WO2020073326A1 - 医疗设备 - Google Patents

医疗设备 Download PDF

Info

Publication number
WO2020073326A1
WO2020073326A1 PCT/CN2018/110097 CN2018110097W WO2020073326A1 WO 2020073326 A1 WO2020073326 A1 WO 2020073326A1 CN 2018110097 W CN2018110097 W CN 2018110097W WO 2020073326 A1 WO2020073326 A1 WO 2020073326A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood oxygen
oxygen measurement
measurement signal
oxygen saturation
detection
Prior art date
Application number
PCT/CN2018/110097
Other languages
English (en)
French (fr)
Inventor
谈琳
袁微微
邹小玲
张飞
韩飞
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
深圳迈瑞科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司, 深圳迈瑞科技有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to CN201880098596.XA priority Critical patent/CN113056230B/zh
Priority to PCT/CN2018/110097 priority patent/WO2020073326A1/zh
Publication of WO2020073326A1 publication Critical patent/WO2020073326A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters

Definitions

  • This application relates to the technical field of medical equipment, and more specifically, provides a medical equipment.
  • congenital heart disease At present, the incidence of congenital heart disease (CHD) is high and cannot be underestimated.
  • CHD congenital heart disease
  • CCHD Complex Congenital Heart Disease
  • Diagnosis of congenital heart disease requires the use of cardiac ultrasound, and the use of cardiac ultrasound requires an ultrasound device and a corresponding ultrasound technician, which has high clinical requirements. If all neonates undergo cardiac ultrasound diagnosis, the diagnosis cost is higher and the efficiency is lower. For normal newborns, cardiac ultrasound is not necessary.
  • the present application provides a medical device that can guide the operator to gradually complete the detection process of the detection object and provide the detection result.
  • the following technical solutions are provided:
  • the present application provides a medical device, including a processor, the processor configured to:
  • the first blood oxygen saturation value or the second blood oxygen saturation value is less than a first threshold
  • the obtained first blood oxygen saturation value and second blood oxygen saturation value are between the first threshold and the second threshold;
  • the absolute value of the difference between the obtained first blood oxygen saturation value and the second blood oxygen saturation value is greater than a third threshold
  • the first threshold is smaller than the second threshold.
  • the present application provides a medical device, including a processor, and the processor is configured to:
  • Two different blood oxygen measurement procedures are provided; wherein the blood oxygen measurement procedure is based on blood oxygen measurement signals measured from at least one light sensor from two body parts of the detection object, and the output detection result is determined based on the blood oxygen measurement signals;
  • the light sensor generates the blood oxygen measurement signal based on the light attenuation information after the emitted light of at least two wavelengths penetrates the body part;
  • the blood oxygen measurement process corresponding to the start instruction is started.
  • the present application provides a medical device, including a processor, and the processor is configured to:
  • the prompt information is used to provide a guide operation for the blood oxygen measurement signal acquisition process of the two body parts of the detection object;
  • the light sensor Obtaining blood oxygen measurement signals measured by at least one light sensor from two body parts of the detection object; the light sensor generates the blood based on light attenuation information after the emitted light of at least two wavelengths penetrates the body part Oxygen measurement signal;
  • the output result information is determined based on the two blood oxygen saturation values.
  • Figure 1 is an example of a detection process provided by a medical device
  • Figure 2 is a detection process based on a single detection channel
  • 3A-3I are multiple schematic diagrams of the detection interface corresponding to the detection process shown in FIG. 2;
  • Figure 4 is a detection process based on dual detection channels
  • 5A-5C are multiple schematic diagrams of the detection interface corresponding to the detection process shown in FIG. 4;
  • Figure 6 is another schematic diagram of the detection interface
  • FIG. 7 is a schematic diagram of a hardware structure of medical equipment
  • FIG. 8 is a schematic diagram of a hardware structure of a monitor.
  • the medical equipment provided in this application is mainly based on the percutaneous blood oxygen saturation value, and the output result information is determined by detecting the blood oxygen saturation values of two body parts, and the detection process is non-invasive and low in cost. It should be noted that the medical equipment provided by the present application can be used for screening for neonatal congenital heart disease, and can also be used in other scenarios where blood oxygen measurement is required.
  • the medical device includes a blood oxygen saturation detection channel (referred to simply as a detection channel), and the detection channel includes a measurement module such as a blood oxygen probe.
  • a measurement module such as a blood oxygen probe.
  • a specific implementation of the measurement module is an optical sensor, which generates a blood oxygen measurement signal, such as a percutaneous blood oxygen saturation signal, based on the light attenuation information after the emitted light of at least two wavelengths penetrates the body part.
  • it is also determined to output at least the first result information based on the judgment rule and the measured blood oxygen saturation value.
  • the determination rule needs to use the blood oxygen values of the two parts of the detection object. Therefore, medical personnel need to operate the measurement module multiple times, and the starting measurement time point, measurement time, measurement steps and other contents in the operation process need to rely on personal ability and experience to control. In this way, not only is the detection process not sufficiently automatic and convenient, but human uncertainty may affect the accuracy of the detection results.
  • the present application also provides a medical device that can guide the operator in the detection operation process, thereby improving the convenience and accuracy of the detection.
  • FIG. 1 shows a detection process performed by a medical device.
  • the detection process can be performed on newborns, for example, within 24 hours to 48 hours after birth, or within 24 hours after birth and shortly before discharge.
  • it may also be other objects with detection requirements, or the detection time point may also be other time points, which is not limited to this.
  • the detection process includes the following steps 1.1-1.4:
  • Step 1.1 Obtain the blood oxygen signals of two parts of the test object.
  • the first blood oxygen measurement signal measured from the first body part of the detection object by the at least one light sensor and the second blood oxygen measurement signal measured from the second body part of the detection object are acquired; the light sensor is based on at least two of the emission The light attenuation information after the light of various wavelengths penetrates the body part of the detection object to generate a blood oxygen measurement signal
  • the blood oxygen collection device is used to measure the detection object, and the measurement content includes the blood oxygen saturation of the upper limb and the lower limb.
  • the upper limb may specifically be the hand of the detection object (for example, the right hand), and the lower limb may specifically be the foot of the detection object.
  • Step 1.2 Obtain the blood oxygen saturation values of the two body parts of the test subject. Specifically, the corresponding first blood oxygen saturation value and second blood oxygen saturation value are obtained based on the first blood oxygen measurement signal and the second blood oxygen measurement signal, respectively.
  • Step 1.3 Based on the first blood oxygen saturation value and the second blood oxygen saturation value, determine whether one of the following three conditions is satisfied:
  • the first blood oxygen saturation value or the second blood oxygen saturation value is less than the first threshold
  • the obtained first blood oxygen saturation value and second blood oxygen saturation value are between the first threshold and the second threshold;
  • the absolute value of the difference between the obtained first blood oxygen saturation value and the second blood oxygen saturation value is greater than the third threshold
  • the first threshold is less than the second threshold
  • Step 1.4 In step 1.3, if it is determined that one of the three conditions is satisfied, the first result information is output.
  • the first result information may be directly determined to be output.
  • the second result information is the detection result opposite to the first result information.
  • the measurement result of this time may also be determined to be suspicious, and it is necessary to rely on the second / third measurement results to determine the input of the first result information or the second result information. That is, in the case where the measurement result obtains a suspicious result, a subsequent measurement operation is required, and further it is necessary to return to step 1.1 to perform blood oxygen measurement on the detection object again. There can be a certain period of time between different measurement operations, for example 1 hour.
  • the number of repeated measurements under suspicion can also be controlled. Specifically, the number of measurements can be recorded, and if the result obtained from the measurement data is suspicious, it is determined whether the number of measurements has reached 3, and if so, it does not return to step 1.1, but directly determines to output the first result information.
  • Both the first result information and the second result information output by the medical device can be referred by medical personnel to make certain judgments on the detection object.
  • the thresholds in the judgment conditions are not limited to the values provided in the above embodiments, but may also be other values recognized by the medical judgment rules, or values set by medical personnel based on clinical experience.
  • the threshold represented by 90% may be referred to as a first threshold
  • the threshold represented by 95% may be referred to as a second threshold
  • the threshold represented by 3% may be referred to as a third threshold.
  • the interval between different measurement operations is not limited to 1 hour, and can be set to other values according to the actual detection requirements.
  • the number of measurements is not limited to three, but can be set to other values according to the actual detection requirements.
  • the result information may be obtained by one measurement operation, or may be obtained by multiple measurement operations. If multiple measurements are required, the operator needs to control the length of time between each measurement. In one measurement operation, the blood oxygen saturation in different parts of the upper and lower limbs must also be collected. The operation process is tedious and complicated, which requires manual control based on experience.
  • a medical device for example, a multi-parameter monitoring device, a blood oxygen monitoring device, etc.
  • a medical equipment for example, a multi-parameter monitoring device, a blood oxygen monitoring device, etc.
  • the medical equipment mentioned in this application is not limited to monitors, but also includes invasive / non-invasive ventilator with monitoring function, nurse station, central station, etc.
  • the blood oxygen saturation detection channel of a medical device may include one or more channels. If the number of detection channels is different, the detection process performed is different. If only one detection channel is included, the same detection channel needs to be used to measure the blood oxygen saturation of different parts separately; if multiple detection channels are included, multiple detection channels can be used to simultaneously collect the blood oxygen saturation of different parts.
  • the following describes the detection process based on the single detection channel and the detection process based on the dual detection channel.
  • FIG. 2 shows a detection process based on a single detection channel, which can also be called a single blood oxygen detection process. As shown in FIG. 2, the process may specifically include steps S201 to S215.
  • the first prompt information includes the operation content and / or precautions before measuring the blood oxygen value of the first part.
  • the prompt information may be referred to as first prompt information.
  • the medical device can output the prompt information in various ways, including but not limited to sound, interface text, and the like.
  • the function of the first prompt message is to remind medical staff of the operation items before blood oxygen measurement, including but not limited to operation content and / or precautions. For example, prompting medical personnel to connect the measurement module to the upper limb of the test object; another example, prompting medical personnel to wait for the test object to be calm before taking measurements;
  • a prompt message contains a start button. After the user triggers the start button, the measurement module starts to collect the blood oxygen value of the detection object.
  • judgment rule includes parts that need to detect the blood oxygen value, and the number of parts may be two or other. This application takes two detection parts of a hand and a foot as an example for description.
  • This process is a single detection channel detection process.
  • the blood oxygen values of the two parts are measured one after another.
  • the first measured part may be referred to as the first part
  • the subsequent measured part may be referred to as the second part.
  • the first part can be a hand or a foot.
  • the detection interface includes a first area 301 in which a prompt text "Please connect the blood oxygen probe to the right hand of the baby" is displayed.
  • this area can also display the prompt text "After the baby is quiet, start measuring”.
  • the two prompt texts can be displayed on a detection interface at the same time.
  • the first text can be prompted first, and then the second text can be prompted.
  • the detection interface may also include a second area 302 (used to display the blood oxygen trend graph of the right hand), a third area 303 (used to display the blood oxygen trend graph of the foot), and a fourth area 304 (amount used to display the measurement result, For example, first result information, second result information, or others).
  • the fourth area 304 contains a "start measurement" button to remind the medical staff that after performing the above operation items, they can press this button to start measurement.
  • S202 Obtain a real-time blood oxygen value of the first part collected within a preset time period, generate a blood oxygen trend graph based on the real-time blood oxygen value, and output the blood oxygen trend graph.
  • the medical equipment includes a measurement module. After the measurement module is connected to the first part of the detection object, the blood oxygen value of the part can be collected. In order to collect data accurately, the collection is not completed at once, but the real-time blood oxygen value of the first part is continuously collected in a continuous period of time.
  • the length of this time period may be preset, so it may be called a preset time period. For example, the length of the preset time period may be set to 40 seconds. Of course, this value can be set to other values according to the actual situation.
  • the measurement module sends the real-time blood oxygen value of the first part to the processor of the medical device, and the processor can generate a trend graph of blood oxygen saturation according to the real-time blood oxygen value of the first part.
  • the drawing method of the trend graph may be any existing method, which is not repeated here.
  • the trend graph will be refreshed and displayed as the collected real-time blood oxygen value is updated. For example, if a new blood oxygen measurement value is obtained, the trend graph will be refreshed once.
  • the blood oxygen trend graph can reflect the length of the preset time period.
  • the abscissa of the blood oxygen trend graph is the time axis, and the end time point of the time axis can be set to 0, to indicate that the end time of the test is the current time point;
  • the start time point of the time axis is set to the length value of the preset time period, and is a negative number, to indicate that the measurement is started from a time point of the preset time period length from the current time point.
  • the blood oxygen trend graph shows the real-time change of blood oxygen value within a preset time period. If the blood oxygen value changes greatly, it will affect the accuracy of the target blood oxygen value, which in turn will affect the accuracy of the detection result. According to the blood oxygen trend chart, medical staff can understand whether the blood oxygen value of the test subject is stable during the blood oxygen measurement period, that is, within a preset time period. If the blood oxygen value is unstable, the blood oxygen value of the subject can be stabilized by various medical means such as physics and re-measured. Of course, in some implementations, the blood oxygen trend graph may not be output.
  • the second prompt information includes relevant information and / or precautions during the measurement of the blood oxygen value of the first part.
  • the measurement of the blood oxygen value of the first part is a process.
  • some prompt information can be output for the medical staff to remind the medical staff to pay attention to the operation matters during the measurement process, or to prompt the medical staff to measure Relevant information generated during the process, or both are prompted.
  • the relevant information in the blood oxygen value measurement process may include, but is not limited to, the timing corresponding to the preset time period.
  • the medical device may output the second prompt information through an output module such as an audio module and / or a display module.
  • the second prompt information can be output through the detection interface provided by the display module.
  • the manifestation of the timing in the detection interface may be a timing progress bar, a timing dial Or timing numbers, etc. Specifically, you can use a countdown to prompt.
  • FIG. 3B another example of the detection interface is shown in FIG. 3B.
  • the detection interface includes a first area 311, a second area 312, a third area 313, and a fourth area 314.
  • the prompt text "During measurement, please keep the baby as quiet as possible!" Is displayed, and a countdown progress bar is displayed.
  • the length of the progress bar may be the length of the preset time period of 40s, the light part of the progress bar is the elapsed time, the dark part is the remaining time, and the prompt text "25s remaining" is displayed.
  • the second area 312 displays the blood oxygen trend graph of the right hand in the sub-area corresponding to the right hand.
  • the start time point of the time coordinate axis of the blood oxygen trend chart is -40s, and the end time point is 0.
  • the time point may not be displayed in the blood pressure trend graph.
  • the blood oxygen trend graph is the trend graph obtained after the measurement duration of 15 seconds.
  • step S203 is performed after step S202.
  • a situation that can be expressed is that the start output time of the blood oxygen trend graph is earlier than the output time of the second prompt information.
  • this step is not limited to being executed after step S202, but may be executed simultaneously when the blood oxygen trend graph is output in step S202.
  • the detection interface displays the changed blood oxygen trend graph in real time, and the second prompt information can be displayed at the same time, and the second prompt The countdown in the information changes as the measurement process progresses.
  • S204 Obtain a target blood oxygen value based on the real-time blood oxygen value of the first part, and output the target blood oxygen value.
  • the measurement module sends the real-time blood oxygen value of the first part to the processor of the medical device, and the processor comprehensively calculates a plurality of blood oxygen values within the time period to obtain a more accurate final measured blood oxygen value.
  • the final measured blood oxygen value may be referred to as a target blood oxygen value.
  • the comprehensive calculation method can be any existing method, for example, the average value of the measured multiple sets of blood oxygen values can be calculated. .
  • the measurement results may require multiple measurement processes, each measurement process will obtain the real-time blood oxygen value, blood oxygen trend map and target blood oxygen value of the first part, so you can use the number label Differentiate the data in different measurement processes.
  • the real-time blood oxygen value in this step may be called a first real-time blood oxygen value
  • the blood oxygen trend graph may be called a first blood oxygen trend graph
  • the target blood oxygen value may be called a first target blood oxygen value.
  • Output modules include but are not limited to audio modules, displays, etc.
  • the measurement time point of the target blood oxygen value can also be output.
  • the measurement time point may be a start time point of a preset time period, an end time point of a preset time period, or a certain time point within a preset time period.
  • the display outputs the obtained information through the detection interface.
  • the detection interface includes a first area 321, a second area 322, a third area 323, and a fourth area 324.
  • the second area 322 displays the complete blood oxygen trend graph of the first part (hand) within a preset time length;
  • the third area 323 displays the blood oxygen target value corresponding to the blood oxygen trend graph, that is, the right hand
  • the target blood oxygen value is 90 (unit:%).
  • the second area and the third area in the detection interface can also be divided into multiple sub-areas, and the number of the sub-areas is the same as the number of the required detection parts.
  • the corresponding position of each sub-region may include the identification of the detection part, such as the words "right hand” and "foot”, and / or icons representing hands and feet, and so on.
  • Step S205 output third prompt information, the third prompt information is used to prompt whether the blood oxygen value of the first part needs to be re-measured; if yes input operation is received, return to step S201; if no input operation is received, execute Step S206.
  • the medical staff after obtaining the target blood oxygen value of the first part, if the medical staff believes that there are factors that can affect the accuracy of the target blood oxygen value during the measurement process, such as the neonatal crying causing the blood oxygen to fluctuate drastically, you may wish to re-measure .
  • the judgment rule of the medical staff can be their own observation information on the detection object during the measurement process, or, as mentioned above, if the blood oxygen trend graph is displayed on the detection interface, the medical staff can observe the value change in the blood oxygen trend graph, To determine whether re-measurement is required. Or, the medical device determines whether the fluctuation of the blood oxygen trend graph during the measurement is within the preset normal fluctuation range.
  • the medical device may not directly generate the prompt information, but directly start the subsequent steps.
  • prompt information may be output, and in order to distinguish it from other prompt information, the prompt information may be referred to as third prompt information.
  • the output module of the third prompt information may include but is not limited to an audio module, a display, and so on.
  • the first area 321 displays the prompt text “Measurement completed, whether re-measurement is required”, and the fourth area 324 contains corresponding operation buttons, namely “Confirm this measurement” and “Re-measurement” ".
  • the button for confirming this measurement he can perform the subsequent step of measuring the blood oxygen value of the second part; if the user triggers the button for re-measurement, the above steps S201-305 need to be performed again.
  • steps S206-S210 measure the blood oxygen value of the second part, and related descriptions can be found in the above steps S201-S205, which are not repeated here.
  • a fourth prompt message is output, and the fourth prompt message includes the operation content and / or precautions before measuring the blood oxygen value of the second part.
  • the second part is a detection part other than the first part involved in the judgment rule.
  • the first part is a hand
  • the second part may be a foot.
  • the fourth prompt information is output through the detection interface, see FIG. 3D, which shows yet another example of the detection interface.
  • the detection interface includes a first area 331, a second area 332, a third area 333, and a fourth area 334.
  • the prompt text contained in the first area 331 is "Please connect the blood oxygen probe to the baby's foot. After the baby is quiet, start the measurement".
  • the second region 332 includes a blood oxygen trend graph in the second region 322 in FIG. 3C.
  • S207 Obtain the real-time blood oxygen value of the second part collected within the preset time period, generate a blood oxygen trend graph based on the real-time blood oxygen value, and output the blood oxygen trend graph.
  • the fifth prompt information includes relevant information and / or precautions during the measurement of the blood oxygen value of the second part.
  • the blood oxygen trend graph of the second site and the fifth prompt information are output through the detection interface, as shown in FIG. 3E, which shows yet another example of the detection interface.
  • the detection interface includes a first area 341, a second area 342, a third area 343, and a fourth area 344.
  • the prompt text "During measurement, please keep the baby as quiet as possible!" Is displayed, and a countdown progress bar is displayed.
  • the duration of the progress bar is the length of the preset time period of 40s, and the prompt text "25s remaining" is displayed.
  • the blood oxygen trend graph of the foot is also displayed in the sub-region corresponding to the foot. According to the countdown of the progress bar, the blood oxygen trend graph is the trend graph obtained after the measurement duration of 15 seconds.
  • S209 Obtain the target blood oxygen value of the second part based on the real-time blood oxygen value of the second part, calculate the difference between the blood oxygen value of the first part and the target blood oxygen value of the second part, and output the target blood oxygen of the second part Value and difference.
  • the difference between the target blood oxygen values of the two detection sites is because the difference between the two needs to be used to obtain the detection result in the judgment rule. If the difference value is output by detecting the interface, in order to remind, you can set the display method for the difference value, such as adding a background color.
  • a sixth prompt message is output.
  • the sixth prompt message is used to prompt whether the blood oxygen value of the second part needs to be re-measured; if yes input operation is received, return to step S206; if no input operation is received, execute Step S211.
  • the target blood oxygen value, the difference value, and the sixth prompt information of the second part are output through the detection interface, as shown in FIG. 3F, which shows yet another example of the detection interface.
  • the detection interface includes a first area 351, a second area 352, a third area 353, and a fourth area 354.
  • the first area 351 displays a prompt text "Measurement completed, whether re-measurement is required", and the fourth area 354 contains operation buttons, "Confirm this measurement” and "Re-measurement”, respectively.
  • the button for confirming this measurement he can perform the subsequent second measurement of the blood oxygen value of the two parts; if the user triggers the button for re-measurement, the above steps S206-S210 need to be performed again.
  • the second area 352 displays the complete blood oxygen trend graph of the foot within a preset time length
  • the third area 353 displays the target blood oxygen value of the foot 93 (in%)
  • the blood of the foot and hand Oxygen target value difference 3 (unit:%).
  • the header corresponding to the difference value 3 may contain a prompt icon, such as " ⁇ SpO2", where SpO2 represents blood oxygen saturation.
  • the background area of the difference 3 can be filled with the background color.
  • step S211 Determine the target blood oxygen value of the first part, the target blood oxygen value of the second part, and the difference between the two according to the judgment rule. If a detection result is obtained, perform step S212 to output the first result information or the first 2. Results information; if a suspected preliminary result is obtained, step S213 is executed.
  • the judgment rule can directly obtain the target detection result based on the target blood oxygen value of the first part, the target blood oxygen value of the second part, and the difference between the two. But in some cases, you need to go through multiple measurements, such as three times.
  • S212 Output first result information or second result information.
  • the detection result can be displayed in the third area. If the first result information is output, for the accuracy of the result, it is also possible to output suggestion information for performing other measurement methods such as cardiac color Doppler ultrasound to accurately check the detection object.
  • S213 Determine the start time point of the second measurement, and output a seventh prompt message.
  • the seventh prompt message is used to prompt the timing from the start time point of the second measurement.
  • the starting time point of the second measurement is determined according to the time point at which the preliminary result is generated and the length of the measurement interval in the judgment rule.
  • the timing reminder may not be executed all the time, but only when the timing enters a shorter time range. It should be noted that in practical applications, after the timing enters a shorter time range, the current interface of the medical device may not be the detection interface, and an eighth prompt message may be generated, which is used to prompt the current interface to switch to Check the interface, or prompt the medical staff to conduct the second measurement process.
  • the time is 1 hour, and the reminder starts when 0.5 hours are entered. If the timing is reminded by sound, it may not be continuously reminded, but reminded at preset time intervals. If the timing is prompted by the display, more specifically, by the above detection interface provided by the display, see FIG. 3G, which shows another example of the detection interface.
  • the detection interface includes a first area 361, a second area 362, a third area 363, and a fourth area 364.
  • the countdown progress bar is displayed in the first area 361, and the prompt text "30 minutes before the next measurement", min is minutes; the fourth area 364 displays an untriggerable "start measurement” operation button.
  • the timing prompted by the seventh prompt information can control the control button used to indicate the start of measurement. Specifically, when the timing does not meet the preset time range, the control button is in an inoperable state; when the timing meets the preset time range, the control button is switched to an operable state.
  • the preset duration range is 10 minutes. In this way, the medical staff can be reminded in time that the timing is about to end, and the medical staff can be reminded to prepare for the measurement in advance.
  • the prompt in the first area of the detection interface contains the prompt text "10 minutes before the next measurement", and the start measurement operation button in the fourth area is switched from the inoperable state to the operable state in FIG. 3G .
  • step S214 If the measurement step is not executed after the second measurement start time point is reached, an eighth prompt message is output.
  • the eighth prompt message is used to prompt whether to abandon the first measurement result; If an input operation is performed, step S215 is performed; if an input operation that retains the first measurement result is received, return to step S201.
  • the second measurement process may not be started in time due to omissions of medical personnel and other reasons.
  • the measurement is required to start, it is found that the interval between different measurement processes prescribed by the judgment rule has been exceeded.
  • medical staff can be provided with options. If the timeout is not long, they can choose to continue to start the second measurement and retain the first measurement results; if the timeout is too long, they can give up the first time Measure the results and restart the first measurement process.
  • the first area 371 prompt in the detection interface contains the prompt text "Timeout, do you want to re-measure", and the fourth area 374 provides two operation buttons, namely "Continue measurement” and " Remeasure ".
  • the second area 372 is used to display the blood oxygen trend graph, and the third area 373 is used to display the blood oxygen measurement result (refer to the description above).
  • the prompt text included in each detection interface of the present application is not limited to the illustration, but may also be other content with the same prompt function.
  • the medical equipment can provide prompt information with a guiding role for each measurement step, and the prompt information includes two blood oxygen measurement signal acquisition processes with the detection object
  • the prompt information can guide the operator step by step to complete a complete inspection process, reduce the influence of the operator's human control factors on the inspection result, and provide help for the operator's inspection operation , The operator experience is better.
  • the relevant information of the first part and the second part can use different display styles to distinguish.
  • the display style may include but is not limited to color.
  • not all of the prompt information may appear in the same detection flow. In practical applications, the detection flow may include any combination of one or more of the above prompt information.
  • the detection process based on the single blood oxygen detection channel. It can be known that there may be multiple blood oxygen detection channels of the medical device. In this case, the detection process may also be implemented based on the double blood oxygen detection channel. The following mainly introduces this detection process.
  • FIG. 4 shows an example of a detection procedure based on a dual blood oxygen detection channel.
  • the flow may include the following steps S401-410.
  • the first prompt information includes the operation content and / or precautions before measuring the blood oxygen value of the first part and the second part.
  • the medical device has at least two blood oxygen detection channels, and the two blood oxygen detection channels can perform blood oxygen measurement on the first part and the second part at the same time.
  • the medical device may output the prompt information through the output module.
  • the prompt information refer to the description of step S201 above, which is not repeated here.
  • the medical device outputs the first prompt information through the detection interface.
  • the detection interface includes a first area 501, a second area 502, a third area 503, and a fourth area 504.
  • the first area 501 displays a prompt text "Please connect the blood oxygen probe to the baby's right hand and foot respectively. After the baby is quiet, please click to start measuring.”
  • the third area 503 is used to display the target blood oxygen values of the first part and the second part. Since the two blood oxygen values have not yet been obtained, the prompt text "no measurement result" can be displayed in the third area to It reminds the medical staff that the measurement operation has not been performed. It should be noted that the display color of the prompt text can be lighter to avoid hindering the observation of other content.
  • the second area 502 and the fourth area 504 have no display content.
  • S402 Obtain real-time blood oxygen values of the first part and the second part collected within a preset time period, generate respective blood oxygen trend graphs based on the respective real-time blood oxygen values, and output two blood oxygen trend graphs.
  • the second prompt information includes relevant information and / or precautions during the measurement of the blood oxygen value of the first part and the second part.
  • this process can obtain the blood oxygen values measured by two blood oxygen detection channels at the same time, and obtain the blood oxygen trend graphs of the two detection sites at the same time.
  • the display outputs the blood oxygen trend graph and the second prompt information through the detection interface.
  • the first area 511 displays a prompt text "During measurement, please keep the baby quiet".
  • the second area 512 the blood oxygen trend graphs of the hands and the feet are simultaneously output.
  • the third area 513 and the fourth area 514 have no display content.
  • S404 Obtain respective target blood oxygen values based on the real-time blood oxygen values of the first part and the second part, calculate the difference between the two target blood oxygen values, and output the target blood oxygen value and the difference.
  • step S405 Output third prompt information, the third prompt information is used to prompt whether it is necessary to re-measure the blood oxygen value of the first part and the second part; if yes input operation is received, return to step S401; if no input is received Operation, step S406 is executed.
  • the display outputs two target blood oxygen values, the difference between the two target blood oxygen values, and third prompt information through the detection interface. See Figure 3F for a style of the detection interface.
  • step S406 Judging the target blood oxygen value of the first part, the target blood oxygen value of the second part, and the difference between the two according to the judgment rule, if it is determined that the first result information or the second result information needs to be output, then the step is performed S407; if a suspected preliminary result is obtained, step S408 is executed.
  • S407 Output first result information or second result information.
  • S408 Determine the starting time point of the second measurement, and output a fourth prompt message, the fourth prompt message is used to prompt the timing from the starting time point of the second measurement.
  • the display outputs the fourth prompt information through the detection interface. See Figure 3G and Figure 3H for a style of the detection interface.
  • step S409 If the measurement step is not executed after the second measurement start time point is reached, a fifth prompt message is output.
  • the fifth prompt message is used to prompt whether to abandon the first measurement result; For an input operation, step S410 is performed; if an input operation for retaining the first measurement result is received, then return to step S401 to obtain a detection result.
  • step S407 can obtain a positive or negative detection result.
  • the third area 523 contains the measurement results of the three measurement time points 06:52, 07:30, and 08:02, and the three measurement results are all the right-hand SpO2 is 90 (%), The SpO2 of the foot is 93 (%), and the difference is 3 (%); the text "Suspect is positive, it is recommended to do heart color Doppler ultrasound" is displayed in the first area 521. In order to highlight the test result, you can add a background color to "Suspected Positive". Of course, the "suspected positive" here is just an example of the monitoring result information.
  • the double blood oxygen detection process shown in FIG. 4 is based on multiple blood oxygen detection channels. It should be noted that, if the medical device includes multiple blood oxygen detection channels, in actual application, it can be determined according to the number of detection channels used, that is, the number of detection channels in the interface of the measured blood oxygen related signal to determine Which inspection process to perform. In other words, the detection process can be automatically switched according to the number of detection channels used. Alternatively, the user may input information on which detection process is selected through the input device, and determine the executed detection process based on the user's selection information.
  • various measurement information can be output. For example, when displaying the blood oxygen trend graph, any one or more of the plethysmography wave, real-time blood oxygen value, and perfusion index of the detection site may be displayed together. The combined information of real-time blood oxygen waveform and perfusion index can be used to judge the quality of the detection signal.
  • the second area 612 also displays the blood oxygen waveform graph pleth, real-time blood oxygen value SpO2, and perfusion index PI (perfusion index, PI).
  • the real-time blood oxygen value SpO2 of the right hand is 98% and the perfusion index PI is 1.3; the real-time blood oxygen value SpO2 of the foot is 94% and the perfusion index PI is 1.0.
  • the detection interface may be the entire display interface of the display of the medical device. In other embodiments, the detection interface may be suspended or embedded in a window on a display interface of the display of the medical device.
  • This application provides medical equipment.
  • the single blood oxygen detection process and the double blood oxygen detection process can be applied to the detection of severe congenital heart disease.
  • the corresponding first blood oxygen saturation value and second blood oxygen saturation value are obtained based on the first blood oxygen measurement signal and the second blood oxygen measurement signal, respectively.
  • the first blood oxygen saturation value or the second blood oxygen saturation value is less than the first threshold; the acquired first blood oxygen saturation value and the second blood oxygen saturation value It is between the first threshold and the second threshold; the absolute value of the difference between the obtained first blood oxygen saturation value and the second blood oxygen saturation value is greater than the third threshold; wherein, the first threshold is smaller than the second threshold.
  • the light sensor before collecting the blood oxygen measurement signal, can also output a prompt message, which is used to guide the operator in which way to start measuring the blood oxygen measurement signal. Different detection processes start differently, and the content of the prompt information is also different. Therefore, before outputting the prompt information, it is determined whether to output the first prompt information or the second prompt information according to the selection information input by the operator or according to the determined number of photosensors. Among them, the number of light sensors is determined according to the number of light sensor interfaces with input signals among the light sensor interfaces connected to the medical device.
  • the first prompt message is a guiding operation of separately collecting blood oxygen measurement signals of two body parts of the detection object by using the same light sensor. Specifically, the output directs the operator to connect an optical sensor to the first body part of the detection object, and after acquiring the first blood oxygen measurement signal, the output directs the operator to connect the optical sensor to the second detection object Instructions for body parts.
  • an implementation manner for determining that the first blood oxygen measurement signal is completed is to obtain a blood oxygen measurement signal of a preset time length, such as a blood oxygen saturation signal of 30 seconds.
  • the second prompt information is a guiding operation for simultaneously collecting blood oxygen measurement signals of two body parts of the detection object by using the first light sensor and the second light sensor respectively. Specifically, an instruction to direct the operator to connect the first light sensor to the first body part of the detection object and an instruction to direct the operator to connect the second light sensor to the second body part of the detection object are output.
  • the optical sensor can obtain the first blood oxygen measurement signal and the second blood oxygen measurement signal at the same time, and as shown in the single blood oxygen detection process, the optical sensor can also obtain the first A blood oxygen measurement signal and a second blood oxygen measurement signal may be referred to as a first time and a second time, respectively, to facilitate two times.
  • the two different blood oxygen measurement signals are signals measured by two different body parts, and for convenience of distinction, they are called a first blood oxygen measurement signal and a second blood oxygen measurement signal.
  • the display graphics of the first blood oxygen measurement signal such as a waveform diagram
  • the display graphics of the second blood oxygen measurement signal such as a waveform diagram
  • the first blood oxygen saturation value can be obtained as the blood oxygen value of the limb
  • the second blood oxygen saturation value can be obtained as the blood oxygen value of the upper limb.
  • One calculation method is to obtain multiple sets of blood oxygen saturation values based on the first blood oxygen measurement signal, and use the average value of the multiple sets of blood oxygen saturation values as the first blood oxygen saturation value; based on the second blood
  • the oxygen measurement signal obtains multiple sets of blood oxygen saturation values, and the average value of the multiple sets of blood oxygen saturation values is used as the second blood oxygen saturation value.
  • multiple sets of blood oxygen values for the lower extremities can be obtained within 30 seconds, and the average of multiple sets of blood oxygen values for the lower extremities can be calculated as the blood oxygen values for the lower extremities; multiple sets of blood oxygen values for the hands can be obtained within 30 seconds, Calculate the average of multiple sets of blood oxygen values of the hand as the blood oxygen value of the hand.
  • first result information may be obtained, where the first result information indicates a positive result.
  • the first result information is output to prompt the operator to detect the object as a positive result.
  • the first result information is not limited to a positive result, and the blood oxygen value and / or the difference between the blood oxygen values of the two parts may be directly displayed as the first result information.
  • the first blood oxygen saturation value and the second blood oxygen saturation value may be a set of parameter values obtained through one measurement, or multiple sets of parameter values obtained through multiple measurements.
  • the result information can be obtained by only one set of parameter values obtained in one measurement process, but in some cases, one set of parameter values obtained in one measurement process is not lower limbs to obtain the result information , It is necessary to obtain the final result information after comprehensive judgment of multiple sets of parameter values obtained through multiple measurement processes.
  • the first output can be directly output Result information; or, the first blood oxygen saturation value or the second blood oxygen saturation value is greater than or equal to the second threshold, and the difference between the first blood oxygen saturation value and the second blood oxygen saturation value If the absolute value is less than or equal to the third threshold, the second result information can be directly output. It can be seen that as long as the parameter value obtained from the first measurement satisfies the above conditions, no subsequent measurement is required, and the result information can be directly obtained. In order to distinguish this condition from other conditions, the above condition may be referred to as the first condition.
  • the first set of parameter values does not satisfy the above-mentioned first condition, but satisfies the second condition, that is, the first blood oxygen saturation value and the second blood oxygen saturation value are between the first threshold and the second threshold; or If the absolute value of the difference between the first blood oxygen saturation value and the second blood oxygen saturation value is greater than the third threshold, a second measurement process is required.
  • the result information can also be directly obtained without performing the third measurement process.
  • the third measurement process is only required if the set of parameter values obtained during the second measurement process satisfies the above second condition.
  • the set of parameter values obtained in the third measurement process can also obtain the result information according to the above conditions. It should be noted that the judgment rule shown in FIG. 1 can measure up to three times. If the set of parameter values obtained in the third measurement process still meets It is the second condition, so there is no need to perform the fourth measurement, and the first result information is output directly.
  • the result information may be obtained by one measurement process, or may be obtained by multiple measurement processes when certain conditions are met.
  • the first result information can be obtained; or, in some cases , The first blood oxygen saturation value and the second blood oxygen saturation value in a group of parameter values are between the first threshold and the second threshold; or, in some cases, the first The absolute value of the difference between the first blood oxygen saturation value and the second blood oxygen saturation value is greater than the third threshold, and the first result information may also be obtained.
  • the blood oxygen saturation value of other measurements is needed to assist in obtaining the result information. Furthermore, a prompt message indicating that the operator is to start the measurement again after a preset time period is output, such as a prompt message to measure again after 1 hour.
  • the first blood oxygen saturation value and the second blood oxygen saturation value of the second group, and the first blood oxygen saturation value and the second blood oxygen saturation value of the third group are obtained.
  • the three sets of parameter values all satisfy the condition that the first blood oxygen saturation value and the second blood oxygen saturation value are between the first threshold and the second threshold, or all satisfy the first blood oxygen saturation value and the second blood oxygen saturation
  • the first result information can be obtained under the condition that the absolute value of the difference between the degree values is greater than the third threshold.
  • the first result information that is, a positive result
  • the first result information is also output directly.
  • the second set of parameter values simultaneously satisfy the following two conditions, that is, the first blood oxygen saturation value or the second blood oxygen saturation value is greater than or equal to the second threshold, and the first blood oxygen saturation value and the If the absolute value of the difference between the second blood oxygen saturation value is less than or equal to the third threshold, the second result information is output.
  • the third set of parameter values meets the two conditions, and the second result information is also output. Therefore, it can be known that the judgment condition of the second result information is the above two conditions, that is, the second result information can be obtained on the basis of satisfying the two conditions.
  • the blood oxygen detection channel may be a wired channel, and the connected detection module may be a blood oxygen probe.
  • the blood oxygen detection channel may also be a wireless channel, and the detection module used may be a wireless blood oxygen sensor, such as a wireless blood oxygen light sensor.
  • the wireless blood oxygen sensor can be remotely controlled by the processor of the medical device. After receiving the measurement start signal, the blood oxygen value of the first part and / or the second part of the test object is measured, and the obtained blood oxygen value is sent to Processor of medical equipment.
  • the measurement start signal may include the measurement duration, or the measurement duration is recorded in the wireless blood oxygen sensor.
  • the wireless blood oxygen sensor can be provided with an acousto-optic module to remind the working state of the wireless blood oxygen sensor by sound and light. For example, when the wireless blood oxygen sensor receives the measurement start signal, when the blood oxygen value measurement is completed, when the blood oxygen value is sent, or when the connection position between the sensor and the detection object is abnormal, an audible and visual prompt may be generated. Different situations can output different forms of sound and light to prompt the occurrence of different situations.
  • the way that the wireless blood oxygen sensor sends the blood oxygen value to the main body of the medical device can be various wireless methods, such as WI-FI, radio frequency, Bluetooth, Internet of Things, etc.
  • the detection module can be a wireless sensor, which can be controlled remotely by a medical device. specifically:
  • the medical device sends a measurement start instruction to the wireless light sensor.
  • the wireless light sensor starts measurement based on the measurement start instruction, and provides a reminder message indicating that the wireless light sensor is measuring, such as the flashing light output by the photoelectric module to indicate that the wireless light sensor is measuring.
  • the medical device After the medical device determines that the first blood oxygen measurement signal and / or the second blood oxygen measurement signal is obtained, it sends an end measurement instruction to the wireless light sensor.
  • the wireless light sensor ends the measurement based on the end measurement instruction and provides a wireless light sensor.
  • Reminder information after the measurement is completed such as the photoelectric module outputting red constant light to indicate that the wireless light sensor measurement is completed.
  • the wireless light sensor can automatically end the measurement based on its own setting information, such as measurement time length information.
  • the medical device may include: a memory 701, a processor 702, and a communication bus 703.
  • the memory 701 and the processor 702 communicate with each other through the communication bus 703.
  • the memory 701 is used to store programs.
  • the processor 702 is configured to execute a program.
  • the program may include program code, and the program code includes an operation instruction of the processor.
  • the program may be specifically used for: acquiring a first blood oxygen measurement signal measured from the first body part of the detection object by at least one light sensor, and a second blood oxygen measurement signal measured from the second body part of the detection object;
  • the optical sensor generates the blood oxygen measurement signal based on the light attenuation information after the emitted light of at least two wavelengths penetrates the body part;
  • the corresponding blood oxygen measurement signal is obtained based on the first blood oxygen measurement signal and the second blood oxygen measurement signal, respectively
  • a first blood oxygen saturation value and a second blood oxygen saturation value it is determined to output the first result information to one of the following conditions: the first blood oxygen saturation value or the second blood oxygen saturation value is less than the first Threshold; the obtained first blood oxygen saturation value and the second blood oxygen saturation value are between the first threshold and the second threshold; the obtained first blood oxygen saturation value and the The absolute value of the difference in the second blood oxygen saturation value is greater than the third threshold; the first threshold is less than the second threshold.
  • the program may be specifically used to provide two different blood oxygen measurement processes; wherein the blood oxygen measurement process is based on blood oxygen measurement signals measured from two body parts of the detection object based on at least one light sensor, and is based on the blood oxygen measurement
  • the measurement signal determines the output detection result; the light sensor generates the blood oxygen measurement signal based on the light attenuation information after the emitted light of at least two wavelengths penetrates the body part; after receiving the start instruction of the blood oxygen measurement process, Start the blood oxygen measurement process corresponding to the start instruction.
  • the program may be specifically used to: output prompt information, the prompt information is used to provide a guiding operation for the blood oxygen measurement signal acquisition process of the two body parts of the detection object; obtain at least one light sensor from the two bodies of the detection object A blood oxygen measurement signal obtained by measuring the part; the light sensor generates the blood oxygen measurement signal based on the light attenuation information after the emitted light of at least two wavelengths penetrates the body part; obtaining a corresponding based on the blood oxygen measurement signal Two blood oxygen saturation values; determine the output result information based on the two blood oxygen saturation values.
  • processor is also configured to perform all the steps and operations related to the processing described above.
  • the processor 702 may be a central processing unit CPU, or a specific integrated circuit ASIC (Application Specific Integrated Circuit), or one or more integrated circuits configured to implement the embodiments of the present application. It should be noted that the processor 702 may be a hardware representation of the above virtualization module.
  • ASIC Application Specific Integrated Circuit
  • the present application also provides a readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, any one of the detection methods provided by the above medical devices is implemented.
  • Figure 8 provides a system framework diagram of a parameter processing module in a multi-parameter monitor.
  • the multi-parameter monitor has an independent housing with a sensor interface area on the housing panel, in which multiple sensor interfaces are integrated to connect with various external physiological parameter sensor accessories 811.
  • the housing panel also includes a small LCD display area, display 818 , Input interface circuit 820 and alarm circuit 819 (such as LED alarm area) and so on.
  • the parameter processing module is used for external communication and power interface for communicating with the host and taking power from the host.
  • the parameter processing module also supports extrapolation parameter modules.
  • the plug-in monitor host can be formed by inserting the parameter module as a part of the monitor, or it can be connected to the host through a cable.
  • the extrapolation parameter module is used as an external accessory of the monitor.
  • the multi-parameter monitor includes a memory 817 for storing computer programs and various data generated during the related monitoring process.
  • the internal circuit of the parameter processing module is placed in the housing, as shown in FIG. 8, and includes at least two signal acquisition circuits 812 corresponding to physiological parameters, a front-end signal processing circuit 813, and a main processor 815.
  • the main processor 815 may implement various steps related to processing in each of the foregoing apnea event monitoring methods.
  • the signal acquisition circuit 812 can be selected from an electrocardiogram circuit, a breathing circuit, a body temperature circuit, a blood oxygen circuit, a non-invasive blood pressure circuit, an invasive blood pressure circuit, etc. These signal acquisition circuits 812 are electrically connected to corresponding sensor interfaces for electrical
  • the sensor accessory 811 is connected to different physiological parameters, and its output end is coupled to the front-end signal processor.
  • the communication port of the front-end signal processor is coupled to the main processor.
  • the main processor is electrically connected to the external communication and power interface.
  • the front-end signal processor completes the sampling and analog-to-digital conversion of the output signal of the signal acquisition circuit, and outputs the control signal to control the measurement process of the physiological signal.
  • These parameters include but are not limited to : ECG, respiration, body temperature, blood oxygen, noninvasive blood pressure and invasive blood pressure parameters.
  • the front-end signal processor can be implemented by a single-chip microcomputer or other semiconductor devices, or by ASIC or FPGA.
  • the front-end signal processor can be powered by an isolated power supply. After simple processing and packaging, the sampled data is sent to the main processor through the isolated communication interface.
  • the front-end signal processor circuit can be coupled to the main processor 815 through the isolated power supply and the communication interface 814 .
  • the reason why the front-end signal processor is powered by the isolated power supply is that the DC / DC power supply isolated by the transformer plays the role of isolating the patient from the power supply equipment.
  • the main purposes are: 1. Isolating the patient, floating the application part through the isolation transformer, so that The leakage current of the patient is small enough; 2. Prevent the voltage or energy during the application of defibrillation or electrocautery from affecting the cards and devices of the intermediate circuit such as the main control board (guaranteed by creepage distance and electrical clearance).
  • the main processor completes the calculation of physiological parameters, and sends the calculation results and waveforms of the parameters to the host (such as a host with a display, a PC, a central station, etc.) through external communication and power interface.
  • the external communication and power interface 816 can be Ethernet (Ethernet), Token Ring (Token Ring), Token Bus (Token Bus), and one or a combination of the LAN interfaces composed of the fiber distribution data interface (FDDI) as the backbone of the three networks. It is one or a combination of wireless interfaces such as infrared, Bluetooth, wifi, and WMTS communication, or one or a combination of wired data connection interfaces such as RS232 and USB.
  • the external communication and power interface 816 may also be one or a combination of two of a wireless data transmission interface and a wired data transmission interface.
  • the host computer can be any computer equipment such as the monitor's host computer, electrocardiogram machine, ultrasound diagnostic equipment, computer, etc., and install the matching software to form a monitoring device.
  • the host can also be a communication device, such as a mobile phone, and the parameter processing module sends data to a mobile phone that supports Bluetooth communication through a Bluetooth interface to realize remote transmission of data.
  • any tangible, non-transitory computer-readable storage medium can be used, including magnetic storage devices (hard disks, floppy disks, etc.), optical storage devices (CD-ROM, DVD, Blu-ray disks, etc.), flash memory, and / or the like .
  • These computer program instructions can be loaded onto a general purpose computer, special purpose computer, or other programmable data processing equipment to form a machine, so that these instructions executed on a computer or other programmable data processing device can generate a device that implements a specified function.
  • Computer program instructions can also be stored in a computer-readable memory, which can instruct the computer or other programmable data processing device to operate in a specific manner, so that the instructions stored in the computer-readable memory can form a piece Manufactured products, including implementation devices that implement specified functions.
  • Computer program instructions can also be loaded onto a computer or other programmable data processing device, so that a series of operating steps are performed on the computer or other programmable device to produce a computer-implemented process that allows the computer or other programmable device to execute Instructions can provide steps for implementing specified functions.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Optics & Photonics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

医疗设备,提供两种不同的血氧测量流程;其中血氧测量流程依据至少一个光传感器从检测对象的两个身体部位测量得到的血氧测量信号,并基于血氧测量信号确定输出检测结果;光传感器基于发射的至少两种波长的光穿透身体部位后的光衰减信息生成血氧测量信号;接收到血氧测量流程的启动指令后,启动与启动指令相对应的血氧测量流程。

Description

医疗设备 技术领域
本申请涉及医疗设备技术领域,更具体地,提供了一种医疗设备。
背景技术
目前,先天性心脏病(congenital heart disease,CHD)发病率较高,不容小视。相关调查数据表明:在部分国家,先天性心脏病的发病率约占活产新生儿的8-12‰,并且约1.2-1.7‰的活产新生儿患有严重威胁生命的重症先天性心脏病(Complex Congenital Heart Disease,CCHD);在中国,活产新生儿先天性心脏病的真实发病率为26.6‰,重症先天性心脏病的发病率为3.5‰。无论是直接致死还是间接致死,先天性心脏病都是因心脏畸形导致死亡的常见原因,也是新生儿期死亡的首要原因。
诊断先天性心脏病需要使用心脏超声,而使用心脏超声需要有超声设备和对应的超声技术医师,这对临床要求较高。如果对所有的新生儿都进行心脏超声诊断,诊断成本较高,效率较低。对于正常的新生儿来讲,做心脏超声也不是必须的。
发明内容
有鉴于此,本申请提供了一种医疗设备,可指导操作者逐步完成对检测对象的检测流程并提供检测结果。为了实现这一目的,提供以下技术方案:
第一方面,本申请提供了一种医疗设备,包括处理器,所述处理器配置为:
获取至少一个光传感器从检测对象第一身体部位测量得到的第一血氧测量信号,以及从检测对象第二身体部位测量得到的第二血氧测量信号;所述光传感器基于发射的至少两种波长的光穿透所述身体部位后的光衰减信息生成所述血氧测量信号;
分别基于所述第一血氧测量信号和第二血氧测量信号得到对应的第一血氧饱和度值和第二血氧饱和度值;
确定到下面条件之一输出第一结果信息:
所述第一血氧饱和度值或所述第二血氧饱和度值小于第一阈值;
获取到的所述第一血氧饱和度值和第二血氧饱和度值位于所述第一阈值和第二阈值之间;
获取到的所述第一血氧饱和度值和所述第二血氧饱和度值的差值的绝对值大于第三阈值;
所述第一阈值小于所述第二阈值。
第二方面,本申请提供了一种医疗设备,包括处理器,所述处理器配置为:
提供两种不同的血氧测量流程;其中血氧测量流程依据至少一个光传感器从检测对象的两个身体部位测量得到的血氧测量信号,并基于所述血氧测量信号确定输出检测结果;所述光传感器基于发射的至少两种波长的光穿透所述身体部位后的光衰减信息生成所述血氧测量信号;
接收到血氧测量流程的启动指令后,启动与所述启动指令相对应的血氧测量流程。
第三方面,本申请提供了一种医疗设备,包括处理器,所述处理器配置为:
输出提示信息,所述提示信息用于对检测对象两个身体部位的血氧测量信号采集过程提供指引性操作;
获取至少一个光传感器从所述检测对象两个身体部位测量得到的血氧测量信号;所述光传感器基于发射的至少两种波长的光穿透所述身体部位后的光衰减信息生成所述血氧测量信号;
基于所述血氧测量信号得到对应的两个血氧饱和度值;
基于所述两个血氧饱和度值确定输出结果信息。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一种医疗设备提供的检测流程示例图;
图2为基于单检测通道的检测流程;
图3A-3I为图2所示的检测流程对应的检测界面的多个示意图;
图4为基于双检测通道的检测流程;
图5A-5C为图4所示的检测流程对应的检测界面的多个示意图;
图6为检测界面的又一示意图;
图7为医疗设备的一种硬件结构示意图;
图8为监护仪的一种硬件结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请提供的医疗设备主要基于经皮血氧饱和度值,通过检测检测两个身体部位的血氧饱和度值来确定输出结果信息,检测过程无创且成本低。需要说明的是,本申请提供的医疗设备可以用于新生儿先天性心脏病的筛查,也可以用于其他需要进行血氧测量的场景中。
在具体实施例中,医疗设备包括血氧饱和度检测通道(简称为检测通道),检测通道包括测量模块如血氧探头,血氧探头可以采集被检测对象的经皮血氧饱和度值(经皮血氧饱和度值可以简称为血氧值)。测量模块的一种具体实现为光传感器,光传感器是基于发射的至少两种波长的光穿透身体部位后的光衰减信息来生成血氧测量信号,如经皮血氧饱和度信号。本申请实施例中,还基于判断规则和测量得到的血氧饱和度值来确定输出至少第一结果信息。
在具体实施例中,判断规则需要使用检测对象两个部位的血氧值。因此,医护人员需要多次操作测量模块,操作过程中的开始测量时间点、测量时间、测量步骤等各项内容都需要依靠个人能力及经验进行控制。这样,不仅检测过程不够自动方便,且人为不确定因素可能会影响检测结果的准确性。
因此,本申请还提供了一种医疗设备,能够指导操作者的检测操作过程,进而提高检测的方便性及准确度。
如图1所示,其示出了医疗设备所执行的一种检测流程。该检测流程可以以新生儿为检测对象,例如在新生儿出生后24小时到48小时的时间内进行检测,或者在出生后不足24小时且出院前的短时间内进行检测。当然,在实际应用中,还可以是具有检测需求的其他对象,或者,检测时间点也可以是其他时间点,并不局限于此。
具体的,检测流程包括如下步骤1.1-1.4:
步骤1.1:获取检测对象两个部位的血氧信号。
具体的,获取至少一个光传感器从检测对象第一身体部位测量得到的第一血氧测量信号,以及从检测对象第二身体部位测量得到的第二血氧测量信号;光传感器基于发射的至少两种波长的光穿透检测对象身体部位后的光衰减信息生成血氧测量信号
其中,使用血氧采集器件对检测对象进行测量,测量内容包括上肢及下肢的血氧饱和度。上肢具体可以是检测对象的手(例如右手),下肢具体可以是检测对象的足。
步骤1.2:获取检测对象两个身体部位的血氧饱和度值。具体的,分别基于第一血氧测量信号和第二血氧测量信号得到对应的第一血氧饱和度值和第二血氧饱和度值。
步骤1.3:基于第一血氧饱和度值和第二血氧饱和度值,来判断是否满足下面三个条件之一:
第一血氧饱和度值或第二血氧饱和度值小于第一阈值;
获取到的第一血氧饱和度值和第二血氧饱和度值位于第一阈值和第二阈值之间;
获取到的第一血氧饱和度值和第二血氧饱和度值的差值的绝对值大于第三阈值;
其中,第一阈值小于第二阈值
步骤1.4:在步骤1.3中,确定到满足三个条件之一,则输出第一结果信息。
在一实施例中,如果测量数据中,上肢或下肢任意一者血氧饱和度小于90%,则可以直接确定输出第一结果信息。
如果测量得到的结果中,上肢或下肢任意一者血氧饱和度大于等于95%,以及,上肢与下肢的血氧饱和度差值之间小于等于3%,则可以直接确定输出第二结果信息。第二结果信息是与第一结果信息相反的检测结果。
如果测量数据中,上肢以及下肢的血氧饱和度均在[90%~95%)内,上肢与下肢的血氧饱和度差值大于3%,这两种情况任意一种情况满足,则可以直接输出第一结果信息。当然,进一步的,在满足这种条件下,还可以将本次测量结果确定为疑似,需要依赖于二次/三次测量结果来确定输入第一结果信息或第二结果信息。即,在测量结果得到疑似结果的情况下,还需要后续的测量操 作,进而需要返回步骤1.1,再次对检测对象进行血氧测量。不同测量操作之间可以间隔一定时间段,例如间隔1小时。
需要说明的是,在疑似情况下重复测量的次数也可以进行控制。具体地,可以记录测量次数,在根据测量数据得到的结果为疑似的情况下,判断测量次数是否达到3次,如果是,则不再返回步骤1.1,而是直接确定输出第一结果信息。
医疗设备输出的第一结果信息和第二结果信息都可以供医护人员参考,以对检测对象进行某些方面的判断。
关于上述判断规则需要说明以下几点。
首先,判断条件中的各个阈值并不局限于上述实施例中提供的数值,还可以是医学判断规则所认可的其他数值,或者由医护人员根据临床经验设置的数值。为了便于描述,可以将90%所表示的阈值称为第一阈值,将95%所表示的阈值称为第二阈值,将3%所表示的阈值称为第三阈值。
另外,不同测量操作之间的间隔时长并不局限于1小时,可以根据实际检测需求而设置为其他数值。测量次数并不局限于三次,也可以根据实际检测需求而设置为其他数值。
结果信息可能由一次测量操作得出,也可能由多次测量操作得出。如需多次测量,操作人员需要控制每次测量之间的间隔时长。在一次测量操作中,也需要采集上肢以及下肢不同部位的血氧饱和度。操作过程较为繁琐复杂,需要人工依靠经验进行控制。
对此,本申请提供的一种医疗设备(例如多参数监护设备、血氧监护设备等),可以通过提示来指导操作过程,并可以提示测量结果。本申请提及的医疗设备,不局限于监护仪,也包括具有监护功能的有创/无创呼吸机、护士站、中央站等。
在实际应用中,医疗设备的血氧饱和度检测通道可能包含一个,也可能包含多个。检测通道数量不同,所执行的检测流程是不同的。如果仅包含一个检测通道,需要使用该同一检测通道分别测量不同部位的血氧饱和度;如果包含多个检测通道,则可以使用多个检测通道同时采集不同部位的血氧饱和度。
以下分别说明基于单检测通道的检测流程,以及基于双检测通道的检测流程。
见图2,其示出了基于单检测通道的检测流程,该流程也可以称为单血氧 检测流程。如图2所示,该流程可以具体包括步骤S201~215。
S201:输出第一提示信息,第一提示信息包含对第一部位进行血氧值测量前的操作内容和/或注意事项。
其中,为了便于与其他的提示信息区分,可以将该提示信息称为第一提示信息。医疗设备可以通过各种方式输出该提示信息,包括但不局限于声音、界面文字等。
第一提示信息的作用是,提示医护人员血氧测量前的操作事项,包括但不局限于操作内容和/或注意事项。例如,提示医护人员将测量模块与检测对象的上肢连接;又如,提示医护人员需要等检测对象状态平静后,才能进行测量;再如,提示医护人员可以手动触发血氧值测量过程,例如第一提示信息中包含开始按钮,用户触发开始按钮后,测量模块才开始采集检测对象的血氧值。
需要说明的是,判断规则中包含有需要检测血氧值的部位,部位数量可以是两个或者其他。本申请以手部以及足部两个检测部位为例进行说明。
本流程为单检测通道的检测流程,两个部位的血氧值是先后测量的,为了便于描述,可以将首先测量的部位称为第一部位,将后续测量的部位称为第二部位。第一部位可以是手,也可以是足。
假设通过界面文字的形式输出,检测界面的一个示例见图3A。如图3A所示,检测界面中包含第一区域301,该区域中显示有提示文字“请将血氧探头连接到婴儿的右手上”。并且,该区域还可以显示提示文字“婴儿安静后,开始测量”。该两条提示文字可以同时显示在一个检测界面中,当然,也可以先提示第一条文字,再提示第二条文字。
另外,检测界面中还可以包含第二区域302(用于显示右手的血氧趋势图)、第三区域303(用于显示足的血氧趋势图)及第四区域304(用量显示测量结果,例如第一结果信息、第二结果信息或其他)。第四区域304内包含有“开始测量”按钮,以提示医护人员在执行上述操作事项后,可以按下该按钮开始进行测量。
S202:获得在预设时间段内采集的第一部位的实时血氧值,基于该实时血氧值生成血氧趋势图,以及输出该血氧趋势图。
其中,医疗设备包含测量模块,将测量模块与检测对象的第一部位连接后,可以采集该部位的血氧值。为了采集数据的准确性,采集并非一次完成,而是在一个连续时间段内连续采集第一部位的实时血氧值。该时间段的长度可以是 预先设置的,因此可以称为预设时间段。例如,预设时间段的长度可以设置为40秒。当然,该数值可以根据实际情况设置为其他值。
测量模块将第一部位的实时血氧值发送给医疗设备的处理器,处理器可以根据第一部位的实时血氧值,生成血氧饱和度的趋势图。趋势图的绘制方式可以是现有的任意一种方式,此处并不赘述。趋势图会随着采集到的实时血氧值的更新而刷新显示,例如,获得一个新的血氧测量值,则刷新一次趋势图。
血氧趋势图可以体现出预设时间段的长度,例如,血氧趋势图的横坐标为时间轴,时间轴的结束时间点可以设置为0,以表示测试结束的时间点为当前时间点;时间轴的开始时间点设置为预设时间段的长度值,且为负数,以表示从距离当前时间点预设时间段长度的一个时间点开始测量。
血氧趋势图表示的是,在预设时间段内实时血氧值的变化情况。如果血氧值变化波动较大,则会影响目标血氧值的准确性,进而影响检测结果的准确度。根据血氧趋势图,医护人员可以了解血氧测量期间即预设时间段内,检测对象的血氧值是否是稳定的。如果血氧值出现不稳定的情况,可以通过物理等各种医疗手段稳定检测对象的血氧值,并重新测量。当然,在一些实现方式中,血氧趋势图也可以并不进行输出。
S203:输出第二提示信息,第二提示信息包含对第一部位进行血氧值测量过程中的相关信息和/或注意事项。
前已述及,第一部位的血氧值测量是一个过程,在这个过程中,可以为医护人员输出一些提示信息,以提示医护人员在测量过程中需要注意的操作事项,或者提示医护人员测量过程中生成的相关信息,或者两个方面都进行提示。其中,血氧值测量过程中的相关信息,可以包括但不局限于预设时间段对应的计时。
医疗设备可以通过音频模块和/或显示模块等输出模块来输出第二提示信息。例如,可以通过显示模块所提供的检测界面来输出第二提示信息,进一步地,如果第二提示信息包括测量过程中的计时,那么计时在检测界面中的表现形式可以是计时进度条、计时表盘或者计时数字等,具体的,可以采用倒计时的形式进行提示。
在一种实现方式中,检测界面的又一示例见图3B。如图3B所示,检测界面包含第一区域311、第二区域312、第三区域313及第四区域314。
第一区域311内显示有提示文字“测量中,请尽量保持婴儿安静!”,且显 示有倒计时的进度条。具体地,进度条的时长可以为预设时间段的长度40s,进度条的浅色部分为经过的时间长度,深色部分为剩余的时间长度,且显示有提示文字“剩余25s”。
假设检测通道当前测量的是右手的血氧值,且测量的预设时间段长度为40秒(s),则第二区域312在右手对应的子区域内,显示右手的血氧趋势图。血氧趋势图时间坐标轴的开始时间点为-40s,结束时间点为0。当然,血压趋势图中也可以并不显示时间点。根据进度条的倒计时可知,该血氧趋势图为测量时长15秒后所得到的趋势图。
需要说明的是,步骤S203的执行顺序在步骤S202之后执行,可以表示的一种情况是,血氧趋势图的开始输出时间点早于第二提示信息的输出时间点。当然,本步骤并不局限于在步骤S202之后执行,也可以是在步骤S202中输出血氧趋势图时,同时执行。
例如,在获得第一部位的实时血氧值后,将实时血氧值添加到血氧趋势图中,检测界面实时显示变化的血氧趋势图,同时可以显示第二提示信息,且第二提示信息中的倒计时随着测量过程的进行而变化。
S204:基于第一部位的实时血氧值得到目标血氧值,并输出目标血氧值。
其中,测量模块将第一部位的实时血氧值发送给医疗设备的处理器,处理器综合计算该时间段内的多个血氧值,便可以得到较为准确的最终测量的血氧值,为了便于描述,可以将该最终测量的血氧值称为目标血氧值。综合计算的方式可以是现有的任意一种方式,例如可以计算所测得的多组血氧值的平均值。。
需要说明的是,当检测结果的得出可能需要多次测量过程时,每次测量过程都会得到第一部位的实时血氧值、血氧趋势图以及目标血氧值,因此,可以使用数字标号对不同测量过程中的数据进行区分。例如,可以将本步骤中的实时血氧值称为第一实时血氧值,将血氧趋势图称为第一血氧趋势图,将目标血氧值称为第一目标血氧值。
处理器得到第一部位的目标血氧值后,可以将目标血氧值发送给输出模块进行输出。输出模块包括但不局限于音频模块、显示器等。
为了提示医护人员本次测量的时间点,在输出目标血氧值时,还可以输出目标血氧值的测量时间点。该测量时间点可以是预设时间段的开始时间点,也可以是预设时间段的结束时间点,或者是预设时间段内的某个时间点。
在一种实现方式中,显示器通过检测界面输出所获得的信息。检测界面的又一示例见图3C。如图3C所示,检测界面包含第一区域321、第二区域322、第三区域323以及第四区域324。其中,第二区域322内显示有第一部位(手)在预设时间长度内的完整血氧趋势图;第三区域323内显示有该血氧趋势图对应的血氧目标值,即右手的目标血氧值为90(单位为%)。
通过上述图示可以看出,检测界面中的第二区域及第三区域还可以分为多个子区域,子区域的个数与所需检测部位的个数相同。为了区分不同的子区域,每个子区域的对应位置可以包含检测部位标识,如文字“右手”及“足”,和/或,表示手以及足的图标等等。
S205:输出第三提示信息,第三提示信息用于提示是否需要重新测量第一部位的血氧值;如果接收到是的输入操作,则返回步骤S201;如果接收到否的输入操作,则执行步骤S206。
其中,得到第一部位的目标血氧值后,如果医护人员认为测量过程存在能够影响目标血氧值准确度的因素,如新生儿哭闹较大导致血氧波动剧烈等,则可能希望重新测量。医护人员的判断规则可以是自身对检测对象在测量过程中的观察信息,或者,如前所述若检测界面中显示有血氧趋势图,医护人员通过观察血氧趋势图中的数值变化情况,来判断是否需要重新测量。再或者,医疗设备判断测量过程中血氧趋势图的波动情况是否在预设的正常波动范围之内,如果不满足,则自动生成提示信息,以提示医护人员测量结果存在异常,在接收到医护人员触发的重新测量操作后,开始后续步骤。再或者,医疗设备也可以并不生成提示信息,而是直接开始后续步骤。
为了满足医护人员的重测需求,可以输出提示信息,为了与其他提示信息区分,可以将该提示信息称为第三提示信息。第三提示信息的输出模块可以包括但不局限于音频模块、显示器等等。
以上述图3C为例,第一区域321显示有提示文字“测量完成,是否需要重新测量”,且第四区域324内包含有对应的操作按钮,分别为“确认本次测量”及“重新测量”。用户触发确认本次测量的按钮后,可以执行后续对第二部位的血氧值测量步骤;如果用户触发重新测量的按钮,则需要重新执行上述步骤S201-305。
需要说明的是,以下步骤S206-S210对第二部位的血氧值测量,相关说明可以参见上述步骤S201-S205,此处并不赘述。
S206:输出第四提示信息,第四提示信息包含对第二部位进行血氧值测量前的操作内容和/或注意事项。
其中,第二部位为判断规则中所涉及到的、第一部位之外的检测部位。例如,第一部位为手,则第二部位可以是足。
在一个示例中,第四提示信息是通过检测界面输出,见图3D,其示出了检测界面的又一示例。如图3D所示,检测界面包含第一区域331、第二区域332、第三区域333及第四区域334。其中,第一区域331包含的提示文字为“请将血氧探头连接到婴儿的足上,婴儿安静后,开始测量”。另外,第二区域332包含有图3C中的第二区域322中的血氧趋势图。
S207:获得在预设时间段内采集的第二部位的实时血氧值,基于该实时血氧值生成血氧趋势图,以及输出该血氧趋势图。
S208:输出第五提示信息,第五提示信息包含对第二部位进行血氧值测量过程中的相关信息和/或注意事项。
在一个示例中,第二部位的血氧趋势图以及第五提示信息是通过检测界面输出,见图3E,其示出了检测界面的又一示例。如图3E所示,检测界面包含第一区域341、第二区域342、第三区域343及第四区域344。
第一区域341内显示有提示文字“测量中,请尽量保持婴儿安静!”,且显示有倒计时的进度条。具体地,进度条的时长为预设时间段的长度40s,且显示有提示文字“剩余25s”。
假设第二部位为足,则在第二区域342内除了显示第一部位手的血氧趋势图之外,还在足对应的子区域内,显示足的血氧趋势图。根据进度条的倒计时可知,该血氧趋势图为测量时长15秒后所得到的趋势图。
S209:基于第二部位的实时血氧值得到第二部位的目标血氧值,计算第一部位的血氧值与第二部位的目标血氧值的差值,输出第二部位的目标血氧值以及差值。
其中,将两个检测部位目标血氧值作差,是因为判断规则中,检测结果的得出需要使用两者差值。如果以检测界面的方式输出差值,为了进行提醒,可以为差值设置用于提醒的显示方式,如添加背景色等。
S210:输出第六提示信息,第六提示信息用于提示是否需要重新测量第二部位的血氧值;如果接收到是的输入操作,则返回步骤S206;如果接收到否的输入操作,则执行步骤S211。
在一个示例中,第二部位的目标血氧值、差值以及第六提示信息是通过检测界面输出,见图3F,其示出了检测界面的又一示例。如图3F所示,检测界面包含第一区域351、第二区域352、第三区域353及第四区域354。
第一区域351显示有提示文字“测量完成,是否需要重新测量”,且第四区域354内包含有操作按钮,分别为“确认本次测量”及“重新测量”。用户触发确认本次测量的按钮后,可以执行后续对两个部位的第二次血氧值测量步骤;如果用户触发重新测量的按钮,则需要重新执行上述步骤S206-S210。
第二区域352内显示有足在预设时间长度内的完整血氧趋势图,第三区域353内显示有足的目标血氧值为93(单位为%),以及显示有足与手的血氧目标值差值3(单位为%)。差值3对应的表头中可以包含提示图标,如“△SpO2”,SpO2表示血氧饱和度。差值3的背景区域可以填充有背景色。
S211:依据判断规则,对第一部位的目标血氧值、第二部位的目标血氧值以及两者差值进行判断,若得出检测结果,执行步骤S212,以输出第一结果信息或第二结果信息;若得出疑似的初步结果,则执行步骤S213。
如图1所示,在某些情况下,判断规则可以直接依据第一部位的目标血氧值、第二部位的目标血氧值以及两者差值得到目标检测结果。但有些情况下,需要经过多次测量数据,例如三次。
S212:输出第一结果信息或第二结果信息。
其中,可以通过音频或者显示器等各种方式输出。在一个示例中,通过显示器提供的上述检测界面输出,则可以将检测结果显示在第三区域内。如果输出的是第一结果信息,为了结果的准确性,还可以输出进行心脏彩超等其他测量方式的建议信息,以对检测对象进行精确的检查。
S213:确定第二次测量开始时间点,并输出第七提示信息,第七提示信息用于提示距离第二次测量开始时间点的计时。
其中,依据初步结果的产生时间点,以及判断规则中的测量间隔时长,确定第二次测量的开始时间点。生成提示文字、计时进度条等方式的第七提示信息,并输出该第七提示信息。
需要说明的是,计时的提示可以并非一直执行,而是在计时进入一个较短的时长范围内才开始。需要说明的是,在实际应用中,计时进入一个较短的时长范围内后,医疗设备的当前界面可能并非检测界面,则可以生成第八提示信息,该提示信息用于提示将当前界面切换至检测界面,或提示医护人员即将进 行第二次测量过程。
例如,计时为1个小时,在进入0.5小时时开始提示。如果计时通过声音提示,也可以并非连续提示,而是按照预设时间间隔提示。如果计时通过显示器提示,更具体地,通过显示器提供的上述检测界面提示,则见图3G,其示出了检测界面的又一示例。
如图3G所示,检测界面包含第一区域361、第二区域362、第三区域363及第四区域364。其中,第一区域361内显示有倒计时进度条,以及提示文字“离下次测量还有30min”,min为分钟;第四区域364内显示有不可触发的“开始测量”的操作按钮。
需要说明的是,第七提示信息所提示的计时,可以控制用于表示开始测量的控制按钮。具体地,计时不满足预设时长范围时,则该控制按钮为不可操作的状态;计时满足预设时长范围时,将该控制按钮切换为可操作状态。例如,预设时长范围为10分钟。这种方式可以及时提醒医护人员计时将要结束,并提示医护人员提前做好开始测量的准备。
如图3H所示,检测界面中的第一区域提示包含有提示文字“离下次测量还有10min”,且第四区域中的开始测量操作按钮由图3G的不可操作状态切换为可操作状态。
S214:如果到达第二次测量开始时间点后未执行测量步骤,则输出第八提示信息,第八提示信息用于提示是否放弃第一次的测量结果;如果接收到放弃第一次测量结果的输入操作,则执行步骤S215;如果接收到保留第一次测量结果的输入操作,则返回步骤S201。
其中,在实际应用中,可能由于医护人员的疏漏等原因导致并未及时开始第二次测量过程,等开始需要测量时,发现已经超过判断规则规定的不同测量过程之间的间隔时长。这种情况下,可以为医护人员提供选择,如果超时并不长,则其可以选择继续开始第二次测量,并保留第一次的测量结果;如果超时过长,则其可以放弃第一次测量结果,并重新开始执行第一次测量过程。
如图3I所示,检测界面中的第一区域371提示包含有提示文字“已超时,是否要重新测量”,且第四区域374中提供有两个操作按钮,分别为“继续测量”及“重新测量”。第二区域372用于显示血氧趋势图,第三区域373用于显示血氧测量结果(可参考上文中的说明)。
S215:删除第一次测量结果,并返回步骤S201。
需要说明的是,在实际应用中,本申请各个检测界面中包含的提示文字并不局限于图示所示,还可以是具有同等提示作用的其他内容。
由以上技术方案可知,本申请提供的医疗设备,在检测过程中,医疗设备可以为各个测量步骤提供具有指引作用的提示信息,提示信息包括与所述检测对象的两个血氧测量信号采集过程关联的操作内容和/或注意事项,提示信息可以一步一步指导操作者完成一个完整的检测流程,减小了操作者的人为控制因素对检测结果的影响,且为操作者的检测操作提供了帮助,操作者体验较好。
需要说明的是,以上检测流程中第一部位及第二部位的相关信息如目标血氧值、提示图标、血氧趋势图等,可以使用不同的显示样式,以进行区分。显示样式可以包括但不局限于颜色。另外,各个提示信息可以并非全部出现在同一检测流程中,在实际应用中,检测流程可以包含以上提示信息中的任意一个或多个提示信息的组合。
以上为基于单血氧检测通道的检测流程,可以知道的是,医疗设备的血氧检测通道也可以是多个,在这种情况下,也可以基于双血氧检测通道实现检测流程。以下主要对这种检测流程进行介绍。
见图4,其示出基于双血氧检测通道的检测流程的一个示例。如图4所示,该流程可以包括如下步骤S401~410。
S401:输出第一提示信息,第一提示信息包含对第一部位及第二部位进行血氧值测量前的操作内容和/或注意事项。
其中,医疗设备具有至少两个血氧检测通道,该两个血氧检测通道可以同时对第一部位及第二部位进行血氧测量。在检测前,医疗设备可以通过输出模块输出提示信息,有关该提示信息的说明可以参见上述步骤S201的说明,此处并不赘述。
在一个示例中,医疗设备通过检测界面输出第一提示信息。如图5A所示,检测界面包括第一区域501、第二区域502、第三区域503及第四区域504。其中第一区域501显示有提示文字“请将血氧探头分别连接到婴儿的右手和足,婴儿安静后,请点击开始测量”。
第三区域503用于显示第一部位及第二部位的目标血氧值,由于当前还并未得到该两个血氧值,则可以在第三区域中显示提示文字“无测量结果”,以提示医护人员还未进行测量操作。需要说明的是,该提示文字的显示颜色可以 较浅,以避免其妨碍对其他内容的观察。第二区域502、第四区域504暂无显示内容。
S402:获得在预设时间段内采集的第一部位及第二部位的实时血氧值,基于各自实时血氧值生成各自的血氧趋势图,以及输出两个血氧趋势图。
S403:输出第二提示信息,第二提示信息包含对第一部位及第二部位进行血氧值测量过程中的相关信息和/或注意事项。
其中,与图2所示的流程不同的是,本流程可以同时获得两个血氧检测通道测得的血氧值,并同时得到两个检测部位的血氧趋势图。
在一个示例中,显示器通过检测界面输出血氧趋势图及第二提示信息。见图5B所示的检测界面,第一区域511显示有提示文字“测量中,请尽量保持婴儿安静”。第二区域512中同时输出有手部及足部的血氧趋势图。第三区域513、第四区域514暂无显示内容。
S404:基于第一部位及第二部位的实时血氧值分别得到各自的目标血氧值,计算两个目标血氧值之间的差值,输出目标血氧值以及差值。
S405:输出第三提示信息,第三提示信息用于提示是否需要重新测量第一部位及第二部位的血氧值;如果接收到是的输入操作,则返回步骤S401;如果接收到否的输入操作,则执行步骤S406。
在一个示例中,显示器通过检测界面输出两个目标血氧值、两个目标血氧值之间的差值、以及第三提示信息。检测界面的一种样式参见图3F。
S406:依据判断规则,对第一部位的目标血氧值、第二部位的目标血氧值以及两者差值进行判断,若确定到需要输出第一结果信息或第二结果信息,则执行步骤S407;若得出疑似的初步结果,则执行步骤S408。
S407:输出第一结果信息或第二结果信息。
S408:确定第二次测量开始时间点,并输出第四提示信息,第四提示信息用于提示距离第二次测量开始时间点的计时。
在一个示例中,显示器通过检测界面输出第四提示信息。检测界面的一种样式参见图3G及图3H。
S409:如果到达第二次测量开始时间点后未执行测量步骤,则输出第五提示信息,第五提示信息用于提示是否放弃第一次的测量结果;如果接收到放弃第一次测量结果的输入操作,则执行步骤S410;如果接收到保留第一次测量结果的输入操作,则返回步骤S401以获得检测结果。
S410:删除第一次测量结果,并返回步骤S401。
其中,根据判断规则可知,经过两次或三次测量,步骤S407可以得到阳性或者阴性的检测结果。见图5C所示的检测界面,第三区域523中包含有三个测量时间点06:52、07:30、08:02进行测量的测量结果,三次测量结果均为右手SpO2为90(%),足部SpO2为93(%),差值为3(%);第一区域521中显示有文字“疑是阳性,建议做心脏彩超”。为了突出显示检测结果,可以为“疑是阳性”添加背景颜色。当然,此处的“疑是阳性”仅是监测结果信息的一个举例。
由以上可知,图4所示的双血氧检测流程基于多个血氧检测通道。需要说明的是,若医疗设备包含多个血氧检测通道,则在实际应用中,可以根据所使用的检测通道个数即多少数量的检测通道的接口中存在测量的血氧相关信号,来确定执行哪一种检测流程。也就是说,可以根据检测通道的使用个数,来自动切换检测流程。或者,用户可以通过输入设备输入选择哪一种检测流程的信息,基于用户的选择信息,来确定所执行的检测流程。
进一步地,为了给医护人员提供更多的检测参考信息,可以输出多种测量信息。例如,在显示血氧趋势图时,可以一并显示检测部位的体积描记波、实时血氧值、灌注指数中的任意一种或多种。实时血氧波形与灌注指数的结合信息,可以用来判断检测信号的质量。
见图6所示的检测界面,第二区域612除了显示右手及足的血氧趋势图,还显示有血氧波形图pleth、实时血氧值SpO2、灌注指数PI(perfusion index,PI)。其中,右手的实时血氧值SpO2为98%,灌注指数PI为1.3;足的实时血氧值SpO2为94%,灌注指数PI为1.0。
需要说明的是,在一些实施例中,检测界面可以是医疗设备显示器的整个显示界面,在另一些实施例中,检测界面可以悬浮或者嵌入医疗设备显示器的某显示界面上的一个窗口。
本申请提供医疗设备,其单血氧检测流程及双血氧检测流程,可以应用在对严重先天性心脏病的检测中。
在任何一种应用场景中,不论是单血氧检测流程还是双血氧检测流程,实现步骤都可以归结为如下的流程。
获得至少一个光传感器从检测对象第一身体部位测量得到的第一血氧测量信号,以及从检测对象第二身体部位测量得到的第二血氧测量信号。分别基于第一血氧测量信号和第二血氧测量信号得到对应的第一血氧饱和度值和第二血氧饱和度值。
确定到下面条件之一输出第一结果信息:第一血氧饱和度值或第二血氧饱和度值小于第一阈值;获取到的第一血氧饱和度值和第二血氧饱和度值位于第一阈值和第二阈值之间;获取到的第一血氧饱和度值和第二血氧饱和度值的差值的绝对值大于第三阈值;其中,第一阈值小于第二阈值。
具体来讲,光传感器在采集血氧测量信号之前,还可以输出提示信息,该提示信息用于指引操作者按照何种方式开始测量血氧测量信号。不同检测流程的开始方式不同,提示信息的内容也不同。因此,在输出提示信息之前,根据操作者输入的选择信息,或者根据确定到的光传感器的数量,来确定输出第一提示信息还是第二提示信息。其中,根据医疗设备所连接的光传感器接口中,存在输入信号的光传感器接口的数量,来确定出光传感器的数量。
第一提示信息为采用同一个光传感器对检测对象两个身体部位的血氧测量信号分别进行采集的指引性操作。具体地,输出指引操作者将一个光传感器连接到检测对象的第一身体部位的指示,并在获取第一血氧测量信号完毕后,输出指引操作者将一个光传感器连接到检测对象的第二身体部位的指示。其中,确定第一血氧测量信号完毕的一种实现方式为,获取到预设时间长度的血氧测量信号,如获取到30秒的血氧饱和度信号。
第二提示信息为分别采用第一光传感器和第二光传感器同时对检测对象两个身体部位的血氧测量信号进行采集的指引性操作。具体地,输出指引操作者将第一光传感器连接到检测对象的第一身体部位的指示,以及指引操作者将第二光传感器连接到检测对象的第二身体部位的指示。
例如双血氧检测流程所示,光传感器可以同时获得第一血氧测量信号及第二血氧测量信号,又如单血氧检测流程所示,光传感器也可以先后分别在两个时间获得第一血氧测量信号及第二血氧测量信号,为了便于两个时间,可以分别称为第一时间及第二时间。两个不同的血氧测量信号是两个不同身体部位测量得到的信号,为了便于区分,称为第一血氧测量信号及第二血氧测量信号。
第一血氧测量信号的展示图形如波形图,以及第二血氧测量信号的展示图形如波形图,可以显示在检测界面中。
根据第一血氧测量信号可以得到第一血氧饱和度值如下肢部的血氧值,根据第二血氧测量信号可以得到第二血氧饱和度值如上肢的血氧值。一种计算方式是,基于所述第一血氧测量信号得到多组血氧饱和度值,将多组血氧饱和度值的平均值作为第一血氧饱和度值;基于所述第二血氧测量信号得到多组血氧饱和度值,将多组血氧饱和度值的平均值作为第二血氧饱和度值。例如,30秒内可以得到下肢部的多组血氧值,计算下肢部的多组血氧值的平均值作为下肢部的血氧值;30秒内可以得到手部的多组血氧值,计算手部的多组血氧值的平均值作为手部的血氧值。
两个血氧饱和度值在满足上述条件之一的情况下,可以得到第一结果信息,其中第一结果信息表示的是阳性结果。输出第一结果信息,以提示操作者检测对象的结果为阳性。当然,第一结果信息也不局限于是阳性结果,也可以是直接将血氧值和/两个部位的血氧值的差值作为第一结果信息进行显示。
需要说明的是,上述第一血氧饱和度值及第二血氧饱和度值可以是一次测量得到的一组参数值,也可以是多次测量得到的多组参数值。具体来讲,在一些情况下,结果信息可以只需要一次测量过程得到的一组参数值便可以得到,但在某些情况下,一次测量过程得到的一组参数值不下肢以得出结果信息,则需要多次测量过程得到的多组参数值综合判断后得到最终的结果信息。
具体如图1所示,第一次测量过程得到的一组参数值如果满足如下条件,即第一血氧饱和度值或第二血氧饱和度值小于第一阈值,便可以直接输出第一结果信息;或者,第一血氧饱和度值或第二血氧饱和度值都大于或等于第二阈值,以及第一血氧饱和度值与所述第二血氧饱和度值的差值的绝对值小于或等于第三阈值,便可以直接输出第二结果信息。可见,第一次测量得到的参数值只要满足以上条件,无需后续测量,可以直接得到结果信息。为了将该条件与其他条件区分,可以将以上条件称为第一条件。
但是,如果第一组参数值不满足上述第一条件,而是满足第二条件,即第一血氧饱和度值和第二血氧饱和度值在第一阈值和第二阈值之间;或者,第一血氧饱和度值和第二血氧饱和度值的差值的绝对值大于第三阈值,则需要进行第二次测量过程。
第二次测量过程得到的一组参数值如果同样满足上述第一条件,也可以直接得到结果信息,而无需进行第三次测量过程。如果第二次测量过程得到的一组参数值满足上述第二条件,才需要进行第三次测量过程。第三次测量过程得 到的一组参数值同样可以按照上述条件得到结果信息,需要说明的是,图1所示的判断规则最多测量三次,如果第三次测量过程得到的一组参数值仍然满足的是第二条件,那么无需再进行第四次测量,而是直接输出第一结果信息。
通过上述说明可知,结果信息可能由一次测量过程得到,也可能在满足某些条件的情况下,由多次测量过程得到。
以下重点说明,第一结果信息及第二结果信息是如何得到的。
不论有几组参数值,只要某一组参数值中的第一血氧饱和度值或第二血氧饱和度值小于第一阈值,则可以得到第一结果信息;或者,在某些情况下,某一组参数值中的第一血氧饱和度值和第二血氧饱和度值在第一阈值和第二阈值之间;或者,在某些情况下,某一组参数值中的第一血氧饱和度值和第二血氧饱和度值的差值的绝对值大于第三阈值,也可以得到第一结果信息。
更具体来讲,如果第一血氧饱和度值和第二血氧饱和度值在第一阈值及第二阈值之间,或者,如果第一血氧饱和度值与第二血氧饱和度值的差值绝对值大于第三阈值,则还需要其他次测量的血氧饱和度值来辅助得到结果信息。进而,输出表示指引操作者在预设时间段后再次启动测量的提示信息,如1小时后再次测量的提示信息。
基于提示信息,获得第二组的第一血氧饱和度值及第二血氧饱和度值,以及第三组的第一血氧饱和度值及第二血氧饱和度值。
三组参数值都满足第一血氧饱和度值和第二血氧饱和度值在第一阈值及第二阈值之间的条件,或者都满足第一血氧饱和度值与第二血氧饱和度值的差值绝对值大于第三阈值的条件,便可以得到第一结果信息。
当然,如果第二组参数值中的第一血氧饱和度值或第二血氧饱和度值小于第一阈值,也可以直接输出第一结果信息即阳性结果。同理,如果第三组参数值满足该条件,也直接输出第一结果信息。
但是,如果第二组参数值同时满足以下两个条件,即第一血氧饱和度值或第二血氧饱和度值都大于或等于第二阈值,以及第一血氧饱和度值与所述第二血氧饱和度值的差值的绝对值小于或等于第三阈值,则输出第二结果信息。同样,第三组参数值满足该两个条件,也输出第二结果信息。由此可知第二结果信息的判断条件即上述两个条件,也就是说,在满足该两个条件的基础上,可以得到第二结果信息。
在实际应用中,血氧检测通道可以为有线通道,所连接的检测模块可以为血氧探头。当然,血氧检测通道也可以是无线通道,所使用的检测模块可以是无线血氧传感器,例如无线血氧光传感器。无线血氧传感器可以被医疗设备的处理器进行远程控制,接收到测量启动信号后,开始测量检测对象的第一部位和/或第二部位的血氧值,并将所获得血氧值发送给医疗设备的处理器。其中,测量启动信号中可以包含测量时长,或者测量时长记录在无线血氧传感器中。
无线血氧传感器上可以设置有声光模块,以通过声光方式提示,无线血氧传感器的工作状态。例如,无线血氧传感器在接收到测量启动信号时、完成血氧值测量时、发送完毕血氧值时、传感器与检测对象的连接位置出现异常等情况下,可以发生声光提示。不同情况可以输出不同形式的声光,以提示不同情况的发生。
无线血氧传感器向医疗设备主体发送血氧值的方式,可以是各种无线方式,如WI-FI、射频、蓝牙、物联网等等。
本申请提供的检测流程可以应用在血氧检测之外的其他场景中。在任一应用场景中,检测模块可以为无线传感器,可以由医疗设备进行远程控制。具体地:
医疗设备向无线光传感器发送开始测量指令,无线光传感器基于开始测量指令启动测量,并且提供一表示无线光传感器正在测量的提醒信息,如光电模块输出闪烁光,以表示无线光传感器正在测量中。
医疗设备判断得出第一血氧测量信号和/或第二血氧测量信号获取完毕后,向无线光传感器发送结束测量指令,无线光传感器基于结束测量指令结束测量,并且提供一表示无线光传感器测量完毕的提醒信息,如光电模块输出红色常亮光,以表示无线光传感器测量完成。在另一种实现方式中,无线光传感器可以基于自身的设置信息如测量时间长度信息,自动结束测量。
见图7,其示出了医疗设备的一种硬件结构。如图7所示,医疗设备可以包括:存储器701、处理器702及通信总线703。
其中,存储器701、处理器702通过通信总线703完成相互间的通信。
存储器701,用于存放程序。
处理器702,用于执行程序,程序可以包括程序代码,所述程序代码包括处理器的操作指令。
其中,程序可具体用于:获取至少一个光传感器从检测对象第一身体部位 测量得到的第一血氧测量信号,以及从检测对象第二身体部位测量得到的第二血氧测量信号;所述光传感器基于发射的至少两种波长的光穿透所述身体部位后的光衰减信息生成所述血氧测量信号;分别基于所述第一血氧测量信号和第二血氧测量信号得到对应的第一血氧饱和度值和第二血氧饱和度值;确定到下面条件之一输出第一结果信息:所述第一血氧饱和度值或所述第二血氧饱和度值小于第一阈值;获取到的所述第一血氧饱和度值和第二血氧饱和度值位于所述第一阈值和第二阈值之间;获取到的所述第一血氧饱和度值和所述第二血氧饱和度值的差值的绝对值大于第三阈值;所述第一阈值小于所述第二阈值。
或者,程序可具体用于:提供两种不同的血氧测量流程;其中血氧测量流程依据至少一个光传感器从检测对象的两个身体部位测量得到的血氧测量信号,并基于所述血氧测量信号确定输出检测结果;所述光传感器基于发射的至少两种波长的光穿透所述身体部位后的光衰减信息生成所述血氧测量信号;接收到血氧测量流程的启动指令后,启动与所述启动指令相对应的血氧测量流程。
或者,程序可具体用于:输出提示信息,所述提示信息用于对检测对象两个身体部位的血氧测量信号采集过程提供指引性操作;获取至少一个光传感器从所述检测对象两个身体部位测量得到的血氧测量信号;所述光传感器基于发射的至少两种波长的光穿透所述身体部位后的光衰减信息生成所述血氧测量信号;基于所述血氧测量信号得到对应的两个血氧饱和度值;基于所述两个血氧饱和度值确定输出结果信息。
需要说明的是,处理器还被配置为可以执行上述全部与处理相关的步骤及操作。
处理器702可能是一个中央处理器CPU,或者是特定集成电路ASIC(Application Specific Integrated Circuit),或者是被配置成实施本申请实施例的一个或多个集成电路。需要说明的是,处理器702可以是上述虚拟化模块的一种硬件表现形式。
再者,本申请还提供了一种可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时,实现上述医疗设备提供的任意一种的检测方法。
医疗设备为监护仪时,监护仪的一个具体示例如图8所示。图8提供了一种多参数监护仪中参数处理模块的系统框架图。
多参数监护仪具有独立的外壳,外壳面板上具有传感器接口区,其中集成了多个传感器接口,用于与外部的各个生理参数传感器附件811连接,外壳面板上还包括小型IXD显示器区,显示器818,输入接口电路820和报警电路819(如LED报警区)等。参数处理模块用于与主机进行通讯和从主机取电的对外通讯和电源接口。参数处理模块还支持外插参数模块,可以通过插入参数模块形成插件式监护仪主机,作为监护仪的一部分,也可以通过电缆与主机连接,外插参数模块作为监护仪外置的一个配件。另外,多参数监护仪包括存储器817,用于存储计算机程序及相关监测过程中产生的各种数据。
参数处理模块的内部电路置于外壳内,如图8所示,包括至少两个生理参数对应的信号采集电路812、前端信号处理电路813和主处理器815。
主处理器815可以实现上述各个呼吸暂停事件监测方法中与处理相关的各个步骤。
信号采集电路812可以选自于心电电路、呼吸电路、体温电路、血氧电路、无创血压电路、有创血压电路等等,这些信号采集电路812分别与相应的传感器接口电连接,用于电连接到不同的生理参数对应的传感器附件811,其输出端耦合到前端信号处理器,前端信号处理器的通讯口耦合到主处理器,主处理器与对外通讯和电源接口电连接。
各种生理参数测量电路可采用现有技术中的通用电路,前端信号处理器完成信号采集电路输出信号的采样和模数转换,并输出控制信号控制生理信号的测量过程,这些参数包括但不限于:心电,呼吸,体温,血氧,无创血压和有创血压参数。
前端信号处理器可采用单片机或其它半导体器件实现,也可以采用ASIC或FPGA实现。前端信号处理器可由隔离电源供电,采样得到的数据经过简单处理打包后,通过隔离通讯接口发送至主处理器,例如前端信号处理器电路可以通过隔离电源和通讯接口814耦合到主处理器815上。
前端信号处理器由隔离电源供电的原因是通过变压器隔离的DC/DC电源,起到了隔离患者与供电设备的作用,主要目的是:1、隔离患者,通过隔离变压器,将应用部分浮地,使患者漏电流足够小;2、防止除颤或电刀应用时的电压或能量影响主控板等中间电路的板卡及器件(用爬电距离和电气间隙保证)。
主处理器完成生理参数的计算,并通过对外通讯和电源接口将参数的计算 结果和波形发送到主机(如带显示器的主机、PC机、中央站等等),对外通讯和电源接口816可以是以太网(Ethernet)、令牌环(Token Ring)、令牌总线(Token Bus)以及作为这三种网的骨干网光纤分布数据接口(FDDI)构成的局域网接口中的一个或其组合,还可以是红外、蓝牙、wifi、WMTS通讯等无线接口中的一个或其组合,或者还可以是RS232、USB等有线数据连接接口中的一个或其组合。
对外通讯和电源接口816也可以是无线数据传输接口和有线数据传输接口中的一种或两种的组合。主机可以是监护仪的主机、心电图机,超声诊断仪,计算机等任何一个计算机设备,安装配合的软件,就能够组成一个监护设备。主机还可以是通讯设备,例如手机,参数处理模块通过蓝牙接口将数据发送到支持蓝牙通讯的手机上,实现数据的远程传输。
本文参照了各种示范实施例进行说明。然而,本领域的技术人员将认识到,在不脱离本文范围的情况下,可以对示范性实施例做出改变和修正。例如,各种操作步骤以及用于执行操作步骤的组件,可以根据特定的应用或考虑与系统的操作相关联的任何数量的成本函数以不同的方式实现(例如一个或多个步骤可以被删除、修改或结合到其他步骤中)。
本文的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同的对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法或设备固有的其他步骤或单元。
另外,如本领域技术人员所理解的,本文的原理可以反映在计算机可读存储介质上的计算机程序产品中,该可读存储介质预装有计算机可读程序代码。任何有形的、非暂时性的计算机可读存储介质皆可被使用,包括磁存储设备(硬盘、软盘等)、光学存储设备(CD-ROM、DVD、Blu Ray盘等)、闪存和/或诸如此类。这些计算机程序指令可被加载到通用计算机、专用计算机或其他可编程数据处理设备上以形成机器,使得这些在计算机上或其他可编程数据处理装置上执行的指令可以生成实现指定的功能的装置。这些计算机程序指令也可以存储在计算机可读存储器中,该计算机可读存储器可以指示计算机或其他可编 程数据处理设备以特定的方式运行,这样存储在计算机可读存储器中的指令就可以形成一件制造品,包括实现指定功能的实现装置。计算机程序指令也可以加载到计算机或其他可编程数据处理设备上,从而在计算机或其他可编程设备上执行一系列操作步骤以产生一个计算机实现的进程,使得在计算机或其他可编程设备上执行的指令可以提供用于实现指定功能的步骤。
前述具体说明已参照各种实施例进行了描述。然而,本领域技术人员将认识到,可以在不脱离本披露的范围的情况下进行各种修正和改变。因此,对于本披露的考虑将是说明性的而非限制性的意义上的,并且所有这些修改都将被包含在其范围内。同样,有关于各种实施例的优点、其他优点和问题的解决方案已如上所述。然而,益处、优点、问题的解决方案以及任何能产生这些的要素,或使其变得更明确的解决方案都不应被解释为关键的、必需的或必要的。本文中所用的术语“包括”和其任何其他变体,皆属于非排他性包含,这样包括要素列表的过程、方法、文章或设备不仅包括这些要素,还包括未明确列出的或不属于该过程、方法、系统、文章或设备的其他要素。此外,本文中所使用的术语“耦合”和其任何其他变体都是指物理连接、电连接、磁连接、光连接、通信连接、功能连接和/或任何其他连接。
以上实施例仅表达了几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (26)

  1. 一种医疗设备,其特征在于,包括处理器,所述处理器配置为:
    获取至少一个光传感器从检测对象第一身体部位测量得到的第一血氧测量信号,以及从检测对象第二身体部位测量得到的第二血氧测量信号;所述光传感器基于发射的至少两种波长的光穿透所述身体部位后的光衰减信息生成所述血氧测量信号;
    分别基于所述第一血氧测量信号和第二血氧测量信号得到对应的第一血氧饱和度值和第二血氧饱和度值;
    确定到下面条件之一输出第一结果信息:
    所述第一血氧饱和度值或所述第二血氧饱和度值小于第一阈值;
    获取到的所述第一血氧饱和度值和第二血氧饱和度值位于所述第一阈值和第二阈值之间;
    获取到的所述第一血氧饱和度值和所述第二血氧饱和度值的差值的绝对值大于第三阈值;
    所述第一阈值小于所述第二阈值。
  2. 根据权利要求1所述的医疗设备,其特征在于,所述处理器还配置为:确定到所述第一血氧饱和度值和所述第二血氧饱和度值都大于或等于第二阈值,并且所述第一血氧饱和度值和所述第二血氧饱和度值的差值的绝对值小于或等于第三阈值,则输出第二结果信息。
  3. 根据权利要求1所述的医疗设备,其特征在于,获取至少一个光传感器从检测对象第一身体部位测量得到的第一血氧测量信号,以及从检测对对象第二身体部位测量得到的第二血氧测量信号,包括:
    获取一个光传感器在第一时间从所述检测对象的第一身体部位测量得到的第一血氧测量信号,以及获取所述一个光传感器在第二时间从所述检测对象的第二身体部位测量得到的第二血氧测量信号;或者,
    获取第一光传感器从所述检测对象的第一身体部位测量得到的第一血氧测量信号,以及第二光传感器同时从所述检测对象的第二身体部位测量得到的第二血氧测量信号。
  4. 根据权利要求1所述的医疗设备,其特征在于,所述处理器还配置为:在获取所述第一血氧测量信号和所述第二血氧测量信号之前,还输出提示信息;所述提示信息为对所述检测对象两个身体部位的血氧测量信号采集过程提 供的指引性操作。
  5. 根据权利要求4所述的医疗设备,其特征在于,所述处理器还配置为:在输出提示信息之前,根据操作者输入的选择信息,或根据确定到的光传感器的数量,确定输出第一提示信息或第二提示信息;
    所述第一提示信息为采用同一个光传感器对所述检测对象两个身体部位的血氧测量信号分别进行采集的指引性操作,所述第二提示信息为分别采用第一光传感器和第二光传感器同时对所述检测对象两个身体部位的血氧测量信号进行采集的指引性操作。
  6. 根据权利要求5所述的医疗设备,其特征在于,所述处理器还配置为:
    在输出所述第一提示信息时,包括:输出指引操作者将所述一个光传感器连接到所述检测对象的第一身体部位的指示,并在获取所述第一血氧测量信号完毕后,输出指引操作者将所述一个光传感器连接到所述检测对象的第二身体部位的指示;
    在输出所述第二提示信息时,包括:输出指引操作者将所述第一光传感器连接到所述检测对象的第一身体部位的指示,以及指引操作者将所述第二光传感器连接到所述检测对象的第二身体部位的指示。
  7. 根据权利要求2所述的医疗设备,其特征在于,所述处理器配置为,在确定到下面条件之一:
    获取到的所述第一血氧饱和度值和第二血氧饱和度值位于所述第一阈值和第二阈值之间;
    获取到的所述第一血氧饱和度值和所述第二血氧饱和度值的差值的绝对值大于第三阈值;
    还包括:输出表示指引操作者在预设时间段后再次启动测量,以获取下一组第一血氧饱和度值和第二血氧饱和度值的提示信息;直至确定到获取的第三组第一血氧饱和度值和第二血氧饱和度值位于所述第一阈值和第二阈值之间,或确定到获取的第三组第一血氧饱和度值和第二血氧饱和度值的差值的绝对值大于第三阈值,则输出第一结果信息;
    并且,在确定到下一组第一血氧饱和度值或第二血氧饱和度值小于第一阈值,直接输出第一结果信息;或者,确定到下组第一血氧饱和度值或第二血氧饱和度值都大于或等于第二阈值,并且第一血氧饱和度值和所述第二血氧饱和度值的差值的绝对值小于或等于第三阈值,直接输出第二结果信息。
  8. 根据权利要求1所述的医疗设备,其特征在于,所述处理器还配置为:
    基于所述第一血氧测量信号得到对应的第一血氧饱和度值,包括:基于所述第一血氧测量信号得到多组血氧饱和度值,将多组血氧饱和度值的平均值作为第一血氧饱和度值;
    基于所述第二血氧测量信号得到对应的第二血氧饱和度值,包括:基于所述第二血氧测量信号得到多组血氧饱和度值,将多组血氧饱和度值的平均值作为第二血氧饱和度值。
  9. 根据权利要求1所述的医疗设备,其特征在于,所述第一身体部位为所述检测对象的上肢,所述第二身体部位为所述检测对象的下肢。
  10. 根据权利要求1所述的医疗设备,其特征在于,所述光传感器为无线光传感器。
  11. 根据权利要求10所述的医疗设备,其特征在于,所述处理器还配置为:
    向所述无线光传感器发送开始测量指令,所述无线光传感器基于所述开始测量指令启动测量,并且提供一表示所述无线光传感器正在测量的提醒信息;
    在所述第一血氧测量信号和/或所述第二血氧测量信号获取完毕后,向所述无线光传感器发送结束测量指令,所述无线光传感器基于所述结束测量指令结束测量,并且提供一表示所述无线光传感器测量完毕的提醒信息。
  12. 一种医疗设备,其特征在于,包括处理器,所述处理器配置为:
    提供两种不同的血氧测量流程;其中所述血氧测量流程依据至少一个光传感器从检测对象的两个身体部位测量得到的血氧测量信号,并基于所述血氧测量信号确定输出检测结果;所述光传感器基于发射的至少两种波长的光穿透所述身体部位后的光衰减信息生成所述血氧测量信号;
    接收到血氧测量流程的启动指令后,启动与所述启动指令相对应的血氧测量流程。
  13. 根据权利要求12所述的医疗设备,其特征在于,所述处理器配置为:接收到血氧测量流程的启动指令后,启动与所述启动指令相对应的血氧测量流程,包括:
    接收到操作者输入的选择某个血氧测量流程的指令后,启动所述某个血氧测量流程;或者,
    确定所连接的光传感器的数量,并启动与所确定出的数量对应的血氧测量 流程。
  14. 根据权利要求12所述的医疗设备,其特征在于,所述处理器还配置为:
    接收到两种不同的血氧测量流程的切换指令后,在所述两种不同的血氧测量流程之间进行切换。
  15. 根据权利要求12所述的医疗设备,其特征在于,两种不同的血氧测量流程中包括输出提示信息的步骤,所述提示信息用于对检测对象两个身体部位的血氧测量信号采集过程提供指引性操作。
  16. 根据权利要求12所述的医疗设备,其特征在于,
    一种血氧测量流程中,血氧测量信号的检测通道为具有一个光传感器的单检测通道;
    另一种血氧测量流程中,血氧测量信号的检测通道为具有两个光传感器的双检测通道。
  17. 根据权利要求16所述的医疗设备,其特征在于,所述处理器还配置为:
    确定到所述血氧测量信号的检测通道为单检测通道时,所述检测对象两个身体部位测量得到的血氧测量信号为:所述单检测通道的一个光传感器先后分别连接在所述两个身体部位测量得到血氧测量信号;
    确定到所述血氧测量信号的检测通道为双检测通道时,所述检测对象两个身体部位测量得到的血氧测量信号为:所述双检测通道的两个光传感器分别连接在所述两个身体部位同时测量得到血氧测量信号。
  18. 根据权利要求12所述的医疗设备,其特征在于,所述光传感器为无线光传感器。
  19. 一种医疗设备,其特征在于,包括处理器,所述处理器配置为:
    输出提示信息,所述提示信息用于对检测对象两个身体部位的血氧测量信号采集过程提供指引性操作;
    获取至少一个光传感器从所述检测对象两个身体部位测量得到的血氧测量信号;所述光传感器基于发射的至少两种波长的光穿透所述身体部位后的光衰减信息生成所述血氧测量信号;
    基于所述血氧测量信号得到对应的两个血氧饱和度值;
    基于所述两个血氧饱和度值确定输出结果信息。
  20. 根据权利要求19所述的医疗设备,其特征在于,所述处理器配置为:输出提示信息,包括:
    确定所述血氧测量信号的检测通道的通道类型,所述通道类型包括具有一个光传感器的单检测通道和具有两个光传感器的双检测通道;
    输出与所述通道类型相对应的提示信息。
  21. 根据权利要求20所述的医疗设备,其特征在于,所述处理器还配置为:
    确定到所述血氧测量信号的检测通道为单检测通道时,所述检测对象两个身体部位测量得到的血氧测量信号为:所述单检测通道的一个光传感器先后分别连接在所述两个身体部位测量得到血氧测量信号;
    确定到所述血氧测量信号的检测通道为双检测通道时,所述检测对象两个身体部位测量得到的血氧测量信号为:所述双检测通道的两个光传感器分别连接在所述两个身体部位同时测量得到血氧测量信号。
  22. 根据权利要求19所述的医疗设备,其特征在于,所述处理器配置为:输出提示信息,包括:
    确定所述血氧测量信号采集过程的当前步骤;
    根据所述当前步骤与提示信息的预设对应关系,确定所述当前步骤对应的提示信息,并输出所确定出的提示信息。
  23. 根据权利要求19所述的医疗设备,其特征在于,所述处理器还配置为:
    获得所述血氧测量信号采集过程的关联信息,其中所述关联信息包括血氧饱和度趋势图和/或灌注指数;
    输出所述关联信息。
  24. 根据权利要求19所述的医疗设备,其特征在于:
    所述血氧测量信号为三次采集过程所获得的三组血氧测量信号,三组血氧测量信号采集过程之间具有预设间隔时长;
    所述提示信息还包括:以所述预设间隔时长为截止条件的计时。
  25. 根据权利要求19所述的医疗设备,其特征在于,所述光传感器为无线光传感器。
  26. 根据权利要求19所述的医疗设备,其特征在于,所述检测对象的两个身体部位至少包括所述检测对象的上肢和下肢。
PCT/CN2018/110097 2018-10-12 2018-10-12 医疗设备 WO2020073326A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880098596.XA CN113056230B (zh) 2018-10-12 2018-10-12 医疗设备
PCT/CN2018/110097 WO2020073326A1 (zh) 2018-10-12 2018-10-12 医疗设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/110097 WO2020073326A1 (zh) 2018-10-12 2018-10-12 医疗设备

Publications (1)

Publication Number Publication Date
WO2020073326A1 true WO2020073326A1 (zh) 2020-04-16

Family

ID=70164335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/110097 WO2020073326A1 (zh) 2018-10-12 2018-10-12 医疗设备

Country Status (2)

Country Link
CN (1) CN113056230B (zh)
WO (1) WO2020073326A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080071155A1 (en) * 2006-09-20 2008-03-20 Kiani Massi E Congenital heart disease monitor
CN101836863A (zh) * 2009-03-19 2010-09-22 深圳迈瑞生物医疗电子股份有限公司 使用两通道监护患者的方法和系统
US20170007134A1 (en) * 2012-01-04 2017-01-12 Masimo Corporation Automated cchd screening and detection
CN107145697A (zh) * 2016-02-29 2017-09-08 深圳市理邦精密仪器股份有限公司 血氧饱和度的处理方法和装置
CN107595256A (zh) * 2017-08-02 2018-01-19 南京邮电大学 一种多通道先天性心脏病快速筛选装置及其筛选方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1073392C (zh) * 1997-08-27 2001-10-24 陈瑜 多参数监护仪及其检测方法
US7277741B2 (en) * 2004-03-09 2007-10-02 Nellcor Puritan Bennett Incorporated Pulse oximetry motion artifact rejection using near infrared absorption by water
CN101672856B (zh) * 2008-09-11 2013-11-27 深圳迈瑞生物医疗电子股份有限公司 一种半自动生化分析仪及其双波长测试方法
JP5820396B2 (ja) * 2010-12-28 2015-11-24 テルモ株式会社 血糖測定装置
DE102011000304B4 (de) * 2011-01-25 2016-08-04 Data M Sheet Metal Solutions Gmbh Kalibrierung von Laser-Lichtschnittsensoren bei gleichzeitiger Messung
CN102579021A (zh) * 2012-02-13 2012-07-18 叶继伦 一种脉搏血氧测量系统及其方法
CN102885629B (zh) * 2012-10-19 2018-09-04 北京超思电子技术有限责任公司 可测量体温的血氧测量仪
US10709352B2 (en) * 2015-10-27 2020-07-14 Covidien Lp Method of using lung airway carina locations to improve ENB registration
CN105194780A (zh) * 2015-11-05 2015-12-30 康泰医学系统(秦皇岛)股份有限公司 一种实时监测血氧并智能自动启动关断制氧的系统及方法
CN106343965A (zh) * 2016-10-09 2017-01-25 上海斐讯数据通信技术有限公司 智能测温手环和测温方法
CN107438210A (zh) * 2017-07-28 2017-12-05 京东方科技集团股份有限公司 一种体征检测耳机和体征检测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080071155A1 (en) * 2006-09-20 2008-03-20 Kiani Massi E Congenital heart disease monitor
CN101836863A (zh) * 2009-03-19 2010-09-22 深圳迈瑞生物医疗电子股份有限公司 使用两通道监护患者的方法和系统
US20170007134A1 (en) * 2012-01-04 2017-01-12 Masimo Corporation Automated cchd screening and detection
CN107145697A (zh) * 2016-02-29 2017-09-08 深圳市理邦精密仪器股份有限公司 血氧饱和度的处理方法和装置
CN107595256A (zh) * 2017-08-02 2018-01-19 南京邮电大学 一种多通道先天性心脏病快速筛选装置及其筛选方法

Also Published As

Publication number Publication date
CN113056230B (zh) 2023-01-24
CN113056230A (zh) 2021-06-29

Similar Documents

Publication Publication Date Title
CN109171755B (zh) 监护系统、生理体征参数显示方法及装置
JP2019524409A (ja) 医療モニタリングのためのシステム及び方法
JP2011125633A (ja) 生体情報測定装置および生体情報モニタ装置
US20210244290A1 (en) Medical device, and multi-working mode monitoring configuration method and apparatus used for medical device
US20150257661A1 (en) System and method for determining arterial pulse wave transit time
US20120016246A1 (en) Methods and apparatus for estimating a blood volume of a mammalian subject
JP6522327B2 (ja) 脈波解析装置
CN109222994A (zh) 血氧监测显示方法和监护设备
WO2020041984A1 (zh) 监护设备、监护信息显示方法和装置
US11211163B2 (en) Methods and systems for providing the proximity of a process requirement metric to a system process requirement
WO2020073326A1 (zh) 医疗设备
JP7138244B2 (ja) 血圧測定装置、血圧測定システム、血圧測定方法、及び、血圧測定プログラム
US20230361510A1 (en) Cable detection using light sensor
JP2017148364A (ja) 生体情報表示装置
US20220160241A1 (en) Orthostatic hypotension monitoring method and apparatus
JP6406854B2 (ja) 歩行試験システム
WO2020133347A1 (zh) 一种对患者的监护方法及装置
US20220160242A1 (en) Method and apparatus for measuring physiological parameter
CN106137602A (zh) 一种具有检测功能的智能床
US20220117561A1 (en) Monitoring device, method for setting reference baseline and readable storage medium
CN110604583A (zh) 血氧测量方法和监护设备
CN112911990A (zh) 一种医疗监护设备及其状态信息展示方法
CN211609762U (zh) 一种新生儿监护仪
CN104825170A (zh) 一种血氧测量仪
CN112135559A (zh) 一种血压测量的优化方法及血压测量装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18936798

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 26.08.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18936798

Country of ref document: EP

Kind code of ref document: A1