WO2020067467A1 - Planarized film-forming application liquid, method for producing planarized film-forming application liquid, metallic foil provided with planarized film, method for producing metallic foil provided with planarized film - Google Patents

Planarized film-forming application liquid, method for producing planarized film-forming application liquid, metallic foil provided with planarized film, method for producing metallic foil provided with planarized film Download PDF

Info

Publication number
WO2020067467A1
WO2020067467A1 PCT/JP2019/038250 JP2019038250W WO2020067467A1 WO 2020067467 A1 WO2020067467 A1 WO 2020067467A1 JP 2019038250 W JP2019038250 W JP 2019038250W WO 2020067467 A1 WO2020067467 A1 WO 2020067467A1
Authority
WO
WIPO (PCT)
Prior art keywords
flattening film
forming
coating liquid
metal foil
phenylsilsesquioxane
Prior art date
Application number
PCT/JP2019/038250
Other languages
French (fr)
Japanese (ja)
Inventor
山田 紀子
左和子 山口
裕 関口
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to JP2020549456A priority Critical patent/JP7047927B2/en
Publication of WO2020067467A1 publication Critical patent/WO2020067467A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00

Definitions

  • the present disclosure relates to a coating liquid for forming a flattening film, a method for manufacturing a coating liquid for forming a flattening film, a metal foil coil with a flattening film, and a method for manufacturing a metal foil coil with a flattening film.
  • Process temperatures for producing electronic devices differ depending on the type and constituent materials of the electronic device. For example, when a TFT liquid crystal display of amorphous silicon or low-temperature polysilicon (LTPS) is formed, a process temperature of about 300 ° C. to 400 ° C. is required. Therefore, the insulating film covering the metal foil is required to have heat resistance that can withstand up to 400 ° C.
  • LTPS low-temperature polysilicon
  • the film material for coating the metal foil examples include an inorganic / organic hybrid material.
  • an organic-modified silica film is typical. Since the organic-modified silica film contains an organic group, it is more flexible than an inorganic film. For this reason, the film thickness can be increased.
  • the organic modified silica film has a main skeleton formed of an inorganic skeleton of Si—O. Therefore, the heat resistance of the organically modified silica film is determined by the decomposition temperature of the organic group modifying the main skeleton. If a methyl group or a phenyl group is selected as the organic group, the organically modified silica film can secure heat resistance of about 400 ° C.
  • the silica film modified with a phenyl group has its Si—O main skeleton hydrolyzed even at high temperature and high humidity (for example, at 85 ° C. and 85% RH environment acceleration test) due to the high hydrophobicity of the phenyl group. Difficult and excellent in moisture resistance. For this reason, a metal foil coated with a phenyl group-modified silica film is preferable as a substrate for an electronic device.
  • Patent Documents 1 to 5 Materials for forming the organically modified silica film are disclosed, for example, in Patent Documents 1 to 5.
  • Patent Documents 3 to 5 disclose coating liquids for forming an organically modified silica film covering a metal foil.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2008-81736
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2003-226755
  • Patent Document 3 International Patent Application Publication No. WO 2016/076399
  • Patent Document 4 Japanese Patent Application Publication No. 2018-123192
  • Patent Document 5 Japanese Patent Application Publication No. 2018-062582
  • Patent Document 3 a phenylsiloxane ladder polymer is produced by distilling a solution containing phenyltrialkoxysilane hydrolyzed in an organic solvent under reduced pressure. Then, it is dissolved in toluene or the like to synthesize a coating solution. In this method, the alkoxy groups that could not be completely hydrolyzed and the alcohol that could not be completely removed by distillation under reduced pressure remain in the coating solution as they are.
  • a flexible substrate for example, when a metal foil with a flattening film provided on a metal foil with a flattening film made of an organic-modified silica film disclosed in Patent Document 3 is applied to an electronic device, the life of the electronic device element is reduced.
  • the coating solution by the synthesis method described in Patent Documents 4 and 5 is synthesized by the same process as the coating solution of Patent Document 3. Therefore, in an electronic device manufactured on a substrate flattened with a coating liquid described in Patent Documents 4 and 5, the lifetime of the electronic device element may be shortened by alcohol generated by hydrolysis of an alkoxy group.
  • An object of the present disclosure is to provide a coating solution for forming a flattening film, a method for manufacturing a coating solution for forming a flattening film, and a flattening film, which can provide a flattening film in which generation of alcohol is suppressed even in a high-temperature and high-humidity environment
  • An object of the present invention is to provide a method for producing a metal foil with a passivation film and a metal foil with a flattening film.
  • An organic solvent that is immiscible with water, and a phenylsilsesquioxane soluble in the organic solvent, a coating liquid for forming a flattening film The viscosity of the coating liquid when the solid concentration of the phenylsilsesquioxane is 30% by mass and the liquid temperature is 25 ° C. is 2.5 mPa ⁇ s to 35 mPa ⁇ s, The content of the alkoxy group bonded to Si in the phenylsilsesquioxane is 0 to 5% based on all the bonds of Si. Coating liquid for forming flattening film.
  • the alkoxy group bonded to Si in the phenylsilsesquioxane is at least one selected from the group consisting of a methoxy group, an ethoxy group, and a propoxy group,
  • the content of the alcohol with respect to Si in the phenylsilsesquioxane is 0 to 2.5 mol%,
  • the amount of the acetic acid is 0.1 mol to 1 mol with respect to 1 mol of the phenyl trialkoxysilane, and the amount of the organotin is 0.005 mol to 0 mol with respect to 1 mol of the phenyl trialkoxysilane. 0.05 moles, The method for producing a coating liquid for forming a flattening film according to [5] or [6].
  • Metal foil A flattening film provided on at least one surface of the metal foil, the flattening film comprising a cured product of the coating solution for forming a flattening film according to any one of [1] to [4]; Having, Metal foil with flattening film.
  • the metal foil is a stainless steel foil, The metal foil with a flattening film according to [8].
  • a flattening film in which the generation of alcohol is suppressed can be obtained, a coating solution for forming a flattening film, a method for manufacturing a coating solution for forming a flattening film, and flattening.
  • a method for producing a metal foil with a passivation film and a metal foil with a flattening film is provided.
  • FIG. 1 is a schematic diagram illustrating an example of a film forming apparatus applied to manufacture a metal foil with a planarizing film according to the present disclosure.
  • 1 is a schematic partial cross-sectional view illustrating an example of a metal foil with a flattening film according to the present disclosure.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit and an upper limit.
  • an upper limit or a lower limit described in a certain numerical range may be replaced with an upper limit or a lower limit of another numerical range described in a stepwise manner.
  • the upper limit or the lower limit described in a certain numerical range may be replaced with the value shown in the embodiment.
  • the amount of each component in the composition means the total amount of the plurality of substances present in the composition, unless otherwise specified, when there are a plurality of substances corresponding to each component in the composition.
  • the term “step” is included in the term as well as an independent step, even if it cannot be clearly distinguished from other steps as long as the intended purpose of the step is achieved.
  • the coating liquid for forming a flattening film according to the present disclosure is a coating liquid for forming a flattening film containing an organic solvent immiscible with water and phenylsilsesquioxane soluble in the organic solvent.
  • the viscosity of the coating liquid when the solid content concentration of phenylsilsesquioxane is 30% by mass and the liquid temperature is 25 ° C. is 2.5 mPa ⁇ s to 35 mPa. S, and the content of the alkoxy group bonded to Si in the phenylsilsesquioxane is 0 to 5% based on all the bonds of Si.
  • phenylsilsesquioxane is a compound that is soluble in a water-immiscible organic solvent.
  • a phenylsilsesquioxane that is soluble in a water-immiscible organic solvent is a phenylsilsesquioxane that is soluble in a water-immiscible organic solvent at 25 ° C. that is 70% by mass or more. Represents Sun.
  • phenylsilsesquioxane is used in an amount of alcohol, phenyltrialkoxysilane, acetic acid, organic tin, and 1 mol of phenyltrialkoxysilane. After mixing and hydrolyzing 2 to 14 times by mole of water, the alcohol is distilled off under reduced pressure, and the resulting dehydration-condensation reaction containing phenylsilsesquioxane is not mixed with water.
  • the compound is preferably a compound which is dissolved in an organic solvent and heated and refluxed at a temperature equal to or higher than the boiling point of the organic solvent immiscible with water, and further dehydration-condensed to further increase the molecular weight.
  • a dehydration-condensation reaction product containing phenylsilsesquioxane is obtained by hydrolyzing phenyltrialkoxysilane in a mixed solution containing alcohol, phenyltrialkoxysilane, acetic acid, organotin, and water, and then hydrolyzing the phenyltrialkoxysilane. Obtained by a dehydration condensation reaction of alkoxysilane.
  • Phenylsilsesquioxane produced by hydrolyzing phenyltrialkoxysilane has been known as a material for the organically modified silica film.
  • Phenylsilsesquioxane is a polymer whose main chain skeleton is composed of Si—O bonds, and has a structure represented by [(RSiO 1.5 ) n ] having a phenyl group in at least a part of R.
  • the structure of this polymer depends on the catalyst and the synthesis conditions, and cage, ladder, and random structures are known.
  • Patent Literature 1 discloses a ladder type in which, after hydrolyzing a silane compound, an organic solvent that generates an azeotropic compound with water is added, heated to reflux, and then water is removed by azeotropic distillation.
  • a method for producing polysilsesquioxane is disclosed.
  • Patent Document 2 discloses that a thermoplastic polyphenylsilsesquioxane having a ladder-type structure is obtained by hydrolyzing phenyl trialkoxysilane with an acid and then proceeding with a condensation reaction using a basic catalyst. It has been disclosed.
  • Patent Documents 1 and 2 disclose only the production of ladder-type silsesquioxane. Since the main purpose of the coating liquid for forming a flattening film of the present disclosure is to obtain a flattening film in which the generation of alcohol is suppressed, the technique is different from those disclosed in these documents.
  • Patent Document 3 discloses a coating liquid for forming a flattening film in which phenylsilsesquioxane is formed using phenyltrialkoxysilane, and the phenylsilsesquioxane is dissolved in an aromatic hydrocarbon-based solvent.
  • the coating liquid for forming a supported film disclosed in Patent Document 3 is obtained, for example, as follows. First, phenyl trialkoxysilane is hydrolyzed in alcohol using acetic acid and organotin as catalysts. Thereafter, the mixture is refluxed at 80 ° C. for 3 hours under a nitrogen stream, and phenylsilsesquioxane obtained by distillation under reduced pressure at a temperature of 160 ° C. to 210 ° C. is dissolved in toluene. When phenylsilsesquioxane is dissolved in toluene, a polymer having a high molecular weight of tens of thousands in terms of styrene is obtained.
  • This polymer is considered to have a ladder structure because of its spinnability and reflow properties. After dissolving in toluene and performing steps such as filtration, a coating liquid for forming a flattening film containing phenylsilsesquioxane is obtained.
  • the coating liquid for forming a flattening film containing phenylsilsesquioxane disclosed in Patent Document 3 it is possible to provide a flattening film on a metal foil.
  • the coating liquid for forming a flattening film disclosed in Patent Document 3 is useful in that a flattening film can be provided by a Roll-to-Roll process, so that it can be cured in a short time.
  • the coating liquid for forming a flattening film obtained as described above is applied on a metal foil, dried at 20 ° C. to 150 ° C., and heat-treated at 400 ° C. to produce a metal foil with a flattening film. I do. Then, an organic EL lighting element is provided as a flexible device element on the flattening film of the metal foil with the flattening film, and sealed with a glass cap. However, it was found that the lifetime of the organic EL lighting element was shortened when left in a high temperature and high humidity environment.
  • the flexible substrate is sealed with a sealing material and provided to a flexible device.
  • a sealing material for sealing the flexible substrate.
  • a small amount of moisture (water vapor) infiltrates.
  • water vapor water vapor
  • the intrusion of moisture becomes remarkable.
  • an organic EL lighting element is provided on a flattening film of a metal foil with a flattening film and sealed with a sealing material, infiltration of moisture becomes remarkable under a high-temperature and high-humidity environment.
  • Groups eg, ethoxy groups
  • alcohol eg, ethanol
  • Some components constituting the organic EL lighting element are soluble in alcohol.
  • phenyltrialkoxysilanes produced by the synthesis methods described in Patent Documents 4 and 5 also have a large amount of alkoxy groups remaining. Therefore, the alkoxy group remains in the flattening film using phenyl trialkoxysilane formed by the synthesis method described in Patent Documents 4 and 5, and the device life is shortened.
  • the amount of the alkoxy group bonded to Si in the phenylsilsesquioxane is sufficiently reduced to a level that suppresses the performance deterioration of the organic semiconductor. I have. That is, when the content of the alkoxy group is 0 to 5% of the total bonds of Si, the device life is improved.
  • the flattening film obtained by using the coating solution for forming a flattening film of the present disclosure no alkoxy group is present, or even if an alkoxy group is present, the amount thereof is small. For this reason, even in a high-temperature and high-humidity environment, generation of alcohol in the flattening film is suppressed. As a result, it is possible to suppress a reduction in the life of the flexible device element.
  • the coating liquid for forming a planarizing film according to the present disclosure includes an organic solvent that is immiscible with water, and phenylsilsesquioxane that is soluble in the organic solvent.
  • the coating liquid for forming a flattening film according to the present disclosure is, for example, mixed with a predetermined material (mixed with alcohol, phenyl trialkoxysilane, acetic acid, organotin, and water) and hydrolyzed. It is obtained by dissolving a dehydration-condensation reaction product obtained by distillation under reduced pressure in an organic solvent immiscible with water.
  • organic solvent immiscible with water examples include aromatic hydrocarbons, ketones, and ethers.
  • aromatic hydrocarbons such as toluene, xylene (o-xylene, m-xylene, p-xylene), trimethylbenzene; MEK (methyl ethyl ketone), MIBK (methyl isobutyl ketone), cyclohexanone, cyclopentane Ketones such as nonone; ethers such as diethyl ether and diisopropyl ether; and cyclic aliphatic hydrocarbons such as cyclopentane, cyclohexane and methylcyclohexane.
  • the organic solvents may be used alone or in combination of two or more.
  • the “organic solvent immiscible with water” is a concept including an organic solvent having low miscibility with water, and represents an organic solvent having a solubility in water of 300 g / L or less.
  • the solubility in water indicates the weight of an organic solvent soluble in 1 L of water at 25 ° C. in units of g / L.
  • the organic solvent that is immiscible with water is ideally an organic solvent having a solubility in water at 25 ° C. of 30 g / L or less.
  • the phenyl trialkoxysilane is not particularly limited.
  • phenyltriethoxysilane is preferred from the viewpoint of being industrially mass-produced and easily available.
  • Alcohol is used when hydrolyzing phenyl trialkoxysilane.
  • the alcohol is not particularly limited, and examples thereof include methanol, ethanol, propanol (n-propanol, iso-propanol), and butanol (n-butanol, iso-butanol).
  • Acetic acid and organotin are each catalysts.
  • Acetic acid is a catalyst that promotes hydrolysis.
  • Organotin is a catalyst that promotes phenyltrialkoxysilane and its dehydration-condensation reaction after hydrolysis.
  • organic tin examples include dibutyltin diacetate, bis (acetoxydibutyltin) oxide, dibutyltinbisacetylacetonate, monobutylester dibutyltinbismaleate, monobutylester dioctyltinbismaleate, and bis (lauroxydibutyltin) oxide. .
  • dibutyltin diacetate and dibutyltin bisacetylacetonate are particularly preferable as the organic tin.
  • the water is not particularly limited, and includes, for example, distilled water, ion-exchanged water, ultrafiltration water, pure water and the like.
  • the coating liquid for forming a flattening film according to the present disclosure has the following characteristics.
  • the viscosity of the coating liquid for forming a flattening film according to the present disclosure is 2.5 mPa ⁇ s to 35 mPa ⁇ s.
  • the viscosity of the coating liquid is the viscosity of the coating liquid when the solid content concentration of phenylsilsesquioxane is 30% by mass and the liquid temperature is 25 ° C.
  • the solid content concentration is 30% by mass and the viscosity at a temperature of 25 ° C. is in this range, it is preferable from the viewpoint of coating properties when forming a flattening film and from the viewpoint of storage stability.
  • the weight average molecular weight in terms of styrene of phenylsilsesquioxane is low, which is generally less than 5000. Therefore, even if the solid content concentration is increased, the viscosity cannot be increased, resulting in poor coatability. Therefore, a desired film thickness cannot be obtained. Further, a rapid dehydration / condensation reaction occurs due to the heat treatment, which causes a large volume shrinkage, so that the flattening film is easily cracked.
  • the method of measuring the viscosity of the coating liquid for forming a flattening film is as follows. First, the solid content concentration of phenylsilsesquioxane in the coating liquid for forming a flattening film is adjusted to 30% by mass, and the liquid temperature of the coating liquid is adjusted to 25 ° C. Next, the viscosity of the coating liquid whose solid content concentration and liquid temperature have been adjusted is measured using a VISCOMATE @ VM-10A vibrating viscometer manufactured by CBC Corporation.
  • the weight average molecular weight in terms of styrene of phenylsilsesquioxane was 5,000 to 100,000.
  • the phenylsilsesquioxane can be confirmed to exhibit spinnability.
  • the infrared absorption spectrum (IR) of phenylsilsesquioxane was measured, a double peak derived from a siloxane bond was shown at a wavenumber of about 1100 cm -1 .
  • phenylsilsesquioxane contained in the coating liquid for forming a flattening film of the present disclosure has a ladder-type structure. That is, phenylsilsesquioxane is presumed to have a ladder structure in the following points. 1) it is dissolved in an organic solvent, 2) phenylsilsesquioxane having a weight average molecular weight in terms of styrene of 5,000 to 100,000; 3) The point where phenylsilsesquioxane after evaporating the organic solvent exhibits spinnability. 4) The point where IR shows a double peak derived from a siloxane bond at a wavenumber of about 1100 cm -1 .
  • the content of the alkoxy group bonded to Si in phenylsilsesquioxane is 0 to 5% based on all the bonds of Si. That is, the amount of -Si-OR groups (R: methyl group, ethyl group, propyl group, etc.) bonded to Si in the phenylsilsesquioxane is 5% or less (total bonds to Si).
  • R methyl group, ethyl group, propyl group, etc.
  • the lower limit of the content of the alkoxy group bonded to Si in phenylsilsesquioxane is 0%.
  • the upper limit of the content of the alkoxy group may be 3% or less, 2% or less, or 1% or less.
  • the alkoxy group may be at least one selected from the group consisting of a methoxy group, an ethoxy group, and a propoxy group, depending on the phenyl trialkoxysilane used.
  • the alkoxy group may be an ethoxy group.
  • the content of the alkoxy group bonded to Si is a value measured by NMR. Specifically, it is measured as follows.
  • phenylsilsesquioxane was synthesized from phenyltriethoxysilane as a raw material in a toluene solvent, and the coating liquid for forming a flattening film according to the present disclosure prepared by adjusting the solid content concentration of phenylsilsesquioxane to 30% by mass was used.
  • An example will be described.
  • phenyltrialkoxysilane other than phenyltriethoxysilane is used as a raw material, or when a solvent other than toluene is used, the peak positions of NMR spectra and the like are different, but the concepts of measurement and calculation are the same.
  • FIG. 1 shows the structures of T 1 , T 2 , and T 3 in phenylsilsesquioxane. From the 13 C NMR spectrum, the presence of toluene, ethanol, Si-Ph groups, and Si-OEt groups is indicated by peaks at 20.4 ppm, 57.1 ppm, 133.7 ppm, and 58.1 ppm. From the peak area ratio, the abundance ratio of each component is calculated as 388.2 mol%, 2.0 mol%, 100 mol%, and 13.1 mol%, respectively. It is calculated so that the mol% of Si-Ph becomes 100. In the case where the peak is buried in the background and no peak is observed in the NMR spectrum, it is considered that the corresponding component does not exist.
  • the terminal groups are of two types: a Si—OH group and a Si—OEt group.
  • Si When Si is 1, T 1 has two terminal groups and T 2 has one terminal group.
  • the ratio of the Si—OEt group is a and the ratio of the Si—OH group is 1 ⁇ a
  • the number of phenyl groups and Si are the same, and therefore, when Si is 100, there are 100 phenyl groups.
  • the abundance ratio (molar ratio) of the phenyl group to the ethoxy group is known to be 100: 13.1, so a is 0.277. Therefore, the breakdown of 11.8% of the terminal groups is 3.3% of Si—OEt groups and 8.5% of Si—OH groups.
  • the content of the Si-OEt group with respect to all the bonds of Si of the phenylsilsesquioxane in the coating solution measured as described above can be estimated to be 3.3%.
  • the content of alcohol with respect to Si in phenylsilsesquioxane is preferably 0 to 2.5 mol%.
  • the alcohol content is 2.5 mol% or less, poor coating (voids, uneven coating, etc.) is suppressed.
  • the upper limit of the alcohol content is more preferably 1.5 mol% or less, and further preferably 0.5 mol% or less.
  • the alcohol content is most preferably 0 mol% (that is, it is most preferable that the coating solution does not contain alcohol).
  • Examples of a method for producing a coating liquid having an alcohol content within the above range include a method for producing a coating liquid for forming a flattening film (method for producing phenyltrialkoxysilane) described later.
  • a method for producing a coating liquid for forming a flattening film method for producing phenyltrialkoxysilane described later.
  • phenyl trialkoxysilane is produced by the synthesis methods described in Patent Documents 3 to 5
  • a certain amount of alcohol remains in the coating solution.
  • the alcohol is exemplified by methanol, ethanol, and propanol.
  • the alcohol content is measured by a 13 C NMR spectrum.
  • the content of ethanol as an alcohol is calculated to be 2.0 mol%, based on the peak area ratio of 57.1 ppm and 133.7 ppm in 13 C NMR measurement, where the Si-Ph group is 100 mol%.
  • Solids contained in the coating liquid of the present disclosure is ideally phenyl silsesquioxane, namely from those represented as PhSi [theta] 3/2, ethanol when the Si in the coating liquid was 100 mol%
  • the content is 2.0 mol%.
  • the content of alcohol other than ethanol is also calculated from the peak area ratio in 13 C NMR measurement.
  • the method for producing a coating liquid for forming a planarizing film according to the present disclosure includes the following steps.
  • a step of evaporating the alcohol under reduced pressure to advance the dehydration condensation reaction to generate a dehydration condensation reaction product containing phenylsilsesquioxane (concentration step).
  • hydrolysis step it is preferable to carry out hydrolysis by mixing organotin, acetic acid, and water with respect to phenyl trialkoxysilane in alcohol.
  • it may be performed as follows. First, a mixed solution of alcohol and phenyl trialkoxysilane is prepared. Next, organotin and acetic acid are mixed with this mixed solution, and water is further mixed to hydrolyze phenyltrialkoxysilane. A mixture of alcohol, phenyl trialkoxysilane, and organotin may be mixed with acetic acid and further mixed with water.
  • the hydrolysis may be performed by mixing a first mixed solution in which alcohol, phenyl trialkoxysilane, and organotin are mixed, and a second mixed solution in which acetic acid and water are mixed. Reflux may be performed at about 80 ° C. under a nitrogen stream to promote the hydrolysis reaction.
  • the amount of acetic acid is preferably in the range of 0.1 mol to 1 mol based on 1 mol of phenyltrialkoxysilane.
  • the amount of acetic acid is 0.1 mol or more per 1 mol of phenyltrialkoxysilane, the molecular weight of phenylsilsesquioxane increases. Even if the amount of acetic acid exceeds 1 mol, the effect of increasing the molecular weight is saturated.
  • the amount of the organotin is preferably 0.005 mol to 0.05 mol per 1 mol of phenyltrialkoxysilane from the viewpoint of accelerating the polycondensation reaction of phenylsilsesquioxane.
  • the amount of the organotin is 1 mol or more per 1 mol of the phenyl trialkoxysilane, the condensation reaction of the phenylsilsesquioxane during the heat treatment after the application on the metal foil is promoted. In addition, cracks hardly occur in the flattening film.
  • the amount is less than 0.05 mol, gelation of phenylsilsesquioxane hardly occurs at the stage of hydrolysis before distillation under reduced pressure.
  • the amount of water used for the hydrolysis is 1 mole of phenyltrialkoxysilane.
  • the molar ratio is 4.2 to 14 times.
  • the preferred amount of water is 4.5 to 13.5 moles.
  • the concentration step the alcohol is distilled off under reduced pressure, and the dehydration condensation reaction proceeds to generate a dehydration condensation reaction product containing phenylsilsesquioxane.
  • the concentration step it is preferable to distill off the alcohol while heating the solution containing the hydrolyzed phenyltrialkoxysilane to a temperature of 30 ° C. to 90 ° C. under reduced pressure.
  • a product obtained by partially dehydrating and condensing phenyltrialkoxysilane that has been hydrolyzed almost 100% is obtained.
  • the temperature, the degree of reduced pressure, and the time of the partial dehydration condensation reaction be adjusted to advance the dehydration condensation reaction.
  • the weight is adjusted to be 1.04 times to 1.11 times.
  • the concentration step at the time of completion, the alcohol is almost removed and the state becomes almost solventless. Therefore, if the hydrolyzed molecules collide with each other, dehydration condensation easily proceeds even if there is steric hindrance. Therefore, an oligomer containing a large amount of the aforementioned T 1 and T 2 (see FIG. 1) is likely to be generated. When such oligomers are dehydrated and condensed, an undesirable reaction occurs in the step of increasing the molecular weight. For this reason, it is preferable that the oligomer does not become a large oligomer in the concentration step.
  • the average molecular weight of the dehydration-condensation reaction product is 1.04 to 1.11 times the average molecular weight of 129 of C 6 H 5 SiO 3/2 , the monomer of the hydrolyzate of phenyl trialkoxysilane , And a mixture of a dimer and an oligomer.
  • the step of increasing the molecular weight it is preferable to dissolve the partial dehydration-condensation reaction product in an organic solvent immiscible with water so that the solid content concentration is 30% by mass to 80% by mass. Further, it is preferable that the reflux time is 3 hours to 30 hours at a temperature not lower than the boiling point of the organic solvent immiscible with water.
  • the heating and refluxing is preferably performed while removing alcohol together with water using a Dean-Stark trap, so that a partial dehydration / condensation reaction between dehydration / condensation products proceeds.
  • the partial dehydration condensation product is an oligomer containing a large amount of T 1 and T 2
  • a monomer or a dimer is sequentially added to an oligomer having no silanol group by a dehydration condensation reaction.
  • the coating liquid for forming a flattening film according to the present disclosure is obtained.
  • the metal foil with a flattening film according to the present disclosure has a metal foil and a flattening film provided on at least one surface of the metal foil and obtained by curing the coating liquid for forming a flattening film according to the present disclosure.
  • an example of a preferable manufacturing method for obtaining the metal foil with a flattening film according to the present disclosure includes the following steps. A step of applying the coating liquid for forming a flattening film of the present disclosure to at least one surface of the metal foil (coating step). After reflow and film curing in a temperature range of 300 ° C. to 450 ° C. in an inert gas atmosphere, a winding step (winding step).
  • the flattening film is provided on at least one surface of the metal foil. That is, the flattening film may be provided on both sides of the rolled surface of the metal foil, or may be provided only on one side of the rolled surface. In general, electronic device elements (for example, organic EL lighting elements) are often manufactured only on one side of a substrate. Therefore, the flattening film may be provided only on one side of the metal foil.
  • the metal foil Since the metal foil is thinned by rolling, streaks are observed in the rolling direction. In addition, there are flaws elongated in the rolling direction due to inclusions included in the original molten metal, foreign matters caught in the rolling rolls, and the like.
  • the size of the flaw is, for example, often about several tens ⁇ m in width and about 1 mm to several mm in length.
  • the surface roughness of the metal foil differs between the direction parallel to the rolling streaks and the direction perpendicular to the rolling streaks, and the vertical direction has a larger surface roughness. Therefore, for the purpose of improving the flatness of the metal foil by covering the flattening film, attention is paid to the vertical direction in which the surface roughness is the largest. Specifically, the surface roughness was measured at a measurement length of 1.25 mm with a stylus type roughness meter at 10 or more points perpendicular to the rolling direction of the metal foil, that is, in the width direction of the metal foil, and the average value was measured. Is adopted.
  • the relationship between the surface roughness of the metal foil with a flattening film and the characteristics of the organic EL element as a flexible device element formed thereon was examined in detail. As a result, it was found that the flatness of the film surface was important in reducing the leak current of the organic EL element. If the arithmetic average roughness Ra in the direction perpendicular to the rolling direction of the surface of the metal foil with a flattening film is 30 nm or less, the leak current of the organic EL light emitting element is set to a practical level of 1E-4 A / m 2 or less. be able to.
  • the leak current of the device is formed by forming a lower electrode, a light emitting portion, and an upper electrode of the device in this order on a flattened film of phenylsilsesquioxane to produce a device, and applying 3 V between the lower electrode and the upper electrode. It is determined by dividing the current when a voltage is applied by the element area.
  • the light emitting section is composed of a plurality of layers, and the total thickness is about 100 nm to 150 nm. When the surface of the film is rough, a portion where the distance between the lower electrode and the upper electrode is short is formed, and the leak current of the element increases.
  • Ra of the metal foil with a flattening film exceeds 30 nm, an element having a large leak current exceeding 1E-4 A / m 2 is obtained. As a result, phenomena such as a reduction in the efficiency of the element and a short circuit occur.
  • a more preferable range of Ra is 20 nm or less, and further preferably 15 nm or less. By setting Ra within this range, a smaller leak current can be obtained.
  • the arithmetic average roughness Ra in the direction perpendicular to the rolling direction of the surface of the metal foil with a flattening film is preferably as small as possible, and the lower limit of Ra is not limited. Ra may be, for example, 0.5 nm or more.
  • An insulating coating may be provided on at least one surface of the metal foil.
  • the type of the insulating coating is not particularly limited, and examples thereof include metal oxides (silica, alumina, and the like), inorganic salts (aluminum phosphate, calcium phosphate, and the like), and heat-resistant resins (polyimide, polytetrafluoroethylene, and the like).
  • the insulating film made of a metal oxide can be formed by, for example, a method such as sputtering, vapor deposition, or CVD.
  • the inorganic salt insulating film can be formed by a coating method such as a roll coater or a spray.
  • the insulating film of the heat-resistant resin can be formed by a coating method such as a comma coater, a die coater, and a spray.
  • the metal foil is not particularly limited, and examples thereof include an aluminum foil, a copper foil, a titanium foil, and a stainless steel foil. Among these, stainless steel foil is preferable.
  • Stainless steel foil is suitable as a flexible substrate for electronic devices from the viewpoint that it is industrially easy to manufacture at low cost and hardly breaks. When a stainless steel foil is used, the reflectivity of the stainless steel foil is low (the reflectivity is 60%), so that a reflective film may be formed on at least one surface of the stainless steel foil.
  • the stainless steel foil may be any of austenitic, ferrite and martensitic stainless steel foils. From the viewpoint of application to a flexible substrate, an austenitic or ferritic stainless steel foil is preferable.
  • the thickness of the metal foil is not particularly limited, and may be, for example, 10 ⁇ m to 100 ⁇ m.
  • an organic EL lighting an organic EL display or the like of top emission is manufactured using a transparent lower electrode as an electronic device
  • light is repeatedly reflected on the surface of the stainless steel foil. If the reflectance of the stainless steel foil is about 60%, much light is lost and the efficiency of the device is reduced.
  • a reflective film for example, a reflectance of about 95%) is formed on the surface of the stainless steel foil, most of the light is reflected by the reflective film, so that the efficiency of the device is significantly improved.
  • examples of the type of the reflective film having a high reflectance of about 95% include pure Al, an Al alloy, pure Ag, and an Ag alloy.
  • the Al alloy include Al-Si and Al-Nd alloys.
  • Ag alloys include alloys such as Ag-Nd and Ag-In.
  • the reflection film can be formed by a sputtering method or the like.
  • the thickness of the flattening film is preferably 2.0 ⁇ m to 5.0 ⁇ m from the viewpoint of flattening the film and suppressing cracks.
  • the thickness of the flattening film is 2.0 ⁇ m or more, it is easy to cover the unevenness of the metal foil. From the viewpoint of covering the unevenness of the metal foil, the thickness of the flattening film is preferably 2.5 ⁇ m or more.
  • the thickness of the flattening film is 5 ⁇ m or less, cracking of the flattening film is suppressed. Further, not only cracks during film formation but also cracks when the stainless steel foil covered with the flattening film is bent as a flexible substrate are suppressed.
  • the thickness of the flattening film is more preferably equal to or less than 4.5 ⁇ m, and still more preferably equal to or less than 4.0 ⁇ m.
  • FIG. 2 is a schematic diagram illustrating an example of a film forming apparatus applied to manufacture the metal foil with a flattening film according to the present disclosure.
  • This film forming apparatus represents a continuous film forming apparatus for providing a flattening film on one side of a metal foil by a Roll to Roll process.
  • the film forming apparatus 100 shown in FIG. 2 contains a coil unwinding unit 12 that unwinds a metal foil wound in a coil shape and a coating liquid 22A for forming a flattening film according to the present disclosure.
  • a coil winding unit 14 for winding the attached metal foil.
  • the support roll supporting the metal foil is arranged so as not to contact the film surface (the dried film surface and the cured film surface) on the electronic device formation side.
  • the film forming apparatus 100 includes a tension applying roll 32A and a tension applying roll 32B so that wrinkles and the like do not occur when the film is conveyed.
  • the tension applying roll 32 ⁇ / b> A is provided on the upstream side of the application unit 22 in the metal foil transport direction, and stabilizes the transport of the metal foil.
  • the tension applying roll 32B is provided on the downstream side of the heat treatment unit 26 and on the upstream side of the coil winding unit 14, and stabilizes the transport of the metal foil with the flattening film.
  • the application step is a step of applying the coating liquid for forming a flattening film according to the present disclosure.
  • the metal foil wound around the core is attached to the coil unwinding section 12.
  • the metal foil is unwound from the coil unwinding unit 12 in the direction of arrow A.
  • the transport of the metal foil is stabilized by passing through the tension applying roll 32A, and the metal foil is sent to the coating unit 22 in which the coating liquid 22A for forming a flattening film of the present disclosure is stored.
  • the coating roll applies the flattening film forming coating liquid 22A to one surface of the metal foil to form a coating film of the flattening film forming coating liquid 22A.
  • the winding step is a step of winding after drying, heat treatment, and cooling after application.
  • the metal foil provided with the coating film of the coating liquid 22A for forming a flattening film is sent to the drying unit 24.
  • the drying unit 24 the solvent and moisture contained in the coating film are removed, and the coating film becomes a dried film.
  • the metal foil on which the dried film of the coating liquid 22A for forming a flattening film is formed is sent from the drying unit 24 to the heat treatment unit 26.
  • the heat treatment section 26 the surface of the dried film is flattened by being reflowed.
  • the metal foil on which the cured film of the coating liquid 22A for forming a flattening film (that is, the flattening film) is formed is sent from the heat treatment unit 26 to the cooling unit 28.
  • cool air is blown from a cooling body 28 ⁇ / b> A arranged on the surface side where the cured film is provided and a cooling body 28 ⁇ / b> B arranged on the opposite surface side (that is, the metal foil surface side) to be cooled.
  • the metal foil with the flattening film is sent from the cooling unit 28 to the coil winding unit 14.
  • the transport of the metal foil with the flattening film is stabilized by passing through the tension applying roll 32A.
  • the metal foil with the flattening film is transported in the direction of arrow A, and is wound around the core by the coil winding unit 14.
  • FIG. 3 is a schematic partial cross-sectional view showing a part of the metal foil with a flattening film, showing the metal foil with a flattening film according to the present disclosure.
  • the metal foil 300 with a flattening film shown in FIG. 3 includes a metal foil (metal foil) 302 and a flattening film 304 provided on one surface of the metal foil 302.
  • the transport speed (sheet passing speed) of the metal foil is not particularly limited, and is, for example, about 1 m / min to 20 m / min. The higher the transfer speed, the higher the productivity.
  • the method of applying the coating liquid for forming a flattening film to the surface of the metal foil in the coating section is not particularly limited.
  • the coating method include various coating methods (spin coating method, casting method, microgravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, slit coating method, capillary coating method) Method, spray coating method, nozzle coating method, etc.) and various printing methods (gravure printing method, screen printing method, flexographic printing method, offset printing method, reverse printing method, inkjet printing method, etc.).
  • the drying section dries the coating film on the metal foil and removes the solvent and moisture from the coating film to form a dried film.
  • the drying treatment is preferably performed at a temperature of 20 ° C to 150 ° C.
  • the drying time is preferably about 0.5 to 2 minutes.
  • the atmosphere in the drying unit may be the air or an inert gas atmosphere (for example, a nitrogen gas atmosphere). If the drying temperature is higher than the synthesis temperature of phenylsilsesquioxane by distillation under reduced pressure, the ladder-type structure of phenylsilsesquioxane may be softened. For this reason, the drying temperature is preferably lower than the synthesis temperature of phenylsilsesquioxane.
  • the phenylsilsesquioxane In the dried film, the phenylsilsesquioxane is entangled and apparently has a network structure, so that the film is hardened. However, when the movement of the molecule becomes active due to the thermal vibration, the phenylsilsesquioxane is released and becomes fluid.
  • the metal foil with a dried film sent from the drying unit is heat-treated in the heat treatment unit.
  • the heat treatment has the following two purposes. (1) melt-softening (ie, reflow) the phenylsilsesquioxane forming the dried film to flatten the surface of the film; (2) proceeding with crosslinking of the polymer following reflow to form a three-dimensional network structure And curing the film.
  • Reflow is a temperature range higher than the synthesis temperature of phenylsilsesquioxane by distillation under reduced pressure, and occurs within a temperature range lower than the temperature at which the dry film begins to cure due to the progress of three-dimensional crosslinking. It is. It is not necessary to employ a special heat treatment process for reflow. When the heat treatment temperature is in the range of 300 ° C. to 450 ° C., reflow occurs in the process of raising the temperature to the heat treatment temperature, and film curing by crosslinking proceeds.
  • Cooling after heat treatment may be performed by blowing cool air from a cooling body.
  • the metal foil with the hardened film is sprayed from both sides, but may be sprayed from one side of the hardened film side.
  • the temperature of the cold air may be room temperature (for example, 25 ° C.).
  • a protective film may be stuck on the flattening film surface to protect the flattening film, and an interleaf paper is inserted to prevent scratches. May be.
  • the drying and the heat treatment are performed continuously, but the drying and the heat treatment may be performed independently. For example, after winding the metal foil with the dry film into a coil, only the heat treatment may be performed again to cure the dry film. In this case, two types of equipment, a drying treatment equipment and a heat treatment equipment, are installed. When the drying and the heat treatment are performed independently, there is an advantage that each processing can be set to an optimum passing speed.
  • Examples 1 to 8 Comparative Examples 1 to 5> The mixing ratio and the manufacturing conditions of each example were carried out according to the conditions described in Table 1. First, using a 1 L flask, the ingredients were blended so as to have the blending ratio shown in Table 1, and the raw materials were blended so that the total amount was 0.7 L. After the preparation, the raw materials were stirred and mixed with a magnetic stirrer for 15 minutes, and refluxed at 80 ° C. for 3 hours under a nitrogen stream to promote hydrolysis. The results of the visual observation in the flask after the reflux are described in the column of “Properties of Hydrolyzed Solution”.
  • the temperature of the oil bath was set to 80 ° C., and the solvent was distilled off under reduced pressure to obtain a condensation reaction product. Thereafter, an organic solvent immiscible with water was added in an amount equivalent to the weight of the condensation reaction product to dissolve the condensation reaction product. At this point, the condensation reaction product is dissolved at a solid concentration of 50% by mass.
  • the 1 L flask was connected to a reflux condenser equipped with a Dean-Stark trap, and heated to reflux. Table 1 shows the set temperature of the oil bath and the reflux time during heating and reflux.
  • the yield was determined from the theoretical amount when the obtained filtrate and the raw material phenyltrialkoxysilane were subjected to a 100% condensation reaction and dissolved in the coating solution. The results are shown in the column of "Yield at 30% dilution". The yield was rated A (very good) for 93% or more, B (good) for less than 85% and less than 85%, and C (bad) for less than 85%. Further, 29 Si NMR and 13 C NMR measurements were performed on the coating solution, and the ratio of the alkoxy group to the total bond of Si and the ratio of the alcohol to Si (mol%) were determined by the above-described methods.
  • Comparative Examples 6 and 7 were carried out in accordance with the conditions shown in Table 1 with respect to the mixing ratio and the production conditions of each example.
  • Comparative Example 6 is an example synthesized according to Patent Document 3.
  • Comparative Example 7 is an example in which the amount of water is increased based on the process of Patent Document 3. In Comparative Example 7, when only water was increased, turbidity was likely to be generated during hydrolysis. Therefore, ethanol was also added so as to easily occur after uniform hydrolysis. First, using a 1 L flask, each component was blended so as to have a blend ratio shown in Table 1, and raw materials were blended so that the total amount was 0.7 L.
  • the obtained coating solution was spin-coated on a stainless steel foil through a filter having a pore size of 0.5 ⁇ m.
  • SUS304MW milk white finish
  • 150 mm ⁇ 150 mm ⁇ 0.05 mm manufactured by Nippon Steel Chemical & Materials Co., Ltd. was used.
  • the number of revolutions of the spin coater was set so that the film thickness became 3.0 ⁇ m.
  • drying was performed in an oven at 80 ° C. for 1 minute, and then heat treatment was performed in a heat treatment furnace at 400 ° C. for 10 minutes to obtain a stainless steel foil with a flattening film in each example.
  • the initial state of the light emitting surface was observed with an optical microscope in a state where 4.5 V was applied to the element to emit light.
  • the device was stored in a thermo-hygrostat at 60 ° C. and a relative humidity of 90% RH for 40 hours, then 4.5 V was applied again to observe the light emitting surface, and the shrinkage width of the light emitting surface from the cathode side was measured. .
  • the shrinkage width exceeded 50 ⁇ m, it was determined as C (impossible), when it was 50 ⁇ m or less, B (good), and when it was 20 ⁇ m or less, it was determined as A (very good). Those having cracks on the substrate are excluded from the evaluation because there is no point in performing element evaluation. The results are described in the column of “Shrinkage width after storage at 60 ° C. and 90% RH for 40 hours”.
  • Table 1 The overall evaluation in Table 1 was based on the following criteria. A: Yield, shrinkage width, and applicability are all judged as A. B: At least one of yield, shrinkage width, and applicability is judged as B, and the rest is judged as A. C: Yield, shrinkage width, One or more of the applicability could not be evaluated or evaluated as C
  • the coating liquid of Comparative Example 3 had an acid catalyst and water was added in a sufficient amount, but the condensation reaction did not proceed sufficiently because no organotin was added. For this reason, the molecular weight of the condensation reaction product was small, and the viscosity at the time of 30 mass% dilution was very low. A rapid dehydration-condensation reaction occurred in the heat treatment step after the spin coating, causing a large volume shrinkage, thereby causing cracks in the film and making it impossible to prototype the device. Since a sound film could not be obtained, the applicability could not be evaluated.
  • the coating solution of Comparative Example 7 was subjected to hydrolysis by increasing the amount of water compared to the coating solution of Comparative Example 6, but after evaporating under reduced pressure at 180 ° C., it was tried to dissolve in toluene. A large amount of insolubles was generated, and the liquid became cloudy. It is presumed that when a large amount of water was added and distilled off under reduced pressure at a high temperature, more random condensates were insoluble in toluene than in the ladder polymer. More than half of the distillate under reduced pressure did not dissolve and could not be filtered under reduced pressure due to clogging, and the coating liquid and the film could not be evaluated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

This planarized film-forming application liquid contains phenylsilsesquioxane which is soluble in an organic solvent, wherein the planarized film-forming application liquid has a viscosity of 2.5-35 mPa·s when the solid concentration of the phenylsilsesquioxane is 30 mass%, and the amount of alkoxy groups bound to Si in the phenylsilsesquioxane is 0-5% with respect to Si.

Description

平坦化膜形成用塗布液、平坦化膜形成用塗布液の製造方法、平坦化膜付き金属箔、及び平坦化膜付き金属箔の製造方法Coating liquid for forming flattening film, method for manufacturing coating liquid for forming flattening film, metal foil with flattening film, and manufacturing method for metal foil with flattening film
 本開示は、平坦化膜形成用塗布液、平坦化膜形成用塗布液の製造方法、平坦化膜付き金属箔コイル、及び平坦化膜付き金属箔コイルの製造方法に関する。 The present disclosure relates to a coating liquid for forming a flattening film, a method for manufacturing a coating liquid for forming a flattening film, a metal foil coil with a flattening film, and a method for manufacturing a metal foil coil with a flattening film.
 電子ペーパー、有機ELディスプレイ、有機EL照明、太陽電池などの電子デバイスでは、フレキシブル基板が求められている。これらの電子デバイスを、フレキシブル基板上に作製すれば、落下しても割れることがなく、軽量性及び柔軟性を活かした新しい用途が展開できる。 フ レ キ シ ブ ル Flexible substrates are required for electronic devices such as electronic paper, organic EL displays, organic EL lighting, and solar cells. If these electronic devices are fabricated on a flexible substrate, they will not break even when dropped, and new applications utilizing light weight and flexibility can be developed.
 従来、フレキシブル基板として、樹脂基板およびガラス基板が検討されてきた。これら以外にも、金属箔の適用が検討されている。金属箔の表面は、圧延スジ、スクラッチ疵などが存在するため、ガラス基板の表面よりも平坦性が低い。このため、フレキシブル基板として、金属箔を適用するには、金属箔の表面を平坦化膜で被覆して、ガラス基板の表面並みに平坦化することが求められる。この平坦化膜を設けることは、金属箔に絶縁性を付与することにもつながる。 樹脂 Conventionally, resin substrates and glass substrates have been studied as flexible substrates. In addition to these, application of metal foil is being studied. The surface of the metal foil has lower flatness than the surface of the glass substrate due to the presence of rolling streaks and scratches. For this reason, in order to apply a metal foil as a flexible substrate, it is necessary to cover the surface of the metal foil with a flattening film and flatten it to the same level as the surface of the glass substrate. Providing this flattening film also leads to imparting insulation to the metal foil.
 電子デバイスを作製するときのプロセス温度は、電子デバイスの種類および構成材料によって異なる。例えば、アモルファスシリコン、又は低温ポリシリコン(LTPS;low-temperature poly silicon)のTFT液晶ディスプレイを作る場合には、300℃~400℃程度のプロセス温度になる。したがって、金属箔を被覆する絶縁膜は、400℃まで耐えられる耐熱性が求められる。 プ ロ セ ス Process temperatures for producing electronic devices differ depending on the type and constituent materials of the electronic device. For example, when a TFT liquid crystal display of amorphous silicon or low-temperature polysilicon (LTPS) is formed, a process temperature of about 300 ° C. to 400 ° C. is required. Therefore, the insulating film covering the metal foil is required to have heat resistance that can withstand up to 400 ° C.
 金属箔を被覆する膜材料としては、例えば、無機・有機ハイブリッド材料が挙げられる。無機・有機ハイブリッド材料による絶縁膜としては、有機修飾シリカ膜が代表的である。有機修飾シリカ膜は、有機基を含むため、無機膜より柔軟性がある。このため、厚膜化が図れる。有機修飾シリカ膜は、主骨格がSi-Oの無機骨格で形成されている。
 したがって、有機修飾シリカ膜の耐熱性は、主骨格を修飾している有機基の分解温度で決まる。
 有機基としてメチル基又はフェニル基を選択すれば、有機修飾シリカ膜は400℃程度の耐熱性を確保することができる。特に、フェニル基で修飾されたシリカ膜は、フェニル基の高い疎水性により、高温高湿化(例えば、85℃85%RHの環境加速試験)においても、Si-O主骨格が加水分解を受け難く耐湿性に優れる。このため電子デバイス用基板としては、フェニル基修飾シリカ膜で被覆した金属箔が好ましい。
Examples of the film material for coating the metal foil include an inorganic / organic hybrid material. As an insulating film made of an inorganic-organic hybrid material, an organic-modified silica film is typical. Since the organic-modified silica film contains an organic group, it is more flexible than an inorganic film. For this reason, the film thickness can be increased. The organic modified silica film has a main skeleton formed of an inorganic skeleton of Si—O.
Therefore, the heat resistance of the organically modified silica film is determined by the decomposition temperature of the organic group modifying the main skeleton.
If a methyl group or a phenyl group is selected as the organic group, the organically modified silica film can secure heat resistance of about 400 ° C. In particular, the silica film modified with a phenyl group has its Si—O main skeleton hydrolyzed even at high temperature and high humidity (for example, at 85 ° C. and 85% RH environment acceleration test) due to the high hydrophobicity of the phenyl group. Difficult and excellent in moisture resistance. For this reason, a metal foil coated with a phenyl group-modified silica film is preferable as a substrate for an electronic device.
 有機修飾シリカ膜を形成するための材料としては、例えば、特許文献1~5に開示されている。そして、特許文献3~5には、金属箔を被覆する有機修飾シリカ膜を形成するための塗布液が開示されている。 材料 Materials for forming the organically modified silica film are disclosed, for example, in Patent Documents 1 to 5. Patent Documents 3 to 5 disclose coating liquids for forming an organically modified silica film covering a metal foil.
 特許文献1:日本国特開2008-81736号公報
 特許文献2:日本国特開2003-226753号公報
 特許文献3:国際公開第2016/076399号
 特許文献4:日本国特開2018-123192号公報
 特許文献5:日本国特開2018-062582号公報
Patent Document 1: Japanese Patent Application Laid-Open No. 2008-81736 Patent Document 2: Japanese Patent Application Laid-Open No. 2003-226755 Patent Document 3: International Patent Application Publication No. WO 2016/076399 Patent Document 4: Japanese Patent Application Publication No. 2018-123192 Patent Document 5: Japanese Patent Application Publication No. 2018-062582
 特許文献3では、有機溶媒中で加水分解されたフェニルトリアルコキシシランを含む溶液を減圧留去することにより、フェニルシロキサンラダーポリマーを生成させる。そして、それをトルエンなどに溶解させて塗布液を合成する。この方法では、加水分解しきれなかったアルコキシ基、および減圧留去で除去しきれなかったアルコールは、そのまま塗布液中に残ってしまうことになる。フレキシブル基板として、例えば、特許文献3に開示された有機修飾シリカ膜による平坦化膜を金属箔上に設けた平坦化膜付き金属箔を電子デバイスに適用した場合、電子デバイス素子の寿命を低下させる場合があることが分かってきた。この現象は、有機修飾シリカ膜中に残存するアルコキシ基に起因していると考えられる。塗布液中に残っているアルコキシ基の量が多いと、金属箔に塗布して熱硬化させた後の膜にもアルコキシ基が残存してしまう。膜に含まれているアルコキシ基が大気中の水分などで経時的に加水分解されることにより、電子デバイス素子の性能を低下させるアルコールが生成すると予想される。また、塗布液中に含まれるアルコールは塗工時にハジキ状の皮膜欠陥につながりやすいという問題もあった。 で は In Patent Document 3, a phenylsiloxane ladder polymer is produced by distilling a solution containing phenyltrialkoxysilane hydrolyzed in an organic solvent under reduced pressure. Then, it is dissolved in toluene or the like to synthesize a coating solution. In this method, the alkoxy groups that could not be completely hydrolyzed and the alcohol that could not be completely removed by distillation under reduced pressure remain in the coating solution as they are. As a flexible substrate, for example, when a metal foil with a flattening film provided on a metal foil with a flattening film made of an organic-modified silica film disclosed in Patent Document 3 is applied to an electronic device, the life of the electronic device element is reduced. It turns out that there are cases. This phenomenon is considered to be due to the alkoxy groups remaining in the organically modified silica film. If the amount of the alkoxy group remaining in the coating liquid is large, the alkoxy group remains in the film after being applied to the metal foil and thermally cured. It is expected that the alkoxy group contained in the film will be hydrolyzed over time with atmospheric moisture or the like, thereby producing alcohol which degrades the performance of the electronic device element. In addition, there is also a problem that alcohol contained in the coating liquid is likely to lead to a repellent film defect at the time of coating.
 また、特許文献4~5に記載の合成法による塗布液は、特許文献3の塗布液と同じプロセスで合成している。そのため、特許文献4~5に記載の塗布液で平坦化した基板の上に作製した電子デバイスは、アルコキシ基の加水分解で生成するアルコールにより、電子デバイス素子の寿命を低下させる場合がある。 塗布 Further, the coating solution by the synthesis method described in Patent Documents 4 and 5 is synthesized by the same process as the coating solution of Patent Document 3. Therefore, in an electronic device manufactured on a substrate flattened with a coating liquid described in Patent Documents 4 and 5, the lifetime of the electronic device element may be shortened by alcohol generated by hydrolysis of an alkoxy group.
 本開示の目的は、高温高湿環境下であっても、アルコールの発生が抑制された平坦化膜が得られる、平坦化膜形成用塗布液、平坦化膜形成用塗布液の製造方法、平坦化膜付き金属箔、及び平坦化膜付き金属箔の製造方法を提供することである。 An object of the present disclosure is to provide a coating solution for forming a flattening film, a method for manufacturing a coating solution for forming a flattening film, and a flattening film, which can provide a flattening film in which generation of alcohol is suppressed even in a high-temperature and high-humidity environment An object of the present invention is to provide a method for producing a metal foil with a passivation film and a metal foil with a flattening film.
 前記課題を解決するための具体的手段には、下記の態様が含まれる。 具体 Specific means for solving the above problems include the following aspects.
[1]
 水と混和しない有機溶媒と、前記有機溶媒に可溶したフェニルシルセスキオキサンと、を含む平坦化膜形成用塗布液であって、
 前記フェニルシルセスキオキサンの固形分濃度を30質量%かつ液温を25℃としたときの塗布液の粘度が、2.5mPa・s~35mPa・sであり、
 前記フェニルシルセスキオキサン中のSiに結合したアルコキシ基の含有量が、Siの全結合手に対して0~5%である、
 平坦化膜形成用塗布液。
[2]
 前記フェニルシルセスキオキサン中のSiに結合したアルコキシ基が、メトキシ基、エトキシ基、及びプロポキシ基からなる群より選択される少なくとも一つである、
 [1]に記載の平坦化膜形成用塗布液。
[3]
 前記フェニルシルセスキオキサン中のSiに対するアルコールの含有量が、0~2.5モル%である、
 [1]又は[2]に記載の平坦化膜形成用塗布液。
[4]
 前記フェニルシルセスキオキサンは、
 アルコールと、フェニルトリアルコキシシランと、酢酸と、有機スズと、前記フェニルトリアルコキシシラン1モルに対して、4.2モル倍~14モル倍の量の水と、を混合し、加水分解を行う工程と、
 減圧下でアルコールを留去して得られた、フェニルシルセスキオキサンを含む脱水縮合反応物を生成する工程と、
 前記脱水縮合反応物を水と混和しない有機溶媒に溶解し、前記水と混和しない有機溶媒の沸点以上で加熱還流しながら、さらに脱水縮合反応を進めて高分子量化する工程と、
 を少なくとも経て、得られた化合物である、
 [1]~[3]のいずれか1項に記載の平坦化膜形成用塗布液。
[5]
 アルコールと、フェニルトリアルコキシシランと、酢酸と、有機スズと、前記フェニルトリアルコキシシラン1モルに対して、4.2モル倍~14モル倍の量の水と、を混合し、加水分解を行う工程と、
 減圧下でアルコールを留去して脱水縮合反応を進め、フェニルシルセスキオキサンを含む脱水縮合反応物を生成する工程と、
 前記脱水縮合反応物を水と混和しない有機溶媒に溶解し、前記水と混和しない有機溶媒の沸点以上で加熱還流しながら、さらに脱水縮合反応を進めて高分子量化する工程と、
 を有する、
 平坦化膜形成用塗布液の製造方法。
[6]
 前記フェニルシルセスキオキサンの固形分濃度を30質量%かつ液温を25℃としたときの塗布液の粘度が、2.5mPa・s~35mPa・sであり、前記フェニルシルセスキオキサン中のSiに結合したアルコキシ基の含有量が、Siの全結合手に対して0~5%である、
 平坦化膜形成用塗布液を製造する[5]に記載の平坦化膜形成用塗布液の製造方法。
[7]
 前記酢酸の量が、前記フェニルトリアルコキシシラン1モルに対して、0.1モル~1モルであり、前記有機スズの量が、フェニルトリアルコキシシラン1モルに対して、0.005モル~0.05モルである、
 [5]又は[6]に記載の平坦化膜形成用塗布液の製造方法。
[8]
 金属箔と、
 前記金属箔の少なくとも一方の表面に設けられ、[1]~[4]のいずれか1項に記載の平坦化膜形成用塗布液の硬化物からなる平坦化膜と、
 を有する、
 平坦化膜付き金属箔。
[9]
 前記金属箔が、ステンレス箔である、
 [8]に記載の平坦化膜付き金属箔。
[10]
 金属箔の少なくとも一方の表面に、[1]~[4]のいずれか1項に記載の平坦化膜形成用塗布液を塗布する工程と、
 前記塗布した平坦化膜形成用塗布液を、不活性ガス雰囲気中300℃~450℃の温度域でリフロー及び膜硬化し、平坦化膜を形成する工程と、
 を有する、
 平坦化膜付き金属箔の製造方法。
[1]
An organic solvent that is immiscible with water, and a phenylsilsesquioxane soluble in the organic solvent, a coating liquid for forming a flattening film,
The viscosity of the coating liquid when the solid concentration of the phenylsilsesquioxane is 30% by mass and the liquid temperature is 25 ° C. is 2.5 mPa · s to 35 mPa · s,
The content of the alkoxy group bonded to Si in the phenylsilsesquioxane is 0 to 5% based on all the bonds of Si.
Coating liquid for forming flattening film.
[2]
The alkoxy group bonded to Si in the phenylsilsesquioxane is at least one selected from the group consisting of a methoxy group, an ethoxy group, and a propoxy group,
The coating liquid for forming a flattening film according to [1].
[3]
The content of the alcohol with respect to Si in the phenylsilsesquioxane is 0 to 2.5 mol%,
The coating liquid for forming a flattening film according to [1] or [2].
[4]
The phenylsilsesquioxane,
Alcohol, phenyl trialkoxysilane, acetic acid, organotin, and water in an amount of 4.2 to 14 times the molar amount of 1 mole of the phenyl trialkoxysilane are mixed and hydrolyzed. Process and
A step of producing a dehydration-condensation reaction product containing phenylsilsesquioxane, obtained by distilling off the alcohol under reduced pressure,
Dissolving the dehydration-condensation reaction product in a water-immiscible organic solvent, while heating and refluxing at a temperature equal to or higher than the boiling point of the water-immiscible organic solvent, further dehydration condensation reaction to increase the molecular weight,
Is a compound obtained at least through
The coating liquid for forming a flattening film according to any one of [1] to [3].
[5]
Alcohol, phenyl trialkoxysilane, acetic acid, organotin, and water in an amount of 4.2 to 14 mole times based on 1 mole of the phenyl trialkoxysilane are mixed and hydrolyzed. Process and
Proceeding the dehydration condensation reaction by distilling off the alcohol under reduced pressure to produce a dehydration condensation reaction product containing phenylsilsesquioxane,
Dissolving the dehydration-condensation reaction product in a water-immiscible organic solvent, while heating and refluxing at a temperature equal to or higher than the boiling point of the water-immiscible organic solvent, further dehydration condensation reaction to increase the molecular weight,
Having,
A method for producing a coating liquid for forming a flattening film.
[6]
When the solid content of the phenylsilsesquioxane is 30% by mass and the liquid temperature is 25 ° C., the viscosity of the coating solution is 2.5 mPa · s to 35 mPa · s. The content of the alkoxy group bonded to Si is 0 to 5% based on all the bonds of Si;
The method for producing a coating liquid for forming a flattening film according to [5], wherein the coating liquid for forming a flattening film is manufactured.
[7]
The amount of the acetic acid is 0.1 mol to 1 mol with respect to 1 mol of the phenyl trialkoxysilane, and the amount of the organotin is 0.005 mol to 0 mol with respect to 1 mol of the phenyl trialkoxysilane. 0.05 moles,
The method for producing a coating liquid for forming a flattening film according to [5] or [6].
[8]
Metal foil,
A flattening film provided on at least one surface of the metal foil, the flattening film comprising a cured product of the coating solution for forming a flattening film according to any one of [1] to [4];
Having,
Metal foil with flattening film.
[9]
The metal foil is a stainless steel foil,
The metal foil with a flattening film according to [8].
[10]
A step of applying the coating liquid for forming a flattening film according to any one of [1] to [4] to at least one surface of the metal foil;
A step of reflowing and curing the applied coating liquid for forming a flattening film in a temperature range of 300 ° C. to 450 ° C. in an inert gas atmosphere to form a flattening film;
Having,
A method for producing a metal foil with a flattening film.
 本開示によれば、高温高湿環境下であっても、アルコールの発生が抑制された平坦化膜が得られる、平坦化膜形成用塗布液、平坦化膜形成用塗布液の製造方法、平坦化膜付き金属箔、及び平坦化膜付き金属箔の製造方法が提供される。 According to the present disclosure, even in a high-temperature and high-humidity environment, a flattening film in which the generation of alcohol is suppressed can be obtained, a coating solution for forming a flattening film, a method for manufacturing a coating solution for forming a flattening film, and flattening. A method for producing a metal foil with a passivation film and a metal foil with a flattening film is provided.
フェニルシルセスキオキサンにおけるT、T、及びTの構造を説明するための説明図である。Is an explanatory view illustrating the structure of T 1, T 2, and T 3 in the phenyl silsesquioxane. 本開示の平坦化膜付き金属箔を製造するために適用される成膜装置の一例を表す模式図である。1 is a schematic diagram illustrating an example of a film forming apparatus applied to manufacture a metal foil with a planarizing film according to the present disclosure. 本開示に係る平坦化膜付き金属箔の一例を示す概略部分断面図である。1 is a schematic partial cross-sectional view illustrating an example of a metal foil with a flattening film according to the present disclosure.
 以下、本開示の好ましい実施形態の一例について説明する。
 なお、本開示において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。
 数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する上記複数の物質の合計量を意味する。
 「工程」との用語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。
Hereinafter, an example of a preferred embodiment of the present disclosure will be described.
In the present disclosure, a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit and an upper limit.
In the numerical ranges described stepwise, an upper limit or a lower limit described in a certain numerical range may be replaced with an upper limit or a lower limit of another numerical range described in a stepwise manner.
In the numerical ranges, the upper limit or the lower limit described in a certain numerical range may be replaced with the value shown in the embodiment.
The amount of each component in the composition means the total amount of the plurality of substances present in the composition, unless otherwise specified, when there are a plurality of substances corresponding to each component in the composition.
The term “step” is included in the term as well as an independent step, even if it cannot be clearly distinguished from other steps as long as the intended purpose of the step is achieved.
<平坦化膜形成用塗布液>
 本開示の平坦化膜形成用塗布液は、水と混和しない有機溶媒と、前記有機溶媒に可溶したフェニルシルセスキオキサンと、を含む平坦化膜形成用塗布液である。
 そして、本開示の平坦化膜形成用塗布液において、フェニルシルセスキオキサンの固形分濃度を30質量%かつ液温を25℃としたときの塗布液の粘度は、2.5mPa・s~35mPa・sであり、フェニルシルセスキオキサン中のSiに結合したアルコキシ基の含有量が、Siの全結合手に対して0~5%である。
<Coating liquid for forming flattening film>
The coating liquid for forming a flattening film according to the present disclosure is a coating liquid for forming a flattening film containing an organic solvent immiscible with water and phenylsilsesquioxane soluble in the organic solvent.
In the coating liquid for forming a flattening film according to the present disclosure, the viscosity of the coating liquid when the solid content concentration of phenylsilsesquioxane is 30% by mass and the liquid temperature is 25 ° C. is 2.5 mPa · s to 35 mPa. S, and the content of the alkoxy group bonded to Si in the phenylsilsesquioxane is 0 to 5% based on all the bonds of Si.
 本開示において、フェニルシルセスキオキサンは、水に混和しない有機溶媒に可溶である化合物である。そして、水に混和しない有機溶媒に可溶であるフェニルシルセスキオキサンとは、溶解させる対象となる、水に混和しない25℃の有機溶媒に対して、70質量%以上溶解するフェニルシルセスキオキサンを表す。 に お い て In the present disclosure, phenylsilsesquioxane is a compound that is soluble in a water-immiscible organic solvent. A phenylsilsesquioxane that is soluble in a water-immiscible organic solvent is a phenylsilsesquioxane that is soluble in a water-immiscible organic solvent at 25 ° C. that is 70% by mass or more. Represents Sun.
 本開示の平坦化膜形成用塗布液においては、例えば、フェニルシルセスキオキサンは、アルコールと、フェニルトリアルコキシシランと、酢酸と、有機スズと、フェニルトリアルコキシシラン1モルに対して、4.2モル倍~14モル倍の量の水と、を混合し、加水分解した後、減圧下でアルコールを留去して得られたフェニルシルセスキオキサンを含む脱水縮合反応物を水に混和しない有機溶媒に溶解し、水と混和しない有機溶媒の沸点以上で加熱還流しながら、さらに脱水縮合反応を進めて高分子量化した化合物であることがよい。
 フェニルシルセスキオキサンを含む脱水縮合反応物は、アルコール、フェニルトリアルコキシシラン、酢酸、有機スズ、および水を含有する混合溶液において、フェニルトリアルコキシシランを加水分解した後、加水分解されたフェニルトリアルコキシシランの脱水縮合反応により得られる。
In the coating liquid for forming a flattening film according to the present disclosure, for example, phenylsilsesquioxane is used in an amount of alcohol, phenyltrialkoxysilane, acetic acid, organic tin, and 1 mol of phenyltrialkoxysilane. After mixing and hydrolyzing 2 to 14 times by mole of water, the alcohol is distilled off under reduced pressure, and the resulting dehydration-condensation reaction containing phenylsilsesquioxane is not mixed with water. The compound is preferably a compound which is dissolved in an organic solvent and heated and refluxed at a temperature equal to or higher than the boiling point of the organic solvent immiscible with water, and further dehydration-condensed to further increase the molecular weight.
A dehydration-condensation reaction product containing phenylsilsesquioxane is obtained by hydrolyzing phenyltrialkoxysilane in a mixed solution containing alcohol, phenyltrialkoxysilane, acetic acid, organotin, and water, and then hydrolyzing the phenyltrialkoxysilane. Obtained by a dehydration condensation reaction of alkoxysilane.
 ここで、従来、有機修飾シリカ膜の材料として、例えば、フェニルトリアルコキシシランを加水分解することによって製造されたフェニルシルセスキオキサンが知られている。フェニルシルセスキオキサンは、主鎖骨格がSi-O結合からなるポリマーであり、Rの少なくとも一部にフェニル基を有する[(RSiO1.5]で表される構造を持つ。このポリマーの構造は触媒および合成条件に依存し、かご状、ラダー状、ランダム状の構造体などが知られている。 Here, conventionally, for example, phenylsilsesquioxane produced by hydrolyzing phenyltrialkoxysilane has been known as a material for the organically modified silica film. Phenylsilsesquioxane is a polymer whose main chain skeleton is composed of Si—O bonds, and has a structure represented by [(RSiO 1.5 ) n ] having a phenyl group in at least a part of R. The structure of this polymer depends on the catalyst and the synthesis conditions, and cage, ladder, and random structures are known.
 例えば、特許文献1には、シラン化合物を加水分解後、水との共沸化合物を生成する有機溶媒を添加し、加熱還流し、その後、共沸により水を除去することを特徴とするラダー型のポリシルセスキオキサンの製造方法が開示されている。
 また、特許文献2には、フェニルトリアルコキシシランを酸で加水分解した後、塩基性触媒を用いて縮合反応を進めることにより、ラダー型構造を有する熱可塑性ポリフェニルシルセスキオキサンを得ることが開示されている。
For example, Patent Literature 1 discloses a ladder type in which, after hydrolyzing a silane compound, an organic solvent that generates an azeotropic compound with water is added, heated to reflux, and then water is removed by azeotropic distillation. A method for producing polysilsesquioxane is disclosed.
Patent Document 2 discloses that a thermoplastic polyphenylsilsesquioxane having a ladder-type structure is obtained by hydrolyzing phenyl trialkoxysilane with an acid and then proceeding with a condensation reaction using a basic catalyst. It has been disclosed.
 しかしながら、特許文献1および特許文献2には、ラダー型のシルセスキオキサンの製造までしか開示されていない。本開示の平坦化膜形成用塗布液では、アルコールの発生が抑制された平坦化膜が得られることを主眼としているため、これら文献に開示された技術とは異なるものである。 However, Patent Documents 1 and 2 disclose only the production of ladder-type silsesquioxane. Since the main purpose of the coating liquid for forming a flattening film of the present disclosure is to obtain a flattening film in which the generation of alcohol is suppressed, the technique is different from those disclosed in these documents.
 一方、特許文献3には、フェニルトリアルコキシシランを用いて、フェニルシルセスキオキサンを形成し、これを芳香族炭化水素系溶剤に溶解した平坦化膜形成用塗布液が開示されている。 On the other hand, Patent Document 3 discloses a coating liquid for forming a flattening film in which phenylsilsesquioxane is formed using phenyltrialkoxysilane, and the phenylsilsesquioxane is dissolved in an aromatic hydrocarbon-based solvent.
 特許文献3に開示された坦化膜形成用塗布液は、例えば、次のようにして得られる。まず、フェニルトリアルコキシシランをアルコール中で、酢酸および有機スズを触媒として加え加水分解する。その後、窒素気流下80℃で3時間還流後、160℃~210℃の温度で減圧留去して得られたフェニルシルセスキオキサンをトルエンに溶解する。フェニルシルセスキオキサンをトルエンに溶解すると、スチレン換算重量平均分子量が数万の高分子量化したポリマーが得られる。このポリマーは、曳糸性及びリフロー性を示すことからラダー型構造を有していると考えている。トルエンに溶解後、濾過等の工程を経た後、フェニルシルセスキオキサンを含む平坦化膜形成用塗布液が得られる。 塗布 The coating liquid for forming a supported film disclosed in Patent Document 3 is obtained, for example, as follows. First, phenyl trialkoxysilane is hydrolyzed in alcohol using acetic acid and organotin as catalysts. Thereafter, the mixture is refluxed at 80 ° C. for 3 hours under a nitrogen stream, and phenylsilsesquioxane obtained by distillation under reduced pressure at a temperature of 160 ° C. to 210 ° C. is dissolved in toluene. When phenylsilsesquioxane is dissolved in toluene, a polymer having a high molecular weight of tens of thousands in terms of styrene is obtained. This polymer is considered to have a ladder structure because of its spinnability and reflow properties. After dissolving in toluene and performing steps such as filtration, a coating liquid for forming a flattening film containing phenylsilsesquioxane is obtained.
 圧延スジなどが存在する金属箔の表面を平坦化するためには、ラダー型構造を有しているフェニルシルセスキオキサンのリフロー性を利用することが有効である。特許文献3に開示されたフェニルシルセスキオキサンを含む平坦化膜形成用塗布液を用いることで、金属箔上に、平坦化膜を設けることが可能である。特に、特許文献3に開示された平坦化膜形成用塗布液は、Roll to Rollプロセスによって、平坦化膜を設けられるため、短時間硬化が可能である点で有用である。 In order to flatten the surface of a metal foil on which rolling streaks or the like are present, it is effective to use the reflow property of phenylsilsesquioxane having a ladder-type structure. By using the coating liquid for forming a flattening film containing phenylsilsesquioxane disclosed in Patent Document 3, it is possible to provide a flattening film on a metal foil. In particular, the coating liquid for forming a flattening film disclosed in Patent Document 3 is useful in that a flattening film can be provided by a Roll-to-Roll process, so that it can be cured in a short time.
 上記のようにして得られた平坦化膜形成用塗布液を、金属箔上に塗布した後、20℃~150℃で乾燥し、400℃で熱処理を行って、平坦化膜付き金属箔を作製する。そして、この平坦化膜付き金属箔の平坦化膜上に、フレキシブルデバイス素子として、有機EL照明素子を設け、ガラスキャップで封止する。しかしながら、高温高湿環境下に放置したところ、有機EL照明素子の寿命が低下することが判明した。 The coating liquid for forming a flattening film obtained as described above is applied on a metal foil, dried at 20 ° C. to 150 ° C., and heat-treated at 400 ° C. to produce a metal foil with a flattening film. I do. Then, an organic EL lighting element is provided as a flexible device element on the flattening film of the metal foil with the flattening film, and sealed with a glass cap. However, it was found that the lifetime of the organic EL lighting element was shortened when left in a high temperature and high humidity environment.
 作製した平坦化膜付き金属箔について調査を進めたところ、平坦化膜には、アルコキシ基が残留していた。このことから、従来の平坦化膜形成用塗布液では、フェニルシルセスキオキサン中に存在するSiに結合したアルコキシ基(つまり、フェニルシルセスキオキサン中のSiに結合したアルコキシ基;-Si-O-R、Rはアルキル基)が比較的多く残留していると考えられる。 調査 The investigation of the fabricated metal foil with a flattening film was proceeded. As a result, an alkoxy group remained in the flattening film. Therefore, in the conventional coating liquid for forming a flattening film, an alkoxy group bonded to Si present in phenylsilsesquioxane (that is, an alkoxy group bonded to Si in phenylsilsesquioxane; It is considered that OR--R and R are alkyl groups) in a relatively large amount.
 フレキシブル基板は、例えば、封止材で封止されてフレキシブルデバイスに供される。しかしながら、フレキシブル基板が封止されていても、若干の水分(水蒸気)の浸入が起こる。特に高温高湿環境下では、水分の浸入が顕著となると考えられる。平坦化膜付き金属箔の平坦化膜上に有機EL照明素子を設け、封止材により封止した場合にも、高温高湿環境下では、水分の浸入が顕著となり、浸入した水分によって、アルコキシ基(例えば、エトキシ基)が加水分解する。それによって、アルコール(例えば、エタノール)が生成する可能性がある。有機EL照明素子を構成している成分は、アルコールに溶解する成分もある。そのため、従来のフェニルシルセスキオキサンを含む平坦化膜形成用塗布液で、平坦化膜を形成すると、アルコキシ基に起因して生成したアルコールの影響による素子劣化が起きていると予想される。 The flexible substrate is sealed with a sealing material and provided to a flexible device. However, even when the flexible substrate is sealed, a small amount of moisture (water vapor) infiltrates. In particular, in a high-temperature and high-humidity environment, it is considered that the intrusion of moisture becomes remarkable. Even when an organic EL lighting element is provided on a flattening film of a metal foil with a flattening film and sealed with a sealing material, infiltration of moisture becomes remarkable under a high-temperature and high-humidity environment. Groups (eg, ethoxy groups) hydrolyze. Thereby, alcohol (eg, ethanol) may be produced. Some components constituting the organic EL lighting element are soluble in alcohol. Therefore, when a flattening film is formed using a conventional coating liquid for forming a flattening film containing phenylsilsesquioxane, it is expected that device deterioration due to the influence of alcohol generated due to the alkoxy group will occur.
 平坦化膜中のアルコキシ基を低減させるため、熱処理を進めることを検討した。しかしながら、平坦化膜付き金属箔への加熱処理を進めても、有機EL照明素子の寿命低下を抑制するレベルにまで低減するには至らない。例えば、前述のようにして得られた平坦化膜付き金属箔に対して、400℃で10分の熱処理を行った熱処理品Aと、400℃で150分の熱処理を行った熱処理品Bを作製した。そして、それぞれの処理品における平坦化膜上に、有機EL照明素子を作製し、高温高湿条件で環境加速試験を実施した。その結果、いずれの熱処理品を用いた場合であっても、素子寿命は短かった。熱処理品A及び熱処理品Bを分析したところ、いずれの熱処理品における平坦化膜中にも、アルコキシ基が残留していることが判明した。このように、平坦化膜付き金属箔の熱処理によって、平坦化膜中のアルコキシ基を十分に低減させることは困難であることが分かった。そのため、平坦化膜形成用塗布液に含有するフェニルシルセスキオキサンにおいて、アルコキシ基を十分に低減させておくことが求められる。 し た We considered to proceed with heat treatment to reduce the alkoxy groups in the planarization film. However, even if heat treatment is performed on the metal foil with a flattening film, the heat treatment cannot be reduced to a level that suppresses a reduction in the life of the organic EL lighting element. For example, a heat-treated product A obtained by performing a heat treatment at 400 ° C. for 10 minutes and a heat-treated product B obtained by performing a heat treatment at 400 ° C. for 150 minutes on the metal foil with a flattening film obtained as described above are manufactured. did. Then, an organic EL lighting element was formed on the flattening film of each processed product, and an environmental acceleration test was performed under high temperature and high humidity conditions. As a result, the life of the device was short regardless of which heat-treated product was used. Analysis of heat-treated product A and heat-treated product B revealed that the alkoxy group remained in the planarized film in each of the heat-treated products. Thus, it has been found that it is difficult to sufficiently reduce the alkoxy groups in the flattening film by the heat treatment of the metal foil with the flattening film. Therefore, in the phenylsilsesquioxane contained in the coating liquid for forming a flattening film, it is required to reduce the alkoxy groups sufficiently.
 この点、特許文献4~5に記載の合成法で生成したフェニルトリアルコキシシランも、アルコキシ基が多量に残存している。そのため、特許文献4~5に記載の合成法で生成したフェニルトリアルコキシシランを使用した平坦化膜中にも、アルコキシ基が残留し、素子寿命が短くなる。 In this regard, phenyltrialkoxysilanes produced by the synthesis methods described in Patent Documents 4 and 5 also have a large amount of alkoxy groups remaining. Therefore, the alkoxy group remains in the flattening film using phenyl trialkoxysilane formed by the synthesis method described in Patent Documents 4 and 5, and the device life is shortened.
 これに対し、本開示の平坦化膜形成用塗布液によれば、フェニルシルセスキオキサン中のSiに結合したアルコキシ基の量が、有機半導体の性能低下を抑制するレベルにまで十分低減されている。つまり、アルコキシ基の含有量がSiの全結合手0~5%であることにより、素子寿命が改善される。 On the other hand, according to the coating liquid for forming a flattening film of the present disclosure, the amount of the alkoxy group bonded to Si in the phenylsilsesquioxane is sufficiently reduced to a level that suppresses the performance deterioration of the organic semiconductor. I have. That is, when the content of the alkoxy group is 0 to 5% of the total bonds of Si, the device life is improved.
 したがって、本開示の平坦化膜形成用塗布液を用いて得られた平坦化膜には、アルコキシ基が存在しないか、又はアルコキシ基が存在したとしても、その量は少ない。このため、高温高湿環境下であっても、平坦化膜中にアルコールの生成が抑制される。それにより、フレキシブルデバイス素子の寿命低下を抑制させ得る。 Therefore, in the flattening film obtained by using the coating solution for forming a flattening film of the present disclosure, no alkoxy group is present, or even if an alkoxy group is present, the amount thereof is small. For this reason, even in a high-temperature and high-humidity environment, generation of alcohol in the flattening film is suppressed. As a result, it is possible to suppress a reduction in the life of the flexible device element.
 以下、本開示の平坦化膜形成用塗布液を構成する各材料について説明する。 Hereinafter, each material constituting the coating liquid for forming a flattening film of the present disclosure will be described.
 本開示の平坦化膜形成用塗布液は、水と混和しない有機溶媒と、前記有機溶媒に可溶したフェニルシルセスキオキサンと、を含む。
 本開示の平坦化膜形成用塗布液は、例えば、所定の材料を混合(アルコールと、フェニルトリアルコキシシランと、酢酸と、有機スズと、水と、を混合)して、加水分解した後、減圧留去して得られた脱水縮合反応物を水に混和しない有機溶媒に溶解することにより得られる。
The coating liquid for forming a planarizing film according to the present disclosure includes an organic solvent that is immiscible with water, and phenylsilsesquioxane that is soluble in the organic solvent.
The coating liquid for forming a flattening film according to the present disclosure is, for example, mixed with a predetermined material (mixed with alcohol, phenyl trialkoxysilane, acetic acid, organotin, and water) and hydrolyzed. It is obtained by dissolving a dehydration-condensation reaction product obtained by distillation under reduced pressure in an organic solvent immiscible with water.
(水と混和しない有機溶媒)
 水と混和しない有機溶媒としては、芳香族炭化水素類、ケトン類、エーテル類などが挙げられる。例えば、具体的には、トルエン、キシレン(o-キシレン、m-キシレン、p-キシレン)、トリメチルベンゼン等の芳香族炭化水素類;MEK(メチルエチルケトン)、MIBK(メチルイソブチルケトン)、シクロヘキサノン、シクロペンタノン等のケトン類;ジエチルエーテル、ジイソプロピルエーテル等のエーテル類、シクロペンタン、シクロヘキサン、メチルシクロヘキサン等の環状脂肪族炭化水素類;などが挙げられる。有機溶媒は、1種単独で用いてもよく、2種以上を併用してもよい。
(Organic solvent immiscible with water)
Examples of the organic solvent immiscible with water include aromatic hydrocarbons, ketones, and ethers. For example, specifically, aromatic hydrocarbons such as toluene, xylene (o-xylene, m-xylene, p-xylene), trimethylbenzene; MEK (methyl ethyl ketone), MIBK (methyl isobutyl ketone), cyclohexanone, cyclopentane Ketones such as nonone; ethers such as diethyl ether and diisopropyl ether; and cyclic aliphatic hydrocarbons such as cyclopentane, cyclohexane and methylcyclohexane. The organic solvents may be used alone or in combination of two or more.
 ここで、本開示において、「水と混和しない有機溶媒」とは、水との混和性が低い有機溶媒を含む概念であり、水に対する溶解度が300g/L以下である有機溶媒を表す。水に対する溶解度とは、25℃において1Lの水に溶解する有機溶媒の重量をg/Lの単位で示したものである。水と混和しない有機溶媒は、特に25℃の水に対する溶解度が30g/L以下である有機溶媒が理想的である。 Here, in the present disclosure, the “organic solvent immiscible with water” is a concept including an organic solvent having low miscibility with water, and represents an organic solvent having a solubility in water of 300 g / L or less. The solubility in water indicates the weight of an organic solvent soluble in 1 L of water at 25 ° C. in units of g / L. The organic solvent that is immiscible with water is ideally an organic solvent having a solubility in water at 25 ° C. of 30 g / L or less.
(フェニルトリアルコキシシラン)
 フェニルトリアルコキシシランとしては特に限定されない。例えば、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリプロポキシシラン(フェニルトリ-n-プロポキシシラン、フェニルトリ-iso-プロポキシシラン)、フェニルトリブトキシシラン(フェニルトリ-n-ブトキシシラン、フェニルトリ-sec-ブトキシシラン、フェニルトリ-tert-ブトキシシラン)等が挙げられる。これらの中でも、工業的に量産されており入手が容易である観点から、フェニルトリエトキシシランが好ましい。
(Phenyl trialkoxysilane)
The phenyl trialkoxysilane is not particularly limited. For example, phenyltrimethoxysilane, phenyltriethoxysilane, phenyltripropoxysilane (phenyltri-n-propoxysilane, phenyltri-iso-propoxysilane), phenyltributoxysilane (phenyltri-n-butoxysilane, phenyltri-silane) sec-butoxysilane, phenyltri-tert-butoxysilane) and the like. Of these, phenyltriethoxysilane is preferred from the viewpoint of being industrially mass-produced and easily available.
(アルコール)
 アルコールは、フェニルトリアルコキシシランを加水分解するときに用いる。アルコールは特に限定されず、例えば、メタノール、エタノール、プロパノール(n-プロパノール、iso-プロパノール)、ブタノール(n-ブタノール、iso-ブタノール)などが挙げられる。
(alcohol)
Alcohol is used when hydrolyzing phenyl trialkoxysilane. The alcohol is not particularly limited, and examples thereof include methanol, ethanol, propanol (n-propanol, iso-propanol), and butanol (n-butanol, iso-butanol).
(酢酸及び有機スズ)
 酢酸及び有機スズは、それぞれ触媒である。酢酸は、加水分解を促進させる触媒である。有機スズはフェニルトリアルコキシシランおよびその加水分解後の脱水縮合反応を促進する触媒である。
(Acetic acid and organic tin)
Acetic acid and organotin are each catalysts. Acetic acid is a catalyst that promotes hydrolysis. Organotin is a catalyst that promotes phenyltrialkoxysilane and its dehydration-condensation reaction after hydrolysis.
 有機スズとしては、ジブチルスズジアセテート、ビス(アセトキシジブチルスズ)オキサイド、ジブチルスズビスアセチルアセトナート、ジブチルスズビスマレイン酸モノブチルエステル、ジオクチルスズビスマレイン酸モノブチルエステル、ビス(ラウロキシジブチルスズ)オキサイドなどが挙げられる。これらの中でも有機スズは、ジブチルスズジアセテート、ジブチルスズビスアセチルアセトナートが特に好ましい。 Examples of the organic tin include dibutyltin diacetate, bis (acetoxydibutyltin) oxide, dibutyltinbisacetylacetonate, monobutylester dibutyltinbismaleate, monobutylester dioctyltinbismaleate, and bis (lauroxydibutyltin) oxide. . Among these, dibutyltin diacetate and dibutyltin bisacetylacetonate are particularly preferable as the organic tin.
(水)
 水としては、特に限定されず、例えば、蒸留水、イオン交換水、限外濾過水、純水等が挙げられる。
(water)
The water is not particularly limited, and includes, for example, distilled water, ion-exchanged water, ultrafiltration water, pure water and the like.
(平坦化膜形成用塗布液の特性)
 本開示の平坦化膜形成用塗布液は、以下の特性を有する。
(Characteristics of coating liquid for forming flattening film)
The coating liquid for forming a flattening film according to the present disclosure has the following characteristics.
-塗布液の粘度-
 本開示の平坦化膜形成用塗布液の粘度は、2.5mPa・s~35mPa・sである。ただし、塗布液の粘度は、フェニルシルセスキオキサンの固形分濃度を30質量%かつ液温を25℃としたときの塗布液の粘度である。
 固形分濃度30質量%、温度25℃での粘度がこの範囲であると、平坦化膜を形成するときの塗工性の観点及び貯蔵安定性の観点で好ましい。上記粘度が2.5mPa・s未満であると、フェニルシルセスキオキサンのスチレン換算重量平均分子量が、おおむね5000未満という低分子量になっている。そのため、固形分濃度を高めても粘度を上昇させることができず、塗工性に劣る。したがって、目的とする膜厚が得られなくなる。また、熱処理により、急激な脱水縮合反応が起きることで、体積収縮が大きくなるため平坦化膜にクラックが生じやすい。上記粘度が35mPa・sを超えると、フェニルシルセスキオキサンのスチレン換算重量平均分子量が、おおむね100000を超える高分子量になっている。そのため、ゲル化が進行しやすく塗布液の保管寿命が短くなり、貯蔵安定性が低下する。また、粘度が高すぎると、膜厚が不均一になるため、厚膜部からクラックが発生しやすい。
-Viscosity of coating liquid-
The viscosity of the coating liquid for forming a flattening film according to the present disclosure is 2.5 mPa · s to 35 mPa · s. However, the viscosity of the coating liquid is the viscosity of the coating liquid when the solid content concentration of phenylsilsesquioxane is 30% by mass and the liquid temperature is 25 ° C.
When the solid content concentration is 30% by mass and the viscosity at a temperature of 25 ° C. is in this range, it is preferable from the viewpoint of coating properties when forming a flattening film and from the viewpoint of storage stability. When the viscosity is less than 2.5 mPa · s, the weight average molecular weight in terms of styrene of phenylsilsesquioxane is low, which is generally less than 5000. Therefore, even if the solid content concentration is increased, the viscosity cannot be increased, resulting in poor coatability. Therefore, a desired film thickness cannot be obtained. Further, a rapid dehydration / condensation reaction occurs due to the heat treatment, which causes a large volume shrinkage, so that the flattening film is easily cracked. When the viscosity exceeds 35 mPa · s, the weight average molecular weight in terms of styrene of the phenylsilsesquioxane becomes a high molecular weight generally exceeding 100,000. For this reason, gelation easily proceeds, the storage life of the coating solution is shortened, and the storage stability is reduced. On the other hand, if the viscosity is too high, the film thickness becomes non-uniform, and cracks tend to occur from the thick film portion.
 平坦化膜形成用塗布液の粘度の測定方法は、以下のとおりである。まず、平坦化膜形成用塗布液中のフェニルシルセスキオキサンの固形分濃度を30質量%、塗布液の液温を25℃に調整する。次に、固形分濃度及び液温を調整した塗布液の粘度を、CBC株式会社製VISCOMATE VM-10A型振動式粘度計を用いて測定する。 測定 The method of measuring the viscosity of the coating liquid for forming a flattening film is as follows. First, the solid content concentration of phenylsilsesquioxane in the coating liquid for forming a flattening film is adjusted to 30% by mass, and the liquid temperature of the coating liquid is adjusted to 25 ° C. Next, the viscosity of the coating liquid whose solid content concentration and liquid temperature have been adjusted is measured using a VISCOMATE @ VM-10A vibrating viscometer manufactured by CBC Corporation.
 本開示の平坦化膜形成用塗布液をGPC(gel permeation chromatography)で分析した結果、フェニルシルセスキオキサンにおけるスチレン換算重量平均分子量は5000~100000であった。平坦化膜形成用塗布液を150℃に加熱したホットプレート上で有機溶媒を蒸発させつつ、液をガラス棒などで引き上げていくと、フェニルシルセスキオキサンが曳糸性を示すことが確認できる。また、フェニルシルセスキオキサンの赤外線吸収スペクトル(IR)を測定すると、波数1100cm-1付近にシロキサン結合に由来するダブルピークを示した。 As a result of analyzing the coating liquid for forming a flattening film of the present disclosure by gel permeation chromatography (GPC), the weight average molecular weight in terms of styrene of phenylsilsesquioxane was 5,000 to 100,000. When evaporating the organic solvent on a hot plate heated to 150 ° C. and evaporating the liquid with a glass rod, the phenylsilsesquioxane can be confirmed to exhibit spinnability. . In addition, when the infrared absorption spectrum (IR) of phenylsilsesquioxane was measured, a double peak derived from a siloxane bond was shown at a wavenumber of about 1100 cm -1 .
 これらのことから、本開示の平坦化膜形成用塗布液中に含まれるフェニルシルセスキオキサンは、ラダー型構造を有していると推定される。つまり、フェニルシルセスキオキサンは、次の点でラダー型構造を有していると推定される。
 1)有機溶媒に溶解している点、
 2)フェニルシルセスキオキサンのスチレン換算重量平均分子量が5000~100000である点、
 3)有機溶媒を蒸発させた後のフェニルシルセスキオキサンが曳糸性を示す点、4)IRにおいて波数1100cm-1付近にシロキサン結合に由来するダブルピークを示した点。
From these facts, it is presumed that phenylsilsesquioxane contained in the coating liquid for forming a flattening film of the present disclosure has a ladder-type structure. That is, phenylsilsesquioxane is presumed to have a ladder structure in the following points.
1) it is dissolved in an organic solvent,
2) phenylsilsesquioxane having a weight average molecular weight in terms of styrene of 5,000 to 100,000;
3) The point where phenylsilsesquioxane after evaporating the organic solvent exhibits spinnability. 4) The point where IR shows a double peak derived from a siloxane bond at a wavenumber of about 1100 cm -1 .
<Siに結合したアルコキシ基の含有量>
 本開示の平坦化膜形成用塗布液は、フェニルシルセスキオキサン中のSiに結合したアルコキシ基の含有量が、Siの全結合手に対して0~5%である。すなわち、フェニルシルセスキオキサン中のSiに結合した-Si-O-R基(R:メチル基、エチル基、プロピル基等)の量が5%以下である(対Siの全結合手)。アルコキシ基の含有量が5%以下であると、金属箔基板上に、平坦化膜を形成しても、アルコールの生成が抑制される。アルコキシ基の含有量は、少ないほど好ましい。そのため、本開示の平坦化膜形成用塗布液においては、フェニルシルセスキオキサン中のSiに結合したアルコキシ基の含有量の下限値は0%である。アルコキシ基の含有量の上限は、3%以下であってもよく、2%以下であってもよく、1%以下であってもよい。アルコキシ基は、使用するフェニルトリアルコキシシランにもよるが、メトキシ基、エトキシ基、及びプロポキシ基からなる群より選択される少なくとも一つであってもよい。アルコキシ基は、エトキシ基であってもよい。
<Content of alkoxy group bonded to Si>
In the coating liquid for forming a planarizing film according to the present disclosure, the content of the alkoxy group bonded to Si in phenylsilsesquioxane is 0 to 5% based on all the bonds of Si. That is, the amount of -Si-OR groups (R: methyl group, ethyl group, propyl group, etc.) bonded to Si in the phenylsilsesquioxane is 5% or less (total bonds to Si). When the content of the alkoxy group is 5% or less, generation of alcohol is suppressed even when a flattening film is formed on the metal foil substrate. The smaller the content of the alkoxy group, the more preferable. Therefore, in the coating liquid for forming a flattening film according to the present disclosure, the lower limit of the content of the alkoxy group bonded to Si in phenylsilsesquioxane is 0%. The upper limit of the content of the alkoxy group may be 3% or less, 2% or less, or 1% or less. The alkoxy group may be at least one selected from the group consisting of a methoxy group, an ethoxy group, and a propoxy group, depending on the phenyl trialkoxysilane used. The alkoxy group may be an ethoxy group.
 Siに結合したアルコキシ基の含有量は、NMRで測定される値である。具体的には、以下のようにして測定される。 The content of the alkoxy group bonded to Si is a value measured by NMR. Specifically, it is measured as follows.
 NMR測定について、フェニルトリエトキシシランを原料としてトルエン溶媒中でフェニルシルセスキオキサンを合成し、フェニルシルセスキオキサンの固形分濃度30質量%に調整した本開示の平坦化膜形成用塗布液を例にとって説明する。
 フェニルトリエトキシシラン以外のフェニルトリアルコキシシランを原料にした場合、又は、トルエン以外の溶媒を用いた場合は、NMRスペクトルのピーク位置などは異なるが、測定および算出の考え方は同様である。
For the NMR measurement, phenylsilsesquioxane was synthesized from phenyltriethoxysilane as a raw material in a toluene solvent, and the coating liquid for forming a flattening film according to the present disclosure prepared by adjusting the solid content concentration of phenylsilsesquioxane to 30% by mass was used. An example will be described.
When phenyltrialkoxysilane other than phenyltriethoxysilane is used as a raw material, or when a solvent other than toluene is used, the peak positions of NMR spectra and the like are different, but the concepts of measurement and calculation are the same.
 塗布液中のフェニルシルセスキオキサンの分子構造を調べるために、NMR測定装置「ECZ-600」と「ECA-400」(いずれも(株)JEOL RESONANCE製)を用いて、それぞれ、29Si NMRと、13C NMRの測定を行う。NMR測定用の二重試料管の内管に塗布液原液、外管にロック溶媒として重ベンゼン(C)をそれぞれ適量加えた試料溶液を測定に用いる。化学シフト基準として、29Siではテトラメチルシランを0.0ppm、13Cでは溶媒のトルエンのメチル基炭素を20.43ppmとする。29Si NMRスペクトルにおいて、-67.5、-72.1、-77.9ppmに、それぞれT、T、及びTのピークが認められ、ピーク面積比からT、T、Tの存在比は、それぞれ、8.6mol%、29.9mol%、及び61.5mol%と算出される。 In order to investigate the molecular structure of phenylsilsesquioxane in the coating solution, 29 Si NMR was measured using NMR measuring apparatuses “ECZ-600” and “ECA-400” (both manufactured by JEOL RESONANCE Co., Ltd.). And 13 C NMR measurement. A sample solution prepared by adding an appropriate amount of heavy benzene (C 6 D 6 ) as a lock solvent to the outer tube and a proper amount of heavy benzene (C 6 D 6 ) to the outer tube is used for the measurement. As a chemical shift standard, tetramethylsilane is set to 0.0 ppm in 29 Si, and the methyl group carbon of toluene of the solvent is set to 20.43 ppm in 13 C. In 29 Si NMR spectra, -67.5, -72.1, the -77.9Ppm, respectively T 1, T 2, and the peak of T 3 was observed, T 1, T 2, T 3 from the peak area ratio Are calculated as 8.6 mol%, 29.9 mol%, and 61.5 mol%, respectively.
 図1に、フェニルシルセスキオキサンにおけるT、T、及びTの構造を示す。13C NMRスペクトルから、トルエン、エタノール、Si-Ph基、及びSi-OEt基の存在は、20.4ppm、57.1ppm、133.7ppm、及び58.1ppmのピークにより示される。ピーク面積比から各成分の存在比は、それぞれ、388.2mol%、2.0mol%、100mol%、及び13.1mol%と算出される。Si-Phのmol%が100になるよう算出している。
 なお、NMRスペクトルで、バックグラウンドにピークが埋もれて、ピークが観測されない場合、該当成分が存在しないとみなす。
FIG. 1 shows the structures of T 1 , T 2 , and T 3 in phenylsilsesquioxane. From the 13 C NMR spectrum, the presence of toluene, ethanol, Si-Ph groups, and Si-OEt groups is indicated by peaks at 20.4 ppm, 57.1 ppm, 133.7 ppm, and 58.1 ppm. From the peak area ratio, the abundance ratio of each component is calculated as 388.2 mol%, 2.0 mol%, 100 mol%, and 13.1 mol%, respectively. It is calculated so that the mol% of Si-Ph becomes 100.
In the case where the peak is buried in the background and no peak is observed in the NMR spectrum, it is considered that the corresponding component does not exist.
 TのSiは、3つのエトキシ基がすべて加水分解及び縮合反応を経て、Si-O-Si結合を形成している。一方、TおよびTでは、縮合反応していない末端基が残っている。Siの1モルに対して、Tは末端基を2モル、Tは末端基を1モル保有している。Siは4つの結合手を持っており、そのうちの1つはフェニル基が結合している。残り3つの結合手はSi-O-Si結合か、又は、末端基になる。Si-O-Si結合の数は、全Siを100とすると、3×61.5+2×29.9+8.6=253.2、末端基は2×8.6+29.9=47.1となる。ここから、Siの全結合手のうちフェニル基が25%、Si-O-Si結合が75×253.2/(253.2+47.1)=63.3%、末端基が11.8%と算出できる。 In Si of T 3 , all three ethoxy groups undergo a hydrolysis and condensation reaction to form a Si—O—Si bond. On the other hand, at T 2 and T 1 , a terminal group that has not undergone a condensation reaction remains. Relative to 1 mol of Si, T 1 is 2 moles of end groups, T 2 are 1 mol possess end groups. Si has four bonds, one of which has a phenyl group bonded thereto. The remaining three bonds are Si—O—Si bonds or end groups. Assuming that the total Si is 100, the number of Si—O—Si bonds is 3 × 61.5 + 2 × 29.9 + 8.6 = 253.2, and the terminal group is 2 × 8.6 + 29.9 = 47.1. From this, the phenyl group is 25% of all the bonds of Si, the Si—O—Si bond is 75 × 253.2 / (253.2 + 47.1) = 63.3%, and the terminal group is 11.8%. Can be calculated.
 末端基は、13C NMRが示すように、Si-OH基とSi-OEt基との2種類である。Siを1としたとき、Tは末端基を2個、Tは末端基を1個保有する。Si-OEt基の割合をa、Si-OH基の割合を1-aとすると、Siを100としたとき、塗布液中のエトキシ基は、2×8.6×a+29.9×a=47.1aとなる。T、T、及びTのいずれにおいてもフェニル基と、Siとは同数であるので、Siを100としたときフェニル基も100存在する。一方、13Cから、フェニル基とエトキシ基の存在比(モル比)は100:13.1とわかっているので、aは0.277となる。したがって上記末端基11.8%の内訳はSi-OEt基3.3%、Si-OH基8.5%である。
 以上により測定した塗布液中のフェニルシルセスキオキサンのSiの全結合手に対するSi-OEt基の含有量は3.3%と見積もることができる。
As shown by 13 C NMR, the terminal groups are of two types: a Si—OH group and a Si—OEt group. When Si is 1, T 1 has two terminal groups and T 2 has one terminal group. Assuming that the ratio of the Si—OEt group is a and the ratio of the Si—OH group is 1−a, when Si is 100, the ethoxy group in the coating solution is 2 × 8.6 × a + 29.9 × a = 47. .1a. In any of T 1 , T 2 , and T 3 , the number of phenyl groups and Si are the same, and therefore, when Si is 100, there are 100 phenyl groups. On the other hand, from 13 C, the abundance ratio (molar ratio) of the phenyl group to the ethoxy group is known to be 100: 13.1, so a is 0.277. Therefore, the breakdown of 11.8% of the terminal groups is 3.3% of Si—OEt groups and 8.5% of Si—OH groups.
The content of the Si-OEt group with respect to all the bonds of Si of the phenylsilsesquioxane in the coating solution measured as described above can be estimated to be 3.3%.
-塗布液のアルコール含有量-
 本開示の平坦化膜形成用塗布液において、フェニルシルセスキオキサン中のSiに対するアルコールの含有量は、0~2.5モル%であることが好ましい。
 アルコール含有量が2.5モル%以下であると、塗布不良(ボイド、塗布むら等)が抑制される。塗布不良抑制の観点から、塗布液中のアルコールは少ない程好ましい。そのため、アルコール含有量の上限値は、1.5モル%以下がより好ましく、0.5モル%以下がさらに好ましい。そして、アルコール含有量は、0モル%が最も好ましい(つまり、塗布液中にアルコールを含まないことが最も好ましい)。
-Alcohol content of coating liquid-
In the coating liquid for forming a flattening film according to the present disclosure, the content of alcohol with respect to Si in phenylsilsesquioxane is preferably 0 to 2.5 mol%.
When the alcohol content is 2.5 mol% or less, poor coating (voids, uneven coating, etc.) is suppressed. From the viewpoint of coating failure control, the smaller the amount of alcohol in the coating solution, the better. Therefore, the upper limit of the alcohol content is more preferably 1.5 mol% or less, and further preferably 0.5 mol% or less. The alcohol content is most preferably 0 mol% (that is, it is most preferable that the coating solution does not contain alcohol).
 アルコール含有量を上記範囲にする塗布液の製造方法としては、後述する本開示の平坦化膜形成用塗布液の製造方法(フェニルトリアルコキシシランを生成する方法)が例示される。
 なお、特許文献3~5に記載の合成法で、フェニルトリアルコキシシランを生成した場合、塗布液中に、一定量のアルコールが残存する。
 ここで、アルコールは、メタノール、エタノール、プロパノールが例示される。
Examples of a method for producing a coating liquid having an alcohol content within the above range include a method for producing a coating liquid for forming a flattening film (method for producing phenyltrialkoxysilane) described later.
When phenyl trialkoxysilane is produced by the synthesis methods described in Patent Documents 3 to 5, a certain amount of alcohol remains in the coating solution.
Here, the alcohol is exemplified by methanol, ethanol, and propanol.
 アルコール含有量は、13C NMRスペクトルにより測定される。
 例えば、アルコールとして、エタノールの含有量は、13C NMRの測定における57.1ppmと133.7ppmのピーク面積比から、Si-Ph基を100モル%としたとき、2.0モル%と算出される。本開示の塗布液に含まれる固形分は理想的にはフェニルシルセスキオキサン、すなわちPhSiOと表されるものであるから、塗布液中のSiを100モル%としたときのエタノールの含有量は2.0モル%となる。
 なお、エタノール以外のアルコール含有量も、同様に、13C NMRの測定におけるピーク面積比から算出される。
The alcohol content is measured by a 13 C NMR spectrum.
For example, the content of ethanol as an alcohol is calculated to be 2.0 mol%, based on the peak area ratio of 57.1 ppm and 133.7 ppm in 13 C NMR measurement, where the Si-Ph group is 100 mol%. You. Solids contained in the coating liquid of the present disclosure is ideally phenyl silsesquioxane, namely from those represented as PhSi [theta] 3/2, ethanol when the Si in the coating liquid was 100 mol% The content is 2.0 mol%.
The content of alcohol other than ethanol is also calculated from the peak area ratio in 13 C NMR measurement.
<平坦化膜形成用塗布液の製造方法>
 次に、本開示の平坦化膜形成用塗布液を得るための好ましい製造方法の一例について説明する。
 本開示の平坦化膜形成用塗布液の製造方法は、下記の工程を有する。
 アルコールと、フェニルトリアルコキシシランと、酢酸と、有機スズと、前記フェニルトリアルコキシシラン1モルに対して、4.2モル倍~14モル倍の量の水とを混合し、加水分解を行う工程(加水分解工程)。
 減圧下でアルコールを留去して脱水縮合反応を進め、フェニルシルセスキオキサンを含む脱水縮合反応物を生成する工程(濃縮工程)。
 前記脱水縮合反応物を水と混和しない有機溶媒に溶解し、前記水と混和しない有機溶媒の沸点以上で加熱還流しながら、さらに脱水縮合反応を進めて高分子量化する工程(高分子量化工程)。
<Production method of coating liquid for forming flattening film>
Next, an example of a preferable manufacturing method for obtaining the coating liquid for forming a flattening film of the present disclosure will be described.
The method for producing a coating liquid for forming a planarizing film according to the present disclosure includes the following steps.
A step of mixing an alcohol, phenyl trialkoxysilane, acetic acid, organotin, and water in an amount of 4.2 to 14 times by mole to 1 mole of the phenyl trialkoxysilane to perform hydrolysis. (Hydrolysis step).
A step of evaporating the alcohol under reduced pressure to advance the dehydration condensation reaction to generate a dehydration condensation reaction product containing phenylsilsesquioxane (concentration step).
A step of dissolving the dehydration-condensation product in an organic solvent immiscible with water and heating and refluxing at a temperature equal to or higher than the boiling point of the organic solvent immiscible with water, and further advancing the dehydration-condensation reaction to increase the molecular weight (polymerization step) .
(加水分解工程)
 加水分解工程は、アルコール中にフェニルトリアルコキシシランに対して、有機スズ及び酢酸と、水とを混合して加水分解を行うことが好ましい。例えば、次のようにして行えばよい。まず、アルコールと、フェニルトリアルコキシシランと混合した混合溶液を作製する。次に、この混合溶液に、有機スズ及び酢酸を混合し、さらに水を混合して、フェニルトリアルコキシシランの加水分解を行う。アルコールと、フェニルトリアルコキシシランと、有機スズとを混合した混合溶液に、酢酸と混合し、さらに水を混合してもよい。アルコール、フェニルトリアルコキシシラン、及び有機スズを混合した第1混合溶液と、酢酸及び水を混合した第2混合溶液とを混合して加水分解を行ってもよい。加水分解反応を促進させるため窒素気流下、80℃前後で還流を行ってもよい。
(Hydrolysis step)
In the hydrolysis step, it is preferable to carry out hydrolysis by mixing organotin, acetic acid, and water with respect to phenyl trialkoxysilane in alcohol. For example, it may be performed as follows. First, a mixed solution of alcohol and phenyl trialkoxysilane is prepared. Next, organotin and acetic acid are mixed with this mixed solution, and water is further mixed to hydrolyze phenyltrialkoxysilane. A mixture of alcohol, phenyl trialkoxysilane, and organotin may be mixed with acetic acid and further mixed with water. The hydrolysis may be performed by mixing a first mixed solution in which alcohol, phenyl trialkoxysilane, and organotin are mixed, and a second mixed solution in which acetic acid and water are mixed. Reflux may be performed at about 80 ° C. under a nitrogen stream to promote the hydrolysis reaction.
 酢酸の量は、フェニルトリアルコキシシランの加水分解を促進させる観点で、フェニルトリアルコキシシラン1モルに対して、0.1モル~1モルの範囲であることが好ましい。フェニルトリアルコキシシラン1モルに対する酢酸の量が0.1モル以上である場合は、フェニルシルセスキオキサンの高分子量化が進む。酢酸の量が1モルを超えても、高分子量化の効果が飽和する。 From the viewpoint of promoting the hydrolysis of phenyltrialkoxysilane, the amount of acetic acid is preferably in the range of 0.1 mol to 1 mol based on 1 mol of phenyltrialkoxysilane. When the amount of acetic acid is 0.1 mol or more per 1 mol of phenyltrialkoxysilane, the molecular weight of phenylsilsesquioxane increases. Even if the amount of acetic acid exceeds 1 mol, the effect of increasing the molecular weight is saturated.
 有機スズの量は、フェニルシルセスキオキサンの重縮合反応を促進させる観点で、フェニルトリアルコキシシラン1モルに対して、0.005モル~0.05モルであることが好ましい。フェニルトリアルコキシシラン1モルに対する有機スズの量が0.005モル以上であると、金属箔上に塗布した後の熱処理中のフェニルシルセスキオキサンの縮合反応が促進される。また、平坦化膜はクラックが発生し難くなる。0.05モル以下であると、減圧留去前の加水分解の段階でフェニルシルセスキオキサンのゲル化が発生し難くなる。 The amount of the organotin is preferably 0.005 mol to 0.05 mol per 1 mol of phenyltrialkoxysilane from the viewpoint of accelerating the polycondensation reaction of phenylsilsesquioxane. When the amount of the organotin is 1 mol or more per 1 mol of the phenyl trialkoxysilane, the condensation reaction of the phenylsilsesquioxane during the heat treatment after the application on the metal foil is promoted. In addition, cracks hardly occur in the flattening film. When the amount is less than 0.05 mol, gelation of phenylsilsesquioxane hardly occurs at the stage of hydrolysis before distillation under reduced pressure.
 加水分解に用いる水の量は、フェニルシルセスキオキサン中のSiに結合したアルコキシ基の含有量がSiの全結合手に対して5%以下に制御する観点で、フェニルトリアルコキシシラン1モルに対して、4.2モル倍~14モル倍である。好ましい水の量は、4.5モル倍~13.5モル倍である。本開示の平坦膜形成用塗布の製造方法においては、アルコール中で、酢酸及び有機スズを触媒として用いて、フェニルトリアルコキシシランを加水分解するとき、水をフェニルトリアルコキシシラン1モルに対し4.2モル倍~14モル倍で添加することで、加水分解の段階で、アルコキシ基を低減させやすくなる。加水分解反応は、アルコール付加反応との平衡反応であるので、一定量のアルコキシ基は残存してしまう。その後、次工程の脱水縮合反応物生成工程で、アルコールを減圧留去するとき、蒸気圧が高いアルコールが水よりも優先的に系内から取り除かれていく。そのため、加水分解反応と、アルコール付加反応との平衡反応がずれて、より加水分解が進行し、アルコキシ基をさらに低減させやすくなると考えられる。 From the viewpoint of controlling the content of the alkoxy group bonded to Si in the phenylsilsesquioxane to 5% or less with respect to all the bonds of Si, the amount of water used for the hydrolysis is 1 mole of phenyltrialkoxysilane. On the other hand, the molar ratio is 4.2 to 14 times. The preferred amount of water is 4.5 to 13.5 moles. In the method for producing a coating for forming a flat film according to the present disclosure, when phenyltrialkoxysilane is hydrolyzed in an alcohol using acetic acid and organotin as a catalyst, water is added to 4 moles of phenyltrialkoxysilane per mole. By adding 2 to 14 mole times, it becomes easy to reduce the number of alkoxy groups at the stage of hydrolysis. Since the hydrolysis reaction is an equilibrium reaction with the alcohol addition reaction, a certain amount of alkoxy group remains. Thereafter, in the subsequent step of producing a dehydration condensation reaction product, when alcohol is distilled off under reduced pressure, alcohol having a high vapor pressure is removed from the system with priority over water. Therefore, it is considered that the equilibrium reaction between the hydrolysis reaction and the alcohol addition reaction is deviated, and the hydrolysis proceeds more easily, so that the alkoxy group can be more easily reduced.
 なお、特許文献3~5に記載の合成法で、フェニルトリアルコキシシランを加水分解するとき、水を過剰に使用(フェニルトリアルコキシシラン1モルに対して4.2モル倍以上で水を使用)すると、ランダム縮合物が過剰に生成し、白濁化する。 When the phenyl trialkoxysilane is hydrolyzed by the synthesis methods described in Patent Documents 3 to 5, water is used excessively (water is used in an amount of 4.2 mol times or more with respect to 1 mol of phenyl trialkoxysilane). Then, an excessive amount of the random condensate is generated, and it becomes cloudy.
(濃縮工程)
 濃縮工程は、減圧下でアルコールを留去して脱水縮合反応を進め、フェニルシルセスキオキサンを含む脱水縮合反応物を生成させる。濃縮工程では、加水分解されたフェニルトリアルコキシシランを含む溶液を、減圧下で30℃~90℃の温度に加温しながら、アルコールを留去することが好ましい。濃縮工程では、ほぼ100%加水分解されたフェニルトリアルコキシシランが部分的に脱水縮合反応した生成物を得る。
(Concentration process)
In the concentration step, the alcohol is distilled off under reduced pressure, and the dehydration condensation reaction proceeds to generate a dehydration condensation reaction product containing phenylsilsesquioxane. In the concentration step, it is preferable to distill off the alcohol while heating the solution containing the hydrolyzed phenyltrialkoxysilane to a temperature of 30 ° C. to 90 ° C. under reduced pressure. In the concentration step, a product obtained by partially dehydrating and condensing phenyltrialkoxysilane that has been hydrolyzed almost 100% is obtained.
 部分的な脱水縮合反応物は、温度、減圧度、及び時間を調整して、脱水縮合反応を進めることが好ましい。具体的には、フェニルトリアルコキシシラン1モルが完全に脱水縮合反応した場合に得られる生成物(つまり、CSiO3/2)の分子量129に対して、脱水縮合反応物の重量として、1.04倍~1.11倍の重量になるように調整することが好ましい。 It is preferable that the temperature, the degree of reduced pressure, and the time of the partial dehydration condensation reaction be adjusted to advance the dehydration condensation reaction. Specifically, with respect to the molecular weight 129 of the product (that is, C 6 H 5 SiO 3/2 ) obtained when 1 mol of phenyl trialkoxysilane is completely dehydrated and condensed, It is preferable to adjust the weight to be 1.04 times to 1.11 times.
 濃縮工程では、終了時に、アルコールがほぼ取り除かれ無溶媒に近い状態なるので、加水分解された分子同士は衝突すれば立体障害があっても脱水縮合が進みやすくなる。そのため、前述のTおよびT(図1を参照)を多く含んだオリゴマーが生成しやすい。このようなオリゴマー同士が脱水縮合すると、高分子量化工程で望ましくない反応を起こしてしまう。このため、濃縮工程では、大きなオリゴマーになっていない方が好ましい。例えば、脱水縮合反応物の平均分子量が、CSiO3/2の分子量129の1.04~1.11倍の平均分子量になっているとき、フェニルトリアルコキシシランの加水分解物のモノマーと、ダイマーと、オリゴマーとが混在しているとみなすことができる。 In the concentration step, at the time of completion, the alcohol is almost removed and the state becomes almost solventless. Therefore, if the hydrolyzed molecules collide with each other, dehydration condensation easily proceeds even if there is steric hindrance. Therefore, an oligomer containing a large amount of the aforementioned T 1 and T 2 (see FIG. 1) is likely to be generated. When such oligomers are dehydrated and condensed, an undesirable reaction occurs in the step of increasing the molecular weight. For this reason, it is preferable that the oligomer does not become a large oligomer in the concentration step. For example, when the average molecular weight of the dehydration-condensation reaction product is 1.04 to 1.11 times the average molecular weight of 129 of C 6 H 5 SiO 3/2 , the monomer of the hydrolyzate of phenyl trialkoxysilane , And a mixture of a dimer and an oligomer.
(高分子量化工程)
 高分子量化工程では、部分的な脱水縮合反応物を、水と混和しない有機溶媒に固形分濃度が30質量%~80質量%になるように溶解させることが好ましい。また、水と混和しない有機溶媒の沸点以上の温度で、還流時間を3時間~30時間とすることが好ましい。加熱還流は、ディーンスタークトラップを用いて、水と共にアルコールを除去しながら行うことにより、部分的な脱水縮合反応物同士の脱水縮合反応を進行させることが好ましい。
 このとき、部分的な脱水縮合反応物がTおよびTを多く含んだオリゴマーであると、このようなオリゴマー同士の脱水縮合反応により、水と混和しない有機溶媒に不溶なランダム構造体のフェニルシルセスキオキサンになってしまう。高分子量化工程でフェニルシルセスキオキサンのラダー型構造体を形成するには、内部にシラノール基を含まないオリゴマーに対して、モノマー、又はダイマーが脱水縮合反応で、順次付加していくことが理想的であると考えられる。そのためには、前工程である濃縮工程において、部分的な脱水縮合反応物の状態を制御しておくことが好ましい。
(High molecular weight process)
In the step of increasing the molecular weight, it is preferable to dissolve the partial dehydration-condensation reaction product in an organic solvent immiscible with water so that the solid content concentration is 30% by mass to 80% by mass. Further, it is preferable that the reflux time is 3 hours to 30 hours at a temperature not lower than the boiling point of the organic solvent immiscible with water. The heating and refluxing is preferably performed while removing alcohol together with water using a Dean-Stark trap, so that a partial dehydration / condensation reaction between dehydration / condensation products proceeds.
At this time, when the partial dehydration condensation product is an oligomer containing a large amount of T 1 and T 2 , the phenyl having a random structure insoluble in an organic solvent immiscible with water due to the dehydration condensation reaction between such oligomers. It becomes silsesquioxane. In order to form a ladder-type structure of phenylsilsesquioxane in the high molecular weight process, a monomer or a dimer is sequentially added to an oligomer having no silanol group by a dehydration condensation reaction. Considered to be ideal. For this purpose, it is preferable to control the state of a partial dehydration-condensation reaction product in the concentration step which is the preceding step.
 以上の工程を経て、本開示に係る平坦化膜形成用塗布液が得られる。 Through the above steps, the coating liquid for forming a flattening film according to the present disclosure is obtained.
<平坦化膜付き金属箔及びその製造方法>
 次に、本開示の平坦化膜付き金属箔をその製造方法と共に説明する。
 本開示の平坦化膜付き金属箔は、金属箔と、金属箔の少なくとも一方の表面に設けられ、本開示の平坦化膜形成用塗布液を硬化してなる平坦化膜と、を有する。
 また、本開示の平坦化膜付き金属箔を得る好ましい製造方法の一例は、以下の工程を有する。
 金属箔の少なくとも一方の表面に、本開示の平坦化膜形成用塗布液を塗布する工程(塗布工程)。
 不活性ガス雰囲気中300℃~450℃の温度域でリフロー及び膜硬化させた後、巻き取る工程(巻き取り工程)。
<Metal foil with flattening film and manufacturing method thereof>
Next, the metal foil with a flattening film of the present disclosure will be described together with a method for manufacturing the same.
The metal foil with a flattening film according to the present disclosure has a metal foil and a flattening film provided on at least one surface of the metal foil and obtained by curing the coating liquid for forming a flattening film according to the present disclosure.
Further, an example of a preferable manufacturing method for obtaining the metal foil with a flattening film according to the present disclosure includes the following steps.
A step of applying the coating liquid for forming a flattening film of the present disclosure to at least one surface of the metal foil (coating step).
After reflow and film curing in a temperature range of 300 ° C. to 450 ° C. in an inert gas atmosphere, a winding step (winding step).
 平坦化膜付き金属箔は、平坦化膜が、金属箔の少なくとも一方の表面に設けられる。つまり、平坦化膜は、金属箔における圧延面の両面に設けられていてもよく、圧延面の片面にのみ設けられていてもよい。電子デバイス素子(例えば、有機EL照明素子)は、一般的に基板の片面にのみ作製することが多い。このため、平坦化膜は金属箔の片面にのみ設けられていてもよい。 金属 In the metal foil with a flattening film, the flattening film is provided on at least one surface of the metal foil. That is, the flattening film may be provided on both sides of the rolled surface of the metal foil, or may be provided only on one side of the rolled surface. In general, electronic device elements (for example, organic EL lighting elements) are often manufactured only on one side of a substrate. Therefore, the flattening film may be provided only on one side of the metal foil.
 金属箔は圧延によって薄くするので、圧延方向にスジが認められる。また、元の溶融金属に含まれる介在物、圧延ロールに巻き込まれた異物等によって、圧延方向に引き伸ばされた疵も存在する。疵の大きさは、例えば、幅数十μm、長さ1mm~数mm程度であることが多い。 Since the metal foil is thinned by rolling, streaks are observed in the rolling direction. In addition, there are flaws elongated in the rolling direction due to inclusions included in the original molten metal, foreign matters caught in the rolling rolls, and the like. The size of the flaw is, for example, often about several tens μm in width and about 1 mm to several mm in length.
 金属箔の表面粗さは、圧延スジに対して平行な方向と垂直な方向で異なり、垂直方向の方が表面粗さとしては大きい。したがって、平坦化膜を被覆することによって金属箔の平坦性を向上させる目的では、表面粗さとして最も大きい数字になる垂直方向に注目する。具体的には、触針式粗さ計により1.25mmの測定長さで表面粗さを10箇所以上、金属箔の圧延方向に対して垂直、すなわち金属箔の幅方向に測定し、平均値を採用する。 表面 The surface roughness of the metal foil differs between the direction parallel to the rolling streaks and the direction perpendicular to the rolling streaks, and the vertical direction has a larger surface roughness. Therefore, for the purpose of improving the flatness of the metal foil by covering the flattening film, attention is paid to the vertical direction in which the surface roughness is the largest. Specifically, the surface roughness was measured at a measurement length of 1.25 mm with a stylus type roughness meter at 10 or more points perpendicular to the rolling direction of the metal foil, that is, in the width direction of the metal foil, and the average value was measured. Is adopted.
 平坦化膜付き金属箔の表面粗さと、その上に形成したフレキシブルデバイス素子として、有機EL素子の特性の関係を詳細に調べた。その結果、膜表面の平坦性は、有機EL素子のリーク電流を低減する上で、重要であることがわかった。平坦化膜付き金属箔表面の圧延方向に対して垂直方向の算術平均粗さRaが30nm以下であれば、有機EL発光素子のリーク電流を1E-4A/m以下という実用的なレベルにすることができる。 The relationship between the surface roughness of the metal foil with a flattening film and the characteristics of the organic EL element as a flexible device element formed thereon was examined in detail. As a result, it was found that the flatness of the film surface was important in reducing the leak current of the organic EL element. If the arithmetic average roughness Ra in the direction perpendicular to the rolling direction of the surface of the metal foil with a flattening film is 30 nm or less, the leak current of the organic EL light emitting element is set to a practical level of 1E-4 A / m 2 or less. be able to.
 素子のリーク電流は、フェニルシルセスキオキサンの平坦化膜上に、素子の下部電極、発光部、及び上部電極の順に成膜して素子を作製し、下部電極と上部電極の間に3Vの電圧を加えたときの電流を素子面積で割って求める。発光部は複数の層からなり、全層厚は100nm~150nm程度である。膜の表面が粗い場合は、下部電極と上部電極の間の距離の短い部分ができてしまい、素子のリーク電流が増加することになる。平坦化膜付き金属箔のRaが30nmを超える場合は、1E-4A/mを超えるリーク電流の大きい素子になる。そのため、素子としての効率が低下、ショートが発生する等の現象が生じる。Raのより好ましい範囲は20nm以下、さらに好ましくは15nm以下である。Raをこの範囲とすることで、より小さなリーク電流にすることができる。平坦化膜付き金属箔表面の圧延方向に対する垂直方向の算術平均粗さRaは小さいほど好ましく、Raの下限は限定されるものではない。Raは、例えば、0.5nm以上であってもよい。 The leak current of the device is formed by forming a lower electrode, a light emitting portion, and an upper electrode of the device in this order on a flattened film of phenylsilsesquioxane to produce a device, and applying 3 V between the lower electrode and the upper electrode. It is determined by dividing the current when a voltage is applied by the element area. The light emitting section is composed of a plurality of layers, and the total thickness is about 100 nm to 150 nm. When the surface of the film is rough, a portion where the distance between the lower electrode and the upper electrode is short is formed, and the leak current of the element increases. When Ra of the metal foil with a flattening film exceeds 30 nm, an element having a large leak current exceeding 1E-4 A / m 2 is obtained. As a result, phenomena such as a reduction in the efficiency of the element and a short circuit occur. A more preferable range of Ra is 20 nm or less, and further preferably 15 nm or less. By setting Ra within this range, a smaller leak current can be obtained. The arithmetic average roughness Ra in the direction perpendicular to the rolling direction of the surface of the metal foil with a flattening film is preferably as small as possible, and the lower limit of Ra is not limited. Ra may be, for example, 0.5 nm or more.
 金属箔の少なくとも一方の表面には、絶縁被膜が設けられていてもよい。絶縁被膜が被覆された金属箔を用いることにより、平坦化膜形成後の金属箔の絶縁性がより高く確実になる。絶縁被膜の種類は特に限定されず、例えば、金属酸化物(シリカ、アルミナ等)、無機塩(リン酸アルミニウム、リン酸カルシウム等)、耐熱性樹脂(ポリイミド、ポリテトラフルオロエチレン等)などが挙げられる。金属酸化物による絶縁被膜は、例えばスパッタ、蒸着、CVD等の方法によって成膜することができる。無機塩の絶縁被膜は、例えばロールコーター、スプレイ等の塗布方法によって成膜することができる。耐熱性樹脂の絶縁被膜は、例えばコンマコーター、ダイコーター、スプレイ等の塗布方法によって成膜することができる。 絶 縁 An insulating coating may be provided on at least one surface of the metal foil. By using the metal foil coated with the insulating film, the insulating property of the metal foil after the formation of the flattening film becomes higher and more reliable. The type of the insulating coating is not particularly limited, and examples thereof include metal oxides (silica, alumina, and the like), inorganic salts (aluminum phosphate, calcium phosphate, and the like), and heat-resistant resins (polyimide, polytetrafluoroethylene, and the like). The insulating film made of a metal oxide can be formed by, for example, a method such as sputtering, vapor deposition, or CVD. The inorganic salt insulating film can be formed by a coating method such as a roll coater or a spray. The insulating film of the heat-resistant resin can be formed by a coating method such as a comma coater, a die coater, and a spray.
 金属箔としては、特に限定されず、アルミニウム箔、銅箔、チタン箔、ステンレス箔などが挙げられる。これらの中でも、ステンレス箔が好ましい。ステンレス箔は工業的に安価に製造しやすく、折れが入りにくい観点から、電子デバイス用フレキシブル基板として好適である。ステンレス箔を用いる場合、ステンレス箔は反射率が低いため(反射率60%)、ステンレス箔の少なくとも一方の表面には反射膜が形成されていてもよい。ステンレス箔は、オーステナイト系、フェライト系、マルテンサイト系のいずれのステンレス箔であってもよい。フレキシブル基板に適用する観点で、オーステナイト系またはフェライト系のステンレス箔が好ましい。金属箔の厚みは、特に限定されず、例えば、10μm~100μmが挙げられる。 The metal foil is not particularly limited, and examples thereof include an aluminum foil, a copper foil, a titanium foil, and a stainless steel foil. Among these, stainless steel foil is preferable. Stainless steel foil is suitable as a flexible substrate for electronic devices from the viewpoint that it is industrially easy to manufacture at low cost and hardly breaks. When a stainless steel foil is used, the reflectivity of the stainless steel foil is low (the reflectivity is 60%), so that a reflective film may be formed on at least one surface of the stainless steel foil. The stainless steel foil may be any of austenitic, ferrite and martensitic stainless steel foils. From the viewpoint of application to a flexible substrate, an austenitic or ferritic stainless steel foil is preferable. The thickness of the metal foil is not particularly limited, and may be, for example, 10 μm to 100 μm.
 電子デバイスとして、例えば、透明な下電極を使ってトップエミッションの有機EL照明、有機ELディスプレイ等を作製する場合、光はステンレス箔表面で繰り返し反射される。ステンレス箔の反射率が60%程度であると、多くの光が失われデバイスの効率が低下する。これに対し、ステンレス箔の表面に反射膜(例えば、反射率95%程度)を形成した場合、ほとんどの光は反射膜で反射されるので、デバイスの効率は著しく向上する。例えば、95%程度の高い反射率を有する反射膜の種類としては、純Al、Al合金、純Ag、Ag合金などが挙げられる。Al合金としては、Al-Si、Al-Nd合金などが挙げられる。Ag合金としては、Ag-Nd、Ag-Inなどの合金が挙げられる。反射膜はスパッタ法などにより成膜することができる。 (4) When an organic EL lighting, an organic EL display or the like of top emission is manufactured using a transparent lower electrode as an electronic device, light is repeatedly reflected on the surface of the stainless steel foil. If the reflectance of the stainless steel foil is about 60%, much light is lost and the efficiency of the device is reduced. On the other hand, when a reflective film (for example, a reflectance of about 95%) is formed on the surface of the stainless steel foil, most of the light is reflected by the reflective film, so that the efficiency of the device is significantly improved. For example, examples of the type of the reflective film having a high reflectance of about 95% include pure Al, an Al alloy, pure Ag, and an Ag alloy. Examples of the Al alloy include Al-Si and Al-Nd alloys. Ag alloys include alloys such as Ag-Nd and Ag-In. The reflection film can be formed by a sputtering method or the like.
 平坦化膜の膜厚は、膜の平坦化、及びクラックを抑制する観点から、2.0μm~5.0μmであることが好ましい。平坦化膜の膜厚が2.0μm以上であると、金属箔の凹凸を被覆しやすくなる。金属箔の凹凸を被覆する観点から、平坦化膜の膜厚は2.5μm以上であることが好ましい。一方、平坦化膜の膜厚が5μm以下であると、平坦化膜のクラックが抑制される。また、成膜時のクラックだけでなく、平坦化膜で被覆されたステンレス箔をフレキシブル基板として曲げたときのクラックも抑制される。クラック抑制等の観点から、平坦化膜の膜厚は4.5μm以下であることがより好ましく、4.0μm以下であることがさらに好ましい。 膜厚 The thickness of the flattening film is preferably 2.0 μm to 5.0 μm from the viewpoint of flattening the film and suppressing cracks. When the thickness of the flattening film is 2.0 μm or more, it is easy to cover the unevenness of the metal foil. From the viewpoint of covering the unevenness of the metal foil, the thickness of the flattening film is preferably 2.5 μm or more. On the other hand, when the thickness of the flattening film is 5 μm or less, cracking of the flattening film is suppressed. Further, not only cracks during film formation but also cracks when the stainless steel foil covered with the flattening film is bent as a flexible substrate are suppressed. In light of crack suppression and the like, the thickness of the flattening film is more preferably equal to or less than 4.5 μm, and still more preferably equal to or less than 4.0 μm.
 ここで、図2を参照して、本開示の平坦化膜付き金属箔を得る好ましい製造方法の一例について説明する。図2は、本開示の平坦化膜付き金属箔を製造するために適用される成膜装置の一例を表す模式図である。この成膜装置は、Roll to Rollプロセスにより、金属箔の片面に平坦化膜を設けるための連続成膜装置を表している。図2に示す成膜装置100は、コイル状に巻き取られた金属箔を巻き出すコイル巻出し部12と、本開示の平坦化膜形成用塗布液22Aを収容し、平坦化膜形成用塗布液22Aを塗布して塗布膜を形成する塗布部22と、平坦化膜形成用塗布液22Aの塗布膜を乾燥して乾燥膜とする乾燥部24と、平坦化膜形成用塗布液22Aの乾燥膜をリフローさせた後に熱硬化させる熱処理部26と、熱処理後の平坦化膜付き金属箔を冷却する冷却部28(第1冷却体28A、第2冷却体28B)と、熱処理後の平坦化膜付き金属箔を巻き取るコイル巻取り部14と、を備える。乾燥部24内及び熱処理部26内では、金属箔を支持する支持ロールが、電子デバイス形成側となる膜面(乾燥膜面び硬化膜面)に接触しないように配置されている。さらに、成膜装置100は、搬送するときにシワ等が生じないように、張力付与ロール32A及び張力付与ロール32Bを備えている。張力付与ロール32Aは、塗布部22の金属箔搬送方向上流側に設けられており、金属箔の搬送を安定化させている。張力付与ロール32Bは、熱処理部26よりも下流側で、コイル巻取り部14よりも上流側に設けられており、平坦化膜付き金属箔の搬送を安定化させている。 Here, an example of a preferable manufacturing method for obtaining the metal foil with a planarizing film of the present disclosure will be described with reference to FIG. FIG. 2 is a schematic diagram illustrating an example of a film forming apparatus applied to manufacture the metal foil with a flattening film according to the present disclosure. This film forming apparatus represents a continuous film forming apparatus for providing a flattening film on one side of a metal foil by a Roll to Roll process. The film forming apparatus 100 shown in FIG. 2 contains a coil unwinding unit 12 that unwinds a metal foil wound in a coil shape and a coating liquid 22A for forming a flattening film according to the present disclosure. A coating unit 22 for forming a coating film by applying the liquid 22A, a drying unit 24 for drying the coating film of the coating liquid 22A for forming a flattening film to form a dry film, and drying the coating liquid 22A for forming a flattening film. A heat treatment section 26 for thermally curing the film after reflow, a cooling section 28 (first cooling body 28A, second cooling body 28B) for cooling the metal foil with a flattening film after the heat treatment, and a flattening film after the heat treatment And a coil winding unit 14 for winding the attached metal foil. In the drying unit 24 and the heat treatment unit 26, the support roll supporting the metal foil is arranged so as not to contact the film surface (the dried film surface and the cured film surface) on the electronic device formation side. Further, the film forming apparatus 100 includes a tension applying roll 32A and a tension applying roll 32B so that wrinkles and the like do not occur when the film is conveyed. The tension applying roll 32 </ b> A is provided on the upstream side of the application unit 22 in the metal foil transport direction, and stabilizes the transport of the metal foil. The tension applying roll 32B is provided on the downstream side of the heat treatment unit 26 and on the upstream side of the coil winding unit 14, and stabilizes the transport of the metal foil with the flattening film.
(塗布工程)
 まず、塗布工程について説明する。塗布工程は、本開示に係る平坦化膜形成用塗布液を塗布する工程である。まず、金属箔がコアに巻き取られた金属箔をコイル巻出し部12に取り付ける。次に、コイル巻出し部12から、金属箔が矢印Aの方向に巻き出される。金属箔は、張力付与ロール32Aを通過することにより、搬送が安定化され、本開示の平坦化膜形成用塗布液22Aが収容された塗布部22に送り出される。塗布部22では、塗布用ロールにより、金属箔の片面に平坦化膜形成用塗布液22Aが塗布され、平坦化膜形成用塗布液22Aの塗布膜が形成される。
(Coating process)
First, the application step will be described. The application step is a step of applying the coating liquid for forming a flattening film according to the present disclosure. First, the metal foil wound around the core is attached to the coil unwinding section 12. Next, the metal foil is unwound from the coil unwinding unit 12 in the direction of arrow A. The transport of the metal foil is stabilized by passing through the tension applying roll 32A, and the metal foil is sent to the coating unit 22 in which the coating liquid 22A for forming a flattening film of the present disclosure is stored. In the application section 22, the coating roll applies the flattening film forming coating liquid 22A to one surface of the metal foil to form a coating film of the flattening film forming coating liquid 22A.
(巻き取り工程)
 次に巻き取り工程について説明する。巻き取り工程は、塗布後に、乾燥、熱処理、及び冷却を経て巻き取られる工程である。平坦化膜形成用塗布液22Aの塗布膜が設けられた金属箔は、乾燥部24に送り出される。乾燥部24では、塗布膜に含まれる溶剤及び水分を除去して、塗布膜が乾燥膜となる。平坦化膜形成用塗布液22Aの乾燥膜が形成された金属箔は、乾燥部24から熱処理部26に送り出される。熱処理部26では、乾燥膜が、リフローされることにより乾燥膜の表面が平坦化される。そして、リフローに引き続きポリマーの架橋を進めて三次元網目構造を形成させた硬化膜となる。平坦化膜形成用塗布液22Aの硬化膜(つまり、平坦化膜)が形成された金属箔は、熱処理部26から冷却部28に送り出される。冷却部28では、硬化膜が設けられた面側に配置された冷却体28A、及びその反対面側(つまり、金属箔面側)に配置された冷却体28Bから、冷風が吹き付けられ、冷却される。そして、冷却後、平坦化膜付き金属箔は、冷却部28からコイル巻取り部14に送り出される。平坦化膜付き金属箔は、張力付与ロール32Aを通過することにより、搬送が安定化される。そして、平坦化膜付き金属箔は、矢印Aの方向に搬送され、コイル巻取り部14でコアに巻き取られる。
(Winding process)
Next, the winding step will be described. The winding step is a step of winding after drying, heat treatment, and cooling after application. The metal foil provided with the coating film of the coating liquid 22A for forming a flattening film is sent to the drying unit 24. In the drying unit 24, the solvent and moisture contained in the coating film are removed, and the coating film becomes a dried film. The metal foil on which the dried film of the coating liquid 22A for forming a flattening film is formed is sent from the drying unit 24 to the heat treatment unit 26. In the heat treatment section 26, the surface of the dried film is flattened by being reflowed. Then, the cross-linking of the polymer is advanced following the reflow to form a cured film in which a three-dimensional network structure is formed. The metal foil on which the cured film of the coating liquid 22A for forming a flattening film (that is, the flattening film) is formed is sent from the heat treatment unit 26 to the cooling unit 28. In the cooling unit 28, cool air is blown from a cooling body 28 </ b> A arranged on the surface side where the cured film is provided and a cooling body 28 </ b> B arranged on the opposite surface side (that is, the metal foil surface side) to be cooled. You. Then, after cooling, the metal foil with the flattening film is sent from the cooling unit 28 to the coil winding unit 14. The transport of the metal foil with the flattening film is stabilized by passing through the tension applying roll 32A. Then, the metal foil with the flattening film is transported in the direction of arrow A, and is wound around the core by the coil winding unit 14.
 以上の工程を経て、図3に示すような本開示の平坦化膜付き金属箔が得られる。図3は、平坦化膜付き金属箔の一部分を表しており、本開示に係る平坦化膜付き金属箔を示す概略部分断面図である。図3に示す平坦化膜付き金属箔300は、金属箔(金属箔)302と、金属箔302の片面に設けられた平坦化膜304とを備えている。 Through the above steps, a metal foil with a flattening film of the present disclosure as shown in FIG. 3 is obtained. FIG. 3 is a schematic partial cross-sectional view showing a part of the metal foil with a flattening film, showing the metal foil with a flattening film according to the present disclosure. The metal foil 300 with a flattening film shown in FIG. 3 includes a metal foil (metal foil) 302 and a flattening film 304 provided on one surface of the metal foil 302.
 以下、本開示の平坦化膜付き金属箔の好ましい製造方法の一例について、さらに説明する。以下の説明において、符号は省略する。 Hereinafter, an example of a preferred method of manufacturing the metal foil with a flattening film according to the present disclosure will be further described. In the following description, reference numerals are omitted.
 金属箔の搬送速度(通板速度)は特に限定されず、例えば、1m/min~20m/min程度である。搬送速度は速いほど生産性が高い。 搬 送 The transport speed (sheet passing speed) of the metal foil is not particularly limited, and is, for example, about 1 m / min to 20 m / min. The higher the transfer speed, the higher the productivity.
 塗布部において、平坦化膜形成用塗布液を金属箔の表面に塗布する方法は、特に限定されない。塗布方法としては、例えば、各種塗布法(スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スリットコート法、キャピラリーコート法、スプレーコート法、ノズルコート法等)、各種印刷法(グラビア印刷法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、反転印刷法、インクジェットプリント法等)などが挙げられる。 (4) The method of applying the coating liquid for forming a flattening film to the surface of the metal foil in the coating section is not particularly limited. Examples of the coating method include various coating methods (spin coating method, casting method, microgravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, slit coating method, capillary coating method) Method, spray coating method, nozzle coating method, etc.) and various printing methods (gravure printing method, screen printing method, flexographic printing method, offset printing method, reverse printing method, inkjet printing method, etc.).
 金属箔への塗布後、乾燥部で、金属箔上の塗布膜を乾燥し、塗布膜から溶剤及び水分を除去することで、乾燥膜を形成する。乾燥処理は20℃~150℃の温度で行うことが好ましい。また、乾燥時間は、0.5分~2分程度であることが好ましい。乾燥部内の雰囲気は、大気でもよく、不活性ガス雰囲気(例えば、窒素ガス雰囲気)でもよい。減圧留去によるフェニルシルセスキオキサンの合成温度より高い乾燥温度にすると、フェニルシルセスキオキサンのラダー型構造体が軟化する可能性がある。このため、乾燥温度はフェニルシルセスキオキサンの合成温度より低いことが好ましい。乾燥膜中ではフェニルシルセスキオキサンが絡まり合って見掛け上、網目構造のようになって膜硬化しているように見える。しかし、熱振動で分子の運動が活発になると、フェニルシルセスキオキサンはほどけて流動性を示すようになる。 (4) After coating on the metal foil, the drying section dries the coating film on the metal foil and removes the solvent and moisture from the coating film to form a dried film. The drying treatment is preferably performed at a temperature of 20 ° C to 150 ° C. The drying time is preferably about 0.5 to 2 minutes. The atmosphere in the drying unit may be the air or an inert gas atmosphere (for example, a nitrogen gas atmosphere). If the drying temperature is higher than the synthesis temperature of phenylsilsesquioxane by distillation under reduced pressure, the ladder-type structure of phenylsilsesquioxane may be softened. For this reason, the drying temperature is preferably lower than the synthesis temperature of phenylsilsesquioxane. In the dried film, the phenylsilsesquioxane is entangled and apparently has a network structure, so that the film is hardened. However, when the movement of the molecule becomes active due to the thermal vibration, the phenylsilsesquioxane is released and becomes fluid.
 乾燥部から送り出された乾燥膜付き金属箔は、熱処理部において熱処理される。熱処理は、以下の2つを目的としている。(1)乾燥膜を形成しているフェニルシルセスキオキサンを溶融軟化(すなわちリフロー)させて膜の表面を平坦化させること、(2)リフローに引き続いてポリマーの架橋を進め、三次元網目構造を形成させて膜を硬化させること。 金属 The metal foil with a dried film sent from the drying unit is heat-treated in the heat treatment unit. The heat treatment has the following two purposes. (1) melt-softening (ie, reflow) the phenylsilsesquioxane forming the dried film to flatten the surface of the film; (2) proceeding with crosslinking of the polymer following reflow to form a three-dimensional network structure And curing the film.
 リフローは、減圧留去によるフェニルシルセスキオキサンの合成温度より高い温度域であり、三次元的な架橋が進行して、乾燥膜が硬化し始める温度より低い温度域の範囲内で発生する現象である。リフローのために特別な熱処理プロセスを採用しなくてもよい。熱処理温度を300℃~450℃の範囲とすれば、熱処理温度まで昇温される過程でリフローが起き、引き続き架橋による膜硬化が進む。 Reflow is a temperature range higher than the synthesis temperature of phenylsilsesquioxane by distillation under reduced pressure, and occurs within a temperature range lower than the temperature at which the dry film begins to cure due to the progress of three-dimensional crosslinking. It is. It is not necessary to employ a special heat treatment process for reflow. When the heat treatment temperature is in the range of 300 ° C. to 450 ° C., reflow occurs in the process of raising the temperature to the heat treatment temperature, and film curing by crosslinking proceeds.
 金属箔の表面を効果的に平坦化するには、図2に示す成膜装置100の熱処理部26のように、水平に近い状態で熱処理を行うことがよい。膜硬化は架橋反応による網目構造形成であるので、ひとたび膜が硬化すると、再度リフローすることはほとんどない。熱処理温度が300℃より低い場合は、架橋が十分に進まず、シラノール基などの反応基が膜の中に残るため絶縁性が不十分となる。そのうえ、有機電子デバイス作製中にシラノール基などに吸着した水分が脱離すると、素子に悪影響を及ぼすので不適である。熱処理温度が450℃より高い場合は、フェニル基の熱分解による体積収縮が起き、クラックが入りやすくなるので不適である。より好ましい熱処理温度は360℃以上420℃以下である。 (4) In order to effectively flatten the surface of the metal foil, it is preferable to perform the heat treatment in a nearly horizontal state as in the heat treatment unit 26 of the film forming apparatus 100 shown in FIG. Since film curing is a network structure formation by a crosslinking reaction, once the film is cured, it hardly reflows again. When the heat treatment temperature is lower than 300 ° C., the crosslinking does not proceed sufficiently, and a reactive group such as a silanol group remains in the film, resulting in insufficient insulation. In addition, if moisture adsorbed to silanol groups or the like during the production of the organic electronic device is desorbed, the device is adversely affected, which is not suitable. If the heat treatment temperature is higher than 450 ° C., volumetric shrinkage due to thermal decomposition of the phenyl group occurs and cracks easily occur, which is not suitable. A more preferred heat treatment temperature is from 360 ° C to 420 ° C.
 乾熱処理はフェニル基が熱分解しにくいように、不活性ガスを流しながら行う。連続成膜装置の場合、基材が熱処理炉内に入るときに若干量の大気を持ち込む。本開示においては、フェニルシルセスキオキサンは1%程度の大気の混入があっても膜特性に影響はない。 (4) The dry heat treatment is performed while flowing an inert gas so that the phenyl group is not easily thermally decomposed. In the case of a continuous film forming apparatus, a slight amount of air is brought in when the substrate enters the heat treatment furnace. In the present disclosure, phenylsilsesquioxane does not affect the film properties even if about 1% of the air is mixed.
 熱処理後の冷却は、冷却体から冷風を吹きつけてもよい。図2に示す成膜装置100では、硬化膜付き金属箔の両面から吹き付けているが、硬化膜面側の片面から吹き付けてもよい。冷風の温度は、室温(例えば、25℃)でもよい。 冷却 Cooling after heat treatment may be performed by blowing cool air from a cooling body. In the film forming apparatus 100 shown in FIG. 2, the metal foil with the hardened film is sprayed from both sides, but may be sprayed from one side of the hardened film side. The temperature of the cold air may be room temperature (for example, 25 ° C.).
 冷却後、平坦化膜付き金属箔をコアに巻き取るときに、平坦化膜の保護のため、平坦化膜面に、保護フィルムを貼付してもよく、疵が入らないように合紙を挿入してもよい。また、図2に示す成膜装置100では、乾燥と熱処理とを連続して行っているが、乾燥と熱処理とをそれぞれ単独で行ってもよい。例えば、乾燥膜付き金属箔を巻き取ってコイルとした後、再度熱処理のみを行って、乾燥膜の硬化を行ってもよい。この場合は、乾燥処理用設備と熱処理用設備との2種類の設備を設置することになる。乾燥と熱処理とをそれぞれ単独で行うと、それぞれの処理を最適の通板速度に設定できる長所がある。 After cooling, when winding the metal foil with the flattening film around the core, a protective film may be stuck on the flattening film surface to protect the flattening film, and an interleaf paper is inserted to prevent scratches. May be. Further, in the film forming apparatus 100 shown in FIG. 2, the drying and the heat treatment are performed continuously, but the drying and the heat treatment may be performed independently. For example, after winding the metal foil with the dry film into a coil, only the heat treatment may be performed again to cure the dry film. In this case, two types of equipment, a drying treatment equipment and a heat treatment equipment, are installed. When the drying and the heat treatment are performed independently, there is an advantage that each processing can be set to an optimum passing speed.
 以下に実施例について説明するが、本開示はこれらの実施例に何ら限定されるものではない。なお、以下の説明において、特に断りのない限り、「部」及び「%」はすべて質量基準である。 実 施 Examples will be described below, but the present disclosure is not limited to these examples. In the following description, “parts” and “%” are all based on mass unless otherwise specified.
<実施例1~8、比較例1~5>
 各例の配合比および製造条件について、表1に記載した条件にしたがって実施した。
 まず、1Lのフラスコを用いて、表1に示す配合比となるように配合し、総量が0.7Lになるように原料を調合した。
 調合後、原料をマグネティックスターラーで15分撹拌及び混合を行い、加水分解を促進するために80℃で3時間、窒素気流下で還流した。還流後のフラスコ内の目視観察結果について、「加水分解液の性状」欄に記載した。
<Examples 1 to 8, Comparative Examples 1 to 5>
The mixing ratio and the manufacturing conditions of each example were carried out according to the conditions described in Table 1.
First, using a 1 L flask, the ingredients were blended so as to have the blending ratio shown in Table 1, and the raw materials were blended so that the total amount was 0.7 L.
After the preparation, the raw materials were stirred and mixed with a magnetic stirrer for 15 minutes, and refluxed at 80 ° C. for 3 hours under a nitrogen stream to promote hydrolysis. The results of the visual observation in the flask after the reflux are described in the column of “Properties of Hydrolyzed Solution”.
 その後、ロータリーエバポレータを用い、オイルバスの設定温度を80℃にして、溶媒を減圧留去し、縮合反応物を得た。
 その後、水と混和しない有機溶媒を、縮合反応物の重量と等量で添加して、縮合反応物を溶解させた。この時点では固形分濃度50質量%で縮合反応物が溶解している。
 この1Lフラスコをディーンスタークトラップ付き還流器に接続して、加熱還流を行った。加熱還流時のオイルバスの設定温度と還流時間は表1に示す。
 加熱還流後に、水と混和しない有機溶媒を添加して、固形分濃度が30質量%になるよう希釈し、孔径5μmのフィルタをセットして減圧濾過を実施した。
 固形分濃度30質量%希釈時の塗布液の粘度はCBC株式会社製VISCOMATE VM-10A型振動式粘度計を用いて25℃で測定した。
Thereafter, using a rotary evaporator, the temperature of the oil bath was set to 80 ° C., and the solvent was distilled off under reduced pressure to obtain a condensation reaction product.
Thereafter, an organic solvent immiscible with water was added in an amount equivalent to the weight of the condensation reaction product to dissolve the condensation reaction product. At this point, the condensation reaction product is dissolved at a solid concentration of 50% by mass.
The 1 L flask was connected to a reflux condenser equipped with a Dean-Stark trap, and heated to reflux. Table 1 shows the set temperature of the oil bath and the reflux time during heating and reflux.
After heating under reflux, an organic solvent immiscible with water was added to dilute the solid content to 30% by mass, and a filter having a pore size of 5 μm was set, followed by filtration under reduced pressure.
The viscosity of the coating solution at a solid concentration of 30% by mass was measured at 25 ° C. using a VISCOMATE VM-10A vibrating viscometer manufactured by CBC Corporation.
 得られた濾液と原料のフェニルトリアルコキシシランが100%縮合反応をして塗布液に溶解したときの理論量から歩留まりを求めた。その結果を「30%希釈時の歩留」の欄に記載した。歩留は93%以上をA(非常に良好)、93%未満85%以上をB(良好)、85%未満をC(不可)とした。
 また、塗布液に対して、29Si NMRと13C NMR測定を行い、前述の方法によりSiの全結合に対するアルコキシ基の割合と、Siに対するアルコールの割合(モル%)を求めた。
The yield was determined from the theoretical amount when the obtained filtrate and the raw material phenyltrialkoxysilane were subjected to a 100% condensation reaction and dissolved in the coating solution. The results are shown in the column of "Yield at 30% dilution". The yield was rated A (very good) for 93% or more, B (good) for less than 85% and less than 85%, and C (bad) for less than 85%.
Further, 29 Si NMR and 13 C NMR measurements were performed on the coating solution, and the ratio of the alkoxy group to the total bond of Si and the ratio of the alcohol to Si (mol%) were determined by the above-described methods.
<比較例6~7>
 各例の配合比および製造条件について、表1に記載した条件にしたがって、比較例6~7を実施した。
 比較例6は特許文献3に従って合成した例である。比較例7は特許文献3のプロセスに基づき、水の量を増加させた例である。比較例7において、水のみを増加させると加水分解時に濁りが発生しやすくなるので、均一な加水分解後起こりやすいようにエタノールも追加した。
 まず、1Lのフラスコを用いて、表1に示す配合比となるように各成分を配合し、総量が0.7Lになるように原料を調合した。
 調合後、原料をマグネティックスターラーで15分撹拌及び混合を行い、加水分解を促進するために80℃で3時間、窒素気流下で還流した。還流後のフラスコ内の目視観察結果について、「加水分解液の性状」欄に記載した。
<Comparative Examples 6 and 7>
Comparative Examples 6 and 7 were carried out in accordance with the conditions shown in Table 1 with respect to the mixing ratio and the production conditions of each example.
Comparative Example 6 is an example synthesized according to Patent Document 3. Comparative Example 7 is an example in which the amount of water is increased based on the process of Patent Document 3. In Comparative Example 7, when only water was increased, turbidity was likely to be generated during hydrolysis. Therefore, ethanol was also added so as to easily occur after uniform hydrolysis.
First, using a 1 L flask, each component was blended so as to have a blend ratio shown in Table 1, and raw materials were blended so that the total amount was 0.7 L.
After the preparation, the raw materials were stirred and mixed with a magnetic stirrer for 15 minutes, and refluxed at 80 ° C. for 3 hours under a nitrogen stream to promote hydrolysis. The results of the visual observation in the flask after the reflux are described in the column of “Properties of Hydrolyzed Solution”.
 その後、ロータリーエバポレータを用い、オイルバスの設定温度を180℃にして、流動性がなくなるまで溶媒を減圧留去し、縮合反応物を得た。流動性がなくなるまでの時間は20分であった。
 その後、トルエンを添加して、固形分濃度が30質量%になるよう希釈し、孔径5μmのフィルタをセットして減圧濾過を実施した。
 固形分濃度30質量%希釈時の塗布液の粘度、30質量%希釈時の歩留、Siの全結合に対するアルコキシ基の割合と、Siに対するアルコールの割合(モル%)は実施例1~8および比較例1~5と同様の方法で求めた。
Thereafter, using a rotary evaporator, the temperature of the oil bath was set at 180 ° C., and the solvent was distilled off under reduced pressure until fluidity disappeared, to obtain a condensation reaction product. The time until the fluidity disappeared was 20 minutes.
Thereafter, toluene was added to dilute the solid content concentration to 30% by mass, and a filter having a pore size of 5 μm was set, followed by filtration under reduced pressure.
The viscosity of the coating solution at a solid concentration of 30% by mass, the yield at a dilution of 30% by mass, the ratio of the alkoxy group to the total bond of Si, and the ratio of the alcohol to Si (mol%) were as in Examples 1 to 8. It was determined in the same manner as in Comparative Examples 1 to 5.
 すべての実施例および比較例において、得られた塗布液は孔径0.5μmのフィルタを通してステンレス箔上にスピンコートした。ステンレス箔は日鉄ケミカル&マテリアル株式会社製150mm×150mm×0.05mmのSUS304MW(ミルクホワイト仕上げ)を用いた。スピンコータの回転数は膜厚が3.0μmになるようにセットした。スピンコート後は、80℃のオーブンで1分間の乾燥を行ってから、熱処理炉に入れて400℃で10分の熱処理を実施し、各例の平坦化膜付きステンレス箔を得た。 に お い て In all Examples and Comparative Examples, the obtained coating solution was spin-coated on a stainless steel foil through a filter having a pore size of 0.5 μm. As the stainless steel foil, SUS304MW (milk white finish) of 150 mm × 150 mm × 0.05 mm manufactured by Nippon Steel Chemical & Materials Co., Ltd. was used. The number of revolutions of the spin coater was set so that the film thickness became 3.0 μm. After spin coating, drying was performed in an oven at 80 ° C. for 1 minute, and then heat treatment was performed in a heat treatment furnace at 400 ° C. for 10 minutes to obtain a stainless steel foil with a flattening film in each example.
 平坦化膜付きステンレス箔は50mm角に切断後、同サイズで厚み0.7mmのガラス板に微粘着シートで貼りつけ、Ag(100)/MoO(5)/αNPD(140)/Alq3 (30) /DPB:Liq(45) /Al(1.5)/Ag(25)の構成で有機EL発光素子を形成し、ガラスキャップで封止した。素子構成の()内の数値は膜厚を示し、単位はnmである。素子の発光領域のサイズは2mm角である。αNPD、Alq3、DPB、及びLiqは、以下に示すとおりである。
 αNPD:(ビス[N-(1-ナフチル)-N-フェニル]ベンジジン)
 Alq3:(トリス(8-ヒドロキシキノリナト)アルミニウム
 DPB :1,4-ジピレニルベンゼン
 Liq :8-ヒドロキシキノリノラト-リチウム
After the stainless steel foil with the flattening film is cut into a 50 mm square, it is attached to a glass plate of the same size and a thickness of 0.7 mm with a slightly adhesive sheet, and Ag (100) / MoO 3 (5) / αNPD (140) / Alq 3 (30 ) / DPB: An organic EL light emitting element was formed with a configuration of Liq (45) / Al (1.5) / Ag (25) and sealed with a glass cap. Numerical values in parentheses in the element configuration indicate film thickness, and the unit is nm. The size of the light emitting region of the device is 2 mm square. αNPD, Alq3, DPB, and Liq are as shown below.
αNPD: (bis [N- (1-naphthyl) -N-phenyl] benzidine)
Alq3: (tris (8-hydroxyquinolinato) aluminum DPB: 1,4-dipyrenylbenzene Liq: 8-hydroxyquinolinolato-lithium
 次に、素子に4.5Vを印加して発光させた状態で光学顕微鏡により発光面の初期状態を観察した。次に素子を60℃、90%RHの相対湿度の恒温恒湿槽に40時間保管後、再度4.5Vを印加して発光面を観察し、陰極側からの発光面の収縮幅を測定した。この収縮幅が50μmを超えていればC(不可)、50μm以下であればB(良好)、20μm以下であればA(非常に良好)と判断した。基板にクラックが発生したものについては、素子評価を実施する意味がないため、評価から除外した。この結果について、「60℃90%RH40時間保管後の収縮幅」欄に記載した。 Next, the initial state of the light emitting surface was observed with an optical microscope in a state where 4.5 V was applied to the element to emit light. Next, the device was stored in a thermo-hygrostat at 60 ° C. and a relative humidity of 90% RH for 40 hours, then 4.5 V was applied again to observe the light emitting surface, and the shrinkage width of the light emitting surface from the cathode side was measured. . When the shrinkage width exceeded 50 μm, it was determined as C (impossible), when it was 50 μm or less, B (good), and when it was 20 μm or less, it was determined as A (very good). Those having cracks on the substrate are excluded from the evaluation because there is no point in performing element evaluation. The results are described in the column of “Shrinkage width after storage at 60 ° C. and 90% RH for 40 hours”.
 次に、得られた塗布液の塗布性(100mm角内の平均ハジキ欠陥個数)について、次の通り評価した。
 150mm×150mmのスピンコート成膜品3枚の4辺を25mmずつ切り落として100×100mmのサイズにした。それらを倍率100倍の光学顕微鏡で観察し、ハジキ状欠陥の発生頻度を調べた。3枚分を平均したハジキ状欠陥の個数が100mm角あたり1個未満であればA(非常に良好)、1個以上3個未満であればB(良好)、3個以上であればC(不可)とした。基板にクラックが発生したものについては、そもそも膜として機能しないので評価対象から除外した。
Next, applicability (average number of repelling defects within 100 mm square) of the obtained coating liquid was evaluated as follows.
Four sides of three 150 mm × 150 mm spin-coated film-formed products were cut off by 25 mm each to obtain a size of 100 × 100 mm. They were observed with an optical microscope having a magnification of 100 times, and the occurrence frequency of repelling defects was examined. A (very good) if the number of repelling defects averaged over three is less than one per 100 mm square, B (good) if more than one and less than three, and C (if more than three) No). Those having cracks on the substrate did not function as a film in the first place, and were therefore excluded from the evaluation.
 なお、表1中の総合評価は、次の基準で評価した。
A: 歩留、収縮幅、塗布性のすべてがA判定である
B: 歩留、収縮幅、塗布性の1つ以上がB判定で、残りはA判定である
C: 歩留、収縮幅、塗布性の1つ以上がC判定、或いは評価不能であった
The overall evaluation in Table 1 was based on the following criteria.
A: Yield, shrinkage width, and applicability are all judged as A. B: At least one of yield, shrinkage width, and applicability is judged as B, and the rest is judged as A. C: Yield, shrinkage width, One or more of the applicability could not be evaluated or evaluated as C
Figure JPOXMLDOC01-appb-T000001

 
Figure JPOXMLDOC01-appb-T000001

 
 Siに対するアルコキシ基の量が少なく、塗布液の粘度が適切な範囲である実施例1~8の塗布液は、良好な結果が得られた。 塗布 Since the amount of the alkoxy group relative to Si was small and the viscosity of the coating solution was in an appropriate range, the coating solutions of Examples 1 to 8 obtained good results.
 一方、比較例1の塗布液は、水の添加量が少なすぎるため加水分解反応及び脱水縮合反応ともに不十分となった。このため、縮合反応物の分子量が小さく、30質量%希釈時の粘度も低かった。またSiに対するアルコキシ基の割合が高かった。恒温恒湿槽で40時間保管後の収縮幅は大きく素子は早期劣化していることが示された。また、アルコールの残存量が多いため、ハジキ欠陥の発生頻度が高かった。 On the other hand, in the coating liquid of Comparative Example 1, both the hydrolysis reaction and the dehydration condensation reaction were insufficient because the amount of water added was too small. For this reason, the molecular weight of the condensation reaction product was small, and the viscosity at the time of 30 mass% dilution was also low. Also, the ratio of the alkoxy group to Si was high. It was shown that the shrinkage width after storage in a thermo-hygrostat for 40 hours was large, and the element was deteriorated early. In addition, since the residual amount of alcohol was large, the frequency of occurrence of repelling defects was high.
 比較例2の塗布液は、酢酸を添加しなかったため、酸による加水分解の促進効果がなく、加水分解反応及び脱水縮合反応ともに不十分となった。このため縮合反応物の分子量が小さく、30質量%希釈時の粘度も低かった。またSiに対するアルコキシ基の割合が高かった。恒温恒湿槽で40時間保管後の収縮幅は大きく素子は早期劣化していることが示された。また、アルコールの残存量が多いため、ハジキ欠陥の発生頻度が高かった。 (4) Since acetic acid was not added to the coating liquid of Comparative Example 2, there was no effect of promoting hydrolysis by acid, and both the hydrolysis reaction and the dehydration condensation reaction were insufficient. For this reason, the molecular weight of the condensation reaction product was small, and the viscosity at the time of dilution by 30% by mass was low. Also, the ratio of the alkoxy group to Si was high. It was shown that the shrinkage width after storage in a thermo-hygrostat for 40 hours was large, and the element was deteriorated early. In addition, since the residual amount of alcohol was large, the frequency of occurrence of repelling defects was high.
 比較例3の塗布液は、酸触媒があり、水も十分な添加量であったが、有機スズを添加しなかったため縮合反応が十分に進まなかった。このため縮合反応物の分子量が小さく、30質量%希釈時の粘度が非常に低かった。スピンコート後の熱処理工程で急激な脱水縮合反応が起き、大きな体積収縮をしたため膜にクラックが発生してしまい素子試作ができなかった。健全な皮膜が得られなかったので塗布性の評価は実施できなかった。 (4) The coating liquid of Comparative Example 3 had an acid catalyst and water was added in a sufficient amount, but the condensation reaction did not proceed sufficiently because no organotin was added. For this reason, the molecular weight of the condensation reaction product was small, and the viscosity at the time of 30 mass% dilution was very low. A rapid dehydration-condensation reaction occurred in the heat treatment step after the spin coating, causing a large volume shrinkage, thereby causing cracks in the film and making it impossible to prototype the device. Since a sound film could not be obtained, the applicability could not be evaluated.
 比較例4の塗布液は、比較例1と同様に、水の添加量が少なすぎるため加水分解反応及び脱水縮合反応ともに不十分となった。水と混和しない溶媒の粘度が高いため、塗布液の粘度は適正範囲に入っていたが、Siに対するアルコキシ基の割合は高かった。恒温恒湿槽で40時間保管後の収縮幅は大きく素子は早期劣化していることが示された。高沸点のシクロヘキサノンを使用したため、エタノールの除去は進行しており、アルコールの含有量は許容範囲内であった。 塗布 In the coating solution of Comparative Example 4, as in Comparative Example 1, the amount of water added was too small, and both the hydrolysis reaction and the dehydration condensation reaction were insufficient. Since the viscosity of the solvent immiscible with water was high, the viscosity of the coating solution was within an appropriate range, but the ratio of the alkoxy group to Si was high. It was shown that the shrinkage width after storage in a thermo-hygrostat for 40 hours was large, and the element was deteriorated early. Since cyclohexanone having a high boiling point was used, the removal of ethanol was progressing, and the content of alcohol was within an allowable range.
 比較例5の塗布液は、水の添加量がやや多めで30質量%希釈時の塗布液の粘度が高くなりすぎた。このためスピンコートで均一な膜厚に成膜することができず、厚膜部からクラックが発生し、素子試作および塗布性の評価ができなかった。塗布液合成時の水の量が多いので加水分解は進行しているのでアルコキシ基の含有量は少なかった。高沸点のシクロヘキサノン溶媒を使用しているので、エタノールの除去は進行しておりNMRでは検出されなかった。 (4) In the coating liquid of Comparative Example 5, the amount of water added was slightly large, and the viscosity of the coating liquid at the time of 30% by mass dilution was too high. For this reason, it was not possible to form a film having a uniform film thickness by spin coating, cracks occurred from the thick film portion, and it was not possible to make a prototype of the device and to evaluate applicability. Since the amount of water at the time of synthesizing the coating liquid was large, the hydrolysis was in progress and the content of the alkoxy group was small. Since a cyclohexanone solvent having a high boiling point was used, the removal of ethanol proceeded and was not detected by NMR.
 比較例6の塗布液は、180℃で減圧留去することによりエタノールと水を除去したが、水の量が少ないため加水分解が完全に進行せず、エトキシ基が多く残ってしまった。また、水およびエタノールも減圧留去で若干量は残った。減圧留去で残った水とエタノールはトルエンに溶解した後もそのまま残り続けるので、エタノールの含有量が多く、ハジキ欠陥が多かった。180℃という高温で減圧留去を行ったため、トルエンに対する溶解度が低下し、歩留が低くなった。Siに対するアルコキシ基の割合が高く、恒温恒湿槽で40時間保管後の収縮幅は大きく素子は早期劣化していることが示された。 エ タ ノ ー ル Ethanol and water were removed from the coating liquid of Comparative Example 6 by distillation at 180 ° C. under reduced pressure. However, the amount of water was small, so that hydrolysis did not proceed completely and many ethoxy groups remained. Further, a small amount of water and ethanol also remained after the distillation under reduced pressure. Since water and ethanol remaining after the distillation under reduced pressure remain after being dissolved in toluene, the content of ethanol was large and repelling defects were large. Since the solvent was distilled off under reduced pressure at a high temperature of 180 ° C., the solubility in toluene was lowered, and the yield was lowered. It was shown that the ratio of the alkoxy group to Si was high, and the degree of shrinkage after storage in a thermo-hygrostat for 40 hours was large, and the element was deteriorated early.
 比較例7の塗布液は、比較例6の塗布液よりも水の量を増やして加水分解を進行させたが、180℃で減圧留去を行った後、トルエンに溶解させようとしたところ、大量の不溶物が発生し液は白濁した。大量の水を加えて高温で減圧留去させた場合にはラダーポリマーよりもトルエンに不溶なランダムな縮合物が多く生成したためと推測される。減圧留去物の半分以上が溶解せず、目詰まりのため減圧濾過ができず、塗布液および皮膜の評価ができなかった。 The coating solution of Comparative Example 7 was subjected to hydrolysis by increasing the amount of water compared to the coating solution of Comparative Example 6, but after evaporating under reduced pressure at 180 ° C., it was tried to dissolve in toluene. A large amount of insolubles was generated, and the liquid became cloudy. It is presumed that when a large amount of water was added and distilled off under reduced pressure at a high temperature, more random condensates were insoluble in toluene than in the ladder polymer. More than half of the distillate under reduced pressure did not dissolve and could not be filtered under reduced pressure due to clogging, and the coating liquid and the film could not be evaluated.
 なお、日本国特許出願第2018-182233号の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese Patent Application No. 2018-182233 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards mentioned herein are to the same extent as if each individual document, patent application, and technical standard were specifically and individually stated to be incorporated by reference. Incorporated herein by reference.

Claims (10)

  1.  水と混和しない有機溶媒と、前記有機溶媒に可溶したフェニルシルセスキオキサンと、を含む平坦化膜形成用塗布液であって、
     前記フェニルシルセスキオキサンの固形分濃度を30質量%かつ液温を25℃としたときの塗布液の粘度が、2.5mPa・s~35mPa・sであり、
     前記フェニルシルセスキオキサン中のSiに結合したアルコキシ基の含有量が、Siの全結合手に対して0~5%である、
     平坦化膜形成用塗布液。
    An organic solvent that is immiscible with water, and a phenylsilsesquioxane soluble in the organic solvent, a coating liquid for forming a flattening film,
    The viscosity of the coating liquid when the solid concentration of the phenylsilsesquioxane is 30% by mass and the liquid temperature is 25 ° C. is 2.5 mPa · s to 35 mPa · s,
    The content of the alkoxy group bonded to Si in the phenylsilsesquioxane is 0 to 5% based on all the bonds of Si.
    Coating liquid for forming flattening film.
  2.  前記フェニルシルセスキオキサン中のSiに結合したアルコキシ基が、メトキシ基、エトキシ基、及びプロポキシ基からなる群より選択される少なくとも一つである、
     請求項1に記載の平坦化膜形成用塗布液。
    The alkoxy group bonded to Si in the phenylsilsesquioxane is at least one selected from the group consisting of a methoxy group, an ethoxy group, and a propoxy group,
    The coating liquid for forming a flattening film according to claim 1.
  3.  前記フェニルシルセスキオキサン中のSiに対するアルコールの含有量が、0~2.5モル%である、
     請求項1又は請求項2に記載の平坦化膜形成用塗布液。
    The content of the alcohol with respect to Si in the phenylsilsesquioxane is 0 to 2.5 mol%,
    The coating liquid for forming a flattening film according to claim 1 or 2.
  4.  前記フェニルシルセスキオキサンは、
     アルコールと、フェニルトリアルコキシシランと、酢酸と、有機スズと、前記フェニルトリアルコキシシラン1モルに対して、4.2モル倍~14モル倍の量の水と、を混合し、加水分解を行う工程と、
     減圧下でアルコールを留去して得られた、フェニルシルセスキオキサンを含む脱水縮合反応物を生成する工程と、
     前記脱水縮合反応物を水と混和しない有機溶媒に溶解し、前記水と混和しない有機溶媒の沸点以上で加熱還流しながら、さらに脱水縮合反応を進めて高分子量化する工程と、
     を少なくとも経て、得られた化合物である、
     請求項1~請求項3のいずれか1項に記載の平坦化膜形成用塗布液。
    The phenylsilsesquioxane,
    Alcohol, phenyl trialkoxysilane, acetic acid, organotin, and water in an amount of 4.2 to 14 mole times based on 1 mole of the phenyl trialkoxysilane are mixed and hydrolyzed. Process and
    A step of producing a dehydration-condensation reaction product containing phenylsilsesquioxane, obtained by distilling off the alcohol under reduced pressure,
    Dissolving the dehydration-condensation reaction product in a water-immiscible organic solvent, while heating and refluxing at a temperature equal to or higher than the boiling point of the water-immiscible organic solvent, further dehydration condensation reaction to increase the molecular weight,
    Is a compound obtained at least through
    The coating liquid for forming a flattening film according to any one of claims 1 to 3.
  5.  アルコールと、フェニルトリアルコキシシランと、酢酸と、有機スズと、前記フェニルトリアルコキシシラン1モルに対して、4.2モル倍~14モル倍の量の水と、を混合し、加水分解を行う工程と、
     減圧下でアルコールを留去して脱水縮合反応を進め、フェニルシルセスキオキサンを含む脱水縮合反応物を生成する工程と、
     前記脱水縮合反応物を水と混和しない有機溶媒に溶解し、前記水と混和しない有機溶媒の沸点以上で加熱還流しながら、さらに脱水縮合反応を進めて高分子量化する工程と、
     を有する、
     平坦化膜形成用塗布液の製造方法。
    Alcohol, phenyl trialkoxysilane, acetic acid, organotin, and water in an amount of 4.2 to 14 mole times based on 1 mole of the phenyl trialkoxysilane are mixed and hydrolyzed. Process and
    Proceeding the dehydration condensation reaction by distilling off the alcohol under reduced pressure to produce a dehydration condensation reaction product containing phenylsilsesquioxane,
    Dissolving the dehydration-condensation reaction product in a water-immiscible organic solvent, while heating and refluxing at a temperature equal to or higher than the boiling point of the water-immiscible organic solvent, further dehydration condensation reaction to increase the molecular weight,
    Having,
    A method for producing a coating liquid for forming a flattening film.
  6.  前記フェニルシルセスキオキサンの固形分濃度を30質量%かつ液温を25℃としたときの塗布液の粘度が、2.5mPa・s~35mPa・sであり、前記フェニルシルセスキオキサン中のSiに結合したアルコキシ基の含有量が、Siの全結合手に対して0~5%である、
     平坦化膜形成用塗布液を製造する請求項5に記載の平坦化膜形成用塗布液の製造方法。
    When the solid content of the phenylsilsesquioxane is 30% by mass and the liquid temperature is 25 ° C., the viscosity of the coating solution is 2.5 mPa · s to 35 mPa · s. The content of the alkoxy group bonded to Si is 0 to 5% based on all the bonds of Si;
    The method for producing a coating liquid for forming a flattening film according to claim 5, wherein the coating liquid for forming a flattening film is produced.
  7.  前記酢酸の量が、前記フェニルトリアルコキシシラン1モルに対して、0.1モル~1モルであり、前記有機スズの量が、フェニルトリアルコキシシラン1モルに対して、0.005モル~0.05モルである、
     請求項5又は請求項6に記載の平坦化膜形成用塗布液の製造方法。
    The amount of the acetic acid is 0.1 mol to 1 mol with respect to 1 mol of the phenyl trialkoxysilane, and the amount of the organotin is 0.005 mol to 0 mol with respect to 1 mol of the phenyl trialkoxysilane. 0.05 moles,
    A method for producing the coating liquid for forming a flattening film according to claim 5.
  8.  金属箔と、
     前記金属箔の少なくとも一方の表面に設けられ、請求項1~請求項4のいずれか1項に記載の平坦化膜形成用塗布液の硬化物からなる平坦化膜と、
     を有する、
     平坦化膜付き金属箔。
    Metal foil,
    A flattening film which is provided on at least one surface of the metal foil and is made of a cured product of the coating solution for forming a flattening film according to any one of claims 1 to 4.
    Having,
    Metal foil with flattening film.
  9.  前記金属箔が、ステンレス箔である、
     請求項8に記載の平坦化膜付き金属箔。
    The metal foil is a stainless steel foil,
    A metal foil with a flattening film according to claim 8.
  10.  金属箔の少なくとも一方の表面に、請求項1~請求項4のいずれか1項に記載の平坦化膜形成用塗布液を塗布する工程と、
     前記塗布した平坦化膜形成用塗布液を、不活性ガス雰囲気中300℃~450℃の温度域でリフロー及び膜硬化し、平坦化膜を形成する工程と、
     を有する、
     平坦化膜付き金属箔の製造方法。
    A step of applying the coating liquid for forming a flattening film according to any one of claims 1 to 4 to at least one surface of the metal foil;
    A step of reflowing and curing the applied coating liquid for forming a flattening film in a temperature range of 300 ° C. to 450 ° C. in an inert gas atmosphere to form a flattening film;
    Having,
    A method for producing a metal foil with a flattening film.
PCT/JP2019/038250 2018-09-27 2019-09-27 Planarized film-forming application liquid, method for producing planarized film-forming application liquid, metallic foil provided with planarized film, method for producing metallic foil provided with planarized film WO2020067467A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020549456A JP7047927B2 (en) 2018-09-27 2019-09-27 A method for producing a coating liquid for forming a flattening film, a method for producing a coating liquid for forming a flattening film, a method for producing a metal foil with a flattening film, and a method for producing a metal foil with a flattening film.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018182233 2018-09-27
JP2018-182233 2018-09-27

Publications (1)

Publication Number Publication Date
WO2020067467A1 true WO2020067467A1 (en) 2020-04-02

Family

ID=69950105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/038250 WO2020067467A1 (en) 2018-09-27 2019-09-27 Planarized film-forming application liquid, method for producing planarized film-forming application liquid, metallic foil provided with planarized film, method for producing metallic foil provided with planarized film

Country Status (3)

Country Link
JP (1) JP7047927B2 (en)
TW (1) TW202020077A (en)
WO (1) WO2020067467A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7473813B2 (en) 2020-10-02 2024-04-24 日本製鉄株式会社 Film-coated metal foil and method for producing film-coated metal foil

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012140528A (en) * 2010-12-28 2012-07-26 Nippon Steel Materials Co Ltd Solventless coating liquid for forming film, and method for producing the same liquid and film
WO2016076399A1 (en) * 2014-11-12 2016-05-19 新日鉄住金マテリアルズ株式会社 Coating liquid for forming leveling film, and metal foil coil provided with leveling film
JP2017155309A (en) * 2016-03-03 2017-09-07 新日鉄住金マテリアルズ株式会社 Stainless steel foil with film, and manufacturing method thereof
JP2018062582A (en) * 2016-10-13 2018-04-19 新日鉄住金マテリアルズ株式会社 Method for adjusting viscosity of film-forming coating liquid
JP2018123192A (en) * 2017-01-30 2018-08-09 新日鉄住金マテリアルズ株式会社 Manufacturing method of coating liquid for film formation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012140528A (en) * 2010-12-28 2012-07-26 Nippon Steel Materials Co Ltd Solventless coating liquid for forming film, and method for producing the same liquid and film
WO2016076399A1 (en) * 2014-11-12 2016-05-19 新日鉄住金マテリアルズ株式会社 Coating liquid for forming leveling film, and metal foil coil provided with leveling film
JP2017155309A (en) * 2016-03-03 2017-09-07 新日鉄住金マテリアルズ株式会社 Stainless steel foil with film, and manufacturing method thereof
JP2018062582A (en) * 2016-10-13 2018-04-19 新日鉄住金マテリアルズ株式会社 Method for adjusting viscosity of film-forming coating liquid
JP2018123192A (en) * 2017-01-30 2018-08-09 新日鉄住金マテリアルズ株式会社 Manufacturing method of coating liquid for film formation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7473813B2 (en) 2020-10-02 2024-04-24 日本製鉄株式会社 Film-coated metal foil and method for producing film-coated metal foil

Also Published As

Publication number Publication date
JP7047927B2 (en) 2022-04-05
JPWO2020067467A1 (en) 2021-02-15
TW202020077A (en) 2020-06-01

Similar Documents

Publication Publication Date Title
KR101826462B1 (en) Coating liquid for forming leveling film, and metal foil coil provided with leveling film
WO2014192684A1 (en) Aromatic polyamide solution for manufacturing display elements, optical elements or lighting elements
JP5445788B2 (en) Underlayer film composition for image formation
US20200339754A1 (en) Resin composition for display substrate, resin film for display substrate and laminate body containing this, image display device, organic el display, and manufacturing method of these
JP2024028330A (en) Polyimide precursor resin composition
JP2022167930A (en) Polyimide precursor resin composition
WO2020067467A1 (en) Planarized film-forming application liquid, method for producing planarized film-forming application liquid, metallic foil provided with planarized film, method for producing metallic foil provided with planarized film
TW201704346A (en) Polysiloxane formulations and coatings for optoelectronic applications
KR102618096B1 (en) Polyimide precursor and polyimide resin composition
JP7473813B2 (en) Film-coated metal foil and method for producing film-coated metal foil
JP5685884B2 (en) Silica body and method for producing the same
JP7053807B2 (en) Silicon-containing compound
WO2007136098A1 (en) Coating liquid for gate insulating film, gate insulating film and organic transistor
JP2022087023A (en) Polyimide precursor and polyimide resin composition
JP7020890B2 (en) A coating liquid for forming a flattening film and a method for manufacturing the same, and a metal foil coil with a flattening film and a method for manufacturing the same.
JP2017073348A (en) Metal laminate substrate for organic el element and manufacturing method for the same
JP2005225689A (en) Coating liquid for forming porous silica film, porous silica film, method of manufacturing them, semiconductor material and semiconductor device
JP7020889B2 (en) A coating liquid for forming a flattening film and a method for manufacturing the same, and a metal foil coil with a flattening film and a method for manufacturing the same.
WO2021241763A1 (en) Resin composition
TWI843974B (en) Polyimide precursor and polyimide resin composition
JP7506152B2 (en) Resin composition
TW202229411A (en) Polyimide precursor and polyimide resin composition wherein the polyimide precursor includes a structural unit represented by a specific general formula which is partially imidized
JP4161388B2 (en) Coating composition
JP2004288749A (en) Insulating film for semiconductor and semiconductor device using the same
KR20160065406A (en) Gas barrier film and method for preparing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19864439

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020549456

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19864439

Country of ref document: EP

Kind code of ref document: A1