WO2020073168A1 - 一种轮椅控制方法及系统 - Google Patents

一种轮椅控制方法及系统 Download PDF

Info

Publication number
WO2020073168A1
WO2020073168A1 PCT/CN2018/109345 CN2018109345W WO2020073168A1 WO 2020073168 A1 WO2020073168 A1 WO 2020073168A1 CN 2018109345 W CN2018109345 W CN 2018109345W WO 2020073168 A1 WO2020073168 A1 WO 2020073168A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheelchair
target object
space
power device
image data
Prior art date
Application number
PCT/CN2018/109345
Other languages
English (en)
French (fr)
Inventor
杨安陶
李家鑫
刘伟荣
焦寅
闫励
Original Assignee
苏州金瑞麒智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州金瑞麒智能科技有限公司 filed Critical 苏州金瑞麒智能科技有限公司
Priority to CN201880098389.4A priority Critical patent/CN112789019B/zh
Priority to PCT/CN2018/109345 priority patent/WO2020073168A1/zh
Publication of WO2020073168A1 publication Critical patent/WO2020073168A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G5/00Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs
    • A61G5/04Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs motor-driven

Definitions

  • the present application relates to wheelchair control technology, in particular to a wheelchair control method and system in a narrow space.
  • An aspect of the present application provides a wheelchair control method, characterized in that the method includes: determining a target object; the target object is located in the space where the wheelchair is located; and obtaining the environment of the space where the wheelchair is located through at least one sensor located on the wheelchair Information; determine the relative positional relationship between the target object and the wheelchair based on the environmental information; and control the wheelchair to move in the space based on the relative positional relationship to bring the wheelchair closer to the target object; wherein the movement includes at least one of the following: rotating a certain angle, advancing or Back off.
  • acquiring the environmental information of the space in which the wheelchair is located through at least one sensor located on the wheelchair further includes: acquiring at least a part of the contour data in the space through at least one echo detection sensor located on the wheelchair; or, by The image acquisition device located on the wheelchair acquires image data of at least a part of the space.
  • the echo sounding test sensor includes at least one of the following: a radar or an ultrasonic sensor.
  • acquiring the environmental information of the space where the wheelchair is located through at least one sensor located on the wheelchair further includes: acquiring at least a part of the contour data in the space through at least one echo detection sensor located on the wheelchair; Whether part of the contour data contains the contour data of the target object; if not, the wheelchair is controlled to rotate a certain angle and then at least a part of the contour data in the space is acquired through the at least one echo detection sensor located on the wheelchair until the acquired space At least a part of the contour data includes contour data of the target object.
  • determining the relative position relationship between the target object and the wheelchair further includes: determining the position of the contour data of the target object in at least a part of the contour data in space; The position above determines the orientation and / or distance of the target object relative to the wheelchair.
  • acquiring the environmental information of the space in which the wheelchair is located by at least one sensor located on the wheelchair further includes: acquiring image data of at least a portion of the space through the image acquisition device located on the wheelchair; determining image data of at least a portion of the space Whether the image data of the target object is included; if not, the wheelchair is controlled to rotate at a certain angle and then the image acquisition device located on the wheelchair is used again to acquire at least a part of the image data in the space until at least a part of the acquired image data contains the target The image data of the object.
  • determining the relative position relationship between the target object and the wheelchair based on the environmental information further includes: determining the position of the image data of the target object in at least a portion of the image data in space; based on the position and the position of the image acquisition device on the wheelchair The position determines the orientation and / or distance of the target object relative to the wheelchair.
  • controlling the wheelchair to move in the space based on the relative position relationship to bring the wheelchair closer to the target object further includes: controlling the wheelchair to rotate a certain angle based on the orientation so that the front of the wheelchair faces the target object; and / or controlling the wheelchair along based on the distance It moves forward or backward a certain distance directly in front of it, so that the wheelchair is close to the target object.
  • the wheelchair includes a processor and a telescopic rotating device;
  • the telescopic rotating device includes a support shaft, a base, a telescopic power device, and a rotating power device; both the telescopic power device and the rotating power device have a signal connection to the processor; It can be directly or indirectly mounted on the base with respect to the base telescopic and rotating; the base is fixedly installed on the wheelchair seat bottom; the support shaft is perpendicular to the seat bottom and faces downward of the wheelchair; the telescopic power device and the rotary power device all have transmission with the support shaft Connection; controlling the rotation of the wheelchair at a certain angle includes: controlling the telescopic power device to extend the base relative to the support shaft, and then lifting the wheelchair away from the ground; controlling the rotary power device to rotate the base at a certain angle relative to the support shaft, thereby driving the wheelchair Rotate a certain angle; control the telescopic power device to shorten the base relative to the support shaft, and then put the wheelchair back on the ground.
  • the wheelchair includes two front wheels and two rear wheels; two of the front wheels are universal wheels, and each of the two rear wheels is driven by a motor, and the motors have signal connections to the processor; control the wheelchair Rotating a certain angle includes: controlling the motors of the two rear wheels to rotate oppositely to each other by a certain angle, which in turn drives the wheelchair to rotate.
  • An aspect of the present application provides a wheelchair control system, characterized in that at least one storage medium includes a set of instruction sets for controlling the movement of the wheelchair; at least one processor in communication with at least one storage medium , Where, when executing the instruction set, at least one processor is used to: determine the target object; the target object is located in the space where the wheelchair is located; obtain the environmental information of the space where the wheelchair is located through at least one sensor located on the wheelchair; based on the environmental information, Determining the relative positional relationship between the target object and the wheelchair; and controlling the wheelchair to move in the space based on the relative positional relationship so that the wheelchair approaches the target object; wherein the movement includes at least one of the following: rotating by an angle, advancing or Back off.
  • At least one processor in order to obtain the environmental information of the space in which the wheelchair is located through at least one sensor located on the wheelchair, at least one processor is used to: obtain the contour of at least a part of the space through at least one echo detection sensor located on the wheelchair Data; or, acquiring image data of at least a part of the space through an image acquisition device located on the wheelchair.
  • the echo sounding test sensor includes at least one of the following: a radar or an ultrasonic sensor.
  • the at least one processor in order to obtain the environmental information of the space in which the wheelchair is located by at least one sensor located on the wheelchair, is further used to: obtain at least a part of the space through at least one echo detection sensor located on the wheelchair Contour data; determine whether the contour data of at least a part of the space contains the contour data of the target object; if not, control the wheelchair to rotate a certain angle and then obtain at least a part of the space through at least one echo detection sensor located on the wheelchair The contour data until at least a part of the acquired contour data contains contour data of the target object.
  • At least one processor in order to determine the relative position relationship between the target object and the wheelchair based on the environmental information, is used to: determine the position of the contour data of the target object in at least a part of the contour data in space; based on the position and the echo The position of the detection sensor on the wheelchair determines the orientation and / or distance of the target object relative to the wheelchair.
  • At least one processor in order to obtain the environmental information of the space where the wheelchair is located through at least one sensor located on the wheelchair, is used to: obtain image data of at least a part of the space through the image acquisition device located on the wheelchair; determine the space Whether at least a part of the image data in the image contains the image data of the target object; if not, the wheelchair is controlled to rotate a certain angle and then pass through the image acquisition device located on the wheelchair to obtain at least a part of the image data in the space until at least a part of the acquired space The image data of contains the image data of the target object.
  • At least one processor in order to determine the relative position relationship between the target object and the wheelchair based on the environmental information, is used to: determine the position of the image data of the target object in at least a part of the image data in space; based on the position and image acquisition The position of the device on the wheelchair determines the orientation and / or distance of the target object relative to the wheelchair.
  • At least one processor in order to control the wheelchair to move in space based on the relative positional relationship so that the wheelchair approaches the target object, at least one processor is used to: control the wheelchair to rotate by an angle based on the orientation so that the front of the wheelchair faces the target object; and / or, Based on the distance, the wheelchair is controlled to move forward or backward by a certain distance so that the wheelchair approaches the target object.
  • the wheelchair includes a processor and a telescopic rotating device;
  • the telescopic rotating device includes a support shaft, a base, a telescopic power device, and a rotating power device; both the telescopic power device and the rotating power device have a signal connection to the processor; It can be directly or indirectly mounted on the base with respect to the base telescopic and rotating; the base is fixedly installed on the wheelchair seat bottom; the support shaft is perpendicular to the seat bottom and faces downward of the wheelchair; the telescopic power device and the rotary power device have transmission with the support shaft Connection; in order to control the wheelchair to rotate at a certain angle, the processor is also used to: control the telescopic power device to extend the base relative to the support shaft, and then lift the wheelchair away from the ground; control the rotary power device to rotate the base relative to the support shaft A certain angle will drive the wheelchair to rotate a certain angle; control the telescopic power device to shorten the base relative to the support shaft, and then put the wheelchair back on the
  • the wheelchair includes two front wheels and two rear wheels; two of the front wheels are universal wheels, each of the two rear wheels is driven by a motor, and the motor is connected to the processor with a signal; in order to control When the wheelchair rotates by a certain angle, the processor is also used to: control the motors of the two rear wheels to rotate oppositely to each other by a certain angle, thereby driving the rotation angle of the wheelchair.
  • a wheelchair control system which includes: a target determination module for determining a target object; the target object is located in a space where the wheelchair is located; an environmental information collection module for passing a wheelchair At least one sensor on the device to obtain environmental information of the space in which the wheelchair is located; an analysis module to determine the relative positional relationship between the target object and the wheelchair based on the environmental information; and a mechanical control module to control the environment based on the relative positional relationship
  • the wheelchair moves in the space to bring the wheelchair closer to the target object; wherein the movement includes at least one of the following: rotating by an angle, advancing, or retreating.
  • the environmental information acquisition module is further used to: acquire at least a part of the contour data in the space through at least one echo detection sensor located on the wheelchair; or acquire at least a part of the space through the image acquisition device located on the wheelchair Image data.
  • the echo sounding test sensor includes at least one of the following: a radar or an ultrasonic sensor.
  • the environmental information collection module is further used to: acquire at least a part of the contour data in the space through at least one echo detection sensor located on the wheelchair; determine whether at least a part of the contour data in the space contains the contour of the target Data; if not included, control the wheelchair to rotate by a certain angle and then obtain at least a part of the contour data in the space through at least one echo detection sensor located on the wheelchair until at least a part of the acquired contour data contains the contour of the target object data.
  • the analysis module is further used to: determine the position of the contour data of the target object in at least part of the contour data in space; determine the target object relative to the wheelchair based on the position and the position of the echo detection sensor on the wheelchair Bearing and / or distance.
  • the environmental information collection module is further used to: acquire image data of at least a part of the space through the image acquisition device located on the wheelchair; determine whether at least a part of the image data in the space contains image data of the target object; if not Including, after controlling the wheelchair to rotate by a certain angle, the image acquisition device located on the wheelchair is used again to acquire image data of at least a part of the space until the acquired image data of at least a part of the space contains the image data of the target object.
  • the environment analysis module is further used to: determine the position of the image data of the target object in at least a part of the image data in space; determine the orientation of the target object relative to the wheelchair based on the position and the position of the image acquisition device on the wheelchair And / or distance.
  • the mechanical control module is further used to: control the wheelchair to rotate a certain angle based on the orientation so that the front of the wheelchair faces the target object; and / or control the wheelchair to move forward or backward along the front of the wheelchair by a certain distance based on the distance, so that Close to the target.
  • the wheelchair includes a processor and a telescopic rotating device;
  • the telescopic rotating device includes a support shaft, a base, a telescopic power device, and a rotating power device; both the telescopic power device and the rotating power device have a signal connection to the processor;
  • the base can be directly or indirectly mounted on the base in a telescopic and rotating manner relative to the base;
  • the base is fixedly mounted on the floor of the wheelchair seat;
  • the support shaft is perpendicular to the seat bottom and faces downward of the wheelchair; It has a transmission connection;
  • the mechanical control module is also used to: control the telescopic power device to extend the base relative to the support shaft, and then lift the wheelchair away from the ground; control the rotary power device to rotate the base relative to the support shaft by a certain angle , And then drive the wheelchair to rotate a certain angle; control the telescopic power device to shorten the base relative to the support shaft, and then put the wheelchair back on the ground.
  • the wheelchair includes two front wheels and two rear wheels; two of the front wheels are universal wheels, each of the two rear wheels is driven by a motor, and the motors are all in signal connection with the processor;
  • the mechanical control module is also used to: control the motors of the two rear wheels to rotate in opposite directions relative to each other, thereby driving the rotation angle of the wheelchair.
  • a computer-readable storage medium characterized in that the storage medium stores computer instructions, and when the computer instructions are executed by a processor, the above-mentioned wheelchair control method is implemented.
  • a wheelchair which is characterized by comprising a processor and a telescopic rotating device;
  • the telescopic rotating device includes a support shaft, a base, a telescopic power device and a rotating power device;
  • the telescopic power device and the processor have Signal connection;
  • the support shaft is directly or indirectly mounted on the base in a manner that can expand and contract relative to the support shaft;
  • the base is fixedly installed on the wheelchair seat floor;
  • the support shaft is perpendicular to the seat floor and faces the wheelchair downward;
  • telescopic power device The rotating power devices all have a transmission connection with the support shaft.
  • the telescopic power device is a cylinder or an oil cylinder.
  • the rotating power device is an electric motor.
  • FIG. 1 is a schematic diagram of a wheelchair control system
  • FIG. 2 is a schematic structural diagram of an exemplary wheelchair
  • FIG. 3 and FIG. 4 are schematic diagrams of an exemplary wheelchair installation structure
  • FIG. 5 shows a schematic diagram of exemplary hardware components and / or software components of a wheelchair
  • FIG. 6 shows a functional block diagram of a wheelchair control system
  • FIG. 7 is a schematic flowchart of acquiring contour data of at least a part of a space
  • FIG. 8 is a schematic flowchart of determining the relative position relationship between a target object and a wheelchair
  • FIG. 9 a schematic diagram of a process for acquiring at least a part of contour data in a space shown in FIG. 9;
  • FIG. 10 is a schematic flowchart of determining the relative position relationship between a target object and a wheelchair.
  • FIG. 11 is a schematic flowchart of bringing a wheelchair closer to a target object.
  • FIG. 1 shows a schematic diagram of a wheelchair control system 100.
  • the wheelchair control system 100 may be suitable for narrow spaces and / or smart homes. Narrow spaces can include: toilets, rooms, elevators, wards, kitchens, walkways, etc., or other combinations.
  • the exemplary wheelchair control system 100 may include a server 110, a network 120, a wheelchair 130, and a storage 140.
  • the server 110 may be used to analyze and process the collected information to generate analysis results.
  • the server 110 may analyze sensor data collected from the wheelchair 130 to obtain environmental information of the space.
  • the environmental information of the space may include outline data of at least a part of the space and / or image data of at least a part of the space.
  • the server 110 may determine the relative position of the target object and the wheelchair based on the environmental information of the space.
  • the target objects may include call alarm devices, elevator doors, elevator control panels, electrical switches, room doors, stairs, windows, household appliances, handrails, sockets, etc., or any combination thereof.
  • the server 110 may be a server or a server group.
  • the server group may be centralized, such as a data center.
  • the server group can also be distributed, such as a distributed system.
  • the server 110 may be local, for example, directly installed on the wheelchair 130, or may be remote.
  • the server 110 may include an engine 112.
  • the engine 112 may be used to execute instructions (program code) of the server 110.
  • the engine 112 can execute instructions to analyze sensor data, and then obtain the relative position of the target object and the wheelchair.
  • the engine 112 can execute a command to control the wheelchair, and then generate a control signal to control the movement of the wheelchair.
  • the analysis sensor data instruction and the control wheelchair instruction may be stored in a computer-readable storage medium (eg, memory 140) in the form of computer instructions.
  • the network 120 may provide a channel for information exchange.
  • the server 110, the wheelchair 130, and / or the storage 140 may exchange information through the network 120.
  • the server 110 may receive sensor data collected by the wheelchair 130 through the network 120.
  • the server 110 may obtain information from the storage 140 through the network 120 (eg, a known image of the target object, a known outline of the target object, location information of known nodes in the smart home, etc.).
  • the network 120 may be a single network or a combination of multiple networks.
  • the network 120 may include, but is not limited to, one or a combination of a local area network, a wide area network, a public network, a private network, a wireless local area network, a virtual network, a metropolitan area network, and a public switched telephone network.
  • the network 120 may include various network access points, such as wired or wireless access points, base stations (such as 120-1, 120-2), or network switching points, through which the data source is connected to the network 120 and sent through the network information.
  • the wheelchair 130 is a movable device that can sense the space environment.
  • the wheelchair 130 may include sensors that acquire spatial environment information.
  • the sensor may include, but is not limited to: at least one echo detector, at least one image acquisition device, and the like.
  • the echo detector may include: radar, ultrasonic sensor, laser sensor, infrared sensor, sonar sensor, radiation sensor, etc., or any combination thereof.
  • the echo detector may be carried on the wheelchair floor.
  • the image acquisition device may include but is not limited to: at least one panoramic camera (fisheye lens), at least one depth camera, at least one network camera, at least one charge-coupled device (charge-coupled device, CCD), at least one complementary metal oxide semiconductor (Complementary Metal Oxide Semiconductor, CMOS) sensors, etc., or any combination thereof.
  • the image acquisition device may be installed on a wheelchair armrest or a wheelchair armrest bracket, etc., without disturbing the position of the wheelchair user.
  • the image acquisition device can rotate in multiple degrees of freedom.
  • 360 ° spatial image data can be obtained by configuring at least one image acquisition device and / or by multiple degrees of freedom rotation of the image acquisition device.
  • the wheelchair 130 may further include other sensors to obtain information such as the spatial position information of the wheelchair, posture information of the wheelchair, and whether the wheelchair is in contact with objects in the spatial environment.
  • the other sensors may include inertial sensors, force sensors, contact sensors, optical fiber sensors, Hall effect sensors, displacement sensors, etc., or any combination thereof.
  • the inertial sensor may include an inclination sensor, an acceleration sensor, an angular velocity sensor, an attitude attitude reference system (Attitude and heading reference system, AHRS), an inertial measurement unit (Interial measurement unit, IMU), etc., or any combination thereof.
  • the wheelchair 130 can access the data information stored in the memory 140 (eg, a known image of the target object, a known outline of the target object, location information of known nodes in the smart home through the network 120 or direct access Wait).
  • the data information stored in the memory 140 eg, a known image of the target object, a known outline of the target object, location information of known nodes in the smart home through the network 120 or direct access Wait.
  • the memory 140 may refer to a device having a storage function.
  • the memory 140 may be used to store data collected from the wheelchair 130 and / or various data generated during the operation of the server 110.
  • the memory 140 may store echo data, image data, spatial environmental information acquired by the sensors of the wheelchair 130, the relative positional relationship between the target object and the wheelchair 130, and the like.
  • the memory 140 may also be used to store information such as the known outline data of the target object, the known image data of the target object, and the positions of known nodes in the smart home.
  • the location information of the known nodes in the smart home may include: ward call alarm devices, elevator doors, elevator control panels, electrical switches, room doors, stairs, windows, household appliances and other location information, or any combination thereof.
  • the memory 140 may be local or remote.
  • the connection or communication between the memory 140 and other modules of the system may be wired or wireless.
  • the server 110 may directly access and access the data information stored in the memory 140, and may also directly access and access the data information stored in the memory 140 through the network 120.
  • the wheelchair 130 can directly access and access the data information stored in the memory 140, and can also directly access and access the data information stored in the memory 140 through the wheelchair 130.
  • the description about the wheelchair control system 100 is for illustrative purposes and is not intended to limit the scope of protection of the present application.
  • multiple variations and modifications can be made under the instructions of this application. However, these variations and modifications do not deviate from the scope of protection of this application.
  • the storage 140 and the server 110 may be connected locally instead of being connected through the network 120.
  • FIG. 2 is a schematic structural diagram of an exemplary wheelchair.
  • the device of wheelchair 200 includes 201 as a wheelchair armrest, 202 as a bracket on the wheelchair armrest, 203 as a wheelchair seat, 204 as a wheelchair backrest, 205 as a seat support frame, and 206 as a wheelchair seat floor, 207 is the front wheel of the universal wheel of the wheelchair, 208 is the rear wheel of the wheelchair, 209 is at least one sensor provided on the wheelchair seat floor 206, and 210 is the telescopic rotating device.
  • the seat support frame 205 may not be included, and the wheelchair seat 203 may be directly arranged on the seat floor of the wheelchair 206.
  • the bracket 202 on the wheelchair armrest is installed on the wheelchair armrest 201.
  • at least one image acquisition device, an input / output interface 430 (not shown in FIG. 2), etc. may be provided on the 202.
  • the bracket 202 on the wheelchair armrest may not be provided, and at least one image acquisition device, input / output interface 430, and other devices may be directly installed on the wheelchair armrest.
  • the seat support frame 205 is mounted on the base 206. In some embodiments, the seat support frame 205 can telescope and rotate relative to the wheelchair seat bottom 206. In some embodiments, the expansion and rotation of the seat support frame 205 can be manually achieved.
  • At least one sensor 209 may be provided on the wheelchair seat bottom 206.
  • the sensor 209 may include, but is not limited to, at least one echo detector, inertial sensor, force sensor, touch sensor, optical fiber sensor, Hall effect sensor, displacement sensor, and the like.
  • the wheelchair includes two front wheels 207 and two rear wheels 208.
  • the two front wheels are universal wheels, and the two rear wheels are each driven by a motor, and the motors are both in signal connection with the processor 410.
  • the telescopic rotating device 210 is installed under the seat floor.
  • a differential model can be constructed, and the motors of the two rear wheels 208 can be controlled to rotate the two rear wheels 208 relative to each other by a certain angle, thereby driving the wheelchair to rotate angle.
  • the motor 1 can control the left rear wheel to rotate 50 ° clockwise at 12 km / h
  • the motor 2 can control the right rear wheel to rotate 35 ° counterclockwise at 10 km / h. Therefore, by changing the rotation speeds of the left rear wheel and the right rear wheel, it is possible to achieve turns with different radii, thereby driving the wheelchair to rotate at a point on the straight line where the two rear wheels are located.
  • the wheelchair can also be rotated by the telescopic rotating device 210, as shown in FIG. 3 and its description.
  • the structure of the wheelchair 200 may also include an air suspension system.
  • the structure of the wheelchair 200 may further include a brake system.
  • FIG. 3 and FIG. 4 are schematic diagrams of an exemplary wheelchair installation structure.
  • the telescopic rotating device 210 is installed under the seat floor. As shown in FIG. 3, the telescopic rotating device 210 includes a supporting shaft 301, a base 302, a rotating power device 303 and a telescopic power device 304. In some embodiments, multiple sets of synchronized telescopic rotating devices 210 may be installed under the seat floor (the present application exemplarily shows one set of telescopic rotating devices 210).
  • the base 302 is fixedly mounted on the wheelchair seat bottom 206.
  • the rotating power device 303 and the telescopic power device 304 may have a signal connection with the processor 410, respectively, and receive the rotation and telescopic commands issued by the processor 410.
  • the rotary power device 303 and the telescopic power device 304 may be the same power device, and receive a rotation and / or linear movement instruction signal sent by the processor 410.
  • the support shaft 301 may be directly mounted on the base 302, and the support shaft 301 is perpendicular to the seat floor 206 and faces downward of the wheelchair.
  • connection between the support shaft 301 and the base 302 may include, but is not limited to: dynamic connection (eg, key connection, spline connection, etc.), detachable connection (eg, threaded connection, pin connection, expansion sleeve Connection, profile connection, interference connection, etc.), non-removable connection (such as riveting, welding, adhesive connection, interference connection, anchor connection, etc.), etc.
  • dynamic connection eg, key connection, spline connection, etc.
  • detachable connection eg, threaded connection, pin connection, expansion sleeve Connection, profile connection, interference connection, etc.
  • non-removable connection such as riveting, welding, adhesive connection, interference connection, anchor connection, etc.
  • the support shaft 301 may be indirectly mounted on the base 302 through other components or devices.
  • the support shaft 301 may be indirectly connected to the base 302 through a rotary power device 303 and / or a telescopic power device 304.
  • the telescopic power device 304 has a transmission connection with the support shaft 301; the rotary power device 303 has a transmission connection with the base 302.
  • the transmission connection may include, but is not limited to: mechanical transmission, hydraulic transmission, pneumatic transmission, electric transmission, electromagnetic bearing, electromagnetic transmission, and the like.
  • the rotary power device 303 may be a motor or a motor, and the telescopic power device 304 may be a cylinder or a hydraulic cylinder.
  • the base or fixed part of the rotary power unit 303 is installed on the lower plane of the base 302, the rotating shaft of the rotary power unit 303 is connected to the upper end of the support shaft 301, and the lower end of the support shaft 301 is connected to the telescopic power unit 304.
  • the upper end of the support shaft 301 of the telescopic power device 304 can be connected to the base 302 by welding, riveting, etc., and the lower end of the support shaft 301 can be connected to the telescopic power device 304, while the support shaft 301 can also be connected by gears
  • the meshing mode is cooperatively connected with the rotating shaft of the rotary power device 303.
  • the support shaft 301 When the rotating shaft of the rotating power device rotates, the support shaft 301 can be driven to rotate through the gears to drive the wheelchair to rotate. .
  • the telescopic power unit 304 may be installed between the support shaft 301 and the base 302. In some embodiments, when the wheelchair needs to be controlled to rotate by a certain angle, the telescopic power device 304 can be controlled to extend the support shaft 301 relative to the base 302, and then the wheelchair can be lifted off the ground; the rotary power device 304 can be controlled.
  • the support shaft 301 is rotated by a certain angle with respect to the base, and the wheelchair is driven to rotate by a certain angle; then, the telescopic power device 304 is controlled to shorten the support shaft 301 relative to the base 302, and then the wheelchair is placed back on the ground.
  • the processor 410 may send a corresponding instruction to the hydraulic telescopic power device 304 (eg, hydraulic cylinder, air cylinder, etc.) to drive the support shaft 301 to extend relative to the base 302, The wheelchair can be lifted off the ground.
  • the hydraulic telescopic power device 304 eg, hydraulic cylinder, air cylinder, etc.
  • the processor 410 may send corresponding instructions to the telescopic power device 304 (eg, hydraulic cylinder, air cylinder, etc.) to drive the support shaft 301 to shorten relative to the base 302.
  • the telescopic power device may include, but is not limited to, a screw mechanical telescopic device, a hydraulic telescopic device, a pneumatic telescopic device, or the like.
  • any electromechanical structure capable of telescoping and rotating can be applied to the wheelchair of the present application, instead of the support rod 301, the base 302, the rotating power device 303, and the telescopic power device 304, to realize the wheelchair rotating in place.
  • a central processing device may also be provided on the wheelchair 130.
  • the central processing device may be replaced by the local server 110.
  • 5 is a schematic diagram of exemplary hardware components and / or software components 400 of at least one central processing device on a wheelchair. As shown in FIG. 5, 400 may include a processor 410, a memory 420, an input / output interface 430 and a communication port 440.
  • the processor 410 can execute calculation instructions (program code) and perform the functions of the server 110 described in this application.
  • Computing instructions may include programs, objects, components, data structures, processes, modules, and functions (functions refer to specific functions described in this application).
  • the processor 410 may process instructions for controlling the movement of the wheelchair in the wheelchair control system 100.
  • the processor 410 may include a microcontroller, a microprocessor, a reduced instruction set computer (RISC), an application specific integrated circuit (ASIC), an application specific instruction set processor (ASIP), and a central processing unit (CPU) , Graphics processing unit (GPU), physical processing unit (PPU), microcontroller unit, digital signal processor (DSP), field programmable gate array (FPGA), advanced RISC machine (ARM), programmable logic device and capable Any circuit, processor, etc. that performs one or more functions, or any combination thereof.
  • FIG. 4 only describes one processor, but it should be noted that this application may also include multiple processors.
  • the memory 420 may store data / information obtained from any subject in the wheelchair control system 100.
  • the memory 420 may include mass storage, removable memory, volatile read and write memory, read-only memory (ROM), etc., or any combination thereof.
  • Exemplary mass storage may include magnetic disks, optical disks, solid-state drives, and the like.
  • Removable memory can include flash drives, floppy disks, optical disks, memory cards, compact disks, and magnetic tapes.
  • Volatile read and write memory can include random access memory (RAM).
  • RAM may include dynamic RAM (DRAM), double-rate synchronous dynamic RAM (DDRSDRAM), static RAM (SRAM), thyristor RAM (T-RAM), zero capacitance (Z-RAM), and so on.
  • DRAM dynamic RAM
  • DDRSDRAM double-rate synchronous dynamic RAM
  • SRAM static RAM
  • T-RAM thyristor RAM
  • Z-RAM zero capacitance
  • ROM may include mask ROM (MROM), programmable ROM (PROM), erasable programmable ROM (PEROM), electrically erasable programmable ROM (EEPROM), compact disk ROM (CD-ROM) and digital universal disk ROM Wait.
  • MROM mask ROM
  • PROM programmable ROM
  • PEROM erasable programmable ROM
  • EEPROM electrically erasable programmable ROM
  • CD-ROM compact disk ROM
  • digital universal disk ROM Wait digital universal disk ROM Wait.
  • the input / output interface 430 may be used to input or output signals, data, or information.
  • the input / output interface 430 may enable a user (eg, wheelchair user 130) to contact the server 110.
  • the user may input a target object through the input / output interface 430, where the target object may include a ward call alarm device, an elevator door, an elevator control panel, an electrical switch, a room door, a staircase, a window, a household appliance, etc., Or any combination thereof.
  • the input / output interface 430 may include an input device and an output device. Exemplary input devices may include a keyboard, mouse, touch screen, microphone, etc., or any combination thereof.
  • Exemplary output devices may include display devices, speakers, printers, projectors, etc., or any combination thereof.
  • Exemplary display devices may include a liquid crystal display (LCD), a light-emitting diode (LED) based display, a flat panel display, a curved display, a television device, a cathode ray tube (CRT), etc., or any combination thereof.
  • LCD liquid crystal display
  • LED light-emitting diode
  • flat panel display a flat panel display
  • a curved display a television device
  • CRT cathode ray tube
  • the communication port 440 may be connected to a network for data communication.
  • the connection may be a wired connection, a wireless connection, or a combination of both.
  • Wired connections may include cables, fiber optic cables, telephone lines, etc., or any combination thereof.
  • the wireless connection may include Bluetooth, WiFi, WiMax, WLAN, ZigBee, mobile network (eg, 3G, 4G, or 5G, etc.), etc., or any combination thereof.
  • the communication port 440 may be a standardized port, such as RS232, RS485, and so on.
  • the communication port 440 may be a specially designed port.
  • FIG. 6 shows a block diagram of a functional module 500 of a wheelchair control system.
  • the functional module 500 of the wheelchair control system may include: a target determination module 510, an environmental information collection module 520, an analysis module 530, and a mechanical control module 540.
  • the target object in the space where the wheelchair is located can be determined.
  • users including wheelchair users 130, etc.
  • the environment information collection module 520 may be used to match objects in the spatial environment, and users (including wheelchair users 130) may select target objects from the objects.
  • objects may include ward call alarms, elevator doors, elevator control panels, electrical switches, room doors, stairs, windows, household appliances, etc., or any combination thereof.
  • the environmental information collection module 520 can obtain the environmental information of the space where the wheelchair is located.
  • the environmental information of the space may include: contour data of at least a part of the space, image data of at least a part of the space, spatial position information of the wheelchair, posture information of the wheelchair, and whether the wheelchair is in contact with objects in the spatial environment Wait.
  • the environmental information of the space in which the wheelchair is located may be detected by at least one echo detection sensor on the wheelchair, so as to obtain the profile data of at least a part of the space in which the wheelchair is located.
  • echo detection sensors such as radar, ultrasonic sensors, laser sensors, infrared sensors, sonar sensors, etc. can be used to emit corresponding detection waves, and at least part of the contour data in the space can be determined according to the received echoes.
  • the known contour of the target object can be obtained from the memory 140, and then the known contour of the target object is matched with at least a part of the contour data in the space, if the matching degree of the two exceeds the matching accuracy threshold 1 (for example, 95% ), You can determine that at least a part of the contour data in the space contains the target object; if the matching degree of the two does not exceed the matching accuracy threshold 1 (for example, 95%), you can determine that at least a part of the contour data in the space does not contain the target Object.
  • the matching algorithm may include a gray-based matching algorithm, a feature-based matching algorithm, a relationship-based matching algorithm, and the like.
  • the setting method of the matching accuracy threshold 1 may include artificial setting, setting based on experience values, and determining based on statistical data.
  • the wheelchair can be controlled to move slightly and then re-collect environmental data, for example, control the wheelchair to rotate a certain angle and then pass the
  • the wave detection sensor acquires at least a part of the contour data in the space until the acquired at least a part of the contour data in the space contains the contour data of the target object.
  • the contour data containing the target object may be determined as the object in the space.
  • the environmental information of the space where the wheelchair is located may be detected by at least one image acquisition device, so as to obtain image data of at least a part of the space where the wheelchair is located.
  • 360 degree spatial image data can be obtained by configuring at least 3 fisheye lenses.
  • at least one fisheye lens can be rotated in multiple degrees of freedom to obtain 360 ° spatial image data.
  • the known image of the target object can be obtained from the memory 140, and then the known image of the target object can be matched with at least a part of the image data in the space, if the matching degree of the two exceeds the matching accuracy threshold 2 (for example, 90 %), It can be determined that at least part of the image data in the space contains the target object; if the matching degree of the two does not exceed the matching accuracy threshold 2 (for example, 90%), it can be determined that at least part of the image data in the space target.
  • the matching algorithm may include a gray-based matching algorithm, a feature-based matching algorithm, a relationship-based matching algorithm, and the like.
  • the setting method of the matching accuracy threshold 2 may include artificial settings, setting based on experience values, and determining based on statistical data.
  • the matching accuracy threshold 1 and the matching accuracy threshold 2 may be the same or different.
  • the wheelchair can be controlled to rotate at a certain angle and then at least a part of the image data in the space is acquired by at least one image acquisition device located on the wheelchair until The image data of at least a part of the acquired space contains image data of the target object.
  • the image data containing the target object may be determined as the object in the space.
  • other sensors may also be used to obtain information including the spatial position of the wheelchair, posture information of the wheelchair, and whether the wheelchair is in contact with objects in the spatial environment.
  • the analysis module 530 may determine the relative positional relationship between the target object and the wheelchair based on the environmental information.
  • the relative position relationship includes the orientation and / or distance of the target object relative to the wheelchair.
  • the orientation may include: front of the front, rear of the front, 30 ° of the front left, and 60 ° of the rear right.
  • the distance can include: 2m in front of the front, 3m in front of the rear, 3.5m in front of the oblique left and 1.5m in front of the oblique right.
  • the analysis module 530 may obtain the known contour data of the target object from the memory 140.
  • the form of the known contour data may include pseudo grayscale, point cloud, grid, etc., or any combination thereof.
  • the known contour data may include the geometric characteristics of the target object and the like. Among them, the geometric characteristics can reflect the spatial structure information of the target object (for example, the edge of the elevator door, the size of the elevator door, etc.).
  • at least a part of the contour data in the space can be acquired by echo detection sensors mounted on the wheelchair. Among them, at least a part of the contour data in the space may include geometric characteristics, physical characteristics, and the like of the spatial object.
  • the geometric feature can reflect the object structure information (for example, the edge of the elevator door, the size of the elevator door, etc.). Physical characteristics may include the orientation of the space object relative to the wheelchair, the distance relative to the wheelchair, and so on.
  • the lidar sensor can emit a beam of light to scan a space and receive a return echo signal to obtain point cloud data of the space. Then perform edge detection on the point cloud data to obtain the contour data in the point cloud data. Then, the known contour data of the elevator door and the contour data in the point cloud data are matched based on features, and then the contour data of the elevator door is matched.
  • the edge detection algorithm may include, but is not limited to, Sobel operator, Canny operator, Roberts operator, Prewitt operator, Kirsch operator, Laplace operator, etc.
  • the matching algorithm may include a gray-based matching algorithm, a feature-based matching algorithm, a relationship-based matching algorithm, and the like.
  • the orientation and / or distance of the target object relative to the wheelchair can be determined by triangulation.
  • the spatial structure information of the elevator door eg, the edge of the elevator door
  • the edge of the elevator door can be projected onto the two-dimensional plane of the overall space contour Go up and get the two endpoint positions, and then use these two positions and the position of the lidar sensor on the wheelchair to build a triangle.
  • methods such as pulse method and phase method may also be used to determine the orientation and / or distance of the target object relative to the wheelchair.
  • the distance between the elevator door and the wheelchair can be calculated by measuring the time difference between emitting laser and receiving laser, as shown in equation (1).
  • the distance between the elevator door and the wheelchair can also be calculated by measuring the phase change of the laser from the time of transmission to reception, as shown in equation (2).
  • the analysis module 530 may obtain the known image data of the target object from the memory 140.
  • the types of known image data may include, but are not limited to, binary images, grayscale images, index images, true color RGB images, and the like.
  • the known image data may include the geometric characteristics of the target object and the like. Among them, the geometric features can reflect the structural information of the target object (eg, the edge of the elevator door, the size of the elevator door, etc.).
  • At least a part of the image data in the space can be identified by the image acquisition device mounted on the wheelchair.
  • at least a part of the image data in the space may include geometric features, physical features, etc. of the target object.
  • the geometric features can reflect the structural information of the target object (for example, the edge of the elevator door, the size of the elevator door, etc.).
  • the physical characteristics may include information such as the orientation of the target object relative to the wheelchair, the distance of the target object relative to the wheelchair, and the like. For example, taking image data of at least three fisheye lenses installed on a wheelchair to identify elevator doors as an example, 360 ° image data in a space can be collected through at least three fisheye lenses.
  • image matching algorithms may include, but are not limited to, gray-based matching algorithms, feature-based matching algorithms, relationship-based matching algorithms, and the like.
  • the orientation and / or distance of the target object relative to the wheelchair can be determined by triangulation. For example, taking the elevator door as the target object, based on the continuous image of the spatial environment collected by at least one fisheye lens, the feature points (including key points and descriptors) in the image can be extracted through the visual inertial odometer method and the ORB method.
  • the feature matching method determines the displacement of the feature points of the two frames of images before and after, to solve the posture of the wheelchair (including global coordinates, forward direction and other information). Then use the two postures of the wheelchair and a point of the elevator door to construct a triangle.
  • the orientation and / or distance of the elevator door relative to the wheelchair can be obtained.
  • the method of extracting features includes SIFT, SURF, ORB, and the like.
  • the feature matching methods include brute force matching, fast approximate nearest neighbor, and so on.
  • other sensor data for example, the posture estimation obtained by the inertial sensor
  • the distance and / or distance of the target object relative to the wheelchair may also be determined directly through at least one image acquisition device (eg, depth camera).
  • the depth image acquired by the depth camera may include, but is not limited to, the gray value of each pixel, the photometric characteristics of the image, and the light and dark characteristics of the image.
  • at least one depth camera can be configured to collect image information in the space (including information of each pixel), and the correspondence between each pixel and space can be calculated through epipolar constraints. In this way, the gray value of each pixel is calculated, that is, the distance between each pixel and the depth camera. In turn, the distance of the elevator door relative to the wheelchair can be obtained.
  • other sensor data eg, lidar, ultrasonic sensor data, etc.
  • the orientation and / or distance of the target object relative to the wheelchair can also be determined by mirroring.
  • the mirror reflection image in the elevator car can be collected through at least one fisheye lens, and the mirror image of the elevator control panel can be determined by performing image recognition on the mirror reflection image.
  • Other sensor data eg, lidar, ultrasonic sensor, inertial sensor data, etc.
  • the orientation and / or distance of the elevator control panel relative to the wheelchair can be determined.
  • sensor data of an echo detector, an image acquisition device, and / or other sensors may also be fused to obtain an accurate orientation and / or distance of the target object relative to the wheelchair.
  • the mechanical control module 540 can control the rotation of the wheelchair according to the orientation and / or distance of the target object relative to the wheelchair, and can control the linear movement of the wheelchair through the differential model or the telescopic rotation device 210, so that the wheelchair approaches the target object.
  • the wheelchair can be controlled to rotate by a certain angle in this orientation so that the front of the wheelchair faces the target object. For example, taking the elevator door as the target object, when the orientation of the elevator door with respect to the wheelchair is directly behind, the wheelchair can be controlled to rotate 180 ° in situ so that the front of the wheelchair faces the elevator door.
  • the wheelchair taking the elevator door as the target object, the wheelchair can be controlled to move forward or backward by a certain distance based on the distance of the target object relative to the wheelchair, so that the wheelchair approaches the target object.
  • the elevator control panel is used as the target object.
  • the air suspension and / or telescopic rotation device can also be used to control the wheelchair to raise, lower, and tilt the wheelchair seat. Etc., or any combination thereof.
  • FIG. 7 is a schematic diagram of a process 600 for acquiring contour data of at least a part of a space.
  • the process 600 may be executed by the environmental information collection module 520.
  • the process 600 may include:
  • At least a part of the contour data in the space can be acquired through at least one echo detection sensor located on the wheelchair.
  • echo detection sensors such as radar, ultrasonic sensors, laser sensors, infrared sensors, sonar sensors, etc. can be used to emit corresponding detection waves, and at least part of the contour data in the space can be determined according to the received echoes.
  • the detailed description is as described in the environmental information collection module 520.
  • step 620 it can be further determined whether the contour data of at least a part of the space contains contour data of the target object, for example, the known contour of the target object can be obtained from the memory 140, and then the acquired known contour of the target object and the space At least a part of the contour data is matched.
  • the matching algorithm may include: a gray-based matching algorithm, a feature-based matching algorithm, a relationship-based matching algorithm, etc., or any combination thereof. The detailed description is as described in the analysis module 530.
  • step 640 is performed to determine the target based on the environmental information The relative positional relationship between the object and the wheelchair.
  • step 630 can be performed to control the wheelchair After rotating by a certain angle, at least one echo detection sensor located on the wheelchair is used to acquire at least a part of the contour data in the space until the acquired at least a part of the contour data in the space contains the contour data of the target object.
  • FIG. 7 is a schematic diagram of a process 640 of determining a relative position relationship between a target object and a wheelchair.
  • the process 640 may be performed by the analysis module 520.
  • the process 640 may include:
  • step 710 as described in the process 600, the environmental information of the space in which the wheelchair is located can be detected by at least one echo detection sensor, and then the contour data of at least a part of the space in which the wheelchair is located can be obtained.
  • the known contour data of the target object may be obtained from the memory 140, and the known contour data of the target object may be matched with at least a part of the contour data in the space, thereby obtaining the position of the target object.
  • the target object eg, elevator door
  • the contour data is projected in a two-dimensional space to obtain the position of the target object (eg, elevator door).
  • the feature matching algorithm may include, but is not limited to, a gray-based matching algorithm, a feature-based matching algorithm, a relationship-based matching algorithm, and the like. The detailed description is as described in the analysis module 530.
  • the orientation and / or distance of the target object relative to the wheelchair is determined. For example, it is determined that the orientation of the target object (eg, elevator door) with respect to the wheelchair is directly in front and the distance is 2 m in front of it.
  • the orientation and / or distance of the target object relative to the wheelchair can be determined by trigonometry, pulse method, phase method, etc. (detailed description is as described in the analysis module 530).
  • the data of the echo detector, image acquisition device, or other sensors may also be fused to obtain the precise orientation and / or distance of the target object relative to the wheelchair.
  • the process 800 may be executed by the environmental information collection module 520.
  • the process 800 may include:
  • the environmental information of the space where the wheelchair is located can be detected by at least one image acquisition device, and then image data of at least a part of the space can be acquired.
  • image data can be obtained by configuring at least three fisheye lenses or rotating at least one fisheye lens with multiple degrees of freedom.
  • step 820 it may be further determined whether at least a part of the image data in the space contains the image data of the target object.
  • a known image of the target object may be acquired from the memory 140, and then the acquired known image of the target object may be matched with image data of at least a part of the space.
  • the matching algorithm may include: a gray-based matching algorithm, a feature-based matching algorithm, a relationship-based matching algorithm, etc., or any combination thereof.
  • step 840 is performed, based on the environmental information, Determine the relative positional relationship between the target object and the wheelchair.
  • the matching accuracy threshold 2 may be set manually, wherein the matching accuracy threshold 2 may be the same as or different from the matching accuracy threshold 1.
  • step 830 can be performed to control After the wheelchair rotates by a certain angle, at least one image acquisition device located on the wheelchair is used again to acquire image data of at least a part of the space until the acquired image data of at least a part of the space contains the image data of the target object.
  • FIG. 10 is a schematic diagram of a process 840 for determining a relative position relationship between a target object and a wheelchair.
  • the process 840 may be performed by the analysis module 530.
  • Process 840 may include:
  • step 910 as described in the process 800, the environmental information of the space where the wheelchair is located can be detected by at least one image acquisition device, and then image data of at least a part of the space where the wheelchair is located can be obtained.
  • the orientation and / or distance of the target object relative to the wheelchair is determined. For example, it is determined that the orientation of the target object (eg, elevator door) with respect to the wheelchair is directly in front and the distance is 2 m in front of it.
  • the orientation and / or distance of the target object relative to the wheelchair can be determined by trigonometry, depth camera, mirroring, etc. (detailed description is described in the analysis module 530).
  • the data of the echo detector, the image acquisition device, and other sensors may also be fused to obtain the precise orientation and / or distance of the target object relative to the wheelchair.
  • FIG. 11 is a schematic diagram of a process 1000 for bringing a wheelchair closer to a target object.
  • the process 1000 may be executed by the machine control module 540.
  • the process 1000 may include:
  • step 1010 as described in FIGS. 8 and 10, the relative positional relationship between the target object and the wheelchair is obtained.
  • the motion control system that controls the wheelchair may rotate a certain angle according to the orientation so that the front of the wheelchair faces the target object. For example, taking the elevator door as the target object, when the orientation of the elevator door with respect to the wheelchair is directly behind (taking the front of the wheelchair as a reference), the wheelchair is controlled to rotate 180 ° in place so that the front of the wheelchair faces the elevator door.
  • step 1030 the wheelchair is controlled to move forward or backward by a certain distance based on the distance, so that the wheelchair approaches the target object.
  • the air suspension and / or telescopic rotation device can also be used to control the wheelchair to raise, lower, Tilt, etc., or any combination thereof.
  • the embodiments of the present application have at least one or a combination of one or more of the following beneficial effects: 1) use the sensor to obtain the orientation and distance between the wheelchair and the target object; 2) use a hydraulic device and / or differential speed model to achieve The wheelchair rotates in place in a narrow space; 3) Based on the orientation and distance between the wheelchair and the target object, the wheelchair is controlled to move.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种轮椅控制方法及系统。方法包括:确定目标对象;目标对象位于轮椅所处空间中;通过位于轮椅上的至少一个传感器,获取轮椅所处空间的环境信息;基于环境信息,确定目标对象与轮椅的相对位置关系;以及基于相对位置关系控制轮椅在空间中移动以使得轮椅靠近目标对象;其中移动至少包括以下中的至少一种:旋转一定角度、前进或后退。

Description

一种轮椅控制方法及系统 技术领域
本申请涉及轮椅控制技术,尤其涉及轮椅在狭窄空间的控制方法及系统。
背景技术
目前,很多行动不便或肢体障碍者通常使用轮椅代步,但是市面上常见的轮椅无法自主实现向任意方向移动,如原地旋转轮椅等。因为现有的轮椅在转弯时需要一定大小的旋转空间,否则会发生碰撞或难以旋转。因此,提供一种智能移动轮椅,以期在日常生活中的狭窄空间中实现轮椅的自主移动,便于轮椅使用者出行,就成为本领域技术人员亟待解决的问题。
发明内容
本申请的一个方面,提供了一种轮椅控制方法,其特征在于,方法包括:确定目标对象;目标对象位于轮椅所处空间中;通过位于轮椅上的至少一个传感器,获取轮椅所处空间的环境信息;基于环境信息,确定目标对象与轮椅的相对位置关系;以及基于相对位置关系控制轮椅在空间中移动以使得轮椅靠近目标对象;其中移动至少包括以下中的至少一种:旋转一定角度、前进或后退。
在一些实施例中,通过位于轮椅上的至少一个传感器,获取轮椅所处空间的环境信息还包括:通过位于轮椅上至少一个回波探测式传感器,获取空间中至少一部分的轮廓数据;或者,通过位于轮椅上的图像采集装置获取空间中至少一部分的图像数据。
在一些实施例中,回波探测试传感器包括以下中的至少一种:雷达 或超声波传感器。
在一些实施例中,通过位于轮椅上至少一个传感器,获取轮椅所处空间的环境信息还包括:通过位于轮椅上至少一个回波探测式传感器,获取空间中至少一部分的轮廓数据;判断空间中至少一部分的轮廓数据中是否包含目标对象的轮廓数据;若不包括,则控制轮椅旋转一定角度后再次通过位于轮椅上至少一个回波探测式传感器,获取空间中至少一部分的轮廓数据直到获取的空间中至少一部分的轮廓数据中包含目标对象的轮廓数据。
在一些实施例中,基于环境信息,确定目标对象与轮椅的相对位置关系还包括:确定目标对象的轮廓数据在空间中至少一部分的轮廓数据中的位置;基于位置以及回波探测式传感器在轮椅上的位置确定目标对象相对于轮椅的方位和/或距离。
在一些实施例中,通过位于轮椅上至少一个传感器,获取轮椅所处空间的环境信息还包括:通过位于轮椅上图像采集装置,获取空间中至少一部分的图像数据;判断空间中至少一部分的图像数据中是否包含目标对象的图像数据;若不包括,则控制轮椅旋转一定角度后再次通过位于轮椅上图像采集装置,获取空间中至少一部分的图像数据直到获取的空间中至少一部分的图像数据中包含目标对象的图像数据。
在一些实施例中,基于环境信息,确定目标对象与轮椅的相对位置关系还包括:确定目标对象的图像数据在空间中至少一部分的图像数据中的位置;基于位置以及图像采集装置在轮椅上的位置确定目标对象相对于轮椅的方位和/或距离。
在一些实施例中,基于相对位置关系控制轮椅在空间中移动以使得轮椅靠近目标对象还包括:基于方位控制轮椅旋转一定角度,使得轮椅的正前方朝向目标对象;和/或,基于距离控制轮椅沿其正前方前进或 后退一定距离,使得轮椅靠近目标对象。
在一些实施例中,轮椅包括处理器及伸缩旋转装置;伸缩旋转装置包括支撑轴、底座、伸缩动力装置及旋转动力装置;伸缩动力装置及旋转动力装置均与处理器具有信号连接;支撑轴以可相对于底座伸缩以及旋转的方式直接或间接安装于底座上;底座固定安装于轮椅座位底板上;支撑轴垂直于座位底板且朝向轮椅下方;伸缩动力装置、旋转动力装置均与支撑轴具有传动连接;控制轮椅旋转一定角度包括:控制伸缩动力装置,使底座相对于支撑轴伸长,进而将轮椅顶起至离开地面;控制旋转动力装置,使底座相对于支撑轴旋转一定角度,进而带动轮椅旋转一定角度;控制伸缩动力装置,使底座相对于支撑轴缩短,进而将轮椅放回地面。
在一些实施例中,轮椅包括两个前轮及两个后轮;其中两个前轮均为万向轮,两个后轮各自通过一个电机驱动,电机均与处理器具有信号连接;控制轮椅旋转一定角度包括:控制两个后轮的电机相对彼此反向旋转一定角度,进而带动轮椅旋转角度。
本申请的一个方面,提供了一种轮椅控制系统,其特征在于,至少一个存储介质,包括一组指令集,该组指令集用于控制轮椅移动;与至少一个存储介质通信的至少一个处理器,其中,当执行指令集时,至少一个处理器用于:确定目标对象;目标对象位于轮椅所处空间中;通过位于轮椅上的至少一个传感器,获取轮椅所处空间的环境信息;基于环境信息,确定目标对象与轮椅的相对位置关系;以及基于所述相对位置关系控制所述轮椅在所述空间中移动以使得轮椅靠近目标对象;其中移动至少包括以下中的至少一种:旋转一定角度、前进或后退。
在一些实施例中,为了通过位于轮椅上的至少一个传感器,获取轮椅所处空间的环境信息,至少一个处理器用于:通过位于轮椅上至少一 个回波探测式传感器,获取空间中至少一部分的轮廓数据;或者,通过位于轮椅上的图像采集装置获取空间中至少一部分的图像数据。
在一些实施例中,回波探测试传感器包括以下中的至少一种:雷达或超声波传感器。
在一些实施例中,为了通过位于轮椅上至少一个传感器,获取轮椅所处空间的环境信息,至少一个处理器还用于:通过位于轮椅上至少一个回波探测式传感器,获取空间中至少一部分的轮廓数据;判断空间中至少一部分的轮廓数据中是否包含目标对象的轮廓数据;若不包括,则控制轮椅旋转一定角度后再次通过位于轮椅上至少一个回波探测式传感器,获取空间中至少一部分的轮廓数据直到获取的空间中至少一部分的轮廓数据中包含目标对象的轮廓数据。
在一些实施例中,为了基于环境信息,确定目标对象与轮椅的相对位置关系,至少一个处理器用于:确定目标对象的轮廓数据在空间中至少一部分的轮廓数据中的位置;基于位置以及回波探测式传感器在轮椅上的位置确定目标对象相对于轮椅的方位和/或距离。
在一些实施例中,为了通过位于轮椅上的至少一个传感器,获取轮椅所处空间的环境信息,至少一个处理器用于:通过位于轮椅上图像采集装置,获取空间中至少一部分的图像数据;判断空间中至少一部分的图像数据中是否包含目标对象的图像数据;若不包括,则控制轮椅旋转一定角度后再次通过位于轮椅上图像采集装置,获取空间中至少一部分的图像数据直到获取的空间中至少一部分的图像数据中包含目标对象的图像数据。
在一些实施例中,为了基于环境信息,确定目标对象与轮椅的相对位置关系,至少一个处理器用于:确定目标对象的图像数据在空间中至少一部分的图像数据中的位置;基于位置以及图像采集装置在轮椅上的 位置确定目标对象相对于轮椅的方位和/或距离。
在一些实施例中,为了基于相对位置关系控制轮椅在空间中移动以使得轮椅靠近目标对象,至少一个处理器用于:基于方位控制轮椅旋转一定角度,使得轮椅的正前方朝向目标对象;和/或,基于距离控制轮椅沿其正前方前进或后退一定距离,使得轮椅靠近目标对象。
在一些实施例中,轮椅包括处理器及伸缩旋转装置;伸缩旋转装置包括支撑轴、底座、伸缩动力装置及旋转动力装置;伸缩动力装置及旋转动力装置均与处理器具有信号连接;支撑轴以可相对于底座伸缩以及旋转的方式直接或间接安装于底座上;底座固定安装于轮椅座位底板上;支撑轴垂直于座位底板且朝向轮椅下方;伸缩动力装置、旋转动力装置均与支撑轴具有传动连接;为了控制轮椅旋转一定角度,处理器还用于:控制伸缩动力装置,使底座相对于支撑轴伸长,进而将轮椅顶起至离开地面;控制旋转动力装置,使底座相对于支撑轴旋转一定角度,进而带动轮椅旋转一定角度;控制伸缩动力装置,使底座相对于支撑轴缩短,进而将轮椅放回地面。
在一些实施例中,轮椅包括两个前轮及两个后轮;其中两个前轮均为万向轮,两个后轮各自通过一个电机驱动,电机均与处理器具有信号连接;为了控制轮椅旋转一定角度,处理器还用于:控制两个后轮的电机相对彼此反向旋转一定角度,进而带动轮椅旋转角度。
根据本申请的一个方面,提供了一种轮椅控制系统,其特征在于,包括:目标确定模块,用于确定目标对象;目标对象位于轮椅所处空间中;环境信息采集模块,用于通过位于轮椅上的至少一个传感器,获取轮椅所处空间的环境信息;分析模块,用于基于环境信息,确定目标对象与轮椅的相对位置关系;以及机械控制模块,用于基于所述相对位置关系控制所述轮椅在所述空间中移动以使得轮椅靠近目标对象;其中移动至 少包括以下中的至少一种:旋转一定角度、前进或后退。
在一些实施例中,环境信息采集模块还用于:通过位于轮椅上至少一个回波探测式传感器,获取空间中至少一部分的轮廓数据;或者,通过位于轮椅上的图像采集装置获取空间中至少一部分的图像数据。
在一些实施例中,回波探测试传感器包括以下中的至少一种:雷达或超声波传感器。
在一些实施例中,环境信息采集模块还用于:通过位于轮椅上至少一个回波探测式传感器,获取空间中至少一部分的轮廓数据;判断空间中至少一部分的轮廓数据中是否包含目标对象的轮廓数据;若不包括,则控制轮椅旋转一定角度后再次通过位于轮椅上至少一个回波探测式传感器,获取空间中至少一部分的轮廓数据直到获取的空间中至少一部分的轮廓数据中包含目标对象的轮廓数据。
在一些实施例中,分析模块还用于:确定目标对象的轮廓数据在空间中至少一部分的轮廓数据中的位置;基于位置以及回波探测式传感器在轮椅上的位置确定目标对象相对于轮椅的方位和/或距离。
在一些实施例中,环境信息采集模块还用于:通过位于轮椅上图像采集装置,获取空间中至少一部分的图像数据;判断空间中至少一部分的图像数据中是否包含目标对象的图像数据;若不包括,则控制轮椅旋转一定角度后再次通过位于轮椅上图像采集装置,获取空间中至少一部分的图像数据直到获取的空间中至少一部分的图像数据中包含目标对象的图像数据。
在一些实施例中,环境分析模块还用于:确定目标对象的图像数据在空间中至少一部分的图像数据中的位置;基于位置以及图像采集装置在轮椅上的位置确定目标对象相对于轮椅的方位和/或距离。
在一些实施例中,机械控制模块还用于:基于方位控制轮椅旋转一 定角度,使得轮椅的正前方朝向目标对象;和/或,基于距离控制轮椅沿其正前方前进或后退一定距离,使得轮椅靠近目标对象。
在一些实施例中,轮椅包括处理器及伸缩旋转装置;伸缩旋转装置包括支撑轴、底座、伸缩动力装置及旋转动力装置;伸缩动力装置及旋转动力装置均与处理器具有信号连接;支撑轴以可相对于底座伸缩以及旋转的方式直接或间接安装于所述底座上;底座固定安装于轮椅座位底板上;支撑轴垂直于座位底板且朝向轮椅下方;伸缩动力装置、旋转动力装置均与支撑轴具有传动连接;所述机械控制模块还用于:控制伸缩动力装置,使底座相对于支撑轴伸长,进而将轮椅顶起至离开地面;控制旋转动力装置,使底座相对于支撑轴旋转一定角度,进而带动轮椅旋转一定角度;控制伸缩动力装置,使底座相对于支撑轴缩短,进而将轮椅放回地面。
在一些实施例中,轮椅包括两个前轮及两个后轮;其中两个前轮均为万向轮,两个后轮各自通过一个电机驱动,电机均与处理器具有信号连接;所述机械控制模块还用于:控制两个后轮的电机相对彼此反向旋转一定角度,进而带动轮椅旋转角度。
根据本申请的另一个方面,提供了一种计算机可读存储介质,其特征在于,存储介质存储计算机指令,当计算机指令运行被处理器执行时,实现上述轮椅控制方法。
根据本申请的又一个方面,提供了一种轮椅,其特征在于,包括处理器及伸缩旋转装置;伸缩旋转装置包括支撑轴、底座、伸缩动力装置及旋转动力装置;伸缩动力装置与处理器具有信号连接;支撑轴以可相对于支撑轴伸缩以及旋转的方式直接或间接安装于所述底座上;底座固定安装于轮椅座位底板上;支撑轴垂直于座位底板且朝向轮椅下方;伸缩动力装置、旋转动力装置均与支撑轴具有传动连接。
在一些实施例中,伸缩动力装置为气缸或油缸。
在一些实施例中,旋转动力装置为电机。
附图说明
在此的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的限定。在各图中,相同标号表示相同部件。
根据本申请的一些实施例,图1所示的是轮椅控制系统示意图;
根据本申请的一些实施例,图2所示的是示例性轮椅的结构示意图;
根据本申请的一些实施例,图3和图4所示的是示例性轮椅的安装结构示意图;
根据本申请的一些实施例,图5所示的是轮椅的示例性硬件组件和/或软件组件的示意图;
根据本申请的一些实施例,图6所示的是轮椅控制系统的功能模块框图;
根据本申请的一些实施例,图7所示的是获取空间中至少一部分的轮廓数据的流程示意图;
根据本申请的一些实施例,图8所示的是确定目标对象与轮椅的相对位置关系的流程示意图;
根据本申请的一些实施例,图9所示的获取空间中至少一部分的轮廓数据的流程示意图;
根据本申请的一些实施例,图10所示的是确定目标对象与轮椅的相对位置关系的流程示意图;以及
根据本申请的一些实施例,图11所示的是使得轮椅靠近目标对象的流程示意图。
具体实施方式
为了更清楚地说明本申请的实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本申请的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本申请应用于其他类似情景。应当理解,给出这些示例性实施例仅仅是为了使相关领域的技术人员能够更好地理解进而实现本申请,而并非以任何方式限制本申请的范围。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
如本申请和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可以包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其他的步骤或元素。
虽然本申请对根据本申请的实施例的系统中的某些模块做出了各种引用,然而,任何数量的不同模块可以被使用并运行在客户端和/或服务器上。模块仅是说明性的,并且系统和方法的不同方面可以使用不同模块。
本申请中使用了流程图用来说明根据本申请的实施例的系统所执行的操作。应当理解的是,前面或下面操作不一定按照顺序来精确地执行。相反,可以按照倒序或同时处理各种步骤。同时,也可以将其他操作添加到这些过程中,或从这些过程移除某一步或数步操作。
应当理解的是,本申请的系统及方法系统仅仅是本申请的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本申请应用于其它类似情景。
根据本申请的一些实施例,图1所示的是轮椅控制系统100示意图。轮椅控制系统100可以适用于狭窄空间和/或智能家居。狭窄空间可以包括:卫生间、房间、电梯、病房、厨房、走道等,或其他组合。示例性轮椅控制系统100可以包括服务器110、网络120、轮椅130和存储器140。
服务器110可以用于对收集的信息进行分析加工以生成分析结果。在一些实施例中,服务器110可以从轮椅130收集的传感器数据进行分析,以获得空间的环境信息。空间的环境信息可以包括空间中至少一部分的轮廓数据和/或空间中至少一部分图像数据。在一些实施例中,服务器110可以基于空间的环境信息,确定目标对象与轮椅的相对位置等。在一些实施例中,目标对象可以包括呼叫报警装置、电梯门、电梯控制盘、电器开关、房间门、楼梯、窗户、家用电器、扶手、插座等,或其任意组合。
服务器110可以是一个服务器,也可以是一个服务器群组。服务器群组可以是集中式的,例如数据中心。服务器群组也可以是分布式的,例如一个分布式系统。服务器110可以是本地的,例如直接设置于轮椅130上,也可以是远程的。
服务器110可以包括引擎112。引擎112可以用于执行服务器110的指令(程序代码)。例如,引擎112能够执行分析传感器数据的指令,进而获得目标对象与轮椅的相对位置。又例如,引擎112能够执行控制轮椅的指令,进而生成控制轮椅移动的控制信号。分析传感器数据指令和控制轮椅指令可以以计算机指令的形式存储在计算机可读存储介质(例如,存储器140)中。
网络120可以提供信息交换的渠道。在一些实施例中,服务器110、轮椅130和/或存储器140之间可以通过网络120交换信息。例如,服务 器110可以通过网络120接收轮椅130采集的传感器数据。又例如,服务器110可以通过网络120从存储器140获取信息(例如,目标对象的已知图像、目标对象的已知轮廓、智能家居中已知节点的位置信息等)。
网络120可以是单一网络,也可以是多种网络组合的。网络120可以包括但不限于局域网、广域网、公用网络、专用网络、无线局域网、虚拟网络、都市城域网、公用开关电话网络等中的一种或几种的组合。网络120可以包括多种网络接入点,如有线或无线接入点、基站(如120-1,120-2)或网络交换点,通过以上接入点使数据源连接网络120并通过网络发送信息。
轮椅130是可以感测空间环境的可移动装置。在一些实施例中,轮椅130可以包含获取空间环境信息的传感器。具体地,传感器可以包括但不限于:至少一个回波探测器、至少一个图像采集装置等。例如,回波探测器可以包括:雷达、超声波传感器、激光传感器、红外线传感器、声呐传感器、辐射传感器等,或其任意组合。在一些实施例中,回波探测器可以搭载在轮椅底板上。图像采集装置可以包括但不限于:至少一个全景摄像机(鱼眼镜头)、至少一个深度相机、至少一个网络摄像机、至少一个电荷耦合器件(charge-coupled device,CCD)、至少一个互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)传感器等,或其任意组合。在一些实施例中,图像采集装置可以安装在轮椅扶手上或轮椅的扶手支架上等不妨碍轮椅用户的位置。在一些实施例中,图像采集装置可以多自由度旋转。在一些实施例中,可以通过配置至少一个图像采集装置和/或可以通过图像采集装置的多自由度旋转,进而可以获得360°的空间图像数据。
在一些实施例中,轮椅130还可以包含其他传感器,以获取轮椅的空间位置信息、轮椅的姿态信息、判断轮椅是否与空间环境中的物体 接触等信息。其中,其他传感器可以包括惯性传感器、力觉传感器、接触觉传感器、光纤传感器、霍尔效应传感器、位移传感器等,或其任意组合。其中,惯性传感器可以包括倾角传感器、加速度传感器、角速度传感器、航姿参考系统(Attitude and heading reference system,AHRS)、惯性测量单元(Interial measurement unit,IMU)等,或其任意组合。
在一些实施例中,轮椅130可以通过网络120或直接访问存取储存在存储器140的数据信息(例如,目标对象的已知图像、目标对象的已知轮廓、智能家居中已知节点的位置信息等)。
存储器140可以泛指具有存储功能的设备。存储器140可以用于存储从轮椅130收集的数据和/或服务器110工作中产生的各种数据。例如,存储器140可以存储轮椅130的传感器获取的回波数据、图像数据、空间的环境信息、目标对象与轮椅130的相对位置关系等。存储器140还可以用于存储如目标对象的已知轮廓数据、目标对象的已知图像数据、智能家居中已知节点的位置等信息。其中,智能家居中已知节点的位置信息可以包括:病房呼叫报警装置、电梯门、电梯控制盘、电器开关、房间门、楼梯、窗户、家用电器等位置信息,或其任意组合。
存储器140可以是本地的,也可以是远程的。存储器140与系统其他模块间的连接或通信可以是有线的,也可以是无线的。在一些实施例中,服务器110可以直接访问存取储存在存储器140的数据信息,也可以直接通过网络120访问存取储存在存储器140的数据信息。在一些实施例中,轮椅130可以直接访问存取储存在存储器140的数据信息,也可以直接通过轮椅130访问存取储存在存储器140的数据信息。
应该注意的是,关于轮椅控制系统100的描述出于说明性目的,并不用于限制本申请的保护范围。对于本领域的技术人员来说,可以在本申请的指示下做出多个变体和修改。然而,这些变体和修改不会脱离 本申请的保护范围。例如,存储器140和服务器110可以是本地连接,而不是通过网络120进行连接。
根据本申请的一些实施例,图2所示的是示例性轮椅的结构示意图。
如图2所描述的,轮椅200的装置包括,201为轮椅扶手,202为轮椅扶手上的支架,203为轮椅座椅、204为轮椅靠背、205为座椅支撑架、206为轮椅座位底板、207为轮椅的万向轮前轮、208为轮椅的后轮、209为设置在轮椅座位底板206上的至少一个传感器、210为伸缩旋转装置。在一些实施例中,可以不包含座椅支撑架205,可以直接将轮椅座椅203设置在轮椅206座位底板上。
轮椅扶手上的支架202安装在轮椅扶手201上,在一些实施例中,可以在202上设置至少一个图像采集装置、输入/输出接口430(图2中未示出)等。在另一些实施例中,可以不设置轮椅扶手上的支架202,可以直接将至少一个图像采集装置、输入/输出接口430等装置设置在轮椅扶手上。
座椅支撑架205安装于底座206上。在一些实施例中,座椅支撑架205可相对于轮椅座位底板206伸缩以及旋转。在一些实施例中,可以人为实现座椅支撑架205的伸缩以及旋转。
在一些实施例中,可以在轮椅座位底板206上设置至少一个传感器209。在一些实施例中,传感器209可以包括但不限于:至少一个回波探测器、惯性传感器、力觉传感器、接触觉传感器、光纤传感器、霍尔效应传感器、位移传感器等。
轮椅包括两个前轮207及两个后轮208。其中,两个前轮均为万向轮,两个后轮各自通过一个电机驱动,该电机均与处理器410具有信号连接。
伸缩旋转装置210安装在座位底板下方。
在一些实施例中,若需要控制轮椅旋转一定角度可以通过构建差速模型,控制两个后轮208的电机使两个后轮208相对彼此反向旋转一定角度,进而带动所述轮椅旋转所述角度。例如,当轮椅需要朝正前右方旋转时,电机1可以控制左后轮以顺时针12km/h转动50°,电机2可以控制右后轮逆时针10km/h转动35°。因此可以通过改变左后轮和右后轮的转速,可以实现不同半径的转弯,进而带动所述轮椅以两个后轮所在直线上的一点旋转。在一些实施例中,还可以通过伸缩旋转装置210实现轮椅旋转,如图3及其描述所示。
应该注意的是,关于轮椅200的结构的描述出于说明性目的,并不用于限制本申请的保护范围。对于本领域的技术人员来说,可以在本申请的指示下做出多个变体和修改。然而,这些变体和修改不会脱离本申请的保护范围。例如,轮椅200的结构中还可以包含空气悬挂系统。又例如,轮椅200的结构中还可以包括刹车系统。
根据本申请的一些实施例,图3和图4所示的是示例性轮椅的安装结构示意图。
伸缩旋转装置210安装在座位底板下方。如图3所示,伸缩旋转装置210包括:支撑轴301、底座302、旋转动力装置303和伸缩动力装置304。在一些实施例中,可以安装多组同步伸缩旋转装置210在座位底板下方(本申请示例性展示1组伸缩旋转装置210)。
底座302固定安装于轮椅座位底板206。
旋转动力装置303和伸缩动力装置304分别可以与处理器410具有信号连接,接收处理器410发出的旋转与伸缩指令。在一些实施例中,旋转动力装置303和伸缩动力装置304可以为同一个动力装置,接收处理器410发出的旋转和/或直线移动的指令信号。在一些实施例中,支撑轴301可以直接安装于底座302上,支撑轴301垂直于座位底板206且朝向轮椅 下方。在一些实施例中,支撑轴301与底座302之间的连接可以包括但不限于:动连接(如,键连接、花键连接等)、可拆卸连接(如,螺纹连接、销连接、胀套连接、型面连接、过盈连接等)、不可拆卸连接(如,铆接、焊接、粘接连接、过盈连接、锚固连接等)等。仅仅作为示例,当连接方式为键连接、花键连接、螺纹连接时,支撑轴可以相对于底座伸缩以及旋转。在另一些实施例中,支撑轴301可以通过其他部件或装置间接安装于底座302上,例如支撑轴301可以通过旋转动力装置303和/或伸缩动力装置304间接与底座302连接。
在一些实施例中,伸缩动力装置304与支撑轴301具有传动连接;旋转动力装置303与底座302具有传动连接。在一些实施例中,传动连接可以包括但不限于:机械传动、液压传动、气压传动、电力传动、电磁轴承、电磁传动等。如图3所示,仅仅作为示例,旋转动力装置303可以为马达或电机,伸缩动力装置304可以为气缸或液压缸。旋转动力装置303的基座或固定部安装在底座302下平面,旋转动力装置303的转轴与支撑轴301上端连接;支撑轴301下端与伸缩动力装置304连接。在另一些实施例中,伸缩动力装置304支撑轴301上端可以通过焊接、铆接等方式与底座302相连,支撑轴301的下端可以与伸缩动力装置304相连,与此同时支撑轴301还可以通过齿轮啮合的方式与旋转动力装置303的转轴配合连接。当旋转动力装置的转轴旋转时,通过齿轮可以驱动支撑轴301旋转进而带动轮椅旋转。。在又一些实施例中,伸缩动力装置304可以安装在支撑轴301与底座302之间。在一些实施例中,当需要控制轮椅旋转一定角度时可以:控制所述伸缩动力装置304,使支撑轴301相对于底座302伸长,进而将轮椅顶起至离开地面;控制旋转动力装置304,使支撑轴301相对于底座旋转一定角度,进而带动轮椅旋转一定角度;然后,控制所述伸缩动力装置304,使支撑轴301相对于底座302缩短,进而将轮椅放回地面。例如,如 图3所示,当轮椅需要抬高时,处理器410可以向液压伸缩动力装置304(如,液压缸、气缸等)发送相应指令,带动支撑轴301相对于底座302伸长,以实现轮椅顶起至离开地面。当需要将轮椅放回地面时,处理器410可以向伸缩动力装置304(如,液压缸、气缸等)发送相应指令,以带动支撑轴301相对于底座302缩短。在一些实施例中,伸缩动力装置可以包含但不限于丝杆机械伸缩装置、液压伸缩装置、气压伸缩装置等。
应该注意的是,关于轮椅的安装结构的描述出于说明性目的,并不用于限制本申请的保护范围。对于本领域的技术人员来说,可以在本申请的指示下做出多个变体和修改。然而,这些变体和修改不会脱离本申请的保护范围。例如,凡是能够实现伸缩和旋转的机电结构都可以应用在本申请的轮椅上,替代支撑杆301、底座302、旋转动力装置303以及伸缩动力装置304,实现轮椅原地旋转。
根据本申请的一些实施例,轮椅130上还可以设置中央处理装置,在又一些实施例中,中央处理装置可以由本地服务器110取代。图5所示的是轮椅上至少一个中央处理装置的示例性硬件组件和/或软件组件400的示意图。如图5所示,400可以包括处理器410、存储器420、输入/输出接口430和通信端口440。
处理器410可以执行计算指令(程序代码)并执行本申请描述的服务器110的功能。计算指令可以包括程序、对象、组件、数据结构、过程、模块和功能(功能指本申请中描述的特定功能)。例如,处理器410可以处理轮椅控制系统100中控制轮椅移动的指令。在一些实施例中,处理器410可以包括微控制器、微处理器、精简指令集计算机(RISC)、专用集成电路(ASIC)、应用特定指令集处理器(ASIP)、中央处理器(CPU)、图形处理单元(GPU)、物理处理单元(PPU)、微控制器单元、数字信号处理器(DSP)、现场可编程门阵列(FPGA)、高级RISC机 (ARM)、可编程逻辑器件以及能够执行一个或多个功能的任何电路和处理器等,或其任意组合。仅为了说明,图4中的只描述了一个处理器,但需要注意的是本申请还可以包括多个处理器。
存储器420可以存储从轮椅控制系统100中任何主体获得的数据/信息。在一些实施例中,存储器420可以包括大容量存储器、可移动存储器、易失性读取和写入存储器和只读存储器(ROM)等,或其任意组合。示例性大容量存储器可以包括磁盘、光盘和固态驱动器等。可移动存储器可以包括闪存驱动器、软盘、光盘、存储卡、压缩盘和磁带等。易失性读取和写入存储器可以包括随机存取存储器(RAM)。RAM可以包括动态RAM(DRAM)、双倍速率同步动态RAM(DDRSDRAM)、静态RAM(SRAM)、晶闸管RAM(T-RAM)和零电容(Z-RAM)等。ROM可以包括掩模ROM(MROM)、可编程ROM(PROM)、可擦除可编程ROM(PEROM)、电可擦除可编程ROM(EEPROM)、光盘ROM(CD-ROM)和数字通用盘ROM等。
输入/输出接口430可以用于输入或输出信号、数据或信息。在一些实施例中,输入/输出接口430可以使用户(例如,轮椅用户130)与服务器110进行联系。在一些实施例中,用户可以通过输入/输出接口430输入目标对象,其中,目标对象可以包括病房呼叫报警装置、电梯门、电梯控制盘、电器开关、房间门、楼梯、窗户、家用电器等,或其任意组合。在一些实施例中,输入/输出接口430可以包括输入装置和输出装置。示例性输入装置可以包括键盘、鼠标、触摸屏和麦克风等,或其任意组合。示例性输出设备可以包括显示设备、扬声器、打印机、投影仪等,或其任意组合。示例性显示装置可以包括液晶显示器(LCD)、基于发光二极管(LED)的显示器、平板显示器、曲面显示器、电视设备、阴极射线管(CRT)等,或其任意组合。
通信端口440可以连接到网络以便数据通信。连接可以是有线连接、无线连接或两者的组合。有线连接可以包括电缆、光缆或电话线等,或其任意组合。无线连接可以包括蓝牙、WiFi、WiMax、WLAN、ZigBee、移动网络(例如,3G、4G或5G等)等,或其任意组合。在一些实施例中,通信端口440可以是标准化端口,如RS232、RS485等。在一些实施例中,通信端口440可以是专门设计的端口。
根据本申请的一些实施例,图6所示的是轮椅控制系统的功能模块500框图。如图6所示,轮椅控制系统的功能模块500可以包括:目标确定模块510、环境信息采集模块520、分析模块530、机械控制模块540。
在目标确定模块510中,可以确定轮椅所处空间中的目标对象。在一些实施例中,用户(包括,轮椅用户130等)可以通过输入/输出接口430确认目标对象。在一些实施例中,可以利用环境信息采集模块520匹配出空间环境中的对象,用户(包括,轮椅用户130)可以从对象中选择目标对象。其中,对象可以包括病房呼叫报警器、电梯门、电梯控制盘、电器开关、房间门、楼梯、窗户、家用电器等,或其任意组合。
环境信息采集模块520,可以获取轮椅所处空间的环境信息。在一些实施例中,空间的环境信息可以包括:空间中至少一部分的轮廓数据、空间中至少一部分的图像数据、轮椅的空间位置信息、轮椅的姿态信息、判断轮椅是否与空间环境中的物体接触等。
在一些实施例中,可以通过轮椅上至少一个回波探测式传感器检测轮椅所处空间的环境信息,从而获取轮椅所处空间的至少一部分的轮廓数据。例如,可以通过雷达、超声波传感器、激光传感器、红外线传感器、声呐传感器等回波探测式传感器,发射相应的探测波,并根据接收的回波确定空间中至少一部分的轮廓数据。在一些实施例中,还可以 进一步判断空间中至少一部分的轮廓数据中是否包含目标对象的轮廓数据。例如,可以从存储器140中获取目标对象的已知轮廓,然后将目标对象的已知轮廓与空间中至少一部分的轮廓数据进行匹配,若两者匹配度超过匹配准确率阈值1(例如,95%),则可以确定空间中至少一部分的轮廓数据中包含目标对象;若两者匹配度没有超过匹配准确率阈值1(例如,95%),则可以确定空间中至少一部分的轮廓数据中不包含目标对象。其中,匹配算法可以包括通过基于灰度的匹配算法、基于特征的匹配算法、基于关系的匹配算法等。匹配准确率阈值1的设置方法可以包括人为设置、根据经验值设置、根据统计数据确定等。在另一些实施例中,若确定空间中至少一部分的轮廓数据中不包含目标对象,则可以控制轮椅稍作移动后重新采集环境数据,例如控制轮椅旋转一定角度后再次通过位于轮椅上至少一个回波探测式传感器,获取空间中至少一部分的轮廓数据直到获取的空间中至少一部分的轮廓数据中包含目标对象的轮廓数据。在另一些实施例中,当确定空间中至少一部分的轮廓数据中包含目标对象的轮廓数据,可以将包含目标对象的轮廓数据确定为空间中的对象。
在一些实施例中,可以通过至少一个图像采集装置检测轮椅所处空间的环境信息,从而获取轮椅所处空间的至少一部分的图像数据。例如,可以通过配置至少3个鱼眼镜头,进而获得360°的空间图像数据。又例如,可以多自由度旋转至少一个鱼眼镜头,进而获得360°的空间图像数据。在一些实施例中,可以进一步判断空间中至少一部分的图像数据中是否包含目标对象的图像数据。例如,可以从存储器140中获取目标对象的已知图像,然后可以将目标对象的已知图像与空间中至少一部分的图像数据进行匹配,若两者匹配度超过匹配准确率阈值2(例如,90%),则可以确定空间中至少一部分的图像数据中包含目标对象;若两 者匹配度不超过匹配准确率阈值2(例如,90%),则可以确定空间中至少一部分的图像数据中不包含目标对象。其中,匹配算法可以包括基于灰度的匹配算法、基于特征的匹配算法、基于关系的匹配算法等。匹配准确率阈值2的设置方法可以包括人为设置、根据经验值设置、根据统计数据确定等方式。匹配准确率阈值1和匹配准确率阈值2可以相同或不同。在另一些实施例中,若确定空间中至少一部分的图像数据中不包含目标对象,则可以控制轮椅旋转一定角度后再次通过位于轮椅上至少一个图像采集装置,获取空间中至少一部分的图像数据直到获取的空间中至少一部分的图像数据中包含目标对象的图像数据。在另一些实施例中,当确定空间中至少一部分的图像数据中包含目标对象的图像数据,可以将包含目标对象的图像数据确定为空间中的对象。
在一些实施例中,还可以通过其他传感器(如,惯性传感器、接触觉传感器等),获取包括轮椅的空间位置、轮椅的姿态信息、判断轮椅是否与空间环境中的物体接触等信息。
分析模块530,可以基于环境信息确定目标对象与轮椅的相对位置关系。在一些实施例中,相对位置关系包括目标对象相对于轮椅的方位和/或距离。具体地,以轮椅正前方为参考方向,方位可以包括:正前方、正后方、左前方30°、右后方60°等。以轮椅正前方为参考方向,距离可以包括:正前方2m、正后方3m、斜左前方3.5m、斜右后方1.5m等。
在一些实施例中,分析模块530可以从存储器140中获取目标对象的已知轮廓数据。具体地,已知轮廓数据的形式可以包括伪灰度、点云、网格等,或其任意组合。已知轮廓数据可以包括目标对象的几何特征等。其中,几何特征可以反映目标对象空间结构信息(如,电梯门的边缘、电梯门的尺寸等)。在一些实施例中,可以通过搭载在轮椅上的回波探测式传感器获取空间中至少一部分的轮廓数据。其中,空间中至少 一部分的轮廓数据可以包括空间对象的几何特征、物理特征等。其中,几何特征可以反映对象结构信息(如,电梯门的边缘、电梯门的尺寸等)。物理特性可以包括空间对象相对于轮椅的方位、相对于轮椅的距离等。例如,以安装在轮椅底盘上的激光雷达传感器获取电梯门的轮廓数据为例,激光雷达传感器可以发射光束扫描空间并接收返回的回波信号,以获得空间的点云数据。然后对点云数据进行边缘检测,以获得点云数据中的轮廓数据。再将电梯门的已知轮廓数据与点云数据中的轮廓数据进行基于特征的匹配,进而匹配出电梯门的轮廓数据。在一些实施例中,边缘检测算法可以包括但不限于Sobel算子、Canny算子、Roberts算子、Prewitt算子、Kirsch算子和拉普拉斯算子等。其中,匹配算法可以包括基于灰度的匹配算法、基于特征的匹配算法、基于关系的匹配算法等。
在一些实施例中,可以通过三角法,确定目标对象相对于轮椅的方位和/或距离。例如,以上述电梯门轮廓数据为例,可以从电梯门的轮廓数据中提取出电梯门的空间结构信息(如,电梯门的边缘),可以将电梯门边缘投影到整体空间轮廓的二维平面上并获得两个端点位置,然后利用该两个位置和轮椅上激光雷达传感器位置构建三角形,通过解算三角形的边长、中线、夹角等数据,可以获得电梯门相对于轮椅的方位和/或距离。
在一些实施例中,还可以利用脉冲法、相位法等方法,确定目标对象相对于轮椅的方位和/或距离。具体的,以上述激光雷达传感器为例,可以通过测量发射激光到接收激光时间差,计算电梯门相对于轮椅的距离,如式(1)。也可以通过测量激光从发射到接收时间段内的相位变化来计算电梯门相对于轮椅的距离,如式(2)。
Figure PCTCN2018109345-appb-000001
Figure PCTCN2018109345-appb-000002
其中,d为电梯门相对于轮椅的距离,c为光速,t为时间差,f为激光的调制频率,
Figure PCTCN2018109345-appb-000003
为相位差。在一些实施例中,分析模块530可以从存储器140中获取目标对象的已知图像数据。具体地,已知图像数据的类型可以包括但不限于二值图像、灰度图像、索引图像、真彩色RGB图像等。已知图像数据可以包括目标对象的几何特征等。其中,几何特征可以反映目标对象的结构信息(如,电梯门的边缘、电梯门的尺寸等)。
在一些实施例中,可以通过搭载在轮椅上的图像采集装置,识别空间中至少一部分图像数据。具体地,空间中至少一部分图像数据可以包括目标对象的几何特征、物理特征等。其中,几何特征可以反映目标对象的结构信息(如,电梯门的边缘、电梯门的尺寸等)。物理特征可以包括目标对象相对于轮椅的方位、目标对象相对于轮椅的距离等信息。例如,以安装在轮椅上的至少三个鱼眼镜头识别电梯门的图像数据为例,通过至少三个鱼眼镜头可以采集空间中360°的图像数据。然后将电梯门的已知图像数据与360°的图像数据通过基于特征的匹配算法,匹配出电梯门的图像数据。在一些实施例中,图像匹配算法可以包括但不限于基于灰度的匹配算法、基于特征的匹配算法、基于关系的匹配算法等。
在一些实施例中,可以通过三角法,确定目标对象相对于轮椅的方位和/或距离。例如,以电梯门为目标对象,可以基于至少一个鱼眼镜头采集的空间环境连续图像,通过视觉惯性里程计方法,采用ORB方法提取图像中的特征点(包含关键点和描述子等),通过特征匹配方法,确定前后两帧图像特征点的位移,以此解算出轮椅的位姿(包括全局坐标、前进方向等信息)。再使用轮椅的两个位姿和电梯门的一个点构建三角形,通过解算三角形的边长、中线、夹角等数据,可以获得电梯门相对于轮椅的方位和/或距离。在一些实施例中,提取特征的方法包括SIFT、 SURF、ORB等。在一些实施例中,特征匹配的方法有暴力匹配法、快速近似最近邻法等。在另一些实施例中,通过视觉惯性里程计方法解算出轮椅的位姿后,还可以融合其他传感器数据(如,惯性传感器获得的位姿估计等),以优化解算出轮椅的位姿。
在一些实施例中,还可以直接通过至少一个图像采集装置(如,深度相机),确定目标对象相对于轮椅的距离和/或距离。其中,通过深度相机获取的深度图像可以包括但不限于每个像素点的灰度值、图像的光度特征、图像的明暗特征等信息。例如,以电梯门为目标对象的示例,可以通过配置至少一个深度相机采集空间中的图像信息(包含每个像素点的信息),可以通过极线约束,计算每个像素点与空间对应关系,以此解算每个像素点的灰度值,即每个像素点与深度相机的距离。进而可以获得电梯门相对于轮椅的距离。在一些实施例中,还可以进一步融合其他传感器数据(如,激光雷达、超声波传感器的数据等),以可以获得电梯门相对于轮椅的夹角。
在一些实施例中,还可以通过镜像确定目标对象相对于轮椅的方位和/或距离。具体地,以电梯控制盘为目标对象为示例,可以通过至少一个鱼眼镜头采集电梯轿厢中镜面反射图像,可以通过对镜面反射图像进行图像识别,可以确定电梯控制盘镜像。还可以进一步融合其他传感器数据(如,激光雷达、超声波传感器、惯性传感器的数据等),以获得电梯控制盘镜像相对于轮椅的距离和/或夹角。通过对镜像关系的几何变换和解算,可以确定电梯控制盘相对于轮椅的方位和/或距离。
在一些实施例中,还可以融合回波探测器、图像采集装置和/或其他传感器的传感器数据,以获得精确的目标对象相对于轮椅的方位和/或距离。
机械控制模块540,可以按目标对象相对于轮椅的方位和/或距离, 可以通过差速模型或伸缩旋转装置210控制轮椅旋转,并控制轮椅直线移动,使轮椅靠近目标对象。在一些实施例中,可以基于目标对象相对于轮椅的方位,控制轮椅按该方位旋转一定角度,使得轮椅的正前方朝向目标对象。例如,以电梯门为目标对象,当电梯门相对于轮椅的方位为正后方时,可以控制轮椅原地旋转180°,使得轮椅的正前方朝向电梯门。又例如,以电梯门为目标对象,可以基于目标对象相对于轮椅的距离,控制轮椅沿其正前方前进或后退一定距离,使得轮椅靠近目标对象。又例如,以电梯控制盘为目标对象,为方便轮椅用户操作电梯控制盘以及便于轮椅用户出行,还可以利用空气悬挂和/或伸缩旋转装置,控制轮椅实现轮椅座椅的抬高、降低、倾斜等,或其任意组合。
应该注意的是,关于轮椅控制系统的功能模块的描述出于说明性目的,并不用于限制本申请的保护范围。对于本领域的技术人员来说,可以在本申请的指示下做出多个变体和修改。然而,这些变体和修改不会脱离本申请的保护范围。
根据本申请的一些实施例,图7所示的是获取空间中至少一部分的轮廓数据的流程600示意图。流程600可以由环境信息采集模块520执行。流程600可以包括:
步骤610中,可以通过位于轮椅上至少一个回波探测式传感器,获取空间中至少一部分的轮廓数据。例如,可以通过雷达、超声波传感器、激光传感器、红外线传感器、声呐传感器等回波探测式传感器,发射相应的探测波,并根据接收的回波确定空间中至少一部分的轮廓数据。详细描述如环境信息采集模块520所述。
步骤620中,可以进一步判断空间中至少一部分的轮廓数据中是否包含目标对象的轮廓数据,例如,可以从存储器140中获取目标对象的已知轮廓,然后将获取的目标对象的已知轮廓与空间中至少一部分的 轮廓数据进行匹配。具体地,匹配算法可以包括:基于灰度的匹配算法、基于特征的匹配算法、基于关系的匹配算法等,或其任意组合。详细描述如分析模块530所述。
若获取的目标对象的已知轮廓和空间中至少一部分的轮廓数据匹配度超过匹配准确率阈值1,可以确定空间中至少一部分的轮廓数据中包含目标对象,则执行步骤640,基于环境信息确定目标对象与轮椅的相对位置关系。
若获取的目标对象的已知轮廓和空间中至少一部分的轮廓数据匹配度不超过匹配准确率阈值1,可以确定空间中至少一部分的轮廓数据中不包含目标对象,则执行步骤630,可以控制轮椅旋转一定角度后再次通过位于轮椅上至少一个回波探测式传感器,获取空间中至少一部分的轮廓数据直到获取的空间中至少一部分的轮廓数据中包含目标对象的轮廓数据。
根据本申请的一些实施例,图7所示的是确定目标对象与轮椅的相对位置关系的流程640示意图。流程640可以由分析模块520执行。流程640可以包括:
步骤710中,如流程600描述的,可以通过至少一个回波探测式传感器检测轮椅所处空间的环境信息,进而获取轮椅所处的空间中至少一部分的轮廓数据。
步骤720中,可以从存储器140中获取目标对象的已知轮廓数据,可以将目标对象的已知轮廓数据与空间中至少一部分的轮廓数据进行匹配,进而获得目标对象的位置。例如,将空间的点云数据与的已知目标对象(如,电梯门)的点云轮廓数据进行基于特征的匹配,匹配出电梯门的轮廓数据,可以将目标对象(如,电梯门)的轮廓数据在二维空间进行投影,以此获取目标对象(如,电梯门)的位置。在一些实施例 中,特征匹配算法可以包括但不限于通过基于灰度的匹配算法、基于特征的匹配算法、基于关系的匹配算法等。详细描述如分析模块530所述。
步骤730中,基于目标对象的位置和轮椅上回波探测式传感器的位置,确定目标对象相对于轮椅的方位和/或距离。例如,确定目标对象(如,电梯门)相对于轮椅的方位是正前方,距离是正前方2m。在一些实施例中,可以通过三角法、脉冲法、相位法等方法,确定目标对象相对于轮椅的方位和/或距离(详细描述如分析模块530所述)。
在一些实施例中,还可以融合回波探测器、图像采集装置或其他传感器的数据,以获得精确的目标对象相对于轮椅的方位和/或距离。
应该注意的是,关于流程640的描述出于说明性目的,并不用于限制本申请的保护范围。对于本领域的技术人员来说,可以在本申请的指示下做出多个变体和修改。然而,这些变体和修改不会脱离本申请的保护范围。根据本申请的一些实施例,图9所示的获取空间中至少一部分的轮廓数据的流程800示意图。流程800可以由环境信息采集模块520执行。流程800可以包括:
步骤810中,可以通过至少一个图像采集装置检测轮椅所处空间的环境信息,进而获取空间中至少一部分的图像数据。例如,可以通过配置至少3个鱼眼镜头或多自由度旋转至少一个鱼眼镜头,可以获得360°的空间图像数据。
步骤820中,可以进一步判断空间中至少一部分的图像数据中是否包含目标对象的图像数据。例如,可以从存储器140中获取目标对象的已知图像,然后将获取的目标对象的已知图像与空间中至少一部分的图像数据进行匹配。其中,匹配算法可以包括:基于灰度的匹配算法、基于特征的匹配算法、基于关系的匹配算法等,或其任意组合。
若获取的目标对象的已知图像和空间中至少一部分的图像数据的 匹配度超过匹配准确率阈值2,可以确定空间中至少一部分的图像数据中包含目标对象,则执行步骤840,基于环境信息,确定目标对象与轮椅的相对位置关系。在一些实施例中,匹配准确率阈值2可以人为设置,其中,匹配准确率阈值2可以与匹配准确率阈值1相同或不同。
若获取的目标对象的已知图像和空间中至少一部分的图像数据的匹配度不超过匹配准确率阈值2,可以确定空间中至少一部分的图像数据中不包含目标对象,则执行步骤830,可以控制轮椅旋转一定角度后再次通过位于轮椅上至少一个图像采集装置,获取空间中至少一部分的图像数据直到获取的空间中至少一部分的图像数据中包含目标对象的图像数据。
应该注意的是,关于流程800的描述出于说明性目的,并不用于限制本申请的保护范围。对于本领域的技术人员来说,可以在本申请的指示下做出多个变体和修改。然而,这些变体和修改不会脱离本申请的保护范围。
根据本申请的一些实施例,图10所示的是确定目标对象与轮椅的相对位置关系的流程840示意图。流程840可以由分析模块530执行。流程840可以包括:
步骤910中,如流程800描述的,可以通过至少一个图像采集装置检测轮椅所处空间的环境信息,进而获取轮椅所处的空间中至少一部分的图像数据。
步骤920中,确定目标对象相对于轮椅的方位和/或距离。例如,确定目标对象(如,电梯门)相对于轮椅的方位是正前方,距离是正前方2m。在一些实施例中,可以通过三角法、深度相机、镜像等方法,确定目标对象相对于轮椅的方位和/或距离(详细描述如分析模块530所述)。
在一些实施例中,还可以融合回波探测器、图像采集装置和其他传感器的数据,获得精确的目标对象相对于轮椅的方位和/或距离。
应该注意的是,关于流程840的描述出于说明性目的,并不用于限制本申请的保护范围。对于本领域的技术人员来说,可以在本申请的指示下做出多个变体和修改。然而,这些变体和修改不会脱离本申请的保护范围。
根据本申请的一些实施例,图11所示的是使得轮椅靠近目标对象的流程1000示意图。流程1000可以由机械控制模块540执行。流程1000可以包括:
步骤1010中,如图8和图10描述的,获取目标对象与轮椅的相对位置关系。
步骤1020中,可以基于目标对象相对于轮椅的方位,控制轮椅的运动控制系统按该方位旋转一定角度,使得轮椅的正前方朝向目标对象。例如,以电梯门为目标对象,当电梯门相对于轮椅的方位为正后方时(以轮椅正前方为参考),控制轮椅原地旋转180°,使得轮椅的正前方朝向电梯门。
步骤1030中,基于距离控制轮椅沿其正前方前进或后退一定距离,使得轮椅靠近目标对象。
在一些实施例中,为方便轮椅用户操作目标对象(如,电梯控制盘)以及便于轮椅用户出行,还可以利用空气悬挂和/或伸缩旋转装置,控制轮椅实现轮椅座椅的抬高、降低、倾斜等,或其任意组合。
应该注意的是,关于流程1000的描述出于说明性目的,并不用于限制本申请的保护范围。对于本领域的技术人员来说,可以在本申请的指示下做出多个变体和修改。然而,这些变体和修改不会脱离本申请的保护范围。
本申请的实施例至少具备以下的其中一个或者多个有益效果之一或者组合:1)利用传感器获取轮椅与目标对象之间的方位和距离;2)采用液压装置和/或差速模型,实现轮椅的在狭窄空间中原地旋转;3)基于轮椅与目标对象之间的方位和距离,控制轮椅移动。
本领域技术人员能够理解,本申请所披露的内容可以出现几种变型和改进。例如,以上所描述的不同系统组件都是通过硬件设备所实现的,但是也可能只通过软件的解决方案得以实现。此外,这里所披露的实施例可能是通过一个固件、固件/软件的组合、固件/硬件的组合或硬件/固件/软件的组合得以实现。
以上内容描述了本申请和/或一些其他的示例。根据上述内容,本申请还可以作出不同的变形。本申请披露的主题能够以不同的形式和例子所实现,并且本申请可以被应用于大量的应用程序中。后文权利要求中所要求保护的所有应用、修饰以及改变都属于本申请的范围。

Claims (34)

  1. 一种轮椅控制方法,其特征在于,所述方法包括:
    确定目标对象;所述目标对象位于所述轮椅所处空间中;
    通过位于轮椅上的至少一个传感器,获取轮椅所处空间的环境信息;
    基于所述环境信息,确定所述目标对象与所述轮椅的相对位置关系;以及
    基于所述相对位置关系控制所述轮椅在所述空间中移动以使得所述轮椅靠近所述目标对象;其中所述移动至少包括以下中的至少一种:旋转一定角度、前进或后退。
  2. 根据权利要求1所述的方法,其特征在于,通过位于轮椅上的至少一个传感器,获取轮椅所处空间的环境信息还包括:
    通过位于轮椅上至少一个回波探测式传感器,获取所述空间中至少一部分的轮廓数据;或者,
    通过位于轮椅上的图像采集装置获取所述空间中至少一部分的图像数据。
  3. 根据权利要求2所述的方法,其特征在于,所述回波探测试传感器包括以下中的至少一种:雷达或超声波传感器。
  4. 根据权利要求2所述方法,其特征在于,通过位于轮椅上的至少一个传感器,获取轮椅所处空间的环境信息还包括:
    通过位于轮椅上至少一个回波探测式传感器,获取所述空间中至少一部分的轮廓数据;
    判断所述空间中至少一部分的轮廓数据中是否包含所述目标对象的轮廓数据;
    若不包括,则控制所述轮椅旋转一定角度后再次通过位于轮椅上至少一个回波探测式传感器,获取所述空间中至少一部分的轮廓数据直到获取的所述空间中至少一部分的轮廓数据中包含所述目标对象的轮廓数据。
  5. 根据权利要求4所述方法,其特征在于,基于所述环境信息,确定所述目标对象与所述轮椅的相对位置关系还包括:
    确定所述目标对象的轮廓数据在所述空间中至少一部分的轮廓数据中的位置;
    基于所述位置以及所述回波探测式传感器在所述轮椅上的位置确定所述目标对象相对于所述轮椅的方位和/或距离。
  6. 根据权利要求2所述方法,其特征在于,通过位于轮椅上的至少一个传感器,获取轮椅所处空间的环境信息还包括:
    通过位于轮椅上图像采集装置,获取所述空间中至少一部分的图像数据;
    判断所述空间中至少一部分的图像数据中是否包含所述目标对象的图像数据;
    若不包括,则控制所述轮椅旋转一定角度后再次通过位于轮椅上图像采集装置,获取所述空间中至少一部分的图像数据直到获取的所述空间中至少一部分的图像数据中包含所述目标对象的图像数据。
  7. 根据权利要求6所述方法,其特征在于,基于所述环境信息,确定所述目标对象与所述轮椅的相对位置关系还包括:
    确定所述目标对象的图像数据在所述空间中至少一部分的图像数据中的位置;
    基于所述位置以及所述图像采集装置在所述轮椅上的位置确定所述目 标对象相对于所述轮椅的方位和/或距离。
  8. 根据权利要求5或7所述方法,其特征在于,基于所述相对位置关系控制所述轮椅在所述空间中移动以使得所述轮椅靠近所述目标对象还包括:
    基于所述方位控制所述轮椅旋转一定角度,使得所述轮椅的正前方朝向所述目标对象;和/或,
    基于所述距离控制所述轮椅沿其正前方前进或后退一定距离,使得所述轮椅靠近所述目标对象。
  9. 根据权利要求1所述方法,其特征在于,所述轮椅包括处理器及伸缩旋转装置;所述伸缩旋转装置包括支撑轴、底座、伸缩动力装置及旋转动力装置;所述伸缩动力装置及旋转动力装置均与所述处理器具有信号连接;所述支撑轴以可相对于底座伸缩以及旋转的方式直接或间接安装于所述底座上;所述底座固定安装于轮椅座位底板上;支撑轴垂直于所述座位底板且朝向轮椅下方;所述伸缩动力装置、所述旋转动力装置均与所述支撑轴具有传动连接;
    控制所述轮椅旋转一定角度包括:
    控制所述伸缩动力装置,使底座相对于支撑轴伸长,进而将所述轮椅顶起至离开地面;
    控制所述旋转动力装置,使底座相对于支撑轴旋转一定角度,进而带动所述轮椅旋转所述一定角度;
    控制所述伸缩动力装置,使底座相对于支撑轴缩短,进而将所述轮椅放回地面。
  10. 根据权利要求1所述方法,其特征在于,所述轮椅包括两个前轮及两个后轮;其中两个前轮均为万向轮,两个后轮各自通过一个电机驱动,所 述电机均与处理器具有信号连接;
    控制所述轮椅旋转一定角度包括:
    控制两个后轮的电机相对彼此反向旋转一定角度,进而带动所述轮椅旋转所述角度。
  11. 一种轮椅控制系统,其特征在于,包括:
    至少一个存储介质,包括一组指令集,该组指令集用于控制轮椅移动;
    与所述至少一个存储介质通信的至少一个处理器,其中,当执行所述指令集时,所述至少一个处理器用于:
    确定目标对象;所述目标对象位于所述轮椅所处空间中;
    通过位于轮椅上的至少一个传感器,获取轮椅所处空间的环境信息;
    基于所述环境信息,确定所述目标对象与所述轮椅的相对位置关系;以及
    基于所述相对位置关系控制所述轮椅在所述空间中移动以使得轮椅靠近所述目标对象;其中所述移动至少包括以下中的至少一种:旋转一定角度、前进或后退。
  12. 根据权利要求11所述的系统,其特征在于,为了通过位于轮椅上的至少一个传感器,获取轮椅所处空间的环境信息,所述至少一个处理器用于:
    通过位于轮椅上至少一个回波探测式传感器,获取所述空间中至少一部分的轮廓数据;或者,
    通过位于轮椅上的图像采集装置获取所述空间中至少一部分的图像数据。
  13. 根据权利要求12所述的系统,其特征在于,所述回波探测试传感器包括以下中的至少一种:雷达或超声波传感器。
  14. 根据权利要求12所述系统,其特征在于,为了通过位于轮椅上的至少一个传感器,获取轮椅所处空间的环境信息,所述至少一个处理器还用于:
    通过位于轮椅上至少一个回波探测式传感器,获取所述空间中至少一部分的轮廓数据;
    判断所述空间中至少一部分的轮廓数据中是否包含所述目标对象的轮廓数据;
    若不包括,则控制所述轮椅旋转一定角度后再次通过位于轮椅上至少一个回波探测式传感器,获取所述空间中至少一部分的轮廓数据直到获取的所述空间中至少一部分的轮廓数据中包含所述目标对象的轮廓数据。
  15. 根据权利要求14所述系统,其特征在于,为了基于所述环境信息,确定所述目标对象与所述轮椅的相对位置关系,所述至少一个处理器用于:
    确定所述目标对象的轮廓数据在所述空间中至少一部分的轮廓数据中的位置;
    基于所述位置以及所述回波探测式传感器在所述轮椅上的位置确定所述目标对象相对于所述轮椅的方位和/或距离。
  16. 根据权利要求12所述系统,其特征在于,为了通过位于轮椅上的至少一个传感器,获取轮椅所处空间的环境信息,所述至少一个处理器用于:
    通过位于轮椅上图像采集装置,获取所述空间中至少一部分的图像数据;
    判断所述空间中至少一部分的图像数据中是否包含所述目标对象的图像数据;
    若不包括,则控制所述轮椅旋转一定角度后再次通过位于轮椅上图像采集装置,获取所述空间中至少一部分的图像数据直到获取的所述空间中 至少一部分的图像数据中包含所述目标对象的图像数据。
  17. 根据权利要求16所述系统,其特征在于,为了基于所述环境信息,确定所述目标对象与所述轮椅的相对位置关系,所述至少一个处理器用于:
    确定所述目标对象的图像数据在所述空间中至少一部分的图像数据中的位置;
    基于所述位置以及所述图像采集装置在所述轮椅上的位置确定所述目标对象相对于所述轮椅的方位和/或距离。
  18. 根据权利要求15或17所述系统,其特征在于,为了基于所述相对位置关系控制所述轮椅在所述空间中移动以使得所述轮椅靠近所述目标对象,所述至少一个处理器用于:
    基于所述方位控制所述轮椅旋转一定角度,使得所述轮椅的正前方朝向所述目标对象;和/或,
    基于所述距离控制所述轮椅沿其正前方前进或后退一定距离,使得所述轮椅靠近所述目标对象。
  19. 根据权利要求11所述系统,其特征在于,所述轮椅包括处理器及伸缩旋转装置;所述伸缩旋转装置包括支撑轴、底座、伸缩动力装置及旋转动力装置;所述伸缩动力装置及旋转动力装置均与所述处理器具有信号连接;所述支撑轴以可相对于底座伸缩以及旋转的方式直接或间接安装于所述底座上;所述底座固定安装于轮椅座位底板上;支撑轴垂直于所述座位底板且朝向轮椅下方;所述伸缩动力装置、所述旋转动力装置均与所述支撑轴具有传动连接;
    为了控制所述轮椅旋转一定角度,所述处理器还用于:
    控制所述伸缩动力装置,使底座相对于支撑轴伸长,进而将所述轮椅 顶起至离开地面;
    控制所述旋转动力装置,使底座相对于支撑轴旋转一定角度,进而带动所述轮椅旋转所述一定角度;
    控制所述伸缩动力装置,使底座相对于支撑轴缩短,进而将所述轮椅放回地面。
  20. 根据权利要求11所述系统,其特征在于,所述轮椅包括两个前轮及两个后轮;其中两个前轮均为万向轮,两个后轮各自通过一个电机驱动,所述电机均与处理器具有信号连接;
    为了控制所述轮椅旋转一定角度,所述处理器还用于:
    控制两个后轮的电机相对彼此反向旋转一定角度,进而带动所述轮椅旋转所述角度。
  21. 一种轮椅控制系统,其特征在于,包括:
    目标确定模块,用于确定目标对象;所述目标对象位于所述轮椅所处空间中;
    环境信息采集模块,用于通过位于轮椅上的至少一个传感器,获取轮椅所处空间的环境信息;
    分析模块,用于基于所述环境信息,确定所述目标对象与所述轮椅的相对位置关系;以及
    机械控制模块,用于基于所述相对位置关系控制所述轮椅在所述空间中移动以使得轮椅靠近所述目标对象;其中所述移动至少包括以下中的至少一种:旋转一定角度、前进或后退。
  22. 根据权利要求21所述的系统,其特征在于,所述环境信息采集模块还用于:
    通过位于轮椅上至少一个回波探测式传感器,获取所述空间中至少一部分的轮廓数据;或者,
    通过位于轮椅上的图像采集装置获取所述空间中至少一部分的图像数据。
  23. 根据权利要求22所述的系统,其特征在于,所述回波探测试传感器包括以下中的至少一种:雷达或超声波传感器。
  24. 根据权利要求22所述系统,其特征在于,所述环境信息采集模块还用于:
    通过位于轮椅上至少一个回波探测式传感器,获取所述空间中至少一部分的轮廓数据;
    判断所述空间中至少一部分的轮廓数据中是否包含所述目标对象的轮廓数据;
    若不包括,则控制所述轮椅旋转一定角度后再次通过位于轮椅上至少一个回波探测式传感器,获取所述空间中至少一部分的轮廓数据直到获取的所述空间中至少一部分的轮廓数据中包含所述目标对象的轮廓数据。
  25. 根据权利要求24所述系统,其特征在于,所述分析模块还用于:
    确定所述目标对象的轮廓数据在所述空间中至少一部分的轮廓数据中的位置;
    基于所述位置以及所述回波探测式传感器在所述轮椅上的位置确定所述目标对象相对于所述轮椅的方位和/或距离。
  26. 根据权利要求22所述系统,其特征在于,所述环境信息采集模块还用于:
    通过位于轮椅上图像采集装置,获取所述空间中至少一部分的图像数据;
    判断所述空间中至少一部分的图像数据中是否包含所述目标对象的图像数据;
    若不包括,则控制所述轮椅旋转一定角度后再次通过位于轮椅上图像采集装置,获取所述空间中至少一部分的图像数据直到获取的所述空间中至少一部分的图像数据中包含所述目标对象的图像数据。
  27. 根据权利要求26所述系统,其特征在于,环境分析模块还用于:
    确定所述目标对象的图像数据在所述空间中至少一部分的图像数据中的位置;
    基于所述位置以及所述图像采集装置在所述轮椅上的位置确定所述目标对象相对于所述轮椅的方位和/或距离。
  28. 根据权利要求25或27所述系统,其特征在于,所述机械控制模块还用于:
    基于所述方位控制所述轮椅旋转一定角度,使得所述轮椅的正前方朝向所述目标对象;和/或,
    基于所述距离控制所述轮椅沿其正前方前进或后退一定距离,使得所述轮椅靠近所述目标对象。
  29. 根据权利要求21所述系统,其特征在于,所述轮椅包括处理器及伸缩旋转装置;所述伸缩旋转装置包括支撑轴、底座、伸缩动力装置及旋转动力装置;所述伸缩动力装置及旋转动力装置均与所述处理器具有信号连接;所述支撑轴以可相对于底座伸缩以及旋转的方式直接或间接安装于所述底座上;所述底座固定安装于轮椅座位底板上;支撑轴垂直于所述座位底板 且朝向轮椅下方;所述伸缩动力装置、所述旋转动力装置均与所述支撑轴具有传动连接;
    所述机械控制模块还用于:
    控制所述伸缩动力装置,使底座相对于支撑轴伸长,进而将所述轮椅顶起至离开地面;
    控制所述旋转动力装置,使底座相对于支撑轴旋转一定角度,进而带动所述轮椅旋转所述一定角度;
    控制所述伸缩动力装置,使底座相对于支撑轴缩短,进而将所述轮椅放回地面。
  30. 根据权利要求21所述系统,其特征在于,所述轮椅包括两个前轮及两个后轮;其中两个前轮均为万向轮,两个后轮各自通过一个电机驱动,所述电机均与处理器具有信号连接;
    所述机械控制模块还用于:
    控制两个后轮的电机相对彼此反向旋转一定角度,进而带动所述轮椅旋转所述角度。
  31. 一种计算机可读存储介质,其特征在于,所述存储介质存储计算机指令,当所述计算机指令被处理器执行时,实现如权1~10所述的方法。
  32. 一种轮椅,其特征在于,包括处理器及伸缩旋转装置;
    所述伸缩旋转装置包括支撑轴、底座、伸缩动力装置及旋转动力装置;
    所述伸缩动力装置及旋转动力装置均与所述处理器具有信号连接;
    所述支撑轴以可相对于底座伸缩以及旋转的方式直接或间接安装于所述底座上;
    所述底座固定安装于轮椅座位底板上;支撑轴垂直于所述座位底板且朝向轮椅下方;
    所述伸缩动力装置、所述旋转动力装置均与所述支撑轴具有传动连接。
  33. 根据权利要求32所述的轮椅,其特征在于,所述伸缩动力装置为气缸或油缸。
  34. 根据权利要求32所述的轮椅,其特征在于,所述旋转动力装置为电机。
PCT/CN2018/109345 2018-10-08 2018-10-08 一种轮椅控制方法及系统 WO2020073168A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880098389.4A CN112789019B (zh) 2018-10-08 2018-10-08 一种轮椅控制方法及系统
PCT/CN2018/109345 WO2020073168A1 (zh) 2018-10-08 2018-10-08 一种轮椅控制方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/109345 WO2020073168A1 (zh) 2018-10-08 2018-10-08 一种轮椅控制方法及系统

Publications (1)

Publication Number Publication Date
WO2020073168A1 true WO2020073168A1 (zh) 2020-04-16

Family

ID=70164819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/109345 WO2020073168A1 (zh) 2018-10-08 2018-10-08 一种轮椅控制方法及系统

Country Status (2)

Country Link
CN (1) CN112789019B (zh)
WO (1) WO2020073168A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113350067B (zh) * 2021-07-20 2022-04-12 邢康林 一种基于惯性传感器的智能坐垫及坐姿分类方法
CN115154080A (zh) * 2022-07-07 2022-10-11 广东职业技术学院 一种电动轮椅防碰撞系统及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200600295A (en) * 2004-06-25 2006-01-01 qing-yuan Cai A wheeled man-shaped robot
US20110010033A1 (en) * 2008-02-26 2011-01-13 Toyota Jidosha Kabushiki Kaisha Autonomous mobile robot, self position estimation method, environmental map generation method, environmental map generation apparatus, and data structure for environmental map
JP5241306B2 (ja) * 2008-04-24 2013-07-17 パナソニック株式会社 自律移動装置
CN104515992A (zh) * 2014-12-18 2015-04-15 深圳市宇恒互动科技开发有限公司 一种利用超声波进行空间扫描定位的方法及装置
CN107334585A (zh) * 2017-08-31 2017-11-10 苏州诺乐智能科技有限公司 一种具有强机动性能的电动轮椅
CN108143550A (zh) * 2018-02-23 2018-06-12 苏州辰晟优机电科技有限公司 一种多功能智能轮椅
CN108205319A (zh) * 2016-12-19 2018-06-26 三星电子株式会社 可移动对象及其控制方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080300777A1 (en) * 2002-07-02 2008-12-04 Linda Fehr Computer-controlled power wheelchair navigation system
CA2985450A1 (en) * 2016-11-14 2018-05-14 Redliner Inc. Automatically recommending changes to wheelchair setting based on usage data

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200600295A (en) * 2004-06-25 2006-01-01 qing-yuan Cai A wheeled man-shaped robot
US20110010033A1 (en) * 2008-02-26 2011-01-13 Toyota Jidosha Kabushiki Kaisha Autonomous mobile robot, self position estimation method, environmental map generation method, environmental map generation apparatus, and data structure for environmental map
JP5241306B2 (ja) * 2008-04-24 2013-07-17 パナソニック株式会社 自律移動装置
CN104515992A (zh) * 2014-12-18 2015-04-15 深圳市宇恒互动科技开发有限公司 一种利用超声波进行空间扫描定位的方法及装置
CN108205319A (zh) * 2016-12-19 2018-06-26 三星电子株式会社 可移动对象及其控制方法
CN107334585A (zh) * 2017-08-31 2017-11-10 苏州诺乐智能科技有限公司 一种具有强机动性能的电动轮椅
CN108143550A (zh) * 2018-02-23 2018-06-12 苏州辰晟优机电科技有限公司 一种多功能智能轮椅

Also Published As

Publication number Publication date
CN112789019B (zh) 2023-07-14
CN112789019A (zh) 2021-05-11

Similar Documents

Publication Publication Date Title
CN108897328B (zh) 轮椅机器人及其室内自主导航方法
US9987744B2 (en) Generating a grasp pose for grasping of an object by a grasping end effector of a robot
JP6673371B2 (ja) 可動物体を使用して障害物を検出する方法及びそのシステム
US20190121361A1 (en) Method for constructing a map while performing work
WO2019232806A1 (zh) 导航方法、导航系统、移动控制系统及移动机器人
JP5946147B2 (ja) 可動式ヒューマンインターフェースロボット
CN106537186B (zh) 用于使用机器视觉系统执行同时定位和映射的系统和方法
JP5905031B2 (ja) モバイルテレプレゼンスロボットとのインタフェーシング
US10060730B2 (en) System and method for measuring by laser sweeps
WO2021146862A1 (zh) 移动设备的室内定位方法、移动设备及控制系统
WO2021143543A1 (zh) 机器人及其控制方法
US11378693B2 (en) Floor surveying system
WO2020073168A1 (zh) 一种轮椅控制方法及系统
WO2021078003A1 (zh) 无人载具的避障方法、避障装置及无人载具
CN110036398B (zh) 一种粪便清理方法、装置和系统
EP3734391A1 (en) Simultaneous localization and mapping
CN112041634A (zh) 移动机器人的定位方法、构建地图的方法及移动机器人
CN112087573B (zh) 环境的绘制
CN115328153A (zh) 传感器数据处理方法、系统及可读存储介质
CN113658221A (zh) 一种基于单目相机的agv行人跟随方法
WO2020151429A1 (zh) 一种机器狗系统及其实现方法
CN115327571A (zh) 一种基于平面激光雷达的三维环境障碍物检测系统及方法
Ryde et al. Mobile robot 3D perception and mapping without odometry using multi-resolution occupancy lists
Ryde et al. Cooperative mutual 3D laser mapping and localization
US20240176025A1 (en) Generating a parallax free two and a half (2.5) dimensional point cloud using a high resolution image

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18936785

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18936785

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 30-11-2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18936785

Country of ref document: EP

Kind code of ref document: A1