feedback signal of the frequency conversion control circuit 200 is divided by the resistor R1 and the resistor R2, it is filtered through the capacitor C1 and input to the non-inverting input terminal of the voltage comparator U1-A, and the voltage reference is generated.
  • the U2 provides the reference voltage, and is input to the inverting input terminal of the voltage comparator U1-A after being divided by the resistor R4 and the resistor R5.
  • the voltage comparator U1-A When the voltage of the non-inverting input terminal of the voltage comparator U1-A is lower than the voltage of its inverting input terminal, the voltage comparator U1-A outputs a low-level signal, indicating that the dimming signal or the feedback signal of the frequency conversion control circuit 200 has fallen below
  • the preset threshold value means that the frequency conversion control circuit 200 enters the maximum operating frequency state and needs a faster loop response speed; because the voltage comparator U1-A outputs a low-level signal, U3-A is not turned on, at this time , U3-B is also non-conductive, the first loop compensation circuit 15 of slow response speed composed of U3-B, resistor R7 and capacitor C3 is disconnected, and the second of fast response speed composed of resistor R8 and capacitor C4
  • the loop compensation circuit 16 works, and then the comparator U4-A feeds back to the main control circuit of the drive power supply (that is, the frequency control circuit 200), so that the frequency control circuit 200 can adapt to the highest operating frequency
  • the present invention also provides a driving power supply including the aforementioned feedback loop compensation switching circuit.
  • the driving power supply includes but is not limited to the LED driving power supply.
  • the drive power supply can provide the variable frequency control circuit 200 inside the drive power supply with different loop compensation response speeds under different operating frequencies by setting the above feedback loop compensation switching circuit, which solves the problem of flickering visible to the human eye of LED lamps At the same time, the stability of the operation of the frequency conversion control circuit 200 under different load conditions is improved, thereby improving the stability and reliability of the driving power supply.

Landscapes

  • Dc-Dc Converters (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

一种反馈环路补偿切换电路及驱动电源,包括接入输入信号的多个反馈环路补偿切换模块(100)及与多个反馈环路补偿切换模块(100)连接的变频控制电路(200);每个反馈环路补偿切换模块(100)包括接入输入信号并输出检测信号的信号检测电路(11)、产生基准电压的电压基准电路(12)、与信号检测电路(11)和电压基准电路(12)连接的比较电路(13)、与比较电路(13)连接的受控开关(14)及与受控开关(14)连接的第一环路补偿电路(15)和第二环路补偿电路(16)。采用分级环路补偿,改变了传统的变频反馈控制电路只使用一个慢速补偿环路适配其很宽的工作频率范围,使变频反馈控制电路在不同的工作频率具备不同的环路补偿响应速度,解决LED灯具出现人眼可视的闪烁问题,同时提升在不同负载下工作的稳定性和可靠性。

Description

一种反馈环路补偿切换电路及驱动电源 技术领域
本发明涉及驱动电源的技术领域,更具体地说,涉及一种反馈环路补偿切换电路及驱动电源。
背景技术
电源供应器的控制方式一般有固定频率和可变频率控制,即通常所说的PWM控制方式(脉冲宽度占空比调制模式)和PFM(可变频率调制模式)。在LED光源的开关式电源供应装置中为了提高其效率,一般使用较多的软开关控制方式即PFM,例如:半桥谐振拓扑和准谐振反激式拓扑。这些拓扑虽然带来了效率的提升,但是其较大的工作频率范围给环路反馈补偿带来了难度,例如其工作频率范围一般为40KHz到200KHz,5倍的频率变化范围很难让环路反馈补偿电路在全频段有效工作。特别是对于LED光源的开关式电源供应装置需要应用在各种调光控制方式中,例如:0-10V直流调光,0-100%占空比调光或者其他的调光方式。当调光方式输出比较低的信号时,例如直流调光信号设置到1.5V时,开关式电源的输出电流变得不稳定,在LED灯具的h 上表现为:出现人眼可以看见比较明显的闪烁。
分析原因时在很低的调光信号下,LED光源的开关式电源供应装置已经达到最高工作频率,而其环路反馈补偿一般是针对最大输出功率来优化设计的(好处是提高最大输出功率时的稳定性),通常在最大输出功率有着最低的工作频率,因此环路反馈补偿响应速度比较慢,这个慢速的环路响应速度已经跟踪不上LED控制装置在很低的调光信号时的最高工作频率,导致电源供应装置处在不稳定的工作状态。
因此,现有的LED驱动电源在LED驱动电源处在外部调光控制时,由于工作频率范围比较大,增加了补偿反馈环路设计和调试的难度,同时也降低了LED驱动电源的可靠性及稳定性。
技术问题
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种反馈环路补偿切换电路及驱动电源。
技术解决方案
本发明解决其技术问题所采用的技术方案是:构造一种反馈环路补偿切换电路,应用于驱动电源,包括:接入输入信号的多个反馈环路补偿切换模块及与所述多个反馈环路补偿切换模块连接的变频控制电路;
每一个所述反馈环路补偿切换模块包括:接入所述输入信号并输出检测信号的信号检测电路、用于产生基准电压的电压基准电路、与所述信号检测电路和所述电压基准电路连接的比较电路、与所述比较电路连接的受控开关以及与所述受控开关连接的第一环路补偿电路和第二环路补偿电路;
所述比较电路用于将所述检测信号的电压与所述基准电压进行比较,并根据比较结果控制所述受控开关导通或关断,以选通所述第一环路补偿电路或者所述第二环路补偿电路,进而使所述反馈控制电路根据所述第一环路补偿电路或者所述第二环路补偿电路输出补偿信号至所述变频控制电路。
在其中一个实施例中,所述信号检测电路包括:第一分压电路以及与所述第一分压电路连接的滤波电路;
其中,所述第一分压电路的第一端接入所述输入信号,所述第一分压电路的第二端连接所述比较电路的第一输入端。
在其中一个实施例中,所述电压基准电路包括:第二分压电路;
所述第二分压电路的第一端连接供电信号,所述第二分压电路的第二端连接所述比较电路的第二输入端。
在其中一个实施例中,所述电压基准电路包括:基准电压产生器和限流电路;
所述限流电路的第一端连接供电信号,所述限流电路的第二端连接所述基准电压产生器的第一端和第二端,所述基准电压产生器的第二端还连接所述比较电路的第二输入端,所述基准电压产生器第三端接地。
在其中一个实施例中,所述比较电路包括:电压比较器;
所述电压比较器的同向输入端连接所述信号检测电路,所述电压比较器的反向输入端连接所述电压基准电路,所述电压比较器的输出端连接所述受控开关。
在其中一个实施例中,所述受控开关包括光电耦合器或者继电器。
在其中一个实施例中,所述第一环路补偿电路包括:受控开关的导通控制部以及第一RC电路;
所述受控开关的导通控制部与所述第一RC电路串联后,再接入所述反馈控制电路的反馈环路。
在其中一个实施例中,所述第二环路补偿电路包括:第二RC电路;
所述第二RC电路串接在所述反馈控制电路的反馈环路上。
在其中一个实施例中,所述多个反馈环路补偿切换模块并联连接。
本发明还提供一种驱动电源,包括以上所述的反馈环路补偿切换电路。
有益效果
实施本发明的反馈环路补偿切换电路,具有以下有益效果:包括接入输入信号的多个反馈环路补偿切换模块及与多个反馈环路补偿切换模块连接的变频控制电路;每一个反馈环路补偿切换模块包括接入输入信号并输出检测信号的信号检测电路、产生基准电压的电压基准电路、与信号检测电路和电压基准电路连接的比较电路、与比较电路连接的受控开关及与受控开关连接的第一环路补偿电路和第二环路补偿电路。本发明采用分级环路补偿,改变了传统的变频反馈控制电路只使用一个慢速补偿环路适配其很宽的工作频率范围,使变频反馈控制电路在不同的工作频率具备不同的环路补偿响应速度,解决LED灯具出现人眼可视的闪烁问题,同时提升在不同负载下工作的稳定性和可靠性。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明实施例提供的一种反馈环路补偿切换电路的结构示意图;
图2是本发明实施例提供的单个反馈环路补偿切换模块的结构示意图;
图3是本发明实施例提供的单个反馈环路补偿切换模块的电路原理图。
本发明的最佳实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
参考图1,为本发明实施例提供的一种反馈环路补偿切换电路的结构示意图。该反馈环路补偿切换电路可应用于采用可变频率调节模式的LED驱动电源。
如图1所示,该反馈环路补偿切换电路包括:接入输入信号的多个反馈环路补偿切换模块100及与多个反馈环路补偿切换模块100连接的变频控制电路200。其中,输入信号可以为调光信号或者变频控制电路200的反馈信号。可以通过一个电阻或者导线将调光信号或者变频控制电路200的反馈信号接入信号检测电路11。这里调光信号可以由外部的调光电路提供,其中,外部调光电路包括但不限于电流调光电路、PWM调光电路、电阻调光电路或者其他调光方式的调光电路。变频控制电路200为驱动电源内部的主控制电路。
每一个反馈环路补偿切换模块100包括多个不同的环路补偿电路,其中,每一个反馈环路补偿切换模块100用于根据输入信号自动选通不同的环路补偿电路,反馈控制电路17根据所选通的环路补偿电路输出相应的补偿信号至变频控制电路200,变频控制电路200根据所接收的补偿信号进行相应的调节,以使提高驱动电源在最大工作频率时的稳定性。
如图1所示,该反馈环路补偿切换电路可以由多个反馈环路补偿切换模块100并联组成,从而形成由多个反馈环路补偿切换模块100组成的并按控制方式,以达到分级调整对应不同工作频率的环路补偿参数。
通过设置该反馈环路补偿切换电路可以根据调光信号或者变频控制电路200的反馈信号的大小自动分级调整驱动电源的环路控制的响应速度,自动根据调光信号或者变频控制电路200的反馈信号的大小切换不同的环路补偿电路,以提高驱动电源在最大工作频率时的稳定性,彻底解决LED光源的开关式驱动电源在调光时LED灯出现闪烁的问题。
参考图2,为本发明实施例提供的单个反馈环路补偿切换模块100的结构示意图。
如图2所示,每一个反馈环路补偿切换模块100包括:接入输入信号并输出检测信号的信号检测电路11、用于产生基准电压的电压基准电路12、与信号检测电路11和电压基准电路12连接的比较电路13、与比较电路13连接的受控开关14以及与受控开关14连接的第一环路补偿电路15和第二环路补偿电路16、以及分别与第一环路补偿电路15和第二环路补偿电路16连接反馈控制电路17。
比较电路13用于将检测信号的电压与基准电压进行比较,并根据比较结果控制受控开关14导通或关断,以选通第一环路补偿电路15或者第二环路补偿电路16,进而使反馈控制电路17根据第一环路补偿电路15或者第二环路补偿电路16输出相应的补偿信号。
这里,第一环路补偿电路15为响应速度较慢的环路补偿电路,第二环路补偿电路16为响应速度较快的环路补偿电路。
电压基准电路12所产生的基准电压为用于反应输入信号大小的参考电压。当检测信号的电压小于基准电压时,说明调光信号或者变频控制电路200的反馈信号已经低于预设的阈值,意味着变频控制电路200进入了最大工作频率状态,需要选择更快的环路响应速度的环路补偿电路,即选通第二环路补偿电路16;当检测信号的电压大于基准电压时,说明调光调光信号或者变频控制电路200的反馈信号大于预设的阈值,变频控制电路200可适应慢响应速度的环路补偿电路。
本发明实施例中,该信号检测电路11包括:第一分压电路111以及与第一分压电路111连接的滤波电路112。其中,第一分压电路111的第一端接入输入信号,第一分压电路111的第二端连接比较电路13的第一输入端。
该第一分压电路111可以由多个电阻串联分压实现。其中,电阻的数量及阻值需根据具体电路确定,本发明不作具体限定。该滤波电路112可以由电容实现。
本发明实施例中,该电压基准电路12包括:第二分压电路。其中,第二分压电路的第一端连接供电信号,第二分压电路的第二端连接比较电路13的第二输入端。
这里,第二分压电路也可以由多个电阻串联实现。其中,电阻的数量及阻值需根据具体电路确定,本发明不作具体限定。
或者,在其他一些实施例中,该电压基准电路12包括:基准电压产生器122和限流电路121。
限流电路121的第一端连接供电信号,限流电路121的第二端连接基准电压产生器122的第一端和第二端,基准电压产生器122的第二端还连接比较电路13的第二输入端,基准电压产生器122第三端接地。其中,基准电压产生器122可以采用TL431,当然,可以理解地,基准电压产生器122也可以采用其他具有同等功能地电压产生器。限流电路121可以通过电阻实现。
本发明实施例中,该比较电路13包括:电压比较器。
电压比较器的同向输入端连接信号检测电路11,电压比较器的反向输入端连接电压基准电路12,电压比较器的输出端连接受控开关14。其中,电压比较器的同向输入端为比较电路13的第一输入端,电压比较器的反向输入端为比较电路13的第二输入端,电压比较器的输出端为比较电路13的输出端。
本发明实施例中,该受控开关14包括光电耦合器或者继电器。
本发明实施例中,该第一环路补偿电路15包括:受控开关14的导通控制部以及第一RC电路。
受控开关14的导通控制部与第一RC电路串联后,再接入反馈控制电路17的反馈环路。其中,受控开关14的导通控制部与第一RC电路组成的第一环路补偿电路15为响应速度较慢的环路补偿电路。
本发明实施例中,该第二环路补偿电路16包括:第二RC电路。第二RC电路串接在反馈控制电路17的反馈环路上。其中,第二环路补偿电路16为响应速度较快的环路补偿电路。
参考图3,为本发明单个反馈环路补偿切换模块100一优选实施例的电路原理图。
如图3所示,第一分压电路111包括:电阻R1和电阻R2;滤波电路112包括:电容C1。电压基准电路12包括:限流电阻R3和基准电压产生器122U2。比较电路13包括:电压比较器U1-A;受控开关14包括:光电耦合器U3;第一RC电路包括:电阻R7和电容C3;第二RC电路包括:电阻R8的电容C4;反馈控制电路17包括比较器U4-A。
电阻R1的第一端作为第一分压电路111的第一端接入输入信号(INPUT),电阻R1与电阻R2的连接节点作为第一分压电路111的第二端连接电压比较器U1-A的同向输入端,电阻R2的第二端接地,电容C1并联在电阻R2的两端。
限流电阻R3的第一端作为限流电路121的第一端连接供电信号(VCC),限流电阻R3的第二端通过电阻R5连接电压比较器U1-A的反向输入端,基准电压产生器122U2的第一端和第二端一并连接限流电阻R3的第二端,基准电压产生器122U2的第三端接地,电压比较器U1-A的反向输入端还通过电阻R4接地。
电压比较器U1-A的输出端通过电阻R6连接光电耦合器U3的导通部U3-A的阳极,光电耦合器U3的导通部U3-A的阴极接地;光电耦合器U3的导通控制部U3-B的第一端依次通过电容C3和电阻R7连接比较器U4-A的反向输入端,光电耦合器U3的导通控制部U3-B的第二端连接比较器U4-A的输出端;电阻R8和电容C4串联后,再并联在比较器U4-A的反向输入端和输出端。
以下根据图3对本发明的反馈环路补偿切换模块100的具体原理进行说明。
如图3所示,调光信号或者变频控制电路200的反馈信号经过电阻R1、电阻R2进行分压后,通过电容C1进行滤波输入到电压比较器U1-A的同向输入端,电压基准产生器U2提供基准电压,并通过电阻R4和电阻R5分压后输入到电压比较器U1-A的反向输入端。
当电压比较器U1-A的同向输入端电压小于其反向输入端电压时,电压比较器U1-A输出一个低电平信号,说明调光信号或者变频控制电路200的反馈信号已经低于预设的阈值,意味着变频控制电路200进入了最大工作频率状态,需要更快的环路响应速度;由于电压比较器U1-A输出一个低电平信号,U3-A不导通,此时,U3-B也不导通,由U3-B、电阻R7和电容C3组成的慢响应速度的第一环路补偿电路15断开,而由电阻R8和电容C4组成的快速响应速度的第二环路补偿电路16工作,进而由比较器U4-A反馈至驱动电源的主控制电路(即变频控制电路200),使变频控制电路200可以适应最高工作频率,从而提高电路的稳定性,解决人眼可以看出的LED闪烁问题。
另外,本发明还提供了一种驱动电源,包括前述的反馈环路补偿切换电路。该驱动电源包括但不限于LED驱动电源。该驱动电源通过设置上述反馈环路补偿切换电路可以使驱动电源内部的变频控制电路200在不同的工作频率下,具备不同的环路补偿响应速度,解决了LED灯具出现人眼可视的闪烁问题,同时提升了变频控制电路200在不同负载情况下的工作的稳定性,进而提升驱动电源的稳定性和可靠性。
以上实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据此实施,并不能限制本发明的保护范围。凡跟本发明权利要求范围所做的均等变化与修饰,均应属于本发明权利要求的涵盖范围。
应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (10)

  1. 一种反馈环路补偿切换电路,应用于驱动电源,其特征在于,包括:接入输入信号的多个反馈环路补偿切换模块及与所述多个反馈环路补偿切换模块连接的变频控制电路;
    每一个所述反馈环路补偿切换模块包括:接入所述输入信号并输出检测信号的信号检测电路、用于产生基准电压的电压基准电路、与所述信号检测电路和所述电压基准电路连接的比较电路、与所述比较电路连接的受控开关以及与所述受控开关连接的第一环路补偿电路和第二环路补偿电路、以及反馈控制电路;
    所述比较电路用于将所述检测信号的电压与所述基准电压进行比较,并根据比较结果控制所述受控开关导通或关断,以选通所述第一环路补偿电路或者所述第二环路补偿电路,进而使所述反馈控制电路根据所述第一环路补偿电路或者所述第二环路补偿电路输出补偿信号至所述变频控制电路。
  2. 根据权利要求1所述的反馈环路补偿切换电路,其特征在于,所述信号检测电路包括:第一分压电路以及与所述第一分压电路连接的滤波电路;
    其中,所述第一分压电路的第一端接入所述输入信号,所述第一分压电路的第二端连接所述比较电路的第一输入端。
  3. 根据权利要求1所述的反馈环路补偿切换电路,其特征在于,所述电压基准电路包括:第二分压电路;
    所述第二分压电路的第一端连接供电信号,所述第二分压电路的第二端连接所述比较电路的第二输入端。
  4. 根据权利要求1所述的反馈环路补偿切换电路,其特征在于,所述电压基准电路包括:基准电压产生器和限流电路;
    所述限流电路的第一端连接供电信号,所述限流电路的第二端连接所述基准电压产生器的第一端和第二端,所述基准电压产生器的第二端还连接所述比较电路的第二输入端,所述基准电压产生器第三端接地。
  5. 根据权利要求1所述的反馈环路补偿切换电路,其特征在于,所述比较电路包括:电压比较器;
    所述电压比较器的同向输入端连接所述信号检测电路,所述电压比较器的反向输入端连接所述电压基准电路,所述电压比较器的输出端连接所述受控开关。
  6. 根据权利要求1所述的反馈环路补偿切换电路,其特征在于,所述受控开关包括光电耦合器或者继电器。
  7. 根据权利要求1所述的反馈环路补偿切换电路,其特征在于,所述第一环路补偿电路包括:受控开关的导通控制部以及第一RC电路;
    所述受控开关的导通控制部与所述第一RC电路串联后,再接入所述反馈控制电路的反馈环路。
  8. 根据权利要求1所述的反馈环路补偿切换电路,其特征在于,所述第二环路补偿电路包括:第二RC电路;
    所述第二RC电路串接在所述反馈控制电路的反馈环路上。
  9. 根据权利要求1-8任一项所述的反馈环路补偿切换电路,其特征在于,所述多个反馈环路补偿切换模块为并联连接。
  10. 一种驱动电源,其特征在于,包括权利要求1-9任一项所述的反馈环路补偿切换电路。
PCT/CN2019/080581 2018-10-08 2019-03-29 一种反馈环路补偿切换电路及驱动电源 WO2020073622A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811167725.4 2018-10-08
CN201811167725.4A CN109496009B (zh) 2018-10-08 2018-10-08 一种反馈环路补偿切换电路及驱动电源

Publications (1)

Publication Number Publication Date
WO2020073622A1 true WO2020073622A1 (zh) 2020-04-16

Family

ID=65690138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/080581 WO2020073622A1 (zh) 2018-10-08 2019-03-29 一种反馈环路补偿切换电路及驱动电源

Country Status (2)

Country Link
CN (1) CN109496009B (zh)
WO (1) WO2020073622A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114596821A (zh) * 2022-05-09 2022-06-07 惠科股份有限公司 控制电路、控制方法和显示装置
CN114679815A (zh) * 2022-04-19 2022-06-28 珠海市圣昌电子有限公司 可实时改变led调光电源反馈环路响应速度的控制电路

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109496009B (zh) * 2018-10-08 2019-10-08 深圳市崧盛电子股份有限公司 一种反馈环路补偿切换电路及驱动电源
CN112312490B (zh) * 2019-08-01 2022-09-16 中国移动通信集团浙江有限公司 信号切换装置及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103596343A (zh) * 2013-11-29 2014-02-19 昆山泰顺自动化设备有限公司 Led驱动的反馈控制电路
CN203674971U (zh) * 2013-12-12 2014-06-25 深圳市金威源科技股份有限公司 一种开关电源反馈电路
CN104168685A (zh) * 2013-05-16 2014-11-26 上海昂帕微电子技术有限公司 基于环路补偿控制的可调光led驱动器
CN106535391A (zh) * 2016-10-11 2017-03-22 昆山龙腾光电有限公司 尖峰电流吸收电路及其控制方法和发光二极管驱动装置
CN206060521U (zh) * 2016-08-18 2017-03-29 深圳欧陆通电子有限公司 并机电源及其恒流启动控制电路
US20170347417A1 (en) * 2016-05-27 2017-11-30 Silergy Semiconductor Technology (Hangzhou) Ltd Control circuit, control method and switching power supply thereof
CN109496009A (zh) * 2018-10-08 2019-03-19 深圳市崧盛电子股份有限公司 一种反馈环路补偿切换电路及驱动电源

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100485633C (zh) * 2006-03-23 2009-05-06 鸿富锦精密工业(深圳)有限公司 Cpu频率调整电路
US7872546B1 (en) * 2009-07-07 2011-01-18 Alpha And Omega Semiconductor Incorporated Multi mode modulator and method with improved dynamic load regulation
CN102364861A (zh) * 2011-10-27 2012-02-29 上海大学 交错并联llc谐振变换器控制装置和方法
CN103702477A (zh) * 2013-12-04 2014-04-02 生迪光电科技股份有限公司 基于pfm调光的多色led照明系统及led驱动电路
CN205584542U (zh) * 2016-03-03 2016-09-14 仝彤 一种高压、高频、泵式驱动电源的acled光源

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104168685A (zh) * 2013-05-16 2014-11-26 上海昂帕微电子技术有限公司 基于环路补偿控制的可调光led驱动器
CN103596343A (zh) * 2013-11-29 2014-02-19 昆山泰顺自动化设备有限公司 Led驱动的反馈控制电路
CN203674971U (zh) * 2013-12-12 2014-06-25 深圳市金威源科技股份有限公司 一种开关电源反馈电路
US20170347417A1 (en) * 2016-05-27 2017-11-30 Silergy Semiconductor Technology (Hangzhou) Ltd Control circuit, control method and switching power supply thereof
CN206060521U (zh) * 2016-08-18 2017-03-29 深圳欧陆通电子有限公司 并机电源及其恒流启动控制电路
CN106535391A (zh) * 2016-10-11 2017-03-22 昆山龙腾光电有限公司 尖峰电流吸收电路及其控制方法和发光二极管驱动装置
CN109496009A (zh) * 2018-10-08 2019-03-19 深圳市崧盛电子股份有限公司 一种反馈环路补偿切换电路及驱动电源

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114679815A (zh) * 2022-04-19 2022-06-28 珠海市圣昌电子有限公司 可实时改变led调光电源反馈环路响应速度的控制电路
CN114596821A (zh) * 2022-05-09 2022-06-07 惠科股份有限公司 控制电路、控制方法和显示装置

Also Published As

Publication number Publication date
CN109496009A (zh) 2019-03-19
CN109496009B (zh) 2019-10-08

Similar Documents

Publication Publication Date Title
WO2020073622A1 (zh) 一种反馈环路补偿切换电路及驱动电源
TWI492659B (zh) 開關電源及其控制電路和調光方法
TWI701972B (zh) 多路led恒流控制器及控制方法
US7321203B2 (en) LED dimming control technique for increasing the maximum PWM dimming ratio and avoiding LED flicker
CN102752940B (zh) 一种高效率的led驱动电路及其驱动方法
CN106105396B (zh) Led(发光二极管)串驱动的可控电源
CN106710531B (zh) 背光控制电路及电子装置
CN109041348B (zh) 自适应电路模块、具有可控硅调光器的led驱动电路及方法
TW201410067A (zh) 可調光的led驅動電路及驅動方法
CN102387628B (zh) 一种led调光控制电路
CN105101543A (zh) Led驱动电路
TW201322825A (zh) 具有調光功能之驅動系統與調光控制器
CN102612227A (zh) 一种混合调光电路及其混合调光方法
CN107182148B (zh) 一种基于pwm调光的dc-dc led驱动电路
CN107306466A (zh) 用于led驱动器的调光控制电路
CN103889114B (zh) 一种led调光驱动电路
WO2018024037A1 (zh) 一种直接滤波式开关电源
CN109379806B (zh) 一种调光驱动电路、调光控制器和led灯具
TWI533760B (zh) A system and method for providing power to a high intensity gas discharge lamp
CN106061037A (zh) 带功率因数校正的led驱动电路及驱动器
CN211378326U (zh) 一种可开关调光控制的led驱动电路
CN212435587U (zh) 恒流输出控制电路、开关电源控制器及开关电源系统
CN209964330U (zh) 用于可控硅调光器的泄放模块、led驱动电路
CN207283517U (zh) 一种pwm信号发生电路
JP2005051991A (ja) 電流モード制御を用いたハーフブリッジ式dc−dcコンバータにおけるデューティサイクルの制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19870744

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19870744

Country of ref document: EP

Kind code of ref document: A1