WO2020071958A1 - Насосная установка - Google Patents

Насосная установка

Info

Publication number
WO2020071958A1
WO2020071958A1 PCT/RU2019/000700 RU2019000700W WO2020071958A1 WO 2020071958 A1 WO2020071958 A1 WO 2020071958A1 RU 2019000700 W RU2019000700 W RU 2019000700W WO 2020071958 A1 WO2020071958 A1 WO 2020071958A1
Authority
WO
WIPO (PCT)
Prior art keywords
bellows
pump
hydraulic
plug
working medium
Prior art date
Application number
PCT/RU2019/000700
Other languages
English (en)
French (fr)
Inventor
Егор Владимирович КУЗИН
Егор Александрович ТЮКАВКИН
Дмитрий Алексеевич БУБЛИК
Original Assignee
Общество с ограниченной ответственностью "ТОРЕГ"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "ТОРЕГ" filed Critical Общество с ограниченной ответственностью "ТОРЕГ"
Priority to EA202190932A priority Critical patent/EA202190932A1/ru
Priority to AU2019352546A priority patent/AU2019352546B2/en
Priority to EP19868378.1A priority patent/EP3862565A4/en
Priority to BR112021006217A priority patent/BR112021006217A2/pt
Priority to CN201980065733.4A priority patent/CN112823244B/zh
Priority to US16/760,453 priority patent/US11384749B2/en
Priority to CA3114343A priority patent/CA3114343A1/en
Publication of WO2020071958A1 publication Critical patent/WO2020071958A1/ru
Priority to ZA2021/02706A priority patent/ZA202102706B/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/08Machines, pumps, or pumping installations having flexible working members having tubular flexible members
    • F04B43/10Pumps having fluid drive
    • F04B43/113Pumps having fluid drive the actuating fluid being controlled by at least one valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/06Pumps having fluid drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/0009Special features
    • F04B43/0054Special features particularities of the flexible members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/0009Special features
    • F04B43/0054Special features particularities of the flexible members
    • F04B43/0072Special features particularities of the flexible members of tubular flexible members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/0009Special features
    • F04B43/0081Special features systems, control, safety measures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/08Machines, pumps, or pumping installations having flexible working members having tubular flexible members
    • F04B43/10Pumps having fluid drive
    • F04B43/113Pumps having fluid drive the actuating fluid being controlled by at least one valve
    • F04B43/1136Pumps having fluid drive the actuating fluid being controlled by at least one valve with two or more pumping chambers in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/002Hydraulic systems to change the pump delivery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/22Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by means of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2201/00Pump parameters
    • F04B2201/02Piston parameters
    • F04B2201/0201Position of the piston

Definitions

  • the invention relates to pumping units designed for pumping environments with a high content of solids, aggressive or toxic liquids and lifting them, including from great depths.
  • a pump consists of at least two pump units. Each pump unit includes a hydraulic drive cylinder (controlled by the working medium, and a separate hydraulic cylinder connected with it for dosing injection and pumping out the working medium into the cylinder controlled by the working medium. Each cylinder controlled by the working medium contains a bellows closed in its lower end part and open in its upper end part for connection with the working medium, there is a cavity for the pumped medium outside the bellows [Application WO2015128283, IPC F04B43 / 113; F04B9 / 105.
  • the disadvantages of this pump include the fact that the operation of the hydraulic cylinder in the discharge line of the pump is associated with friction. As a result, the pump operates with significant energy consumption. In addition to this, leaks through the seal on the piston, which divides the working medium in the membrane and on the discharge line, are possible. In addition, the installation of any additional equipment increases its overall dimensions.
  • the cylinder controlled by the working medium is made with a hole in the lower part, which is the inlet and outlet for the pumped medium. Such an arrangement of the outlet may lead to both contamination of the internal cavity of the cylinder controlled by the working medium and the formation of air bubbles in the upper part of the cylinder.
  • - pumping of the working medium from the internal cavity of the bellows in the discharge line is carried out by a pump for pumping.
  • the housing has several inlet and outlet openings, characterized in that the suction opening in the pump housing is located in its lower part, and the discharge opening in the upper part of the housing.
  • the pump is a double-chamber single-acting high-pressure hose pump with hydraulic drive, designed for pumping contaminated liquids.
  • the pump comprises a rigid housing and a flexible tubular structure located in the interior of the housing.
  • the pump consists of at least two cylinders controlled by the medium.
  • the cylinder controlled by the working medium contains a deformable organ in the form of an elastic pipe closed in its upper end part and open in its lower end part for connection with the pumped medium. Outside the elastic pipe is a cavity for the working environment. When the working medium is injected into the cylinder cavity controlled by the working medium, the working volume changes in the inner cavity of the elastic pipe.
  • variable actions for pumping and pumping the working medium into the cylinder cavity controlled by the working medium characterize the operation of the pump [Application W0200401 1806, IPC F04B43 / 10; F04B43 / 113.
  • the disadvantages of this pump are: an elastic pipe is used as a working body for changing the working volume.
  • the elastic pipe works in tension, which leads to faster wear of the working body; cylinders controlled by the working medium are located at an angle to the horizon.
  • Such an arrangement can cause the formation of blockages (bags with mechanical impurities);
  • a cylinder controlled by a working medium has an inlet and an outlet for the pumped medium in its lower part (such an arrangement of the opening can lead to the formation of blockages (bags with mechanical impurities);
  • the use of a tubular diaphragm requires a complex system for monitoring the working position of the diaphragm in the extended and compressed state. it is important that the deformation of the elastic pipe occurred according to a well-known law.
  • the problem solved by the claimed technical solution is the creation of a high-performance pumping unit.
  • the technical result consists in reducing the weight and dimensions of the pumping unit, increasing energy efficiency and reliability.
  • Indicated result achieved by the use of a longitudinally deformable bellows which in turn allows the use of a lighter and more compact cylindrical pump casing with a ratio of the cylinder length to its diameter of more than 2 to 1, and the large working volume of the bellows per stroke reduces the number of cycles at the same capacity and accordingly increase the life of the membrane.
  • a direct hydraulic drive in the form of hydraulic lines alternately connected to the internal cavity of the bellows the system of hydraulic valves and hydraulic pumps does not have friction units inherent in other types of membrane pumps, namely, a piston or plunger group that create friction losses and require maintenance, and hydraulic pumps the same capacities are several times smaller in size compared with piston or plunger drives having overall and heavy crank gear anism.
  • a bellows and a direct hydraulic drive with at least two independent hydraulic lines, in at least one of which the pressure of the working medium is less than the pressure of the pumped medium at the inlet to the pump installation, and at least one of which is the pressure of the working medium more pressure of the pumped medium at the inlet to the pump unit.
  • the pumping unit comprising a housing made with at least two parts with internal cylindrical cavities, with holes for supplying and discharging the pumped medium, at least two longitudinally deformable bellows, each of which is fixed inside each part of the body with one end surface to one inner end surface of each part of the body, while the opposite end side of each bellows is made and with a plug, and on the end surface of each part of the body connected to the bellows, a hole is made for supplying a working medium to the internal cavity bounded by the bellows, its plug and the end surface of the part of the body, a hydraulic control system for the pump installation, characterized in that the hydraulic control system the pump installation is made in the form of a tank with a working medium, a pressure pump, at least two independent hydraulic lines and a valve system made with the possibility of alternately connecting the internal cavities of the bellows with the working fluid to the first or second line, depending on the positions of the bellows, while the hydraulic lines
  • the means for controlling the position of each bellows is installed in the internal cavity of each bellows and is made in the form of a fixed tube and rod, while one end of the rod is attached to the bellows plug, and the other end of the rod is freely placed in the tube located on the opposite from the end surface of the bellows with the plug side, and on the tube at a distance of the stroke of the bellows mounted rod position sensors.
  • a pump is additionally installed on the second hydraulic line for pumping the working medium into the tank.
  • a means for controlling the position of each bellows is installed in the internal cavity of each bellows and is made in the form of a position sensor in conjunction with the stem and tube, with one end of the rod attached to the plug of the bellows, and the other end of the rod freely placed in the tube, located on the opposite side from the end surface of the bellows with the plug, while the rod is made marks control the position of the rod.
  • the means for controlling the position of each bellows is installed in the inner cavity of each bellows and is made in the form of a sensor and a coil with a cable made for rotation, while the coil is placed on the side of the opposite end surface of the bellows with a plug, and the cable has one end fixed to the plug.
  • the means for controlling the position of each bellows is made in the form of a speed sensor mounted on a discharge pump, configured to control the filling of the internal cavity of the bellows by determining the volume of the working medium necessary to fill the internal cavity of the bellows.
  • the holes for supplying and discharging the pumped medium are made in the lower and / or upper part of the housing.
  • the bellows is made composite of individual deformable membranes connected in series with each other by end surfaces.
  • FIG. 4 embodiment of a pumping unit with an additional group of bodies with a cylindrical cavity
  • Fig. 8 shows an embodiment of monitoring the position of a bellows.
  • Fig.9 is an implementation option monitoring the position of the bellows "
  • the pump installation (Fig. 1) consists of a casing made of at least two parts (1) and (11), each part (1 and 11) of the casing of the pump installation is made with a cylindrical internal cavity. Inside each of the aforementioned parts (1 and 11) of the pump housing, a bellows (2) and (12) is installed. The bellows (2) and the bellows (12) are mounted to the upper or lower end inner surface of each part of the housing (1) and (11) of the pump unit.
  • Each bellows (2) and (12) is closed in the free part with a plug (15) and (27), respectively.
  • a bellows (2) and (12) with a plug installed inside part (1) and (11) of the pump unit housing separates the working medium (26) located in the internal cavity of the bellows (2) and (12) and the pumped medium (25) located behind the bellows (2) and (12) in the cavity of part (1) and (11) of the pump housing.
  • Each part of the housing (1 and 11) of the pump unit is made with inlet and outlet openings to which the suction line (18) and the discharge line (17) are connected, respectively.
  • a discharge valve (4) and (14) is installed on the discharge line (17) of the pumped medium (25).
  • a suction valve (3) and (13) is installed on the suction line (18) of the pumped medium.
  • the pump installation includes a hydraulic system (16) for controlling the pump installation, made in the form of a tank with a working medium (10), a discharge pump (5), at least two independent hydraulic lines (20 and 21) and a valve system,
  • the hydraulic control system of the pumping unit (16) during operation is two independent hydraulic lines (20 and 21).
  • the first (20) hydraulic line is made with a pressure greater than the pressure of the pumped medium (25) on the suction line (18).
  • the second (21) hydraulic line is made with a pressure lower than the pressure of the pumped medium (25) on the suction line (18).
  • the first hydraulic line (20) of the control line of the pumping unit (16) connects each bellows (2 and 12) to the discharge pump (5) to supply the working medium (26) entering the pumping unit. Moreover, each bellows (2 and 12) is connected to the pump (5) by means of a hydraulic pressure control valve (7) installed on the first hydraulic line (20). The hydraulic pressure control valve (7) is configured to distribute the supply of the working medium (26) to the said bellows (2 and 12).
  • the pump (5) for supplying the working medium (26) is also connected by the first hydraulic line (20) of the control line (16) with the tank (10) with the working medium.
  • a pressure pump (5) for supplying a working medium (26) to each bellows (2 and 12) is also connected by the lines of the first hydraulic line (20) to a hydraulic distributor (8) to unlock and lock the controlled valve (9 and 19).
  • the controlled valve (9) and (19) is installed at the junction of the first and second hydraulic lines (20 and 21) of the control line (16).
  • the second hydraulic line (21) of the control line (16) connects each bellows (2 and 12) to the pump (6) for pumping the working medium (26) entering the pump unit.
  • a pump (6) for pumping a working medium (26) is connected by a second hydraulic line (21) with a tank (10) with a working medium.
  • the operation of the pumping unit can be divided into two stages according to the position of the hydraulic pressure control valve (7) (c and d).
  • the pump unit With the initial position (c) of the hydraulic pressure control valve (7), the pump unit operates as follows:
  • the pumped medium (25) enters the suction line (18).
  • the hydraulic pressure control valve (7) switches to position (c), at the same time the hydraulic valve (8) switches to position (b), thus opening the controlled valve (19) and closing the controlled valve (9).
  • the discharge pump (5) and the pump for pumping (6) circulate the working medium (26) along the control line (16) of the pump unit.
  • the pumped-out working medium (26) from the internal cavity of the second bellows (12) closed with a plug (27) in its free part creates a vacuum discharge at the pumped medium inside the second part of the housing (11), as a result of which the suction valve (13) opens and the discharge valve closes valve (14) on the fluid line.
  • the second part of the housing (11) is filled with the pumped medium (25).
  • the pump unit With the initial position (d) of the hydraulic pressure control valve (7), the pump unit operates as follows:
  • the hydraulic pressure control valve (7) switches to position (d), while the hydraulic valve (8) switches to position (a), thus opening the controlled valve (9) and closing the controlled valve (19).
  • the discharge pump (5) and the pump for pumping (6) circulate the working medium along the control line of the pump unit.
  • the pump starts to pump out (6) the working medium from the internal cavity of the bellows (2) closed in a free its parts with a plug (15) into the tank (10) and the supply of a working medium by the injection pump (5) into the internal cavity of the bellows (12) buried in its free part with a plug (27) from the tank (10).
  • the pumped-out working medium from the internal cavity of the bellows (2) closed in its free part by a plug (15) creates a vacuum in the inside of the housing (1), which opens the suction valve (3) and closes the discharge valve (4). After this, filling the housing (1) with the pumped medium (25) follows.
  • the claimed technical solution can be implemented in the following versions, in which the control of the position of the bellows (2) and (12). carried out by position sensors (22.31) and the stem (23) or by end sensors (29 and 30).
  • the position of the bellows (2 and 12) is controlled by the position sensors (22.31) and the stem (23) ( Figure 2)
  • the position of the bellows is controlled by the stroke of the rod (23) in the tube (24) on which two position sensors (22.31) are installed at a distance of the bellows.
  • the stem (23) is installed in the inner cavity of each bellows (2) and (12) closed in its free part with a plug (15 and 27, respectively). Holes are made on the stem (23).
  • One end of the rod (23) is attached to the plug (15 and 27), the other end of the rod is freely placed in the tube (24).
  • a tube (24) In each part of the casing there is a tube (24), which in turn is fixed in the upper part of the casing (1 and 1 1, respectively).
  • rod position sensors (22.31) are installed on each tube (24), perpendicular to the axis.
  • the upper position sensors (22) are located in the upper part of each tube (24)
  • the lower position sensors (31) are located in the lower part of each tube (24).
  • the distance between the upper (22) and lower (31) position sensors must not exceed the stroke of the bellows (2) and (12) closed with a plug (15 and 27, respectively).
  • the upper part of the rod (23) is opposite the lower position sensor (31).
  • the lower sensor (31) fixes the “bellows extended” position, the hydraulic pressure control valve (7) and the hydraulic valve (8) change position.
  • Stem (23) starts to move up.
  • the upper sensor (22) fixes the “bellows compressed” position, the hydraulic pressure control valve (7) and the hydraulic valve (8) change position.
  • the control of the position of the bellows is implemented using one position sensor in combination with a stem (23) on which two holes for position control are made.
  • This method is implemented by assigning alternating values to the signals from the sensor “bellows extended” and “bellows compressed” when reaching the hole on the rod (23) of the sensor’s working surface.
  • the position of the bellows is monitored (Fig. 3) by end sensors (29, 30)
  • the position of the bellows (2 and 12) closed in the free part by a plug (15 and 27, respectively) is carried out at the moment of contact end caps.
  • the claimed technical solution is located in the lower part of each part of the housing (1) and (11) the lower end sensor (30) is located and the upper end is located in the upper part of each bellows (2) and (12) sensor (29). If the bellows (2) or (12) with the plug extends, then at the moment of its maximum stretch, the plug touches the lower end sensor (30), the hydraulic control valve for discharge control (7) and the hydraulic distributor (8) will change position.
  • the bellows (2) or (12) with a plug will start to move up.
  • the bellows (2) or (12) are closed with a plug, the bellows (2) or (12) with the plug (15 and 27, respectively) will reach their extreme compressed state, and the plug (15 and 27) will touch the upper (29 ) of the end sensor, the upper (29) end sensor fixes the “bellows compressed” position, the hydraulic pressure control valve (7) and the hydraulic valve (8) change position.
  • one of the implementation options (Fig. 8) for controlling the position of the bellows is to use a cable wound around the bay (48, 49).
  • the bay (48, 49) is installed in the upper part of the housing of the pump unit (1, 1 1), and the cable is fixed on the plug (15, 27).
  • the reciprocating movement of the bellows (2, 12) leads to unwinding and, accordingly, winding the cable onto the bay (47, 48).
  • the rotational movement of the bay (48, 49) resulting from the movement of the bellows is detected by the sensor (46, 47).
  • the sensor (46, 47) can be of contact and non-contact action.
  • the pump installation can be performed with at least two parts of the housing, and with a large number of parts.
  • An increase in the number of body parts leads to the need to install a number of additional elements: a hydraulic discharge distributor (7) a hydraulic distributor (8) a part or housing parts (1, 11) a discharge valve (4, 14) a suction valve (3, 13) a controlled valve (9 , 19)
  • the pump installation (Fig. 4) consists of a housing divided into four parts, each part is made with a cylindrical internal cavity.
  • a bellows is installed inside each of the mentioned parts of the pump housing.
  • Each of the bellows is installed to the upper end inner surface of each part of the housing of the pump unit.
  • Each bellows is closed at the bottom with a plug.
  • a bellows with a plug installed inside the part of the housing of the pump installation divides the working medium (26) located in the inner cavity of the bellows and the pumped medium (25) located behind the bellows in the cavity of the part of the housing of the pump installation.
  • Each part of the housing of the pump installation is made with inlet and outlet openings to which the suction line (18) and the discharge line (19) are connected, respectively.
  • Pressure valves are installed on the discharge line (17) of the pumped medium (25).
  • Suction valves are installed on the suction line (18) of the pumped medium.
  • the pump control line (16) during operation is two independent hydraulic lines (20 and 21).
  • the first (20) hydraulic line is made with a pressure greater than the pressure of the pumped medium (25) on the suction line (18).
  • the second (21) hydraulic line is made with a pressure lower than the pressure of the pumped medium (25) on the suction line (18).
  • the first hydraulic line (20) of the control line of the pump unit (16) connects each bellows to the discharge pump (5) to supply the working medium (26) entering the pump unit. Moreover, each pair of bellows is connected to the pump (5) by means of hydraulic pressure control valves installed on the first hydraulic line (20). Each of the hydraulic pressure control valves is configured to distribute the supply of the working medium (26) to said bellows.
  • the pump (5) for supplying the working medium (26) is also connected by the first hydraulic line (20) of the control line (16) with the tank (10) with the working medium.
  • a pressure pump (5) for supplying a working medium (26) to each pair of bellows is also connected by lines of the first hydraulic line (20) with hydraulic distributors for unlocking and locking the controlled valves.
  • the controlled valve is installed on the hydraulic line (21) of the control line (16).
  • a second hydraulic line (21) of the control line (16) connects each bellows to the pump (6) for pumping out the working medium (26) entering the pump unit.
  • a pump (6) for pumping a working medium (26) is connected by a second hydraulic line (21) with a tank (10) with a working medium.
  • the control of the pumping unit is to control the flow of the working medium. This control is mainly carried out through valves of various designs. Valves can have electromagnetic, hydraulic and pneumatic control.
  • the control of the working fluid in the pumping unit of FIG. 5 goes through the hydraulic pressure control valve (7). Turning on the hydraulic control valve of the discharge control (7) to the “c” position leads to the injection of the working fluid into the internal cavity of the bellows (2) closed in its free part by a plug (15) and the pumping out of the working fluid from the internal cavity of the bellows (12) closed in its free part plug (27).
  • the hydraulic pressure control valve (7) switches to the “d” position, which leads to pumping of the working fluid into the internal cavity of the bellows (12) closed in its free part by a plug (27) and pumping of the working fluid from the internal cavity of the bellows (2) ) closed in its free part with a plug (15).
  • control of the working fluid using a system of valves (32, 33, 34, 35) and hydraulic valves (36, 37, 38, 39) through the control line (41).
  • the working fluid is controlled by a control pump (40) through a control line (41), a valve system (32, 33, 34, 35) and hydraulic distributors (36, 37, 38, 39).
  • the operation of the pumping unit should be considered according to the position of the hydraulic distributors (36, 37, 38, 39).
  • the position of the hydraulic distributors (36, 37,38,39) in the positions ("a”, “b", “b”, “a"), respectively, leads to the supply of a pump medium (5) to the internal cavity of the bellows (2) closed in its free part with a plug (15).
  • Overpressure is generated in the housing (1), leading to the closing of the suction valve (3) and the opening of the discharge valve (4).
  • the pumped medium 25) rushes into the discharge line (17).
  • the working medium is pumped out by a pump for pumping (6) from the inner cavity of the bellows (12), which is closed in its free part with a plug (27).
  • hydraulic distributors (36, 37, 38, 39) switches to position ("b", "a”, "a”, "b”). The process is mirrored.
  • the control of the working medium can be represented by a system of hydraulic locks with electromagnetic control (42, 43, 44, 45) of FIG. 7.
  • Control of a pumping unit equipped with a hydraulic lock system with electromagnetic control (42, 43, 44, 45) can be divided according to the position of hydraulic locks (“open” / “closed”).
  • a bellows is used as a working body.
  • the deformation of the bellows occurs along the axis of the bellows, which makes it easy to control the working position of the bellows.
  • the bellows also has a large variable volume per stroke with minimal dimensions.
  • the housing is made with inlet and outlet openings.
  • the inlets in the housing of the pump installation in an embodiment of the claimed technical solution are located in the lower or upper part of the housing.
  • the outlet openings in the embodiment of the claimed technical solution are located in the upper or lower part of the housing
  • the compression-expansion of the bellows is carried out by alternately connecting the working cavity of the pump installation to the mains with working fluid, in one of which the pressure is higher than the pressure of the pumped medium at the inlet to the pump installation, in the second - lower.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

Изобретение относится к насосным установкам, предназначенным для перекачивания сред с высоким содержанием твердых включений. Установка включает корпус с двумя частями с внутренними цилиндрическими полостями, имеющих отверстия для подвода и отвода перекачиваемой среды, два продольно деформируемых сильфона, каждый из которых закреплен внутри каждой части корпуса. Противоположная торцевая сторона каждого сильфона выполнена с заглушкой. На торцевой поверхности корпуса, соединенной с сильфоном, выполнено отверстие для подвода рабочей среды во внутреннюю полость. Гидравлическая система управления насосной установки выполнена в виде бака с рабочей средой, нагнетательного насоса, двух независимых гидравлических магистралей и системы клапанов, выполненных с возможностью попеременного подключения внутренних полостей сильфонов с рабочей жидкостью к магистралям. Внутренняя полость каждого сильфона соединена магистралями с возможностью попеременного переключения с нагнетательным насосом для подачи рабочей среды посредством первой гидравлической магистрали и с баком рабочей среды посредством второй гидравлической магистрали. Установка позволяет повысить производительность насоса, уменьшить массу и габариты насосной установки, повысить энергоэффективность.

Description

Насосная установка
Область техники
Изобретение относится к насосным установкам, предназначенным для перекачивания сред с высоким содержанием твердых включений, агрессивных или ядовитых жидкостей и подъема их, в том числе, с больших глубин.
Уровень техники
Известен диафрагменный насос с гидравлическим приводом для перекачивания воды и загрязненных жидкостей. Насос состоит как минимум из двух насосных единиц. Каждая насосная единица включает гидравлический приводной цилиндр (, управляемый рабочей средой, и связанный с ним отдельный гидравлический цилиндр для дозированного нагнетания и откачивания рабочей среды в цилиндр, управляемый рабочей средой. Каждый цилиндр, управляемый рабочей средой, содержит сильфон, закрытый в его нижней торцевой части и открытый в его верхней торцевой части для соединения с рабочей средой. Снаружи сильфона расположена полость для перекачиваемой среды [Заявка WO2015128283, МПК F04B43/113; F04B9/105. Hydraulically driven bellows pump / Bilousov Anatoliy [UA]; Rothenbuhler Jorg H [CH]; Garniman S A [UY]; Saxontechnologies S R L [CH].- Заявка WO2015EP53714; Заявл. 23.02.2015. Опубл. 03.09.2015.] [1].
К недостаткам данного насоса следует отнести то, что работа гидравлического цилиндра в линии нагнетания насоса сопряжена с трением. В результате работа насоса происходит со значительными энергозатратами. В добавок к этому возможны протечки через уплотнение на поршне который разделяет рабочую среду в мембране и на линии нагнетания. Кроме того, установка любого дополнительного оборудования увеличивает его массогабаритные характеристики. Цилиндр, управляемый рабочей средой, выполнен с отверстием в нижней части, которое является входным и выходным отверстием для перекачиваемой среды. Такое расположение выходного отверстия может привести как к загрязнению внутренней полости цилиндра, управляемого рабочей средой, так и образованию воздушных пузырей в верхней части цилиндра.
Заявленное техническое решение отличается от приведенного аналога следующими конструктивными особенностями:
- нагнетание рабочей среды во внутреннюю полость сильфона в линии нагнетания осуществляется напрямую от нагнетательного насоса. Узлы трения отсутствуют.
- откачивание рабочей среды из внутренней полости сильфона в линии нагнетания осуществляется насосом для откачивания. - корпус имеет несколько входных и выходных отверстий, отличающийся тем, что всасывающее отверстие в корпусе насосной установки расположено в нижней его части, а отверстие нагнетания в верхней части корпуса.
Известен насос GEHO® APEXS фирмы Weir Minerals Netherlands.
Насос представляет собой двухкамерный шланговый насос высокого давления одностороннего действия с гидравлическим приводом, предназначен для перекачивания загрязненных жидкостей. Насос содержит жесткий корпус и гибкую трубчатую структуру расположенную во внутреннем пространстве корпуса. Насос состоит минимум из двух цилиндров, управляемых рабочей средой. Цилиндр, управляемый рабочей средой содержит деформируемый орган в виде эластичной трубы, закрытой в ее верхней торцевой части и открытой в ее нижней торцевой части для соединения с перекачиваемой средой. Снаружи эластичной трубы расположена полость для рабочей среды. При нагнетании рабочей среды в полость цилиндра, управляемого рабочей средой, происходит изменение рабочего объема во внутренней полости эластичной трубы. Таким образом, переменные действия по откачиванию и нагнетанию рабочей среды в полость цилиндра, управляемого рабочей средой характеризуют работу насоса [Заявка W0200401 1806, МПК F04B43/10; F04B43/113. Fluid operated pump / Combined Resource Engineering [AU]; Morris Gordon Leith; West Robert Leslie. - Заявка W02003AU00953; Заявл. 29.07.2003; Опубл. 05.02.2004.
Недостатками данного насоса являются: в качестве рабочего органа по изменению рабочего объема используется эластичная труба. Эластичная труба работает на растяжение, что приводит к более быстрому износу рабочего органа; цилиндры управляемые рабочей средой расположены под углом к горизонту. Такое расположение может стать причиной образования засоров (мешков с механическими примесями); цилиндр управляемый рабочей средой имеет входное и выходное отверстие для перекачиваемой среды в нижней его части (такое расположение отверстия может привести к образования засоров (мешков с механическими примесями); применение трубчатой диафрагмы требует наличия сложной системы контроля рабочего положения диафрагмы в растянутом и сжатом состоянии. При этом важно, чтобы деформация эластичной трубы происходила по известному закону.
Сущность изобретения
Задачей, решаемой заявленным техническим решением, является создание высокопроизводительной насосной установки.
Технический результат заключается в уменьшении массы и габаритов насосной установки, повышении энергоэффективности и надежности. Указанный результат достигается применением продольно деформируемого сильфона, что в свою очередь, позволяет использовать более легкий и компактный цилиндрический корпус насоса с отношением длины цилиндра к его диаметру более чем 2 к 1 , а большой рабочий объем сильфона на рабочий ход позволяет снизить количество циклов при той же производительности и соответственно увеличить ресурс работы мембраны.
Прямой гидравлический привод в виде гидравлических магистралей попеременно подключаемых к внутренней полости сильфона, системы гидравлических клапанов и гидравлических насосов не имеет узлов трения присущих мембранным насосам иных конструкций, а именно - поршневой или плунжерной группы, создающих потери трения и требующих обслуживания, а гидравлические насосы при той же производительности имеют в несколько раз меньшие габариты по сравнению с поршневыми или плунжерными приводами имеющими габаритные и тяжелые кривошипно-шатунные механизмы. а также повышении энергоэффективности за счет сочетания сильфона и прямого гидравлического привода не менее чем с двумя независимыми гидравлическими магистралями, как минимум в одной из которых давление рабочей среды меньше давления перекачиваемой среды на входе в насосную установку, и как минимум в одной из которых давление рабочей среды больше давления перекачиваемой среды на входе в насосную установку.
Технический результат заявленного изобретения достигается за счет того, что насосная установка, включающая корпус, выполненный с по меньшей мере двумя частями с внутренними цилиндрическими полостями, с выполненными отверстиями для подвода и отвода перекачиваемой среды, по меньшей мере два продольно деформируемых сильфона, каждый из которых закреплен внутри каждой части корпуса одной торцевой поверхностью к одной внутренней торцевой поверхности каждой части корпуса, при этом противоположная торцевая сторона каждого сильфона выполнена с заглушкой, а на торцевой поверхности каждой части корпуса, соединенной с сильфоном, выполнено отверстие для подвода рабочей среды во внутреннюю полость, ограниченную сильфоном, его заглушкой и торцевой поверхностью части корпуса, гидравлическую систему управления насосной установкой, отличающаяся тем, что гидравлическая система управления насосной установкой выполнена в виде бака с рабочей средой, нагнетательного насоса, по меньшей мере двух независимых гидравлических магистралей и системы клапанов, выполненных с возможностью попеременного подключения внутренних полостей сильфонов с рабочей жидкостью к первой или второй магистрали в зависимости от положений сильфонов, при этом гидравлические магистрали выполнены таким образом, что в одной магистрали давление рабочей среды меньше давления перекачиваемой среды на входе в насосную установку, а во второй магистрали давление рабочей среды больше давления перекачиваемой среды на входе в насосную установку, при чем внутренняя полость каждого сильфона соединена магистралями с возможностью попеременного переключения с нагнетательным насосом для подачи рабочей среды посредством первой гидравлической магистрали, и с баком с рабочей средой посредством второй гидравлической магистрали, и насосная установка дополнительно содержит средство контроля положения каждого сильфона, выполненное с возможностью управления попеременным подключением внутренней полости сильфона с рабочей жидкостью к первой или второй магистрали в зависимости от положений сильфонов.
В частном случае реализации заявленного технического решения средство контроля положения каждого сильфона установлено во внутренней полости каждого сильфона и выполнено в виде, закреплённой трубки и штока, при этом один конец штока прикреплен к заглушке сильфона, а другой конец штока свободно размещен в трубке, расположенной на противоположной от торцевой поверхности сильфона с заглушкой стороне, и на трубке на расстоянии хода сильфона установлены датчики положения штока.
В частном случае реализации заявленного технического решения на второй гидравлической магистрали дополнительно установлен насос для откачки рабочей среды в бак.
В частном случае реализации заявленного технического решения средство контроля положения каждого сильфона установлено во внутренней полости каждого сильфона и выполнено в виде датчика положения в совокупности со штоком и трубкой, при этом один конец штока прикреплен к заглушке сильфона, а другой конец штока свободно размещен в трубке, расположенной на противоположной от торцевой поверхности сильфона с заглушкой стороне, при этом на штоке выполнены метки контроля положений штока.
В частном случае реализации заявленного технического решения средство контроля положения каждого сильфона установлено во внутренней полости каждого сильфона и выполнено в виде датчика и бухты с тросиком, выполненной с возможностью вращения, при этом бухта размещена на стороне противоположной торцевой поверхности сильфона с заглушкой, а тросик одним концом закреплен на заглушке.
В частном случае реализации заявленного технического решения средство контроля положения каждого сильфона выполнено в виде датчика частоты вращения установленного на нагнетательном насосе, выполненного с возможностью контроля заполнение внутренней полости сильфона посредством определения объема рабочей среды необходимой для заполнения внутренней полости сильфона. В частном случае реализации заявленного технического решения отверстия для подвода и отвода перекачиваемой среды выполнены в нижней и/или в верхней части корпуса.
В частном случае реализации заявленного технического решения сильфон выполнен составным из отдельных деформируемых мембран, соединенных последовательно между собой торцевыми поверхностями.
Краткое описание чертежей
Детали, признаки, а также преимущества настоящего изобретения следуют из нижеследующего описания вариантов реализации заявленного технического решения с использованием чертежей, на которых показано:
Фиг.1 - насосная установка
Фиг.2 - контроль положения по датчикам и штоку
Фиг.З - концевой датчик
Фиг.4 - вариант исполнения насосной установки с дополнительной группой корпусов с цилиндрической полостью
Фиг.5 - вариант управления рабочей жидкостью в насосной установке
Фиг.6 - вариант управления рабочей жидкостью в насосной установке
Фиг.7 - вариант управления рабочей жидкостью в насосной установке посредством системы гидравлических замков с электромагнитным управлением
Фиг.8 - вариант реализации контроля положения сильфона
Фиг.9 - вариант реализации контроля положения сильфона»
На фигурах цифрами обозначены следующие позиции:
1 первая часть корпуса ; 2 - сильфон; 3 всасывающий клапан; 4 - нагнетательный клапан ; 5 нагнетательный насос; 6 насос для откачивания; 7 гидравлический распределитель управления нагнетанием; 8 - гидравлический распределитель; 9 управляемый клапан; 10 - бак с рабочей средой; 11 вторая часть корпуса; 12 - второй сильфон; 13 всасывающий клапан; 14 нагнетательный клапан; 15 заглушка первого сильфона; 16 гидравлическая система управления насосной установкой; 17 линия нагнетания; 18 линия всаса; 19 управляемый клапан; 20 - первая гидравлическая магистраль; 21 - вторая гидравлическая магистраль; 22 -нижний датчик положения; 23 - шток ; 24 - трубка; 25 - перекачиваемая среда; 26 - рабочая среда; 27 - заглушка второго сильфона; 28 - шток; 29 - концевой датчик; 30 - концевой датчик; 31 - верхний датчик положения; 32 - клапан; 33 - клапан; 34 - клапан; 35 - клапан; 36 - гидравлический распределитель; 37- гидравлический распределитель; 38 - гидравлический распределитель; 39 - гидравлический распределитель; 40 - насос управления ; 41 - линия управления; 42 - гидравлический замок; 43 - гидравлический замок; 44 - гидравлический замок; 45 - гидравлический замок; 46 - датчик; 47 - датчик; 48 - бухта; 49 - бухта; 50 - датчик частоты вращения;
Кроме того на фигурах обозначено положение «а» и положение «Ь» гидравлического распределителя управления нагнетанием (7), а также положения «с» и «d» гидравлического распределителя (8).
Раскрытие изобретения
Насосная установка (фиг. 1) состоит из корпуса, выполненного из по меньшей мере на двух частей (1) и (11), каждая часть (1 и 11) корпуса насосной установки выполнена с цилиндрической внутренней полостью. Внутри каждой из упомянутых частей (1 и 11) корпуса насосной установки установлен сильфон (2) и (12). Сильфон (2) и сильфон (12) установлены к верхней или нижней торцевой внутренней поверхности каждой части корпуса (1) и (11) насосной установки.
Каждый сильфон (2) и (12) закрыт в свободной части заглушкой (15) и (27) соответственно. Полость, получаемая в результате установки сильфона (2) и (12) к торцевой поверхности каждой части (1) и (11) корпуса насосной установки, где свободная часть сильфона (2) и (12) закрыта заглушкой (15) и (27) соответственно образует внутреннюю полость сильфона (2) и (12). Сильфон (2) и (12) с заглушкой установленный внутри части (1) и (11) корпуса насосной установки разделяет рабочую среду (26) расположенную во внутренней полости сильфона (2) и (12) и перекачиваемую среду (25) расположенную за сильфоном (2) и (12) в полости части (1) и (11) корпуса насосной установки.
Каждая часть корпуса (1 и 11) насосной установки выполнена с входными и выходными отверстиями к которым подключены линия всаса (18) и линия нагнетания (17) соответственно. На линию нагнетания (17) перекачиваемой среды (25) установлен нагнетательный клапан (4) и (14). На линии всаса (18) перекачиваемой среды установлен всасывающий клапан (3) и (13).
Насосная установка содержит гидравлическую систему (16) управления насосной установкой, выполненную в виде бака с рабочей средой (10), нагнетательного насоса (5), по меньшей мере двух независимых гидравлических магистралей (20 и 21) и системы клапанов,
Гидравлическая система управления насосной установкой (16) в процессе работы представляет собой две независимые гидравлические магистрали (20 и 21).
Первая (20) гидравлическая магистраль выполнена с давлением большим чем давление перекачиваемой среды (25) на линии всаса (18).
Вторая (21) гидравлическая магистраль выполнена с давлением меньшим чем давление перекачиваемой среды (25) на линии всаса (18).
Первая гидравлическая магистраль (20) линии управления насосной установкой (16) соединяет каждый сильфон (2 и 12) с нагнетательным насосом (5) для подачи рабочей среды (26), входящим в насосную установку. При этом каждый сильфон (2 и 12) соединен с насосом (5) посредством установленного на первой гидравлической магистрали (20) гидравлического распределителя управления нагнетанием (7). Гидравлический распределитель управления нагнетанием (7) выполнен с возможностью распределения подачи рабочей среды (26) на упомянутые сильфоны (2 и 12). Насос (5) для подачи рабочей среды (26) также соединен первой гидравлической магистралью (20) линии управления (16) с баком (10) с рабочей средой.
При этом нагнетательный насос (5) для подачи рабочей среды (26) в каждый сильфон (2 и 12) также соединен линиями первой гидравлической магистрали (20) с гидравлическим распределителем (8) для отпирания и запирания управляемого клапана (9 и 19). Управляемый клапан (9) и (19) установлен на месте соединения первой и второй гидравлических магистралей (20 и 21) управляющей линии (16).
Вторая гидравлическая магистраль (21) линии управления (16) соединяет каждый сильфон (2 и 12) с насосом (6) для откачки рабочей среды (26), входящим в насосную установку. Насос (6) для откачки рабочей среды (26) соединен второй гидравлической магистралью (21) с баком (10) с рабочей средой.
Работу насосной установки (фиг.1) можно разделить на два этапа по положению гидравлического распределителя управления нагнетанием (7) (с и d).
При начальном положении (с) гидравлического распределителя управления нагнетанием (7) насосная установка работает следующим образом:
На линию (18) всаса поступает перекачиваемая среда (25). Гидравлический распределитель управления нагнетанием (7) переключается в положение (с), одновременно с этим гидравлический распределитель (8) переходит в положение (Ь), открывая, таким образом, управляемый клапан (19) и закрывая управляемый клапан (9). Нагнетательный насос (5) и насос для откачивания (6) осуществляют циркуляцию рабочей среды (26) по линии управления (16) насосной установкой.
В результате вышеперечисленных действий начинается откачивание насосом (6) для откачивания рабочей среды (26) из внутренней полости второго сильфона (12) зарытого в свободной его части заглушкой в бак (10) и подача нагнетательным насосом (5) рабочей среды во внутреннюю полость сильфона (12) закрытого в свободной его части заглушкой из бака (10). Откачиваемая рабочая среда (26) из внутренней полости второго сильфона (12) закрытого в свободной его части заглушкой (27) создает разряжение на всасе перекачиваемой среды внутри второй части корпуса (11), из-за чего открывается всасывающий клапан (13) и закрывается нагнетательный клапан (14) на линии перекачиваемой среды. После этого следует заполнение второй части корпуса (11) перекачиваемой средой (25).
В тоже самое время, из-за подачи нагнетательным насосом (5) рабочей среды во внутреннюю полость сильфона (2) закрытого в свободной его части заглушкой (15), в корпусе (1) образуется избыточное давление, приводящее к закрытию всасывающего клапана (3) и открытию нагнетательного клапана (4). Синхронно, по мере нагнетания рабочей среды (26) во внутреннюю полость сильфона (2) закрытого в свободной его части заглушкой (15), перекачиваемая среда устремляется в линию нагнетания (17). Из чего следует, что движение сильфонов (2) и (12) с заглушками осуществляется в противоход друг другу.
После достижения сильфоном (2) с заглушкой (15) крайнего растянутого состояния в совокупности с достигнутым крайним сжатым состоянием сильфона (12) с заглушкой (27), гидравлический распределитель управления нагнетанием (7) переключается в положение (d).
При начальном положении (d) гидравлического распределителя управления нагнетанием (7) насосная установка работает следующим образом:
Гидравлический распределитель управления нагнетанием (7) переключается в положение (d), одновременно с этим гидравлический распределитель (8) переходит в положение (а), открывая таким образом управляемый клапан (9) и закрывая управляемый клапан (19). Нагнетательный насос (5) и насос для откачивания (6) осуществляют циркуляцию рабочей среды по линии управления насосной установкой.
В результате вышеперечисленных действий начинается откачивание насосом для откачивания (6) рабочей среды из внутренней полости сильфона (2) закрытого в свободной его части заглушкой (15) в бак (10) и подача нагнетательным насосом (5) рабочей среды во внутреннюю полость сильфона (12) зарытого в свободной его части заглушкой (27) из бака (10). Откачиваемая рабочая среда из внутренней полости сильфона (2) закрытого в свободной его части заглушкой (15) создает разряжение в внутри корпуса (1), из-за чего открывается всасывающий клапан (3) и закрывается нагнетательный клапан (4). После этого следует заполнение корпуса (1) перекачиваемой средой (25).
В тоже самое время, из-за подачи нагнетательным насосом (5) рабочей среды во внутреннюю полость сильфона (12) закрытого в свободной его части заглушкой (27), в корпусе (11) образуется избыточное давление, приводящее к закрытию всасывающего клапана (13) и открытию нагнетательного клапана (14). Синхронно, по мере нагнетания рабочей среды во внутреннюю полость сильфона (12) закрытого в свободной его части заглушкой (27), перекачиваемая среда (25) устремляется в линию нагнетания (17).
После достижения сильфоном (12) закрытого в свободной его части заглушкой (27) крайнего растянутого состояния в совокупности с достигнутым крайним сжатым состоянием сильфона (2) закрытого в свободной его части заглушкой (15), гидравлический распределитель управления нагнетанием (7) переключается в положение (с). Процесс повторяется.
Заявленное техническое решение может быть реализовано в следующих вариантах исполнения, в которых контроль положения сильфона (2) и (12). осуществляться по датчикам положения (22,31) и штоку (23) или по концевым датчикам (29 и 30).
В варианте реализации заявленного изобретения, в котором контроль положения сильфонов (2 и 12) осуществляется по датчикам положения (22,31) и штоку (23) (Фиг.2) контроль положения сильфонов осуществляется благодаря ходу штока (23) в трубке (24), на которую установлены два датчика положения (22,31) на расстоянии хода сильфона. Шток (23) установлен во внутренней полости каждого сильфона (2) и (12) закрытого в свободной его части заглушкой (15 и 27 соответственно). На штоке (23) выполнены отверстия. Одним концом шток (23) прикреплен к заглушке (15 и 27), другой конец штока свободно размещается в трубке (24). В каждой части корпуса расположена трубка (24), которая в свою очередь зафиксирована в верхней части корпуса (1 и 1 1 соответственно). На каждой трубке (24), перпендикулярно оси установлены датчики положения (22,31) штока. При этом в верхней части каждой трубки (24) расположены верхние датчики (22) положения расположены, а в нижней части каждой трубки (24) расположены нижние датчики (31) положения. Расстояние между верхними (22) и нижними (31) датчиками положения не должно превышать ход сильфона (2) и (12) закрытого в свободной его части заглушкой (15 и 27 соответственно). В момент когда сильфон (2) или (12) находятся в крайнем растянутом состоянии, верхняя часть штока (23) находится напротив нижнего датчика (31) положения. Нижний датчик (31) фиксирует положение «сильфон растянут», гидравлический распределитель управления нагнетанием (7) и гидравлический распределитель (8) меняют положение. Шток (23) начинает движение наверх. При достижении штоком (23) верхнего датчика (22) положения, верхний датчик (22) фиксирует положение «сильфон сжат», гидравлический распределитель управления нагнетанием (7) и гидравлический распределитель (8) меняют положение.
В варианте реализации заявленного технического решения контроль положения сильфона реализован с применением одного датчика положения в совокупности со штоком (23) на котором выполнены два отверстия контроля положения. Этот способ реализуется присвоением сигналам с датчика поочередных значений «сильфон растянут» и «сильфон сжат» при достижении отверстия на штоке (23) рабочей поверхности датчика.
В варианте реализации заявленного изобретения в котором контроль положения сильфонов осуществлен (Фиг.З) по концевым датчикам (29, 30), при этом контроль положения сильфонов (2 и 12) закрытых в свободной части заглушкой (15 и 27 соответственно) осуществляется по моменту касания заглушкой концевых датчиков.) в данном варианте реализации заявленного технического решения размещены в нижней части каждой части корпуса (1) и (11) расположен нижний концевой датчик (30) и в верхней части внутри каждого сильфона (2) и (12) расположен верхний концевой датчик (29). Если сильфон (2) или (12) с заглушкой растягивается, то в момент своего максимального растяжения заглушка коснётся нижнего концевого датчика (30), гидравлический распределитель управления нагнетанием (7) и гидравлический распределитель (8) поменяет положение. Сильфон (2) или (12) с заглушкой начнет движение вверх. При сжатии сильфона (2) или (12) закрытого в нижней его части заглушкой, сильфон (2) или (12) с заглушкой (15 и 27 соответственно) достигнет своего крайнего сжатого состояния, произойдет касание заглушкой (15 и 27) верхнего (29) концевого датчика, верхний (29) концевой датчик фиксирует положение «сильфон сжат», гидравлический распределитель управления нагнетанием (7) и гидравлический распределитель (8) меняют положение.
Дополнительно, одним из вариантов реализации (фиг. 8) контроля положения сильфона является использование тросика, накрученного на бухту (48, 49). Бухта (48, 49) устанавливается в верхней части корпуса насосной установки (1 , 1 1), а тросик закрепляется на заглушке (15, 27). Возвратно-поступательное движение сильфона (2, 12) приводит к разматыванию и соответственно наматыванию тросика на бухту (47, 48). Вращательное движение бухты (48, 49), возникающее вследствие движения сильфона, регистрируется датчиком (46, 47). Датчик (46, 47) может быть контактного и бесконтактного действия. Помимо прямых методов контроля положения мембраны (сильфона) (2, 12), существует косвенный способ (фиг. 9) - контролируемое заполнение внутренней полости сильфона (2) или (12) закрытого в нижней его части заглушкой (15 и 27 соответственно) нагнетательным насосом (5) рабочей средой (26). Расчет необходимого объема для заполнения внутренней полости сильфона (2) или (12) закрытого в нижней его части заглушкой (15 и 27 соответственно) нагнетательным насосом (5) реализуется с помощью датчика частоты вращения (50) установленного на нагнетательном насосе (5).
Описанные ваше варианты контроля положения сильфона, закрытого в нижней его части заглушкой, не полностью охватывают возможные способы отслеживания положения сильфона.
При этом, насосная установка может быть выполнена как с по меньшей мере двумя частями корпуса, так и с большим количеством частей. Увеличение количества частей корпуса приводит к необходимости установки ряда дополнительных элементов: гидравлический распределитель нагнетания (7) гидравлический распределитель (8) часть или части корпусов (1 , 11) нагнетательный клапан (4, 14) всасывающий клапан (3, 13) управляемый клапан (9, 19)
Взаимодействие вышеперечисленных элементов насосной установки осуществляется по первой и второй гидравлическим магистралям (20, 21 ) (Фиг. 4 )
Насосная установка (фиг. 4) состоит из корпуса, разделенного на четыре части, каждая часть выполнена с цилиндрической внутренней полостью. Внутри каждой из упомянутых частей корпуса насосной установки установлен сильфон. Каждый из сильфонов установлен к верхней торцевой внутренней поверхности каждой части корпуса насосной установки. Каждый сильфон закрыт в нижней части заглушкой. Полость, получаемая в результате установки сильфона к верхней торцевой поверхности каждой части корпуса насосной установки, где нижняя часть сильфона закрыта заглушкой, внутреннюю полость сильфона. Сильфон с заглушкой установленный внутри части корпуса насосной установки разделяет рабочую среду (26) расположенную во внутренней полости сильфона и перекачиваемую среду (25) расположенную за сильфоном в полости части корпуса насосной установки. Каждая часть корпуса насосной установки выполнена с входными и выходными отверстиями к которым подключены линия всаса (18) и линия нагнетания (19) соответственно.
На линию нагнетания (17) перекачиваемой среды (25) установлены нагнетательные клапаны. На линии всаса (18) перекачиваемой среды установлены всасывающие клапаны.
Линия управления насосом (16) в процессе работы представляет собой две независимые гидравлические магистрали (20 и 21).
Первая (20) гидравлическая магистраль выполнена с давлением большим чем давление перекачиваемой среды (25) на линии всаса (18). Вторая (21) гидравлическая магистраль выполнена с давлением меньшим чем давление перекачиваемой среды (25) на линии всаса (18).
Первая гидравлическая магистраль (20) линии управления насосной установкой (16) соединяет каждый сильфон с нагнетательным насосом (5) для подачи рабочей среды (26), входящим в насосную установку. При этом каждая пара сильфонов соединена с насосом (5) посредством установленных на первой гидравлической магистрали (20) гидравлических распределителей управления нагнетание. Каждый из гидравлических распределителей управления нагнетанием выполнен с возможностью распределения подачи рабочей среды (26) на упомянутые сильфоны. Насос (5) для подачи рабочей среды (26) также соединен первой гидравлической магистралью (20) линии управления (16) с баком (10) с рабочей средой.
При этом нагнетательный насос (5) для подачи рабочей среды (26) в каждую пару сильфонов также соединен линиями первой гидравлической магистрали (20) с гидравлическими распределителями для отпирания и запирания управляемых клапанов. Управляемый клапан установлен на гидравлической магистрали (21) управляющей линии (16).
Вторая гидравлическая магистраль (21) линии управления (16) соединяет каждый сильфон с насосом (6) для откачки рабочей среды (26), входящим в насосную установку. Насос (6) для откачки рабочей среды (26) соединен второй гидравлической магистралью (21) с баком (10) с рабочей средой.
Описание клапанов и их управление
Управление насосной установкой заключается в управлении потоками рабочей среды. Главным образом это управление осуществляется через клапаны различного исполнения. Клапаны могут иметь электромагнитное, гидравлическое и пневматическое управление. Управление рабочей жидкостью в насосной установке на фиг. 5 идет через гидравлический распределитель управления нагнетанием (7). Включение гидравлического распределителя управления нагнетанием (7) в положение «с» приводит к нагнетанию рабочей жидкости во внутреннюю полость сильфона (2) закрытого в свободной его части заглушкой (15) и откачиванию рабочей жидкости из внутренней полости сильфона (12) закрытого в свободной его части заглушкой (27). После завершения цикла, гидравлический распределитель управления нагнетанием (7) переключается в положение «d», что приводит к нагнетанию рабочей жидкости во внутреннюю полость сильфона (12) закрытого в свободной его части заглушкой (27) и откачиванию рабочей жидкости из внутренней полости сильфона (2) закрытого в свободной его части заглушкой (15).
Кроме описанного выше способа существует вариант фиг. 6 управления рабочей жидкостью с помощью системы клапанов (32, 33, 34, 35) и гидравлических распределителей (36, 37, 38, 39) через линию управления (41). Управление рабочей жидкостью осуществляется насосом управления (40) через линию управления (41), системой клапанов (32, 33, 34, 35) и гидравлическими распределителями (36, 37, 38, 39).
Работу насосной установки (фиг. 6) следует рассматривать по положению гидравлических распределителей (36, 37, 38, 39). Положение гидравлических распределителей (36, 37,38,39) в позициях («а», «Ь», «Ь», «а») соответственно, приводит к подаче нагнетательным насосом (5) рабочей среды во внутреннюю полость сильфона (2) закрытого в свободной его части заглушкой (15). В корпусе (1) образуется избыточное давление, приводящее к закрытию всасывающего клапана (3) и открытию нагнетательного клапана (4). Синхронно, по мере нагнетания рабочей среды во внутреннюю полость сильфона (2) закрытого в свободной его части заглушкой (27), перекачиваемая среда (25) устремляется в линию нагнетания (17). Одновременно с этим происходит откачивание рабочей среды насосом для откачивания (6) из внутренней полости сильфона (12) закрытого в свободной его части заглушкой (27).
После достижения сильфоном (2) закрытого в свободной его части заглушкой (15) крайнего растянутого состояния в совокупности с достигнутым крайним сжатым состоянием сильфона (12) закрытого в свободной его части заглушкой (27), гидравлические распределители (36, 37, 38, 39) переключается в положение («Ь», «а», «а», «Ь»). Процесс повторяется зеркально.
Управление рабочей средой может быть представлена системой гидравлических замков с электромагнитным управлением (42, 43, 44, 45) фиг. 7. Управление насосной установкой снабженной системой гидравлических замков с электромагнитным управлением (42, 43, 44, 45) можно разделить по положению гидравлических замков («открыт»/ «закрыт»).
Положение гидравлических замков (42, 43, 44, 45) в позиции («закрыт», «открыт», «закрыт», «открыт») соответственно, приводит к подаче нагнетательным насосом (5) рабочей среды во внутреннюю полость сильфона (2) закрытого в свободной его части заглушкой (15). В корпусе (1) образуется избыточное давление, приводящее к закрытию всасывающего клапана (3) и открытию нагнетательного клапана (4). Синхронно, по мере нагнетания рабочей среды во внутреннюю полость сильфона (2) закрытого в свободной его части заглушкой (27), перекачиваемая среда (25) устремляется в линию нагнетания (17). Одновременно с этим происходит откачивание рабочей среды насосом для откачивания (6) из внутренней полости сильфона (12) закрытого в свободной его части заглушкой (27).
После достижения сильфоном (2) закрытого в свободной его части заглушкой (15) крайнего растянутого состояния в совокупности с достигнутым крайним сжатым состоянием сильфона (12) закрытого в свободной его части заглушкой (27), гидравлические замки (42, 43, 44, 45) переключается в положение («открыт», «закрыт», «открыт», «закрыт»). Процесс повторяется зеркально.
Отличия заявленного технического решения:
- В качестве рабочего органа используется сильфон. Деформация сильфона происходит вдоль оси сильфона, что позволяет легко контролировать рабочие положения сильфона. Сильфон также имеет большой изменяемый объем на один рабочий ход при минимальных габаритах.
- Изменение рабочего объема происходит за счет продольного сжатия-растяжения сильфона. Отсутствуют радиальные растягивающие напряжения сильфона, что позволяет применять армированные сильфоны, что в свою очередь повышает срок службы насоса.
- корпус выполнен с входными и выходными отверстиями. Входные отверстия в корпусе насосной установки в варианте реализации заявленного технического решения расположены в нижней или в верхней части корпуса. При этом выходные отверстия в варианте реализации заявленного технического решения расположены в верхней или в нижней части корпуса
Сжатие-растяжение сильфона осуществляется посредством попеременного подключения рабочей полости насосной установки к магистралям с рабочей жидкостью, в одной из которых давление выше чем давление перекачиваемой среды на входе в насосную установку, во второй - ниже.

Claims

Формула изобретения
1. Насосная установка,
включающая корпус, выполненный с по меньшей мере двумя частями с внутренними цилиндрическими полостями, с выполненными отверстиями для подвода и отвода перекачиваемой среды, по меньшей мере два продольно деформируемых сильфона, каждый из которых закреплен внутри каждой части корпуса одной торцевой поверхностью к одной внутренней торцевой поверхности каждой части корпуса, при этом противоположная торцевая сторона каждого сильфона выполнена с заглушкой, а на торцевой поверхности каждой части корпуса, соединенной с сильфоном, выполнено отверстие для подвода рабочей среды во внутреннюю полость, ограниченную сильфоном, его заглушкой и торцевой поверхностью части корпуса, гидравлическую систему управления насосной установкой,
отличающаяся тем, что
гидравлическая система управления насосной установкой выполнена в виде бака с рабочей средой, нагнетательного насоса, по меньшей мере двух независимых гидравлических магистралей и системы клапанов, выполненных с возможностью попеременного подключения внутренних полостей сильфонов с рабочей жидкостью к первой или второй магистрали в зависимости от положений сильфонов, при этом гидравлические магистрали выполнены таким образом, что в одной магистрали давление рабочей среды меньше давления перекачиваемой среды на входе в насосную установку, а во второй магистрали давление рабочей среды больше давления перекачиваемой среды на входе в насосную установку, при чем внутренняя полость каждого сильфона соединена магистралями с возможностью попеременного переключения с нагнетательным насосом для подачи рабочей среды посредством первой гидравлической магистрали, и с баком с рабочей средой посредством второй гидравлической магистрали, и насосная установка дополнительно содержит средство контроля положения каждого сильфона, выполненное с возможностью управления попеременным подключением внутренней полости сильфона с рабочей жидкостью к первой или второй магистрали в зависимости от положений сильфонов.
2. Насосная установка по п.1 , отличающаяся тем что средство контроля положения каждого сильфона установлено во внутренней полости каждого сильфона и выполнено в виде, закреплённой трубки и штока, при этом один конец штока прикреплен к заглушке сильфона, а другой конец штока свободно размещен в трубке, расположенной на противоположной от торцевой поверхности сильфона с заглушкой стороне, и на трубке на расстоянии хода сильфона установлены датчики положения штока.
3. Насосная установка по п.1 , отличающаяся тем что на второй гидравлической магистрали дополнительно установлен насос для откачки рабочей среды в бак.
4. Насосная установка по п.1, отличающаяся тем, что средство контроля положения каждого сильфона установлено во внутренней полости каждого сильфона и выполнено в виде датчика положения в совокупности со штоком и трубкой, при этом один конец штока прикреплен к заглушке сильфона, а другой конец штока свободно размещен в трубке, расположенной на противоположной от торцевой поверхности сильфона с заглушкой стороне, при этом на штоке выполнены метки контроля положений штока.
5. Насосная установка по п.1 , отличающаяся тем что, средство контроля положения каждого сильфона установлено во внутренней полости каждого сильфона и выполнено в виде датчика и бухты с тросиком, выполненной с возможностью вращения, при этом бухта размещена на стороне противоположной торцевой поверхности сильфона с заглушкой, а тросик одним концом закреплен на заглушке.
6. Насосная установка по п.1 , отличающаяся тем что, средство контроля положения каждого сильфона выполнено в виде датчика частоты вращения установленного на нагнетательном насосе, выполненного с возможностью контроля заполнения внутренней полости сильфона посредством определения объема рабочей среды необходимой для заполнения внутренней полости сильфона.
7. Насосная установка по п.1 , отличающаяся тем что, отверстия для подвода и отвода перекачиваемой среды выполнены в нижней и/или в верхней части корпуса.
8. Насосная установка п.1 , отличающаяся тем, что сильфон выполнен составным из отдельных деформируемых мембран, соединенных последовательно между собой торцевыми поверхностями.
PCT/RU2019/000700 2018-10-02 2019-10-02 Насосная установка WO2020071958A1 (ru)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EA202190932A EA202190932A1 (ru) 2018-10-02 2019-10-02 Насосная установка
AU2019352546A AU2019352546B2 (en) 2018-10-02 2019-10-02 Pump assembly
EP19868378.1A EP3862565A4 (en) 2018-10-02 2019-10-02 PUMPING PLANT
BR112021006217A BR112021006217A2 (pt) 2018-10-02 2019-10-02 conjunto de bomba
CN201980065733.4A CN112823244B (zh) 2018-10-02 2019-10-02 泵组件
US16/760,453 US11384749B2 (en) 2018-10-02 2019-10-02 Pump assembly
CA3114343A CA3114343A1 (en) 2018-10-02 2019-10-02 Pump assembly
ZA2021/02706A ZA202102706B (en) 2018-10-02 2021-04-22 Pump assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2018134507A RU2685353C1 (ru) 2018-10-02 2018-10-02 Насосная установка
RU2018134507 2018-10-02

Publications (1)

Publication Number Publication Date
WO2020071958A1 true WO2020071958A1 (ru) 2020-04-09

Family

ID=66168228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2019/000700 WO2020071958A1 (ru) 2018-10-02 2019-10-02 Насосная установка

Country Status (10)

Country Link
US (1) US11384749B2 (ru)
EP (1) EP3862565A4 (ru)
CN (1) CN112823244B (ru)
AU (1) AU2019352546B2 (ru)
BR (1) BR112021006217A2 (ru)
CA (1) CA3114343A1 (ru)
EA (1) EA202190932A1 (ru)
RU (1) RU2685353C1 (ru)
WO (1) WO2020071958A1 (ru)
ZA (1) ZA202102706B (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003000953A1 (en) 2001-06-26 2003-01-03 Nihon Parkerizing Co., Ltd. Surface treatment for metal, process for surface treatment of metallic substances and surface-treated metallic substances
WO2004011806A1 (en) 2002-07-29 2004-02-05 Davtek Pty Ltd Fluid operated pump
US20080226466A1 (en) * 2004-06-02 2008-09-18 Jan Eysymontt Hydraulically Driven Multicylinder Pumping Machine
WO2015128283A1 (en) 2014-02-26 2015-09-03 Garniman S.A. Hydraulically driven bellows pump

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1328970A (fr) * 1962-04-21 1963-06-07 Commissariat Energie Atomique Pompe doseuse
US3524714A (en) * 1968-10-30 1970-08-18 Us Air Force Pneumatic bellows pump
SU667685A1 (ru) * 1976-10-20 1979-06-15 Govberg Artem S Гидроприводна диафрагменна насосна установка
SU1278487A1 (ru) * 1984-04-16 1986-12-23 Предприятие П/Я М-5356 Гидроприводной насосный агрегат
GB2185291A (en) * 1986-01-23 1987-07-15 Astrakhanskoe N Proizv Ob Okra Pump unit of an apparatus for applying coatings
JPS63106379A (ja) * 1986-10-23 1988-05-11 Sunstar Giken Kk 流体圧送用ポンプシステム
WO1990004106A1 (de) * 1988-10-06 1990-04-19 Hans Willi Meinz Doppeltwirkende faltenbalgpumpe
SU1671962A1 (ru) * 1989-04-27 1991-08-23 Специальное проектно-конструкторское и технологическое бюро по погружному электрооборудованию для бурения скважин и добычи нефти Всесоюзного научно-производственного объединения "Потенциал" Диафрагменна насосна установка
US5220943A (en) * 1990-10-09 1993-06-22 Montana Sulphur & Chemical Co. Internal pump assembly
US5228473A (en) * 1990-10-09 1993-07-20 Montana Sulphur & Chemical Co. Internal safety valve system
US5249745A (en) * 1991-09-19 1993-10-05 Giacomo Bertolotti Fluid distribution system
US5308230A (en) * 1993-03-08 1994-05-03 Stainless Steel Products, Inc. Bellows pump
US6575712B1 (en) * 2001-09-28 2003-06-10 Slavcho Slavchev Air compressor system
DE102004031673B4 (de) * 2004-06-30 2009-04-16 Erbe Elektromedizin Gmbh Medizinische Pumpe
US7607750B2 (en) * 2004-09-27 2009-10-27 Seiko Epson Corporation Pump control mechanism, printer incorporating the same, and pump control method
CN101208258A (zh) * 2005-03-04 2008-06-25 波克爱德华兹股份有限公司 容积流体分配系统中流体状态的控制
JP4694377B2 (ja) * 2006-01-27 2011-06-08 シーケーディ株式会社 薬液供給システム
US7444798B2 (en) 2006-07-26 2008-11-04 Macdon Industries Ltd. Crop feed arrangement for the header of a combine harvester
GB0707220D0 (en) * 2007-04-14 2007-05-23 Stratabolt Pty Ltd Improved pump
US20100258084A1 (en) * 2007-12-20 2010-10-14 Volvo Technology Corporation Fuel-pumping system, method for operating a fuel-pumping system and fuel-injection system comprising a fuel-pumping system
JP5188385B2 (ja) * 2008-12-26 2013-04-24 株式会社日立ハイテクノロジーズ プラズマ処理装置及びプラズマ処理装置の運転方法
US20100178182A1 (en) * 2009-01-09 2010-07-15 Simmons Tom M Helical bellows, pump including same and method of bellows fabrication
US20140319181A1 (en) * 2013-04-30 2014-10-30 E I Du Pont De Nemours And Company Dispensing vessel having a corrugated secondary container for use in a printing apparatus for depositing a liquid composition on a backplane
US20170045044A1 (en) * 2015-08-11 2017-02-16 Hydril Usa Distribution, Llc Pump chamber position indicator
NO20171099A1 (en) * 2017-07-04 2019-01-07 Rsm Imagineering As Pressure transfer device and associated system, fleet and use, for pumping high volumes of fluids with particles at high pressures

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003000953A1 (en) 2001-06-26 2003-01-03 Nihon Parkerizing Co., Ltd. Surface treatment for metal, process for surface treatment of metallic substances and surface-treated metallic substances
WO2004011806A1 (en) 2002-07-29 2004-02-05 Davtek Pty Ltd Fluid operated pump
US20080226466A1 (en) * 2004-06-02 2008-09-18 Jan Eysymontt Hydraulically Driven Multicylinder Pumping Machine
WO2015128283A1 (en) 2014-02-26 2015-09-03 Garniman S.A. Hydraulically driven bellows pump

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3862565A4

Also Published As

Publication number Publication date
US20200340470A1 (en) 2020-10-29
EP3862565A1 (en) 2021-08-11
CN112823244A (zh) 2021-05-18
BR112021006217A2 (pt) 2021-07-06
AU2019352546B2 (en) 2023-07-13
ZA202102706B (en) 2022-08-31
RU2685353C1 (ru) 2019-04-18
AU2019352546A1 (en) 2021-05-27
EA202190932A1 (ru) 2021-07-06
EP3862565A4 (en) 2022-05-18
CN112823244B (zh) 2022-11-01
US11384749B2 (en) 2022-07-12
CA3114343A1 (en) 2020-04-09

Similar Documents

Publication Publication Date Title
CN1973130B (zh) 液压驱动多缸隔膜泵送机以及其泵缸和操作该泵送机的方法
RU52125U1 (ru) Скважинный электрогидроприводный насосный агрегат
WO2007040421A1 (fr) Installation de pompage de fond de puits a entrainement electrique
CA2940124C (en) Hydraulically driven bellows pump
US2464095A (en) Pump
US3637330A (en) Multichamber tubular diaphragm pump
WO2020071958A1 (ru) Насосная установка
EA040904B1 (ru) Насосная установка
RU2344320C1 (ru) Способ управления гидроприводным насосным агрегатом нефтедобывающих скважин и устройство для его осуществления
RU2768628C1 (ru) Диафрагменный насос
RU2293881C2 (ru) Установка для дозированной подачи жидкости
RU2628840C1 (ru) Гидроприводной погружной насосный агрегат
RU2305797C1 (ru) Насосный агрегат
RU2776224C1 (ru) Диафрагменный насос
RU2493434C1 (ru) Гидроприводная насосная установка
US665807A (en) Balance-pump.
RU2450162C1 (ru) Скважинный насос
SU1707286A1 (ru) Вибронасос-вантуз
KR100955331B1 (ko) 유체작동 펌프 및 이 펌프를 구비하는 펌핑시스템
RU2584394C1 (ru) Глубинное пневмоприводное насосное устройство
US711858A (en) Means for pumping water under hydraulic power.
RU142499U1 (ru) Установка для перекачки текучих сред (варианта)
CN201802598U (zh) 无杆径向积差式抽油泵
RU154359U1 (ru) Поршневой насос
RU2459978C1 (ru) Насосная установка регулируемая, диафрагменная

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19868378

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3114343

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021006217

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2019868378

Country of ref document: EP

Effective date: 20210503

ENP Entry into the national phase

Ref document number: 2019352546

Country of ref document: AU

Date of ref document: 20191002

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112021006217

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210331