WO2020067262A1 - 金属板の表面欠陥検出方法及び装置並びにめっき鋼板の製造方法 - Google Patents

金属板の表面欠陥検出方法及び装置並びにめっき鋼板の製造方法 Download PDF

Info

Publication number
WO2020067262A1
WO2020067262A1 PCT/JP2019/037800 JP2019037800W WO2020067262A1 WO 2020067262 A1 WO2020067262 A1 WO 2020067262A1 JP 2019037800 W JP2019037800 W JP 2019037800W WO 2020067262 A1 WO2020067262 A1 WO 2020067262A1
Authority
WO
WIPO (PCT)
Prior art keywords
defect
metal plate
threshold value
length
steel sheet
Prior art date
Application number
PCT/JP2019/037800
Other languages
English (en)
French (fr)
Inventor
健夫 菊池
鈴木 克一
Hitoshi SUGA (菅 仁志)
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2020502497A priority Critical patent/JP6950811B2/ja
Publication of WO2020067262A1 publication Critical patent/WO2020067262A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined

Definitions

  • the present invention relates to a detection method for optically detecting unevenness defects on the surface of a metal plate, and in particular, a surface defect suitable for detecting spatter defects present on the surface of a cold-rolled steel sheet or a galvanized steel sheet.
  • the present invention relates to a detection method and apparatus, and a method for manufacturing a plated steel sheet.
  • Patent Literature 1 the illuminating unit and the imaging unit are arranged on the rear side with respect to the traveling direction of the steel plate, and the incident angle of the illumination light from the illuminating unit to the steel plate surface and the light receiving angle of the imaging unit are set to a predetermined angle range.
  • the illustrated defect inspection apparatus is shown. According to this apparatus, the influence of the background, which is not a defect, is suppressed, and a minute defect can be imaged.
  • Patent Literature 2 discloses a surface inspection apparatus including an image reflection unit having a reflection surface that reflects an image to be inspected, in addition to an illumination unit and an imaging unit, and detects a defect image from a plurality of angles. To analyze. It is stated that this makes it possible to identify harmless flaws such as harmful flaws and dirt, and to discriminate the defect type.
  • Patent Document 3 discloses a surface of a metal plate that illuminates the surface of a metal plate, captures an image of an illuminated portion on the metal plate, and performs threshold processing on the obtained image information to extract surface defects of the metal plate. A defect inspection method is shown.
  • Patent Document 3 among the obtained image information, image information s1 in which the image luminance is less than the dark part threshold a1 and image information s2 in which the image luminance exceeds the light part threshold a2, If there is image information s1 and s2 in a relationship where the distance between the parts p1 and p2 of s1 and s2 is less than or equal to the distance threshold (x), one defect combining the parts p1 and p2 of these image information s1 and s2 A method for detecting a surface defect of a metal plate from which a portion is extracted is shown. Further, Patent Literature 3 states that by classifying according to the aspect ratio in addition to the brightness and darkness of the defective portion, it is possible to extract a minute harmful defect while suppressing overdetection.
  • the equipment is complicated due to the presence of the image reflection means, the defect detection ability is affected if the maintenance of the reflection plate is not performed properly, and the image processing is complicated, so that the inspection is complicated.
  • the target moves at a high speed, it is necessary to secure a sufficient communication speed and calculation speed.
  • an object of the present invention is to solve the problems of the prior art as described above, and in a method for detecting a surface defect of a metal plate, such as a spatter flaw existing on the surface of a cold-rolled steel plate or a galvanized steel plate with a simple facility configuration. It is an object of the present invention to provide a surface defect detection method and apparatus capable of accurately detecting a harmful defect in which a metal plate is deformed in parallel with the running direction of the metal plate, and a method of manufacturing a plated steel sheet.
  • the gist of the present invention for solving the above problems is as follows. [1] In a surface defect inspection method of imaging a illuminated metal plate surface and performing threshold processing on the obtained image information to extract surface defects of a plated metal plate, In the obtained image information, the distance between the dark part (p1) where the image luminance is less than the dark part threshold (a1) and the bright part (p2) where the image luminance exceeds the bright part threshold (a2) is the distance.
  • the part corresponding to the detected dark part (p1) and the part corresponding to the light part (p2) are extracted as one defect part,
  • a metal that satisfies at least [length in the metal plate longitudinal direction] / [length in the metal plate width direction] ⁇ ratio threshold value (y) is determined as a harmful defect.
  • Inspection method for plate surface defects [2] The method for detecting a surface defect of a metal plate according to [1], wherein the distance threshold value (x) is set in a range of 0.1 to 5.0 mm.
  • the total length of the bright portion (p2) in the defect location in the longitudinal direction of the metal plate is equal to or greater than the length threshold (z).
  • the maximum brightness value of the bright portion (p2) in the defect portion exceeds the bright portion threshold value (a20) set to be higher than the bright portion threshold value (a2).
  • a surface defect inspection device for a metal plate comprising: an image processing device that performs surface defect detection by the surface defect detection method according to any one of [1] to [11]; and a defect determination device.
  • the harmful defect which deforms a metal plate in parallel with the running direction of a metal plate such as a sputter flaw existing on the surface of a cold rolled steel plate or a galvanized steel plate, with a simple equipment configuration is detected accurately. be able to.
  • FIG. 2 is a conceptual diagram showing an example of threshold processing performed on the image information of FIG. 2 in the present invention.
  • FIG. 4 is a diagram schematically illustrating image information for performing defect extraction and harmful defect determination according to an embodiment of the present invention.
  • a drawing schematically showing image information for performing defect extraction and harmful defect determination Drawings showing images of dross defects, flaws, and spatters captured by the imager
  • the present invention is a method for detecting surface defects of various metal plates including a steel plate, but is a method particularly suitable for detecting spatter flaws present on the surface of the steel plate.
  • a case where a surface defect of a steel sheet such as a cold-rolled steel sheet or a galvanized steel sheet is detected will be described as an example.
  • the minute defects include harmless defects such as dirt and minute foreign matter that do not cause harm in actual use conditions, and minor scratches, and harmful defects that pose a problem during processing and painting.
  • harmless defects include dirt due to scattering of a very small amount of oil droplets
  • harmful defects include those caused by spattering flaws on cold-rolled steel sheets and galvanized steel sheets.
  • This spatter flaw is the spatter generated when the ends of the steel sheet are welded and joined in a continuous line (the molten metal droplets scattered during welding and turned into small spherical solids after cooling). This is a defect caused by being pushed.
  • the sputter flaw is a surface defect composed of a sputter adhered to the steel sheet surface (oxidized sputter) and a deformed portion of the steel sheet generated from the sputter.
  • a defect is determined in consideration of the influence of not only the defective portion but also the surrounding steel plate portion. For example, spatters adhered to the steel sheet by welding before the pickling step are pushed into the steel sheet while forming cracks in the steel sheet during the subsequent cold rolling step or process roll. Further, since the crack is pushed during the running, it has a shape extending in the running direction (longitudinal direction of the steel sheet). It has been found that the degree of this deformation has a strong relationship with whether or not it becomes a harmful defect when a steel sheet is press-formed, and has a correlation with the degree of seriousness when it becomes a harmful defect.
  • the press die may be scratched in the press molding process, and the press die having such scratches needs to be serviced and replaced. For this reason, the quality and production efficiency of the press molding process are greatly adversely affected. Therefore, it is an extremely important technique to accurately detect spatter flaws on a steel sheet and appropriately determine the severity thereof.
  • defect detection is performed by an inspection device having illumination means and imaging means on the rear side with respect to the traveling direction of the steel sheet.
  • the sputter itself is oxidized on its surface and presents a black color, which results in an image darker than the background.
  • the sputtered surface has a metallic luster and an image darker than the background.
  • the crack portion deformed portion of the steel plate
  • the incident angle of the illumination is different from the background, so that there is a bright portion with respect to the background.
  • FIG. 6 shows each image of a dross defect, a scratch defect, and a sputter defect captured by the image pickup device.
  • the present invention is a surface defect inspection method for illuminating the surface of a steel sheet, capturing an image of an illuminated portion on the steel sheet, and performing threshold processing on the obtained image information to extract a surface defect of the steel sheet.
  • FIG. 1 shows an example of a surface defect inspection apparatus provided for carrying out the present invention.
  • the surface defect inspection device includes a light projector 1, an image pickup device 2, an image processing device 3, a defect determination device 4, and the like.
  • the light projector 1 projects light onto the surface of a steel sheet 5 (for example, a hot-dip galvanized steel sheet).
  • the type of illumination is not particularly limited, and for example, halogen illumination, metal halide illumination, fluorescent lamp, LED illumination, xenon strobe illumination, and the like used in conventional surface defect inspection can be used.
  • the imager 2 captures light reflected from the surface of the steel plate 5, and may be, for example, a CCD area sensor camera or a CCD line sensor camera. The spatial resolution of the imager 2 is appropriately set to 0.2 mm or less in order to detect a minute defect.
  • the light projector 1 and the imaging device 2 are arranged on the rear side (downstream side) of the steel sheet normal in the steel sheet traveling direction.
  • the incident angle ⁇ of the light from the light projector 1 is set to, for example, about 50 ° to 80 ° with respect to the normal of the steel sheet
  • the light receiving angle ⁇ of the image pickup device 3 is, for example, about 0 ° to 40 ° with respect to the normal of the steel sheet.
  • the light projector 1 and the image pickup device 2 may be arranged on the front side (upstream side) of the steel sheet normal in the steel sheet traveling direction.
  • the image processing device 3 performs threshold processing on the image obtained by the image pickup device 2 to obtain image information necessary for defect determination.
  • the defect determining device 4 performs extraction of a defective portion, determination of a harmful defect, and the like based on the image information obtained by the image processing device 3. It is preferable that the incident angle ⁇ is set in the range of 55 to 70 ° and the light receiving angle is set in the range of 20 to 40 °.
  • the image pickup by the image pickup device 2 is performed at a spot having a predetermined equipment resolution (preferably 0.2 mm or less) with respect to the entire width and length of the continuously conveyed steel plate.
  • the image picked up by the image pickup device 2 is subjected to image processing by the image processing device 3, and the defect determination device 4 detects a defect from the image information (image signal). The location is detected.
  • the defect determination device 4 detects a dark part p1 of the image information whose image luminance is less than the dark part threshold a1, and a light part p2 of the image information whose image luminance exceeds the light part threshold a2.
  • the meaning of the parentheses means that if the distance between the dark part p1 and the light part p2 is equal to or less than the distance threshold value (x), another part is located between the part corresponding to the dark part p1 and the part corresponding to the light part p2. That is, even if there is a portion of image information whose image luminance is equal to or more than the dark portion threshold value a1 and equal to or less than the bright portion threshold value a2, this portion is also extracted as one defective portion.
  • the dark part p1 where the image luminance is less than the dark part threshold value a1 is usually image information of the deposit on the steel plate.
  • the sputter itself adhering to the steel plate surface is oxidized on its surface and presents a black color, resulting in an image darker than the background. Therefore, the image information of the spatter itself is the above-described dark part p1.
  • a bright portion p2 in which the image luminance exceeds the bright portion threshold value a2 is usually image information of a deformed portion of the steel plate around the attached matter.
  • a crack that enters in parallel with the steel plate longitudinal direction before and after the spatter pushed into the steel plate has a bright image relative to the background because the incident angle of illumination is different from the background. Becomes Therefore, the image information of the steel plate deformed portion is the bright portion p2 described above.
  • FIG. 2 shows an image of a sputter flaw taken by the image pickup device (left figure) and an image of the sputter flaw after image processing (right figure), and the numerical value shown in the right figure is the image luminance.
  • FIG. 3 is a conceptual diagram showing an example of threshold processing performed on the image information of FIG. In FIG. 3, a dark portion p1 of the image information whose image brightness is less than the dark portion threshold value a1, and a bright portion of the image information whose image brightness exceeds the bright portion threshold value a2 on both sides (both sides in the longitudinal direction of the steel plate) of the dark portion p1.
  • p2 (bright part p2 a, bright portion p2 B) is present.
  • the distance x 0A between dark portion p1 and the light portion p2 A if both distance threshold (x) than the distance x 0B between the dark part p1 and the light portion p2 B, corresponding to the dark portion p1
  • both distance threshold (x) if both distance threshold (x) than the distance x 0B between the dark part p1 and the light portion p2 B, corresponding to the dark portion p1
  • the part to be extracted and both parts corresponding to the bright parts p2 A and p2 B are extracted as one defective part.
  • the distance x 0B between the dark part p1 and the light portion p2 B is the distance threshold value (x) below, if the distance x 0A between dark portion p1 and the light portion p2 A exceeds the distance threshold (x) , the portion corresponding to the bright part p2 a are excluded from the defective portions, one defective portion which combined only site corresponding to the site and the light portion p2 B corresponding to the dark part p1 is extracted.
  • the distance threshold (x) relating to the distance between the dark part p1 and the light part p2 is too small, the dark image and the bright image cannot be extracted as one defective portion when they are separated from each other.
  • the dark part threshold value a1 of the image luminance is too low, a harmful defect may not be detected in some cases.
  • the bright part threshold value a2 of the image luminance is too low, harmless color tone unevenness or the like may be detected and cause overdetection.
  • the present invention has an object to detect a harmful defect such as a spatter flaw that deforms a steel sheet in parallel to a running direction of the steel sheet.
  • a harmful defect such as a spatter flaw that deforms a steel sheet in parallel to a running direction of the steel sheet.
  • many defects that do not accompany the deformation of the steel plate such as dirt, minute foreign matter (harmless defect), and scratches that do not cause harm in an actual use situation are removed.
  • a defect for example, a dross defect
  • a dross defect other than the target specific harmful defect is included in the extracted defective portions.
  • the location is determined to be a harmful defect.
  • a defect such as a spatter flaw that deforms the steel sheet in parallel to the running direction of the steel sheet (longitudinal direction of the steel sheet) is detected (determined) as a harmful defect by distinguishing it from other defects (for example, a flaw and a dross defect). can do. For this reason, it is possible to specify an appropriate cause and take a measure for suppressing defects for each defect.
  • the ratio threshold value (y) relating to [length in the longitudinal direction of the steel sheet] / [length in the width direction of the steel sheet] is too small, the ratio is formed in parallel to the running direction of the steel sheet such as spatter flaws. Harmful defects cannot be detected successfully.
  • the ratio threshold value (y) is too large, a dark linear portion and a bright portion are extracted as one defect, and if there is an erroneous detection due to a captured image noise or the like, a long linear scratch or the like is generated. May not be distinguished from the defect.
  • FIG. 4 schematically shows image information for extracting a defective portion in the present invention.
  • 4 (A) to 4 (C) the left figure shows image information of the steel sheet surface after the image processing, and one square indicates one pixel (steel sheet width direction 0.11 mm ⁇ steel sheet longitudinal direction 0.16 mm). .
  • the right figure shows a defective portion extracted from the image.
  • the distance threshold (x) is set to 0.30 mm and the ratio threshold (y) is set to 2.0.
  • a dark part p1 (a dark part composed of four pixels) in which the image luminance is less than the dark part threshold a1, and one pixel on both sides in the longitudinal direction of the plate, the image luminance is changed to the light part threshold a2.
  • the dark portion p1 and the light portion p2 A, a dark portion p1 and the light portion p2 each distance x 0 of B is 0.16 mm, since both are distance threshold (x) below, one defective portion Together these It is extracted as d (defect).
  • a dark portion p1 (a dark portion composed of 8 pixels) in which the image luminance is less than the dark portion threshold value a1 and an image luminance value of the bright portion threshold value a2 separated by one pixel on both sides in the plate longitudinal direction.
  • bright portions p2 A and p2 B (light portions each consisting of three pixels) exceeding.
  • dark part p1 and the light portion p2 A, both the dark portion p1 and the light portion p2 each distance x 0 of B is 0.16 mm, since both are distance threshold (x) below, together, Is extracted as one defective portion d (defective portion).
  • the “harmful defect” for the purpose of inspection is Not determined. That is, if the purpose of the inspection is to detect spatter flaws, it is not determined to be spatter flaws.
  • a dark part p1 (a dark part composed of four pixels) in which the image luminance is less than the dark part threshold a1, and a bright part threshold in which the image luminance is separated by two pixels on one side in the plate longitudinal direction.
  • a bright portion p2 A (a bright portion consisting of two pixels) exceeding the value a2
  • a bright portion p2 B (a bright portion consisting of four pixels) whose image luminance exceeds the bright portion threshold value a2 by one pixel on the other side. ).
  • the distance x 0B between the dark part p1 and the light portion p2 B is 0.16 mm
  • the distance is the threshold value (x) below.
  • the distance x 0A between dark portion p1 and the light portion p2 A is 0.32 mm, greater than the distance threshold value (x).
  • the determination can be made using the following criteria (1) to (3).
  • whether the harmful defect is a serious harmful defect is determined based on the following criteria (1) to (3). The determination may be made using
  • the defect location when the extracted defect location satisfies one or more of the following criteria (1) to (3), the defect location may be determined to be a harmful defect or a serious harmful defect. Alternatively, when two or more or all of the following criteria (1) to (3) are satisfied, it may be determined to be a harmful defect or a serious harmful defect. Not only the determination of seriousness, but also the more serious the number out of the following criteria (1) to (3), the more serious the adverse effect is, the more serious the harmful defect. May be determined step by step. (1) The area of the bright part p2 (however, when there are two or more bright parts p2, the area is equal to or more than the area threshold value (w)).
  • the length of the light portion p2 in the longitudinal direction of the steel sheet (however, when there are two or more light portions p2, the total length thereof) is not less than the length threshold (z).
  • the maximum luminance point of the bright part p2 (if there are two or more bright parts p2, the maximum luminance point of at least one bright part p2) is set to be higher than the bright part threshold a2.
  • the ratio p2 of the area of the light part p2 to the area of the dark part p1 may be that / p1 is equal to or larger than the area threshold value (w) '. Further, it is more preferable to set the area threshold value (w) in the range of 0.6 to 8.0 mm 2 .
  • the length of the light part p2 in the steel sheet longitudinal direction is generally larger than the length of the dark part p1 in the steel sheet longitudinal direction, the light part p2 has the same length in the steel sheet longitudinal direction.
  • the judgment condition may be that the ratio p2 / p1 of the length of the dark portion p1 in the longitudinal direction of the steel plate is equal to or greater than the length threshold (z) ′. More preferably, the length threshold (z) is set in the range of 0.6 to 5.0 mm.
  • the maximum luminance point of the bright part p2 exceeds the bright part threshold a20 set to a higher luminance than the bright part threshold a2 as in the criterion in (3) above, it may be a harmful defect. It is more likely that the harmful defect is more severe or the harmful defect is more serious.
  • the brightness of the bright portion p2 which is a cracked portion of the ground iron, is high.
  • FIG. 5 schematically shows image information to be determined in a case where a defective portion is extracted and a determination is made by adding the above-described determination criteria (1) to (3) in the present invention.
  • the inspection purpose “ A case will be described in which a harmful defect is determined or a harmful defect is determined to be a serious harmful defect. If two or more or all of the above criteria (1) to (3) are satisfied, it is judged as "harmful defect” for the purpose of inspection, or if it is "serious harmful defect” among harmful defects. It may be determined.
  • the left figures are images of the steel sheet surface after the image processing, and one square shows one pixel (the steel sheet width direction 0.11 mm ⁇ the steel sheet longitudinal direction 0.16 mm).
  • the right figure shows a defective portion extracted from the image.
  • the distance threshold (x) is 0.30 mm
  • the ratio threshold (y) is 2.0
  • the area threshold (w) is 0.10 mm 2
  • the length threshold (z) is 0. It is assumed that the light section threshold a20 is set to 180 and the bright section threshold a20 is set to 180.
  • a dark part p1 (a dark part composed of four pixels) where the image luminance is less than the dark part threshold a1, and one pixel on both sides in the longitudinal direction of the plate, the image luminance is set to the light part threshold a2.
  • the defective portion is determined to be a “harmful defect” for the purpose of inspection, or is determined to be a “serious harmful defect” among the harmful defects. If the purpose of the inspection is to detect spatter flaws, it is determined to be spatter flaws (harmful defects) or serious spatter flaws (harmful defects).
  • the brightest point (part) of the bright portion s2 is less than the bright portion threshold value a20, and the total length of the bright portion p2 in the longitudinal direction of the steel plate is longer. If it is less than the threshold value (x), it is determined that the defect location d is not a “harmful defect” for the purpose of inspection, or that it is a “harmful defect” but not serious.
  • a dark portion p1 (a dark portion composed of four pixels) where the image brightness is less than the dark portion threshold value a1, and a bright portion where the image brightness exceeds the bright portion threshold value a2 in contact with both sides in the plate longitudinal direction. Since there are p2 A and p2 B (bright portions each consisting of two pixels), and the distance between the dark portion p1 and the bright portion p2 A, and the distance between the dark portion p1 and the bright portion p2 B are all less than or equal to the distance threshold value (x), One defect location d (defective portion) combining these is extracted.
  • the total length of the bright portion p2 A, p2 B in steel longitudinal direction is 0.32 mm, which is less than the length threshold (z) (0.40mm). For this reason, it is determined that it is not a “harmful defect” for the purpose of inspection, or that it is a “harmful defect” but not serious.
  • the purpose of the inspection is the detection of a sputter flaw, it is determined that the sputter flaw is not present, or that the sputter flaw is not serious.
  • the defective portion d is determined to be a “harmful defect”, or is determined to be a “serious harmful defect” among the harmful defects.
  • a dark part p1 (a dark part composed of two pixels) in which the image luminance is less than the dark part threshold a1, and a bright part threshold a2 in contact with one side in the plate longitudinal direction.
  • a bright part p2 A (a bright part consisting of two pixels) that exceeds
  • a bright part p2 B (a bright part consisting of one pixel) in which the image luminance exceeds the bright part threshold a2 in contact with the other side
  • a dark part p1 because the light portion p2 a, the distance between the dark portion p1 and the light portion p2 B is less any distance threshold (x), it is extracted as together these single defective portion d (defect).
  • the purpose of the inspection is to detect a sputter flaw, it is determined that the sputter flaw is not present, or that the sputter flaw is not serious.
  • the defect location d is a “harmful defect”. Or, among the harmful defects, is determined to be a “serious harmful defect”.
  • the present invention is suitable for detecting spatter flaws on a galvanized steel sheet (for example, a hot-dip galvanized steel sheet, an alloyed hot-dip galvanized steel sheet, and the like).
  • a galvanized steel sheet for example, a hot-dip galvanized steel sheet, an alloyed hot-dip galvanized steel sheet, and the like.
  • spatter flaws are detected separately from flaws and / or dross flaws, and are determined to be harmful flaws.
  • a dross defect is also one of the harmful defects. That is, in the manufacturing process of the plated steel sheet, dross adhered to the surface of the plated steel sheet may be pushed into the roll or rolled. Then, a minute deformation occurs on the surface of the plated steel sheet, resulting in a dross defect. This dross defect is also a harmful defect that adversely affects painting and the like.
  • a distance threshold (x) that can extract both a dross defect and a sputter defect as a defect location is set, and a ratio threshold (y) among the extracted defect locations, and further, (1)
  • a defect location determined not to be a sputter flaw using the criteria of (3) may be determined to be a dross defect.
  • the defect location may be determined to be a dross defect.
  • the dross defect may be determined by using the property of the dross defect extending in the plate width direction and adding a condition that the length of the defect portion in the plate width direction is equal to or longer than a set length. In this way, among the harmful defects, sputter flaws of different defect types and dross defects can be distinguished and determined.
  • a surface defect inspection device as shown in FIG. 1 was installed in the continuous hot-dip galvanizing line to detect surface defects of the plated steel sheet.
  • the continuous hot-dip galvanizing line has a steel strip passing speed of 80 to 140 mpm and a steel strip dimension of 820 to 1840 mm.
  • the resolution of the inspection equipment is 0.11 mm in the width direction ⁇ 0.16 mm in the passing direction, and in the image processing, processing is performed by classifying the luminance of each pixel into 256 levels (0 to 255).
  • the dark part threshold a1 is set at a luminance of 85 and the bright part threshold a2 is set at a luminance of 150, and the distance threshold (x) relating to the distance between the dark part p1 and the light part p2 is set. ) was set to 0.48 mm.
  • a ratio threshold (y) relating to [length in the steel plate longitudinal direction] / [length in the steel plate width direction] is 2.0
  • the length threshold (z) for the length of the bright portion p2 in the longitudinal direction of the steel sheet (however, when there are two or more bright portions p2, the length threshold (z) is set to 0.8 mm
  • a detection test of surface defects was performed by the present invention and the conventional method.
  • a conventional method when the lowest value of the luminance of the region determined as a defect is lower than the dark part threshold value a1, a method of determining the severity of the defect according to the luminance is used.
  • the conventional method was applied, it was impossible for the inspection equipment to discriminate harmless dirt and fine foreign matter from harmful spatter flaws, and it was possible to find them only by visual inspection of the inspector with the steel plate running stopped. . For this reason, it was impossible to confirm the total length of the product.
  • the surface defect inspection described above may be applied to a method for manufacturing a plated steel sheet.
  • a manufacturing process of a plated steel sheet for example, a step of annealing a steel sheet, a step of attaching a plating layer to the surface of the annealed steel sheet, a step of forming a steel sheet having the plated layer attached thereto, and performing a surface inspection on the chemically treated plated steel sheet
  • the above-described surface defect inspection is performed in the surface inspection process.
  • the fact may be displayed on a display device installed in the plating production line.
  • the information to be displayed includes, for example, the presence or absence of a harmful defect, the position information of the harmful defect, the severity, the length or area of the harmful defect, and the like.
  • a mixing ratio of a dross defect or the like into a steel coil wound around a metal plate is calculated.
  • the mixing ratio means (length (m) where dross defect or the like is extracted / length (m)).
  • the mixing ratio is equal to or higher than the set threshold value, the plated steel sheet coil is determined to be rejected.
  • the sputter flaw is different from a dross defect and the like, and may cause a serious problem such as breakage of a press die. For this reason, rejection determination is performed regardless of the number of sheets in the steel sheet coil. Then, spatter flaws are removed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

【課題】金属板表面に存在するスパッタ疵などのような金属板の走行方向と平行に金属板の変形が起こる有害欠陥を的確に検出する。 【解決手段】照明された金属板表面を撮像し、得られた画像情報をしきい値処理して金属板の表面欠陥を抽出するに際し、得られた画像情報のなかで、画像輝度が暗部しきい値a1未満となる暗部p1と画像輝度が明部しきい値a2を超える明部p2との距離が距離しきい値(x)以下となる場合に、暗部p1と明部p2を合わせて1つの欠陥箇所として抽出し、この欠陥箇所のなかで、少なくとも[金属板長手方向での長さ]/[金属板幅方向での長さ]≧比率しきい値(y)を満足する欠陥箇所を有害欠陥と判定する。

Description

金属板の表面欠陥検出方法及び装置並びにめっき鋼板の製造方法
 本発明は、金属板表面の凹凸欠陥を光学的に検出するための検出方法に関するものであり、特に、冷延鋼板や亜鉛めっき鋼板の表面に存在するスパッタ疵を検出するのに好適な表面欠陥検出方法及び装置並びにめっき鋼板の製造方法に関する。
 溶融亜鉛めっき鋼板などの薄鋼板の表面品質に対する要求レベルは近年厳格化が進んでおり、寸法が0.2mm程度の欠陥であっても問題にされるようになってきている。したがって、そのような欠陥を有する製品を出荷しないよう品質保証を行うことが重要である。また、これらの欠陥は鋼板表面にランダムに発生する形態のものもあるため、鋼板全長に渡って検査を行う必要があり、そのための自動検査装置(特に、光学的な手法を用いた検査装置)の開発が進められている。
 特許文献1には、照明手段と撮像手段を鋼板の進行方向に対して後方側に配置するとともに、照明手段による照明光の鋼板表面に対する入射角と、撮像手段の受光角を所定の角度範囲とした欠陥検査装置が示されている。この装置によれば、欠陥ではないバックグラウンドの影響を抑制し、微小な欠陥を撮像することができるとしている。
 また、特許文献2では、照明手段と撮像手段に加えて、検査対象の画像を反射する反射面を有する画像反射手段を備えた表面検査装置が示されており、複数の角度からの欠陥画像を解析する。これにより、有害疵と汚れなどの無害疵の識別や、欠陥種類の判別が可能であるとしている。
 また、特許文献3には、金属板表面を照明して、金属板上の照明部分を撮像し、得られた画像情報をしきい値処理して金属板の表面欠陥を抽出する金属板の表面欠陥検査方法が示されている。特許文献3において、得られた画像情報のなかで、画像輝度が暗部しきい値a1未満となる画像情報s1と画像輝度が明部しきい値a2を超える画像情報s2であって、両画像情報s1,s2の部位p1,p2間の距離が距離しきい値(x)以下となる関係の画像情報s1,s2がある場合、これら画像情報s1,s2の部位p1,p2を合わせた1つの欠陥箇所が抽出される金属板の表面欠陥検出方法が示されている。さらに、特許文献3では、欠陥部分の明度・暗度に加えアスペクト比によって分類することで、過検出を抑えて微小な有害欠陥を抽出することが可能であるとしている。
特開2012-103017号公報 特開2011-53228号公報 特開2016-188768号公報
 特許文献1の装置では、欠陥部分とバックグラウンド部分の輝度差によって欠陥識別は可能である。しかしながら、その欠陥種類の判別や重篤度の判別という処理については言及されておらず、このためそれらの判別は困難であると考えられる。
 また、特許文献2の装置では、画像反射手段があるため設備が複雑になること、反射板の手入れが適切に行われないと欠陥検出能力に影響を与えること、画像処理が複雑になるため検査対象が高速で移動する際には通信速度・計算速度を十分確保する必要があること、などの点が問題として挙げられる。
 また、特許文献3の方法では、鋼板の幅方向と平行に鋼板の変形が起こる欠陥については分類・検出が可能である。しかしながら、鋼板の走行方向と平行に鋼板の変形が起こる欠陥、例えば、冷延鋼板や亜鉛めっき鋼板の表面に存在するスパッタ疵などについては分類・検出が難しく、そのような欠陥の検出方法には適用することができない。スパッタ疵とドロス欠陥やスリ疵は同じ微小欠陥であるが、鋼板の加工時にプレス機金型等に与える影響度が異なる(一般にスパッタ疵の方が硬いため悪影響を与えやすい)ため、スパッタ疵をドロス欠陥やスリ疵と区別して検出する必要がある。また、スパッタ疵とドロス欠陥やスリ疵は、発生原因が全く異なるため、区別して検出できないと適切な原因特定や欠陥抑止対策につなげることができない。
 したがって本発明の目的は、以上のような従来技術の課題を解決し、金属板の表面欠陥を検出する方法において、簡便な設備構成で冷延鋼板や亜鉛めっき鋼板の表面に存在するスパッタ疵などのような金属板の走行方向と平行に金属板の変形が起こる有害欠陥を的確に検出することができる表面欠陥検出方法及び装置並びにめっき鋼板の製造方法を提供することにある。
 上記課題を解決するための本発明の要旨は以下のとおりである。
[1]照明された金属板表面を撮像し、得られた画像情報をしきい値処理してめっき金属板の表面欠陥を抽出する表面欠陥検査方法において、
 得られた画像情報のなかで、画像輝度が暗部しきい値(a1)未満となる暗部(p1)と画像輝度が明部しきい値(a2)を超える明部(p2)との距離が距離しきい値(x)以下となる暗部(p1)と明部(p2)を検出し、
 検出した暗部(p1)に相当する部位と明部(p2)に相当する部位を合わせて1つの欠陥箇所として抽出し、
 抽出した欠陥箇所のなかで、少なくとも[金属板長手方向での長さ]/[金属板幅方向での長さ]≧比率しきい値(y)を満足する欠陥箇所を有害欠陥と判定する
金属板の表面欠陥検査方法。
[2]距離しきい値(x)を0.1~5.0mmの範囲で設定する[1]に記載の金属板の表面欠陥検出方法。
[3]比率しきい値(y)を1.0~5.0の範囲で設定する[1]または[2]に記載の金属板の表面欠陥検出方法。
[4] 抽出した欠陥箇所のなかで、[金属板長手方向での長さ]/[金属板幅方向での長さ]≧比率しきい値(y)を満足し、且つ下記(1)~(3)のうちの1つ以上を満足する欠陥箇所を有害欠陥又は重篤な有害欠陥と判定する[1]~[3]のいずれかに記載の金属板の表面欠陥検出方法。
 (1)欠陥箇所内の明部(p2)の合計面積が面積しきい値(w)以上である。
 (2)欠陥箇所内の明部(p2)の金属板長手方向での合計長さが長さしきい値(z)以上である。
 (3)欠陥箇所内の明部(p2)の最大輝度値が、明部しきい値(a2)よりも高輝度に設定された明部しきい値(a20)を超える。
[5]抽出した欠陥箇所のなかで、[金属板長手方向での長さ]/[金属板幅方向での長さ]≧比率しきい値(y)を満足し、且つ上記(1)~(3)のうちの2つ以上を満足する欠陥箇所を有害欠陥又は重篤な有害欠陥と判定する[4]に記載の金属板の表面欠陥検出方法。
[6]抽出した欠陥箇所のなかで、[金属板長手方向での長さ]/[金属板幅方向での長さ]≧比率しきい値(y)を満足し、且つ上記(1)~(3)のすべてを満足する欠陥箇所を有害欠陥又は重篤な有害欠陥と判定する[4]に記載の金属板の表面欠陥検出方法。
[7]面積しきい値(w)を0.06~34.00mmの範囲で設定することを特徴とする[4]~[6]のいずれかに記載の金属板の表面欠陥検出方法。
[8]長さしきい値(z)を0.6~10.0mmの範囲で設定することを特徴とする[4]~[7]のいずれかに記載の金属板の表面欠陥検出方法。
[9]金属板表面を照明する照明手段と、該照明手段による金属板上の照明部分を撮像する撮像手段が、金属板進行方向において金属板法線よりも前方側または後方側のいずれか一方に配置される[1]~[8]のいずれかに記載の金属板の表面欠陥検出方法。
[11][10]に記載の金属板の表面欠陥検出方法によってスパッタ疵と判定された場合に、スリ疵及び/又はドロス欠陥と判定された場合とは異なる対処を、有害欠陥があると判定されためっき鋼板に対して実施することを特徴とするめっき鋼板の製造方法。
[12][1]~[11]のいずれかに記載の表面欠陥検出方法による表面欠陥検出を行う画像処理装置と欠陥判定装置を備えることを特徴とする金属板の表面欠陥検査装置。
 本発明によれば、簡便な設備構成で冷延鋼板や亜鉛めっき鋼板の表面に存在するスパッタ疵などのような金属板の走行方向と平行に金属板の変形が起こる有害欠陥を的確に検出することができる。
本発明に実施に供される表面欠陥検査装置の一例を示す説明図 撮像器で撮像されたスパッタ疵の画像(左図)と、その画像処理後の画像(右図)を示す図面 本発明において図2の画像情報に対してなされるしきい値処理の一例を示す概念図 本発明の一実施形態において、欠陥抽出及び有害欠陥の判定を行う画像情報を模式的に示す図面 本発明の他の実施形態において、欠陥抽出及び有害欠陥の判定を行う画像情報を模式的に示す図面 撮像器で撮像されたドロス欠陥、スリ疵、スパッタ疵の各画像を示す図面
 本発明は、鋼板をはじめとする各種の金属板の表面欠陥を検出する方法であるが、鋼板の表面に存在するスパッタ疵を検出するのに特に好適な方法であるため、以下においては、主に冷延鋼板や亜鉛めっき鋼板などのような鋼板の表面欠陥を検出する場合を例に説明する。
 微小な欠陥には、実際の使用状況では害とならない汚れや微小異物、軽微なスリ疵などの無害欠陥と、加工・塗装時に問題となる有害欠陥がある。例えば、無害欠陥には極微量の油滴の飛散による汚れがあり、有害欠陥には冷延鋼板や亜鉛めっき鋼板におけるスパッタ疵によるものがある。このスパッタ疵とは、連続ラインにおいて鋼板の端部どうしを溶接接合する際に発生するスパッタ(溶接において溶融した金属液滴が飛散し、冷却後に小球状の固体となったもの)が金属板に押し込まれることで発生する欠陥である。スパッタ疵は、鋼板面に付着したスパッタ(スパッタが酸化したもの)とこのスパッタを起点として生じた鋼板変形部からなる表面欠陥である。従来の手法では、上記の有害欠陥と無害欠陥を判別することが困難である。その理由は、有害欠陥と無害欠陥の表面粗さや光学的特性に差が無い場合、光学的手法では差異を見出すことができないからである。
 そこで本発明では、欠陥部分だけでなく、その周辺の鋼板部分が受ける影響を加味して欠陥の判定を行うものである。例えば、酸洗工程前の溶接で鋼板に付着したスパッタは、その後の冷間圧延工程やプロセスロール通過の際に、鋼板に割れ目を形成しながら鋼板に押し込まれる。また、この割れ目は走間で押し込まれることから走行方向(鋼板長手方向)に伸びた形状となる。この変形の度合いは、鋼板をプレス成型する場合に有害欠陥となるか否かに強い関係があるとともに、有害欠陥となる場合の重篤度の高さと相関があることが分かっている。重篤度が高い場合には、プレス成型工程においてプレス金型に疵をつけることがあり、このような疵が生じたプレス金型は手入れ・交換の必要が生じる。このため、プレス成型工程の品質・生産能率に多大な悪影響を及ぼす。したがって、鋼板のスパッタ疵を精度よく検出し、その重篤度を適切に判定することは極めて重要な技術である。
 例えば、鋼板の進行方向に対して後方側に照明手段と撮像手段を有する検査装置により欠陥検出が行われる。冷延鋼板におけるスパッタ疵の特性を考えると、スパッタそのものは表面が酸化してされており、黒色を呈するため、バックグラウンドに対し暗い画像となる。また、スパッタ上層にめっきが施された亜鉛めっき鋼板の場合にもスパッタ表面は金属光沢を有し、バックグラウンドに対し暗い画像となる。一方で、スパッタの前後に長手方向に入る割れ目部分(鋼板変形部)に関しては、照明の入射角度がバックグラウンドと異なるため、バックグラウンドに対して明るい部分が存在する。
 したがって、この暗い画像と明るい画像が近接しているときに合わせて一つの欠陥箇所として画像処理を行うことで、スパッタ押込みに起因した鋼板の変形を伴わないスリ疵等の無害欠陥と区別して、鋼板の変形を伴う重篤欠陥と認識することができる。そこで、本発明では、この暗い画像と明るい画像が近接しているときに合わせて一つの欠陥箇所として抽出を行うとともに、スリ疵等の無害欠陥とを区別するため、この欠陥箇所の鋼板長手方向と幅方向の寸法比(アスペクト比)を指標として用いる。これにより、検査目的の有害欠陥の判別を的確に行うことができるようにしたものである。
 ここで、図6に、撮像器で撮像されたドロス欠陥、スリ疵、スパッタ疵の各画像を示す。
 本発明は、鋼板表面を照明して、鋼板上の照明部分を撮像し、得られた画像情報をしきい値処理して鋼板の表面欠陥を抽出する表面欠陥検査方法である。図1は、本発明の実施に供される表面欠陥検査装置の一例を示している。表面欠陥検査装置は、投光器1、撮像器2、画像処理装置3、欠陥判定装置4などで構成される。
 前記投光器1は、鋼板5(例えば、溶融亜鉛めっき鋼板など)の表面に光を投射するものである。照明の種類は特に限定されず、例えば、従来の表面欠陥検査で使われているハロゲン照明、メタルハライド照明、蛍光灯、LED照明、キセノンストロボ照明などを用いることができる。
 前記撮像器2は、鋼板5の表面から反射された光を撮像するものであり、例えばCCDエリアセンサカメラやCCDラインセンサカメラなどを用いることができる。撮像器2の空間分解能は、微小な欠陥を検出するため0.2mm以下にするのが適当である。
 図1の例では、投光器1と撮像器2が鋼板進行方向において鋼板法線よりも後方側(下流側)に配置されている。一般に、投光器1からの光の入射角αは鋼板法線に対して例えば50°~80°程度に設定され、撮像器3の受光角βは鋼板法線に対して例えば0°~40°程度に設定される。なお、投光器1と撮像器2は、鋼板進行方向において鋼板法線よりも前方側(上流側)に配置されてもよい。
 画像処理装置3は、撮像器2により得られた画像をしきい値処理して欠陥判定に必要な画像情報とする。欠陥判定装置4は、画像処理装置3で得られた画像情報に基づき、欠陥箇所の抽出と有害欠陥の判定などを行う。なお、入射角αは55~70°、受光角は20~40°の範囲で設定することが好ましい。
 撮像器2による撮像は、連続搬送される鋼板の全幅全長に対して所定の設備分解能(好ましくは0.2mm以下)のスポットで行われる。
 本発明では、例えば、以上のような表面欠陥検査装置において、撮像器2で撮像された画像が画像処理装置3で画像処理され、その画像情報(画像信号)のなかから欠陥判定装置4で欠陥箇所が検出される。欠陥判定装置4において、画像輝度が暗部しきい値a1未満となる画像情報の暗部p1と、画像輝度が明部しきい値a2を超える画像情報の明部p2が検出される。暗部p1と明部p2との距離が距離しきい値(x)以下となる場合に、暗部p1に相当する部位と明部p2に相当する部位(但し、暗部p1に相当する部位と明部p2に相当する部位との間に他の部位がある場合にはこれを含む。)を合わせた1つの欠陥箇所が抽出される。ここで、カッコ書きの意味は、暗部p1,明部p2間の距離が距離しきい値(x)以下であれば、暗部p1に相当する部位と明部p2に相当する部位間に他の部位、すなわち画像輝度が暗部しきい値a1以上、明部しきい値a2以下の画像情報の部位があっても、これも合わせて一つの欠陥箇所として抽出する。
 ここで、画像輝度が暗部しきい値a1未満となる暗部p1は、通常、鋼板上の付着物の画像情報である。スパッタ疵を例にとると、鋼板面に付着したスパッタそのものは、表面が酸化され、黒色を呈するため、バックグラウンドに対し暗い画像となる。よって、スパッタそのものの画像情報は上述した暗部p1となる。一方、画像輝度が明部しきい値a2を超える明部p2は、通常、付着物の周辺での鋼板の変形部の画像情報である。スパッタ疵を例にとると、鋼板に押し込まれたスパッタの前後に鋼板長手方向と平行に入る割れ目(鋼板変形部)は、照明の入射角度がバックグラウンドと異なるため、バックグラウンドに対して明るい画像となる。よって、鋼板変形部の画像情報は上述した明部p2となる。
 図2は、撮像器で撮像されたスパッタ疵の画像(左図)と、このスパッタ疵の画像処理後の画像(右図)を示しており、右図中に表した数値は画像輝度である。また、図3は、図2の画像情報に対してなされるしきい値処理の一例を示す概念図である。図3では、画像輝度が暗部しきい値a1未満となる画像情報の暗部p1と、この暗部p1の両側(鋼板長手方向両側)に画像輝度が明部しきい値a2を超える画像情報の明部p2(明部p2、明部p2)が存在している。この場合、例えば、暗部p1と明部p2間の距離x0Aと、暗部p1と明部p2間の距離x0Bがいずれも距離しきい値(x)以下であれば、暗部p1に相当する部位と明部p2,p2に相当する両部位を合わせて1つの欠陥箇所として抽出する。一方、暗部p1と明部p2間の距離x0Bが距離しきい値(x)以下であるが、暗部p1と明部p2間の距離x0Aが距離しきい値(x)を超える場合には、明部p2に相当する部位は欠陥箇所から除外され、暗部p1に相当する部位と明部p2に相当する部位のみを合わせた1つの欠陥箇所が抽出される。
 本発明において、暗部p1と明部p2間の距離に関する距離しきい値(x)は、小さすぎると暗い画像と明るい画像が離れている場合に一つの欠陥箇所として抽出ができない。一方、距離しきい値(x)が大きすぎると実際には別の欠陥である2つの画像を結合してしまい、欠陥の種類・重篤度を正しく判定することができない。このため距離しきい値(x)は0.1~5.0mmの範囲で設定する(例えば、距離しきい値(x)=0.30mm)ことが好ましい。さらに、距離しきい値(x)は、0.1~1.0mmの範囲で設定することがより好ましい。
 また、画像輝度の暗部しきい値a1は、低すぎると有害欠陥を検知できない場合がある。一方、暗部しきい値a1が高すぎると無害な色調ムラなどを検知して過検出の原因となるおそれがある。このため暗部しきい値a1は70~110の範囲で設定する(例えば、暗部しきい値a1=90)ことが好ましい。さらに、暗部しきい値a1は、75~105の範囲で設定することがより好ましい。
 また、画像輝度の明部しきい値a2は、低すぎると無害な色調ムラなどを検知して過検出の原因となるおそれがある。一方、明部しきい値a2が高すぎると有害欠陥を検知できない場合がある。このため明部しきい値a2は140~190の範囲で設定する(例えば、明部しきい値a2=150)ことが好ましい。さらに、明部しきい値a2は、145~170の範囲で設定することがより好ましい。
 本発明は、スパッタ疵のような鋼板の走行方向と平行に鋼板の変形が起こる有害欠陥の検出を目的としている。本発明では、上記のようにして欠陥箇所の抽出を行うことにより、実際の使用状況では害とならない汚れや微小異物(無害欠陥)、スリ疵など鋼板の変形を伴わない欠陥の多くが除かれる。しかしながら、抽出された欠陥箇所のなかには、目的とする特定の有害欠陥以外の欠陥(例えばドロス欠陥など)が含まれる可能性がある。そこで、本発明では、上記のように抽出した欠陥箇所のなかで、少なくとも[鋼板長手方向での長さ]/[鋼板幅方向での長さ]≧比率しきい値(y)を満足する欠陥箇所を有害欠陥と判定する。これにより、スパッタ疵などのような鋼板の走行方向(鋼板長手方向)と平行に鋼板の変形が起こる欠陥を、他の欠陥(例えばスリ疵、ドロス欠陥)と区別して有害欠陥として検出(判定)することができる。このため欠陥毎に適切な原因特定や欠陥抑止対策をとることが可能となる。
 本発明において、[鋼板長手方向での長さ]/[鋼板幅方向での長さ]に関する比率しきい値(y)が、小さすぎるとスパッタ疵のような鋼板の走行方向と平行に形成される有害欠陥をうまく検出できない。一方、比率しきい値(y)が大きすぎると暗部と明部を合わせて1つの欠陥として抽出するなかで撮像画像ノイズ等による誤検出があった場合に、長く線状に発生したスリ疵等の欠陥と区別することができないおそれがある。また、スパッタ疵の場合に、一般的には[鋼板長手方向での長さ]/[鋼板幅方向での長さ]が5.0を超えるようなものが生じることはない。このため比率しきい値(y)は1.0~5.0の範囲で設定する(例えば、比率しきい値(y)=3.0)ことが好ましい。さらに、比率しきい値(y)は、2.0よりも大きいことがより好ましい。これは、比率しきい値(y)が2.0以下であると、鋼板長手方向に短いドロス欠陥と区別して判別できないおそれがあるからである。
 図4は、本発明において欠陥部抽出を行う画像情報を模式的に示したものである。
 図4(A)~(C)において、左図は画像処理後の鋼板表面の画像情報であり、1マスが1画素(鋼板幅方向0.11mm×鋼板長手方向0.16mm)を示している。また、右図が画像から抽出された欠陥箇所である。ここでは、距離しきい値(x)を0.30mmに、比率しきい値(y)を2.0にそれぞれ設定したとする。
 図4(A)では、画像輝度が暗部しきい値a1未満となる暗部p1(4画素からなる暗部)と、その板長手方向両側に1画素分あけて、画像輝度が明部しきい値a2を超える明部p2,p2(各4画素からなる明部)がある。この暗部p1と明部p2A、暗部p1と明部p2の各距離xが0.16mmであり、いずれも距離しきい値(x)以下であるため、これらを合わせて1つの欠陥箇所d(欠陥部)として抽出される。さらに、欠陥箇所dは[鋼板長手方向での長さ]/[鋼板幅方向での長さ]=3.0≧比率しきい値(y)であるため、検査目的の「有害欠陥」であると判定される。すなわち、検査の目的がスパッタ疵の検出である場合には、スパッタ疵であると判定される。
 図4(B)では、画像輝度が暗部しきい値a1未満となる暗部p1(8画素からなる暗部)と、その板長手方向両側に1画素分あけて画像輝度が明部しきい値a2を超える明部p2,p2(各3画素からなる明部)がある。この場合も、暗部p1と明部p2A、暗部p1と明部p2の各距離xがいずれも0.16mmであり、いずれも距離しきい値(x)以下であるため、これらを合わせて1つの欠陥箇所d(欠陥部)として抽出される。しかし、この欠陥箇所dは[鋼板長手方向での長さ]/[鋼板幅方向での長さ]=1.5<比率しきい値(y)であるため検査目的の「有害欠陥」とは判定されない。すなわち、検査の目的がスパッタ疵の検出である場合には、スパッタ疵とは判定されない。
 図4(C)では、画像輝度が暗部しきい値a1未満となる暗部p1(4画素からなる暗部)と、その板長手方向の一方の側に2画素分あけて画像輝度が明部しきい値a2を超える明部p2(2画素からなる明部)があり、他方の側に1画素分あけて画像輝度が明部しきい値a2を超える明部p2(4画素からなる明部)がある。この場合は、暗部p1と明部p2間の距離x0Bは0.16mmであり、距離しきい値(x)以下である。一方、暗部p1と明部p2間の距離x0Aは0.32mmであり、距離しきい値(x)を超える。このため、明部p2は欠陥箇所dとして抽出されず、暗部p1と明部p2を合わせて1つの欠陥箇所d(欠陥部)として抽出される。さらに、欠陥箇所dは[鋼板長手方向での長さ]/[鋼板幅方向での長さ]=2.5≧比率しきい値(y)であるため検査の目的の「有害欠陥」であると判定される。すなわち、検査の目的がスパッタ疵の検出である場合には、スパッタ疵であると判定される。
 また、本発明では、上述のようにして抽出された欠陥箇所について、有害欠陥をより高精度に検出するために、上述した[鋼板長手方向での長さ]/[鋼板幅方向での長さ]≧比率しきい値(y)という基準に加えて、下記(1)~(3)のような基準を用いて判定することができる。換言すれば、検出精度を高めるために、距離しきい値(x)及び比率しきい値(y)に基づく有害欠陥の検出結果が正しいか否かを判定することができる。或いは、距離しきい値(x)及び比率しきい値(y)に基づいて検出された有害欠陥のなかでも、重篤な有害欠陥であるか否かを下記(1)~(3)の基準を用いて判定してもよい。
 ここで、抽出された欠陥箇所が下記(1)~(3)の基準の1つ以上を満足する場合に、その欠陥箇所が有害欠陥又は重篤な有害欠陥であると判定としてもよい。あるいは、下記(1)~(3)の基準の2つ以上若しくは全部を満足する場合に有害欠陥又は重篤な有害欠陥であると判定してもよい。また、重篤か否かという判定だけでなく、下記(1)~(3)の基準のうち満足する数が多い程、悪影響の大きいより重篤な有害欠陥である、というように重篤度を段階的に判断してもよい。
 (1)明部p2の面積(但し、明部p2が2つ以上ある場合は、それらの合計面積)が面積しきい値(w)以上である。
 (2)明部p2の鋼板長手方向での長さ(但し、明部p2が2つ以上ある場合は、それらの合計長さ)が長さしきい値(z)以上である。
 (3)明部p2の最大輝度点(但し、明部p2が2つ以上ある場合は、少なくも1つの明部p2の最大輝度点)が、明部しきい値a2よりも高輝度に設定された明部しきい値a20を超える。
 上記(1)の基準のように明部p2の面積が大きいほど有害欠陥である可能性がより高く、或いは有害欠陥が重篤である可能性が高いと言える。特に、スパッタ疵の場合には、地鉄の割れ部である明部p2の面積が大きいという特徴がある。スパッタ疵などの明部p2の面積からして、面積しきい値(w)は0.06~34.00mm程度の範囲で設定する(例えば、面積しきい値(w)=0.08mm)ことが好ましい。また、スパッタ疵の場合、通常、暗部p1の面積に較べて明部p2の面積の方が大きいため(2倍程度であることが多い)、明部p2の面積と暗部p1の面積の比p2/p1が面積しきい値(w)’以上であることを判定条件としてもよい。さらに、面積しきい値(w)は0.6~8.0mmの範囲で設定することがより好ましい。
 上記(2)の基準のように明部p2の鋼板長手方向での長さが大きいほど有害欠陥である可能性がより高く、或いは有害欠陥が重篤である可能性が高いと言える。特に、スパッタ疵の場合には、地鉄の割れ部である明部p2の長さが大きいという特徴がある。スパッタ疵などの明部p2の長さからして、長さしきい値(z)は0.6~10.0mm程度の範囲で設定する(例えば、長さしきい値(z)=0.8mm)ことが好ましい。また、スパッタ疵の場合、通常、暗部p1の鋼板長手方向での長さに較べて明部p2の鋼板長手方向での長さの方が大きいため、明部p2の鋼板長手方向での長さと暗部p1の鋼板長手方向での長さの比p2/p1が長さしきい値(z)’以上であることを判定条件としてもよい。さらに、長さしきい値(z)は0.6~5.0mmの範囲で設定することがより好ましい。
 上記(3)の基準のように、明部p2の最大輝度点が、明部しきい値a2よりも高輝度に設定された明部しきい値a20を超える場合には、有害欠陥である可能性がより高く、或いは有害欠陥が重篤である可能性が高いと言える。特に、スパッタ疵の場合には地鉄の割れ部である明部p2の輝度が高いという特徴がある。スパッタ疵などの明部p2の輝度からして、明部しきい値a20(輝度)は145~205の範囲で設定する(例えば、明部しきい値a20=180)ことが好ましい。さらに、明部しきい値a20は145~190mmの範囲で設定することがより好ましい。
 図5は、本発明において、欠陥部抽出を行い且つ上記(1)~(3)の判定基準を加えて判定を行う場合について、判定の対象となる画像情報を模式的に示したものである。ここでは、上述した距離しきい値(x)及び比率しきい値(y)の基準に加えて、上記(1)~(3)の基準のいずれか1つを満足する場合に検査目的の「有害欠陥」と判定し、或いは有害欠陥のなかでも「重篤な有害欠陥」であると判定する場合について説明する。なお、上記(1)~(3)の基準の2つ以上或いは全部を満足する場合に検査目的の「有害欠陥」と判定し、或いは有害欠陥のなかでも「重篤な有害欠陥」であると判定してもよい。
 図5(A)~(C)において、左図は画像処理後の鋼板表面の画像であり、1マスが1画素(鋼板幅方向0.11mm×鋼板長手方向0.16mm)を示している。また、右図が画像から抽出された欠陥箇所である。ここでは、距離しきい値(x)を0.30mm、比率しきい値(y)を2.0、面積しきい値(w)を0.10mm、長さしきい値(z)を0.40mm、明部しきい値a20を180にそれぞれ設定したとする。
 図5(A)では、画像輝度が暗部しきい値a1未満となる暗部p1(4画素からなる暗部)と、その板長手方向両側に1画素分あけて、画像輝度が明部しきい値a2を超える明部p2,p2(各4画素からなる明部)があり、暗部p1と明部p2A、暗部p1と明部p2の各距離xが0.16mmであり、いずれも距離しきい値(x)以下であるため、これらを合わせた1つの欠陥箇所d(欠陥部)が抽出される。さらに、欠陥箇所dは[鋼板長手方向での長さ]/[鋼板幅方向での長さ]=3.0≧比率しきい値(y)であり、且つ明部s2の最高輝度点(部位)が明部しきい値a20を超えている。このため、欠陥箇所は検査目的の「有害欠陥」であると判定され、或いは有害欠陥のなかでも「重篤な有害欠陥」であると判定される。なお、検査の目的がスパッタ疵の検出である場合には、スパッタ疵(有害欠陥)と判定され、或いは重篤なスパッタ疵(有害欠陥)と判定される。一方、仮に図5(A)とは異なり、明部s2の最高輝度点(部位)が明部しきい値a20以下であって、明部p2の鋼板長手方向での合計長さが長さしきい値(x)未満の場合には、欠陥箇所dは検査目的の「有害欠陥」ではないと判定され、或いは「有害欠陥」ではあるが、重篤なものではないと判定される。
 図5(B)では、画像輝度が暗部しきい値a1未満となる暗部p1(4画素からなる暗部)と、その板長手方向両側に接して画像輝度が明部しきい値a2を超える明部p2,p2(各2画素からなる明部)があり、暗部p1と明部p2A、暗部p1と明部p2の各距離はいずれも距離しきい値(x)以下であるため、これらを合わせた1つの欠陥箇所d(欠陥部)が抽出される。この欠陥箇所dは[鋼板長手方向での長さ]/[鋼板幅方向での長さ]=2.0≧比率しきい値(y)である。しかしながら、鋼板長手方向での明部p2,p2の合計長さが0.32mmであり、長さしきい値(z)(0.40mm)未満である。このため、検査目的の「有害欠陥」ではないと判定され、或いは「有害欠陥」ではあるが、重篤なものではないと判定される。なお、検査の目的がスパッタ疵の検出である場合には、スパッタ疵ではないと判定され、或いはスパッタ疵ではあるが、重篤なものではないと判定される。一方、仮に図5(B)とは異なり、鋼板長手方向での明部p2,p2の合計長さが長さしきい値(z)(0.40mm)以上の場合には、欠陥箇所dは「有害欠陥」であると判定され、或いは有害欠陥のなかでも「重篤な有害欠陥」であると判定される。
 図5(C)では、画像輝度が暗部しきい値a1未満となる暗部p1(2画素からなる暗部)と、その板長手方向の一方の側に接して画像輝度が明部しきい値a2を超える明部p2(2画素からなる明部)があり、他方の側に接して画像輝度が明部しきい値a2を超える明部p2(1画素からなる明部)があり、暗部p1と明部p2A、暗部p1と明部p2の各距離はいずれも距離しきい値(x)以下であるため、これらを合わせて1つの欠陥箇所d(欠陥部)として抽出される。この欠陥箇所dは[鋼板長手方向での長さ]/[鋼板幅方向での長さ]=5.0≧比率しきい値(y)であるが、明部p2,p2の合計面積が0.09mmであり、面積しきい値(w)(0.10mm)未満である。さらに、明部p2の鋼板長手方向での合計長さが長さしきい値(x)未満であれば、検査目的の「有害欠陥」ではないと判定され、或いは「有害欠陥」ではあるが、重篤なものではないと判定される。すなわち、検査の目的がスパッタ疵の検出である場合には、スパッタ疵ではないと判定され、或いはスパッタ疵ではあるが、重篤なものではないと判定される。一方、仮に図5(C)とは異なり、明部p2,p2の合計面積が面積しきい値(w)(0.10mm)以上の場合には、欠陥箇所dは「有害欠陥」であると判定され、或いは有害欠陥のなかでも「重篤な有害欠陥」であると判定される。
 なお、本発明を実施するに当たっては、従来の検査装置でも用いられている欠陥寸法・積算濃度等のパラメータにも適切なしきい値を設定し、判別精度を高めることが望ましい。

 本発明で検出対象となる表面欠陥に制限はないが、本発明はめっき鋼板(例えば、溶融亜鉛系めっき鋼板、合金化溶融亜鉛系めっき鋼板など)のスパッタ疵の検出に好適であり、この場合には、スパッタ疵がスリ疵又は/及びドロス欠陥と区別されて検出され、有害欠陥と判定される。 
 ここで、上述には検査目的の有害欠陥(スパッタ疵)の検出について説明したが、ドロス欠陥も有害欠陥の1つとして挙げられる。すなわち、めっき鋼板の製造プロセスにおいて、めっき鋼板の表面に付着したドロスがロールへの巻き付けや圧延において押し込められる場合がある。すると、めっき鋼板の表面に微小な変形が生じてドロス欠陥になる。このドロス欠陥も塗装等に悪影響を及ぼす有害欠陥である。ここで、ドロス欠陥も、ドロス付着部分とその周辺の変形部を伴うものであるため、暗部lang=EN-US>p1と明部p2の距離しきい値(x)を用いて判定することができる。そこで、上述した検査目的の有害欠陥(スパッタ疵)の検出方法に基づき、有害欠陥のうち、ドロス欠陥とスパッタ疵とを区別して判定することができる。
 例えば、ドロス欠陥とスパッタ疵との双方を欠陥箇所として抽出可能な距離しきい値(x)を設定しておき、抽出した欠陥箇所のうち、比率しきい値(y)、さらには(1)~(3)の基準を用いてスパッタ疵ではないと判定された欠陥箇所をドロス欠陥であると判定してもよい。あるいは、ドロス欠陥検出のためのドロス用距離しきい値を例えば0.1~2.0mmの範囲から別途設定し、暗部lang=EN-US>p1と明部p2がドロス用距離しきい値以下である場合、欠陥箇所はドロス欠陥であると判定してもよい。さらに、ドロス欠陥は板幅方向に延びる性質を利用し、欠陥箇所のうち、板幅方向の長さが設定長さ以上であるという条件を加えてドロス欠陥の判定を行うようにしてもよい。このように、有害欠陥の中でも欠陥種類の異なるスパッタ疵とドロス欠陥を区別して判定することができる。
 連続溶融亜鉛めっきラインに図1に示すような表面欠陥検査装置を設置し、めっき鋼板の表面欠陥の検出を行った。連続溶融亜鉛めっきラインは、鋼帯の通板速度:80~140mpm、鋼帯の寸法:鋼帯幅820~1840mmである。
 検査設備分解能は、幅方向0.11mm×通板方向0.16mmであり、画像処理では、各画素の輝度を256段階(0~255)に分類し処理を行った。
 本発明では、欠陥箇所dを抽出するに当たり、暗部しきい値a1を輝度85、明部しきい値a2を輝度150で設定し、暗部p1と明部p2間の距離に関する距離しきい値(x)を0.48mmに設定した。また、抽出された欠陥箇所dが有害欠陥かどうかの判定基準として、[鋼板長手方向での長さ]/[鋼板幅方向での長さ]に関する比率しきい値(y)を2.0、鋼板長手方向での明部p2の長さ(但し、明部p2が2つ以上ある場合は、それらの合計長さ)に関する長さしきい値(z)を0.8mmにそれぞれ設定し、[鋼板長手方向での長さ]/[鋼板幅方向での長さ]が比率しきい値(y)(=2.0)以上で且つ鋼板長手方向での明部p2の合計長さが長さしきい値(z)(=0.8mm)以上の欠陥箇所dを検査目的の有害欠陥と判定した。
 スパッタ疵サンプル(鋼板長手方向長さ3mm-鋼板幅方向長さ1mm程度)を設けた溶融亜鉛めっき鋼板を用い、本発明と従来法により表面欠陥の検出試験を行った。従来法としては、欠陥として判定された領域の輝度のうち最も低い値が暗部しきい値a1を下回った場合、その輝度に応じて欠陥の重篤度を判定する手法を用いた。
 従来法を適用した場合、検査設備では無害な汚れ・微小異物と有害なスパッタ疵との判別は不能であり、鋼板走行を止めた状態での検査員の目視検査でのみ発見が可能であった。このため製品全長を確認することは不可能であった。
 これに対して、本発明を適用した場合、検査設備でスパッタ疵サンプルを無害な汚れ・微小異物と区別して判定することが可能であった。具体的には、実際にスパッタ疵13個を調査し、これらの検出状況を評価した。その結果、完全一致(判定:有害、実欠陥:有害)=10個、未検出(判定:無害、実欠陥:有害)=3個であり、信頼率(有害な実欠陥を有害と判定する割合)は77%であり、有害な表面欠陥を的確に検出できることが確認できた。
 以上により、検査設備において製品全長を確認することが可能となり、例えば、スパッタ疵の検出箇所については、再検査を実施して検査員が目視検査を行い、最終判定を実施すればよい。
 さらに、上述した表面欠陥検査をめっき鋼板の製造方法に適用してもよい。めっき鋼板の製造工程として、例えば、鋼板を焼鈍する工程、焼鈍した鋼板の表面にめっき層を付着させる工程、めっき層が付着した鋼板を化成処理する工程、化成処理しためっき鋼板に対し表面検査する工程があり、この表面検査する工程において上述した表面欠陥検査が実施される。そして、この表面検査によってめっき鋼板に有害欠陥(スパッタ疵)があると判定された場合、めっき製造ラインに設置された表示装置にその旨が表示されるようにしてもよい。表示される情報として、例えば、有害欠陥の存在の有無、有害欠陥の位置情報の他、重篤度、有害欠陥の長さもしくは面積等が挙げられる。
 また、上述しためっき鋼板にスパッタ疵があると判定された場合、スリ疵及び/又はドロス欠陥と判定された場合とは異なる対処が、めっき鋼板に対して実施されるようにしてもよい。
 異なる対処としては以下のようなことが挙げられる。例えば欠陥箇所がスリ疵及び/又はドロス欠陥であると判定された場合、金属板を巻き取った鋼板コイル内へのドロス欠陥等の混入率が算出される。なお、混入率とは、(ドロス欠陥等が抽出された長さ(m)/全長(m))を意味する。そして、混入率が設定しきい値以上である場合、当該めっき鋼板コイルは不合格であると判定する。
 一方、欠陥箇所はスパッタ疵であると判定した場合、スパッタ疵はドロス欠陥等と異なり、プレス金型の破損等の重大な不具合を引き起こす可能性がある。このため、鋼板コイル内の個数にかかわらず不合格判定を行う。そして、スパッタ疵の除去が行われる。
 1 投光器
 2 撮像器
 3 画像処理装置
 4 欠陥判定装置
 5 鋼板

Claims (12)

  1.  照明された金属板表面を撮像し、得られた画像情報をしきい値処理してめっき金属板の表面欠陥を抽出する表面欠陥検査方法において、
     得られた画像情報のなかで、画像輝度が暗部しきい値(a1)未満となる暗部(p1)と画像輝度が明部しきい値(a2)を超える明部(p2)との距離が距離しきい値(x)以下となる暗部(p1)及び明部(p2)を検出し、
     検出した暗部(p1)に相当する部位と明部(p2)に相当する部位を合わせて1つの欠陥箇所として抽出し、
     抽出した欠陥箇所のなかで、少なくとも[金属板長手方向での長さ]/[金属板幅方向での長さ]≧比率しきい値(y)を満足する欠陥箇所を有害欠陥と判定する
    金属板の表面欠陥検査方法。
  2.  距離しきい値(x)を0.1~5.0mmの範囲で設定する請求項1に記載の金属板の表面欠陥検出方法。
  3.  比率しきい値(y)を1.0~5.0の範囲で設定する請求項1または2に記載の金属板の表面欠陥検出方法。
  4.  抽出した欠陥箇所のなかで、[金属板長手方向での長さ]/[金属板幅方向での長さ]≧比率しきい値(y)を満足し、且つ下記(1)~(3)のうちの1つ以上を満足する欠陥箇所を有害欠陥又は重篤な有害欠陥と判定する請求項1~3のいずれかに記載の金属板の表面欠陥検出方法。
     (1)欠陥箇所内の明部(p2)の合計面積が面積しきい値(w)以上である。
     (2)欠陥箇所内の明部(p2)の金属板長手方向での合計長さが長さしきい値(z)以上である。
     (3)欠陥箇所内の明部(p2)の最大輝度値が、明部しきい値(a2)よりも高輝度に設定された明部しきい値(a20)を超える。
  5.  抽出した欠陥箇所のなかで、[金属板長手方向での長さ]/[金属板幅方向での長さ]≧比率しきい値(y)を満足し、且つ上記(1)~(3)のうちの2つ以上を満足する欠陥箇所を有害欠陥又は重篤な有害欠陥と判定する請求項4に記載の金属板の表面欠陥検出方法。
  6.  抽出した欠陥箇所のなかで、[金属板長手方向での長さ]/[金属板幅方向での長さ]≧比率しきい値(y)を満足し、且つ下記(1)~(3)のすべてを満足する欠陥箇所を有害欠陥又は重篤な有害欠陥と判定する請求項4に記載の金属板の表面欠陥検出方法。
  7.  面積しきい値(w)を0.06~34.00mmの範囲で設定することを特徴とする請求項4~6のいずれかに記載の金属板の表面欠陥検出方法。
  8.  長さしきい値(z)を0.6~10.0mmの範囲で設定することを特徴とする請求項4~7のいずれかに記載の金属板の表面欠陥検出方法。
  9.  金属板表面を照明する照明手段と、該照明手段による金属板上の照明部分を撮像する撮像手段が、金属板進行方向において金属板法線よりも前方側または後方側のいずれか一方に配置される請求項1~8のいずれかに記載の金属板の表面欠陥検出方法。
  10.  金属板がめっき鋼板であり、該めっき鋼板の母材鋼板面に付着したスパッタとこのスパッタを起点として生じた鋼板変形部からなるスパッタ疵が、ドロス欠陥と区別されて有害欠陥と判定される請求項1~9のいずれかに記載の金属板の表面欠陥検出方法。
  11.  請求項10に記載の金属板の表面欠陥検出方法によってスパッタ疵と判定された場合に、スリ疵及び/又はドロス欠陥と判定された場合とは異なる対処を、有害欠陥があると判定されためっき鋼板に対して実施するめっき鋼板の製造方法。
  12.  請求項1~11のいずれかに記載の表面欠陥検出方法による表面欠陥検出を行う画像処理装置と欠陥判定装置を備える金属板の表面欠陥検査装置。
PCT/JP2019/037800 2018-09-28 2019-09-26 金属板の表面欠陥検出方法及び装置並びにめっき鋼板の製造方法 WO2020067262A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020502497A JP6950811B2 (ja) 2018-09-28 2019-09-26 金属板の表面欠陥検出方法及び装置並びにめっき鋼板の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-183516 2018-09-28
JP2018183516 2018-09-28

Publications (1)

Publication Number Publication Date
WO2020067262A1 true WO2020067262A1 (ja) 2020-04-02

Family

ID=69950103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037800 WO2020067262A1 (ja) 2018-09-28 2019-09-26 金属板の表面欠陥検出方法及び装置並びにめっき鋼板の製造方法

Country Status (2)

Country Link
JP (1) JP6950811B2 (ja)
WO (1) WO2020067262A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113252682A (zh) * 2021-04-15 2021-08-13 首钢集团有限公司 提高表面质量检测系统识别带钢表面缺陷准确率的方法
JP7033241B1 (ja) * 2021-07-01 2022-03-09 Primetals Technologies Japan株式会社 異常検出装置および異常検出方法
TWI814677B (zh) * 2023-02-10 2023-09-01 中國鋼鐵股份有限公司 缺陷檢測方法以及使用該方法的缺陷檢測系統

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002195953A (ja) * 2000-12-26 2002-07-10 Nippon Steel Corp 疵判別ロジック作成用データの収集及び精製方法
JP2004156932A (ja) * 2002-11-05 2004-06-03 Jfe Steel Kk 表面検査装置
JP2005003574A (ja) * 2003-06-13 2005-01-06 Nippon Steel Corp 表面疵検査方法及び表面疵検査装置
JP2009047517A (ja) * 2007-08-17 2009-03-05 Kokusai Gijutsu Kaihatsu Co Ltd 検査装置
KR20150074942A (ko) * 2013-12-24 2015-07-02 주식회사 포스코 스캡 결함 검출 장치 및 방법
JP2016188768A (ja) * 2015-03-30 2016-11-04 Jfeスチール株式会社 金属板の表面欠陥検出方法
WO2018173660A1 (ja) * 2017-03-21 2018-09-27 Jfeスチール株式会社 表面欠陥検査方法及び表面欠陥検査装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3644375B2 (ja) * 2000-11-08 2005-04-27 Jfeスチール株式会社 溶融亜鉛めっき鋼板の表面欠陥簡易判別法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002195953A (ja) * 2000-12-26 2002-07-10 Nippon Steel Corp 疵判別ロジック作成用データの収集及び精製方法
JP2004156932A (ja) * 2002-11-05 2004-06-03 Jfe Steel Kk 表面検査装置
JP2005003574A (ja) * 2003-06-13 2005-01-06 Nippon Steel Corp 表面疵検査方法及び表面疵検査装置
JP2009047517A (ja) * 2007-08-17 2009-03-05 Kokusai Gijutsu Kaihatsu Co Ltd 検査装置
KR20150074942A (ko) * 2013-12-24 2015-07-02 주식회사 포스코 스캡 결함 검출 장치 및 방법
JP2016188768A (ja) * 2015-03-30 2016-11-04 Jfeスチール株式会社 金属板の表面欠陥検出方法
WO2018173660A1 (ja) * 2017-03-21 2018-09-27 Jfeスチール株式会社 表面欠陥検査方法及び表面欠陥検査装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113252682A (zh) * 2021-04-15 2021-08-13 首钢集团有限公司 提高表面质量检测系统识别带钢表面缺陷准确率的方法
CN113252682B (zh) * 2021-04-15 2022-12-16 首钢集团有限公司 提高表面质量检测系统识别带钢表面缺陷准确率的方法
JP7033241B1 (ja) * 2021-07-01 2022-03-09 Primetals Technologies Japan株式会社 異常検出装置および異常検出方法
WO2023276102A1 (ja) * 2021-07-01 2023-01-05 Primetals Technologies Japan 株式会社 異常検出装置および異常検出方法
TWI814677B (zh) * 2023-02-10 2023-09-01 中國鋼鐵股份有限公司 缺陷檢測方法以及使用該方法的缺陷檢測系統

Also Published As

Publication number Publication date
JPWO2020067262A1 (ja) 2021-02-15
JP6950811B2 (ja) 2021-10-13

Similar Documents

Publication Publication Date Title
KR101867256B1 (ko) 강판의 표면 결함 검사 장치 및 표면 결함 검사 방법
WO2020067262A1 (ja) 金属板の表面欠陥検出方法及び装置並びにめっき鋼板の製造方法
US10041888B2 (en) Surface defect inspecting device and method for hot-dip coated steel sheets
JP5594071B2 (ja) 溶融金属メッキ鋼板のドロス欠陥検査装置およびドロス欠陥検査方法
Aoki et al. Application of artificial neural network to discrimination of defect type in automatic radiographic testing of welds
JP2009072788A (ja) 溶接のスパーク検出方法及びスパーク検出装置ならびに溶接製品の製造方法
US6232617B1 (en) Apparatus for detecting surface defects on running metal strip
JP6249241B2 (ja) 金属板の表面欠陥検出方法
JP5354187B2 (ja) 走行材の表面品質判定装置および表面品質判定方法
KR101937562B1 (ko) 강판의 표면 품질 판정 방법
JP6007639B2 (ja) 疵検出方法および疵検出装置
JP4652024B2 (ja) 表面検査方法及び装置
JP4403036B2 (ja) 疵検出方法及び装置
JP2005003574A (ja) 表面疵検査方法及び表面疵検査装置
JP3421967B2 (ja) 平面の傷検査装置
JPH11183396A (ja) 表面疵検査装置及びその方法
JPH0882604A (ja) 鋼板表面欠陥検査方法
Ono et al. Twin-illumination and subtraction technique for detection of concave and convex defects on steel pipes in hot condition
JP5765040B2 (ja) 疵検出方法及び疵検出装置
JP4863117B2 (ja) 高温鋼材の表面検査装置
JP2023059590A (ja) 金属帯の表面検査装置、表面検査方法、及び製造方法
JP2023103957A (ja) 金属帯の合否判定方法および金属帯の製造方法
JP2009175086A (ja) 物品の表面検査方法及び物品の表面検査装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020502497

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19864847

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19864847

Country of ref document: EP

Kind code of ref document: A1