WO2020073227A1 - 外部电学补偿像素电路、驱动方法及显示屏 - Google Patents

外部电学补偿像素电路、驱动方法及显示屏 Download PDF

Info

Publication number
WO2020073227A1
WO2020073227A1 PCT/CN2018/109624 CN2018109624W WO2020073227A1 WO 2020073227 A1 WO2020073227 A1 WO 2020073227A1 CN 2018109624 W CN2018109624 W CN 2018109624W WO 2020073227 A1 WO2020073227 A1 WO 2020073227A1
Authority
WO
WIPO (PCT)
Prior art keywords
preset
field effect
sensing
compensation
compensation voltage
Prior art date
Application number
PCT/CN2018/109624
Other languages
English (en)
French (fr)
Inventor
邬强
郭星灵
Original Assignee
深圳市柔宇科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市柔宇科技有限公司 filed Critical 深圳市柔宇科技有限公司
Priority to CN201880095999.9A priority Critical patent/CN113168805A/zh
Priority to PCT/CN2018/109624 priority patent/WO2020073227A1/zh
Publication of WO2020073227A1 publication Critical patent/WO2020073227A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]

Definitions

  • the present invention relates to the field of driving, and more specifically, to an external electrical compensation pixel circuit, driving method, and display screen.
  • Organic light-emitting diodes (Organic Light-Emitting Diode, OLED) are also known as organic electro-laser displays and organic light-emitting semiconductors.
  • the technical problem to be solved by the present invention is to provide an external electrical compensation pixel circuit, driving method and display screen in view of the above-mentioned defects of the prior art.
  • the technical solution adopted by the present invention to solve its technical problems is to construct an externally compensated driving method, which is applied to the electrical compensation pixel circuit.
  • the method includes:
  • the preset compensation voltage is compensated in advance by the signal source
  • the preset compensation voltage is superimposed on the signal voltage of the current number of sensing lines for sensing.
  • the electrically compensated pixel circuit includes: a capacitor C1, a first field effect transistor T1, a second field effect transistor T2, a third field effect transistor T3, and a light emitting unit, wherein,
  • the second end of the first field effect transistor T1 is connected to the power supply voltage, the third end of the first field effect transistor T1 is connected to one end of the light emitting unit, and the other end of the light emitting unit is grounded; the first field The first end of the effect transistor T1 is connected to the second end of the first field effect transistor T1 through the capacitor C1;
  • the first end of the first field effect transistor T1 is connected to the third end of the second field effect transistor T2, the first end of the second field effect transistor T2 is connected to the first scanning circuit, and the second field effect The second end of the tube T2 is connected to the signal source;
  • the first end of the third FET T3 is connected to the second scanning circuit, the second end of the third FET T3 is connected to the third end of the first FET T1, and the third field effect The third end of the tube T3 is connected to the sensing circuit.
  • the line-by-line sensing according to a preset sensing direction includes:
  • Sensing is performed according to the sensing direction from top to bottom, and the sensing is performed every other frame.
  • the line-by-line sensing according to a preset sensing direction includes:
  • the frequency of progressive sensing according to the preset sensing direction is not greater than 60 Hz.
  • the acquiring the current number of sensing lines includes:
  • the driver chip connected to the electrical compensation pixel circuit obtains the current number of sensing lines through register counting.
  • the pre-compensating the preset compensation voltage by the signal source includes:
  • the preset compensation voltage is compensated in advance by the signal source at a preset time point or a preset time interval.
  • the pre-compensating the preset compensation voltage by the signal source includes:
  • the preset compensation voltage is compensated by the signal source at the beginning of the sensing period.
  • the pre-compensating the preset compensation voltage by the signal source includes:
  • the driving method for external compensation according to the present invention before the step of acquiring the current grayscale value of the current pixel, further includes:
  • the corresponding relationship between the gray scale value and the preset compensation voltage is stored in the register of the driving chip.
  • the preset compensation voltage is an analog preset compensation voltage or a digital preset compensation voltage.
  • the driving method for external compensation after the acquiring the current number of sensing lines, before the pre-compensating the preset compensation voltage by the signal source further includes:
  • the preset compensation voltage is compensated in advance by the signal source
  • the driving method of external compensation according to the present invention after the sensing is performed by superimposing the preset compensation voltage on the signal voltage of the current number of sensing lines, further includes:
  • the compensation value of the output data is calculated according to the sensing result, and the output data is corrected.
  • the present invention also provides an external electrical compensation pixel circuit
  • the electrical compensation pixel circuit includes: a capacitor C1, a first FET T1, a second FET T2, a third FET T3, a light emitting unit, wherein ,
  • the second end of the first field effect transistor T1 is connected to the power supply voltage, the third end of the first field effect transistor T1 is connected to one end of the light emitting unit, and the other end of the light emitting unit is grounded; the first field The first end of the effect transistor T1 is connected to the second end of the first field effect transistor T1 through the capacitor C1;
  • the first end of the first field effect transistor T1 is connected to the third end of the second field effect transistor T2, the first end of the second field effect transistor T2 is connected to the first scanning circuit, and the second field effect The second end of the tube T2 is connected to the signal source;
  • the first end of the third FET T3 is connected to the second scanning circuit, the second end of the third FET T3 is connected to the third end of the first FET T1, and the third field effect The third end of the tube T3 is connected to the sensing circuit;
  • the signal source compensates the preset compensation voltage in advance.
  • the signal source compensating the preset compensation voltage in advance includes: the signal source compensating the preset compensation voltage in advance at a preset time point or at a preset time interval.
  • the signal source compensating the preset compensation voltage in advance includes: the signal source compensating the preset compensation voltage at the beginning of the sensing period.
  • the signal source compensating the preset compensation voltage in advance includes:
  • the external electrical compensation pixel circuit according to the present invention before the step of acquiring the current grayscale value of the current pixel, further includes:
  • the corresponding relationship between the gray scale value and the preset compensation voltage is stored in the register of the driving chip.
  • the present invention also provides a display screen that uses the above-described external electrical compensation pixel circuit for voltage compensation.
  • the influence on the picture during the sensing process is compensated by pre-charging, and the preset compensation voltage is obtained by calculating and measuring the empirical value, the value is more reasonable and accurate, and the user can be eliminated during the sensing process
  • the visual impact improves the user experience.
  • FIG. 1 is a circuit diagram of an external electrical compensation pixel circuit of the present invention
  • FIG. 2 is a flowchart of a first embodiment of a driving method for external compensation according to the present invention
  • FIG. 3 is a schematic diagram of sensing according to the preset sensing direction of the present invention.
  • step S2 of the present invention is a flowchart of step S2 of the present invention.
  • FIG. 5 is the corresponding relationship curve between the gray scale value and the preset compensation voltage of the present invention.
  • FIG. 6 is a schematic diagram of the preset compensation voltage waveform of the present invention.
  • FIG. 7 is a flowchart of a second embodiment of a driving method for external compensation according to the present invention.
  • FIG. 8 is a schematic diagram of comparison results between the present invention and the prior art.
  • the external electrical compensation pixel circuit includes: a capacitor C1, a first field effect transistor T1, a second field effect transistor T2, a third field effect transistor T3, and a light emitting unit, wherein the second field effect transistor T1
  • the terminal is connected to the power supply voltage, the third end of the first field effect transistor T1 is connected to one end of the light emitting unit, and the other end of the light emitting unit is grounded; the first end of the first field effect transistor T1 is connected to the first end of the first field effect transistor T1 through a capacitor C1 Two ends; the first end of the first FET T1 is connected to the third end of the second FET T2, the first end of the second FET T2 is connected to the first scanning circuit (san1 circuit), the second FET The second end of T2 is connected to the signal source; the first end of the third FET T3 is connected to the second scanning circuit (san2 circuit), and the second end of the third FET T3 is connected to the third end of the first FET T1 ,
  • the signal source in the above circuit compensates the preset compensation voltage in advance.
  • the signal source compensating the preset compensation voltage in advance includes the signal source compensating the preset compensation voltage in advance at a preset time point or at a preset time interval. Further, the signal source compensating the preset compensation voltage in advance includes the signal source compensating the preset compensation voltage at the beginning of the sensing period.
  • the signal source pre-compensating the preset compensation voltage includes: obtaining the correspondence between the gray scale value and the preset compensation voltage through a test operation method; referring to FIG. 5, a set of gray scale values and the preset compensation measured in this embodiment As can be seen from the graph of the corresponding relationship curve of the voltage, different gray-scale values correspond to different preset compensation voltages, and compared with the fixed value compensation voltage in the prior art, a better compensation effect can be achieved.
  • the correspondence between the gray scale value and the preset compensation voltage is stored in the register of the driver chip, and a table for recording the gray scale value and the preset compensation voltage is generated in the register.
  • the table of gray scale value and preset compensation voltage obtains the required preset compensation voltage.
  • the corresponding preset compensation voltage is searched according to the current gray scale value, and the preset compensation voltage is compensated in advance by the signal source.
  • the electrically compensated pixel circuit includes: a capacitor C1, a first FET T1, a second FET T2, a third FET T3, Light emitting unit, wherein the second end of the first field effect transistor T1 is connected to the power supply voltage, the third end of the first field effect transistor T1 is connected to one end of the light emitting unit, and the other end of the light emitting unit is grounded; One end is connected to the second end of the first FET T1 through a capacitor C1; the first end of the first FET T1 is connected to the third end of the second FET T2, and the first end of the second FET T2 is connected The first scanning circuit, the second end of the second FET T2 is connected to the signal source; the first end of the third FET T3 is connected to the second scanning circuit, and the second end of the third FET T3 is connected to the first field effect The third end of the tube T1 and the third end of the
  • line-by-line sensing according to the preset sensing direction includes: sensing according to the sensing direction from top to bottom, and sensing is performed every other frame; as an option, the preset sensing direction Can be selectively set according to need; the figure takes time t0 and time t1 as an example for description.
  • the frequency of line-by-line sensing according to the preset sensing direction is not greater than 60 Hz. Although pre-compensation for the preset compensation voltage will have a certain degree of difference between light and dark, the human eye cannot perceive the brightness jump within 60 Hz.
  • obtaining the current number of sensing lines includes: the driver chip connected to the electrical compensation pixel circuit obtains the current number of sensing lines through register counting.
  • the preset compensation voltage is compensated in advance by the signal source.
  • pre-compensating the preset compensation voltage by the signal source includes:
  • pre-compensating the preset compensation voltage by the signal source includes: pre-compensating the preset compensation voltage by the signal source at a preset time point or at a preset time interval, for example, at time t0 n (n is a positive integer) starts after the line, so that any line of compensation t1-t0 is a fixed value.
  • compensating the preset compensation voltage in advance by the signal source includes: compensating the preset compensation voltage at the beginning of the sensing period by the signal source.
  • FIG. 6 is a schematic diagram of the preset compensation voltage waveform of the present invention, and ⁇ V in FIG. 6 is the preset compensation voltage.
  • the preset compensation voltage is an analog preset compensation voltage or a digital preset compensation voltage. If it is an analog preset compensation voltage, the corresponding analog-to-digital conversion AD may be added.
  • the preset compensation voltage is superimposed on the signal voltage of the current sensing line number for sensing. Because a preset compensation voltage is compensated in advance, the sensed voltage returns to a normal display state, thereby avoiding the prior art The appearance of medium light and dark stripes.
  • the compensation value of the output data is calculated according to the sensing result, and the output data is corrected.
  • the method further includes:
  • the preset compensation voltage is compensated in advance through the signal source.
  • FIG. 8 it is a schematic diagram of comparison results between the present invention and the prior art. It can be seen from the comparison of experimental results:
  • the present invention also provides a display screen that uses the above-described external electrical compensation pixel circuit for voltage compensation.
  • the influence on the picture during the sensing process is compensated by pre-charging, and the preset compensation voltage is obtained by calculating and measuring the empirical value, the value is more reasonable and accurate, and the user can be eliminated during the sensing process
  • the visual impact improves the user experience.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)

Abstract

一种外部电学补偿像素电路、驱动方法及显示屏,驱动方法应用于电学补偿像素电路,包括步骤:按照预设感测方向进行逐行感测,获取当前感测行数(S1);通过测试运算方式得到灰阶值与预设补偿电压的对应关系(S21),进而根据灰阶值查找对应的预设补偿电压;通过信号源提前补偿预设补偿电压(S2);将预设补偿电压叠加到当前感测行数的信号电压上进行感测(S3);通过预充电的方式补偿感测过程中对画面的影响,并且预设补偿电压经计算、测量经验值的方式得到,取值更加合理准确,可消除在感测过程中对用户视觉的影响,提高用户体验。

Description

外部电学补偿像素电路、驱动方法及显示屏 技术领域
本发明涉及驱动领域,更具体地说,涉及一种外部电学补偿像素电路、驱动方法及显示屏。
背景技术
有机发光二极管(Organic Light-Emitting Diode, OLED)又称为有机电激光显示、有机发光半导体。
为增强用户体验,需要在正常显示的同时完成电学补偿,现有技术通过信号源再次写入与感测前相同电压的方式来进行补偿,以补偿由于感测所抽走的OLED外部电学补偿像素电路中电容的电荷。但因补偿前后会有一个电压差,该电压差将在画面上表现出一条亮/暗横线,难以实现完美补偿。
另外,现有技术还需要一帧内有一行需要开启两次,电路设计复杂,并且只能在脉冲电压区进行补偿,会给画质产生影响。
技术问题
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种外部电学补偿像素电路、驱动方法及显示屏。
技术解决方案
本发明解决其技术问题所采用的技术方案是:构造一种外部补偿的驱动方法,应用于电学补偿像素电路,所述方法包括:
按照预设感测方向进行逐行感测,获取当前感测行数;
通过信号源提前补偿预设补偿电压;
将所述预设补偿电压叠加到所述当前感测行数的信号电压上进行感测。
进一步,本发明所述的外部补偿的驱动方法,所述电学补偿像素电路包括:电容C1、第一场效应管T1、第二场效应管T2、第三场效应管T3、发光单元,其中,
所述第一场效应管T1的第二端连接电源电压,所述第一场效应管T1的第三端连接所述发光单元的一端,所述发光单元的另一端接地;所述第一场效应管T1的第一端通过所述电容C1连接所述第一场效应管T1的第二端;
所述第一场效应管T1的第一端连接所述第二场效应管T2的第三端,所述第二场效应管T2的第一端连接第一扫描电路,所述第二场效应管T2的第二端连接所述信号源;
所述第三场效应管T3的第一端连接第二扫描电路,所述第三场效应管T3的第二端连接所述第一场效应管T1的第三端,所述第三场效应管T3的第三端连接感测电路。
进一步,本发明所述的外部补偿的驱动方法,所述按照预设感测方向进行逐行感测包括:
按照从上而下的感测方向进行感测,每隔一帧做一次感测。
进一步,本发明所述的外部补偿的驱动方法,所述按照预设感测方向进行逐行感测包括:
按照预设感测方向进行逐行感测的频率不大于60Hz。
进一步,本发明所述的外部补偿的驱动方法,所述获取当前感测行数包括:
与所述电学补偿像素电路连接的驱动芯片通过寄存器计数获取所述当前感测行数。
进一步,本发明所述的外部补偿的驱动方法,所述通过信号源提前补偿预设补偿电压包括:
通过所述信号源在预设时间点或间隔预设时间间隔提前补偿所述预设补偿电压。
进一步,本发明所述的外部补偿的驱动方法,所述通过信号源提前补偿预设补偿电压包括:
通过所述信号源在感测周期开始时补偿所述预设补偿电压。
进一步,本发明所述的外部补偿的驱动方法,所述通过信号源提前补偿预设补偿电压包括:
获取当前像素的所述当前灰阶值;
根据所述当前灰阶值查找对应的所述预设补偿电压,通过信号源提前补偿所述预设补偿电压。
进一步,本发明所述的外部补偿的驱动方法,在步骤所述获取当前像素的所述当前灰阶值之前还包括:
通过测试运算方式得到灰阶值与预设补偿电压的对应关系;
将灰阶值与预设补偿电压的对应关系存储到驱动芯片的寄存器中。
进一步,本发明所述的外部补偿的驱动方法,所述预设补偿电压为模拟预设补偿电压或数字预设补偿电压。
进一步,本发明所述的外部补偿的驱动方法,在所述获取当前感测行数之后,所述通过信号源提前补偿预设补偿电压之前还包括:
判断所述当前感测行数是否为需电压补偿行数;
若是,则通过信号源提前补偿预设补偿电压;
若否,则输出所述当前感测行数的灰阶。
进一步,本发明所述的外部补偿的驱动方法,在所述将所述预设补偿电压叠加到所述当前感测行数的信号电压上进行感测之后还包括:
根据感测结果计算得到输出数据的补偿值,修正所述输出数据。
另,本发明还提供一种外部电学补偿像素电路,所述电学补偿像素电路包括:电容C1、第一场效应管T1、第二场效应管T2、第三场效应管T3、发光单元,其中,
所述第一场效应管T1的第二端连接电源电压,所述第一场效应管T1的第三端连接所述发光单元的一端,所述发光单元的另一端接地;所述第一场效应管T1的第一端通过所述电容C1连接所述第一场效应管T1的第二端;
所述第一场效应管T1的第一端连接所述第二场效应管T2的第三端,所述第二场效应管T2的第一端连接第一扫描电路,所述第二场效应管T2的第二端连接所述信号源;
所述第三场效应管T3的第一端连接第二扫描电路,所述第三场效应管T3的第二端连接所述第一场效应管T1的第三端,所述第三场效应管T3的第三端连接感测电路;
所述信号源提前补偿预设补偿电压。
进一步,本发明所述的外部电学补偿像素电路,所述信号源提前补偿预设补偿电压包括:所述信号源在预设时间点或间隔预设时间间隔提前补偿预设补偿电压。
进一步,本发明所述的外部电学补偿像素电路,所述信号源提前补偿预设补偿电压包括:所述信号源在感测周期开始时补偿预设补偿电压。
进一步,本发明所述的外部电学补偿像素电路,所述信号源提前补偿预设补偿电压包括:
获取当前像素的所述当前灰阶值;
根据所述当前灰阶值查找对应的所述预设补偿电压,通过信号源提前补偿所述预设补偿电压。
进一步,本发明所述的外部电学补偿像素电路,在步骤所述获取当前像素的所述当前灰阶值之前还包括:
通过测试运算方式得到灰阶值与预设补偿电压的对应关系;
将灰阶值与预设补偿电压的对应关系存储到驱动芯片的寄存器中。
另,本发明还提供一种显示屏,使用上述的外部电学补偿像素电路进行电压补偿。
有益效果
通过实施本发明,通过预充电的方式补偿感测过程中对画面的影响,并且预设补偿电压经计算、测量经验值的方式得到,取值更加合理准确,可消除在感测过程中对用户视觉的影响,提高用户体验。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明一种外部电学补偿像素电路的电路图;
图2是本发明一种外部补偿的驱动方法第一实施例流程图;
图3是本发明按照预设感测方向感测示意图;
图4是本发明步骤S2的实现流程图;
图5是本发明灰阶值与预设补偿电压的对应关系曲线;
图6是本发明补偿预设补偿电压波形示意图;
图7是本发明一种外部补偿的驱动方法第二实施例流程图;
图8是本发明与现有技术进行实现对比结果示意图。
本发明的最佳实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。
参考图1,该外部电学补偿像素电路包括:电容C1、第一场效应管T1、第二场效应管T2、第三场效应管T3、发光单元,其中,第一场效应管T1的第二端连接电源电压,第一场效应管T1的第三端连接发光单元的一端,发光单元的另一端接地;第一场效应管T1的第一端通过电容C1连接第一场效应管T1的第二端;第一场效应管T1的第一端连接第二场效应管T2的第三端,第二场效应管T2的第一端连接第一扫描电路(san1电路),第二场效应管T2的第二端连接信号源;第三场效应管T3的第一端连接第二扫描电路(san2电路),第三场效应管T3的第二端连接第一场效应管T1的第三端,第三场效应管T3的第三端连接感测电路。
上述电路中信号源提前补偿预设补偿电压。信号源提前补偿预设补偿电压包括:信号源在预设时间点或间隔预设时间间隔提前补偿预设补偿电压。进一步,信号源提前补偿预设补偿电压包括:信号源在感测周期开始时补偿预设补偿电压。
具体的,信号源提前补偿预设补偿电压包括:通过测试运算方式得到灰阶值与预设补偿电压的对应关系;参考图5,为本实施例测得的一组灰阶值与预设补偿电压的对应关系曲线,从图中可以看出,不同灰阶值对应不同的预设补偿电压,相较于现有技术中固定值的补偿电压,可达到较好的补偿效果。
将灰阶值与预设补偿电压的对应关系存储到驱动芯片的寄存器中,寄存器中生成用于记录灰阶值与预设补偿电压的表,在后续根据当前灰阶值进行查询时,通过查询灰阶值与预设补偿电压的表得到所需的预设补偿电压。
进一步,获取当前像素的当前灰阶值。
进一步,根据当前灰阶值查找对应的预设补偿电压,通过信号源提前补偿预设补偿电压。
参考图2,本实施例的外部补偿的驱动方法应用于电学补偿像素电路,电学补偿像素电路包括:电容C1、第一场效应管T1、第二场效应管T2、第三场效应管T3、发光单元,其中,第一场效应管T1的第二端连接电源电压,第一场效应管T1的第三端连接发光单元的一端,发光单元的另一端接地;第一场效应管T1的第一端通过电容C1连接第一场效应管T1的第二端;第一场效应管T1的第一端连接第二场效应管T2的第三端,第二场效应管T2的第一端连接第一扫描电路,第二场效应管T2的第二端连接信号源;第三场效应管T3的第一端连接第二扫描电路,第三场效应管T3的第二端连接第一场效应管T1的第三端,第三场效应管T3的第三端连接感测电路。该方法包括下述步骤:
S1、按照预设感测方向进行逐行感测,获取当前感测行数。
具体的,参考图3,按照预设感测方向进行逐行感测包括:按照从上而下的感测方向进行感测,每隔一帧做一次感测;作为选择,预设感测方向可根据需要进行选择性设置;图中以t0时刻和t1时刻为例进行说明。并且按照预设感测方向进行逐行感测的频率不大于60Hz,虽然提前补偿预设补偿电压会有一定程度的明暗差异,但在60Hz以内人眼是无法感觉到亮度跳变的。
进一步,获取当前感测行数包括:与电学补偿像素电路连接的驱动芯片通过寄存器计数获取当前感测行数。
S2、通过信号源提前补偿预设补偿电压。
具体的,参考图4,通过信号源提前补偿预设补偿电压包括:
S21、通过测试运算方式得到灰阶值与预设补偿电压的对应关系,可以理解,灰阶值与预设补偿电压的对应关系需提前通过实验和计算得到。参考图5,为本实施例测得的一组灰阶值与预设补偿电压的对应关系曲线,从图中可以看出,不同灰阶值对应不同的预设补偿电压,相较于现有技术中固定值的补偿电压,可达到较好的补偿效果。
S22、将灰阶值与预设补偿电压的对应关系存储到驱动芯片的寄存器中,寄存器中生成用于记录灰阶值与预设补偿电压的表,在后续根据当前灰阶值进行查询时,通过查询灰阶值与预设补偿电压的表得到所需的预设补偿电压。
S23、获取当前像素的当前灰阶值。
S24、根据当前灰阶值查找对应的预设补偿电压,通过信号源提前补偿预设补偿电压。
在根据灰阶值获取对应的预设补偿电压后,通过信号源提前补偿预设补偿电压包括:通过信号源在预设时间点或间隔预设时间间隔提前补偿预设补偿电压,例如在t0时刻n(n为正整数)行后开始,使得补偿任何一行t1-t0是个固定的值。进一步,通过信号源提前补偿预设补偿电压包括:通过信号源在感测周期开始时补偿预设补偿电压。图6是本发明补偿预设补偿电压波形示意图,图6中△V 为预设补偿电压。
作为选择,预设补偿电压为模拟预设补偿电压或数字预设补偿电压,若为模拟预设补偿电压,加装对应的模数转换AD即可。
S3、将预设补偿电压叠加到当前感测行数的信号电压上进行感测,因提前补偿一个预设补偿电压,使得感测后的电压回到一个正常的显示状态,从而避免现有技术中明暗条纹的出现。
S4、根据感测结果计算得到输出数据的补偿值,修正输出数据。
参考图7,在第一实施例的基础上,本实施例中在获取当前感测行数之后,通过信号源提前补偿预设补偿电压之前还包括:
S12、判断当前感测行数是否为需电压补偿行数;
S2、若当前感测行数为需电压补偿行数,则通过信号源提前补偿预设补偿电压。
S13、若当前感测行数不为需电压补偿行数,则输出当前感测行数的灰阶。
参考图8,是本发明与现有技术进行实现对比结果示意图。从实验结果比较中可以看出:
1)、无补偿时出现较明显暗线。
2)、由于现有补偿△t(△t为感测不同位置的时间差)大小变化,所以对面板不同区域的补偿效果不一样并且无法保持C1的正常漏电,所以补偿效果欠佳。
3)、可以固定△t的大小,并且不同灰阶有对应的预充量,可以有较完美的补偿效果。
另,本发明还提供一种显示屏,使用上述的外部电学补偿像素电路进行电压补偿。
通过实施本发明,通过预充电的方式补偿感测过程中对画面的影响,并且预设补偿电压经计算、测量经验值的方式得到,取值更加合理准确,可消除在感测过程中对用户视觉的影响,提高用户体验。
以上实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据此实施,并不能限制本发明的保护范围。凡跟本发明权利要求范围所做的均等变化与修饰,均应属于本发明权利要求的涵盖范围。

Claims (18)

  1. 一种外部补偿的驱动方法,其特征在于,应用于电学补偿像素电路,所述方法包括:
    按照预设感测方向进行逐行感测,获取当前感测行数;
    通过信号源提前补偿预设补偿电压;
    将所述预设补偿电压叠加到所述当前感测行数的信号电压上进行感测。
  2. 根据权利要求1所述的外部补偿的驱动方法,其特征在于,所述电学补偿像素电路包括:电容(C1)、第一场效应管(T1)、第二场效应管(T2)、第三场效应管(T3)、发光单元,其中,
    所述第一场效应管(T1)的第二端连接电源电压,所述第一场效应管(T1)的第三端连接所述发光单元的一端,所述发光单元的另一端接地;所述第一场效应管(T1)的第一端通过所述电容(C1)连接所述第一场效应管(T1)的第二端;
    所述第一场效应管(T1)的第一端连接所述第二场效应管(T2)的第三端,所述第二场效应管(T2)的第一端连接第一扫描电路,所述第二场效应管(T2)的第二端连接所述信号源;
    所述第三场效应管(T3)的第一端连接第二扫描电路,所述第三场效应管(T3)的第二端连接所述第一场效应管(T1)的第三端,所述第三场效应管(T3)的第三端连接感测电路。
  3. 根据权利要求1所述的外部补偿的驱动方法,其特征在于,所述按照预设感测方向进行逐行感测包括:
    按照从上而下的感测方向进行感测,每隔一帧做一次感测。
  4. 根据权利要求1所述的外部补偿的驱动方法,其特征在于,所述按照预设感测方向进行逐行感测包括:
    按照预设感测方向进行逐行感测的频率不大于60Hz。
  5. 根据权利要求1所述的外部补偿的驱动方法,其特征在于,所述获取当前感测行数包括:
    与所述电学补偿像素电路连接的驱动芯片通过寄存器计数获取所述当前感测行数。
  6. 根据权利要求1所述的外部补偿的驱动方法,其特征在于,所述通过信号源提前补偿预设补偿电压包括:
    通过所述信号源在预设时间点或间隔预设时间间隔提前补偿所述预设补偿电压。
  7. 根据权利要求6所述的外部补偿的驱动方法,其特征在于,所述通过信号源提前补偿预设补偿电压包括:
    通过所述信号源在感测周期开始时补偿所述预设补偿电压。
  8. 根据权利要求1所述的外部补偿的驱动方法,其特征在于,所述通过信号源提前补偿预设补偿电压包括:
    获取当前像素的所述当前灰阶值;
    根据所述当前灰阶值查找对应的所述预设补偿电压,通过信号源提前补偿所述预设补偿电压。
  9. 根据权利要求8所述的外部补偿的驱动方法,其特征在于,在步骤所述获取当前像素的所述当前灰阶值之前还包括:
    通过测试运算方式得到灰阶值与预设补偿电压的对应关系;
    将灰阶值与预设补偿电压的对应关系存储到驱动芯片的寄存器中。
  10. 根据权利要求1所述的外部补偿的驱动方法,其特征在于,所述预设补偿电压为模拟预设补偿电压或数字预设补偿电压。
  11. 根据权利要求1所述的外部补偿的驱动方法,其特征在于,在所述获取当前感测行数之后,所述通过信号源提前补偿预设补偿电压之前还包括:
    判断所述当前感测行数是否为需电压补偿行数;
    若是,则通过信号源提前补偿预设补偿电压;
    若否,则输出所述当前感测行数的灰阶。
  12. 根据权利要求1所述的外部补偿的驱动方法,其特征在于,在所述将所述预设补偿电压叠加到所述当前感测行数的信号电压上进行感测之后还包括:
    根据感测结果计算得到输出数据的补偿值,修正所述输出数据。
  13. 一种外部电学补偿像素电路,其特征在于,所述电学补偿像素电路包括:电容(C1)、第一场效应管(T1)、第二场效应管(T2)、第三场效应管(T3)、发光单元,其中,
    所述第一场效应管(T1)的第二端连接电源电压,所述第一场效应管(T1)的第三端连接所述发光单元的一端,所述发光单元的另一端接地;所述第一场效应管(T1)的第一端通过所述电容(C1)连接所述第一场效应管(T1)的第二端;
    所述第一场效应管(T1)的第一端连接所述第二场效应管(T2)的第三端,所述第二场效应管(T2)的第一端连接第一扫描电路,所述第二场效应管(T2)的第二端连接所述信号源;
    所述第三场效应管(T3)的第一端连接第二扫描电路,所述第三场效应管(T3)的第二端连接所述第一场效应管(T1)的第三端,所述第三场效应管(T3)的第三端连接感测电路;
    所述信号源提前补偿预设补偿电压。
  14. 根据权利要求13所述的外部电学补偿像素电路,其特征在于,所述信号源提前补偿预设补偿电压包括:所述信号源在预设时间点或间隔预设时间间隔提前补偿预设补偿电压。
  15. 根据权利要求14所述的外部电学补偿像素电路,其特征在于,所述信号源提前补偿预设补偿电压包括:所述信号源在感测周期开始时补偿预设补偿电压。
  16. 根据权利要求13所述的外部电学补偿像素电路,其特征在于,所述信号源提前补偿预设补偿电压包括:
    获取当前像素的所述当前灰阶值;
    根据所述当前灰阶值查找对应的所述预设补偿电压,通过信号源提前补偿所述预设补偿电压。
  17. 根据权利要求16所述的外部电学补偿像素电路,其特征在于,在步骤所述获取当前像素的所述当前灰阶值之前还包括:
    通过测试运算方式得到灰阶值与预设补偿电压的对应关系;
    将灰阶值与预设补偿电压的对应关系存储到驱动芯片的寄存器中。
  18. 一种显示屏,其特征在于,使用权利要求13-17任一项所述的外部电学补偿像素电路进行电压补偿。
PCT/CN2018/109624 2018-10-10 2018-10-10 外部电学补偿像素电路、驱动方法及显示屏 WO2020073227A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880095999.9A CN113168805A (zh) 2018-10-10 2018-10-10 外部电学补偿像素电路、驱动方法及显示屏
PCT/CN2018/109624 WO2020073227A1 (zh) 2018-10-10 2018-10-10 外部电学补偿像素电路、驱动方法及显示屏

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/109624 WO2020073227A1 (zh) 2018-10-10 2018-10-10 外部电学补偿像素电路、驱动方法及显示屏

Publications (1)

Publication Number Publication Date
WO2020073227A1 true WO2020073227A1 (zh) 2020-04-16

Family

ID=70163699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/109624 WO2020073227A1 (zh) 2018-10-10 2018-10-10 外部电学补偿像素电路、驱动方法及显示屏

Country Status (2)

Country Link
CN (1) CN113168805A (zh)
WO (1) WO2020073227A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103886830A (zh) * 2012-12-20 2014-06-25 乐金显示有限公司 有机发光显示装置及其驱动方法
CN104751781A (zh) * 2013-12-30 2015-07-01 乐金显示有限公司 有机发光显示装置及其驱动方法
CN105225631A (zh) * 2014-06-30 2016-01-06 乐金显示有限公司 显示设备
CN107464528A (zh) * 2016-06-05 2017-12-12 联咏科技股份有限公司 外部补偿方法及其驱动集成电路
CN108053793A (zh) * 2017-12-15 2018-05-18 京东方科技集团股份有限公司 显示装置、显示基板及显示补偿方法和装置
KR20180103271A (ko) * 2017-03-09 2018-09-19 주식회사 실리콘웍스 화소센싱장치 및 패널구동장치

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107909965B (zh) * 2017-12-07 2019-08-13 京东方科技集团股份有限公司 用于显示面板的补偿方法和装置
CN108039146B (zh) * 2018-01-02 2019-08-13 京东方科技集团股份有限公司 一种像素电路的驱动方法、驱动装置及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103886830A (zh) * 2012-12-20 2014-06-25 乐金显示有限公司 有机发光显示装置及其驱动方法
CN104751781A (zh) * 2013-12-30 2015-07-01 乐金显示有限公司 有机发光显示装置及其驱动方法
CN105225631A (zh) * 2014-06-30 2016-01-06 乐金显示有限公司 显示设备
CN107464528A (zh) * 2016-06-05 2017-12-12 联咏科技股份有限公司 外部补偿方法及其驱动集成电路
KR20180103271A (ko) * 2017-03-09 2018-09-19 주식회사 실리콘웍스 화소센싱장치 및 패널구동장치
CN108053793A (zh) * 2017-12-15 2018-05-18 京东方科技集团股份有限公司 显示装置、显示基板及显示补偿方法和装置

Also Published As

Publication number Publication date
CN113168805A (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
JP4302945B2 (ja) 表示パネルの駆動装置及び駆動方法
KR101789602B1 (ko) 유기발광 표시장치 및 그의 구동 방법
JP5552117B2 (ja) 有機el表示装置の表示方法および有機el表示装置
US9672769B2 (en) Display apparatus and method of driving the same
US9711073B2 (en) Display panel and method and system for correcting defects on the display panel
JP4831698B2 (ja) 発光ディスプレイおよびその動作方法
US7274363B2 (en) Panel display driving device and driving method
US8022899B2 (en) EL display apparatus and drive method of EL display apparatus
JP5010030B2 (ja) 表示装置及びその制御方法
US8830148B2 (en) Organic electroluminescence display device and organic electroluminescence display device manufacturing method
KR101509118B1 (ko) 유기 발광 표시 장치, 그 보정 정보 생성 장치 및 방법
US20110074762A1 (en) Light-emitting apparatus and drive control method thereof as well as electronic device
JP2005084260A (ja) 表示パネルの変換データ決定方法および測定装置
KR101017366B1 (ko) 액정 표시 장치 및 그 동적 커패시턴스 보상의 계조레벨의 결정 방법 및 그 감마 정수의 보정 방법
US20160189630A1 (en) Organic light emitting display
US10672344B2 (en) Display device displaying a plurality of patterns receiving luminance and color coordinates data for said patterns from an external user device
CN109949748B (zh) 显示数据补偿方法、显示数据补偿器件及显示装置
EP2531994B1 (en) Display device
KR102612043B1 (ko) 발광 표시 장치 및 그 구동 방법
KR20150011645A (ko) 유기 발광 다이오드 표시장치 및 그 구동방법
CN109949759B (zh) 扫描信号补偿方法、扫描信号补偿电路及显示器
KR20180123608A (ko) 표시 장치
WO2022120986A1 (zh) 伽马电压校正方法及装置、显示装置
EP3958250A2 (en) Method and device for compensating luminance deviation and display device using the same
CN110390899B (zh) 用于增强显示均匀性的自适应驱动补偿系统和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18936368

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18936368

Country of ref document: EP

Kind code of ref document: A1