WO2020067382A1 - Crosslinked polyolefin resin foam - Google Patents

Crosslinked polyolefin resin foam Download PDF

Info

Publication number
WO2020067382A1
WO2020067382A1 PCT/JP2019/038041 JP2019038041W WO2020067382A1 WO 2020067382 A1 WO2020067382 A1 WO 2020067382A1 JP 2019038041 W JP2019038041 W JP 2019038041W WO 2020067382 A1 WO2020067382 A1 WO 2020067382A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyolefin resin
foam
resin
resin composition
crosslinked polyolefin
Prior art date
Application number
PCT/JP2019/038041
Other languages
French (fr)
Japanese (ja)
Inventor
拓明 宇野
杉江 幸弘
洋輝 三上
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN201980062588.4A priority Critical patent/CN112752791B/en
Publication of WO2020067382A1 publication Critical patent/WO2020067382A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent

Definitions

  • the present invention relates to a crosslinked polyolefin resin foam in which fogging is suppressed.
  • crosslinked polyolefin resin foam is widely used for automotive interior materials such as ceiling materials, doors, and instrument panels.
  • a thermally decomposable blowing agent such as azodicarbonamide is generally used as a blowing agent.
  • the thermal decomposition type foaming agent causes a small amount of decomposition residue to remain in the resin after foaming.
  • Fogging is a phenomenon in which a minute amount of sublimate generated from a resin material or a resin foam used as an interior material adheres to an inner surface of a windshield or the like, causing fogging.
  • Patent Document 1 a foaming agent composition containing at least one selected from the group consisting of a basic magnesium compound and a basic calcium compound together with azodicarbonamide has been studied.
  • Patent Document 2 considers blending a basic magnesium having an average particle size of 0.1 to 15 ⁇ m into a polyolefin-based resin composition together with azodicarbonamide (see, for example, Patent Document 2).
  • the inventors of the present invention have further studied a crosslinked polyolefin-based resin foam in which fogging is suppressed even when a specific special additive is not blended. As a result, they found that a crosslinked polyolefin-based resin foam having a specific intensity peak measured by a heat desorption gas chromatograph mass spectrometry method of a certain value or less was a foam in which fogging was suppressed, and completed the present invention. It led to.
  • the present invention provides the following crosslinked polyolefin resin foam.
  • the present invention can provide a crosslinked polyolefin resin foam in which fogging is suppressed.
  • the crosslinked polyolefin-based resin foam of the present invention (hereinafter sometimes simply referred to as “foam”) is a polyolefin-based resin composition containing a polyolefin-based resin (hereinafter sometimes simply referred to as “resin composition”). Are crosslinked and foamed.
  • resin composition a polyolefin-based resin composition containing a polyolefin-based resin
  • the polyolefin-based resin composition contains a polyolefin-based resin such as a polypropylene-based resin and a polyethylene-based resin.
  • polypropylene-based resin examples include homopropylene, which is a homopolymer of propylene, and a copolymer of propylene and an ⁇ -olefin other than propylene.
  • copolymer of propylene and an ⁇ -olefin other than propylene include a block copolymer, a random copolymer, and a random block copolymer, and a random copolymer (ie, random polypropylene) is preferred.
  • ⁇ -olefins other than propylene include those having 4 to 4 carbon atoms such as ethylene having 2 carbon atoms, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-heptene and 1-octene. About 10 ⁇ -olefins.
  • ethylene is preferred from the viewpoint of moldability and heat resistance.
  • these ⁇ -olefins are used alone or in combination of two or more.
  • the polypropylene-based resin may be used alone or in combination of two or more.
  • the random polypropylene is preferably obtained by copolymerizing 50% by mass or more and less than 100% by mass of propylene with 50% by mass or less of ⁇ -olefin other than propylene.
  • the propylene content is more preferably 80 to 99.9% by mass and the ⁇ -olefin other than propylene is more preferably 0.1 to 20% by mass, based on all the monomer components constituting the copolymer.
  • the content of ⁇ -olefin other than propylene is 0.5 to 10% by mass, and the content of propylene is 95 to 99% by mass, and the content of ⁇ -olefin other than propylene is 1 to 5% by mass. Is particularly preferred.
  • the polyethylene resin are a low density polyethylene resin, a medium density polyethylene resin, a high density polyethylene resin, and a linear low density polyethylene resin.
  • a linear low-density polyethylene resin (LLDPE) is preferred.
  • Linear low density polyethylene resin density of 0.910 g / cm 3 or more 0.950 g / cm 3 less than the polyethylene, preferably a density of 0.910 g / cm 3 or more 0.930 g / cm 3 or less of Things. Since the foam contains a low-density linear low-density polyethylene-based resin, the processability when processing the resin composition into a foam, the moldability when molding the foam into a molded body, and the like are good. Easy to be.
  • the density of the linear low-density polyethylene resin is measured according to JIS K7112.
  • the linear low-density polyethylene usually contains ethylene as a main component (at least 50% by mass, preferably at least 70% by mass, more preferably at least 90% by mass of all monomers), and is composed of ethylene and a small amount of ⁇ -olefin. It is a polymer.
  • specific examples of the ⁇ -olefin are those having 3 to 12 carbon atoms, preferably 4 to 10 carbon atoms, and specifically, 1-butene, 1-pentene, 1-hexene, 4-methyl- 1-pentene, 1-heptene, 1-octene and the like.
  • these ⁇ -olefins are used alone or in combination of two or more.
  • the polyethylene resin may be used alone or in combination of two or more.
  • the composition may contain the polypropylene resin, the polyethylene resin, or a mixture thereof, but may also contain a polyolefin resin component other than the polypropylene resin and the polyethylene resin.
  • resin components include ethylene-propylene-rubber (EPR), ethylene-propylene-diene rubber (EPDM), ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, ethylene- (meth) alkyl Acrylate copolymers, modified copolymers of these copolymerized with maleic anhydride, polyolefin-based thermoplastic elastomers and the like.
  • the resin contained in the resin composition may be composed of a polyolefin resin alone, but may contain a resin component other than the polyolefin resin as long as the object of the present invention is not impaired.
  • the polyolefin resin is usually contained in an amount of 70% by mass or more, preferably 80 to 100% by mass, more preferably 90 to 100% by mass, based on the total amount of the resin contained in the resin composition.
  • the resin contained in the resin composition preferably contains the above-mentioned polypropylene-based resin in an amount of preferably 50% by mass or more, more preferably 55 to 90% by mass, based on the total amount of the resin contained in the resin composition.
  • the main component of the resin contained in the resin composition is a polypropylene resin
  • the mechanical strength, heat resistance, and the like of a foam obtained by crosslinking and foaming the resin composition can be improved.
  • a polypropylene-based resin is used as a main component, high-temperature heating is required at the time of foaming the resin composition, and impurities are generated from the foaming agent, and the impurities cause fogging.
  • the intensity peak of the extracted ion chromatogram which will be described later, is set to 10 to 15 minutes to 200,000 or less, so that the polypropylene resin is used as the main component.
  • fogging can be suppressed.
  • the resin composition preferably contains the polyethylene resin in addition to the polypropylene resin as a polyolefin resin.
  • the preferred content of the polyethylene resin is 1 to 50% by mass, and more preferably 10 to 45% by mass, based on the total amount of the resin contained in the resin composition.
  • the chemical foaming method is a method in which bubbles are formed by a gas generated by a foaming agent added to a resin composition.
  • a thermal decomposition type foaming agent is used as the foaming agent.
  • an organic thermal decomposition type foaming agent or an inorganic thermal decomposition type foaming agent having a decomposition temperature of about 160 to 270 ° C. is used.
  • organic thermal decomposition type foaming agent examples include azo compounds such as azodicarbonamide, metal salts of azodicarboxylic acid (such as barium azodicarboxylate), azobisisobutyronitrile, and N, N'-dinitrosopentamethylenetetramine. And the like, hydrazodicarbonamide, hydrazine derivatives such as 4,4'-oxybis (benzenesulfonylhydrazide) and toluenesulfonylhydrazide, and semicarbazide compounds such as toluenesulfonyl semicarbazide.
  • azo compounds such as azodicarbonamide, metal salts of azodicarboxylic acid (such as barium azodicarboxylate), azobisisobutyronitrile, and N, N'-dinitrosopentamethylenetetramine.
  • hydrazodicarbonamide hydrazine derivatives such as 4,4'-oxybis
  • the inorganic thermal decomposition type foaming agent include ammonium carbonate, sodium carbonate, ammonium hydrogen carbonate, sodium hydrogen carbonate, ammonium nitrite, sodium borohydride, anhydrous sodium citrate and the like.
  • organic thermal decomposition type foaming agents are preferable, azo compounds and nitroso compounds are more preferable, and azodicarbonamide and azobisisobutyronitrile are preferable. And the like, and azodicarbonamide is particularly preferred.
  • These foaming agents may be used alone or in combination of two or more.
  • the blending amount of the organic thermal decomposition type foaming agent in the resin composition is preferably 2 to 20 parts by mass, more preferably 3 to 12 parts by mass, per 100 parts by mass of the resin in the resin composition.
  • the amount of the organic thermal decomposition type foaming agent is within this range, the foamability of the expandable polyolefin resin sheet is improved, and a crosslinked polyolefin resin foam sheet having a desired expansion ratio is obtained.
  • the resin composition may contain additives other than the olefin resin and the foaming agent.
  • Preferred additives contained in the resin composition include a crosslinking aid and an antioxidant. These may be contained both, or only one may be contained.
  • a polyfunctional monomer can be used as a crosslinking assistant.
  • the polyfunctional monomer include trifunctional (meth) acrylate compounds such as trimethylolpropane trimethacrylate and trimethylolpropane triacrylate, triallyl ester triallyl ester, 1,2,4-benzenetricarboxylic acid triallyl ester, Compounds having three functional groups in one molecule, such as triallyl isocyanurate, 1,6-hexanediol dimethacrylate, 1,9-nonanediol dimethacrylate, 1,10-decanediol dimethacrylate, neopentyl glycol dimethacrylate Bifunctional (meth) acrylate compounds such as methacrylate, compounds having two functional groups in one molecule such as divinylbenzene, diallyl phthalate, diallyl terephthalate, diallyl isophthalate, ethylvinylbenzene, lauryl me
  • the crosslinking assistants can be used alone or in combination of two or more. Among these, a trifunctional (meth) acrylate compound is more preferable.
  • a crosslinking aid By adding a crosslinking aid to the resin composition, the resin composition can be crosslinked with a small ionizing radiation dose. For this reason, cutting and deterioration of each resin molecule due to irradiation with ionizing radiation can be prevented.
  • the preferred content of the crosslinking aid is 0.2 to 10 parts by mass, more preferably 0.5 to 7 parts by mass, and still more preferably 100 to 100 parts by mass of the resin in the resin composition. The content is 1 to 5 parts by mass.
  • the content of the crosslinking aid is 0.2 parts by mass or more, it becomes easy to adjust the degree of crosslinking to a desired degree when foaming the resin composition.
  • the amount is 10 parts by mass or less, control of the degree of crosslinking imparted to the resin composition becomes easy.
  • the antioxidant examples include a phenolic antioxidant, a sulfur-based antioxidant, a phosphorus-based antioxidant, and an amine-based antioxidant.
  • a phenolic antioxidant and a sulfuric antioxidant are preferred, and a combined use of a phenolic antioxidant and a sulfuric antioxidant is more preferred.
  • phenolic antioxidants include 2,6-di-tert-butyl-p-cresol, n-octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, tert-butyl-6- (3-tert-butyl-2-hydroxy-5-methylbenzyl) -4-methylphenyl acrylate, tetrakis [methylene-3- (3,5-di-tert-butyl-4-hydroxyphenyl) ) Propionate] methane and the like. These phenolic antioxidants may be used alone or in combination of two or more.
  • sulfur-based antioxidant examples include dilauryl thiodipropionate, dimyristyl thiodipropionate, distearyl thiodipropionate, and pentaerythrityl tetrakis (3-lauryl thiopropionate). These sulfur-based antioxidants may be used alone or in combination of two or more.
  • the preferred content of the antioxidant is 0.1 to 10 parts by mass, more preferably 0.2 to 5 parts by mass, per 100 parts by mass of the resin in the resin composition.
  • the resin composition may contain additives other than the above, such as a decomposition temperature regulator such as zinc oxide and zinc stearate, a flame retardant, a metal harm inhibitor, an antistatic agent, a stabilizer, a filler, and a pigment, if necessary. May be contained.
  • the intensity peak of the extracted ion chromatogram of the foam of the present invention in the extracted ion chromatogram by thermal desorption gas chromatography / mass spectrometry (GC / MS) method of 10 to 15 minutes is 200,000 or less.
  • the preferred intensity peak is 190,000 or less, the more preferred intensity peak is 180,000 or less, and the still more preferred intensity peak is 170,000 or less. If the intensity peak is larger than 200,000, the foam tends to fog.
  • the method for reducing the intensity peak to 200,000 or less is not particularly limited.
  • the intensity peak can be reduced by reducing the thickness of the foam. When the foam is thick, the strength peak can be reduced by performing a predetermined heat treatment on the foam as described later.
  • the density (apparent density) of the foam of the present invention is not particularly limited.
  • the preferable density is 0.02 to 0.20 g / cm 3
  • the more preferable density is 0.03 to 0.15 g / cm 3 in order to improve the flexibility and strength of the foam in a well-balanced manner.
  • the intensity peak is reduced as described above. The fogging of the foam can be suppressed by lowering.
  • the degree of cross-linking of the foam of the present invention is not particularly limited, but the preferable degree of cross-linking is 30 to 60%, and the more preferable degree of cross-linking is 30 to improve the mechanical strength, flexibility, and moldability in a well-balanced manner. It is 32 to 55%.
  • the method for measuring the degree of crosslinking of the foam is as described in Examples described later.
  • One embodiment of the foam of the present invention is a sheet, the thickness of which is not particularly limited, but is preferably 0.5 to 10 mm, more preferably the thickness, so that it can be appropriately molded into an interior material for automobiles. Is 1 to 8 mm, and the more preferable thickness is 2 to 4 mm.
  • a preferred value of the strength peak / sheet thickness (mm) of the foam sheet is 65,000 or less, and the more preferred value is 60,000 or less, and further preferably 50,000 or less. When the value is sufficiently small, fogging of the foam is suppressed.
  • the method for producing a foam according to one embodiment of the present invention preferably includes the following steps (1) to (3).
  • Step (1) A resin, a pyrolytic foaming agent and other additives to be blended if necessary are supplied to an extruder, and are melted and kneaded at a temperature lower than the decomposition temperature of the pyrolytic foaming agent.
  • the extruder used in the production method include a single-screw extruder and a twin-screw extruder.
  • the temperature of the resin composition inside the extruder is preferably from 130 to 195 ° C, more preferably from 160 to 195 ° C.
  • Specific examples of the ionizing radiation used in the step (2) include ⁇ -rays, ⁇ -rays, ⁇ -rays, and electron beams, but electron beams are preferable.
  • the irradiation amount of the ionizing radiation is not particularly limited as long as a desired degree of crosslinking can be obtained, but is preferably 0.1 to 10 Mrad, more preferably 0.2 to 5 Mrad.
  • the irradiation amount of the ionizing radiation is affected by the olefin resin, the foaming agent and other additives
  • the irradiation amount is usually adjusted while measuring the degree of crosslinking.
  • the temperature at which the resin composition is heated and foamed is usually from 200 to 290 ° C, preferably from 220 to 280 ° C.
  • the time for heating and foaming the resin composition is usually 1 to 30 minutes, preferably 1 to 10 minutes.
  • the foam may be stretched in the MD direction or the CD direction or both after and after the foaming.
  • the crosslinked polyolefin-based resin foam obtained by crosslinking and foaming the resin composition is preferably heat-treated after foaming.
  • the heating temperature of the heat treatment is preferably 50 to 120 ° C., more preferably 60 to 110 ° C., and further preferably 70 to 100 ° C.
  • the heating time of the heat treatment is preferably 1 to 350 hours, more preferably 20 to 300 hours, and further preferably 50 to 250 hours.
  • GC / MS thermal desorption gas chromatograph mass spectrometry
  • the foam of the present invention may be used as a single foam, but is preferably laminated with a different material and molded by a known method to form a laminate.
  • the molding method include vacuum molding, compression molding, and stamping molding. Of these, vacuum forming is preferred.
  • the vacuum forming includes male pull vacuum forming and female pull vacuum forming.
  • Preferred vacuum forming is female pull vacuum forming.
  • Specific examples of the dissimilar material include a sheet such as a resin sheet, a thermoplastic elastomer sheet, and a fabric.
  • the molded article can be used for various purposes, but is preferably used as an automobile interior material such as an automobile ceiling material, a door, or an instrument panel.
  • the thickness of the sample piece was the same as the thickness of the foam.
  • Heat desorption device TD-20 manufactured by Shimadzu Corporation Sample amount: Approximately 5 mg Precision heating: 100 ° C, 30 minutes (25 ml / min) Secondary desorption: 300 ° C, 5 minutes GC / MS equipment: GCMS-TQ manufactured by Shimadzu Corporation Column: Sigma-Aldrich Japan SLB-5MS (fine polarity) 0.25 mm ⁇ 30 m ⁇ 0.25 ⁇ m GC temperature rise: 40 ° C (4 minutes) ⁇ 10 ° C / minute ⁇ 300 ° C (10 minutes) He flow rate: 1.25 ml / min, split ratio 1:30 Ionization voltage: 70 eV MS measurement range: 35-600 amu MS temperature: ion source 200 ° C, interface 230 ° C
  • Examples 1-5, Comparative Examples 1-2 In each of Examples and Comparative Examples, the components shown in Table 1 were put into a single screw extruder in the number of parts shown in Table 1, and the resin composition was melt-kneaded at 190 ° C. and extruded. A sheet-shaped resin composition was obtained. The sheet-shaped resin composition was cross-linked by irradiating an electron beam at an acceleration voltage of 800 kV with an irradiation amount of 1 Mrad on both surfaces of the sheet-shaped resin composition. Thereafter, the crosslinked resin composition was heated at 250 ° C. for 5 minutes in a hot air oven, foamed by the heating, and further heated at 80 ° C. in a hot air oven for the times shown in Table 1 for Examples 2 to 5. A foamed sheet (foam) having the thickness shown in Table 1 was obtained. Table 1 shows the evaluation results of the foams of Examples and Comparative Examples.
  • Cross-linking aid trimethylolpropane trimethacrylate (TMPTMA)

Abstract

Provided is a crosslinked polyolefin resin foam that prevents fogging even without the incorporation of a special additive. The crosslinked polyolefin resin foam is a crosslinked polyolefin resin foam provided by crosslinking and foaming a polyolefin resin composition, wherein the intensity peak at 10 to 15 minutes for the extracted ion chromatogram value in thermal desorption gas chromatography-mass spectrometry is not more than 200,000. Preferably, at least 50 mass% of the resins contained in the polyolefin resin composition is a polypropylene resin, and a blowing agent contained in the polyolefin resin composition is azodicarbonamide.

Description

架橋ポリオレフィン系樹脂発泡体Crosslinked polyolefin resin foam
 本発明は、フォギングが抑制される架橋ポリオレフィン系樹脂発泡体に関する。 The present invention relates to a crosslinked polyolefin resin foam in which fogging is suppressed.
 天井材、ドア、インスツルメントパネル等の自動車用内装材には、架橋ポリオレフィン系樹脂発泡体を二次加工したものが広く使用されている。架橋ポリオレフィン系樹脂発泡体の製造には、一般的にアゾジカルボンアミド等の熱分解型発泡剤が発泡剤として使用される。熱分解型発泡剤は、発泡後に微量の分解残渣物を樹脂中に残存させるが、その分解残渣物の一部は昇華性を有するため、フォギングの原因となることがある。フォギングとは、内装材として用いられる樹脂材料や樹脂発泡体から発生する微量の昇華物がフロントガラス等の内面に付着して曇りを生じさせる現象である。 自動 車 Secondary processing of crosslinked polyolefin resin foam is widely used for automotive interior materials such as ceiling materials, doors, and instrument panels. In the production of a crosslinked polyolefin-based resin foam, a thermally decomposable blowing agent such as azodicarbonamide is generally used as a blowing agent. The thermal decomposition type foaming agent causes a small amount of decomposition residue to remain in the resin after foaming. However, since a part of the decomposition residue has sublimability, it may cause fogging. Fogging is a phenomenon in which a minute amount of sublimate generated from a resin material or a resin foam used as an interior material adheres to an inner surface of a windshield or the like, causing fogging.
 従来、アゾジカルボンアミドを原因とするフォギングを防止するため、アゾジカルボンアミドとともに、塩基性マグネシウム化合物及び塩基性カルシウム化合物からなる群から選ばれる少なくとも1種が配合された発泡剤組成物が検討されている(例えば、特許文献1参照)。しかし、特許文献1の発泡剤組成物により形成されるポリオレフィン系樹脂発泡体には、巨大気泡が発生し、発泡体の外観が悪化しやすい。そのため、例えば、特許文献2では、アゾジカルボンアミドとともに、平均粒径が0.1~15μmである塩基性マグネシウムをポリオレフィン系樹脂組成物に配合することが検討されている(例えば、特許文献2参照)。 Conventionally, in order to prevent fogging caused by azodicarbonamide, a foaming agent composition containing at least one selected from the group consisting of a basic magnesium compound and a basic calcium compound together with azodicarbonamide has been studied. (For example, see Patent Document 1). However, in the polyolefin resin foam formed by the foaming agent composition of Patent Document 1, huge bubbles are generated, and the appearance of the foam tends to deteriorate. Therefore, for example, Patent Document 2 considers blending a basic magnesium having an average particle size of 0.1 to 15 μm into a polyolefin-based resin composition together with azodicarbonamide (see, for example, Patent Document 2). ).
特許第3532791号公報Japanese Patent No. 3532791 国際公開第2016/158701号パンフレットWO 2016/158701 pamphlet
 特許文献1、2に記載されているような特定の塩基性化合物が配合されていなくても、フォギングが抑制される架橋ポリオレフィン系樹脂発泡体が求められていたが、そのような架橋ポリオレフィン系樹脂発泡体は提供されていなかった。 Even if a specific basic compound as described in Patent Literatures 1 and 2 is not blended, a crosslinked polyolefin-based resin foam in which fogging is suppressed has been demanded. No foam was provided.
 本発明の発明者らは、特定の特別な添加剤が配合されていなくても、フォギングが抑制される架橋ポリオレフィン系樹脂発泡体について更に検討した。その結果、加熱脱着ガスクロマトグラフ質量分析法により測定される特定の強度ピークが一定の値以下である架橋ポリオレフィン系樹脂発泡体が、フォギングが抑制される発泡体であることを見出し、本発明を完成させるに至った。
 本発明は、以下の架橋ポリオレフィン系樹脂発泡体を提供する。
[1]ポリオレフィン系樹脂組成物を架橋及び発泡してなる架橋ポリオレフィン系樹脂発泡体であって、加熱脱着ガスクロマトグラフ質量分析法の抽出イオンクロマトグラム値の10~15分の強度ピークが200,000以下である架橋ポリオレフィン系樹脂発泡体。
[2]密度が0.02~0.2g/cmである、[1]に記載された架橋ポリオレフィン系樹脂発泡体。
[3]厚みが2~4mmのシートである、[1]又は[2]に記載された架橋ポリオレフィン系樹脂発泡体。
[4]前記ポリオレフィン系樹脂組成物に含まれる樹脂の50質量%以上がポリプロピレン系樹脂である、[1]~[3]のいずれかに記載された架橋ポリオレフィン系樹脂発泡体。
[5]前記ポリオレフィン系樹脂組成物がアゾジカルボンアミドを含む、[1]~[4]のいずれかに記載された架橋ポリオレフィン系樹脂発泡体。
[6]シートであり、前記強度ピーク/シートの厚み(mm)が65,000以下である、[1]~[5]のいずれかに記載された架橋ポリオレフィン系樹脂発泡体。
The inventors of the present invention have further studied a crosslinked polyolefin-based resin foam in which fogging is suppressed even when a specific special additive is not blended. As a result, they found that a crosslinked polyolefin-based resin foam having a specific intensity peak measured by a heat desorption gas chromatograph mass spectrometry method of a certain value or less was a foam in which fogging was suppressed, and completed the present invention. It led to.
The present invention provides the following crosslinked polyolefin resin foam.
[1] A crosslinked polyolefin-based resin foam obtained by crosslinking and foaming a polyolefin-based resin composition, wherein the intensity peak of the extracted ion chromatogram by heat desorption gas chromatography / mass spectrometry for 10 to 15 minutes is 200,000. The following crosslinked polyolefin resin foam.
[2] The crosslinked polyolefin-based resin foam according to [1], wherein the density is 0.02 to 0.2 g / cm 3 .
[3] The crosslinked polyolefin-based resin foam according to [1] or [2], which is a sheet having a thickness of 2 to 4 mm.
[4] The crosslinked polyolefin resin foam according to any one of [1] to [3], wherein 50% by mass or more of the resin contained in the polyolefin resin composition is a polypropylene resin.
[5] The crosslinked polyolefin resin foam according to any one of [1] to [4], wherein the polyolefin resin composition contains azodicarbonamide.
[6] The crosslinked polyolefin-based resin foam according to any one of [1] to [5], wherein the foam is a sheet, and the strength peak / sheet thickness (mm) is 65,000 or less.
 本発明は、フォギングが抑制される架橋ポリオレフィン系樹脂発泡体を提供できる。 The present invention can provide a crosslinked polyolefin resin foam in which fogging is suppressed.
 以下、本発明について実施形態を用いてより詳細に説明する。
 本発明の架橋ポリオレフィン系樹脂発泡体(以下、単に「発泡体」ということがある。)は、ポリオレフィン系樹脂を含むポリオレフィン系樹脂組成物(以下、単に「樹脂組成物」ということがある。)を架橋及び発泡してなるものである。以下、樹脂組成物に含有される各成分について詳細に説明する。
Hereinafter, the present invention will be described in more detail using embodiments.
The crosslinked polyolefin-based resin foam of the present invention (hereinafter sometimes simply referred to as “foam”) is a polyolefin-based resin composition containing a polyolefin-based resin (hereinafter sometimes simply referred to as “resin composition”). Are crosslinked and foamed. Hereinafter, each component contained in the resin composition will be described in detail.
 ポリオレフィン系樹脂組成物は、ポリプロピレン系樹脂、ポリエチレン系樹脂等のポリオレフィン系樹脂を含む。 The polyolefin-based resin composition contains a polyolefin-based resin such as a polypropylene-based resin and a polyethylene-based resin.
 ポリプロピレン系樹脂の具体例は、プロピレンの単独重合体であるホモポリプロピレン、プロピレンとプロピレン以外のα-オレフィンとの共重合体である。プロピレンとプロピレン以外のα-オレフィンとの共重合体の具体例は、ブロック共重合体、ランダム共重合体、ランダムブロック共重合体であるが、ランダム共重合体(すなわち、ランダムポリプロピレン)が好ましい。
 プロピレン以外のα-オレフィンの具体例は、炭素数2のエチレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-ヘプテン、1-オクテンなどの炭素数4~10程度のα-オレフィンである。これらの中で、成形性及び耐熱性の観点から、エチレンが好ましい。なお、共重合体において、これらα-オレフィンは単独で又は2種以上を組み合わせて用いられる。
 また、ポリプロピレン系樹脂は、1種単独で使用されてもよいし、2種以上が併用されてもよい。
Specific examples of the polypropylene-based resin include homopropylene, which is a homopolymer of propylene, and a copolymer of propylene and an α-olefin other than propylene. Specific examples of the copolymer of propylene and an α-olefin other than propylene include a block copolymer, a random copolymer, and a random block copolymer, and a random copolymer (ie, random polypropylene) is preferred.
Specific examples of α-olefins other than propylene include those having 4 to 4 carbon atoms such as ethylene having 2 carbon atoms, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-heptene and 1-octene. About 10 α-olefins. Among these, ethylene is preferred from the viewpoint of moldability and heat resistance. In the copolymer, these α-olefins are used alone or in combination of two or more.
In addition, the polypropylene-based resin may be used alone or in combination of two or more.
 ランダムポリプロピレンは、好ましくはプロピレン50質量%以上100質量%未満と、プロピレン以外のα-オレフィン50質量%以下とを共重合させて得られる。ここで、共重合体を構成する全モノマー成分に対して、プロピレンが80~99.9質量%、プロピレン以外のα-オレフィンが0.1~20質量%であることがより好ましく、プロピレンが90~99.5質量%、プロピレン以外のα-オレフィンが0.5~10質量%であることが更に好ましく、プロピレンが95~99質量%、プロピレン以外のα-オレフィンが1~5質量%であることが特に好ましい。 The random polypropylene is preferably obtained by copolymerizing 50% by mass or more and less than 100% by mass of propylene with 50% by mass or less of α-olefin other than propylene. Here, the propylene content is more preferably 80 to 99.9% by mass and the α-olefin other than propylene is more preferably 0.1 to 20% by mass, based on all the monomer components constituting the copolymer. More preferably, the content of α-olefin other than propylene is 0.5 to 10% by mass, and the content of propylene is 95 to 99% by mass, and the content of α-olefin other than propylene is 1 to 5% by mass. Is particularly preferred.
 ポリエチレン系樹脂の具体例は、低密度ポリエチレン系樹脂、中密度ポリエチレン系樹脂、高密度ポリエチレン系樹脂、直鎖状低密度ポリエチレン系樹脂である。これらの中で、直鎖状低密度ポリエチレン系樹脂(LLDPE)が好ましい。
 直鎖状低密度ポリエチレン系樹脂は、密度が0.910g/cm以上0.950g/cm未満のポリエチレンであり、好ましくは密度が0.910g/cm以上0.930g/cm以下のものである。発泡体は、密度が低い直鎖状低密度ポリエチレン系樹脂を含有することで、樹脂組成物を発泡体に加工する際の加工性、発泡体を成形体に成形する際の成形性等が良好になりやすい。なお、直鎖状低密度ポリエチレン系樹脂の密度はJIS K7112に準拠して測定される。
 直鎖状低密度ポリエチレンは、通常、エチレンを主成分(全モノマーの50質量%以上、好ましくは70質量%以上、より好ましくは90質量%以上)とした、エチレンと少量のα-オレフィンの共重合体である。ここで、α-オレフィンの具体例は、炭素数3~12、好ましくは炭素数4~10のものであり、具体的には、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-ヘプテン、1-オクテンなどである。なお、共重合体において、これらα-オレフィンは単独で又は2種以上を組み合わせて用いられる。
 また、ポリエチレン系樹脂は、1種単独で使用されてもよいし、2種以上のものが併用されてもよい。
Specific examples of the polyethylene resin are a low density polyethylene resin, a medium density polyethylene resin, a high density polyethylene resin, and a linear low density polyethylene resin. Among these, a linear low-density polyethylene resin (LLDPE) is preferred.
Linear low density polyethylene resin, density of 0.910 g / cm 3 or more 0.950 g / cm 3 less than the polyethylene, preferably a density of 0.910 g / cm 3 or more 0.930 g / cm 3 or less of Things. Since the foam contains a low-density linear low-density polyethylene-based resin, the processability when processing the resin composition into a foam, the moldability when molding the foam into a molded body, and the like are good. Easy to be. The density of the linear low-density polyethylene resin is measured according to JIS K7112.
The linear low-density polyethylene usually contains ethylene as a main component (at least 50% by mass, preferably at least 70% by mass, more preferably at least 90% by mass of all monomers), and is composed of ethylene and a small amount of α-olefin. It is a polymer. Here, specific examples of the α-olefin are those having 3 to 12 carbon atoms, preferably 4 to 10 carbon atoms, and specifically, 1-butene, 1-pentene, 1-hexene, 4-methyl- 1-pentene, 1-heptene, 1-octene and the like. In the copolymer, these α-olefins are used alone or in combination of two or more.
Moreover, the polyethylene resin may be used alone or in combination of two or more.
 組成物は、前記ポリプロピレン系樹脂、ポリエチレン系樹脂、又はこれらの混合物を含有していてもよいが、前記ポリプロピレン系樹脂及びポリエチレン系樹脂以外のポリオレフィン系樹脂成分を含んでいてもよい。
 そのような樹脂成分の具体例は、エチレン-プロピレン-ゴム(EPR)、エチレン-プロピレン-ジエンゴム(EPDM)、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸共重合体、エチレン-(メタ)アルキルアクリレ-ト共重合体、これらに無水マレイン酸を共重合した変性共重合体、ポリオレフィン系熱可塑性エラストマー等である。
 また、樹脂組成物が含む樹脂は、ポリオレフィン系樹脂単独で構成されてもよいが、本発明の目的を阻害しない範囲であれば、ポリオレフィン系樹脂以外の樹脂成分を含んでもよい。
 ポリオレフィン系樹脂は、樹脂組成物に含有される樹脂全量に対して、通常70質量%以上含有され、好ましくは80~100質量%、より好ましくは90~100質量%含有される。
The composition may contain the polypropylene resin, the polyethylene resin, or a mixture thereof, but may also contain a polyolefin resin component other than the polypropylene resin and the polyethylene resin.
Specific examples of such resin components include ethylene-propylene-rubber (EPR), ethylene-propylene-diene rubber (EPDM), ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, ethylene- (meth) alkyl Acrylate copolymers, modified copolymers of these copolymerized with maleic anhydride, polyolefin-based thermoplastic elastomers and the like.
The resin contained in the resin composition may be composed of a polyolefin resin alone, but may contain a resin component other than the polyolefin resin as long as the object of the present invention is not impaired.
The polyolefin resin is usually contained in an amount of 70% by mass or more, preferably 80 to 100% by mass, more preferably 90 to 100% by mass, based on the total amount of the resin contained in the resin composition.
 樹脂組成物が含有する樹脂は、前記ポリプロピレン系樹脂を、樹脂組成物に含有される樹脂全量基準で、好ましくは50質量%以上含有し、より好ましくは55~90質量%含有する。
 樹脂組成物に含まれる樹脂の主成分がポリプロピレン系樹脂であると、樹脂組成物を架橋及び発泡して得られる発泡体の機械的強度、耐熱性等を良好にできる。また、ポリプロピレン系樹脂を主成分とすると、樹脂組成物の発泡時に高温加熱が必要となり、発泡剤から不純物が発生して、その不純物がフォギングの原因となる。本発明では、製造条件等を適宜調整することで、後述する抽出イオンクロマトグラム値の10~15分の強度ピークを200,000以下とすることにより、ポリプロピレン系樹脂を主成分とする場合であっても、フォギングを抑制できる。
The resin contained in the resin composition preferably contains the above-mentioned polypropylene-based resin in an amount of preferably 50% by mass or more, more preferably 55 to 90% by mass, based on the total amount of the resin contained in the resin composition.
When the main component of the resin contained in the resin composition is a polypropylene resin, the mechanical strength, heat resistance, and the like of a foam obtained by crosslinking and foaming the resin composition can be improved. When a polypropylene-based resin is used as a main component, high-temperature heating is required at the time of foaming the resin composition, and impurities are generated from the foaming agent, and the impurities cause fogging. In the present invention, by appropriately adjusting the production conditions and the like, the intensity peak of the extracted ion chromatogram, which will be described later, is set to 10 to 15 minutes to 200,000 or less, so that the polypropylene resin is used as the main component. However, fogging can be suppressed.
 樹脂組成物は、ポリオレフィン系樹脂として前記ポリプロピレン系樹脂に加えて、好ましくは前記ポリエチレン系樹脂を含有する。この場合、ポリエチレン系樹脂の好ましい含有割合は、樹脂組成物に含有される樹脂全量に対して、1~50質量%であり、より好ましい当該含有割合は10~45質量%である。
 樹脂組成物は、ポリプロピレン樹脂に加えてポリエチレン系樹脂を含有することで、機械的強度、耐熱性等が向上しつつ、加工性、成形性も良好になる。
The resin composition preferably contains the polyethylene resin in addition to the polypropylene resin as a polyolefin resin. In this case, the preferred content of the polyethylene resin is 1 to 50% by mass, and more preferably 10 to 45% by mass, based on the total amount of the resin contained in the resin composition.
When the resin composition contains a polyethylene resin in addition to the polypropylene resin, the processability and the moldability are improved while the mechanical strength, heat resistance and the like are improved.
 樹脂組成物を発泡させる方法としては、化学的発泡法がある。化学的発泡法は、樹脂組成物に添加した発泡剤により生じたガスにより気泡を形成させる方法である。発泡剤としては、熱分解型発泡剤が使用され、例えば、分解温度が160~270℃程度の有機系熱分解型発泡剤又は無機系熱分解型発泡剤が用いられる。 方法 As a method for foaming the resin composition, there is a chemical foaming method. The chemical foaming method is a method in which bubbles are formed by a gas generated by a foaming agent added to a resin composition. As the foaming agent, a thermal decomposition type foaming agent is used. For example, an organic thermal decomposition type foaming agent or an inorganic thermal decomposition type foaming agent having a decomposition temperature of about 160 to 270 ° C. is used.
 有機系熱分解型発泡剤の具体例は、アゾジカルボンアミド、アゾジカルボン酸金属塩(アゾジカルボン酸バリウム等)、アゾビスイソブチロニトリル等のアゾ化合物、N,N’-ジニトロソペンタメチレンテトラミン等のニトロソ化合物、ヒドラゾジカルボンアミド、4,4’-オキシビス(ベンゼンスルホニルヒドラジド)、トルエンスルホニルヒドラジド等のヒドラジン誘導体、トルエンスルホニルセミカルバジド等のセミカルバジド化合物等である。
 無機系熱分解型発泡剤の具体例は、炭酸アンモニウム、炭酸ナトリウム、炭酸水素アンモニウム、炭酸水素ナトリウム、亜硝酸アンモニウム、水素化ホウ素ナトリウム、無水クエン酸モノソーダ等である。
 これらの中でも、微細な気泡を得る観点、及び経済性、安全面の観点から、有機系熱分解型発泡剤が好ましく、アゾ化合物、ニトロソ化合物がより好ましく、アゾジカルボンアミド、アゾビスイソブチロニトリル等のアゾ化合物が更に好ましく、アゾジカルボンアミドが特に好ましい。
 これらの発泡剤は、単独で使用してもよいし、2種以上を併用してもよい。
 樹脂組成物中における有機系熱分解型発泡剤の配合量は、樹脂組成物中の樹脂100質量部に対して2~20質量部が好ましく、3~12質量部がより好ましい。有機系熱分解型発泡剤の配合量がこの範囲内であると、発泡性ポリオレフィン樹脂シートの発泡性が向上し、所望する発泡倍率を有する架橋ポリオレフィン樹脂発泡シートが得られる。
Specific examples of the organic thermal decomposition type foaming agent include azo compounds such as azodicarbonamide, metal salts of azodicarboxylic acid (such as barium azodicarboxylate), azobisisobutyronitrile, and N, N'-dinitrosopentamethylenetetramine. And the like, hydrazodicarbonamide, hydrazine derivatives such as 4,4'-oxybis (benzenesulfonylhydrazide) and toluenesulfonylhydrazide, and semicarbazide compounds such as toluenesulfonyl semicarbazide.
Specific examples of the inorganic thermal decomposition type foaming agent include ammonium carbonate, sodium carbonate, ammonium hydrogen carbonate, sodium hydrogen carbonate, ammonium nitrite, sodium borohydride, anhydrous sodium citrate and the like.
Among these, from the viewpoint of obtaining fine bubbles, and from the viewpoint of economy and safety, organic thermal decomposition type foaming agents are preferable, azo compounds and nitroso compounds are more preferable, and azodicarbonamide and azobisisobutyronitrile are preferable. And the like, and azodicarbonamide is particularly preferred.
These foaming agents may be used alone or in combination of two or more.
The blending amount of the organic thermal decomposition type foaming agent in the resin composition is preferably 2 to 20 parts by mass, more preferably 3 to 12 parts by mass, per 100 parts by mass of the resin in the resin composition. When the amount of the organic thermal decomposition type foaming agent is within this range, the foamability of the expandable polyolefin resin sheet is improved, and a crosslinked polyolefin resin foam sheet having a desired expansion ratio is obtained.
 樹脂組成物は、前記オレフィン系樹脂及び発泡剤以外にも添加剤を含有していてもよい。樹脂組成物に含有される好ましい添加剤として、架橋助剤及び酸化防止剤が挙げられる。これらは、両方とも含有されていてもよいし、一方のみが含有されていてもよい。 The resin composition may contain additives other than the olefin resin and the foaming agent. Preferred additives contained in the resin composition include a crosslinking aid and an antioxidant. These may be contained both, or only one may be contained.
 架橋助剤として、多官能モノマーを使用できる。多官能モノマーの具体例は、トリメチロールプロパントリメタクリレート、トリメチロールプロパントリアクリレート等の3官能(メタ)アクリレート系化合物、トリメリット酸トリアリルエステル、1,2,4-ベンゼントリカルボン酸トリアリルエステル、トリアリルイソシアヌレート等の1分子中に3個の官能基を持つ化合物、1,6-ヘキサンジオールジメタクリレート、1,9-ノナンジオールジメタクリレート、1,10-デカンジオールジメタクリレート、ネオペンチルグリコールジメタクリレート等の2官能(メタ)アクリレート系化合物、ジビニルベンゼン等の1分子中に2個の官能基を持つ化合物、フタル酸ジアリル、テレフタル酸ジアリル、イソフタル酸ジアリル、エチルビニルベンゼン、ラウリルメタクリレート、ステアリルメタクリレート等である。架橋助剤は、単独で又は2以上を組み合わせて使用できる。これらの中では、3官能(メタ)アクリレート系化合物がより好ましい。
 架橋助剤を樹脂組成物に添加することによって、少ない電離性放射線量で樹脂組成物を架橋できる。そのため、電離性放射線の照射に伴う各樹脂分子の切断、劣化を防止できる。
 架橋助剤の好ましい含有量は、樹脂組成物中の樹脂100質量部に対して0.2~10質量部であり、より好ましい当該含有量は0.5~7質量部であり、更に好ましい当該含有量は1~5質量部である。架橋助剤の含有量が0.2質量部以上であると樹脂組成物を発泡する際、所望する架橋度に調整しやすくなる。また、10質量部以下であると樹脂性組成物に付与する架橋度の制御が容易となる。
As a crosslinking assistant, a polyfunctional monomer can be used. Specific examples of the polyfunctional monomer include trifunctional (meth) acrylate compounds such as trimethylolpropane trimethacrylate and trimethylolpropane triacrylate, triallyl ester triallyl ester, 1,2,4-benzenetricarboxylic acid triallyl ester, Compounds having three functional groups in one molecule, such as triallyl isocyanurate, 1,6-hexanediol dimethacrylate, 1,9-nonanediol dimethacrylate, 1,10-decanediol dimethacrylate, neopentyl glycol dimethacrylate Bifunctional (meth) acrylate compounds such as methacrylate, compounds having two functional groups in one molecule such as divinylbenzene, diallyl phthalate, diallyl terephthalate, diallyl isophthalate, ethylvinylbenzene, lauryl methacrylate, It is stearyl methacrylate, and the like. The crosslinking assistants can be used alone or in combination of two or more. Among these, a trifunctional (meth) acrylate compound is more preferable.
By adding a crosslinking aid to the resin composition, the resin composition can be crosslinked with a small ionizing radiation dose. For this reason, cutting and deterioration of each resin molecule due to irradiation with ionizing radiation can be prevented.
The preferred content of the crosslinking aid is 0.2 to 10 parts by mass, more preferably 0.5 to 7 parts by mass, and still more preferably 100 to 100 parts by mass of the resin in the resin composition. The content is 1 to 5 parts by mass. When the content of the crosslinking aid is 0.2 parts by mass or more, it becomes easy to adjust the degree of crosslinking to a desired degree when foaming the resin composition. When the amount is 10 parts by mass or less, control of the degree of crosslinking imparted to the resin composition becomes easy.
 酸化防止剤の具体例は、フェノール系酸化防止剤、イオウ系酸化防止剤、リン系酸化防止剤、アミン系酸化防止剤等である。これらの中で、フェノール系酸化防止剤、イオウ系酸化防止剤が好ましく、フェノール系酸化防止剤とイオウ系酸化防止剤との併用がより好ましい。
 フェノール系酸化防止剤の具体例は、2,6-ジ-tert-ブチル-p-クレゾール、n-オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート、テトラキス[メチレン-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン等である。これらのフェノール系酸化防止剤は、単独で用いられてもよいし、2種類以上が併用されてもよい。
 イオウ系酸化防止剤の具体例は、ジラウリルチオジプロピオネート、ジミリスチルチオジプロピオネート、ジステアリルチオジプロピオネート、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)等である。これらの硫黄系酸化防止剤は、単独で用いられても良いし、2種類以上が併用されてもよい。
 酸化防止剤の好ましい含有量は、樹脂組成物中の樹脂100質量部に対して0.1~10質量部であり、より好ましい当該含有量は0.2~5質量部である。
Specific examples of the antioxidant include a phenolic antioxidant, a sulfur-based antioxidant, a phosphorus-based antioxidant, and an amine-based antioxidant. Among these, a phenolic antioxidant and a sulfuric antioxidant are preferred, and a combined use of a phenolic antioxidant and a sulfuric antioxidant is more preferred.
Specific examples of phenolic antioxidants include 2,6-di-tert-butyl-p-cresol, n-octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, tert-butyl-6- (3-tert-butyl-2-hydroxy-5-methylbenzyl) -4-methylphenyl acrylate, tetrakis [methylene-3- (3,5-di-tert-butyl-4-hydroxyphenyl) ) Propionate] methane and the like. These phenolic antioxidants may be used alone or in combination of two or more.
Specific examples of the sulfur-based antioxidant include dilauryl thiodipropionate, dimyristyl thiodipropionate, distearyl thiodipropionate, and pentaerythrityl tetrakis (3-lauryl thiopropionate). These sulfur-based antioxidants may be used alone or in combination of two or more.
The preferred content of the antioxidant is 0.1 to 10 parts by mass, more preferably 0.2 to 5 parts by mass, per 100 parts by mass of the resin in the resin composition.
 樹脂組成物は、必要に応じて、酸化亜鉛、ステアリン酸亜鉛等の分解温度調整剤、難燃剤、金属害防止剤、帯電防止剤、安定剤、充填剤、顔料等の上記以外の添加剤を含有してもよい。 The resin composition may contain additives other than the above, such as a decomposition temperature regulator such as zinc oxide and zinc stearate, a flame retardant, a metal harm inhibitor, an antistatic agent, a stabilizer, a filler, and a pigment, if necessary. May be contained.
 本発明の発泡体の、加熱脱着ガスクロマトグラフ質量分析(GC/MS)法の抽出イオンクロマトグラム値の10~15分の強度ピークは200,000以下である。好ましい前記強度ピークは190,000以下であり、より好ましい前記強度ピークは180,000以下であり、更に好ましい前記強度ピークは170,000以下である。前記強度ピークが200,000より大きいと、発泡体がフォギングを起こしやすくなる。
 前記強度ピークを200,000以下とする方法は特に限定されないが、例えば、発泡体の厚みを薄くすることで強度ピークを低くできる。また、発泡体が厚い場合には、後述するように、発泡体に対して所定の加熱処理を行うことで、前記強度ピークを低くできる。
The intensity peak of the extracted ion chromatogram of the foam of the present invention in the extracted ion chromatogram by thermal desorption gas chromatography / mass spectrometry (GC / MS) method of 10 to 15 minutes is 200,000 or less. The preferred intensity peak is 190,000 or less, the more preferred intensity peak is 180,000 or less, and the still more preferred intensity peak is 170,000 or less. If the intensity peak is larger than 200,000, the foam tends to fog.
The method for reducing the intensity peak to 200,000 or less is not particularly limited. For example, the intensity peak can be reduced by reducing the thickness of the foam. When the foam is thick, the strength peak can be reduced by performing a predetermined heat treatment on the foam as described later.
 本発明の発泡体の密度(見かけ密度)は、特に限定されない。発泡体の柔軟性と強度をバランスよく良好にするために、好ましい前記密度は0.02~0.20g/cmであり、より好ましい前記密度は0.03~0.15g/cmである。また、発泡体の密度が上記のように小さくなる、すなわち発泡倍率が大きくなると、発泡剤の使用量が増え、発泡体にフォギングが発生しやすくなるが、本発明では、上記のように強度ピークを低くすることで発泡体のフォギングを抑制できる。 The density (apparent density) of the foam of the present invention is not particularly limited. The preferable density is 0.02 to 0.20 g / cm 3 , and the more preferable density is 0.03 to 0.15 g / cm 3 in order to improve the flexibility and strength of the foam in a well-balanced manner. . In addition, when the density of the foam decreases as described above, that is, when the expansion ratio increases, the amount of the foaming agent used increases, and fogging tends to occur in the foam. However, in the present invention, the intensity peak is reduced as described above. The fogging of the foam can be suppressed by lowering.
 本発明の発泡体の架橋度は、特に限定されないが、機械強度、柔軟性、成形性をバランスよく良好にするために、好ましい前記架橋度は30~60%であり、より好ましい前記架橋度は32~55%である。なお、発泡体の架橋度の測定方法は、後述する実施例に記載されるとおりである。 The degree of cross-linking of the foam of the present invention is not particularly limited, but the preferable degree of cross-linking is 30 to 60%, and the more preferable degree of cross-linking is 30 to improve the mechanical strength, flexibility, and moldability in a well-balanced manner. It is 32 to 55%. The method for measuring the degree of crosslinking of the foam is as described in Examples described later.
 本発明の発泡体の一実施形態はシートであり、その厚みは、特に限定されないが、自動車用内装材に適切に成形できるよう、好ましい前記厚みは0.5~10mmであり、より好ましい前記厚みは1~8mmであり、更に好ましい前記厚みは2~4mmである。 One embodiment of the foam of the present invention is a sheet, the thickness of which is not particularly limited, but is preferably 0.5 to 10 mm, more preferably the thickness, so that it can be appropriately molded into an interior material for automobiles. Is 1 to 8 mm, and the more preferable thickness is 2 to 4 mm.
 発泡体シートの前記強度ピーク/シートの厚み(mm)の好ましい値は65,000以下であり、より好ましい前記値は60,000以下、更に好ましくは50,000以下である。前記値が十分に小さいと、発泡体のフォギングが抑えられる。 (4) A preferred value of the strength peak / sheet thickness (mm) of the foam sheet is 65,000 or less, and the more preferred value is 60,000 or less, and further preferably 50,000 or less. When the value is sufficiently small, fogging of the foam is suppressed.
 本発明の一実施形態に係る発泡体の製造方法は、好ましくは、以下の工程(1)~(3)を有する。
工程(1):樹脂、熱分解型発泡剤及び必要に応じて配合されるその他添加剤を押出機に供給して、熱分解型発泡剤の分解温度未満の温度で溶融、混練した後、樹脂組成物を押出機から押出してシート状等の所定形状の樹脂組成物を得る工程
工程(2):前記所定形状の樹脂組成物に電離性放射線を照射して架橋する工程
工程(3):架橋された樹脂組成物を、熱分解型発泡剤の分解温度以上に加熱して発泡させ、発泡体を得る工程
The method for producing a foam according to one embodiment of the present invention preferably includes the following steps (1) to (3).
Step (1): A resin, a pyrolytic foaming agent and other additives to be blended if necessary are supplied to an extruder, and are melted and kneaded at a temperature lower than the decomposition temperature of the pyrolytic foaming agent. Step (2) of extruding the composition from an extruder to obtain a resin composition having a predetermined shape such as a sheet shape: Step of irradiating the resin composition having the predetermined shape with ionizing radiation to cross-link (3): Cross-linking Heating the foamed resin composition to a temperature equal to or higher than the decomposition temperature of the pyrolytic foaming agent to obtain a foam.
 前記製造方法で使用される押出機の具体例は、単軸押出機、二軸押出機等である。また、押出機内部の樹脂組成物の温度は、好ましくは130~195℃であり、より好ましくは160~195℃である。
 工程(2)において使用される電離性放射線の具体例は、α線、β線、γ線、電子線等であるが、電子線が好ましい。電離性放射線の照射量は、所望の架橋度を得ることができればよいが、0.1~10Mradが好ましく、0.2~5Mradがより好ましい。電離性放射線の照射量は、オレフィン系樹脂、発泡剤及びその他の添加剤等の影響があるため、通常は架橋度を測定しながら照射量を調整する。
 工程(3)において、樹脂組成物を加熱発泡させる温度は、通常200~290℃、好ましくは220~280℃である。樹脂組成物を加熱発泡させる時間は通常1~30分間、好ましくは1~10分間である。
 また、工程(3)において、発泡体は、発泡後、又は発泡されつつMD方向又はCD方向の何れか一方又は双方に延伸されてもよい。
Specific examples of the extruder used in the production method include a single-screw extruder and a twin-screw extruder. The temperature of the resin composition inside the extruder is preferably from 130 to 195 ° C, more preferably from 160 to 195 ° C.
Specific examples of the ionizing radiation used in the step (2) include α-rays, β-rays, γ-rays, and electron beams, but electron beams are preferable. The irradiation amount of the ionizing radiation is not particularly limited as long as a desired degree of crosslinking can be obtained, but is preferably 0.1 to 10 Mrad, more preferably 0.2 to 5 Mrad. Since the irradiation amount of the ionizing radiation is affected by the olefin resin, the foaming agent and other additives, the irradiation amount is usually adjusted while measuring the degree of crosslinking.
In the step (3), the temperature at which the resin composition is heated and foamed is usually from 200 to 290 ° C, preferably from 220 to 280 ° C. The time for heating and foaming the resin composition is usually 1 to 30 minutes, preferably 1 to 10 minutes.
Further, in the step (3), the foam may be stretched in the MD direction or the CD direction or both after and after the foaming.
 樹脂組成物を架橋及び発泡して得られた架橋ポリオレフィン系樹脂発泡体は、発泡後に熱処理されることが好ましい。前記熱処理の加熱温度は、好ましくは50~120℃であり、より好ましくは60~110℃であり、更に好ましくは70~100℃である。前記熱処理の加熱時間は、好ましくは1~350時間であり、より好ましくは20~300時間であり、更に好ましくは50~250時間である。前記熱処理温度と前記熱処理時間を前記のとおりにすると、後述する加熱脱着ガスクロマトグラフ質量分析(GC/MS)法の抽出イオンクロマトグラム値の10~15分の強度ピークを小さくできる。
 なお、以上説明した製造方法は、本発明の発泡体の製造方法の一実施形態であり、本発明の発泡体は他の製造方法で製造されてもよい。
The crosslinked polyolefin-based resin foam obtained by crosslinking and foaming the resin composition is preferably heat-treated after foaming. The heating temperature of the heat treatment is preferably 50 to 120 ° C., more preferably 60 to 110 ° C., and further preferably 70 to 100 ° C. The heating time of the heat treatment is preferably 1 to 350 hours, more preferably 20 to 300 hours, and further preferably 50 to 250 hours. When the heat treatment temperature and the heat treatment time are set as described above, an intensity peak of 10 to 15 minutes of an extracted ion chromatogram value of a thermal desorption gas chromatograph mass spectrometry (GC / MS) method described later can be reduced.
The manufacturing method described above is an embodiment of the method for manufacturing a foam of the present invention, and the foam of the present invention may be manufactured by another manufacturing method.
 本発明の発泡体は、発泡体単体で使用されてもよいが、好ましくは、異種材料と重ね合わせて公知の方法で成形され、積層体とされる。前記成形方法の具体例は、真空成形、圧縮成形、スタンピング成形等である。これらの中では真空成形が好ましい。また、真空成形には雄引真空成形、雌引真空成形があるが、好ましい真空成型は雌引真空成形である。異種材料の具体例は、樹脂シート、熱可塑性エラストマーシート、布帛等のシート状のものである。
 成形体は、各種用途に使用可能であるが、好ましくは、自動車の天井材、ドア、インスツルメントパネル等の自動車用内装材として使用される。
The foam of the present invention may be used as a single foam, but is preferably laminated with a different material and molded by a known method to form a laminate. Specific examples of the molding method include vacuum molding, compression molding, and stamping molding. Of these, vacuum forming is preferred. The vacuum forming includes male pull vacuum forming and female pull vacuum forming. Preferred vacuum forming is female pull vacuum forming. Specific examples of the dissimilar material include a sheet such as a resin sheet, a thermoplastic elastomer sheet, and a fabric.
The molded article can be used for various purposes, but is preferably used as an automobile interior material such as an automobile ceiling material, a door, or an instrument panel.
 以下、本発明を実施例により更に詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
 発泡体の評価方法は以下のとおりである。
(1)架橋度
 発泡体から約100mgの試験片を採取し、試験片の質量A(mg)を精秤した。次に、この試験片を120℃のキシレン30ml中に浸漬して24時間放置した後、200メッシュの金網で濾過して金網上の不溶解分を採取、真空乾燥し、不溶解分の質量B(mg)を精秤した。得られた値から、下記式により架橋度(質量%)を算出した。
架橋度(質量%)=100×(B/A)
(2)密度
 発泡体の密度(見かけ密度)をJIS  K 7222に準拠して測定した。
(3)発泡体の厚み
 発泡体の厚みをダイヤルゲージで計測した。
(4)フォギング評価
 フォギング評価は、ISO6452に準拠した設備で、発泡体を100℃×20時間養生後、ヘーズを測定して行った。なお、ヘーズは日本電色工業社製NDH-300Aを用いて測定した。ヘーズが15%以下であるものを合格とした。
(5)加熱脱着GC/MS
 発泡体から10cm×10cmに切り出した試料片を100℃で30分間加熱して揮発物を揮発させ、得られた揮発物を以下の条件で加熱脱着GC/MS分析し、抽出イオンクロマトグラム値の10~15分の強度ピークを測定した。なお、試料片の厚みは発泡体の厚みと同一であった。
加熱脱着装置:島津製作所製TD-20
サンプル量:約5mg精秤
加熱:100℃、30分(25ml/分)
二次脱着:300℃、5分
GC/MS装置:島津製作所製GCMS-TQ
カラム:シグマアルドリッチジャパン社製SLB-5MS(微極性)0.25mm×30m×0.25μm
GC昇温:40℃(4分)→10℃/分→300℃(10分)
He流量:1.25ml/分、スプリット比1:30
イオン化電圧:70eV
MS測定範囲:35~600amu
MS温度:イオン源200℃、インターフェイス230℃
The method for evaluating the foam is as follows.
(1) Degree of Crosslinking Approximately 100 mg of a test piece was collected from the foam, and the mass A (mg) of the test piece was precisely weighed. Next, the test piece was immersed in 30 ml of xylene at 120 ° C. and allowed to stand for 24 hours, and then filtered through a 200-mesh wire net to collect the insoluble matter on the wire mesh, dried under vacuum, and dried. (Mg) was precisely weighed. From the obtained values, the degree of crosslinking (% by mass) was calculated by the following equation.
Degree of crosslinking (% by mass) = 100 × (B / A)
(2) Density The density (apparent density) of the foam was measured in accordance with JIS K7222.
(3) Thickness of foam The thickness of the foam was measured with a dial gauge.
(4) Evaluation of fogging The evaluation of fogging was performed by using a facility based on ISO6452, after curing the foam at 100 ° C. for 20 hours, and measuring the haze. The haze was measured using NDH-300A manufactured by Nippon Denshoku Industries Co., Ltd. Those having a haze of 15% or less were regarded as acceptable.
(5) Heat desorption GC / MS
A sample piece cut out from the foam into a piece of 10 cm × 10 cm was heated at 100 ° C. for 30 minutes to volatilize volatiles, and the obtained volatiles were subjected to heat desorption GC / MS analysis under the following conditions. The intensity peak was measured for 10-15 minutes. In addition, the thickness of the sample piece was the same as the thickness of the foam.
Heat desorption device: TD-20 manufactured by Shimadzu Corporation
Sample amount: Approximately 5 mg Precision heating: 100 ° C, 30 minutes (25 ml / min)
Secondary desorption: 300 ° C, 5 minutes GC / MS equipment: GCMS-TQ manufactured by Shimadzu Corporation
Column: Sigma-Aldrich Japan SLB-5MS (fine polarity) 0.25 mm × 30 m × 0.25 μm
GC temperature rise: 40 ° C (4 minutes) → 10 ° C / minute → 300 ° C (10 minutes)
He flow rate: 1.25 ml / min, split ratio 1:30
Ionization voltage: 70 eV
MS measurement range: 35-600 amu
MS temperature: ion source 200 ° C, interface 230 ° C
実施例1~5、比較例1~2
 各実施例、比較例において、表1に示す各成分を、表1に示した部数で単軸押出機に投入し、樹脂組成物を190℃にて溶融混練して押出し、表1に示す厚みのシート状の樹脂組成物を得た。このシート状の樹脂組成物の両面に加速電圧800kVで電子線を1Mradの照射量で照射することによりシート状の樹脂組成物を架橋した。その後、架橋した樹脂組成物を熱風オーブンによって250℃で5分間加熱し、その加熱により発泡させて、実施例2~5については表1に示す時間、熱風オーブンによって80℃で更に加熱して、表1に示す厚みの発泡シート(発泡体)とした。各実施例、比較例の発泡体の評価結果を表1に示す。
Examples 1-5, Comparative Examples 1-2
In each of Examples and Comparative Examples, the components shown in Table 1 were put into a single screw extruder in the number of parts shown in Table 1, and the resin composition was melt-kneaded at 190 ° C. and extruded. A sheet-shaped resin composition was obtained. The sheet-shaped resin composition was cross-linked by irradiating an electron beam at an acceleration voltage of 800 kV with an irradiation amount of 1 Mrad on both surfaces of the sheet-shaped resin composition. Thereafter, the crosslinked resin composition was heated at 250 ° C. for 5 minutes in a hot air oven, foamed by the heating, and further heated at 80 ° C. in a hot air oven for the times shown in Table 1 for Examples 2 to 5. A foamed sheet (foam) having the thickness shown in Table 1 was obtained. Table 1 shows the evaluation results of the foams of Examples and Comparative Examples.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1における樹脂及び添加剤は以下のとおりである。
・ランダムPP:エチレン-プロピレンランダム共重合体(日本ポリプロ社製EG7F、MFR=1.3g/10分、エチレン量=3質量%)
・LLDPE:直鎖状低密度ポリエチレン(ダウケミカル日本社製5220G、密度=0.915g/cm3
・架橋助剤:トリメチロールプロパントリメタクリレート(TMPTMA)
The resins and additives in Table 1 are as follows.
-Random PP: ethylene-propylene random copolymer (EG7F, manufactured by Nippon Polypropylene Co., Ltd., MFR = 1.3 g / 10 min, ethylene content = 3% by mass)
LLDPE: linear low-density polyethylene (5220G, manufactured by Dow Chemical Japan, density = 0.915 g / cm 3 )
・ Cross-linking aid: trimethylolpropane trimethacrylate (TMPTMA)
 実施例1~5の前記強度ピークが200,000以下である発泡体のフォギングは抑制されていた。一方で、比較例1~2の前記強度ピークが200,000より大きい発泡体については、フォギングを十分に抑制できなかった。 フ ォ Fogging of the foams of Examples 1 to 5 where the intensity peak was 200,000 or less was suppressed. On the other hand, for the foams of Comparative Examples 1 and 2 whose intensity peak was larger than 200,000, fogging could not be sufficiently suppressed.

Claims (6)

  1.  ポリオレフィン系樹脂組成物を架橋及び発泡してなる架橋ポリオレフィン系樹脂発泡体であって、加熱脱着ガスクロマトグラフ質量分析法の抽出イオンクロマトグラム値の10~15分の強度ピークが200,000以下である架橋ポリオレフィン系樹脂発泡体。 A crosslinked polyolefin resin foam obtained by crosslinking and foaming a polyolefin resin composition, wherein the intensity peak of the extracted ion chromatogram by heat desorption gas chromatography / mass spectrometry for 10 to 15 minutes is 200,000 or less. Crosslinked polyolefin resin foam.
  2.  密度が0.02~0.2g/cmである、請求項1に記載された架橋ポリオレフィン系樹脂発泡体。 2. The crosslinked polyolefin resin foam according to claim 1, having a density of 0.02 to 0.2 g / cm 3 .
  3.  厚みが2~4mmのシートである、請求項1又は2に記載された架橋ポリオレフィン系樹脂発泡体。 架橋 The crosslinked polyolefin-based resin foam according to claim 1 or 2, which is a sheet having a thickness of 2 to 4 mm.
  4.  前記ポリオレフィン系樹脂組成物に含まれる樹脂の50質量%以上がポリプロピレン系樹脂である、請求項1~3のいずれか1項に記載された架橋ポリオレフィン系樹脂発泡体。 The crosslinked polyolefin resin foam according to any one of claims 1 to 3, wherein 50% by mass or more of the resin contained in the polyolefin resin composition is a polypropylene resin.
  5.  前記ポリオレフィン系樹脂組成物がアゾジカルボンアミドを含む、請求項1~4のいずれか1項に記載された架橋ポリオレフィン系樹脂発泡体。 The crosslinked polyolefin resin foam according to any one of claims 1 to 4, wherein the polyolefin resin composition contains azodicarbonamide.
  6.  シートであり、前記強度ピーク/シートの厚み(mm)が65,000以下である、請求項1~5のいずれか1項に記載された架橋ポリオレフィン系樹脂発泡体。 The crosslinked polyolefin resin foam according to any one of claims 1 to 5, wherein the crosslinked polyolefin resin foam is a sheet, and the strength peak / sheet thickness (mm) is 65,000 or less.
PCT/JP2019/038041 2018-09-28 2019-09-26 Crosslinked polyolefin resin foam WO2020067382A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980062588.4A CN112752791B (en) 2018-09-28 2019-09-26 Crosslinked polyolefin resin foam

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-185672 2018-09-28
JP2018185672A JP7160615B2 (en) 2018-09-28 2018-09-28 Crosslinked polyolefin resin foam

Publications (1)

Publication Number Publication Date
WO2020067382A1 true WO2020067382A1 (en) 2020-04-02

Family

ID=69949361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/038041 WO2020067382A1 (en) 2018-09-28 2019-09-26 Crosslinked polyolefin resin foam

Country Status (3)

Country Link
JP (1) JP7160615B2 (en)
CN (1) CN112752791B (en)
WO (1) WO2020067382A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021161273A (en) * 2020-03-31 2021-10-11 積水化学工業株式会社 Polyolefin resin foam sheet and vehicle interior member

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040122120A1 (en) * 2002-12-23 2004-06-24 Eiji Tateo Crosslinked polyolefin-based resin foam, process for producing the same, and interior material for automobiles
JP2004204154A (en) * 2002-12-26 2004-07-22 Sekisui Chem Co Ltd Crosslinked polyolefin resin foam and production method thereof
JP2006169405A (en) * 2004-12-16 2006-06-29 Sekisui Chem Co Ltd Polyolefin-based resin-crosslinked foamed sheet and interior material for vehicle
JP2007231064A (en) * 2006-02-28 2007-09-13 Inoac Corp Method for producing polyolefin resin foam
WO2009044690A1 (en) * 2007-10-02 2009-04-09 Sekisui Chemical Co., Ltd. Stretched thermoplastic resin foam sheet and process for production of the same
WO2015046526A1 (en) * 2013-09-30 2015-04-02 積水化学工業株式会社 Crosslinked polyolefin resin foam sheet
JP2015187232A (en) * 2014-03-27 2015-10-29 東レ株式会社 polyolefin foam sheet
JP2017066404A (en) * 2015-09-29 2017-04-06 積水化学工業株式会社 Polyolefin resin foamed sheet and adhesive tape
WO2018062562A1 (en) * 2016-09-30 2018-04-05 積水化学工業株式会社 Crosslinked polyolefin resin foam

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3861447B2 (en) * 1998-03-17 2006-12-20 東レ株式会社 Polyolefin resin foam and method for producing the same
JP5755934B2 (en) * 2011-05-13 2015-07-29 株式会社ジェイエスピー Method for producing polyolefin resin laminate foam and method for producing polyolefin resin foam
JP6128981B2 (en) * 2013-06-18 2017-05-17 株式会社ジェイエスピー Method for producing polyolefin resin foam sheet and method for producing polyolefin resin foam sheet roll
JP6696902B2 (en) * 2015-03-31 2020-05-20 積水化学工業株式会社 Crosslinked polyolefin resin foam

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040122120A1 (en) * 2002-12-23 2004-06-24 Eiji Tateo Crosslinked polyolefin-based resin foam, process for producing the same, and interior material for automobiles
JP2004204154A (en) * 2002-12-26 2004-07-22 Sekisui Chem Co Ltd Crosslinked polyolefin resin foam and production method thereof
JP2006169405A (en) * 2004-12-16 2006-06-29 Sekisui Chem Co Ltd Polyolefin-based resin-crosslinked foamed sheet and interior material for vehicle
JP2007231064A (en) * 2006-02-28 2007-09-13 Inoac Corp Method for producing polyolefin resin foam
WO2009044690A1 (en) * 2007-10-02 2009-04-09 Sekisui Chemical Co., Ltd. Stretched thermoplastic resin foam sheet and process for production of the same
WO2015046526A1 (en) * 2013-09-30 2015-04-02 積水化学工業株式会社 Crosslinked polyolefin resin foam sheet
JP2015187232A (en) * 2014-03-27 2015-10-29 東レ株式会社 polyolefin foam sheet
JP2017066404A (en) * 2015-09-29 2017-04-06 積水化学工業株式会社 Polyolefin resin foamed sheet and adhesive tape
WO2018062562A1 (en) * 2016-09-30 2018-04-05 積水化学工業株式会社 Crosslinked polyolefin resin foam

Also Published As

Publication number Publication date
CN112752791B (en) 2023-04-07
CN112752791A (en) 2021-05-04
JP2020055913A (en) 2020-04-09
JP7160615B2 (en) 2022-10-25

Similar Documents

Publication Publication Date Title
JP6696902B2 (en) Crosslinked polyolefin resin foam
JP6698517B2 (en) Crosslinked polyolefin foam
JP6846342B2 (en) Crosslinked polyolefin resin foam and molded article using it
JP7100968B2 (en) Polyolefin resin foam sheet and adhesive tape using it
WO2020067382A1 (en) Crosslinked polyolefin resin foam
US10442908B2 (en) Foam, laminate, and formed product
JPH05214144A (en) Polypropylene-based resin crosslinked foam
JP6696807B2 (en) Laminated foam sheet and molded article using the same
JP2020139087A (en) Polyolefin resin foam sheet and adhesive tape using the same
JP7377047B2 (en) Polyolefin resin foam sheet and manufacturing method thereof
JP7180990B2 (en) Crosslinked polyolefin resin foam
WO2023191081A1 (en) Polyolefin resin foam and molded article
JP2983304B2 (en) Polyolefin resin crosslinked foam
WO2021201056A1 (en) Polyolefin resin foam sheet and vehicle interior member
JP2021169549A (en) Crosslinked polyolefin resin foam and molding
JP2021046506A (en) Foam sheet
JP2004161902A (en) Crosslinked polyolefin resin foam
JPH0730196B2 (en) Method for producing crosslinked polyolefin resin foam
JP2000248097A (en) Crosslinked olefin resin foam and its production

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19867668

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19867668

Country of ref document: EP

Kind code of ref document: A1