WO2020069811A1 - Component for a combustion chamber of a gas turbine - Google Patents

Component for a combustion chamber of a gas turbine

Info

Publication number
WO2020069811A1
WO2020069811A1 PCT/EP2019/073664 EP2019073664W WO2020069811A1 WO 2020069811 A1 WO2020069811 A1 WO 2020069811A1 EP 2019073664 W EP2019073664 W EP 2019073664W WO 2020069811 A1 WO2020069811 A1 WO 2020069811A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
gas side
ceramic
layer
combustion chamber
Prior art date
Application number
PCT/EP2019/073664
Other languages
German (de)
French (fr)
Inventor
Holger Grote
Alexander Bezold
Benjamin DERMEIK
Marcus Gwenner
Ruth HAMMERBACHER
Friederike Lange
Hannes LORENZ
Andreas Roosen
Nahum Travitzky
Jochen Zwick
Stanley VAN KEMPEN
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2020069811A1 publication Critical patent/WO2020069811A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/007Continuous combustion chambers using liquid or gaseous fuel constructed mainly of ceramic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/30Producing shaped prefabricated articles from the material by applying the material on to a core or other moulding surface to form a layer thereon
    • B28B1/40Producing shaped prefabricated articles from the material by applying the material on to a core or other moulding surface to form a layer thereon by wrapping, e.g. winding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/52Producing shaped prefabricated articles from the material specially adapted for producing articles from mixtures containing fibres, e.g. asbestos cement
    • B28B1/522Producing shaped prefabricated articles from the material specially adapted for producing articles from mixtures containing fibres, e.g. asbestos cement for producing multi-layered articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/24Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
    • B28B11/243Setting, e.g. drying, dehydrating or firing ceramic articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/007Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore distribution, e.g. inhomogeneous distribution of pores
    • C04B38/0074Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore distribution, e.g. inhomogeneous distribution of pores expressed as porosity percentage
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/608Green bodies or pre-forms with well-defined density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • C04B2235/9615Linear firing shrinkage
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/56Using constraining layers before or during sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/704Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the ceramic layers or articles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M2900/00Special features of, or arrangements for combustion chambers
    • F23M2900/05004Special materials for walls or lining
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00018Manufacturing combustion chamber liners or subparts

Definitions

  • the invention relates to a component for an annular combustion chamber of a gas turbine, which has a multilayer ceramic structure.
  • the invention further relates to a method for producing the multilayer ceramic structure.
  • a combustion chamber is a container in which an exothermic reaction takes place through the supply of an oxidizer (oxygen carrier, mostly air) and one or more fuels.
  • Combustion chambers are used for example in gas turbines.
  • An annular combustion chamber has an annular combustion chamber in which one or more fuel injection valves are arranged.
  • For cooling the combustion chamber wall e.g. Air is used that enters through small holes in the combustion chamber wall and thus forms a cooling film.
  • the use of ceramic heat shields - for example in silo or ring combustion chambers, where ceramic heat shields correspond to the so-called "hot wall concept" - can reduce the consumption of cooling air and increase the efficiency of the gas turbines.
  • a first aspect of the invention relates to a component for a combustion chamber of a gas turbine, which has a cold gas side facing a combustion chamber housing of the combustion chamber, a hot gas side facing the hot gas path of the combustion chamber and a core connecting the cold gas side and the hot gas side, the hot gas side, the cold gas side and the core of the component each have at least one material layer comprising a ceramic material.
  • layered structures advantageously enables ceramic components with properties that meet the requirements to be placed in the respective position in the combustion chamber design and provide.
  • Such "layered structures” can be referred to as a multilayer structure.
  • These structures can be produced using the so-called ceramic multilayer technology, which is based on cast films and / or preceramic papers. Both methods in themselves and their combination are completely new for use in
  • the components manufactured using ceramic multilayer technology are characterized by a flexible arrangement of individual layers (also known as hybrid laminates). Furthermore, different materials can be arranged on one level, for example by using preceramic paper strips.
  • the components produced are
  • the combustion chambers for which the component is intended are, in particular, ring combustion chambers, tubular combustion chambers (English, can-type) or tubular ring combustion chambers.
  • the invention is therefore advantageous because, compared to conventional components of ring combustion chambers, additional cooling air is saved and the components are cheaper in terms of manufacturing, service and product costs. Furthermore, the components according to the invention are distinguished by a higher machine availability and a lower reject rate than conventional components.
  • the component according to the invention preferably consists predominantly, particularly preferably completely, of ceramic material. As a result, the advantages described above, brought about by the ceramic material, can be achieved particularly effectively.
  • the component preferably comprises at least one material layer made of an oxide ceramic and / or at least one material layer made of a non-oxide ceramic.
  • the component according to the invention is particularly preferably used as inlet shell plates, burner inserts, liners, ring segments and nozzles and liners for baskets and transitions in CAN combustion systems (tube combustion chambers).
  • the said components are more resistant to corrosion and erosion than conventional metallic components made of metal.
  • the operating temperatures of the new ceramic components are up to 1973 K.
  • the inlet shell plates have dense aluminum oxide layers or yttrium aluminum garnet layers (YAG layers) on their component surface.
  • the at least one layer of the hot gas side preferably has different material properties than the at least one layer of the core.
  • materials are used that best meet the local requirements with their property profile, ie the corresponding thermal, chemical and / or mechanical operating loads.
  • the component surface in the combustion chamber atmosphere is exposed to particularly demanding thermal loads.
  • the core is particularly used for thermal insulation and / or resistance to thermal shock, creep fatigue and crack growth.
  • the at least one layer on the cold gas side serves, for example the thermal insulation and / or optimizes the joint to the wall of the combustion chamber.
  • erosion and corrosion-resistant material is advantageously used for the at least one layer of the hot gas side. It is therefore particularly preferred if the material on the hot gas side has no silicon, that is to say is provided from a silicon-free ceramic material. Furthermore, it is particularly preferred if the material of the at least one layer on the hot gas side has Al2O3 or YAG.
  • thermal expansion gradients can advantageously be generated in multilayer structures with the aid of multilayer technology.
  • the integration of a thermal expansion gradient advantageously reduces stresses and deformations of the component under stress from a temperature gradient.
  • thermal expansion differences up to 4.2e ⁇ 6 K 1 between adjacent
  • a material is advantageous in the surface area of the component according to the invention, ie on the hot gas side (and the cold gas side), which has a smaller thermal expansion than the materials in the core. This is made possible, for example, by using materials with different coefficients of thermal expansion for the individual layers, the material on the hot gas side having a smaller coefficient of thermal expansion than the material of the core.
  • a layer of MgAl204 can be placed in the core.
  • This exemplary type of arrangement advantageously enables a targeted introduction of residual compressive stresses Increase in fracture toughness, as well as the thermal and mechanical load tolerances of the multilayer structure.
  • the material preferably has in the surface area of the component according to the invention, i.e. on the hot gas side (and the cold gas side), a lower sintering shrinkage than the material of the core.
  • a lower sintering shrinkage than the material of the core.
  • the utilization of a different sintering behavior of individual layers also enables a targeted introduction of compressive residual stresses to increase the fracture toughness, as well as the thermal and mechanical load tolerances of the multilayer structure.
  • the sintering shrinkage difference is achieved by using layers with different grain size distributions and can be varied between 0% and 21% with the multi-layer technology. Not only the absolute sintering shrinkage, but also the sintering rate of the layers as a function of the sintering profile, which also depends on the grain size distribution, influences the residual stresses.
  • compressive stresses can be generated in layers that have a higher absolute sintering shrinkage than the adjacent layer.
  • the damage behavior of the multilayer structure can be controlled via the local distribution of the compressive stresses. For example, compressive stresses on the outside of a multilayer structure lead to an increased load tolerance, whereas compressive stresses on the inside result in an increased damage tolerance.
  • the maximum difference between the relative free sinter shrinkage should not be more than 6.5%.
  • the material of the at least one layer on the cold gas side preferably has a higher density than the other layers.
  • Dense materials have an inherent sensitivity to thermal shock, which leads to rapidly growing damage when used in areas with changing temperatures leads. By using dense materials in the cold area of the component, the materials experience smaller temporal temperature differences, but still give the component sufficient mechanical properties and are therefore suitable as a joint.
  • Porous homogeneous and / or heterogeneous materials are preferably used for the component according to the invention.
  • the damage tolerance on the structure level is increased by the materials.
  • Multi-layer structures have a tolerance of damage that can be achieved by targeted processing of the interfaces.
  • Crack deflection and crack absorption mechanisms can be used in a targeted manner through a suitable material selection and layer arrangement. Crack absorption in pores, growing together of cracks, crack deflection due to differences in rigidity between grains of different phases and a high number of existing crack fronts allow these materials to dissipate relatively large amounts of elastic stored energy by forming new surfaces.
  • monolithic materials should have a spherical porosity of at least 37%.
  • the porosity required can be significantly reduced by using a different pore morphology or pore distribution.
  • Heterogeneous materials should consist of a two-phase or multi-phase mixture in which there is a difference in stiffness and / or thermal expansion, or there should be weak interfaces between the phases. A combination of porosity and heterogeneity can also be used.
  • phases can be added in heterogeneous structures, which increase the thermal shock resistance of the material by increasing the thermal conductivity of the layer.
  • the phases can also have a rough grain morphology, which acts as an obstacle for cracks or redirects them and thus with energy, and thus also advantageously increases the thermal shock resistance of the material.
  • the component according to the invention preferably has a combination of rather stiff and / or comparatively less stiff layers.
  • the stiffness of a layer is a function of its elasticity, i.e. it describes the resistance of the layers to elastic deformation caused by mechanical forces or moments.
  • the layers preferably have a different layer thickness.
  • the layers preferably have an internal compressive stress. The said properties increase the overall potential of the damage tolerances of the multilayer component in comparison to monolithic structures.
  • the component according to the invention is preferably produced by a process for ceramic multilayer technology using a ceramic green sheet and / or preceramic paper.
  • a second aspect of the invention relates to a combustion chamber for a gas turbine with a component according to the invention.
  • the combustion chambers are particularly ring combustion chambers, pipe combustion chambers (English, can-type) or pipe ring combustion chambers.
  • a third aspect of the invention relates to a method for producing a component according to the invention, comprising the steps:
  • the method is particularly advantageous because the targeted deformation of the component during manufacture exploits the residual stress caused by the different shrinkage and thermal expansion behavior of the individual layers, in order to cause a macroscopic deformation of the component, and thus enables one Minimization of the necessary post-processing. This works both for symmetrical multilayer structures that only have orthotropic deformations, and for asymmetrical structures that can also be manufactured by using thermal expansion differences and the anisotropic sintering shrinkage behavior of the individual layers, either single or double curved.
  • the method according to the invention is essentially a ceramic multilayer technology based on ceramic green foils and / or preceramic papers.
  • the combination of the comparatively thin starting products for refractory materials, which are processed into multilayer components, enables the provision of ceramic-based components, which are conventionally provided on a metallic basis. General embodiments of the method are explained below.
  • Ceramic film technology essentially has the following steps:
  • a powder is first processed into a slip. Grain fractions of 100 nm to 3 mm are possible (typically 4 fractions: d50: 1 ⁇ m to 3 ⁇ m, d50: 12 ⁇ m to 20 ⁇ m, d50: 400 ⁇ m to 500 ⁇ m; d50: 850 ⁇ m to 950 ⁇ m) Packing behavior and the sintering activity (eg for binding a coarse grain phase through a fine-grained matrix) and thus overall influencing the properties. Fibers can be used. The fibers have the following geometry: length> 1 mm and diameter 2 ⁇ m to 4 ⁇ m. The properties of the fibers, e.g. Toughness can be affected. All conceivable morphologies of the starting materials are possible.
  • a mixture of different grain fractions is possible (typically: mono- to tetramodal). This serves, for example, to increase the packing density and to form a storage structure.
  • the material and grain fraction mixture can also be combined with one another.
  • Mixing takes place by means of mills and mixers, eg Eirich mixers, attritors, ball mills, vessels on rollers, tumble mixers and overhead mixers. Grinding balls and tons of different sizes (ball: 1 mm to 10 mm, tons: 5 mm to 20 mm height) and different materials (e.g. AI2O3, stab. Zr02) can be used.
  • the grinding media size is adjusted to the fineness of the powder fractions to be mixed.
  • Organic auxiliary materials are used in ceramic film technology.
  • Water, ethanol, MEK, hexane, toloul, isopropanol or azeotropic mixtures of the aforementioned solvents are used as solvents.
  • the dispersant has an electrical, steri cal or electrosteric effect (content from 0.01 mass% to 3 mass% based on 100 mass% of the weighed powder, typically 0.5 mass% to 3 mass%).
  • Various binders are possible, for example polyvinyl butyral, polyvinyl alcohol, polyvinyl acetate, polymethyl methacrylate and methyl cellulose, PVP, acrylates etc.
  • the binders have a content of 5% by mass to 12% by mass based on 100% by mass of the powders weighed in. Typical molar masses of the binders are around 40,000 g / mol to 100,000 g / mol.
  • the binders are used to adjust the viscosity (5 Pas to 20 Pas) and the rheological behavior of the slip (shear thinning behavior without thixotropic behavior, setting the strength and flexibility of the green sheets and their lamination behavior).
  • Various plasticizers are also possible, for example benzoa testers, waxes, dioctyl phthalate, dibuthyl phthalate, benzyl butyl phthalate, alkylbenzyl phthalate and polyethylene glycol.
  • the plasticizers have a content of 5 to 12 mass% based on 100 mass% of the weighed powder).
  • the plasticizers are used to adjust the strength and flexibility of the green films and thus their processability (especially with regard to lowering the glass transition temperature of the binder in order to achieve low processing temperatures during lamination).
  • 50 ml to 3 l are added.
  • slip is continuously fed as long as it is necessary.
  • the ceramic foils are then poured and dried.
  • the slip is sieved off if the powder size is sufficiently small ( ⁇ 45 gm).
  • the grinding media used, agglomerates or undissolved organic components are separated (mesh size: 10 gm to 500 gm).
  • the slip is degassed using an Eirich mixer, rotary evaporator (suppress: 180 mbar to 250 mbar, 30 rpm to 120 rpm, 20 min to 45 min), Thinky Mixer, vacuum cabinet or using defoamers. It is essential that the slip is pourable (viscosities 5 Pas to 20 Pas).
  • the film width is chosen between 20 cm and 110 cm.
  • the film length is chosen between 1 m and 10 m, unless the film is continuous.
  • doctoring techniques are used, e.g. Single / double chamber casting shoe, doctor blade, adjustable or fixed doctor blade / casting blades.
  • the drawing speed is from 0.1 m / min up to 10 m / min.
  • Different drying methods can be used: it warms air, saturated solvent atmosphere, countercurrent process, circulating air, IR, microwave and / or temperature-controlled substrates.
  • Different carrier foils can be used (eg steel tape, siliconized PET foil, uncoated PET foil, .
  • the ceramic foils are then cut, stacked and laminated. Cutting and processing are carried out using hot cutting, guillotine shears, lasers, knife cutting, water jet cutters, saws, band saws, milling machines, punching (cutting dimensions 10 x 10 mm 2 to 200 x 200 mm 2 ).
  • the surface quality can be changed by roughening or perforation.
  • Corrugated structures are possible (e.g. corrugated cardboard ren). It is possible to integrate materials within one level (inlays and outside areas made of different foils, strips made of different materials, creating cavities).
  • Stacking is done with or without the help of pins, dies, and or alignment marks. Then thermal compression takes place under conditions of 30 MPa to 50 MPa, 333 K to 373 K, 10 min to 90 min, using matrices (dimensions: 30 x 40 mm 2 to 200 x 200 mm 2 ).
  • the matrices can themselves have curvatures, radii and chamfers for setting certain geometries.
  • Cold low pressure lamination is carried out at ⁇ 5 MPa, room temperature, with double-sided adhesive films with or without backbone (backbone thickness 45 gm to 250 gm), optionally with or without a die.
  • Gluing can be done with aqueous or solvent-based liquid glue, without or with ceramic particle filling, optionally with or without a matrix. Lamination is possible with the help of slips (these slurries correspond in composition to the slurries of the casting). Cold low pressure lamination and thermocompression or gluing and thermocompression can be combined.
  • Generative processes can still be used (e.g. laminated object manufacturing).
  • Binder burnout and sintering are carried out using dense or porous (especially for better degassing) kiln furniture made from AI2O3, MgO, stab.
  • Zr02 or anamullite (5 x 50 x 50 mm 3 up to 50 x 1000 x 1000 mm 3 ) is provided.
  • AI2O3, Mulit or ZrC> 2 are used as separating sand; this serves to reduce the friction between sintered material and kiln furniture.
  • the sintered structure is muffled compared to heating elements in order to achieve an even temperature distribution.
  • the position of the components can vary: lying, standing, supported, unsupported, with or without load, with or without supporting pulse bedded, with a gap between the components or edge on edge.
  • the step takes place under an oxidizing atmosphere, a reducing or protective gas atmosphere is also possible, as is sintering under vacuum. Chamber furnaces, tube furnaces and tunnel furnaces can be used, as well as protective gas furnaces.
  • the debinding is adapted to the decomposition temperatures of the organic system (heating rates from 0.25 K / min to 3 K / min, holding times at temperatures between 473 K to 873 K, holding times from 60 min to 120 min).
  • Sintering takes place at temperatures from 1873 K to 2073 K, holding times from 120 min to 600 min and heating rates from 1 K / min to 10 K / min. Cooling takes place at cooling rates of 1 K / min to 10 K / min. Passive or active cooling is possible.
  • Post-processing includes various activities, e.g. Cutting (band saw, circular saw, low-speed saw, water jet cutting, lasers, ...), milling and grinding (reaching the final format, plane parallelism, edges and corner processing).
  • the changes or variations in the above-mentioned parameters of the process influence the processing behavior and the properties of the green foils, the laminates and the sintered components.
  • the following property ranges can be achieved on the sintered components or the properties mentioned below can be varied: the sintering shrinkage between 0 and 21%, the porosity between 0 and 45%, the thermal conductivity between 7 W / (mK) and 35 W / (mK), the modulus of elasticity between 20 GPa and 400 GPa, the strength between 8 MPa and 350 MPa, the fracture toughness (K IC ), the permeability, the coefficient of thermal expansion between 5 ⁇ 10 6 1 / K and 19 ⁇ 10 6 1 / K, the behavior of corrosion and erosion, thermal fatigue, creep behavior, emission behavior, behavior under temperature change load and thermal shock, and anisotropic behavior in and perpendicular to the casting direction and in thickness.
  • the interfacial strength and internal stresses can be varied.
  • Paper technology essentially has the following steps:
  • a ceramic powder is prepared for the preparation of the paper suspension (d50: 500 nm to 5 ml). Ceramic fibers can also be used (diameter 2 gm to 4 gm, length> 1 mm). All conceivable geometries of the starting material are possible, spherical being preferred. All usable materials can be mixed together. Organic auxiliaries include cellulose fibers: length: 0.5 mm to 2.5 mm; Diameter: 15 gm, anionic and cationic starches, latex and retention aids such as polyethylene enimine.
  • a pulp suspension is first homogenized.
  • the order of the addition steps is essential. Continuous and discontinuous papermaking is possible.
  • the thickness of the paper layer produced be between 200 gm and 1000 gm, the width between 25 cm and 50 cm.
  • the belt speeds are between 1 m / min and 3 m / min.
  • Humidification is adjustable for calendering. Different types of rollers can be used, smooth, corrugated, made of steel or plastic.
  • the temperature of the rollers is between 293 K to 513 K.
  • the line pressure is between 50 kN / m and 400 kN / m.
  • the roller speed is between 0.5 m / min and 5 m / min.
  • the goal of the coating is the production of multilayer structures and surface sealing.
  • the thickness of the coating is between 10 ⁇ m and 100 ⁇ m.
  • Coating is carried out using a ceramic suspension based on water, ceramic powder and organic glue (polyvinyl acetate). Coating is carried out by knife coating or coating system.
  • the cutting is done mechanically, by laser cutting, punching or water jet. Stacking and laminating are carried out as described above for the ceramic films. Binder burnout and sintering also take place as described above for the ceramic foils.
  • Post-processing is carried out, among other things. by cutting with a band saw, circular saw, low-speed saw, water jet cutting, by milling and grinding (reaching the final format, parallelism of the plan, edges and corner processing).
  • the following property ranges can be achieved on the sintered components or the properties mentioned below can be varied: the sintering shrinkage between 8 and 30%, the porosity between 20% and 75%, the thermal conductivity between 2 W / (mK) and 12 W / (mK), the elastic modulus between 10 GPa and 245 GPa, the strength between 5 Pa and 70 MPa, the fracture toughness (Ki , c) , the permeability, the thermal expansion coefficient between 0.5 ⁇ IO -6 1 / K and 9 ⁇ IO -6 1 / K, that
  • Corrosion and erosion behavior thermal fatigue, creep behavior, emission behavior, behavior under thermal shock and thermal shock, and anisotropic behavior in and perpendicular to the casting direction and in the thickness.
  • the interfacial strength and the inherent stresses can be varied in laminates.
  • Figure 1 is a representation of a conventional Ringbrennkam mer.
  • FIG. 2 shows an embodiment of the component according to the invention.
  • Figure 3 is a flow diagram of an embodiment of the inventive method.
  • An annular combustion chamber 1 of a gas turbine has an outer shell 2, which surrounds a cavity 3 forming the combustion chamber 1, as shown in FIG. 1.
  • the Brennkam mer 1 has in Fig. 1 an example of a burner 4, which is arranged in the upper part of the combustion chamber 1; Several burners can be arranged in the combustion chamber.
  • the Bren ner 4 has, as shown in FIG. 1, an access for fuel 5 and two accesses for an oxidation carrier 6, for example compressed air. In the inlet opening 7, the supplied fuel and the air are mixed.
  • the cavity 3 is provided for the combustion of the fuel-air mixture formed.
  • the hot combustion gases pass through outlet 8 into a turbine chamber of the gas turbine (not shown).
  • the cavity 3 is tetat tet with ceramic heat shields 9.
  • the heat shields of the last row before the outlet 8 are referred to as inlet plates 10.
  • the inlet plates 10 are conventionally made of metal. According to the invention, ceramic inlet plates 10 for the ring combustion chamber 1 are provided.
  • FIG. 2 shows an embodiment of an inlet shell plate 10 constructed according to the invention.
  • the inlet plate shell 10 is divided into a hot gas side 11 directed towards the cavity 3, a core 12 adjoining the hot gas side 11 and a cold gas side 3 directed towards the outer shell 2.
  • the hot gas side 11 and the cold gas side 13 each have a layer 15.
  • the core has a number of 17 layers 15 (fewer layers of the core are shown in FIG. 2 for illustration). The number of layers in the individual areas can alternatively be different.
  • the layers 15 are provided from cast ceramic foils or preceramic paper.
  • the Einlaufschalenplat te 10 has a thickness of up to 16 mm.
  • the material of the hot gas side 11 layer is AI2O3.
  • the location of the hot gas side 11 has a thermal expansion coefficient of 8.0e 6 K 1 .
  • One layer of the hot gas side 11 has a thickness of 2790 ⁇ m.
  • the particle size distribution is 15% fine grain (1 ⁇ m to 3 ⁇ m) and 85% coarse grain (1 ⁇ m to 45 ⁇ m).
  • the layer has a porosity of 34.2%.
  • the free sintering shrinkage is 4.7%, the modulus of elasticity is 83.2 GPa and the strength is 33.0 MPa.
  • the material of the layers of the core 12 is AI2O3.
  • MgA ⁇ Cg and / or a mixture of Al2O3 and MgA ⁇ Cg can also be used as the material.
  • the layers of the core 12 have a thermal expansion coefficient of 8.80e -6 K 1 .
  • the thickness of the foils forming the individual layers is 620 ⁇ m each.
  • the particle size distribution is 15% fine grain (1 ⁇ m to 3 ⁇ m) and 85% coarse grain (1 ⁇ m to 45 ⁇ m).
  • the layers have a porosity of 21.1%.
  • the free sinter shrinkage is 10.7%, the elastic modulus 131.6 GPa and the strength 97.5 MPa.
  • the material of the cold gas side 13 layer is AI2O3.
  • the location of the cold gas side 13 has a thermal expansion coefficient of 8.0e 6 K 1 .
  • One layer of the cold gas side 13 has a thickness of 2390 ⁇ m.
  • the particle size distribution is 45% fine grain (1 ⁇ m to 3 ⁇ m) and 55% coarse grain (1 ⁇ m to 45 ⁇ m).
  • the layer has a porosity of 22.5%.
  • the free sintering shrinkage is 8.9%, the elastic modulus 352.5 GPa and the strength 71.0 MPa.
  • a slip approach is provided, which is then cast into foils and / or paper.
  • a slip approach is provided for each foil.
  • An 11-polyethylene bottle is used as the mixing vessel.
  • the grinding balls are six 15 mm high grinding bowls, twelve 10 mm high grinding bowls and Grinding balls with a diameter of 3 mm are used, all of which consist of Al 2 O 3 .
  • a slip mixture of 600 ml is produced.
  • Two different Al 2 O 3 powders are used for the first film (60 vol% from d 5 o: 1 ym to 3 ym and 40 vol%, d 5 o: 12 ym to 20 ym).
  • Two different A ⁇ Cy powders are also used for the second film (30% by volume from d 5 o: 1 ⁇ m to 3 ⁇ m and 70% by volume, d 5 o: 12 ⁇ m to 20 ⁇ m).
  • a 44.59% by volume azeotropic mixture of ethanol and toluene is used as solvent (68% by mass of ethanol, 32% by mass of toluene).
  • Hypermer TM (Croda Inc., Edison, USA) is used as a dispersant in a 1% by mass based on 100% by mass of the weighed powder.
  • PVB 98 Solutia Inc., St. Louis, USA
  • Santizer (Ferro, Antwerp, Belgium) is used as a plasticizer to a 5% by mass based on 100% by mass of the weighed powder.
  • the dispersion and homogenization takes place for 24 hours in a tumble mixer.
  • both slurries are sieved using a sieve with a mesh size of 500 ⁇ m. Both slips are degassed for 30 min at 230 mbar and 60 rpm.
  • a double chamber casting shoe is used for casting.
  • the casting gap for both slurries is 1500 ym (casting knife), and the casting speed is 1800 mm / min.
  • a siliconized polyethylene terephthalate film is used as the carrier film.
  • the viscosity of the first film is 11.3 Pas at a shear rate of 20 s-1; the viscosity of the second film be 9.4 Pas at a shear rate of 20 s-1. Then the films are dried in a saturated solvent atmosphere for 24 hours.
  • the film thickness of both films is approximately 600 ⁇ m.
  • the green foils produced are cut and stacked in a second step S2 of the method according to FIG. 3. Both foils are cut to size 40 x 40 mm 2 using a hot cutter.
  • the blanks are stacked in a steel die with brass stamps with the structure foil 2 / foil 1 / foil 2. As many foils are stacked as are required for the component.
  • a third step S3 the multilayer structure is deformed in a targeted manner in accordance with the desired target structure.
  • the films are laminated via thermal compression (353 K, 42 MPa, 15 min).
  • thermal compression 353 K, 42 MPa, 15 min).
  • matrices that have geometric characteristics that are already suitable for setting certain characteristics of the component to be manufactured.
  • For the targeted deformation there are also different ones
  • the laminates are sintered in an oxidizing atmosphere. Dense A ⁇ Cg plates without separating sand are used as kiln furniture, with complete muffling of the samples. Chamber furnaces are used.
  • the laminates are heated from room temperature at 1 K / min to 423 K, then from 423 K to 523 K at 0.25 K / min and kept at this temperature for 2 hours, then from 523 K to 693 K at 0. 25 K / min heated and held at this temperature for 2 h, then heated from 693 K to 773 K at 0.25 K / min and held at this temperature for 2 h, and then cooled from 773 K to room temperature at 3 K / min.
  • the laminates are heated from room temperature to 1323 K at 3 K / min and held at this temperature for 1 h, then heated from 1323 K to 1973 K at 3 K / min and held at this temperature for 5 h, and then from 1973 K to room temperature at 3 K / min.
  • a fourth step S4 the manufactured component is reworked so that it can be used in an annular combustion chamber according to FIG. 1.
  • This step mainly includes cutting, milling and grinding the component.
  • the laminates produced have a green thickness of 1575 gm and a green density (geometric density according to EN 623-2 and 993-1) of 74.6% TD.
  • the sinter thickness is 1436 gm and the sinter density (immersion measurement according to EN 623-2 and 993-1) 77.2% TD.
  • the sintering shrinkage is laterally 7.0% in the pouring direction and 7.6% perpendicular to the pouring direction and 8.8% vertical.
  • the modulus of elasticity (determined over the US term according to DIN EN 843-2 and DIN EN ISO 12680-2) is 200 GPa in the casting direction and 198 GPa perpendicular to the casting direction.
  • the characteristic strength via likelihood from double ring bending tests) is 101.4 MPa and the Weibull modulus (via likelihood from double ring bending tests) 5.4.
  • a laminate can also be produced from a combination of ceramic foils and paper made of preceramic material using film technology.
  • a slip approach is provided for film and paper.
  • An 11-polyethylene bottle is used as the mixing vessel for the film.
  • Six 15 mm high grinding bowls, twelve 10 mm high grinding bowls and grinding balls with a diameter of 3 mm are used as grinding balls, all of which consist of Al 2 O 3 .
  • a slip mixture of 600 ml is produced.
  • Two different Al203 powders are used for the film (15 vol% from d 5 o: 1 ym to 3 ym and 85 vol%, d 5 o:
  • a ⁇ Cy powder (d50: 0.8 ym) and / or Al 2 O 3 fibers (diameter 2 ym - 4 ym, length> 1 mm) is used for the paper. Water is used as the solvent.
  • the additives used are potato starch, Nychem® (Emerald Performance Materials, Acron, OH, USA) and / or Polymin® (BASF, Ludwigshafen, Germany).
  • the slip is sieved off using a sieve with a mesh size of 500 ⁇ m.
  • the slip is degassed for 30 min at 230 mbar and 60 rpm.
  • a double chamber casting shoe is used for casting.
  • the casting gap is 2500 ym (pouring knife), and the casting speed 3000 mm / min.
  • a siliconized polyethylene terephthalate film is used as the carrier film.
  • the viscosity of the first film is 10.8 Pas at a shear rate of 20 s-1; the viscosity of the second film is 9.4 Pas at a shear rate of 20 s-1.
  • the films are dried in a saturated solvent atmosphere for 24 h.
  • the film thickness of both films is approximately 1100 ⁇ m.
  • a dynamic sheet former is used to produce the paper.
  • the drum speed is 1200 rpm.
  • the pulp suspension is sprayed onto a sieve.
  • the paper is dried at 383 K for 15 min. Then the paper is coated with an adhesive layer and then dried at 323 K.
  • step S2 film and paper are cut and stacked.
  • Foil and paper are cut to the 40 x 40 mm 2 format.
  • the foils are cut using a hot cutter, and that of the paper using a paper cutter.
  • the blanks are then stamped in a steel die with brass and stacked with the structure foil / paper / foil. As many foils are stacked as are necessary for the component.
  • a third step S3 the multilayer structure is deformed in a targeted manner in accordance with the desired target structure.
  • the deformation occurs among other things. during lamination. It is laminated via thermal compression (353 K, 42 MPa, 15 min). Matrices are used which have geometric features that are already suitable for setting certain features of the component to be manufactured. For the targeted deformation, different shrinkage and thermal expansion behavior of the individual layers are also controlled, which lead to residual stresses that are used to cause a macroscopic deformation of the component.
  • the laminates are sintered in an oxidizing atmosphere. Dense A ⁇ Cg plates without separating sand are used as kiln furniture, with complete muffling of the samples. Chamber furnaces are used.
  • the laminates are heated from room temperature at 1 K / min to 423 K, then from 423 K to 523 K at 0.25 K / min and kept at this temperature for 2 hours, then from 523 K to 693 K at 0. 25 K / min heated and held at this temperature for 2 h, then heated from 693 K to 773 K at 0.25 K / min and held at this temperature for 2 h, and then cooled from 773 K to room temperature at 3 K / min.
  • the laminates are heated from room temperature to 1323 K at 3 K / min and held at this temperature for 1 h, then heated from 1323 K to 1973 K at 3 K / min and held at this temperature for 5 h, and then from 1973 K to room temperature at 3 K / min.
  • a fourth step S4 the finished component is reworked, so that it can be used in an annular combustion chamber according to FIG. 1.
  • the step mainly involves cutting, milling and grinding the component.
  • the laminates produced have a green thickness of 2248 gm and a green density (geometric density according to EN 623-2 and 993-1) of 69.5% TD.
  • the sintering thickness is 2045 gm and the sintering density (immersion measurement according to EN 623-2 and 993-1) is 78.2% TD.
  • the sintering shrinkage is 6.4% laterally in the pouring direction and 6, 6% perpendicular to the pouring direction and 9, 0% vertically.
  • the modulus of elasticity (determined over the US term according to DIN EN 843-2 and DIN EN ISO 12680-2) is 175 GPa in the casting direction and 169 GPa perpendicular to the casting direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

The invention relates to a component for a combustion chamber of a gas turbine, which component has a multi-layer structure in the form of ceramic films and/or paper made of pre-ceramic material, the inner and outer structure of the component being matched to the dimensions and conditions in the gas turbine combustion chamber. The invention further relates to a gas turbine combustion chamber having the component and to a method for producing the component.

Description

Beschreibung description
BAUTEIL FÜR EINE BRENNKAMMER EINER GASTURBINE COMPONENT FOR A COMBUSTION CHAMBER OF A GAS TURBINE
Die Erfindung betrifft ein Bauteil für eine Ringbrennkammer einer Gasturbine, das eine mehrlagige keramische Struktur aufweist. Die Erfindung betrifft weiterhin ein Verfahren zum Herstellen der mehrlagigen keramischen Struktur. The invention relates to a component for an annular combustion chamber of a gas turbine, which has a multilayer ceramic structure. The invention further relates to a method for producing the multilayer ceramic structure.
Eine Brennkammer ist ein Behälter, in dem durch Zufuhr eines Oxidators ( Sauerstoffträger, meist Luft) und eines oder meh rerer Brennstoffe eine exotherme Reaktion stattfindet. Brenn kammern werden beispielsweise in Gasturbinen verwendet. Eine Ringbrennkammer hat einen ringförmigen Brennraum, in dem ein oder mehrere Kraftstoffeinspritzventile angeordnet sind. Da bei unterliegen Brennkammern u.a. hohen thermischen Belastun gen. Zum Kühlen der Brennkammerwand kann z.B. Luft verwendet werden, die durch kleine Löcher in der Brennkammerwand ein- tritt und so einen Kühlfilm bildet. Durch den Einsatz kerami scher Hitzeschilde - beispielsweise in Silo- oder Ringbrenn kammern, wobei keramische Hitzeschilde dem sogenannten „Hot Wall-Konzept" entsprechen, kann der Kühlluft-Verbrauch ge senkt und die Effizienz der Gasturbinen erhöht werden. A combustion chamber is a container in which an exothermic reaction takes place through the supply of an oxidizer (oxygen carrier, mostly air) and one or more fuels. Combustion chambers are used for example in gas turbines. An annular combustion chamber has an annular combustion chamber in which one or more fuel injection valves are arranged. There are subject to combustion chambers high thermal loads. For cooling the combustion chamber wall, e.g. Air is used that enters through small holes in the combustion chamber wall and thus forms a cooling film. The use of ceramic heat shields - for example in silo or ring combustion chambers, where ceramic heat shields correspond to the so-called "hot wall concept" - can reduce the consumption of cooling air and increase the efficiency of the gas turbines.
Gleichzeitig können Neuteilkosten bei keramischen Bauteilen gegenüber einer metallischen Variant meist erheblich redu ziert werden. Zusätzlich führt eine um ca. 12% erhöhte Le bensdauer der keramischen Hitzeschilde im Vergleich zu den metallischen Bauteilen zu Kostenvorteilen im Service bzw. ei ner erhöhten Verfügbarkeit der Gasturbinen für den Betreiber. At the same time, new part costs for ceramic components can usually be considerably reduced compared to a metallic variant. In addition, an increase in the service life of the ceramic heat shields by approx. 12% leads to cost advantages in service and an increased availability of the gas turbines for the operator compared to the metallic components.
Der Ersatz weiterer metallischer Bauteile in der Brennkammer durch keramische Bauteile wird zu einer weiteren Kühlluftein sparung und einer weiter erhöhten Lebensdauer der entspre chenden Komponenten führen. In derzeit eingesetzten Ring- brennkammern ist es besonders auf Grund des begrenzten Bau raums der verbleibenden metallischen Komponenten, z.B. von Einlaufschalenplatten, nicht möglich, diese durch monolithi sche Keramik-Standardbauteile zu ersetzen. Für den Ersatz durch keramische Bauteile kommen prinzipiell folgende metal lische Komponenten der Gasturbine in Frage: a. Einlaufschalenplatten The replacement of further metallic components in the combustion chamber by ceramic components will lead to further cooling air savings and a further increased service life of the corresponding components. In currently used ring It is not possible to replace combustion chambers, particularly due to the limited space available for the remaining metallic components, for example intake shell plates, with monolithic ceramic standard components. In principle, the following metallic components of the gas turbine come into question for replacement by ceramic components: a. Inlet bowl plates
b. Brennereinsätze  b. Burner inserts
c. Ringsegment  c. Ring segment
d. Baskets und Transitions im PCS Verbrennungssystem e. Weitere Brennerkomponenten, beispielsweise Düsen oder andere metallische Komponenten mit begrenztem Bauraum.  d. Baskets and Transitions in the PCS Combustion System e. Other burner components, for example nozzles or other metallic components with limited installation space.
Diese Aufgabe wird durch ein Bauteil mit den Merkmalen von Anspruch 1 und durch ein Verfahren mit den Merkmalen von An spruch 16 gelöst. Weitere vorteilhafte Ausgestaltungen und Ausführungsformen der Erfindung ergeben sich aus den Unteran sprüchen, den Figuren und den Ausführungsbeispielen. Die Aus führungsformen der Erfindung sind in vorteilhafter Weise mit einander kombinierbar. This object is achieved by a component with the features of claim 1 and by a method with the features of claim 16. Further advantageous embodiments and embodiments of the invention emerge from the claims at under, the figures and the exemplary embodiments. From the embodiments of the invention can be combined with each other in an advantageous manner.
Ein erster Aspekt der Erfindung betrifft ein Bauteil für eine Brennkammer einer Gasturbine, das eine einem Brennkammerge häuse der Brennkammer zugewandte Kaltgasseite, eine dem Heiß gaspfad der Brennkammer zugewandten Heißgasseite und einen die Kaltgasseite und die Heißgasseite verbindenden Kern auf weist, wobei die Heißgasseite, die Kaltgasseite und der Kern des Bauteils jeweils mindestens eine ein keramisches Material umfassende Materiallage aufweisen. A first aspect of the invention relates to a component for a combustion chamber of a gas turbine, which has a cold gas side facing a combustion chamber housing of the combustion chamber, a hot gas side facing the hot gas path of the combustion chamber and a core connecting the cold gas side and the hot gas side, the hot gas side, the cold gas side and the core of the component each have at least one material layer comprising a ceramic material.
Das Verwenden sogenannter „layered structures" ermöglicht es vorteilhaft, keramische Bauteile mit anforderungsgerechten Eigenschaften der jeweiligen Position in der Brennkammer zu konzipieren und bereitzustellen. Solche „layered structures" lassen sich als Mehrlagenstruktur bezeichnen. Diese Struktu ren können über die sogenannte keramische Mehrlagentechnik, die auf gegossenen Folien und/oder präkeramischen Papieren basiert, hergestellt werden. Beide Verfahren für sich und auch deren Kombination sind völlig neu für den Einsatz in Gasturbinen. Die mittels keramischer Mehrlagentechnik herge stellten Bauteile zeichnen sich durch eine flexible Anordnung von Einzellagen aus (auch als Hybridlaminate bezeichnet) . Weiterhin sind bei der Anordnung unterschiedliche Werkstoffe in einer Ebene möglich, z.B. durch den Einsatz von präkerami schen Papierstreifen. Die hergestellten Bauteile sind im We sentlichen delaminations- und defektfrei. Die Brennkammern, für die das Bauteil vorgesehen ist, sind besonders Ringbrenn kammern, Rohrbrennkammern (engl, can-type) oder Rohr- Ringbrennkammern . The use of so-called "layered structures" advantageously enables ceramic components with properties that meet the requirements to be placed in the respective position in the combustion chamber design and provide. Such "layered structures" can be referred to as a multilayer structure. These structures can be produced using the so-called ceramic multilayer technology, which is based on cast films and / or preceramic papers. Both methods in themselves and their combination are completely new for use in The components manufactured using ceramic multilayer technology are characterized by a flexible arrangement of individual layers (also known as hybrid laminates). Furthermore, different materials can be arranged on one level, for example by using preceramic paper strips. The components produced are The combustion chambers for which the component is intended are, in particular, ring combustion chambers, tubular combustion chambers (English, can-type) or tubular ring combustion chambers.
Weiterhin können gezielt Bauteileigenschaften optimiert wer den. Dies wird besonders durch schwache und/oder starke Furthermore, specific component properties can be optimized. This is particularly due to weak and / or strong ones
Grenzflächen ermöglicht, die eine gezielte Absorption der Rissenergie ermöglichen. Weiterhin können Bauteileigenschaf ten durch eine gezielte Einstellung der Mikrostruktur und durch eine gezielte Einstellung der Eigenspannungen optimiert werden. Zudem können in den erfindungsgemäßen Bauteilen be stimmte geometrische Anforderungen (Radien, Stufen u.ä.) rea lisiert werden. Enables interfaces that allow targeted absorption of the crack energy. Furthermore, component properties can be optimized through a targeted adjustment of the microstructure and through a targeted adjustment of the residual stresses. In addition, certain geometric requirements (radii, steps and the like) can be realized in the components according to the invention.
Die Erfindung ist daher vorteilhaft, weil im Vergleich zu herkömmlichen Bauteilen von Ringbrennkammern weitere Kühlluft eingespart wird und die Bauteile günstiger in Bezug auf Her- stellungs-, Service und Produktkosten sind. Weiterhin zeich nen sich die erfindungsgemäßen Bauteile durch eine höhere Ma schinenverfügbarkeit und geringeren Ausschussrate als her kömmliche Bauteile aus. Das erfindungsgemäße Bauteil besteht bevorzugt überwiegend, besonders bevorzugt vollständig aus keramischem Material. Dadurch lassen sich die oben beschriebenen, durch das kerami sche Material bewirkten Vorteile besonders effektiv errei chen. Vorzugsweise umfasst das Bauteil mindestens eine Mate riallage aus einer oxidischen Keramik und/oder mindestens ei ne Materiallage aus einer nichtoxidischen Keramik. The invention is therefore advantageous because, compared to conventional components of ring combustion chambers, additional cooling air is saved and the components are cheaper in terms of manufacturing, service and product costs. Furthermore, the components according to the invention are distinguished by a higher machine availability and a lower reject rate than conventional components. The component according to the invention preferably consists predominantly, particularly preferably completely, of ceramic material. As a result, the advantages described above, brought about by the ceramic material, can be achieved particularly effectively. The component preferably comprises at least one material layer made of an oxide ceramic and / or at least one material layer made of a non-oxide ceramic.
Besonders bevorzugt wird das erfindungsgemäße Bauteil einge setzt als Einlaufschalenplatten, Brennereinsätze, Liner, Ringsegmente und Düsen sowie Liner für Baskets und Transiti ons in CAN- Verbrennungssystemen (Rohrbrennkammern) . Die be sagten Bauteile sind im Vergleich zu herkömmlichen metalli schen Bauteilen aus Metall resistenter gegen Korrosion und Erosion. Die Betriebstemperaturen der neuen keramischen Bau teile sind bis zu 1973 K hoch. Es ist zum Schutz vor Heißgas korrosion besonders vorteilhaft, wenn die Einlaufschalenplat ten dichte Aluminiumoxidschichten oder Yttrium-Aluminium Gra nat-Schichten (YAG-Schichten) an ihrer Bauteiloberfläche auf weisen . The component according to the invention is particularly preferably used as inlet shell plates, burner inserts, liners, ring segments and nozzles and liners for baskets and transitions in CAN combustion systems (tube combustion chambers). The said components are more resistant to corrosion and erosion than conventional metallic components made of metal. The operating temperatures of the new ceramic components are up to 1973 K. For protection against hot gas corrosion, it is particularly advantageous if the inlet shell plates have dense aluminum oxide layers or yttrium aluminum garnet layers (YAG layers) on their component surface.
Vorzugsweise weist bei dem erfindungsgemäßen Bauteil die min destens eine Schicht der Heißgasseite andere Materialeigen schaften auf als die mindestens eine Schicht des Kerns. In den jeweiligen Bauteilbereichen werden dabei Materialien ein gesetzt, die mit ihrem Eigenschaftsprofil den lokalen Anfor derungen am besten gerecht werden, d.h. den entsprechenden thermischen, chemischen und/oder mechanischen Betriebslasten. Die Bauteiloberfläche in der Brennkammeratmosphäre ist beson ders anspruchsvollen thermischen Belastungen ausgesetzt. Der Kern dient besonders der Wärmedämmung und/oder der Beständig keit gegen Thermoschock, Kriechermüdung und Risswachstum. Die mindestens eine Schicht der Kaltgasseite dient beispielsweise der Wärmedämmung und/oder optimiert die Fügestelle zur Wand der Brennkammer. In the component according to the invention, the at least one layer of the hot gas side preferably has different material properties than the at least one layer of the core. In the respective component areas, materials are used that best meet the local requirements with their property profile, ie the corresponding thermal, chemical and / or mechanical operating loads. The component surface in the combustion chamber atmosphere is exposed to particularly demanding thermal loads. The core is particularly used for thermal insulation and / or resistance to thermal shock, creep fatigue and crack growth. The at least one layer on the cold gas side serves, for example the thermal insulation and / or optimizes the joint to the wall of the combustion chamber.
Dabei wird für die mindestens eine Schicht der Heißgasseite vorteilhafterweise erosions- und korrosionsbeständiges Mate rial verwendet. Deshalb ist es besonders bevorzugt, wenn das Material der Heißgasseite kein Silizium aufweist, also aus einem Silizium-freien keramischen Werkstoff bereitgestellt wird. Weiterhin ist es besonders bevorzugt, wenn das Material der mindestens einen Schicht der Heißgasseite AI2O3 oder YAG aufweist . In this case, erosion and corrosion-resistant material is advantageously used for the at least one layer of the hot gas side. It is therefore particularly preferred if the material on the hot gas side has no silicon, that is to say is provided from a silicon-free ceramic material. Furthermore, it is particularly preferred if the material of the at least one layer on the hot gas side has Al2O3 or YAG.
Weiterhin können mithilfe der Mehrlagentechnologie vorteil haft thermische Ausdehnungsgradienten in Mehrschichtstruktu- ren erzeugt werden. Die Integration eines thermischen Ausdeh nungsgradienten verringert vorteilhafterweise Spannungen und Verformungen des Bauteils unter Beanspruchung durch einen Temperaturgradienten. Hierbei sind thermische Ausdehnungsun terschiede bis 4.2e~6 K1 zwischen aneinandergrenzenden Furthermore, thermal expansion gradients can advantageously be generated in multilayer structures with the aid of multilayer technology. The integration of a thermal expansion gradient advantageously reduces stresses and deformations of the component under stress from a temperature gradient. Here are thermal expansion differences up to 4.2e ~ 6 K 1 between adjacent
Schichten möglich. Vorteilhaft ist ein Material im Oberflä chenbereich des erfindungsgemäßen Bauteils, d.h. an der Heiß gasseite (und der Kaltgasseite) , das eine kleinere thermische Ausdehnung hat, als die Materialien im Kern. Dies wird z.B. durch Verwenden von Werkstoffen mit unterschiedlichen thermi schen Ausdehnungskoeffizienten für die einzelnen Schichten ermöglicht, wobei das Material an der Heißgasseite einen kleineren thermischen Ausdehnungskoeffizienten aufweist als das Material des Kerns. So kann zum Beispiel eine Schicht MgAl204 im Kernangeordnet werden. Ein Werkstoff aus diesem Material hat einen verhältnismäßig hohen Ausdehnungskoeffi zienten (a = 8.80e-6 K1) im Vergleich zu AI2O3 (a = 8.00e-6 K x) . Diese beispielhafte Art der Anordnung ermöglicht vorteil haft ein gezieltes Einbringen von Druck-Eigenspannungen, zur Erhöhung der Bruchzähigkeit, sowie der thermischen und mecha nischen Lasttoleranzen der Mehrschichtstruktur . Layers possible. A material is advantageous in the surface area of the component according to the invention, ie on the hot gas side (and the cold gas side), which has a smaller thermal expansion than the materials in the core. This is made possible, for example, by using materials with different coefficients of thermal expansion for the individual layers, the material on the hot gas side having a smaller coefficient of thermal expansion than the material of the core. For example, a layer of MgAl204 can be placed in the core. A material made of this material has a relatively high coefficient of expansion (a = 8.80e -6 K 1 ) compared to AI2O3 (a = 8.00e -6 K x ). This exemplary type of arrangement advantageously enables a targeted introduction of residual compressive stresses Increase in fracture toughness, as well as the thermal and mechanical load tolerances of the multilayer structure.
Bevorzugt weist das Material im Oberflächenbereich des erfin dungsgemäßen Bauteils, d.h. an der Heißgasseite (und der Kaltgasseite) , eine niedrigere Sinterschwindung auf als das Material des Kerns. Die Ausnutzung eines unterschiedlichen Sinterverhaltens von Einzelschichten ermöglicht ebenfalls ein gezieltes Einbringen von Druck-Eigenspannungen, zur Erhöhung der Bruchzähigkeit, sowie der thermischen und mechanischen Lasttoleranzen der Mehrschichtstruktur . Die Sinterschwin dungsdifferenz wird durch die Verwendung von Schichten mit unterschiedlichen Korngrößenverteilungen erreicht und kann mit der Mehrlagentechnologie zwischen 0% und 21% variiert werden. Nicht nur die absolute Sinterschwindung, sondern auch die Sinterrate der Schichten als Funktion des Sinterprofils, welche ebenfalls von der Korngrößenverteilung abhängt, beein flusst die Eigenspannungen. Dadurch können Druckspannungen in Schichten, die eine höhere absolute Sinterschwindung aufwei sen als der angrenzenden Schicht, erzeugt werden. Über die örtliche Verteilung der Druckspannungen kann das Schädigungs verhalten der Mehrschichtstruktur gesteuert werden. So führen Druckspannungen an der Außenseite einer Mehrschichtstruktur zu einen erhöhten Lasttoleranz, während Druckspannungen im Inneren dahingegen eine erhöhte Schädigungstoleranz bewirken. Die maximale Differenz zwischen der relativen freien Sinter schwindung soll nicht mehr als 6,5% betragen. The material preferably has in the surface area of the component according to the invention, i.e. on the hot gas side (and the cold gas side), a lower sintering shrinkage than the material of the core. The utilization of a different sintering behavior of individual layers also enables a targeted introduction of compressive residual stresses to increase the fracture toughness, as well as the thermal and mechanical load tolerances of the multilayer structure. The sintering shrinkage difference is achieved by using layers with different grain size distributions and can be varied between 0% and 21% with the multi-layer technology. Not only the absolute sintering shrinkage, but also the sintering rate of the layers as a function of the sintering profile, which also depends on the grain size distribution, influences the residual stresses. As a result, compressive stresses can be generated in layers that have a higher absolute sintering shrinkage than the adjacent layer. The damage behavior of the multilayer structure can be controlled via the local distribution of the compressive stresses. For example, compressive stresses on the outside of a multilayer structure lead to an increased load tolerance, whereas compressive stresses on the inside result in an increased damage tolerance. The maximum difference between the relative free sinter shrinkage should not be more than 6.5%.
Vorzugsweise weist das Material der mindestens einen Schicht an der Kaltgasseite eine höhere Dichte auf als die anderen Schichten. Dichte Werkstoffe haben eine inhärente Thermos- chockempfindlichkeit, die bei der Anwendung in Bereichen mit wechselnden Temperaturen zu schnell wachsender Schädigung führt. Durch die Anwendung dichter Werkstoffe im kalten Be reich des Bauteils erfahren die Werkstoffe geringere zeitli che Temperaturunterschiede, verleihen dem Bauteil aber noch ausreichende mechanische Eigenschaften und eignen sich somit als Fügestelle. The material of the at least one layer on the cold gas side preferably has a higher density than the other layers. Dense materials have an inherent sensitivity to thermal shock, which leads to rapidly growing damage when used in areas with changing temperatures leads. By using dense materials in the cold area of the component, the materials experience smaller temporal temperature differences, but still give the component sufficient mechanical properties and are therefore suitable as a joint.
Vorzugsweise werden für das erfindungsgemäße Bauteil poröse homogene und/oder heterogene Werkstoffe verwendet. Durch die Werkstoffe wird die Schädigungstoleranz auf der Gefüge-Ebene erhöht. Mehrlagenstrukturen verfügen über eine Schädigungsto- leranz, die sich durch gezielte Bearbeitung der Grenzflächen erreichen lässt. Rissablenkungs- und Rissabsorptionsmechanis men lassen sich durch eine geeigneten WerkstoffSelektion und Schichtanordnung gezielt einsetzen. Rissabsorption in Poren, Zusammenwachsen von Rissen, Rissumlenkung durch Steifigkeits unterschiede zwischen Körnern unterschiedlicher Phasen und einer hohen Anzahl an bereits vorliegenden Rissfronten erlau ben diesen Werkstoffen verhältnismäßig große Mengen an elas tisch gespeicherter Energie abzubauen indem neue Oberflächen gebildet werden. Zur Integration der energieabbauenden Mecha nismen sollten monolithische Werkstoffe eine sphärische Poro sität von mindestens 37% aufweisen. Durch Verwendung einer anderen Porenmorphologie oder Porenverteilung kann die benö tigte Porosität wesentlich verringert werden. Heterogene Werkstoffe sollten aus einem Zwei- oder Mehrphasengemisch be stehen, in denen ein Steifigkeits- und/oder ein thermischer Ausdehnungsunterschied vorliegt, bzw. sollten schwache Grenz flächen zwischen den Phasen vorliegen. Auch kann eine Kombi nation von Porosität und Heterogenität angewandt werden. Au ßerdem können in heterogenen Gefügen Phasen hinzugefügt wer den, die die Thermoschockbeständigkeit des Werkstoffs, durch eine Erhöhung der Wärmeleitfähigkeit der Schicht, erhöhen.Porous homogeneous and / or heterogeneous materials are preferably used for the component according to the invention. The damage tolerance on the structure level is increased by the materials. Multi-layer structures have a tolerance of damage that can be achieved by targeted processing of the interfaces. Crack deflection and crack absorption mechanisms can be used in a targeted manner through a suitable material selection and layer arrangement. Crack absorption in pores, growing together of cracks, crack deflection due to differences in rigidity between grains of different phases and a high number of existing crack fronts allow these materials to dissipate relatively large amounts of elastic stored energy by forming new surfaces. In order to integrate the energy-degrading mechanisms, monolithic materials should have a spherical porosity of at least 37%. The porosity required can be significantly reduced by using a different pore morphology or pore distribution. Heterogeneous materials should consist of a two-phase or multi-phase mixture in which there is a difference in stiffness and / or thermal expansion, or there should be weak interfaces between the phases. A combination of porosity and heterogeneity can also be used. In addition, phases can be added in heterogeneous structures, which increase the thermal shock resistance of the material by increasing the thermal conductivity of the layer.
Die Phasen können auch eine grobe Kornmorphologie aufweisen, die als Hindernis für Risse wirkt bzw. diese umlenkt und so- mit Energie entzieht, und damit auch vorteilhaft die Thermos chockbeständigkeit des Werkstoffs erhöht. The phases can also have a rough grain morphology, which acts as an obstacle for cracks or redirects them and thus with energy, and thus also advantageously increases the thermal shock resistance of the material.
Vorzugsweise weist das erfindungsgemäße Bauteil eine Kombina tion von eher steifen und/oder vergleichsweise weniger stei fen Schichten auf. Die Steife einer Schicht ist eine Funktion ihrer Elastizität, beschreibt also den Widerstand der Schich ten gegen elastische Verformung durch mechanische Kräfte oder Momente. Weiterhin weisen die Schichten vorzugsweise eine un terschiedliche Schichtdicke auf. Weiterhin weisen die Schich ten vorzugsweise eine Druck-Eigenspannung auf. Die besagten Eigenschaften erhöhen das Gesamtpotential der Schädigungsto- leranzen des mehrlagigen Bauteils im Vergleich zu monolithi schen Strukturen. The component according to the invention preferably has a combination of rather stiff and / or comparatively less stiff layers. The stiffness of a layer is a function of its elasticity, i.e. it describes the resistance of the layers to elastic deformation caused by mechanical forces or moments. Furthermore, the layers preferably have a different layer thickness. Furthermore, the layers preferably have an internal compressive stress. The said properties increase the overall potential of the damage tolerances of the multilayer component in comparison to monolithic structures.
Vorzugsweise wird das erfindungsgemäße Bauteil durch ein Ver fahren zur keramischen Mehrlagentechnik unter Verwendung ei ner keramischen Grünfolie und/oder präkeramischem Papier her gestellt. The component according to the invention is preferably produced by a process for ceramic multilayer technology using a ceramic green sheet and / or preceramic paper.
Ein zweiter Aspekt der Erfindung betrifft eine Brennkammer für eine Gasturbine mit einem erfindungsgemäßen Bauteil. Die Brennkammern sind besonders Ringbrennkammern, Rohrbrennkam mern (engl, can-type) oder Rohr-Ringbrennkammern. A second aspect of the invention relates to a combustion chamber for a gas turbine with a component according to the invention. The combustion chambers are particularly ring combustion chambers, pipe combustion chambers (English, can-type) or pipe ring combustion chambers.
Ein dritter Aspekt der Erfindung betrifft ein Verfahren zum Herstellen eines erfindungsgemäßen Bauteils, umfassend die Schritte : A third aspect of the invention relates to a method for producing a component according to the invention, comprising the steps:
Herstellen von keramischen Folien und/oder Papier aus einem präkeramischen Material, Aufeinanderschichten einer bestimmten Anzahl von Lagen, die jeweils aus einer keramischen Folie und/oder Papier aus einem präkeramischen Material bestehen, gezieltes Verformen der gebildeten Mehrlagenstruk tur, Manufacture of ceramic foils and / or paper from a preceramic material, Stacking a certain number of layers, each consisting of a ceramic film and / or paper made of a preceramic material, targeted deformation of the multilayer structure formed,
Nachbearbeitung. Post processing.
Die Vorteile des erfindungsgemäßen Verfahrens entsprechen im Wesentlichen den Vorteilen des erfindungsgemäßen Bauteils. The advantages of the method according to the invention essentially correspond to the advantages of the component according to the invention.
Das Verfahren ist besonders vorteilhaft, weil das gezielte Verformen des Bauteils während der Herstellung die Eigenspan nung, die durch das unterschiedliche Schwindungs- und thermi schen Ausdehnungsverhalten der Einzelschichten bewirkt wer den, ausnutzt, um eine makroskopische Verformung des Bauteils zu bewirken, und ermöglichen damit eine Minimierung der nöti gen Nachbearbeitung. Dies funktioniert sowohl für symmetri sche Mehrlagenstrukturen, die nur orthotrope Verformungen aufweisen, als auch für asymmetrische Strukturen die zusätz lich, durch Ausnutzung von thermischen Ausdehnungsdifferenzen und das anisotrope Sinterschwindungsverhalten der Einzel schichten, einzeln oder doppelt gekrümmt hergestellt werden können . The method is particularly advantageous because the targeted deformation of the component during manufacture exploits the residual stress caused by the different shrinkage and thermal expansion behavior of the individual layers, in order to cause a macroscopic deformation of the component, and thus enables one Minimization of the necessary post-processing. This works both for symmetrical multilayer structures that only have orthotropic deformations, and for asymmetrical structures that can also be manufactured by using thermal expansion differences and the anisotropic sintering shrinkage behavior of the individual layers, either single or double curved.
Das erfindungsgemäße Verfahren ist im Wesentlichen eine kera mische Mehrlagentechnik, basierend auf keramischen Grünfolien und/oder präkeramischen Papieren. Die Kombination der für feuerfeste Werkstoffe vergleichsweise dünnen Ausgangsproduk te, die zu Mehrlagenbauteilen verarbeitet werden, ermöglicht das Bereitstellen von Bauteilen auf Keramikbasis, die her kömmlicherweise auf metallischer Basis bereitgestellt werden. Im Folgenden werden allgemeine Ausführungsformen des Verfah rens erläutert. The method according to the invention is essentially a ceramic multilayer technology based on ceramic green foils and / or preceramic papers. The combination of the comparatively thin starting products for refractory materials, which are processed into multilayer components, enables the provision of ceramic-based components, which are conventionally provided on a metallic basis. General embodiments of the method are explained below.
Die keramische Folientechnik weist im Wesentlichen folgende Schritte auf: Ceramic film technology essentially has the following steps:
- Pulveraufbereitung zum Schlicker,  - powder preparation for slip,
- Foliengießen und Trocknung,  - film casting and drying,
- Zuschneiden, Stapeln und Laminieren,  - cutting, stacking and laminating,
- Binderausbrand und Sintern,  - binder burnout and sintering,
- Nachbearbeitung.  - Post processing.
Bei der keramischen Folientechnik wird zuerst ein Pulver zum Schlicker aufbereitet. Dabei sind Kornfraktionen von 100 nm bis 3 mm möglich (typischerweise 4 Fraktionen: d50: 1 ym bis 3 ym, d50: 12 ym bis 20 ym, d50: 400 ym bis 500 ym; d50: 850 ym bis 950 ym) Kornfraktionen bestimmen das Packungsverhalten und die Sinteraktivität (z.B. zur Bindung einer groben Korn phase durch eine feinkörnige Matrix) und damit insgesamt Be einflussung der Eigenschaften. Es können Fasern verwendet werden. Die Fasern weisen folgende Geometrie auf: Länge > 1 mm und Durchmesser 2 ym bis 4 ym. Die Eigenschaften der Fa sern, wie z.B. Zähigkeit, können beeinflusst werden. Es sind alle denkbaren Morphologien der Ausgangsstoffe möglich. With ceramic film technology, a powder is first processed into a slip. Grain fractions of 100 nm to 3 mm are possible (typically 4 fractions: d50: 1 μm to 3 μm, d50: 12 μm to 20 μm, d50: 400 μm to 500 μm; d50: 850 μm to 950 μm) Packing behavior and the sintering activity (eg for binding a coarse grain phase through a fine-grained matrix) and thus overall influencing the properties. Fibers can be used. The fibers have the following geometry: length> 1 mm and diameter 2 μm to 4 μm. The properties of the fibers, e.g. Toughness can be affected. All conceivable morphologies of the starting materials are possible.
Bei der keramischen Folientechnik können auch alle Materia lien miteinander gemischt werden. Es ist eine Mischung ver schiedener Kornfraktionen möglich (typischerweise: mono- bis tetramodal) . Dies dient z.B. der Erhöhung der Packungsdichte und der Ausbildung eines Einlagerungsgefüges. Die Material- und Kornfraktionsmischung kann auch miteinander kombiniert werden. Das Mischen erfolgt mittels Mühlen und Mischern, z.B. Eirichmischer, Attritor, Kugelmühlen, Gefäßen auf Walzen, Taumelmischer und Überkopfmischer. Es können Mahlkugeln und - tonnen verschiedener Größen (Kugel: 1 mm bis 10 mm, Tonnen: 5 mm bis 20 mm Höhe) und verschiedener Materialien (z.B. AI2O3, stab. Zr02) verwendet werden. Die Mahlkörpergröße wird an die Feinheit der zu mischenden Pulverfraktionen angepasst. With ceramic film technology, all materials can also be mixed with one another. A mixture of different grain fractions is possible (typically: mono- to tetramodal). This serves, for example, to increase the packing density and to form a storage structure. The material and grain fraction mixture can also be combined with one another. Mixing takes place by means of mills and mixers, eg Eirich mixers, attritors, ball mills, vessels on rollers, tumble mixers and overhead mixers. Grinding balls and tons of different sizes (ball: 1 mm to 10 mm, tons: 5 mm to 20 mm height) and different materials (e.g. AI2O3, stab. Zr02) can be used. The grinding media size is adjusted to the fineness of the powder fractions to be mixed.
Bei der keramischen Folientechnik werden organische Hilfs stoff verwendet. Als Lösemittel werden Wasser, Ethanol, MEK, Hexan, Toloul, Isopropanol oder azeotrope Mischungen aus den vorher genannten Lösemitteln (Gehalt von 33 Vol% bis 55 Vol%) verwendet. Der Dispergator hat eine elektrische, steri sche oder elektrosterische Wirkung (Gehalt von 0.01 Massen% bis 3 Massen% bezogen auf 100 Massen% der eingewogenen Pul ver, typischerweise 0.5 Massen% bis 3 Massen%) . Es sind ver schiedene Binder möglich, z.B. Polyvinylbutyral , Polyvinylal kohol, Polyvinylacetat, Polymethylmethacrylat und Methylcel lulose, PVP, Acrylate u.a. Die Binder haben einen Gehalt von 5 Massen% bis 12 Massen% bezogen auf 100 Massen% der eingewo genen Pulver. Typische molare Massen der Binder liegen um 40.000 g/mol bis 100.000 g/mol. Die Binder dienen zum Ein stellen der Viskosität (5 Pas bis 20 Pas) und rheologisches Verhalten der Schlicker (scherverdünnendes Verhalten ohne thixotropes Verhalten, Einstellung der Festigkeit und Flexi bilität der Grünfolien sowie deren Laminierverhalten) . Es sind weiterhin verschiedene Weichmacher möglich, z.B. Benzoa tester, Wachse, Dioctylphthalat, Dibuthylphthalat, Benzyl- butylphthalat, Alkylbenzylphthalat und Polyethylenglykol. Die Weichmacher haben einen Gehalt von 5 bis 12 Massen% bezogen auf 100 Massen% der eingewogenen Pulver) . Die Weichmacher dienen zum Einstellen der Festigkeit und Flexibilität der Grünfolien und damit deren Verarbeitbarkeit (besonders in Be zug auf ein Herabsetzen der Glastemperatur des Binders, um niedrige Verarbeitungstemperaturen beim Laminieren zu errei chen) . Bei einem diskontinuierlichen Gießen werden 50 ml bis 3 1 zu geführt. Bei einem kontinuierliches Gießen wird kontinuier lich Schlicker zugeführt, solange es notwendig ist. Organic auxiliary materials are used in ceramic film technology. Water, ethanol, MEK, hexane, toloul, isopropanol or azeotropic mixtures of the aforementioned solvents (content from 33% by volume to 55% by volume) are used as solvents. The dispersant has an electrical, steri cal or electrosteric effect (content from 0.01 mass% to 3 mass% based on 100 mass% of the weighed powder, typically 0.5 mass% to 3 mass%). Various binders are possible, for example polyvinyl butyral, polyvinyl alcohol, polyvinyl acetate, polymethyl methacrylate and methyl cellulose, PVP, acrylates etc. The binders have a content of 5% by mass to 12% by mass based on 100% by mass of the powders weighed in. Typical molar masses of the binders are around 40,000 g / mol to 100,000 g / mol. The binders are used to adjust the viscosity (5 Pas to 20 Pas) and the rheological behavior of the slip (shear thinning behavior without thixotropic behavior, setting the strength and flexibility of the green sheets and their lamination behavior). Various plasticizers are also possible, for example benzoa testers, waxes, dioctyl phthalate, dibuthyl phthalate, benzyl butyl phthalate, alkylbenzyl phthalate and polyethylene glycol. The plasticizers have a content of 5 to 12 mass% based on 100 mass% of the weighed powder). The plasticizers are used to adjust the strength and flexibility of the green films and thus their processability (especially with regard to lowering the glass transition temperature of the binder in order to achieve low processing temperatures during lamination). In the case of discontinuous pouring, 50 ml to 3 l are added. In the case of continuous casting, slip is continuously fed as long as it is necessary.
Die keramischen Folien werden dann gegossen und getrocknet. Der Schlicker wird bei ausreichend kleiner Pulvergröße (<45 gm) abgesiebt. Dabei der die verwendeten Mahlkörper, Agglome- rate oder nicht aufgelöster Organikbestandteile abgeschieden (Maschengröße: 10 gm bis 500 gm) . Der Schlicker wird unter Verwenden von Eirichmischer, Rotationsverdampfer (Unterdrück: 180 mbar bis 250 mbar, 30 rpm bis 120 rpm, 20 min bis 45 min) , Thinky Mixer, Vakuumschrank oder Verwendung von Ent schäumern entgast. Wesentlich ist, dass der Schlicker ver gießbar ist (Viskositäten 5 Pas bis 20 Pas) . Die Folienbreite wird zwischen 20 cm und 110 cm gewählt. Die Folienlänge wird zwischen 1 m und 10 m gewählt, sofern die Folie nicht konti nuierlich ist. Es werden unterschiedlicher Rakeltechniken verwendet, z.B. Ein-/Doppelkammergießschuh, Abstreifrakel , Einstellbare oder feste Rakel/Gießschneiden. Die Ziehge schwindigkeit beträgt von 0.1 m/min bis zu 10 m/min. Es kön nen unterschiedliche Trocknungsmethoden verwendet werden: er wärmte Luft, gesättigte Lösemittelatmosphäre, Gegenstromver fahren, Umluft, IR, Mikrowelle und/oder temperierte Unterla gen. Es können verschiedene Trägerfolien verwendet werden (z.B. Stahlband, silikonisierte PET-Folie, unbeschichtete PET-Folie, ...) . The ceramic foils are then poured and dried. The slip is sieved off if the powder size is sufficiently small (<45 gm). The grinding media used, agglomerates or undissolved organic components are separated (mesh size: 10 gm to 500 gm). The slip is degassed using an Eirich mixer, rotary evaporator (suppress: 180 mbar to 250 mbar, 30 rpm to 120 rpm, 20 min to 45 min), Thinky Mixer, vacuum cabinet or using defoamers. It is essential that the slip is pourable (viscosities 5 Pas to 20 Pas). The film width is chosen between 20 cm and 110 cm. The film length is chosen between 1 m and 10 m, unless the film is continuous. Different doctoring techniques are used, e.g. Single / double chamber casting shoe, doctor blade, adjustable or fixed doctor blade / casting blades. The drawing speed is from 0.1 m / min up to 10 m / min. Different drying methods can be used: it warms air, saturated solvent atmosphere, countercurrent process, circulating air, IR, microwave and / or temperature-controlled substrates. Different carrier foils can be used (eg steel tape, siliconized PET foil, uncoated PET foil, ...).
Die keramischen Folien werden dann zugeschnitten, gestapelt und laminiert. Das Zuschneiden und Bearbeiten erfolgt mittels Heißschneide, Tafelschere, Laser, Messerschneiden, Wasser strahlschneider, Sägen, Bandsäge, Fräse, Stanzen (Zuschnitt dimensionen 10 x 10 mm2 bis 200 x 200 mm2) . Die Oberflächen güte kann durch Aufrauen oder Perforation geändert werden. Es sind korrugierte Strukturen möglich (z.B. Wellpappenstruktu- ren) . Es ist eine Materialintegration innerhalb einer Ebene möglich (Inlays und Außenbereiche aus unterschiedlichen Foli en, Streifen aus verschiedenen Materialien, Schaffung von Hohlräumen) . The ceramic foils are then cut, stacked and laminated. Cutting and processing are carried out using hot cutting, guillotine shears, lasers, knife cutting, water jet cutters, saws, band saws, milling machines, punching (cutting dimensions 10 x 10 mm 2 to 200 x 200 mm 2 ). The surface quality can be changed by roughening or perforation. Corrugated structures are possible (e.g. corrugated cardboard ren). It is possible to integrate materials within one level (inlays and outside areas made of different foils, strips made of different materials, creating cavities).
Das Stapeln erfolgt mit oder ohne Hilfe von Pins, Matrizen und oder Ausrichtungsmarken. Dann erfolge eine Thermokompres- sion bei Bedingungen von 30 MPa bis 50 MPa, 333 K bis 373 K, 10 min bis 90 min, Verwendung von Matrizen (Dimensionen: 30 x 40 mm2 bis 200 x 200 mm2) . Die Matrizen können selber schon Krümmungen, Radien und Anfasungen zur Einstellung bestimmter Geometrien aufweisen. Eine Kaltniederdrucklamination erfolgt bei < 5 MPa, Raumtemperatur, mit doppelseitigen Klebefolien ohne oder mit Backbone (Backbonedicken 45 gm bis 250 gm) , wahlweise mit oder ohne Matrize. Ein Kleben kann mit wässri gem oder lösemittelbasiertem Flüssigkleber erfolgen, ohne o- der mit Keramikpartikelfüllung, wahlweise mit oder ohne Mat rize. Die Lamination ist mit Hilfe von Schlickern möglich (diese Schlicker entsprechen in der Zusammensetzung den Gieß schlickern) . Kaltniederdrucklamination und Thermokompression oder Kleben und Thermokompression können kombiniert werden.Stacking is done with or without the help of pins, dies, and or alignment marks. Then thermal compression takes place under conditions of 30 MPa to 50 MPa, 333 K to 373 K, 10 min to 90 min, using matrices (dimensions: 30 x 40 mm 2 to 200 x 200 mm 2 ). The matrices can themselves have curvatures, radii and chamfers for setting certain geometries. Cold low pressure lamination is carried out at <5 MPa, room temperature, with double-sided adhesive films with or without backbone (backbone thickness 45 gm to 250 gm), optionally with or without a die. Gluing can be done with aqueous or solvent-based liquid glue, without or with ceramic particle filling, optionally with or without a matrix. Lamination is possible with the help of slips (these slurries correspond in composition to the slurries of the casting). Cold low pressure lamination and thermocompression or gluing and thermocompression can be combined.
Es sind weiterhin generative Verfahren verwendbar (z.B. lami- nated object manufacturing) . Generative processes can still be used (e.g. laminated object manufacturing).
Binderausbrand und Sintern erfolgen mittels dichter oder po röser (vor allem für eine bessere Entgasung) Brennhilfsmittel werden aus AI2O3, MgO, stab. Zr02 oder Anamullit (5 x 50 x 50 mm3 bis zu 50 x 1000 x 1000 mm3) bereitgestellt. AI2O3, Mul- lit oder ZrC>2 werden als Trennsand verwendet; dies dient dem Herabsetzen der Reibung zwischen Sintergut und Brennhilfsmit tel. Der Sinteraufbau wird gegenüber Heizelementen gemuffelt, um eine gleichmäßige Temperaturverteilung zu erreichen. Die Lage der Bauteile kann variieren: liegend, stehend, gestützt, ungestützt, mit oder ohne Last, mit oder ohne stützendem Pul- verbett, mit Lücke zwischen den Bauteilen oder Kante an Kan te. Der Schritt erfolgt unter einer oxidierenden Atmosphäre, auch eine reduzierende oder Schutzgasatmosphäre sind möglich, ebenso Sintern unter Vakuum. Es sind Kammeröfen, Rohröfen und Tunnelöfen nutzbar, sowie Schutzgasöfen. Die Entbinderung wird an die ZersetZungstemperaturen der Organik angepasst (Heizraten von 0,25 K/min bis 3 K/min, Haltezeiten bei Tempe raturen zwischen 473 K bis 873 K, Haltezeiten von 60 min bis 120 min) . Das Sintern erfolgt bei Temperaturen von 1873 K bis 2073 K, Haltezeiten von 120 min bis 600 min und Heizraten von 1 K/min bis 10 K/min. Das Abkühlen erfolgt bei Kühlraten von 1 K/min bis 10 K/min. Es ist eine passive oder aktive Abküh lung möglich. Binder burnout and sintering are carried out using dense or porous (especially for better degassing) kiln furniture made from AI2O3, MgO, stab. Zr02 or anamullite (5 x 50 x 50 mm 3 up to 50 x 1000 x 1000 mm 3 ) is provided. AI2O3, Mulit or ZrC> 2 are used as separating sand; this serves to reduce the friction between sintered material and kiln furniture. The sintered structure is muffled compared to heating elements in order to achieve an even temperature distribution. The position of the components can vary: lying, standing, supported, unsupported, with or without load, with or without supporting pulse bedded, with a gap between the components or edge on edge. The step takes place under an oxidizing atmosphere, a reducing or protective gas atmosphere is also possible, as is sintering under vacuum. Chamber furnaces, tube furnaces and tunnel furnaces can be used, as well as protective gas furnaces. The debinding is adapted to the decomposition temperatures of the organic system (heating rates from 0.25 K / min to 3 K / min, holding times at temperatures between 473 K to 873 K, holding times from 60 min to 120 min). Sintering takes place at temperatures from 1873 K to 2073 K, holding times from 120 min to 600 min and heating rates from 1 K / min to 10 K / min. Cooling takes place at cooling rates of 1 K / min to 10 K / min. Passive or active cooling is possible.
Die Nachbearbeitung umfasst verschiedene Tätigkeiten, z.B. Zuschneiden (Bandsäge, Kreissäge, Lowspeed-Säge, Wasser strahlschneide, Lasern, ...) , Fräsen und Schleifen (Erreichen des Endformates, Planparallelität, Kanten und Eckenbearbei tung) . Post-processing includes various activities, e.g. Cutting (band saw, circular saw, low-speed saw, water jet cutting, lasers, ...), milling and grinding (reaching the final format, plane parallelism, edges and corner processing).
Die Veränderungen bzw. Variationen der o.g. Parameter des Verfahrens beeinflussen das Verarbeitungsverhalten sowie die Eigenschaften der Grünfolien, der Laminate und der gesinter ten Bauteile. An den gesinterten Bauteilen sind folgende Ei genschaftsbereiche erzielbar bzw. können die im Folgenden ge nannten Eigenschaften variiert werden: die Sinterschwindung zwischen 0 und 21%, die Porosität zwischen 0 und 45%, die Wärmeleitfähigkeit zwischen 7 W/ (m-K) und 35 W/ (m-K), das Elastizitätsmodul zwischen 20 GPa und 400 GPa, die Festigkeit zwischen 8 MPa und 350 MPa, die Bruchzähigkeit (KI C) , die Permeabilität, der thermische Ausdehnungskoeffizient zwischen 5 · 10 6 1/K und 19 · 10 6 1/K, das Korrosions- und Erosions verhalten, die thermische Ermüdung, das Kriechverhalten, das Emissionsverhalten, das Verhalten unter Temperaturwechselbe- lastung und Thermoschock, und anisotropes Verhalten in und senkrecht zur Gießrichtung und in der Dicke. In Laminaten können noch die Grenzflächenfestigkeit und eingebrachte Ei genspannungen variiert werden. The changes or variations in the above-mentioned parameters of the process influence the processing behavior and the properties of the green foils, the laminates and the sintered components. The following property ranges can be achieved on the sintered components or the properties mentioned below can be varied: the sintering shrinkage between 0 and 21%, the porosity between 0 and 45%, the thermal conductivity between 7 W / (mK) and 35 W / (mK), the modulus of elasticity between 20 GPa and 400 GPa, the strength between 8 MPa and 350 MPa, the fracture toughness (K IC ), the permeability, the coefficient of thermal expansion between 5 · 10 6 1 / K and 19 · 10 6 1 / K, the behavior of corrosion and erosion, thermal fatigue, creep behavior, emission behavior, behavior under temperature change load and thermal shock, and anisotropic behavior in and perpendicular to the casting direction and in thickness. In laminates, the interfacial strength and internal stresses can be varied.
Die Papiertechnologie weist im Wesentlichen folgende Schritte auf : Paper technology essentially has the following steps:
- Aufbereitung einer Papiersuspension,  - preparation of a paper suspension,
- Herstellung des Papiers,  - manufacture of the paper,
- Kalandrieren,  - calendering,
- Beschichtung,  - coating,
- Zuschneiden, Stapeln und Laminieren,  - cutting, stacking and laminating,
- Binderausbrand und Sintern,  - binder burnout and sintering,
- Nachbearbeitung.  - Post processing.
Für die Aufbereitung der Papiersuspension wird ein kerami sches Pulver bereitgestellt (d50: 500 nm bis 5 mih) . Es können auch keramische Fasern verwendet werden (Durchmesser 2 gm bis 4 gm, Länge > 1 mm) . Es sind alle denkbaren Geometrien der Ausganswerkstoff möglich, wobei sphärische bevorzugt sind. Es können alle verwendbaren Materialien miteinander gemischt werden. Organische Hilfsstoffe umfassen Zellstofffasern : Län ge: 0,5 mm bis 2,5 mm; Durchmesser: 15 gm, anionische und ka tionische Stärken, Latex und Retentionsmittel wie Polyethyl enimin . A ceramic powder is prepared for the preparation of the paper suspension (d50: 500 nm to 5 ml). Ceramic fibers can also be used (diameter 2 gm to 4 gm, length> 1 mm). All conceivable geometries of the starting material are possible, spherical being preferred. All usable materials can be mixed together. Organic auxiliaries include cellulose fibers: length: 0.5 mm to 2.5 mm; Diameter: 15 gm, anionic and cationic starches, latex and retention aids such as polyethylene enimine.
Zur Papierherstellung wird zuerst eine Pulpensuspension homo genisiert. Die Reihenfolge der Zugabeschritte ist wesentlich. Es ist eine kontinuierliche und diskontinuierliche Papierher stellung möglich. Die Dicke der hergestellten Papierlage be trägt zwischen 200 gm und 1000 gm, die Breite zwischen 25 cm und 50 cm. Die Bandgeschwindigkeiten liegen zwischen 1 m/min bis 3 m/min. Dann werden die hergestellten Papiere getrock net . Zum Kalandrieren ist eine Befeuchtung einstellbar. Es können verschiedene Walzentypen verwendet werden, glatt, geriffelt, aus Stahl oder Kunststoff. Die Temperatur der Walzen beträgt zwischen 293 K bis 513 K. Der Liniendruck beträgt zwischen 50 kN/m und 400 kN/m. Die Walzengeschwindigkeit beträgt zwischen 0,5 m/min und 5 m/min. For papermaking, a pulp suspension is first homogenized. The order of the addition steps is essential. Continuous and discontinuous papermaking is possible. The thickness of the paper layer produced be between 200 gm and 1000 gm, the width between 25 cm and 50 cm. The belt speeds are between 1 m / min and 3 m / min. Then the papers produced are dried. Humidification is adjustable for calendering. Different types of rollers can be used, smooth, corrugated, made of steel or plastic. The temperature of the rollers is between 293 K to 513 K. The line pressure is between 50 kN / m and 400 kN / m. The roller speed is between 0.5 m / min and 5 m / min.
Das Ziel der Beschichtung ist die Herstellung von Mehrlagen strukturen und eine Oberflächenversiegelung. Die Dicke der Beschichtung beträgt zwischen 10 ym und 100 ym. Die Beschich tung erfolgt mittels keramischer Suspension basierend auf Wasser, keramischem Pulver und organischem Kleber (Polyvi nylacetat) . Das Beschichten erfolgt durch Rakeln oder Auf strichanlage . The goal of the coating is the production of multilayer structures and surface sealing. The thickness of the coating is between 10 μm and 100 μm. Coating is carried out using a ceramic suspension based on water, ceramic powder and organic glue (polyvinyl acetate). Coating is carried out by knife coating or coating system.
Das Zuschneiden erfolgt mechanisch, durch Laserzuschnitt, Stanzen oder Wasserstrahl. Stapeln und Laminieren erfolgen wie oben für die keramischen Folien beschrieben. Binderaus- brand und Sintern erfolgen ebenfalls wie oben für die kerami schen Folien beschrieben. The cutting is done mechanically, by laser cutting, punching or water jet. Stacking and laminating are carried out as described above for the ceramic films. Binder burnout and sintering also take place as described above for the ceramic foils.
Die Nachbearbeitung erfolgt u.a. durch Zuschneiden mittels Bandsäge, Kreissäge, Lowspeedsäge, Wasserstrahlschneide, durch Fräsen und Schleifen (Erreichen des Endformates, Plan parallelität, Kanten und Eckenbearbeitung) . Post-processing is carried out, among other things. by cutting with a band saw, circular saw, low-speed saw, water jet cutting, by milling and grinding (reaching the final format, parallelism of the plan, edges and corner processing).
An den gesinterten Bauteilen sind folgende Eigenschafts bereiche erzielbar bzw. können die im Folgenden genann ten Eigenschaften variiert werden: die Sinterschwindung zwischen 8 und 30%, die Porosität zwischen 20% und 75%, die Wärmeleitfähigkeit zwischen 2 W/(m-K)und 12 W/(m-K), das Elastizitätsmodul zwischen 10 GPa und 245 GPa, die Festigkeit zwischen 5 Pa und 70 MPa, die Bruchzähigkeit (Ki,c) , die Permeabilität, der thermische Ausdehnungsko effizient zwischen 0,5 · IO-6 1/K und 9 · IO-6 1/K, dasThe following property ranges can be achieved on the sintered components or the properties mentioned below can be varied: the sintering shrinkage between 8 and 30%, the porosity between 20% and 75%, the thermal conductivity between 2 W / (mK) and 12 W / (mK), the elastic modulus between 10 GPa and 245 GPa, the strength between 5 Pa and 70 MPa, the fracture toughness (Ki , c) , the permeability, the thermal expansion coefficient between 0.5 · IO -6 1 / K and 9 · IO -6 1 / K, that
Korrosions- und Erosionsverhalten, die thermische Ermü dung, das Kriechverhalten, das Emissionsverhalten, das Verhalten unter Temperaturwechselbelastung und Thermos- chock, und anisotropes Verhalten in und senkrecht zur Gießrichtung und in der Dicke. In Laminaten können noch die Grenzflächenfestigkeit und eingebrachte Eigenspan nungen variiert werden. Corrosion and erosion behavior, thermal fatigue, creep behavior, emission behavior, behavior under thermal shock and thermal shock, and anisotropic behavior in and perpendicular to the casting direction and in the thickness. The interfacial strength and the inherent stresses can be varied in laminates.
Die Erfindung wird anhand der Figuren näher erläutert. Es zeigen The invention is explained in more detail with reference to the figures. Show it
Figur 1 eine Darstellung einer herkömmlichen Ringbrennkam mer . Figure 1 is a representation of a conventional Ringbrennkam mer.
Figur 2 eine Darstellung einer Ausführungsform des erfin dungsgemäßen Bauteils. FIG. 2 shows an embodiment of the component according to the invention.
Figur 3 ein Fließdiagramm einer Ausführungsform des erfin dungsgemäßen Verfahrens. Figure 3 is a flow diagram of an embodiment of the inventive method.
Eine Ringbrennkammer 1 einer Gasturbine weist gemäß der Dar stellung von Fig. 1 eine Außenschale 2 auf, die einen die Brennkammer 1 bildenden Hohlraum 3 umschließt. Die Brennkam mer 1 weist in Fig. 1 exemplarisch einen Brenner 4 auf, der im oberen Teil der Brennkammer 1 angeordnet ist; in der Brennkammer können mehrere Brenner angeordnet sein. Der Bren ner 4 weist gemäß Fig. 1 einen Zugang für Kraftstoff 5 sowie zwei Zugänge für einen Oxidationsträger 6, z.B. verdichtete Luft. In der Einlassöffnung 7 werden der zugeleitete Kraft stoff und die Luft vermischt. Der Hohlraum 3 ist für die Ver brennung des gebildeten Kraftstoff-Luft-Gemischs vorgesehen. Durch den Auslass 8 gelangen die heißen Verbrennungsgase in einen Turbinenraum der Gasturbine (nicht gezeigt) . An annular combustion chamber 1 of a gas turbine has an outer shell 2, which surrounds a cavity 3 forming the combustion chamber 1, as shown in FIG. 1. The Brennkam mer 1 has in Fig. 1 an example of a burner 4, which is arranged in the upper part of the combustion chamber 1; Several burners can be arranged in the combustion chamber. The Bren ner 4 has, as shown in FIG. 1, an access for fuel 5 and two accesses for an oxidation carrier 6, for example compressed air. In the inlet opening 7, the supplied fuel and the air are mixed. The cavity 3 is provided for the combustion of the fuel-air mixture formed. The hot combustion gases pass through outlet 8 into a turbine chamber of the gas turbine (not shown).
Der Hohlraum 3 ist mit keramischen Hitzeschilden 9 ausgestat tet. Die Hitzeschilde der letzten Reihe vor dem Auslass 8 werden als Einlaufplatten 10 bezeichnet. Die Einlaufplatten 10 sind herkömmlicherweise metallisch aufgebaut. Gemäß der Erfindung werden keramische Einlaufplatten 10 für die Ring brennkammer 1 bereitgestellt. The cavity 3 is tetat tet with ceramic heat shields 9. The heat shields of the last row before the outlet 8 are referred to as inlet plates 10. The inlet plates 10 are conventionally made of metal. According to the invention, ceramic inlet plates 10 for the ring combustion chamber 1 are provided.
In Fig. 2 ist eine Ausführungsform einer erfindungsgemäß auf gebauten Einlaufschalenplatte 10 dargestellt. Die Einlauf plattenschale 10 ist in eine zum Hohlraum 3 gerichteten Heiß gasseite 11, einen an die Heißgasseite 11 anschließenden Kern 12 und eine zur Außenschale 2 gerichteten Kaltgasseite 3 ge gliedert. Die Heißgasseite 11 und die Kaltgasseite 13 weisen jeweils eine Lage 15 auf. Der Kern weist eine Anzahl von 17 Lagen 15 auf (in Fig. 2 sind zur Veranschaulichung weniger Lagen des Kerns dargestellt) . Die Anzahl der Lagen in den einzelnen Bereichen kann alternativ auch eine andere sein.2 shows an embodiment of an inlet shell plate 10 constructed according to the invention. The inlet plate shell 10 is divided into a hot gas side 11 directed towards the cavity 3, a core 12 adjoining the hot gas side 11 and a cold gas side 3 directed towards the outer shell 2. The hot gas side 11 and the cold gas side 13 each have a layer 15. The core has a number of 17 layers 15 (fewer layers of the core are shown in FIG. 2 for illustration). The number of layers in the individual areas can alternatively be different.
Die Lagen 15 werden aus gegossenen keramischen Folien oder präkeramischem Papier bereitgestellt. Die Einlaufschalenplat te 10 weist eine Dicke von bis zu 16 mm auf. The layers 15 are provided from cast ceramic foils or preceramic paper. The Einlaufschalenplat te 10 has a thickness of up to 16 mm.
Das Material der Lage der Heißgasseite 11 ist AI2O3. Die Lage der Heißgasseite 11 hat einen thermischen Ausdehnungskoeffi zienten von 8.0e 6 K1. Die eine Lage der Heißgasseite 11 weist eine Dicke von 2790 ym auf. Die Partikelgrößenvertei lung beträgt 15% Feinkorn (1 ym bis 3 ym) und 85% Grobkorn (1 ym bis 45 ym) . Die Lage weist eine Porosität von 34,2% auf. Die freie Sinterschwindung beträgt 4,7%, das Elastizitätsmo dul 83,2 GPa und die Festigkeit 33,0 MPa. Der Werkstoff der Lagen des Kerns 12 ist AI2O3. Als Material kann z.B. auch MgA^Cg und/oder ein Mischung von AI2O3 und MgA^Cg verwendet werden. Die Lagen des Kerns 12 haben einen thermischen Ausdehnungskoeffizienten von 8.80e-6 K1. Die Di cken der die einzelnen Lagen bildenden Folien betragen je weils 620 ym. Die Partikelgrößenverteilung beträgt 15% Fein korn (1 ym bis 3 ym) und 85% Grobkorn (1 ym bis 45 ym) . Die Lagen weisen eine Porosität von 21,1% auf. Die freie Sinter schwindung beträgt 10,7%, das Elastizitätsmodul 131,6 GPa und die Festigkeit 97,5 MPa. The material of the hot gas side 11 layer is AI2O3. The location of the hot gas side 11 has a thermal expansion coefficient of 8.0e 6 K 1 . One layer of the hot gas side 11 has a thickness of 2790 μm. The particle size distribution is 15% fine grain (1 μm to 3 μm) and 85% coarse grain (1 μm to 45 μm). The layer has a porosity of 34.2%. The free sintering shrinkage is 4.7%, the modulus of elasticity is 83.2 GPa and the strength is 33.0 MPa. The material of the layers of the core 12 is AI2O3. For example, MgA ^ Cg and / or a mixture of Al2O3 and MgA ^ Cg can also be used as the material. The layers of the core 12 have a thermal expansion coefficient of 8.80e -6 K 1 . The thickness of the foils forming the individual layers is 620 μm each. The particle size distribution is 15% fine grain (1 μm to 3 μm) and 85% coarse grain (1 μm to 45 μm). The layers have a porosity of 21.1%. The free sinter shrinkage is 10.7%, the elastic modulus 131.6 GPa and the strength 97.5 MPa.
Der Werkstoff der Lage der Kaltgasseite 13 ist AI2O3. Die La ge der Kaltgasseite 13 hat einen thermischen Ausdehnungskoef fizienten von 8.0e 6 K1. Die eine Lage der Kaltgasseite 13 weist eine Dicke von 2390 ym auf. Die Partikelgrößenvertei lung beträgt 45% Feinkorn (1 ym bis 3 ym) und 55% Grobkorn (1 ym bis 45 ym) . Die Lage weist eine Porosität von 22,5% auf. Die freie Sinterschwindung beträgt 8,9%, das Elastizitätsmo dul 352,5 GPa und die Festigkeit 71,0 MPa. The material of the cold gas side 13 layer is AI2O3. The location of the cold gas side 13 has a thermal expansion coefficient of 8.0e 6 K 1 . One layer of the cold gas side 13 has a thickness of 2390 μm. The particle size distribution is 45% fine grain (1 µm to 3 µm) and 55% coarse grain (1 µm to 45 µm). The layer has a porosity of 22.5%. The free sintering shrinkage is 8.9%, the elastic modulus 352.5 GPa and the strength 71.0 MPa.
In einem Verfahren gemäß Fig. 3 zum Herstellen eines Bauteils gemäß Fig. 2 werden in einem ersten Schritt S1 keramische Fo lien und/oder Papier aus einem präkeramischen Material herge stellt. Sind im Folgenden konkret benannte Stoffe und Geräte mit Herkunftsverweis angegeben, ist klar, dass der Fachmann natürlich adäquate Stoffe und Geräte verwenden kann. In a method according to FIG. 3 for producing a component according to FIG. 2, ceramic foils and / or paper are produced from a preceramic material in a first step S1. If specifically named substances and devices with a reference to their origin are given below, it is clear that the specialist can of course use adequate substances and devices.
Zum Herstellen von keramischen Folien und/oder Papier wird dabei ein Schlickeransatz bereitgestellt, der dann zu Folien und/oder Papier gegossen wird. Für ein herzustellendes Bau teil aus zwei verschiedenen Folien wird für jede Folie je weils ein Schlickeransatz bereitgestellt. Als Mischgefäß wird eine 11-Polyethylen-Flasche verwendet. Als Mahlkugeln werden sechs 15 mm hohe Mahltonnen, zwölf 10 mm hohe Mahltonnen und Mahlkugeln mit einem Durchmesser von 3 mm verwendet, die alle aus AI2O3 bestehen. Es wird ein Schlickeransatz von 600 ml hergestellt . For the production of ceramic foils and / or paper, a slip approach is provided, which is then cast into foils and / or paper. For a construction part to be made from two different foils, a slip approach is provided for each foil. An 11-polyethylene bottle is used as the mixing vessel. The grinding balls are six 15 mm high grinding bowls, twelve 10 mm high grinding bowls and Grinding balls with a diameter of 3 mm are used, all of which consist of Al 2 O 3 . A slip mixture of 600 ml is produced.
Für die erste Folie werden dabei zwei verschiedene AI2O3- Pulver verwendet (60 Vol% von d5o : 1 ym bis 3 ym und 40 Vol%, d5o : 12 ym bis 20 ym) . Für die zweiten Folie werden ebenfalls zwei verschiedene A^Cy-Pulver verwendet (30 Vol% von d5o : 1 ym bis 3 ym und 70 Vol%, d5o : 12 ym bis 20 ym) . Two different Al 2 O 3 powders are used for the first film (60 vol% from d 5 o: 1 ym to 3 ym and 40 vol%, d 5 o: 12 ym to 20 ym). Two different A ^ Cy powders are also used for the second film (30% by volume from d 5 o: 1 μm to 3 μm and 70% by volume, d 5 o: 12 μm to 20 μm).
Als Lösemittel wird ein 44,59 Vol% azeotropes Gemisch aus Ethanol und Toluol verwendet (68 Massen% Ethanol, 32 Massen% Toluol). Als Dispergator wird Hypermer™ (Croda Inc. , Edison, USA) zu ein 1 Massen% bezogen auf 100 Massen% der eingewoge nen Pulver verwendet. Als Binder wird PVB 98 (Solutia Inc., St. Louis, USA) zu einem 5 Massen% bezogen auf 100 Massen% der eingewogenen Pulver verwendet. Als Weichmacher wird San- ticizer® (Ferro, Antwerpen, Belgien) zu einem 5 Massen% bezo gen auf 100 Massen% der eingewogenen Pulver verwendet. Die Dispergierung und Homogenisierung erfolgt für 24 h in einem Taumelmischer . A 44.59% by volume azeotropic mixture of ethanol and toluene is used as solvent (68% by mass of ethanol, 32% by mass of toluene). Hypermer ™ (Croda Inc., Edison, USA) is used as a dispersant in a 1% by mass based on 100% by mass of the weighed powder. PVB 98 (Solutia Inc., St. Louis, USA) is used as a binder to a 5% by mass based on 100% by mass of the weighed powders. Santizer (Ferro, Antwerp, Belgium) is used as a plasticizer to a 5% by mass based on 100% by mass of the weighed powder. The dispersion and homogenization takes place for 24 hours in a tumble mixer.
Zum Gießen der Folien werden beide Schlicker mittels eines Siebes einer Maschenweite von 500 ym abgesiebt. Beide Schli cker werden für 30 min bei 230 mbar und 60 rpm entgast. Zum Gießen wird ein Doppelkammergießschuh verwendet. Der Gieß spalt beträgt bei beiden Schlickern 1500 ym (Gießschneide) , und die Gießgeschwindigkeit 1800 mm/min. Als Trägerfolie wird eine silikonisierte Polyethylenterephthalat-Folie verwendet. Die Viskosität der ersten Folie beträgt 11,3 Pas bei einer Scherrate von 20 s-1; die Viskosität der zweiten Folie be trägt 9,4 Pas bei einer Scherrate von 20 s-1. Dann werden die Folien in gesättigter Lösemittelatmosphäre für 24 h getrock net. Die Foliendicke beider Folien beträgt etwa 600 ym. Die hergestellten Grünfolien werden in einem zweiten Schritt S2 des Verfahrens gemäß Fig. 3 zugeschnitten und gestapelt. Der Zuschnitt beider Folien erfolgt mit einer Heißschneide auf das Format 40 x 40 mm2. Die Zuschnitte werden in einer Stahlmatrize mit Messingstempeln mit dem Aufbau Folie 2/Folie 1/Folie 2 gestapelt. Es werden so viele Folien gestapelt, wie für das Bauteil erforderlich sind. To cast the foils, both slurries are sieved using a sieve with a mesh size of 500 μm. Both slips are degassed for 30 min at 230 mbar and 60 rpm. A double chamber casting shoe is used for casting. The casting gap for both slurries is 1500 ym (casting knife), and the casting speed is 1800 mm / min. A siliconized polyethylene terephthalate film is used as the carrier film. The viscosity of the first film is 11.3 Pas at a shear rate of 20 s-1; the viscosity of the second film be 9.4 Pas at a shear rate of 20 s-1. Then the films are dried in a saturated solvent atmosphere for 24 hours. The film thickness of both films is approximately 600 μm. The green foils produced are cut and stacked in a second step S2 of the method according to FIG. 3. Both foils are cut to size 40 x 40 mm 2 using a hot cutter. The blanks are stacked in a steel die with brass stamps with the structure foil 2 / foil 1 / foil 2. As many foils are stacked as are required for the component.
In einem dritten Schritt S3 wird die Mehrlagenstruktur ent sprechend der gewünschten Zielstruktur gezielt verformt. Die Folien werden über Thermokompression laminiert (353 K, 42 MPa, 15 min) . Es werden dabei Matrizen verwendet, die geomet rische Merkmale aufweisen, die bereits zum Einstellen be stimmter Merkmale des zu fertigenden Bauteils geeignet sind. Für das gezielte Verformen werden auch unterschiedliche In a third step S3, the multilayer structure is deformed in a targeted manner in accordance with the desired target structure. The films are laminated via thermal compression (353 K, 42 MPa, 15 min). There are used matrices that have geometric characteristics that are already suitable for setting certain characteristics of the component to be manufactured. For the targeted deformation, there are also different ones
Schwindungs- und thermische Ausdehnungsverhalten der Einzel schichten gesteuert, die zu Eigenspannungen führen, die zu genutzt werden, um eine makroskopische Verformung des Bau teils zu bewirken. Shrinkage and thermal expansion behavior of the individual layers controlled, which lead to residual stresses that are used to cause a macroscopic deformation of the part.
Das Sintern der Laminate erfolgt in einer oxidierenden Atmo sphäre. Als Brennhilfsmittel werden dichte A^Cg-Platten ohne Trennsand verwendet, mit kompletter Muffelung der Proben. Es werden Kammeröfen verwendet. The laminates are sintered in an oxidizing atmosphere. Dense A ^ Cg plates without separating sand are used as kiln furniture, with complete muffling of the samples. Chamber furnaces are used.
Zur Entbinderung werden die Laminate von Raumtemperatur bei 1 K/min auf 423 K erwärmt, dann von 423 K auf 523 K mit 0,25 K/min erwärmt und für 2h bei dieser Temperatur gehalten, dann von 523 K auf 693 K mit 0,25 K/min erwärmt und für 2h bei dieser Temperatur gehalten, dann von 693 K auf 773 K mit 0,25 K/min erwärmt und für 2h bei dieser Temperatur gehalten, und dann von 773 K auf Raumtemperatur mit 3 K/min abgekühlt. Zum Sintern werden die Laminate von Raumtemperatur auf 1323 K mit 3 K/min erwärmt und für 1 h bei dieser Temperatur gehal ten, dann von 1323 K auf 1973 K mit 3 K/min erwärmt und für 5 h bei dieser Temperatur gehalten, und dann von 1973 K auf Raumtemperatur mit 3 K/min. For debinding, the laminates are heated from room temperature at 1 K / min to 423 K, then from 423 K to 523 K at 0.25 K / min and kept at this temperature for 2 hours, then from 523 K to 693 K at 0. 25 K / min heated and held at this temperature for 2 h, then heated from 693 K to 773 K at 0.25 K / min and held at this temperature for 2 h, and then cooled from 773 K to room temperature at 3 K / min. For sintering, the laminates are heated from room temperature to 1323 K at 3 K / min and held at this temperature for 1 h, then heated from 1323 K to 1973 K at 3 K / min and held at this temperature for 5 h, and then from 1973 K to room temperature at 3 K / min.
In einem vierten Schritt S4 wird das hergestellte Bauteil nachbearbeitet, so dass es in einer Ringbrennkammer gemäß Fig. 1 verwendet werden kann. Dieser Schritt umfasst vor al lem ein Zuschneiden, Fräsen und Schleifen des Bauteils. In a fourth step S4, the manufactured component is reworked so that it can be used in an annular combustion chamber according to FIG. 1. This step mainly includes cutting, milling and grinding the component.
Die hergestellten Laminate weisen eine Gründicke von 1575 gm und eine Gründichte (geometrische Dichte nach EN 623-2 und 993-1) von 74,6 %TD auf. Die Sinterdicke beträgt 1436 gm und die Sinterdichte (Immersionsmessung nach EN 623-2 und 993-1) 77,2 %TD. Die Sinterschwindung beträgt lateral 7,0% in Gieß richtung und 7,6% senkrecht zur Gießrichtung sowie 8,8% ver tikal. Das E-Modul (über US-Laufzeit nach DIN EN 843-2 und DIN EN ISO 12680-2 ermittelt) beträgt 200 GPa in Gießrichtung und 198 GPa senkrecht zur Gießrichtung. Die charakteristische Festigkeit (über Likelihood aus Doppelringbiegeversuchen) be trägt 101,4 MPa und das Weibullmodul (über Likelihood aus Doppelringbiegeversuchen) 5,4. The laminates produced have a green thickness of 1575 gm and a green density (geometric density according to EN 623-2 and 993-1) of 74.6% TD. The sinter thickness is 1436 gm and the sinter density (immersion measurement according to EN 623-2 and 993-1) 77.2% TD. The sintering shrinkage is laterally 7.0% in the pouring direction and 7.6% perpendicular to the pouring direction and 8.8% vertical. The modulus of elasticity (determined over the US term according to DIN EN 843-2 and DIN EN ISO 12680-2) is 200 GPa in the casting direction and 198 GPa perpendicular to the casting direction. The characteristic strength (via likelihood from double ring bending tests) is 101.4 MPa and the Weibull modulus (via likelihood from double ring bending tests) 5.4.
Alternativ kann ein Laminat aus einer Kombination von kerami schen Folien und Papier aus präkeramischem Material ebenfalls folientechnologisch hergestellt werden. Dazu wird für Folie und Papier jeweils ein Schlickeransatz bereitgestellt. Für die Folie wird als Mischgefäß eine 11-Polyethylen-Flasche verwendet. Als Mahlkugeln werden sechs 15 mm hohe Mahltonnen, zwölf 10 mm hohe Mahltonnen und Mahlkugeln mit einem Durch messer von 3 mm verwendet, die alle aus AI2O3 bestehen. Es wird ein Schlickeransatz von 600 ml hergestellt. Für die Folie werden dabei zwei verschiedene Al203-Pulver verwendet (15 Vol% von d5o : 1 ym bis 3 ym und 85 Vol%, d5o :Alternatively, a laminate can also be produced from a combination of ceramic foils and paper made of preceramic material using film technology. For this purpose, a slip approach is provided for film and paper. An 11-polyethylene bottle is used as the mixing vessel for the film. Six 15 mm high grinding bowls, twelve 10 mm high grinding bowls and grinding balls with a diameter of 3 mm are used as grinding balls, all of which consist of Al 2 O 3 . A slip mixture of 600 ml is produced. Two different Al203 powders are used for the film (15 vol% from d 5 o: 1 ym to 3 ym and 85 vol%, d 5 o:
12 ym bis 20ym) . Als Lösemittel wird ein 44,8 Vol% azeotropes Gemisch aus Ethanol und Toluol verwendet (68 Massen% Ethanol, 32 Massen% Toluol) . Als Dispergator wird Hypermer™ (Croda Inc., Edison, USA) zu ein 1 Massen% bezogen auf 100 Massen% der eingewogenen Pulver verwendet. Als Binder wird PVB 98 (Solutia Inc., St. Louis, USA) zu einem 5 Massen% bezogen auf 100 Massen% der eingewogenen Pulver verwendet. Als Weichma cher wird Santicizer® (Ferro, Antwerpen, Belgien) zu einem 5 Massen% bezogen auf 100 Massen% der eingewogenen Pulver ver wendet. Die Dispergierung und Homogenisierung erfolgt für 24 h in einem Taumelmischer. 12 ym to 20ym). A 44.8% by volume azeotropic mixture of ethanol and toluene is used as solvent (68% by mass of ethanol, 32% by mass of toluene). Hypermer ™ (Croda Inc., Edison, USA) is used as a dispersant at 1% by mass based on 100% by mass of the weighed powders. PVB 98 (Solutia Inc., St. Louis, USA) is used as a binder to a 5% by mass based on 100% by mass of the weighed powders. Santicizer® (Ferro, Antwerp, Belgium) is used as a plasticizer to a 5 mass% based on 100 mass% of the weighed powder. The dispersion and homogenization takes place for 24 hours in a tumble mixer.
Für das Papier wird A^Cy-Pulver (d50: 0,8 ym) und/oder AI2O3- Fasern (Durchmesser 2 ym - 4 ym, Länge > 1 mm) verwendet. Als Lösemittel wird Wasser verwendet. Als Additive werden Additi ve werden Kartoffelstärke, Nychem® (Emerald Performance Mate rials, Acron, OH, USA) und/oder Polymin® (BASF, Ludwigshafen, Deutschland) verwendet. A ^ Cy powder (d50: 0.8 ym) and / or Al 2 O 3 fibers (diameter 2 ym - 4 ym, length> 1 mm) is used for the paper. Water is used as the solvent. The additives used are potato starch, Nychem® (Emerald Performance Materials, Acron, OH, USA) and / or Polymin® (BASF, Ludwigshafen, Germany).
Zum Gießen der Folie wird der Schlicker mittels eines Siebes einer Maschenweite von 500 ym abgesiebt. Der Schlicker wird für 30 min bei 230 mbar und 60 rpm entgast. Zum Gießen wird ein Doppelkammergießschuh verwendet. Der Gießspalt beträgt 2500 ym (Gießschneide) , und die Gießgeschwindigkeit 3000 mm/min. Als Trägerfolie wird eine silikonisierte Polyethylen- terephthalat-Folie verwendet. Die Viskosität der ersten Folie beträgt 10,8 Pas bei einer Scherrate von 20 s-1; die Viskosi tät der zweiten Folie beträgt 9,4 Pas bei einer Scherrate von 20 s-1. Dann werden die Folien in gesättigter Lösemittelat mosphäre für 24 h getrocknet. Die Foliendicke beider Folien beträgt etwa 1100 ym. Für das Herstellen des Papiers wird ein dynamischer Blatt bildner verwendet. Die Trommelgeschwindigkeit beträgt 1200 U/min. Die Pulpensuspension wird auf ein Sieb aufgesprüht.To cast the film, the slip is sieved off using a sieve with a mesh size of 500 μm. The slip is degassed for 30 min at 230 mbar and 60 rpm. A double chamber casting shoe is used for casting. The casting gap is 2500 ym (pouring knife), and the casting speed 3000 mm / min. A siliconized polyethylene terephthalate film is used as the carrier film. The viscosity of the first film is 10.8 Pas at a shear rate of 20 s-1; the viscosity of the second film is 9.4 Pas at a shear rate of 20 s-1. Then the films are dried in a saturated solvent atmosphere for 24 h. The film thickness of both films is approximately 1100 μm. A dynamic sheet former is used to produce the paper. The drum speed is 1200 rpm. The pulp suspension is sprayed onto a sieve.
Das Papier wird bei 383 K für 15 min getrocknet. Dann wird das Papier mit einer Adhäsivschicht beschichtet und anschlie ßend bei 323 K getrocknet. The paper is dried at 383 K for 15 min. Then the paper is coated with an adhesive layer and then dried at 323 K.
In Schritt S2 werden Folie und Papier zugeschnitten und ge stapelt. Folie und Papier werden auf das Format 40 x 40 mm2 zugeschnitten. Das Zuschneiden der Folien erfolgt mittels ei ner Heißschneide, das des Papiers mit einer Papierschneide. Die Zuschnitte werden dann in einer Stahlmatrize mit Messing stempeln mit dem Aufbau Folie/Papier/Folie gestapelt. Es wer den so viele Folien gestapelt, wie für das Bauteil erforder lich sind. In step S2, film and paper are cut and stacked. Foil and paper are cut to the 40 x 40 mm 2 format. The foils are cut using a hot cutter, and that of the paper using a paper cutter. The blanks are then stamped in a steel die with brass and stacked with the structure foil / paper / foil. As many foils are stacked as are necessary for the component.
In einem dritten Schritt S3 wird die Mehrlagenstruktur ent sprechend der gewünschten Zielstruktur gezielt verformt. Das Verformen geschieht dabei u.a. während der Lamination. Es wird über Thermokompression (353 K, 42 MPa, 15 min) lami niert. Es werden dabei Matrizen verwendet, die geometrische Merkmale aufweisen, die bereits zum Einstellen bestimmter Merkmale des zu fertigenden Bauteils geeignet sind. Für das gezielte Verformen werden auch unterschiedliche Schwindungs und thermische Ausdehnungsverhalten der Einzelschichten ge steuert, die zu Eigenspannungen führen, die zu genutzt wer den, um eine makroskopische Verformung des Bauteils zu bewir ken . In a third step S3, the multilayer structure is deformed in a targeted manner in accordance with the desired target structure. The deformation occurs among other things. during lamination. It is laminated via thermal compression (353 K, 42 MPa, 15 min). Matrices are used which have geometric features that are already suitable for setting certain features of the component to be manufactured. For the targeted deformation, different shrinkage and thermal expansion behavior of the individual layers are also controlled, which lead to residual stresses that are used to cause a macroscopic deformation of the component.
Das Sintern der Laminate erfolgt in einer oxidierenden Atmo sphäre. Als Brennhilfsmittel werden dichte A^Cg-Platten ohne Trennsand verwendet, mit kompletter Muffelung der Proben. Es werden Kammeröfen verwendet. Zur Entbinderung werden die Laminate von Raumtemperatur bei 1 K/min auf 423 K erwärmt, dann von 423 K auf 523 K mit 0,25 K/min erwärmt und für 2h bei dieser Temperatur gehalten, dann von 523 K auf 693 K mit 0,25 K/min erwärmt und für 2h bei dieser Temperatur gehalten, dann von 693 K auf 773 K mit 0,25 K/min erwärmt und für 2h bei dieser Temperatur gehalten, und dann von 773 K auf Raumtemperatur mit 3 K/min abgekühlt. The laminates are sintered in an oxidizing atmosphere. Dense A ^ Cg plates without separating sand are used as kiln furniture, with complete muffling of the samples. Chamber furnaces are used. For debinding, the laminates are heated from room temperature at 1 K / min to 423 K, then from 423 K to 523 K at 0.25 K / min and kept at this temperature for 2 hours, then from 523 K to 693 K at 0. 25 K / min heated and held at this temperature for 2 h, then heated from 693 K to 773 K at 0.25 K / min and held at this temperature for 2 h, and then cooled from 773 K to room temperature at 3 K / min.
Zum Sintern werden die Laminate von Raumtemperatur auf 1323 K mit 3 K/min erwärmt und für 1 h bei dieser Temperatur gehal ten, dann von 1323 K auf 1973 K mit 3 K/min erwärmt und für 5 h bei dieser Temperatur gehalten, und dann von 1973 K auf Raumtemperatur mit 3 K/min. For sintering, the laminates are heated from room temperature to 1323 K at 3 K / min and held at this temperature for 1 h, then heated from 1323 K to 1973 K at 3 K / min and held at this temperature for 5 h, and then from 1973 K to room temperature at 3 K / min.
Auch hier erfolgt in einem vierten Schritt S4 ein Nachbear beiten des hergestellten Bauteils, so dass es in einer Ring brennkammer gemäß Fig. 1 verwendet werden kann. Dieser Here too, in a fourth step S4, the finished component is reworked, so that it can be used in an annular combustion chamber according to FIG. 1. This
Schritt umfasst vor allem ein Zuschneiden, Fräsen und Schlei fen des Bauteils. The step mainly involves cutting, milling and grinding the component.
Die hergestellten Laminate weisen eine Gründicke von 2248 gm und eine Gründichte (geometrische Dichte nach EN 623-2 und 993-1) von 69,5 %TD auf. Die Sinterdicke beträgt 2045 gm und die Sinterdichte (Immersionsmessung nach EN 623-2 und 993-1) 78,2 %TD. Die Sinterschwindung beträgt lateral 6,4% in Gieß richtung und 6, 6% senkrecht zur Gießrichtung sowie 9, 0% ver tikal . The laminates produced have a green thickness of 2248 gm and a green density (geometric density according to EN 623-2 and 993-1) of 69.5% TD. The sintering thickness is 2045 gm and the sintering density (immersion measurement according to EN 623-2 and 993-1) is 78.2% TD. The sintering shrinkage is 6.4% laterally in the pouring direction and 6, 6% perpendicular to the pouring direction and 9, 0% vertically.
Das E-Modul (über US-Laufzeit nach DIN EN 843-2 und DIN EN ISO 12680-2 ermittelt) beträgt 175 GPa in Gießrichtung und 169 GPa senkrecht zur Gießrichtung. The modulus of elasticity (determined over the US term according to DIN EN 843-2 and DIN EN ISO 12680-2) is 175 GPa in the casting direction and 169 GPa perpendicular to the casting direction.
Zum Herstellen reiner Papierlaminate werden die wie beschrie ben hergestellten Papiere laminiert. Für einen Fachmann naheliegende Abwandlungen und Änderungen der Erfindung fallen unter den Schutzumfang der Patentansprü che . To produce pure paper laminates, the papers produced as described are laminated. Modifications and changes of the invention which are obvious to a person skilled in the art fall within the scope of the patent claims.

Claims

Patentansprüche Claims
1. Bauteil (10) für eine Brennkammer (1) einer Gasturbine, das eine einem Brennkammergehäuse (2) der Brennkammer zugewandte Kaltgasseite (13), eine dem Heißgaspfad der Brennkammer zugewandten Heißgasseite (11) und einen die Kaltgasseite (13) und die Heißgasseite (11) verbindenden Kern (12) aufweist, 1. Component (10) for a combustion chamber (1) of a gas turbine, which has a cold gas side (13) facing a combustion chamber housing (2) of the combustion chamber, a hot gas side (11) facing the hot gas path of the combustion chamber and one the cold gas side (13) and the hot gas side (11) connecting core (12),
wobei die Heißgasseite (11), die Kaltgasseite (13) und der Kern (12) des Bauteils jeweils mindestens eine ein keramisches Material umfassende Materiallage (15) auf weisen .  the hot gas side (11), the cold gas side (13) and the core (12) of the component each have at least one material layer (15) comprising a ceramic material.
2. Bauteil (10) nach Anspruch 1, 2. component (10) according to claim 1,
bei dem das Bauteil (10) überwiegend aus keramischem Ma terial besteht.  in which the component (10) consists predominantly of ceramic material.
3. Bauteil (10) nach Anspruch 1 oder 2, 3. Component (10) according to claim 1 or 2,
bei dem das Bauteil vollständig aus keramischem Material besteht .  in which the component consists entirely of ceramic material.
4. Bauteil (10) nach einem der vorherigen Ansprüche, 4. Component (10) according to one of the preceding claims,
bei dem das Bauteil mindestens eine Materiallage (15) aus einer oxidischen Keramik und/oder mindestens eine Materiallage aus einer nichtoxidischen Keramik umfasst.  in which the component comprises at least one material layer (15) made of an oxide ceramic and / or at least one material layer made of a non-oxide ceramic.
5. Bauteil (10) nach einem der vorherigen Ansprüche, 5. Component (10) according to one of the preceding claims,
ausgewählt aus der Gruppe umfassend Einlaufschalenplat ten (10), Brennereinsätze, Ringsegmente und Düsen sowie Liner für Baskets und Transitions in CAN- Verbrennungssystemen . selected from the group comprising inlet bowl plates (10), burner inserts, ring segments and nozzles as well as liners for baskets and transitions in CAN combustion systems.
6. Bauteil (10) nach einem der vorherigen Ansprüche, bei dem die mindestens eine Schicht der Heißgasseite (11) andere Materialeigenschaften aufweist als die min destens eine Schicht des Kerns (12) . 6. Component (10) according to one of the preceding claims, wherein the at least one layer of the hot gas side (11) has different material properties than the at least one layer of the core (12).
7. Bauteil (10) nach einem der vorherigen Ansprüche, 7. component (10) according to any one of the preceding claims,
bei dem das Material der mindestens einen Schicht der Heißgasseite (11) AI2O3 aufweist. in which the material of the at least one layer of the hot gas side (11) has Al 2 O 3 .
8. Bauteil (10) nach einem der vorherigen Ansprüche, 8. component (10) according to any one of the preceding claims,
bei dem die mindestens eine Schicht der Heißgasseite (11) einen Si-freien keramischen Werkstoff aufweist.  in which the at least one layer of the hot gas side (11) has a Si-free ceramic material.
9. Bauteil (10) nach einem der vorherigen Ansprüche, 9. component (10) according to one of the preceding claims,
bei dem das Material der mindestens einen Schicht der Heißgasseite (11) einen niedrigeren thermischen Ausdeh nungskoeffizienten aufweist als das Material der mindes tens einen Schicht des Kerns (12) .  in which the material of the at least one layer of the hot gas side (11) has a lower thermal expansion coefficient than the material of the at least one layer of the core (12).
10. Bauteil (10) nach einem der vorherigen Ansprüche, bei dem das Material der Heißgasseite (11) und der Kalt gasseite (13) eine niedrigere Sinterschwindung aufweist als das Material des Kerns (12) . 10. Component (10) according to one of the preceding claims, wherein the material of the hot gas side (11) and the cold gas side (13) has a lower sintering shrinkage than the material of the core (12).
11. Bauteil (10) nach einem der vorherigen Ansprüche, bei dem das Material der Schichten poröse und/oder hete rogene Werkstoffe umfasst. 11. Component (10) according to one of the preceding claims, in which the material of the layers comprises porous and / or heterogeneous materials.
12. Bauteil (10) nach einem der vorherigen Ansprüche, bei dem das Material der mindestens einen Schicht an der Kaltgasseite (13) eine höhere Dichte aufweist als die anderen Schichten. 12. Component (10) according to one of the preceding claims, wherein the material of the at least one layer on the cold gas side (13) has a higher density than the other layers.
13. Bauteil (10) nach einem der vorherigen Ansprüche, bei dem die Schichten in einer Kombination von eher steifen und/oder vergleichsweise weniger steifen Schich ten angeordnet sind. 13. Component (10) according to one of the preceding claims, in which the layers are arranged in a combination of rather stiff and / or comparatively less stiff layers.
14. Bauteil (10) nach einem der vorherigen Ansprüche, das durch ein Verfahren zur keramischen Mehrlagentechnik unter Verwendung einer keramischen Grünfolie und/oder präkeramischem Papier hergestellt wird. 14. Component (10) according to one of the preceding claims, which is produced by a method for ceramic multilayer technology using a ceramic green sheet and / or preceramic paper.
15. Brennkammer (1) einer Gasturbine mit einem Bauteil15. Combustion chamber (1) of a gas turbine with one component
(10) nach einem der Ansprüche 1 - 14. (10) according to one of claims 1-14.
16. Verfahren zum Herstellen eines Bauteils (10) nach einem der Ansprüche 1 - 14, umfassend die Schritte: 16. A method for producing a component (10) according to one of claims 1-14, comprising the steps:
Herstellen von keramischen Folien und/oder Papier aus einem präkeramischen Material,  Manufacture of ceramic foils and / or paper from a preceramic material,
Aufeinanderschichten einer bestimmten Anzahl von Lagen (15), die jeweils aus einer keramischen Folie und/oder Papier aus einem präkeramischen Material bestehen,  Stacking a certain number of layers (15), each consisting of a ceramic film and / or paper made of a preceramic material,
gezieltes Verformen der gebildeten Mehrlagenstruk tur,  targeted deformation of the multi-layer structure formed,
Nachbearbeitung.  Post processing.
PCT/EP2019/073664 2018-10-05 2019-09-05 Component for a combustion chamber of a gas turbine WO2020069811A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018217059.2A DE102018217059A1 (en) 2018-10-05 2018-10-05 Multilayer ceramics for use in gas turbines
DE102018217059.2 2018-10-05

Publications (1)

Publication Number Publication Date
WO2020069811A1 true WO2020069811A1 (en) 2020-04-09

Family

ID=68066768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/073664 WO2020069811A1 (en) 2018-10-05 2019-09-05 Component for a combustion chamber of a gas turbine

Country Status (2)

Country Link
DE (1) DE102018217059A1 (en)
WO (1) WO2020069811A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3427722A1 (en) * 1983-07-28 1985-02-07 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Process for producing ceramic of high heat resistance and especially a ceramic component fabricated by this process
US20040050060A1 (en) * 2000-10-16 2004-03-18 Christine Taut Thermal sheild stone for covering the wall of a combustion chamber, combustion chamber and a gas turbine
US20170176007A1 (en) * 2014-02-07 2017-06-22 United Technologies Corporation Article having multi-layered coating
WO2017146726A1 (en) * 2016-02-26 2017-08-31 Siemens Aktiengesellschaft Ceramic matrix composite material with enhanced thermal protection

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6759151B1 (en) * 2002-05-22 2004-07-06 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Multilayer article characterized by low coefficient of thermal expansion outer layer
FR2909998B1 (en) * 2006-12-18 2009-03-06 Snecma Propulsion Solide Sa PIECE OF CERAMIC MATRIX COMPOSITE MATERIAL CONTAINING SILICON, PROTECTED AGAINST CORROSION
JP2008196040A (en) * 2007-02-16 2008-08-28 Toshiba Corp Heat resistant member
ITMI20111519A1 (en) * 2011-08-08 2013-02-09 Ansaldo Energia Spa TILE OF CERAMIC MATERIAL FOR THE COATING OF COMBUSTION CHAMBERS, IN PARTICULAR OF GAS TURBINES, AND ITS RELATED MANUFACTURING METHOD
DE102013106396A1 (en) * 2013-06-19 2014-12-24 Elringklinger Ag Process for producing a ceramic shielding part and ceramic shielding part
DE102016206968A1 (en) * 2016-04-25 2017-10-26 Siemens Aktiengesellschaft Heat shield with extreme yttria coating, method of manufacture and product

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3427722A1 (en) * 1983-07-28 1985-02-07 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Process for producing ceramic of high heat resistance and especially a ceramic component fabricated by this process
US20040050060A1 (en) * 2000-10-16 2004-03-18 Christine Taut Thermal sheild stone for covering the wall of a combustion chamber, combustion chamber and a gas turbine
US20170176007A1 (en) * 2014-02-07 2017-06-22 United Technologies Corporation Article having multi-layered coating
WO2017146726A1 (en) * 2016-02-26 2017-08-31 Siemens Aktiengesellschaft Ceramic matrix composite material with enhanced thermal protection

Also Published As

Publication number Publication date
DE102018217059A1 (en) 2020-04-09

Similar Documents

Publication Publication Date Title
US5846664A (en) Porous metal structures and processes for their production
KR100464220B1 (en) Method of manufacturing monolithic ceramic electronic part and monolithic ceramic electronic part
DE102006022598A1 (en) Ceramics made of preceramic paper or cardboard structures, process for their preparation and their use
DE102005027560A1 (en) Process for producing a ceramic fiber composite material
CN107573074A (en) A kind of method of RMI methods low temperature preparation stratiform SiC base shock resistance composite ceramic materials
DE10051388A1 (en) Production of a ceramic green foil used in the manufacture of a monolithic ceramic capacitor comprises forming a coating ceramic paste on a carrier foil, drying the paste on the foil and smoothing by pressing the foil using a plate press
GB2355947A (en) Method of producing ceramic slurry
EP1734023A1 (en) Adjustment of the fibre content by volume of oxide ceramic fibre - composite materials
DE112009002616T5 (en) Electrolyte impregnated reinforced matrix for a molten carbonate fuel cell and method of making the same
EP1144089A1 (en) Ceramic flat membrane and method for producing the same
JP2002353625A (en) Method of manufacturing ceramic laminate
DE112016006013T5 (en) Method for producing a metal-carbon fiber composite material
DE102012217182A1 (en) Producing a refractory metal component
WO2020069811A1 (en) Component for a combustion chamber of a gas turbine
JP4434617B2 (en) Burnout sheet and method for producing ceramic laminate using the same
DE19725948B4 (en) Process for bonding ceramic green bodies using an adhesive tape
DE102012020829B4 (en) Process for the production of composite components
JP6694291B2 (en) Method for producing composite material of metal and carbon fiber
WO2014044432A1 (en) Production of a refractory metal component
DE102014004138B4 (en) Process for the highly productive production of flow-through structures low component density of metallic, ceramic or metal-ceramic materials
KR100228178B1 (en) Paste for internal electrode
JP4336111B2 (en) Composite parts, cutting tools
DE102017005219A1 (en) Porous ceramic structure
KR102489780B1 (en) Intermediate plate for ceramic support body, method for manufacturing same, ceramic support body comprising the intermediate plate and method for manufacturing same
US20220387918A1 (en) Refractory filter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19774059

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19774059

Country of ref document: EP

Kind code of ref document: A1