WO2020071209A1 - 細胞培養方法 - Google Patents

細胞培養方法

Info

Publication number
WO2020071209A1
WO2020071209A1 PCT/JP2019/037590 JP2019037590W WO2020071209A1 WO 2020071209 A1 WO2020071209 A1 WO 2020071209A1 JP 2019037590 W JP2019037590 W JP 2019037590W WO 2020071209 A1 WO2020071209 A1 WO 2020071209A1
Authority
WO
WIPO (PCT)
Prior art keywords
stirring blade
stirring
medium
stem cells
cell culture
Prior art date
Application number
PCT/JP2019/037590
Other languages
English (en)
French (fr)
Inventor
俊 後藤
英俊 高山
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2020071209A1 publication Critical patent/WO2020071209A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0018Culture media for cell or tissue culture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/02Stirrer or mobile mixing elements
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2527/00Culture process characterised by the use of mechanical forces, e.g. strain, vibration

Definitions

  • the disclosed technology relates to a cell culture method.
  • JP-A-7-79772 discloses a cell culture solution suitable for forming a large amount of functional cell aggregates (spheroids) of the same size, and a large amount of a cell culture solution for forming a large amount of spheroids of the same size.
  • a method a method is described in which a cell culture solution containing a water-soluble polymer compound and having a viscosity of 5 cP or more is cultured by a rotation culture method, a reflux culture method, or a suspension culture method.
  • JP 2007-512857 discloses a process in which cells are suspended in a culture medium or a suitable biological fluid optionally containing a biocompatible and biodegradable hydrophilic polymer. Adding a divalent or trivalent ionic salt to the suspension until the ionic concentration is between 1 and 500 mmol / 1, via an extruder, orifice, nozzle or needle having a size between 50 ⁇ m and 5000 ⁇ m Extruding said cell suspension into an alkali metal alginate solution of a medium having a concentration of 0.01% to 5% w / v, kept stirred at a speed of 10 to 200 rpm; Optionally cross-linking via interfacial polymerization of alginate with a cross-linking agent at a temperature of 5 ° C. to 40 ° C. for a time of 1 to 120 minutes. Are described.
  • iPS cells induced pluripotent stem cells
  • One of the purposes of agitation is to uniformly disperse oxygen and nutrients contained in the culture medium in the culture vessel and to supply sufficient oxygen and nutrients to the stem cells during culture.
  • Another purpose of the stirring is to maintain the state in which the stem cells are suspended in the medium, thereby suppressing the size of the aggregate formed by the fusion of the stem cells from becoming excessive. Without agitation, the stem cells settle and accumulate on the bottom of the culture vessel, which promotes the fusion of the stem cells and may increase the size of the aggregate. If the size of the aggregate is too large, the supply of oxygen and nutrients to the stem cells at the center of the aggregate becomes insufficient, causing a problem that the stem cells at the center of the aggregate are necrotic. Further, when the size of the aggregate is excessive, in the differentiation induction step of the stem cell, the progress of the differentiation may vary, and the quality of the product obtained by the differentiation induction may be reduced.
  • the disclosed technology is also applicable to a large-scale culture of, for example, 1 ⁇ 10 9 cells in a cell culture in which a cell suspension containing a stem cell and a medium is cultured while stirring by rotating a stirring blade. It is intended to provide a cell culture method.
  • a cell culture method is a cell culture method in which a cell suspension containing a stem cell and a medium is cultured while stirring the cell suspension by rotating at least one stirring blade, wherein the viscosity of the medium is 10 mPa ⁇ s to 1000 mPa ⁇ s. s or less, the product of the length of the stirring blade and the number of the stirring blades is 20 mm or more and 500 mm or less, and the average rotation speed of the stirring blades is 0.01 / min or more and 5 / min or less.
  • the present invention is applicable to, for example, mass culture of cells of the order of 1 ⁇ 10 9 cells.
  • the cell culture method according to the disclosed technology may include adding an additive used for inducing differentiation of stem cells to a medium, and stirring the cell suspension containing the additive by rotating a stirring blade.
  • the stirring may be performed by rotating the stirring blade at a constant speed. Further, the stirring may be performed while changing the rotation speed of the stirring blade. The stirring may be performed by intermittently rotating the stirring blade.
  • the medium may be added with a thickener, and the thickener may contain methylcellulose.
  • the present invention in a cell culture in which a cell suspension containing a stem cell and a medium is cultured while stirring by rotation of a stirring blade, for example, the present invention is also applied to a large-scale culture of cells of the order of 1 ⁇ 10 9 cells.
  • a possible cell culture method is provided.
  • FIG. 3 is a diagram illustrating an example of a cell culture method according to an embodiment of the disclosed technology.
  • FIG. 3 is a diagram schematically illustrating an example of a configuration of a stirring blade used in a cell culture method according to an embodiment of the disclosed technology. It is a graph which shows an example of a rotation system of a stirring blade concerning an embodiment of art of an indication. It is a graph which shows an example of a rotation system of a stirring blade concerning an embodiment of art of an indication. It is a graph which shows an example of a rotation system of a stirring blade concerning an embodiment of art of an indication. It is a graph which shows an example of the average rotation speed of the stirring blade which concerns on a comparative example, and the survival rate and stirring power of a stem cell.
  • FIG. 1 is a diagram illustrating an example of a cell culture method according to an embodiment of the disclosed technology.
  • the cell culture method according to the present embodiment includes culturing the cell suspension 22 containing the stem cells 20 and the medium 21 in the culture vessel 10 while stirring.
  • the stem cells 20 to be cultured include iPS cells, mesenchymal stem cells (MSCs), and ES cells (embryonic stem cells).
  • MSCs mesenchymal stem cells
  • ES cells embryonic stem cells
  • the culture vessel 10 has a volume (for example, several liters to several tens of liters) that can accommodate the cell suspension 22 containing the stem cells 20 on the order of 1 ⁇ 10 9 .
  • the stem cells 20 can form an aggregate in which a plurality of stem cells are aggregated.
  • ⁇ ⁇ Stirring of the cell suspension 22 is performed by rotation of at least one stirring blade 30.
  • oxygen and nutrients contained in the medium 21 can be uniformly dispersed throughout the culture vessel 10, and oxygen and nutrients can be distributed to each of the stem cells 20.
  • stirring the cell suspension 22 an upward flow is generated in the medium 21, and the state where the stem cells 20 are suspended in the medium 21 is maintained. That is, the sedimentation of the stem cells 20 is suppressed, and the accumulation of the stem cells 20 on the bottom of the culture vessel 10 to suppress the aggregate from becoming excessively large is suppressed.
  • the medium 21 used in the cell culture method according to the present embodiment is not particularly limited, and includes any known medium used for culturing stem cells. Specifically, DMEM (Dulbecco's Modified Eagle's Medium), DMEM: F-12 (Dulbecco's Modified Eagle Medium): Nutrient Mixture F-12, EMEM (Eagle's minimal essential medium), BME (Basal, Medium, and EME) are available. MCDB153, 199, L15, mTeSR1, TeSR2, E8 (Nature Protocols 7: 2029-2040, 2012), and a medium obtained by adding a cell growth factor to these mediums.
  • the medium contains various components generally added, for example, antibiotics such as penicillin and streptomycin; vitamins or vitamin derivatives such as ascorbic acid and retinoic acid; sugar sources such as glucose; amino acids; sodium selenite; Inorganic salts such as sodium; proteins such as transferrin; hormones such as insulin; cytokines such as TGF- ⁇ (transforming growth factor) and EGF (epidermal growth factor): growth factors; differentiation inhibitors; 2-mercaptoethanol, dithio An antioxidant such as threitol; and the like may be added.
  • antibiotics such as penicillin and streptomycin
  • vitamins or vitamin derivatives such as ascorbic acid and retinoic acid
  • sugar sources such as glucose
  • amino acids amino acids
  • sodium selenite Inorganic salts such as sodium
  • proteins such as transferrin
  • hormones such as insulin
  • cytokines such as TGF- ⁇ (transforming growth factor) and EGF (epidermal growth factor): growth factors
  • differentiation inhibitors such as 2-mer
  • the culture medium 21 does not contain serum and a serum substitute from the viewpoint of suppressing contamination of the stem cells 20 with antigenic substances and infection sources.
  • the pH of the medium 21 is, for example, pH 7.0 to 8.0, and preferably pH 7.3 to 7.4.
  • the viscosity of the medium 21 used in the cell culture method according to the present embodiment is significantly higher than the viscosity of the medium used in a general suspension culture method.
  • the viscosity of a medium used in a general suspension culture method is several mPa ⁇ s, typically about 5 mPa ⁇ s.
  • the viscosity of the medium 21 used in the cell culture method according to the present embodiment is 10 mPa ⁇ s or more and 1000 mPa ⁇ s or less.
  • a thickener may be added to the medium 21 to increase the viscosity of the medium 21.
  • a water-soluble polymer can be used.
  • any water-soluble polymer can be used as long as it does not adversely affect cells (has no cytotoxicity) in a concentration range that can impart viscosity to the medium 21.
  • cellulose polysaccharides such as agarose, methylcellulose, ethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxyethylmethylcellulose, hydroxypropylmethylcellulose, hydroxyethylethylcellulose, hydroxypropylethylcellulose, ethylhydroxyethylcellulose, dihydroxypropylcellulose, hydroxyethylhydroxypropylcellulose and the like
  • Synthetic polymers such as polysaccharide ether, polyacrylamide, polyethylene oxide, polyvinylpyrrolidone, ethylene glycol / propylene glycol copolymer, polyethyleneimine polyvinyl methyl ether, polyvinyl alcohol, polyacrylic acid, maleic acid copolymer, collagen, gelatin ,
  • Ron acid, dextran, alginate, carrageenan biopolymers such as starch or artificial polymer (for example, elastin-like peptide) that mimics thereof.
  • water-soluble polymers may be used alone or as a mixture of several types of water-soluble polymers. Further, a copolymer of these water-soluble polymers may be used. Preferably, it is methylcellulose, polyethylene glycol, polyvinylpyrrolidone, carboxymethylcellulose, or a mixture thereof, and more preferably, methylcellulose.
  • a thickening agent for increasing the viscosity of the culture medium 21 it is possible to use a material capable of uniformly forming an amorphous structure in the culture medium 21.
  • a material that can form such a structure include a polymer compound, preferably a polymer compound having an anionic functional group.
  • the anionic functional group include a carboxy group, a sulfo group, a phosphate group and a salt thereof, and a carboxy group or a salt thereof is preferable.
  • polysaccharides obtained by polymerizing 10 or more monosaccharides (for example, triose, tetroses, pentoses, hexoses, and heptose), and more preferably.
  • monosaccharides for example, triose, tetroses, pentoses, hexoses, and heptose
  • acidic polysaccharides having an anionic functional group for example, sodium tartrate, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium
  • hyaluronic acid gellan gum, deacylated gellan gum, ramzan gum, diutan gum, xanthan gum, carrageenan, xanthan gum, hexuronic acid, fucoidan, pectin, pectic acid, pectinic acid, heparan sulfate, heparin, heparitin sulfate, kerato
  • examples thereof include one or more selected from the group consisting of sulfuric acid, chondroitin sulfate, deltaman sulfate, rhamnan sulfate and salts thereof.
  • FIG. 2 is a diagram schematically showing an example of the configuration of the stirring blade 30 used in the cell culture method according to the present embodiment.
  • the product (L ⁇ N) of the length L of the stirring blade 30 and the number N of the stirring blades 30 is 20 mm or more and 500 mm or less.
  • the number N of the stirring blades 30 is the number of structural units that exhibit a stirring action by rotation.
  • FIG. 2 illustrates a stirring device provided with three stirring blades 30 extending in different directions from the rotation center O.
  • the cell suspension 22 may be stirred using a plurality of stirring devices.
  • the total number of the stirring blades included in each of the plurality of stirring devices is the number N of the stirring blades.
  • As the length L of the stirring blade 30, a length from the rotation center O of the stirring blade 30 to the tip of the stirring blade 30 may be applied.
  • the average rotation speed R of the stirring blade 30 is set to be 0.01 / min or more and 5 / min or less.
  • the average rotation speed R means an average value of the number of rotations of the stirring blade 30 per minute during the entire culture period.
  • the rotation of the stirring blade 30 may be continuous or intermittent. When the rotation of the stirring blade 30 is continuous, the stirring blade 30 may be rotated at a constant speed throughout the culture period as shown in FIG. 3A, or the rotation speed may be changed as shown in FIG. 3B. You may rotate while changing. When the rotation of the stirring blade 30 is intermittent, the stirring blade 30 may rotate at a constant speed for a predetermined period, for a predetermined period, or for a predetermined rotation number, as shown in FIG. 3C.
  • the shear force F generated by the rotation of the stirring blade 30 can be expressed by the following equation (1).
  • is a constant
  • R is the average rotation speed of the stirring blade
  • L is the length of the stirring blade 30
  • N is the number of the stirring blade 30.
  • the stem cells 20 can maintain a floating state.
  • the damage to the stem cells 20 can be tolerated. Can be stored inside.
  • 4A, 4B, and 4C are graphs each showing an example of the relationship between the average rotation speed of the stirring blade, the survival rate of the stem cells, and the stirring power.
  • FIG. 4A corresponds to a conventional culture method using a medium having a viscosity of several mPa ⁇ s (typically about 5 mPa ⁇ s).
  • a medium having a viscosity of several mPa ⁇ s typically about 5 mPa ⁇ s.
  • the stirring power is increased until stem cells of the order of 1 ⁇ 10 9 can be maintained in a state of being suspended in the medium, the viability of the stem cells is remarkably reduced to fall below the required quality level. Is the result.
  • FIG. 4B corresponds to a case where a stirring blade improved so as to obtain a large stirring power even at a low rotation speed is used.
  • the average rotation speed of the stirring blade required to maintain the state in which the stem cells are suspended in the medium is smaller than that in the case shown in FIG. 4A.
  • FIG. 4C shows a disclosed technique using a medium having a viscosity (10 mPa ⁇ s or more and 1000 mPa ⁇ s or less) significantly higher than the viscosity (typically about 5 mPa ⁇ s) of a medium used in a general suspension culture method.
  • a medium having a high viscosity the stirring power required for maintaining a state in which the stem cells are suspended in the medium can be reduced as compared with the case of using a medium having a normal viscosity. Therefore, even when culturing stem cells of the order of 1 ⁇ 10 9 cells, the average rotation speed of the stirring blade can be sufficiently reduced.
  • the average rotation speed of the stirring blade is set to 0.01 / min or more. / Min or less.
  • a medium having a high viscosity for example, it is also possible to perform an intermittent operation in which the stirring blade is rotated two to three times every two to three hours.
  • the stirring blade when the stirring blade is rotated at an extremely low speed, not only can the damage to the stem cells be reduced, but also the time for the stem cells to recover from the damaged state to a healthy state can be secured. . That is, by rotating the stirring blade at an extremely low speed, the self-healing ability of the stem cells can be utilized, and a decrease in the survival rate of the stem cells can be suppressed.
  • a region where the survival rate with respect to an increase in the average rotation speed of the stirring blade becomes flat is a self-recovery region where the self-recovery ability of the stem cells can be utilized.
  • the average rotation speed of the stirring blade can be suppressed within the self-recovery region, so that a high The survival rate can be secured, and the required quality level can be satisfied.
  • the viscosity of the medium 21 used for culturing the stem cells 20 is 10 mPa ⁇ s or more and 1000 mPa ⁇ s or less.
  • the medium 21 having a remarkably high viscosity the sedimentation speed of the stem cells 20 can be reduced as compared with the case of using a medium having a normal viscosity.
  • the average rotation speed of the stirring blade 30 required for maintaining the state in which the stem cells 20 are suspended in the medium 21 can be reduced as compared with the case where a medium having a normal viscosity is used.
  • the average rotation speed of the stirring blade 30 can be in the range of 0.01 / min to 5 / min.
  • the shear force generated by the rotation of the stirring blade 30 can be reduced.
  • the damage received can be reduced. Therefore, according to the cell culture method according to the embodiment of the disclosed technology, the present invention can be applied to, for example, large-scale culture of 1 ⁇ 10 9 cells.
  • the cell culture method according to the embodiment of the disclosed technology can be applied in an expansion culture step of growing stem cells.
  • the scale of culture can be increased to the order of 1 ⁇ 10 9 cells.
  • the cell culture method according to the embodiment of the disclosed technology can be applied in a differentiation induction step of inducing differentiation of a stem cell.
  • a treatment is performed in which an additive used for inducing differentiation of stem cells is added to the medium, and the cell suspension containing the additive is stirred by rotating a stirring blade.
  • an additive used for inducing differentiation a Wnt signal activator and a Wnt signal inhibitor are used. That is, the differentiation inducing step includes a first step of culturing the stem cells in a medium containing a Wnt signal activator, and a second step of culturing the stem cells after the first step in a medium containing a Wnt signal inhibitor. , including.
  • the differentiation induction step it is important to uniformly induce differentiation of a plurality of stem cells. Therefore, it is important that the additives used for inducing differentiation are uniformly dispersed in the medium by stirring. According to the cell culture method according to an embodiment of the disclosed technology, even when differentiation is induced for stem cells of the order of 1 ⁇ 10 9 , it is possible to achieve uniform dispersion of additives while suppressing damage to stem cells. It is possible.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

少なくとも1つの撹拌翼の回転によって幹細胞及び培地を含む細胞懸濁液を撹拌しつつ培養する。培地の粘度を10mPa・s以上1000mPa・s以下とし、撹拌翼の長さと、撹拌翼の個数との積を20mm以上500mm以下とし、撹拌翼の平均回転速度を0.01/min以上5/min以下とする。

Description

細胞培養方法
 開示の技術は、細胞培養方法に関する。
 細胞培養に関する技術として、以下の技術が知られている。例えば、特開平7-79772号公報には、大量の同じ大きさの機能細胞集合体(スフェロイド)を形成するのに適した細胞培養液、ならびに、大量の同じ大きさのスフェロイドを形成するための方法として、水溶性高分子化合物を含有し、粘度が5cP以上である細胞培養液を用いて回転培養法、還流培養法及び、浮遊培養法により培養する方法が記載されている。
 特表2007-512857号公報には、細胞を、生物適合性及び生物分解性の親水性ポリマーを任意に含有している培養培地又は適切な生物学的液に懸濁させる工程と、得られた懸濁液に、イオン濃度が1~500mmol/1の間になるまで二価又は三価のイオン塩を添加する工程と、50μm~5000μmの寸法を有する押出し機、オリフィス、ノズル又はニードルを介して、10~200rpmの速度で攪拌された状態にされた0.01%~5%w/vの濃度を有する培地のアルカリ金属アルジネート溶液中に前記細胞懸濁液を押出す工程と、そのようにして生成されたカプセルを、5℃~40℃の温度で、1~120分の間の時間、橋かけ剤を用いたアルジネートの界面重合を介して任意に橋かけさせる工程と、を含むカプセルの調製方法が記載されている。
 iPS細胞(induced pluripotent stem cells)等の幹細胞の培養方法として、培養容器に収容された幹細胞及び培地を含む細胞懸濁液を、撹拌翼の回転によって撹拌しつつ培養する方法が知られている。
 撹拌の目的の1つは、培養容器内において培地中に含まれる酸素及び栄養分を均一に分散させ、培養中の幹細胞に十分な酸素及び栄養分を供給することである。撹拌の目的の他の1つは、幹細胞が培地中に浮遊した状態を維持することで、幹細胞同士が融合することにより形成される凝集体のサイズが過大となることを抑制することである。撹拌を行わない場合には、幹細胞は沈降して培養容器の底部に堆積し、これにより、幹細胞同士の融合が促進され、凝集体のサイズが過大となるおそれがある。凝集体のサイズが過大となると、凝集体の中心部の幹細胞への酸素及び栄養分の供給が不十分となり、凝集体の中心部の幹細胞が壊死するといった問題が生じる。また、凝集体のサイズが過大となると、幹細胞の分化誘導工程において、分化の進行にばらつきが生じ、分化誘導によって得られる生成物の品質が低下するおそれがある。
 細胞培養の規模を拡大する場合、幹細胞が培地中に浮遊した状態を維持するためには、より大きな撹拌パワーが必要となる。より大きな撹拌パワーを得るためには、撹拌翼の長さを長くしたり、撹拌翼の回転速度を高めたりする等の対応が必要となる。しかしながら、撹拌翼の長さを長くしたり、撹拌翼の回転速度を高めたりすると、撹拌翼の回転によって生じるせん断力が大きくなる。その結果、撹拌翼の回転によって幹細胞が受けるダメージが大きくなり、培養効率の低下及び品質の低下を招く。撹拌翼の回転によって生じるせん断力を抑制した撹拌翼の開発が進められているものの、例えば、1×10個オーダの細胞を対象とする大量培養に適用し得るものではない。このように、少量の細胞を対象とする従来の細胞培養において確立された手法を、単純に適用するだけでは、培養効率の面及び品質の面において、要求レベルを満たすことは困難である。
 開示の技術は、撹拌翼の回転によって幹細胞及び培地を含む細胞懸濁液を撹拌しつつ培養する細胞培養において、例えば、1×10個オーダの細胞を対象とする大量培養にも適用可能な細胞培養方法を提供することを目的とする。
 開示の技術に係る細胞培養方法は、少なくとも1つの撹拌翼の回転によって幹細胞及び培地を含む細胞懸濁液を撹拌しつつ培養する細胞培養方法であって、培地の粘度を10mPa・s以上1000mPa・s以下とし、撹拌翼の長さと、撹拌翼の個数との積を20mm以上500mm以下とし、撹拌翼の平均回転速度を0.01/min以上5/min以下とすることを含む。これにより、幹細胞へのダメージを抑制しつつ幹細胞の沈降を抑制することができるので、例えば、1×10個オーダの細胞を対象とする大量培養にも適用可能である。
 開示の技術に係る細胞培養方法は、幹細胞の分化誘導に用いる添加剤を培地に添加し、撹拌翼の回転によって添加剤を含む細胞懸濁液を撹拌することを含んでいてもよい。
 開示の技術に係る細胞培養方法において、撹拌翼を一定速度で回転させて撹拌を行ってもよい。また、撹拌翼の回転速度を変化させつつ撹拌を行ってもよい。また、撹拌翼を間欠的に回転させて撹拌を行ってもよい。
 培地は、増粘剤が添加されていてもよく、増粘剤はメチルセルロースを含んでいてもよい。
 開示の技術によれば、撹拌翼の回転によって幹細胞及び培地を含む細胞懸濁液を撹拌しつつ培養する細胞培養において、例えば、1×10個オーダの細胞を対象とする大量培養にも適用可能な細胞培養方法が提供される。
開示の技術の実施形態に係る細胞培養方法の一例を示す図である。 開示の技術の実施形態に係る細胞培養方法において用いられる撹拌翼の構成の一例を模式的に示した図である。 開示の技術の実施形態に係る撹拌翼の回転方式の一例を示すグラフである。 開示の技術の実施形態に係る撹拌翼の回転方式の一例を示すグラフである。 開示の技術の実施形態に係る撹拌翼の回転方式の一例を示すグラフである。 比較例に係る撹拌翼の平均回転速度と、幹細胞の生存率及び撹拌パワーとの関係の一例を示すグラフである。 比較例に係る撹拌翼の平均回転速度と、幹細胞の生存率及び撹拌パワーとの関係の一例を示すグラフである。 比較例に係る撹拌翼の平均回転速度と、幹細胞の生存率及び撹拌パワーとの関係の一例を示すグラフである。
 以下、開示の技術の実施形態の一例を、図面を参照しつつ説明する。
 図1は、開示の技術の実施形態に係る細胞培養方法の一例を示す図である。本実施形態に係る細胞培養方法は、培養容器10内において、幹細胞20及び培地21を含む細胞懸濁液22を撹拌しつつ培養することを含む。培養の対象とされる幹細胞20の例として、iPS細胞、間葉系胚細胞(MSC:Mesenchymal stem cell)、ES細胞(embryonic stem cells)が挙げられる。本実施形態に係る細胞培養方法においては、例えば、1×10個オーダの幹細胞が培養の対象とされる。従って、培養容器10は、1×10個オーダの幹細胞20を含む細胞懸濁液22を収容可能な容積(例えば数リットル~数十リットル)を有する。幹細胞20は、複数の幹細胞が凝集した凝集体を形成し得る。
 細胞懸濁液22の撹拌は、少なくとも1つの撹拌翼30の回転によって行われる。細胞懸濁液22を撹拌することで、培地21中に含まれる酸素及び栄養分を培養容器10の全体に均一に分散させることができ、幹細胞20の各々に酸素及び栄養分を行き渡らせることが可能となる。また、細胞懸濁液22を撹拌することで、培地21中に上昇流が発生し、幹細胞20が培地21中を浮遊した状態が維持される。すなわち、幹細胞20の沈降が抑制され、培養容器10の底部に幹細胞20が堆積して凝集体のサイズが過大となることが抑制される。
 本実施形態に係る細胞培養方法において用いられる培地21は、特に限定されず、幹細胞の培養に用いられる公知のあらゆる培地が挙げられる。具体的には、DMEM(Dulbecco's Modified Eagle's Medium)、DMEM:F-12(Dulbecco's Modified Eagle Medium: Nutrient Mixture F-12)、EMEM(Eagle's minimal essential medium)、BME(Basal Medium Eagle)、RPMI1640、MCDB104、MCDB153、199、L15、mTeSR1、TeSR2、E8(Nature Protocols 7: 2029-2040, 2012)、及びこれらの培地に細胞増殖因子を添加した培地などが挙げられる。
 培地には、一般的に添加される各種の成分、例えば、ペニシリン、ストレプトマイシン等の抗生物質;アスコルビン酸、レチノイン酸等のビタミン又はビタミン誘導体;グルコース等の糖源;アミノ酸;亜セレン酸ナトリウム、塩化ナトリウム等の無機塩;トランスフェリン等のタンパク質;インスリン等のホルモン;TGF-β(transforming growth factor-β)、EGF(epidermal growth factor)等のサイトカイン:成長因子;分化抑制因子;2-メルカプトエタノール、ジチオトレイトール等の抗酸化剤;などを添加してもよい。上記成分は、培養期間全体に亘って濃度を所期の範囲に保つために適宜補充してもよい。培地21は、抗原性物質や感染源などが幹細胞20に混入することを抑制する観点から、血清及び血清代替物を含まないことが好ましい。培地21のpHは、例えばpH7.0~8.0であり、好ましくはpH7.3~7.4である。
 本実施形態に係る細胞培養方法において用いられる培地21の粘度は、一般的な浮遊培養法において用いられる培地の粘度と比較して顕著に高い。一般的な浮遊培養法において用いられる培地の粘度は数mPa・sであり、典型的には5mPa・s程度である。これに対して、本実施形態に係る細胞培養方法において用いられる培地21の粘度は、10mPa・s以上1000mPa・s以下とされる。高粘度の培地21を用いることで、通常の粘度の培地を用いる場合と比較して、幹細胞20の沈降速度を低下させることができる。
 培地21の粘性を高めるために増粘剤を培地21に添加してもよい。増粘剤として、例えば、水溶性高分子を用いることができる。水溶性高分子としては、培地21に粘性を付与しうる濃度範囲において、細胞に悪影響を及ぼさない(細胞毒性がない)ものであれば、如何なる水溶性高分子も使用することができる。例えば、セルロース、アガロースなどの多糖、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルエチルセルロース、ヒドロキシプロピルエチルセルロース、エチルヒドロキシエチルセルロース、ジヒドロキシプロピルセルロース、ヒドロキシエチルヒドロキシプロピルセルロースなどの多糖のエーテル、ポリアクリルアミド、ポリエチレンオキシド、ポリビニルピロリドン、エチレングリコール/プロピレングリコール共重合体、ポリエチレンイミンポリビニルメチルエーテル、ポリビニルアルコール、ポリアクリル酸、マレイン酸共重合体などの合成高分子、コラーゲン、ゼラチン、ヒアルロン酸、デキストラン、アルギン酸、カラゲーナン、デンプンなどの生体高分子、あるいはそれらを模倣した人工高分子(例えば、エラスチン様ペプチドなど)が挙げられる。これら水溶性高分子は単独で用いてもよいし、何種類かの水溶性高分子の混合物として用いることもできる。また、これら水溶性高分子の共重合体を用いてもよい。好ましくは、メチルセルロース、ポリエチレングリコール、ポリビニルピロリドン、カルボキシメチルセルロース、又はそれらの混合物である、より好ましくはメチルセルロースである。
 また、培地21の粘性を高めるための増粘剤として、培地21中に不定形な構造体を均一に形成し得る材料を用いることも可能である。このような構造体を形成し得る材料として、高分子化合物が挙げられ、好ましくはアニオン性の官能基を有する高分子化合物が挙げられる。アニオン性の官能基としては、カルボキシ基、スルホ基、リン酸基及びそれらの塩が挙げられ、カルボキシ基またはその塩が好ましい。高分子化合物の好ましい具体例としては、特に制限されるものではないが、単糖類(例えば、トリオース、テトロース、ペントース、ヘキソース、ヘプトース等)が10個以上重合した多糖類が挙げられ、より好ましくは、アニオン性の官能基を有する酸性多糖類が挙げられる。より具体的には、ヒアルロン酸、ジェランガム、脱アシル化ジェランガム、ラムザンガム、ダイユータンガム、キサンタンガム、カラギーナン、ザンタンガム、ヘキスロン酸、フコイダン、ペクチン、ペクチン酸、ペクチニン酸、ヘパラン硫酸、ヘパリン、ヘパリチン硫酸、ケラト硫酸、コンドロイチン硫酸、デルタマン硫酸、ラムナン硫酸及びそれらの塩からなる群より1種又は2種以上から構成されるものが例示される。
 図2は、本実施形態に係る細胞培養方法において用いられる撹拌翼30の構成の一例を模式的に示した図である。本実施形態に係る細胞培養方法においては、撹拌翼30の長さLと、撹拌翼30の個数Nとの積(L×N)が20mm以上500mm以下とされる。
 撹拌翼30の個数Nは、回転により撹拌作用を発現する構造単位の数である。図2には、回転中心Oから互いに異なる方向に伸びた3つの撹拌翼30を備えた撹拌装置が例示されている。なお、本実施形態に係る細胞培養方法においては、複数の撹拌装置を用いて細胞懸濁液22の撹拌を行ってもよい。この場合、複数の撹拌装置の各々が備える撹拌翼の個数の合計が、撹拌翼の個数Nとされる。撹拌翼30の長さLとして、撹拌翼30の回転中心Oから、撹拌翼30の先端までの長さを適用してもよい。
 本実施形態に係る細胞培養方法においては、撹拌翼30の平均回転速度Rが0.01/min以上5/min以下とされる。平均回転速度Rとは、撹拌翼30の1分間当たりの回転数の、培養期間の全体における平均値を意味する。撹拌翼30の回転は連続的であってもよいし、間欠的であってもよい。撹拌翼30の回転が連続的である場合、撹拌翼30は、図3Aに示すように、培養期間の全体に亘り一定速度で回転してもよいし、図3Bに示すように、回転速度を変化させながら回転してもよい。撹拌翼30の回転が間欠的である場合、撹拌翼30は、図3Cに示すように、一定の期間毎に、所定期間に亘りまたは所定の回転数だけ一定速度で回転してもよい。
 ここで、撹拌翼30の回転によって生じるせん断力Fは、下記の(1)式によって表わすことができる。(1)式において、αは定数であり、Rは撹拌翼の平均回転速度であり、Lは撹拌翼30の長さであり、Nは撹拌翼30の個数である。
F=α×R×μ×L×N  ・・・(1)
 撹拌翼30の長さLと撹拌翼30の個数Nとの積(L×N)を大きくする程、また、撹拌翼30の平均回転速度Rを大きくする程、撹拌パワーが大きくなり、幹細胞20の沈降を抑制する効果が高くなる一方、撹拌翼30の回転によって生じるせん断力の大きさFが大きくなり、幹細胞20が受けるダメージが大きくなる。
 撹拌翼30の長さLと撹拌翼30の個数Nとの積を20mm以上とし且つ撹拌翼30の平均回転速度を0.01/min以上とすることで、10mPa・s以上1000mPa・s以下の粘度を有する培地21中において、幹細胞20は浮遊した状態を維持することができる。一方、撹拌翼30の長さLと、撹拌翼30の個数Nとの積を500mm以下とし且つ撹拌翼30の平均回転速度を5/min以下とすることで、幹細胞20が受けるダメージを許容範囲内に収めることができる。
 図4A、図4B、図4Cは、それぞれ、撹拌翼の平均回転速度と、幹細胞の生存率及び撹拌パワーとの関係の一例を示すグラフである。
 図4Aは、数mPa・s(典型的には5mPa・s程度)の粘度を有する培地を用いた、従来の培養方法に対応する。1×10個オーダの幹細胞を培養する場合には、幹細胞が培地中に浮遊した状態を維持するために必要とされる撹拌パワーは、1×10個オーダの幹細胞を培養する場合と比較して大きくなる。撹拌パワーは、撹拌翼の平均回転速度を高くすることで大きくすることができる。一方、撹拌翼の平均回転速度が高くなる程、幹細胞が受けるダメージが大きくなり、幹細胞の生存率が低下する。従来の細胞培養方法によれば、1×10個オーダの幹細胞を培地中に浮遊した状態を維持できるまでに撹拌パワーを大きくすると、幹細胞の生存率が著しく低下して、品質要求レベルを下回るという結果となる。
 図4Bは、低い回転速度でも大きな撹拌パワーが得られるように改良された撹拌翼を用いた場合に対応する。この場合、幹細胞を培地中に浮遊した状態を維持するために必要とされる撹拌翼の平均回転速度は、図4Aに示す場合と比較して小さくなる。これにより、所望の撹拌パワーを得る場合に、幹細胞が受けるダメージが、図4Aに示す場合と比較して低減される。しかしながら、1×10個オーダの幹細胞を培養する場合には、撹拌翼の改良のみでは、品質要求レベルを満たすことが困難である。
 図4Cは、一般的な浮遊培養法において用いられる培地の粘度(典型的には5mPa・s程度)よりも顕著に高い粘度(10mPa・s以上1000mPa・s以下)の培地を用いる、開示の技術の実施形態に係る細胞培養方法に対応する。高粘度の培地を用いることで、幹細胞が培地中に浮遊した状態を維持するために必要とされる撹拌パワーを、通常の粘度の培地を用いる場合と比較して小さくすることができる。従って、1×10個オーダの幹細胞を培養する場合でも、撹拌翼の平均回転速度を十分に小さくすることができ、具体的には、撹拌翼の平均回転速度を0.01/min以上5/min以下とすることができる。高粘度の培地を用いることで、例えば、撹拌翼を2~3時間毎に2~3回転させるといった間欠動作を行うことも可能となる。
 このように、撹拌翼を超低速で回転させた場合には、幹細胞が受けるダメージを低減できるだけでなく、幹細胞がダメージを受けた状態から健全な状態に回復する時間を確保することも可能である。すなわち、撹拌翼を超低速で回転させることで、幹細胞の自己回復能力を活用することができ、幹細胞の生存率の低下を抑制することが可能となる。図4Cにおいて、撹拌翼の平均回転速度の上昇に対する生存率がフラットとなる領域が、幹細胞の自己回復能力を活用できる自己回復領域とされる。開示の技術の実施形態に係る細胞培養方法によれば、1×10個オーダの幹細胞を培養する場合においても、撹拌翼の平均回転速度を、自己回復領域内に抑えることができるので、高い生存率を確保することができ、品質要求レベルを満たすことが可能となる。
 以上のように、開示の技術の実施形態に係る細胞培養方法によれば、幹細胞20の培養に用いられる培地21の粘度は、10mPa・s以上1000mPa・s以下とされる。このように、粘度が顕著に高い培地21を用いることで、通常の粘度の培地を用いる場合と比較して、幹細胞20の沈降速度を低下させることができる。これにより、通常の粘度の培地を用いる場合と比較して、幹細胞20が培地21中に浮遊した状態を維持するために必要とされる撹拌翼30の平均回転速度を低くすることができる。具体的には、撹拌翼30の平均回転速度を0.01/min以上5/min以下の範囲とすることができる。撹拌翼30の平均回転速度を抑制することで、大量培養を実現し得る大型の撹拌翼30を用いる場合でも、撹拌翼30の回転によって生じるせん断力を小さくすることができ、これにより幹細胞20が受けるダメージを小さくすることができる。従って、開示の技術の実施形態に係る細胞培養方法によれば、例えば、1×10個オーダの細胞を対象とする大量培養にも適用可能である。
 開示の技術の実施形態に係る細胞培養方法は、幹細胞を増殖させる拡大培養工程において適用することが可能である。開示の技術の実施形態に係る細胞培養方法を、拡大培養工程において適用することで、例えば、培養の規模を1×10個オーダにまで拡大することが可能である。
 また、開示の技術の実施形態に係る細胞培養方法は、幹細胞の分化誘導を行う分化誘導工程において適用することも可能である。分化誘導工程では、幹細胞の分化誘導に用いる添加剤を培地に添加し、撹拌翼の回転によって上記の添加剤を含む細胞懸濁液を撹拌する処理が行われる。分化誘導に用いる添加剤として、Wntシグナル活性剤及びWntシグナル阻害剤が用いられる。すなわち、分化誘導工程は、幹細胞をWntシグナル活性剤を含む培地中で培養する第1の工程と、第1の工程を経た幹細胞をWntシグナル阻害剤を含む培地中で培養する第2の工程と、を含む。
 分化誘導工程においては、複数の幹細胞に対して分化誘導を均一に行うことが重要である。従って、撹拌によって、分化誘導に用いられる添加剤を培地中に均一に分散させることが重要となる。開示の技術の実施形態に係る細胞培養方法によれば、1×10個オーダの幹細胞に対して分化誘導を行う場合でも、幹細胞へのダメージを抑制しつつ添加剤の均一な分散を実現することが可能である。
 なお、2018年10月2日に出願された日本国特許出願2018-187245の開示は、その全体が参照により本明細書に取り込まれる。また、本明細書に記載された全ての文献、特許出願および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (7)

  1.  少なくとも1つの撹拌翼の回転によって幹細胞及び培地を含む細胞懸濁液を撹拌しつつ培養する細胞培養方法であって、
     前記培地の粘度を10mPa・s以上1000mPa・s以下とし、
     前記撹拌翼の長さと、前記撹拌翼の個数との積を20mm以上500mm以下とし、
     前記撹拌翼の平均回転速度を0.01/min以上5/min以下とする
     細胞培養方法。
  2.  幹細胞の分化誘導に用いる添加剤を前記培地に添加し、前記撹拌翼の回転によって前記添加剤を含む細胞懸濁液を撹拌する
     請求項1に記載の細胞培養方法。
  3.  前記撹拌翼を一定速度で回転させて撹拌を行う
     請求項1または請求項2に記載の細胞培養方法。
  4.  前記撹拌翼の回転速度を変化させつつ撹拌を行う
     請求項1または請求項2に記載の細胞培養方法。
  5.  前記撹拌翼を間欠的に回転させて撹拌を行う
     請求項1または請求項2に記載の細胞培養方法。
  6.  前記培地は、増粘剤が添加されている
     請求項1から請求項5のいずれか1項に記載の細胞培養方法。
  7.  前記増粘剤はメチルセルロースを含む
     請求項6に記載の細胞培養方法。
PCT/JP2019/037590 2018-10-02 2019-09-25 細胞培養方法 WO2020071209A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018187245 2018-10-02
JP2018-187245 2018-10-02

Publications (1)

Publication Number Publication Date
WO2020071209A1 true WO2020071209A1 (ja) 2020-04-09

Family

ID=70055164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037590 WO2020071209A1 (ja) 2018-10-02 2019-09-25 細胞培養方法

Country Status (1)

Country Link
WO (1) WO2020071209A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06105680A (ja) * 1992-09-29 1994-04-19 Sumitomo Pharmaceut Co Ltd 動物細胞の培養方法および培養装置
WO2014017513A1 (ja) * 2012-07-24 2014-01-30 日産化学工業株式会社 培地組成物及び当該組成物を用いた細胞又は組織の培養方法
WO2017126647A1 (ja) * 2016-01-21 2017-07-27 国立大学法人大阪大学 細胞の培養方法
WO2017191775A1 (ja) * 2016-05-06 2017-11-09 富士フイルム株式会社 多能性幹細胞の継代方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06105680A (ja) * 1992-09-29 1994-04-19 Sumitomo Pharmaceut Co Ltd 動物細胞の培養方法および培養装置
WO2014017513A1 (ja) * 2012-07-24 2014-01-30 日産化学工業株式会社 培地組成物及び当該組成物を用いた細胞又は組織の培養方法
WO2017126647A1 (ja) * 2016-01-21 2017-07-27 国立大学法人大阪大学 細胞の培養方法
WO2017191775A1 (ja) * 2016-05-06 2017-11-09 富士フイルム株式会社 多能性幹細胞の継代方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OTSUJI, TOMOMI ET AL: "Mass culture technique of human ES/iPS cells using functional macromolecule Fusion with physical chemistry and the regenerative therapy", CHEMISTRY, vol. 69, no. 9, 2014, pages 12 - 15 *

Similar Documents

Publication Publication Date Title
EP2633033B1 (en) Cell culture material based on microbial cellulose
EP3453753B1 (en) Method for subculturing pluripotent stem cells
KR102368213B1 (ko) 미분화성 유지 배양재료
Jing et al. Alginate/chitosan-based hydrogel loaded with gene vectors to deliver polydeoxyribonucleotide for effective wound healing
CN108849855B (zh) 一种脂肪组织离体保存液及其制备方法
JP6332782B2 (ja) 細胞凝集塊作製法
WO2014082814A1 (en) Serum-free medium for human mesenchymal stem cells
JP7264198B2 (ja) 細胞回収が容易な浮遊培養用培地組成物、及び細胞回収方法
WO2019049985A1 (ja) 細胞保存材料
WO2020071209A1 (ja) 細胞培養方法
AU746982B2 (en) Process for preparing a polyvinyl alcohol gel and mechanically highly stable gel produced by this process
JP6519168B2 (ja) 三次元細胞集合体、並びにその製造方法及び形成用溶液
JP2019075993A (ja) 細胞の三次元培養方法、細胞構造体、細胞構造体の製造方法及び細胞の運搬方法
EP3508564A1 (en) Cell culture carrier, cell culture carrier preparation kit, and method for producing gel/cell hybrid tissue using cell culture carrier and cell culture carrier preparation kit
JP6195144B2 (ja) 足場依存性細胞の培養方法
WO2023053656A1 (ja) 細胞集団及び細胞集団の製造方法
TW201823449A (zh) 高品質之三維培養用培養基組成物的製造方法,及三維培養用培養基組成物之保存安定性的評估方法
CN204638015U (zh) 病毒膜制备用三级供料系统装置
EP2925862A1 (en) Serum-free medium for human mesenchymal stem cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19868901

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19868901

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP