WO2020067135A1 - Transparent article - Google Patents

Transparent article Download PDF

Info

Publication number
WO2020067135A1
WO2020067135A1 PCT/JP2019/037540 JP2019037540W WO2020067135A1 WO 2020067135 A1 WO2020067135 A1 WO 2020067135A1 JP 2019037540 W JP2019037540 W JP 2019037540W WO 2020067135 A1 WO2020067135 A1 WO 2020067135A1
Authority
WO
WIPO (PCT)
Prior art keywords
glare
transparent article
glare surface
transparent
examples
Prior art date
Application number
PCT/JP2019/037540
Other languages
French (fr)
Japanese (ja)
Inventor
隆義 齊藤
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to JP2020549278A priority Critical patent/JPWO2020067135A1/en
Publication of WO2020067135A1 publication Critical patent/WO2020067135A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/25Oxides by deposition from the liquid phase
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements

Definitions

  • the present invention relates to a transparent article having an anti-glare surface having a concavo-convex structure.
  • the surface of the transparent article disposed on the display surface of the display device be provided with an anti-glare effect as an anti-glare surface.
  • the anti-glare effect by the anti-glare surface is exhibited based on the uneven structure of the anti-glare surface. Therefore, the function of the anti-glare surface can be controlled by adjusting the uneven structure of the anti-glare surface.
  • sparkle due to the sparkle phenomenon
  • Sq surface roughness
  • one of the characteristics required for the display device is that the contrast (bright place contrast) under a bright place such as an environment where sunlight enters is high.
  • An object of the present invention is to provide a transparent article having excellent light place contrast.
  • the transparent article for solving the above-mentioned problem is a transparent article having an anti-glare surface having an uneven structure, wherein the uneven structure of the anti-glare surface has a gradient formed by a normal line of the anti-glare surface and a normal line of a minute plane in the anti-glare surface.
  • the ratio of a gradient angle of 5 ° or more in the angular distribution is 45% or less.
  • the transparent article includes a transparent substrate made of glass and an anti-glare layer provided on the transparent substrate.
  • the bright place contrast of a transparent article can be improved.
  • FIG. 9 shows the gradient angle distribution of the anti-glare surface in Test Example 3 and Test Example 10.
  • 9 shows the integrated distribution of the inclination angles of the antiglare surfaces in Test Example 3 and Test Example 10.
  • 18 is a graph of the autocorrelation function of the anti-glare surface of Test Example 10.
  • FIG. 4 is an explanatory diagram of a method for measuring a sparkle value.
  • the transparent article of the present embodiment is used by being arranged on a display surface of a display device.
  • the transparent article may be a member attached on the display surface of the display device. That is, the transparent article may be a member that is later attached to the display device.
  • the pixel density of the display device to which the transparent article is applied is preferably, for example, 160 to 700 ppi (pixels per inch), and more preferably 420 to 700 ppi.
  • the transparent article 10 includes a plate-shaped translucent transparent substrate 11.
  • the thickness of the transparent substrate 11 is, for example, 0.1 to 5 mm.
  • the material of the transparent substrate 11 include glass and resin.
  • the material of the transparent substrate 11 is preferably glass.
  • known glass such as non-alkali glass, aluminosilicate glass, and soda lime glass can be used.
  • tempered glass such as chemically strengthened glass or crystallized glass such as LAS-based crystallized glass can be used.
  • aluminosilicate glass in particular, by mass%, SiO 2 : 50 to 80%, Al 2 O 3 : 5 to 25%, B 2 O 3 : 0 to 15%, Na 2 O: It is preferable to use chemically strengthened glass containing 1 to 20% and K 2 O: 0 to 10%.
  • the resin include polymethyl methacrylate, polycarbonate, and epoxy resin.
  • An anti-glare layer 12 constituting an anti-glare surface 12a having a concavo-convex structure for scattering light is provided on one main surface of the transparent substrate 11.
  • the surface roughness Ra of the anti-glare surface 12a is, for example, 30 to 200 nm.
  • the anti-glare layer 12 etches, for example, a transparent substrate made of glass, or forms a matrix made of an inorganic oxide such as SiO 2 , Al 2 O 3 , ZrO 2 , or TiO 2 on the transparent substrate 11. It is constituted by.
  • an antiglare surface 12a of the present invention (an antiglare surface 12a having a concavo-convex structure described later) can be obtained by adjusting an etchant and etching conditions.
  • the uneven structure serving as the anti-glare surface 12a includes, for example, an island-shaped uneven structure having a flat portion between a plurality of island-shaped convex portions. It is preferable that the anti-glare layer 12 is composed of only an inorganic oxide or contains no organic compound.
  • the anti-glare layer 12 can be formed, for example, by applying a coating agent containing a matrix precursor and a liquid medium that dissolves the matrix precursor to the surface of the transparent substrate 11 and heating (anti-glare surface forming step).
  • the matrix precursor contained in the coating agent includes, for example, inorganic precursors such as a silica precursor, an alumina precursor, a zirconia precursor, and a titania precursor.
  • a silica precursor is preferred because the refractive index of the antiglare layer 12 is lowered and the reactivity is easily controlled.
  • silica precursor examples include a silane compound having a hydrocarbon group and a hydrolyzable group bonded to a silicon atom, a hydrolyzed condensate of the silane compound, and a silazane compound. It is preferable to include at least one or both of a silane compound and a hydrolysis-condensation product thereof, since cracks in the anti-glare layer 12 can be sufficiently suppressed even when the anti-glare layer 12 is formed thick.
  • the silane compound has a hydrocarbon group bonded to a silicon atom and a hydrolyzable group.
  • the hydrocarbon group is one or two selected from —O—, —S—, —CO—, and —NR′— (R ′ is a hydrogen atom or a monovalent hydrocarbon group) between carbon atoms. You may have the group which combined two or more.
  • the hydrocarbon group may be a monovalent hydrocarbon group bonded to one silicon atom, or may be a divalent hydrocarbon group bonded to two silicon atoms.
  • Examples of the monovalent hydrocarbon group include an alkyl group, an alkenyl group, and an aryl group.
  • Examples of the divalent hydrocarbon group include an alkylene group, an alkenylene group, and an arylene group.
  • hydrolyzable group examples include an alkoxy group, an acyloxy group, a ketoxime group, an alkenyloxy group, an amino group, an aminoxy group, an amide group, an isocyanate group, and a halogen atom. From the viewpoint of balance with the above, an alkoxy group, an isocyanate group, and a halogen atom (particularly a chlorine atom) are preferred.
  • an alkoxy group an alkoxy group having 1 to 3 carbon atoms is preferable, and a methoxy group or an ethoxy group is more preferable.
  • silane compound examples include alkoxysilane (tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, etc.), alkoxysilane having an alkyl group (methyltrimethoxysilane, ethyltriethoxysilane, etc.), alkoxysilane having a vinyl group (vinyl Trimethoxysilane, vinyltriethoxysilane, etc.), alkoxysilane having an epoxy group (2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyl Examples thereof include diethoxysilane, 3-glycidoxypropyltriethoxysilane, and the like, and alkoxysilanes having an acryloyloxy group (such as 3-acryloyloxypropyltrimethoxysilane).
  • silane compounds it is preferable to use one or both of an alkoxysilane and a hydrolysis-condensation product of an alkoxysilane, and it is more preferable to use a hydrolysis-condensation product of an alkoxysilane.
  • Silazane compounds are compounds having a bond of silicon and nitrogen (—SiN—) in the structure.
  • the silazane compound may be a low molecular compound or a high molecular compound (a polymer having a predetermined repeating unit).
  • Examples of low molecular silazane compounds include hexamethyldisilazane, hexaphenyldisilazane, dimethylaminotrimethylsilane, trisilazane, cyclotrisilazane, 1,1,3,3,5,5-hexamethylcyclotrisilazane and the like.
  • Examples of the alumina precursor include aluminum alkoxide, a hydrolyzed condensate of aluminum alkoxide, a water-soluble aluminum salt, and an aluminum chelate.
  • Examples of the zirconia precursor include zirconium alkoxide, a hydrolyzed condensate of zirconium alkoxide, and the like.
  • Examples of the titania precursor include titanium alkoxides, hydrolysis condensates of titanium alkoxides, and the like.
  • the liquid medium contained in the coating agent is a solvent for dissolving the matrix precursor, and is appropriately selected according to the type of the matrix precursor.
  • the liquid medium include water, alcohols, ketones, ethers, cellosolves, esters, glycol ethers, nitrogen-containing compounds, and sulfur-containing compounds.
  • Examples of the alcohols include methanol, ethanol, isopropanol, butanol, diacetone alcohol and the like.
  • Examples of ketones include acetone, methyl ethyl ketone, and methyl isobutyl ketone.
  • Examples of the ethers include tetrahydrofuran, 1,4-dioxane, and the like.
  • Examples of cellosolves include methyl cellosolve, ethyl cellosolve and the like.
  • Esters include methyl acetate, ethyl acetate and the like.
  • Examples of glycol ethers include ethylene glycol monoalkyl ether.
  • nitrogen-containing compound examples include N, N-dimethylacetamide, N, N-dimethylformamide, N-methylpyrrolidone and the like.
  • sulfur-containing compound examples include dimethyl sulfoxide.
  • the liquid medium one type may be used alone, or two or more types may be used in combination.
  • the liquid medium is preferably a liquid medium containing water, that is, water, or a mixed liquid of water and another liquid medium.
  • the other liquid medium alcohols are preferable, and methanol, ethanol, isopropyl alcohol, and butanol are particularly preferable.
  • the coating agent may include an acid catalyst that promotes hydrolysis and condensation of the matrix precursor.
  • the acid catalyst is a component that promotes hydrolysis and condensation of the matrix precursor and forms the antiglare layer 12 in a short time.
  • the acid catalyst may be added for the hydrolysis and condensation of the raw material (alkoxysilane, etc.) during the preparation of the solution of the matrix precursor prior to the preparation of the coating agent. It may be further added after preparation.
  • the acid catalyst include inorganic acids (such as nitric acid, sulfuric acid, and hydrochloric acid) and organic acids (such as formic acid, oxalic acid, acetic acid, monochloroacetic acid, dichloroacetic acid, and trichloroacetic acid).
  • Examples of the coating method of the coating agent include known wet coating methods (spray coating method, spin coating method, dip coating method, die coating method, curtain coating method, screen coating method, inkjet method, flow coating method, gravure coating method, bar coating method). Method, flexo coating method, slit coating method, roll coating method, etc.).
  • a spray coating method is preferable because irregularities are easily formed.
  • the anti-glare surface 12a of the present invention (the anti-glare surface 12a having a concavo-convex structure to be described later) has a nozzle diameter, an atomizing air pressure for spraying a coating agent, an application amount per unit area of the coating agent, and a transparent substrate for application. It can be obtained by appropriately adjusting the surface temperature of the material 11.
  • the nozzle used for the spray coating method include a two-fluid nozzle and a one-fluid nozzle.
  • the particle size of the droplet of the coating agent discharged from the nozzle is usually 0.1 to 100 ⁇ m, preferably 1 to 50 ⁇ m.
  • the particle diameter of the droplet is 0.1 ⁇ m or more, it is possible to form irregularities in which the anti-glare effect is sufficiently exhibited in a short time.
  • the particle diameter of the droplet is 100 ⁇ m or less, it is easy to form appropriate unevenness for sufficiently exhibiting the antiglare effect.
  • the particle size of the droplets of the coating agent can be appropriately adjusted depending on the type of nozzle, the atomizing air pressure, the liquid amount, and the like.
  • the droplet becomes smaller as the atomizing air pressure becomes higher, and the droplet becomes larger as the amount of liquid increases.
  • the particle size of the droplet is a Sauter average particle size measured by a laser measuring device.
  • the surface temperature of the application target (eg, the transparent substrate 11) when applying the coating agent is, for example, 20 to 75 ° C., preferably 30 ° C. or higher, and more preferably 60 ° C. or higher.
  • a heating device of a hot water circulation type As a method for heating the application target, for example, it is preferable to use a heating device of a hot water circulation type.
  • the humidity at the time of applying the coating agent is, for example, 20 to 80%, and preferably 50% or more.
  • the uneven structure of the anti-glare surface 12 a of the transparent article 10 of the present embodiment has a gradient angle ⁇ formed by a normal n 0 of the anti-glare surface 12 a and a normal n 1 of the minute plane dS on the anti-glare surface 12 a.
  • a gradient angle ⁇ formed by a normal n 0 of the anti-glare surface 12 a and a normal n 1 of the minute plane dS on the anti-glare surface 12 a.
  • the ratio of the gradient angle of not less than 5 ° is small.
  • the ratio of the gradient angle 5 ° or more in the gradient angle distribution of the gradient angle ⁇ is 45% or less, and preferably 41% or less.
  • the uneven structure of the antiglare surface 12a is preferably an uneven structure having a peak in a range of 0.1 ° or more and 5 ° or less in a gradient angle distribution of the gradient angle ⁇ .
  • the gradient angle distribution of the gradient angle ⁇ can be obtained from the three-dimensional shape z (x, y) measured using a known laser microscope.
  • a laser microscope it is preferable to use a laser microscope capable of measuring with an XY resolution of 0.3 ⁇ m or less and a height resolution of 0.5 nm or less, since measurement with high resolution can be performed.
  • the measurement conditions are not particularly limited, but it is preferable to set the measurement range to 200 ⁇ m or more ⁇ 200 ⁇ m or more, and the measurement point density to 12 Point / ⁇ m 2 or more.
  • the minute plane dS is a surface including three points that are near or adjacent to each other, and the interval between these two points is preferably 0.2 ⁇ m to 0.3 ⁇ m in the x-axis or y-axis direction.
  • the frequency of the gradient angle in the range of 0 ° to 90 ° at intervals of 0.2 °.
  • 3 and 4 show examples of the gradient angle distribution of the gradient angle ⁇ on the anti-glare surface 12a and an example of the integrated distribution thereof.
  • the ratio of the gradient angle of 5 ° or more in the gradient angle distribution of the gradient angle ⁇ is 45% or less, the bright place contrast when the transparent article 10 is applied to the display surface of the display device (for example, in an environment where sunlight is incident). Contrast in a bright place) can be increased. Therefore, when used in a light place, it becomes difficult to feel white blur or the like.
  • the uneven structure of the antiglare surface 12a of the transparent article 10 can be defined based on, for example, a period length d obtained from an autocorrelation function G x ( ⁇ ) represented by the following equation (1). It is preferable that the period length d of the uneven structure is short.
  • the autocorrelation function G x ( ⁇ ) expressed by the equation (1) is represented by orthogonal coordinates (x, y) in a direction parallel to the antiglare surface 12a and z in a direction perpendicular to the antiglare surface 12a.
  • z (x, y) of the anti-glare surface 12a is the length (measured length) of the target range in the x direction on the antiglare surface 12a.
  • the three-dimensional shape z (x, y) can be measured using a known laser microscope.
  • a laser microscope it is preferable to use a laser microscope capable of measuring with an XY resolution of 0.3 ⁇ m or less and a height resolution of 0.5 nm or less, since measurement with high resolution can be performed.
  • the measurement conditions are not particularly limited, but it is preferable to set the measurement range to 200 ⁇ m or more ⁇ 200 ⁇ m or more, and the measurement point density to 12 Point / ⁇ m 2 or more.
  • the three-dimensional shape z (x, y) of the uneven structure of the antiglare surface 12a can be obtained by a matrix of discrete height information.
  • This anti-glare surface 12a based on a matrix of discrete height information autocorrelation function G x (m) will be described.
  • the size of the matrix of discrete height information is represented as N ⁇ M, where N corresponds to the y-axis coordinate and M corresponds to the x-axis coordinate.
  • FIG. 5 shows an example of a graph of the autocorrelation function G x ( ⁇ ) of the anti-glare surface 12a.
  • the autocorrelation function G x ( ⁇ ) largely decreases as the value of ⁇ increases from “0”, then increases, and repeats a decrease and an increase at a constant cycle.
  • the cycle length d is the length of the cycle in which the decrease and the increase in the autocorrelation function G x ( ⁇ ) are repeated.
  • the period length d Is obtained as the minimum value of the ⁇ value at the second inflection point. Note that when calculating the cycle length d, small changes due to noise or the like are ignored.
  • the uneven length structure of the antiglare surface 12a preferably has a period length d of 20 ⁇ m or less, preferably 17 ⁇ m or less, and more preferably 12 ⁇ m or less.
  • the lower limit value of the cycle length d is, for example, 6 ⁇ m.
  • the period length d is 20 ⁇ m or less, it is possible to suppress the occurrence of sparkle on the anti-glare surface 12a.
  • the cycle length d is 1/3 or less of the pixel size of the display device to which the transparent article 10 is applied, the generation of sparkle can be effectively suppressed.
  • the pixel size of a display device having a pixel density of 420 ppi is 60 ⁇ m.
  • the transparent article 10 preferably has a sparkle value described below of 0.006 to 0.02.
  • the transparent article 10 has an anti-glare surface 12a having an uneven structure.
  • Relief structure antiglare surface 12a the proportion of the higher slope angle of 5 ° in the slope angle distribution formed by the normal line n 1 of the small plane dS in the normal n 0 and anti-glare surface 12a of the anti-glare surface 12a is equal to or less than 45%.
  • the bright place contrast of the transparent article 10 can be increased.
  • the period length d obtained from the autocorrelation function G x (m) is 20 ⁇ m or less.
  • the present embodiment can be modified and implemented as follows.
  • the present embodiment and the following modified examples can be implemented in combination with each other within a technically consistent range.
  • the transparent article 10 may have other layers such as an antireflection layer and an antifouling layer in addition to the transparent substrate 11 and the antiglare layer 12.
  • the anti-glare surface 12 a is not limited to the surface of the anti-glare layer 12 provided on one main surface of the transparent substrate 11.
  • an anti-glare surface having a concavo-convex structure formed on the surface of the transparent substrate 11 by an anti-glare surface forming step using another method such as blasting or etching may be used.
  • the anti-glare surface 12 a may be provided on two or more surfaces of the transparent substrate 11. Next, technical ideas that can be grasped from the above-described embodiment and modified examples will be described below.
  • Test Examples 1, 2, 4, 10 Four types of glass articles having an anti-glare surface formed by an etching method and having different concavo-convex structures on the anti-glare surface were used as Test Examples 1, 2, 4, and 10, respectively. In Test Examples 1, 2, and 4, etching was performed using an HF aqueous solution, and in Test Example 10, etching was performed using an NH 4 HF 2 aqueous solution as an etchant.
  • Test Examples 3, 5 to 9 Transparent articles of Test Examples 3, 5 to 9 having different anti-glare surface irregularities were produced as follows.
  • a coating agent is applied to one surface of a transparent base material (manufactured by Nippon Electric Glass Co., Ltd .: T2X-1) made of 1.3 mm-thick plate-shaped chemically strengthened glass by a spray coating device.
  • An anti-glare layer was formed.
  • the nozzle of the spray coating device is a two-fluid nozzle, and the coating agent is a solution prepared by dissolving the precursor of the anti-glare layer (tetraethyl orthosilicate) in a liquid medium containing water. It was applied to a transparent substrate whose surface temperature was adjusted to a predetermined temperature at a flow rate of 0.3 kg / hour at a humidity of 52% and dried by heating at 180 ° C. for 30 minutes.
  • the transparent articles of Test Examples 3, 5 to 9 had a nozzle diameter, an atomizing air pressure for spraying a coating agent, and a unit area of the coating agent when forming an antiglare layer.
  • the coating amount and the surface temperature of the transparent substrate By changing the coating amount and the surface temperature of the transparent substrate, the uneven structure of the anti-glare surface is changed.
  • Measurement range 287 ⁇ m ⁇ 215 ⁇ m
  • Number of measurement points 1024 x 768
  • Measurement point density 12.7 Point / ⁇ m 2
  • the surface roughness Ra and the gradient angle distribution of the gradient angle ⁇ were obtained.
  • the ratio of the gradient angle of 5 ° or more was determined from the gradient angle distribution of the gradient angle ⁇ .
  • the autocorrelation function Gx (m) was obtained from the measured three-dimensional shape, and the period length d was obtained from the autocorrelation function Gx (m). The results are shown in Tables 2 and 3.
  • FIG. 3 and 4 show graphs of the gradient angle distribution of the gradient angle ⁇ on the antiglare surface 12a of Test Example 3 and Test Example 10, and the integrated distribution thereof.
  • FIG. 5 shows a graph of the autocorrelation function G x (m) of the antiglare surface in Test Example 10.
  • the sparkle value of the antiglare surface of the transparent article of each test example was measured. The results are shown in Tables 2 and 3.
  • the sparkle value is determined by arranging a surface light source with a pattern mask interposed on the surface opposite to the anti-glare surface of the transparent article, and setting the anti-glare surface of the transparent article and the pattern mask within the front depth of field at an allowable confusion circle diameter of 53 ⁇ m.
  • the top surface is included, the transparent article is imaged from the anti-glare side, and the standard deviation of the pixel brightness of the pattern mask obtained by analyzing the image data obtained by imaging is analyzed by analyzing the image data. This is a value obtained by dividing the average value of the pixel luminance of the pattern mask obtained by the above.
  • the sparkle value is a value indicating the degree of sparkle on the anti-glare surface. The more the sparkle on the anti-glare surface is suppressed, the lower the sparkle value. By using the sparkle value, it is possible to perform a quantitative evaluation of the sparkle that is close to image recognition based on human vision. Hereinafter, a specific method for measuring the sparkle value will be described.
  • a pattern mask 21 of 500 ppi (pixel size 51 ⁇ m) is arranged on the surface light source 20, and a surface located on the side opposite to the anti-glare surface 12 a is placed on the pattern mask 21.
  • the transparent article 10 was arranged so as to face the side. Further, on the anti-glare surface 12a side of the transparent article 10, a photodetector 22 having a permissible circle of confusion set to 53 ⁇ m was arranged.
  • SMS-1000 manufactured by Display-Messtechnik & System
  • the sensor size of the photodetector 22 is 1/3 type, and the pixel size is 3.75 ⁇ m ⁇ 3.75 ⁇ m.
  • the focal length of the lens of the photodetector 22 is 100 mm, and the lens aperture diameter is 4.5 mm.
  • the pattern mask 21 is arranged such that its top surface 21a is located at the focal position of the photodetector 22, and the transparent article 10 has a distance from the top surface 21a of the pattern mask 21 to the anti-glare surface 12a of 1.8 mm. Placed in position.
  • the transparent detector 10 is imaged by the photodetector 22, and the anti-glare surface of the transparent article 10 is imaged.
  • Image data of the surface 12a was obtained.
  • the obtained image data is analyzed by the sparkle measurement mode (software ⁇ Sparkle measurement ⁇ system) of the SMS-1000, and the pixel luminance of each pixel of the pattern mask 21, the standard deviation of the pixel luminance between pixels, and the average value of the pixel luminance I asked.
  • the sparkle value was calculated by the following equation (3) based on the obtained standard deviation of pixel luminance between pixels and the average value of pixel luminance.
  • ⁇ Sparkle value [standard deviation of pixel brightness of pattern mask] / [average value of pixel brightness of pattern mask] ⁇ (3)

Abstract

In order to improve the photopic contrast of a transparent article having an anti-glare surface with a recess and protrusion structure, the transparent article has an anti-glare surface 12a having a recess and protrusion structure. In the recess and protrusion structure of the anti-glare surface 12a, gradient angles of 5º or greater constitute no more than 45% of the gradient angles in a distribution of gradient angles formed by a normal line n0 of the anti-glare surface 12a and normal lines n1 of differential planes dS of the anti-glare surface 12a.

Description

透明物品Transparent goods
 本発明は、凹凸構造のアンチグレア面を有する透明物品に関する。 The present invention relates to a transparent article having an anti-glare surface having a concavo-convex structure.
 表示装置の視認性を向上する観点から、表示装置の表示面に配置される透明物品の表面を、アンチグレア面として防眩効果を付与することが提案されている。アンチグレア面による防眩効果は、アンチグレア面の凹凸構造に基づいて発揮される。そのため、アンチグレア面の凹凸構造を調整することにより、アンチグレア面の機能を制御することができる。例えば、特許文献1には、透明ガラス板の表面に設けられたアンチグレア面の表面粗さSq(RMS表面粗さ)を特定の範囲に設定することにより、スパークル(スパークル現象によるぎらつき)が抑えられることが開示されている。 (4) From the viewpoint of improving the visibility of the display device, it has been proposed that the surface of the transparent article disposed on the display surface of the display device be provided with an anti-glare effect as an anti-glare surface. The anti-glare effect by the anti-glare surface is exhibited based on the uneven structure of the anti-glare surface. Therefore, the function of the anti-glare surface can be controlled by adjusting the uneven structure of the anti-glare surface. For example, in Patent Document 1, sparkle (glare due to the sparkle phenomenon) is suppressed by setting the surface roughness Sq (RMS surface roughness) of the antiglare surface provided on the surface of the transparent glass plate to a specific range. Is disclosed.
特許第6013378号公報Japanese Patent No. 6013378
 ところで、表示装置に求められる特性の一つとして、太陽光が入射する環境等の明所下におけるコントラスト(明所コントラスト)が高いことが挙げられる。
 本発明の目的は、明所コントラストに優れた透明物品を提供することにある。
Incidentally, one of the characteristics required for the display device is that the contrast (bright place contrast) under a bright place such as an environment where sunlight enters is high.
An object of the present invention is to provide a transparent article having excellent light place contrast.
 上記課題を解決する透明物品は、凹凸構造のアンチグレア面を有する透明物品であって、前記アンチグレア面の凹凸構造は、前記アンチグレア面の法線と前記アンチグレア面における微小平面の法線とがなす勾配角分布における勾配角5°以上の割合が45%以下である。 The transparent article for solving the above-mentioned problem is a transparent article having an anti-glare surface having an uneven structure, wherein the uneven structure of the anti-glare surface has a gradient formed by a normal line of the anti-glare surface and a normal line of a minute plane in the anti-glare surface. The ratio of a gradient angle of 5 ° or more in the angular distribution is 45% or less.
 上記透明物品において、ガラスからなる透明基材と、前記透明基材に設けられたアンチグレア層とを備えることが好ましい。 に お い て In the transparent article, it is preferable that the transparent article includes a transparent substrate made of glass and an anti-glare layer provided on the transparent substrate.
 本発明によれば、透明物品の明所コントラストを向上させることができる。 According to the present invention, the bright place contrast of a transparent article can be improved.
透明物品の説明図。Explanatory drawing of a transparent article. 勾配角の説明図。FIG. 試験例3及び試験例10のアンチグレア面の勾配角分布。9 shows the gradient angle distribution of the anti-glare surface in Test Example 3 and Test Example 10. 試験例3及び試験例10のアンチグレア面の勾配角の積算分布。9 shows the integrated distribution of the inclination angles of the antiglare surfaces in Test Example 3 and Test Example 10. 試験例10のアンチグレア面の自己相関関数のグラフ。18 is a graph of the autocorrelation function of the anti-glare surface of Test Example 10. スパークル値の測定方法の説明図。FIG. 4 is an explanatory diagram of a method for measuring a sparkle value.
 以下、本発明の一実施形態を説明する。
 本実施形態の透明物品は、表示装置の表示面に配置されて使用される。透明物品は、表示装置の表示面の上に取り付けられる部材であってもよい。すなわち、透明物品は、表示装置に事後的に取り付けられる部材であってもよい。透明物品が適用される表示装置のピクセル密度は、例えば、160~700ppi(pixels per inch)であることが好ましく、420~700ppiであることがより好ましい。
Hereinafter, an embodiment of the present invention will be described.
The transparent article of the present embodiment is used by being arranged on a display surface of a display device. The transparent article may be a member attached on the display surface of the display device. That is, the transparent article may be a member that is later attached to the display device. The pixel density of the display device to which the transparent article is applied is preferably, for example, 160 to 700 ppi (pixels per inch), and more preferably 420 to 700 ppi.
 図1に示すように、透明物品10は、板状をなす透光性の透明基材11を備えている。透明基材11の厚さは、例えば、0.1~5mmである。透明基材11の材質としては、例えば、ガラスや樹脂が挙げられる。透明基材11の材質は、ガラスであることが好ましく、ガラスとしては、例えば、無アルカリガラス、アルミノシリケートガラス、ソーダライムガラス等の公知のガラスを用いることができる。また、化学強化ガラス等の強化ガラスやLAS系結晶化ガラス等の結晶化ガラスを用いることができる。これらのなかでも、アルミノシリケートガラスを用いること、特に、質量%で、SiO:50~80%、Al:5~25%、B:0~15%、NaO:1~20%、KO:0~10%を含有する化学強化ガラスを用いることが好ましい。また、樹脂としては、例えば、ポリメタクリル酸メチル、ポリカーボネート、エポキシ樹脂が挙げられる。 As shown in FIG. 1, the transparent article 10 includes a plate-shaped translucent transparent substrate 11. The thickness of the transparent substrate 11 is, for example, 0.1 to 5 mm. Examples of the material of the transparent substrate 11 include glass and resin. The material of the transparent substrate 11 is preferably glass. As the glass, for example, known glass such as non-alkali glass, aluminosilicate glass, and soda lime glass can be used. Further, tempered glass such as chemically strengthened glass or crystallized glass such as LAS-based crystallized glass can be used. Among these, use of aluminosilicate glass, in particular, by mass%, SiO 2 : 50 to 80%, Al 2 O 3 : 5 to 25%, B 2 O 3 : 0 to 15%, Na 2 O: It is preferable to use chemically strengthened glass containing 1 to 20% and K 2 O: 0 to 10%. In addition, examples of the resin include polymethyl methacrylate, polycarbonate, and epoxy resin.
 透明基材11の一方の主面には、光を散乱させる凹凸構造のアンチグレア面12aを構成するアンチグレア層12が設けられている。アンチグレア面12aの表面粗さRaは、例えば、30~200nmである。 ア ン チ An anti-glare layer 12 constituting an anti-glare surface 12a having a concavo-convex structure for scattering light is provided on one main surface of the transparent substrate 11. The surface roughness Ra of the anti-glare surface 12a is, for example, 30 to 200 nm.
 アンチグレア層12は、例えば、ガラスからなる透明基材をエッチングしたり、透明基材11上にSiO、Al、ZrO、TiO等の無機酸化物からなるマトリックスを形成したりすることにより構成される。エッチング法の場合、エッチャントやエッチング条件を調整することによって、本発明のアンチグレア面12a(後述する凹凸構造のアンチグレア面12a)が得られる。アンチグレア面12aたる凹凸構造としては、例えば、複数の島状の凸部間に平坦部分を有する島状の凹凸構造が挙げられる。アンチグレア層12は、無機酸化物のみにより構成されるか、または、有機化合物を含まないことが好ましい。 The anti-glare layer 12 etches, for example, a transparent substrate made of glass, or forms a matrix made of an inorganic oxide such as SiO 2 , Al 2 O 3 , ZrO 2 , or TiO 2 on the transparent substrate 11. It is constituted by. In the case of the etching method, an antiglare surface 12a of the present invention (an antiglare surface 12a having a concavo-convex structure described later) can be obtained by adjusting an etchant and etching conditions. The uneven structure serving as the anti-glare surface 12a includes, for example, an island-shaped uneven structure having a flat portion between a plurality of island-shaped convex portions. It is preferable that the anti-glare layer 12 is composed of only an inorganic oxide or contains no organic compound.
 アンチグレア層12は、例えば、マトリックス前駆体、及びマトリックス前駆体を溶解する液状媒体を含むコーティング剤を透明基材11の表面に塗布し、加熱することにより形成できる(アンチグレア面形成工程)。コーティング剤に含まれるマトリックス前駆体としては、例えば、シリカ前駆体、アルミナ前駆体、ジルコニア前駆体、チタニア前駆体等の無機前駆体が挙げられる。アンチグレア層12の屈折率を低くする点、反応性を制御しやすい点から、シリカ前駆体が好ましい。 The anti-glare layer 12 can be formed, for example, by applying a coating agent containing a matrix precursor and a liquid medium that dissolves the matrix precursor to the surface of the transparent substrate 11 and heating (anti-glare surface forming step). The matrix precursor contained in the coating agent includes, for example, inorganic precursors such as a silica precursor, an alumina precursor, a zirconia precursor, and a titania precursor. A silica precursor is preferred because the refractive index of the antiglare layer 12 is lowered and the reactivity is easily controlled.
 シリカ前駆体としては、ケイ素原子に結合した炭化水素基及び加水分解性基を有するシラン化合物、シラン化合物の加水分解縮合物、シラザン化合物等が挙げられる。アンチグレア層12を厚く形成した場合にもアンチグレア層12のクラックが充分に抑えられる点から、シラン化合物、及びその加水分解縮合物のいずれか一方又は両方を少なくとも含むことが好ましい。 Examples of the silica precursor include a silane compound having a hydrocarbon group and a hydrolyzable group bonded to a silicon atom, a hydrolyzed condensate of the silane compound, and a silazane compound. It is preferable to include at least one or both of a silane compound and a hydrolysis-condensation product thereof, since cracks in the anti-glare layer 12 can be sufficiently suppressed even when the anti-glare layer 12 is formed thick.
 シラン化合物は、ケイ素原子に結合した炭化水素基、及び加水分解性基を有する。炭化水素基は、炭素原子間に-O-、-S-、-CO-、及び-NR’-(R’は水素原子または1価の炭化水素基である。)から選ばれる1つ又は2つ以上を組み合わせた基を有していてもよい。 The silane compound has a hydrocarbon group bonded to a silicon atom and a hydrolyzable group. The hydrocarbon group is one or two selected from —O—, —S—, —CO—, and —NR′— (R ′ is a hydrogen atom or a monovalent hydrocarbon group) between carbon atoms. You may have the group which combined two or more.
 炭化水素基は、1つのケイ素原子に結合した1価の炭化水素基であってもよく、2つのケイ素原子に結合した2価の炭化水素基であってもよい。1価の炭化水素基としては、アルキル基、アルケニル基、アリール基等が挙げられる。2価の炭化水素基としては、アルキレン基、アルケニレン基、アリーレン基等が挙げられる。 は The hydrocarbon group may be a monovalent hydrocarbon group bonded to one silicon atom, or may be a divalent hydrocarbon group bonded to two silicon atoms. Examples of the monovalent hydrocarbon group include an alkyl group, an alkenyl group, and an aryl group. Examples of the divalent hydrocarbon group include an alkylene group, an alkenylene group, and an arylene group.
 加水分解性基としては、アルコキシ基、アシロキシ基、ケトオキシム基、アルケニルオキシ基、アミノ基、アミノキシ基、アミド基、イソシアネート基、ハロゲン原子等が挙げられ、シラン化合物の安定性と加水分解のしやすさとのバランスの点から、アルコキシ基、イソシアネート基、及びハロゲン原子(特に塩素原子)が好ましい。アルコキシ基としては、炭素数1~3のアルコキシ基が好ましく、メトキシ基、又はエトキシ基がより好ましい。 Examples of the hydrolyzable group include an alkoxy group, an acyloxy group, a ketoxime group, an alkenyloxy group, an amino group, an aminoxy group, an amide group, an isocyanate group, and a halogen atom. From the viewpoint of balance with the above, an alkoxy group, an isocyanate group, and a halogen atom (particularly a chlorine atom) are preferred. As the alkoxy group, an alkoxy group having 1 to 3 carbon atoms is preferable, and a methoxy group or an ethoxy group is more preferable.
 シラン化合物としては、アルコキシシラン(テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン等)、アルキル基を有するアルコキシシラン(メチルトリメトキシシラン、エチルトリエトキシシラン等)、ビニル基を有するアルコキシシラン(ビニルトリメトキシシラン、ビニルトリエトキシシラン等)、エポキシ基を有するアルコキシシラン(2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン等)、アクリロイルオキシ基を有するアルコキシシラン(3-アクリロイルオキシプロピルトリメトキシシラン等)等が挙げられる。これらのシラン化合物のなかでも、アルコキシシラン、及びアルコキシシランの加水分解縮合物のいずれか一方、又は両方を用いることが好ましく、アルコキシシランの加水分解縮合物を用いることがより好ましい。 Examples of the silane compound include alkoxysilane (tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, etc.), alkoxysilane having an alkyl group (methyltrimethoxysilane, ethyltriethoxysilane, etc.), alkoxysilane having a vinyl group (vinyl Trimethoxysilane, vinyltriethoxysilane, etc.), alkoxysilane having an epoxy group (2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyl Examples thereof include diethoxysilane, 3-glycidoxypropyltriethoxysilane, and the like, and alkoxysilanes having an acryloyloxy group (such as 3-acryloyloxypropyltrimethoxysilane). Among these silane compounds, it is preferable to use one or both of an alkoxysilane and a hydrolysis-condensation product of an alkoxysilane, and it is more preferable to use a hydrolysis-condensation product of an alkoxysilane.
 シラザン化合物は、その構造内にケイ素と窒素の結合(-SiN-)をもった化合物である。シラザン化合物としては、低分子化合物でも高分子化合物(所定の繰り返し単位を有するポリマー)であってもよい。低分子系のシラザン化合物としては、ヘキサメチルジシラザン、ヘキサフェニルジシラザン、ジメチルアミノトリメチルシラン、トリシラザン、シクロトリシラザン、1,1,3,3,5,5-ヘキサメチルシクロトリシラザン等が挙げられる。 Silazane compounds are compounds having a bond of silicon and nitrogen (—SiN—) in the structure. The silazane compound may be a low molecular compound or a high molecular compound (a polymer having a predetermined repeating unit). Examples of low molecular silazane compounds include hexamethyldisilazane, hexaphenyldisilazane, dimethylaminotrimethylsilane, trisilazane, cyclotrisilazane, 1,1,3,3,5,5-hexamethylcyclotrisilazane and the like. Can be
 アルミナ前駆体としては、アルミニウムアルコキシド、アルミニウムアルコキシドの加水分解縮合物、水溶性アルミニウム塩、アルミニウムキレート等が挙げられる。ジルコニア前駆体としては、ジルコニウムアルコキシド、ジルコニウムアルコキシドの加水分解縮合物等が挙げられる。チタニア前駆体としては、チタンアルコキシド、チタンアルコキシドの加水分解縮合物等が挙げられる。 Examples of the alumina precursor include aluminum alkoxide, a hydrolyzed condensate of aluminum alkoxide, a water-soluble aluminum salt, and an aluminum chelate. Examples of the zirconia precursor include zirconium alkoxide, a hydrolyzed condensate of zirconium alkoxide, and the like. Examples of the titania precursor include titanium alkoxides, hydrolysis condensates of titanium alkoxides, and the like.
 コーティング剤に含まれる液状媒体は、マトリックス前駆体を溶解する溶媒であり、マトリックス前駆体の種類に応じて適宜、選択される。液状媒体としては、例えば、水、アルコール類、ケトン類、エーテル類、セロソルブ類、エステル類、グリコールエーテル類、含窒素化合物、含硫黄化合物等が挙げられる。 The liquid medium contained in the coating agent is a solvent for dissolving the matrix precursor, and is appropriately selected according to the type of the matrix precursor. Examples of the liquid medium include water, alcohols, ketones, ethers, cellosolves, esters, glycol ethers, nitrogen-containing compounds, and sulfur-containing compounds.
 アルコール類としては、メタノール、エタノール、イソプロパノール、ブタノール、ジアセトンアルコール等が挙げられる。ケトン類としては、アセトン、メチルエチルケトン、メチルイソブチルケトン等が挙げられる。エーテル類としては、テトラヒドロフラン、1,4-ジオキサン等が挙げられる。セロソルブ類としては、メチルセロソルブ、エチルセロソルブ等が挙げられる。エステル類としては、酢酸メチル、酢酸エチル等が挙げられる。グリコールエーテル類としては、エチレングリコールモノアルキルエーテル等が挙げられる。含窒素化合物としては、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、N-メチルピロリドン等が挙げられる。含硫黄化合物としては、ジメチルスルホキシド等が挙げられる。液状媒体は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of the alcohols include methanol, ethanol, isopropanol, butanol, diacetone alcohol and the like. Examples of ketones include acetone, methyl ethyl ketone, and methyl isobutyl ketone. Examples of the ethers include tetrahydrofuran, 1,4-dioxane, and the like. Examples of cellosolves include methyl cellosolve, ethyl cellosolve and the like. Esters include methyl acetate, ethyl acetate and the like. Examples of glycol ethers include ethylene glycol monoalkyl ether. Examples of the nitrogen-containing compound include N, N-dimethylacetamide, N, N-dimethylformamide, N-methylpyrrolidone and the like. Examples of the sulfur-containing compound include dimethyl sulfoxide. As the liquid medium, one type may be used alone, or two or more types may be used in combination.
 なお、液状媒体は、水を含む液状媒体、すなわち、水、又は水と他の液状媒体の混合液であることが好ましい。他の液状媒体としては、アルコール類が好ましく、メタノール、エタノール、イソプロピルアルコール、ブタノールが特に好ましい。 The liquid medium is preferably a liquid medium containing water, that is, water, or a mixed liquid of water and another liquid medium. As the other liquid medium, alcohols are preferable, and methanol, ethanol, isopropyl alcohol, and butanol are particularly preferable.
 また、コーティング剤は、マトリックス前駆体の加水分解及び縮合を促進する酸触媒を含むものであってもよい。酸触媒は、マトリックス前駆体の加水分解及び縮合を促進し、アンチグレア層12を短時間で形成させる成分である。酸触媒は、コーティング剤の調製に先立って、マトリックス前駆体の溶液の調製の際に、原料(アルコキシシラン等)の加水分解、縮合のために添加されたものであってもよく、必須成分を調製した後にさらに添加されたものであってもよい。酸触媒としては、無機酸(硝酸、硫酸、塩酸等)、有機酸(ギ酸、シュウ酸、酢酸、モノクロル酢酸、ジクロル酢酸、トリクロル酢酸等)が挙げられる。 The coating agent may include an acid catalyst that promotes hydrolysis and condensation of the matrix precursor. The acid catalyst is a component that promotes hydrolysis and condensation of the matrix precursor and forms the antiglare layer 12 in a short time. The acid catalyst may be added for the hydrolysis and condensation of the raw material (alkoxysilane, etc.) during the preparation of the solution of the matrix precursor prior to the preparation of the coating agent. It may be further added after preparation. Examples of the acid catalyst include inorganic acids (such as nitric acid, sulfuric acid, and hydrochloric acid) and organic acids (such as formic acid, oxalic acid, acetic acid, monochloroacetic acid, dichloroacetic acid, and trichloroacetic acid).
 コーティング剤の塗布方法としては、公知のウェットコート法(スプレーコート法、スピンコート法、ディップコート法、ダイコート法、カーテンコート法、スクリーンコート法、インクジェット法、フローコート法、グラビアコート法、バーコート法、フレキソコート法、スリットコート法、ロールコート法等)等が挙げられる。塗布方法としては、凹凸を形成しやすい点から、スプレーコート法が好ましい。本発明のアンチグレア面12a(後述する凹凸構造のアンチグレア面12a)は、ノズルの口径、コーティング剤を噴射するための霧化エア圧、コーティング剤の単位面積当たりの塗布量、塗布する際の透明基材11の表面温度を適宜調整することによって得ることができる。 Examples of the coating method of the coating agent include known wet coating methods (spray coating method, spin coating method, dip coating method, die coating method, curtain coating method, screen coating method, inkjet method, flow coating method, gravure coating method, bar coating method). Method, flexo coating method, slit coating method, roll coating method, etc.). As a coating method, a spray coating method is preferable because irregularities are easily formed. The anti-glare surface 12a of the present invention (the anti-glare surface 12a having a concavo-convex structure to be described later) has a nozzle diameter, an atomizing air pressure for spraying a coating agent, an application amount per unit area of the coating agent, and a transparent substrate for application. It can be obtained by appropriately adjusting the surface temperature of the material 11.
 スプレーコート法に用いるノズルとしては、2流体ノズル、1流体ノズル等が挙げられる。ノズルから吐出されるコーティング剤の液滴の粒径は、通常0.1~100μmであり、1~50μmが好ましい。液滴の粒径が0.1μm以上であれば、防眩効果が充分に発揮される凹凸を短時間で形成できる。液滴の粒径が100μm以下であれば、防眩効果が充分に発揮される適度な凹凸を形成しやすい。コーティング剤の液滴の粒径は、ノズルの種類、霧化エア圧、液量等により適宜、調整できる。例えば、2流体ノズルでは、霧化エア圧が高くなるほど液滴は小さくなり、また、液量が多くなるほど液滴は大きくなる。なお、液滴の粒径は、レーザー測定器によって測定されるザウター平均粒子径である。 ノ ズ ル Examples of the nozzle used for the spray coating method include a two-fluid nozzle and a one-fluid nozzle. The particle size of the droplet of the coating agent discharged from the nozzle is usually 0.1 to 100 μm, preferably 1 to 50 μm. When the particle diameter of the droplet is 0.1 μm or more, it is possible to form irregularities in which the anti-glare effect is sufficiently exhibited in a short time. When the particle diameter of the droplet is 100 μm or less, it is easy to form appropriate unevenness for sufficiently exhibiting the antiglare effect. The particle size of the droplets of the coating agent can be appropriately adjusted depending on the type of nozzle, the atomizing air pressure, the liquid amount, and the like. For example, in a two-fluid nozzle, the droplet becomes smaller as the atomizing air pressure becomes higher, and the droplet becomes larger as the amount of liquid increases. The particle size of the droplet is a Sauter average particle size measured by a laser measuring device.
 コーティング剤を塗布する際の塗布対象(例えば、透明基材11)の表面温度は、例えば、20~75℃であり、30℃以上であることが好ましく、60℃以上であることが更に好ましい。塗布対象を加熱する方法としては、例えば、温水循環式の加熱装置を用いることが好ましい。また、コーティング剤を塗布する際の湿度は、例えば、20~80%であり、50%以上であることが好ましい。 (4) The surface temperature of the application target (eg, the transparent substrate 11) when applying the coating agent is, for example, 20 to 75 ° C., preferably 30 ° C. or higher, and more preferably 60 ° C. or higher. As a method for heating the application target, for example, it is preferable to use a heating device of a hot water circulation type. The humidity at the time of applying the coating agent is, for example, 20 to 80%, and preferably 50% or more.
 図2に示すように、本実施形態の透明物品10のアンチグレア面12aの凹凸構造は、アンチグレア面12aの法線nとアンチグレア面12aにおける微小平面dSの法線nとがなす勾配角γが5°以上である領域の割合(以下、勾配角5°以上の割合と記載する。)が小さい凹凸構造である。具体的には、勾配角γの勾配角分布における勾配角5°以上の割合が45%以下であり、41%以下であることが好ましい。また、アンチグレア面12aの凹凸構造は、勾配角γの勾配角分布において、0.1°以上5°以下の範囲にピークを有する凹凸構造であることが好ましい。 As shown in FIG. 2, the uneven structure of the anti-glare surface 12 a of the transparent article 10 of the present embodiment has a gradient angle γ formed by a normal n 0 of the anti-glare surface 12 a and a normal n 1 of the minute plane dS on the anti-glare surface 12 a. Is an uneven structure in which the ratio of the region where is not less than 5 ° (hereinafter referred to as the ratio of the gradient angle of not less than 5 °) is small. Specifically, the ratio of the gradient angle 5 ° or more in the gradient angle distribution of the gradient angle γ is 45% or less, and preferably 41% or less. The uneven structure of the antiglare surface 12a is preferably an uneven structure having a peak in a range of 0.1 ° or more and 5 ° or less in a gradient angle distribution of the gradient angle γ.
 勾配角γの勾配角分布は、公知のレーザー顕微鏡を用いて測定された三次元形状z(x,y)から求めることができる。レーザー顕微鏡としては、分解能の高い測定ができる点から、XY分解能0.3μm以下、高さ分解能0.5nm以下で測定可能なレーザー顕微鏡を用いることが好ましい。また、測定条件は特に限定されるものではないが、測定範囲を200μm以上×200μm以上、測定点密度を12Point/μm以上に設定することが好ましい。微小平面dSは、近傍のまたは隣接する3点を含む面とし、これら点の2点間の間隔はx軸またはy軸方向に0.2μm~0.3μmとすることが好ましい。勾配角γの勾配角分布は、0°~90°の範囲を0.2°間隔で勾配角の頻度を得ることが好ましい。 The gradient angle distribution of the gradient angle γ can be obtained from the three-dimensional shape z (x, y) measured using a known laser microscope. As a laser microscope, it is preferable to use a laser microscope capable of measuring with an XY resolution of 0.3 μm or less and a height resolution of 0.5 nm or less, since measurement with high resolution can be performed. The measurement conditions are not particularly limited, but it is preferable to set the measurement range to 200 μm or more × 200 μm or more, and the measurement point density to 12 Point / μm 2 or more. The minute plane dS is a surface including three points that are near or adjacent to each other, and the interval between these two points is preferably 0.2 μm to 0.3 μm in the x-axis or y-axis direction. In the gradient angle distribution of the gradient angle γ, it is preferable to obtain the frequency of the gradient angle in the range of 0 ° to 90 ° at intervals of 0.2 °.
 図3及び図4に、アンチグレア面12aにおける勾配角γの勾配角分布、及びその積算分布の一例を示す。勾配角γの勾配角分布における勾配角5°以上の割合が45%以下であることにより、透明物品10を表示装置の表示面に適用した際の明所コントラスト(太陽光が入射する環境等の明所下におけるコントラスト)を高めることができる。したがって、明所下で使用した場合に白ボケ等を感じ難くなる。 3 and 4 show examples of the gradient angle distribution of the gradient angle γ on the anti-glare surface 12a and an example of the integrated distribution thereof. When the ratio of the gradient angle of 5 ° or more in the gradient angle distribution of the gradient angle γ is 45% or less, the bright place contrast when the transparent article 10 is applied to the display surface of the display device (for example, in an environment where sunlight is incident). Contrast in a bright place) can be increased. Therefore, when used in a light place, it becomes difficult to feel white blur or the like.
 また、透明物品10のアンチグレア面12aの凹凸構造は、例えば下記の式(1)で示される自己相関関数G(τ)より求められる周期長さdに基づいて規定することができる。凹凸構造の周期長さdは短いことが好ましい。 Further, the uneven structure of the antiglare surface 12a of the transparent article 10 can be defined based on, for example, a period length d obtained from an autocorrelation function G x (τ) represented by the following equation (1). It is preferable that the period length d of the uneven structure is short.
Figure JPOXMLDOC01-appb-M000001
 式(1)で示される自己相関関数G(τ)は、アンチグレア面12aに平行方向の座標を直交座標(x,y)とし、アンチグレア面12aの面直方向の高さをzとして表されるアンチグレア面12aの三次元形状z(x,y)の自己相関関数である。式(1)における「X」は、アンチグレア面12aにおけるx方向の対象範囲の長さ(測定長さ)である。
Figure JPOXMLDOC01-appb-M000001
The autocorrelation function G x (τ) expressed by the equation (1) is represented by orthogonal coordinates (x, y) in a direction parallel to the antiglare surface 12a and z in a direction perpendicular to the antiglare surface 12a. Of the three-dimensional shape z (x, y) of the anti-glare surface 12a. “X” in Expression (1) is the length (measured length) of the target range in the x direction on the antiglare surface 12a.
 三次元形状z(x,y)は、公知のレーザー顕微鏡を用いて測定できる。レーザー顕微鏡としては、分解能の高い測定ができる点から、XY分解能0.3μm以下、高さ分解能0.5nm以下で測定可能なレーザー顕微鏡を用いることが好ましい。また、測定条件は特に限定されるものではないが、測定範囲を200μm以上×200μm以上、測定点密度を12Point/μm以上に設定することが好ましい。レーザー顕微鏡などの光学機器を用いるアンチグレア面12aの凹凸構造の実際的な測定では、アンチグレア面12aの凹凸構造の三次元形状z(x,y)は、離散的な高さ情報の行列で得られる。この離散的な高さ情報の行列に基づくアンチグレア面12aの自己相関関数G(m)について説明する。離散的な高さ情報の行列のサイズはN×Mと表され、Nはy軸の座標、Mはx軸の座標に対応する。高さプロファイルのx軸方向のシフト量をτ(μm)とし、x軸方向のデータ間隔をΔx(μm)としたとき、m=τ/Δxと定義する。x軸方向の高さプロファイルの自己相関関数をy軸方向に平均をとった一次の自己相関関数G(m)は式(2)で表される。式(2)中のkはx座標に対応した列番号(1~M)、lはy座標に対応した行番号(1~N)を表す。 The three-dimensional shape z (x, y) can be measured using a known laser microscope. As a laser microscope, it is preferable to use a laser microscope capable of measuring with an XY resolution of 0.3 μm or less and a height resolution of 0.5 nm or less, since measurement with high resolution can be performed. The measurement conditions are not particularly limited, but it is preferable to set the measurement range to 200 μm or more × 200 μm or more, and the measurement point density to 12 Point / μm 2 or more. In a practical measurement of the uneven structure of the antiglare surface 12a using an optical device such as a laser microscope, the three-dimensional shape z (x, y) of the uneven structure of the antiglare surface 12a can be obtained by a matrix of discrete height information. . This anti-glare surface 12a based on a matrix of discrete height information autocorrelation function G x (m) will be described. The size of the matrix of discrete height information is represented as N × M, where N corresponds to the y-axis coordinate and M corresponds to the x-axis coordinate. When the shift amount of the height profile in the x-axis direction is τ (μm) and the data interval in the x-axis direction is Δx (μm), m = τ / Δx. A first-order autocorrelation function G x (m) obtained by averaging the autocorrelation function of the height profile in the x-axis direction in the y-axis direction is represented by Expression (2). In the equation (2), k represents a column number (1 to M) corresponding to the x coordinate, and 1 represents a row number (1 to N) corresponding to the y coordinate.
Figure JPOXMLDOC01-appb-M000002
 図5に、アンチグレア面12aの自己相関関数G(τ)のグラフの一例を示す。図5のグラフに示すように、自己相関関数G(τ)は、τの値が「0」から増加するにしたがって大きく減少した後、増加するとともに、減少と増加を一定の周期で繰り返す。
Figure JPOXMLDOC01-appb-M000002
FIG. 5 shows an example of a graph of the autocorrelation function G x (τ) of the anti-glare surface 12a. As shown in the graph of FIG. 5, the autocorrelation function G x (τ) largely decreases as the value of τ increases from “0”, then increases, and repeats a decrease and an increase at a constant cycle.
 周期長さdは、自己相関関数G(τ)における減少と増加が繰り返される周期の長さである。自己相関関数G(τ)における減少傾向から増加傾向に転じる変曲点を第1変曲点、増加傾向から減少傾向に転じる変曲点を第2変曲点としたとき、周期長さdは、第2変曲点におけるτ値の最小値として求められる。なお、周期長さdを求める際には、ノイズ等による細かい増減は無視する。 The cycle length d is the length of the cycle in which the decrease and the increase in the autocorrelation function G x (τ) are repeated. When the inflection point where the autocorrelation function G x (τ) changes from a decreasing trend to an increasing trend is defined as a first inflection point, and the inflection point where the increasing trend changes to a decreasing trend is defined as a second inflection point, the period length d Is obtained as the minimum value of the τ value at the second inflection point. Note that when calculating the cycle length d, small changes due to noise or the like are ignored.
 アンチグレア面12aの凹凸構造は、周期長さdが20μm以下であることが好ましく、17μm以下であることが好ましく、12μm以下であることがより好ましい。周期長さdの下限値は、例えば、6μmである。 (4) The uneven length structure of the antiglare surface 12a preferably has a period length d of 20 μm or less, preferably 17 μm or less, and more preferably 12 μm or less. The lower limit value of the cycle length d is, for example, 6 μm.
 周期長さdが20μm以下であることにより、アンチグレア面12aにおけるスパークルの発生を抑制できる。特に、周期長さdが、透明物品10が適用される表示装置のピクセルサイズの1/3以下である場合には、スパークルの発生を効果的に抑制できる。なお、ピクセル密度420ppiの表示装置のピクセルサイズは60μmである。透明物品10は、後述するスパークル値が0.006~0.02であることが好ましい。 に よ り By setting the period length d to 20 μm or less, it is possible to suppress the occurrence of sparkle on the anti-glare surface 12a. In particular, when the cycle length d is 1/3 or less of the pixel size of the display device to which the transparent article 10 is applied, the generation of sparkle can be effectively suppressed. The pixel size of a display device having a pixel density of 420 ppi is 60 μm. The transparent article 10 preferably has a sparkle value described below of 0.006 to 0.02.
 次に、本実施形態の作用及び効果について記載する。
 (1)透明物品10は、凹凸構造のアンチグレア面12aを有する。アンチグレア面12aの凹凸構造は、アンチグレア面12aの法線nとアンチグレア面12aにおける微小平面dSの法線nとがなす勾配角分布における勾配角5°以上の割合が45%以下である。
Next, the operation and effect of the present embodiment will be described.
(1) The transparent article 10 has an anti-glare surface 12a having an uneven structure. Relief structure antiglare surface 12a, the proportion of the higher slope angle of 5 ° in the slope angle distribution formed by the normal line n 1 of the small plane dS in the normal n 0 and anti-glare surface 12a of the anti-glare surface 12a is equal to or less than 45%.
 上記構成によれば、透明物品10の明所コントラストを高めることができる。
 (2)アンチグレア面12aの凹凸構造は、自己相関関数G(m)より求められる周期長さdが20μm以下である。
According to the above configuration, the bright place contrast of the transparent article 10 can be increased.
(2) In the uneven structure of the anti-glare surface 12a, the period length d obtained from the autocorrelation function G x (m) is 20 μm or less.
 上記構成によれば、アンチグレア面12aにおけるスパークルを抑制できる。
 なお、本実施形態は、以下のように変更して実施することができる。本実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
According to the above configuration, sparkle on the anti-glare surface 12a can be suppressed.
The present embodiment can be modified and implemented as follows. The present embodiment and the following modified examples can be implemented in combination with each other within a technically consistent range.
 ・透明物品10は、透明基材11及びアンチグレア層12に加えて、反射防止層や防汚層等のその他の層を有するものであってもよい。
 ・アンチグレア面12aは、透明基材11の一方の主面に設けられたアンチグレア層12の表面に限定されるものではない。例えば、透明基材11の表面に対して、ブラスト処理やエッチング処理等の他の方法を用いたアンチグレア面形成工程により形成される凹凸構造のアンチグレア面であってもよい。
The transparent article 10 may have other layers such as an antireflection layer and an antifouling layer in addition to the transparent substrate 11 and the antiglare layer 12.
The anti-glare surface 12 a is not limited to the surface of the anti-glare layer 12 provided on one main surface of the transparent substrate 11. For example, an anti-glare surface having a concavo-convex structure formed on the surface of the transparent substrate 11 by an anti-glare surface forming step using another method such as blasting or etching may be used.
 ・透明基材11の表面の二面以上にアンチグレア面12aを設けてもよい。
 次に、上記実施形態及び変更例から把握できる技術的思想を以下に記載する。
 (イ)ピクセル密度420ppi以上の表示装置の表示面に配置して用いられる前記透明物品。
The anti-glare surface 12 a may be provided on two or more surfaces of the transparent substrate 11.
Next, technical ideas that can be grasped from the above-described embodiment and modified examples will be described below.
(A) The transparent article used by being arranged on a display surface of a display device having a pixel density of 420 ppi or more.
 (ロ)前記透明物品の前記アンチグレア面の凹凸構造は、前記周期長さが前記表示装置のピクセルサイズの1/3以下である前記透明物品。 (B) The transparent article in which the periodic length of the anti-glare surface of the transparent article is not more than 1/3 of the pixel size of the display device.
 以下に試験例を挙げ、上記実施形態をさらに具体的に説明する。なお、本発明はこれらに限定されるものではない。
 (試験例1,2,4,10)
 エッチング法により形成されたアンチグレア面を有し、アンチグレア面の凹凸構造の異なる4種類のガラス物品をそれぞれ試験例1,2,4,10として用いた。なお、試験例1,2,4ではHF水溶液を、試験例10ではNHHF水溶液をエッチャントとして用いてエッチングを行った。
Hereinafter, the embodiment will be described more specifically with reference to test examples. Note that the present invention is not limited to these.
(Test Examples 1, 2, 4, 10)
Four types of glass articles having an anti-glare surface formed by an etching method and having different concavo-convex structures on the anti-glare surface were used as Test Examples 1, 2, 4, and 10, respectively. In Test Examples 1, 2, and 4, etching was performed using an HF aqueous solution, and in Test Example 10, etching was performed using an NH 4 HF 2 aqueous solution as an etchant.
 (試験例3,5~9)
 アンチグレア面の凹凸構造の異なる試験例3,5~9の透明物品を次のように作製した。
(Test Examples 3, 5 to 9)
Transparent articles of Test Examples 3, 5 to 9 having different anti-glare surface irregularities were produced as follows.
 厚さ1.3mmの板状の化学強化ガラスからなる透明基材(日本電気硝子株式会社製:T2X-1)の一方側の表面に対して、スプレーコーティング装置により、コーティング剤を塗布することによりアンチグレア層を形成した。スプレーコーティング装置のノズルは、2流体ノズルであり、コーティング剤は、水を含む液状媒体にアンチグレア層の前駆体(オルトケイ酸テトラエチル)を溶解することで調製した溶液であり、当該コーティング剤を、雰囲気湿度52%にて、流量0.3kg/時で、表面温度を所定温度に調整した透明基材に塗布し、180℃で30分加熱して乾燥させた。試験例3,5~9の透明物品は、表1に示すように、アンチグレア層を形成する際における、ノズルの口径、コーティング剤を噴射するための霧化エア圧、コーティング剤の単位面積当たりの塗布量、透明基材の表面温度を変化させることによって、アンチグレア面の凹凸構造を変化させている。 A coating agent is applied to one surface of a transparent base material (manufactured by Nippon Electric Glass Co., Ltd .: T2X-1) made of 1.3 mm-thick plate-shaped chemically strengthened glass by a spray coating device. An anti-glare layer was formed. The nozzle of the spray coating device is a two-fluid nozzle, and the coating agent is a solution prepared by dissolving the precursor of the anti-glare layer (tetraethyl orthosilicate) in a liquid medium containing water. It was applied to a transparent substrate whose surface temperature was adjusted to a predetermined temperature at a flow rate of 0.3 kg / hour at a humidity of 52% and dried by heating at 180 ° C. for 30 minutes. As shown in Table 1, the transparent articles of Test Examples 3, 5 to 9 had a nozzle diameter, an atomizing air pressure for spraying a coating agent, and a unit area of the coating agent when forming an antiglare layer. By changing the coating amount and the surface temperature of the transparent substrate, the uneven structure of the anti-glare surface is changed.
Figure JPOXMLDOC01-appb-T000003
 (アンチグレア面の凹凸構造の解析)
 XY分解能0.3μm以下、高さ分解能0.5nm以下で測定可能なレーザー顕微鏡(KEYENCE製VK-X250)を用いて、以下の測定条件にて、試験例1~10のアンチグレア面の3次元形状を測定した。
Figure JPOXMLDOC01-appb-T000003
(Analysis of uneven structure of anti-glare surface)
Using a laser microscope (VK-X250 manufactured by KEYENCE) that can measure with an XY resolution of 0.3 μm or less and a height resolution of 0.5 nm or less, the three-dimensional shape of the antiglare surface of Test Examples 1 to 10 under the following measurement conditions: Was measured.
 測定範囲:287μm×215μm
 測定点数:1024×768
 測定点密度:12.7Point/μm
 得られた3次元形状のデータに基づいて、表面粗さRa、及び勾配角γの勾配角分布を求めた。そして、勾配角γの勾配角分布から勾配角5°以上の割合を求めた。また、測定した3次元形状から自己相関関数G(m)を求めるとともに、自己相関関数G(m)から周期長さdを求めた。それらの結果を表2及び表3に示す。試験例3及び試験例10のアンチグレア面12aにおける勾配角γの勾配角分布、及びその積算分布の各グラフを図3及び図4に示す。また、試験例10のアンチグレア面の自己相関関数G(m)のグラフを図5に示す。
Measurement range: 287 μm × 215 μm
Number of measurement points: 1024 x 768
Measurement point density: 12.7 Point / μm 2
Based on the obtained three-dimensional shape data, the surface roughness Ra and the gradient angle distribution of the gradient angle γ were obtained. Then, the ratio of the gradient angle of 5 ° or more was determined from the gradient angle distribution of the gradient angle γ. In addition, the autocorrelation function Gx (m) was obtained from the measured three-dimensional shape, and the period length d was obtained from the autocorrelation function Gx (m). The results are shown in Tables 2 and 3. FIGS. 3 and 4 show graphs of the gradient angle distribution of the gradient angle γ on the antiglare surface 12a of Test Example 3 and Test Example 10, and the integrated distribution thereof. FIG. 5 shows a graph of the autocorrelation function G x (m) of the antiglare surface in Test Example 10.
 (明所コントラストの評価)
 ピクセル密度515ppiの表示装置(ファーウェイ社製スマートフォン:H1512)の表示面に、アンチグレア面が形成されている側を上側にして各透明物品を配置した。表示装置の表示面に対して入射角度60°となる方向から太陽光を入射させた状態として、10人のパネラーに観測角度20°となる方向から表示装置の映像を観察させて、白ボケを感じるか否かを評価させた。その結果を表2及び表3の「明所コントラスト」欄に示す。「明所コントラスト」欄においては、白ボケを感じたと評価した人数が0~3人のものを「〇」、4~10のものを「×」で示している。
(Evaluation of light place contrast)
Each transparent article was placed on the display surface of a display device (smartphone: H1512 manufactured by Huawei) with a pixel density of 515 ppi, with the side on which the anti-glare surface was formed facing upward. In a state where sunlight is incident on the display surface of the display device from a direction at an incident angle of 60 °, 10 panelists observe images on the display device from a direction at an observation angle of 20 ° to remove white blur. They were asked if they felt it. The results are shown in the "bright place contrast" column of Tables 2 and 3. In the “bright place contrast” column, “0” indicates that the number of persons who evaluated that white blur was felt is “3”, and “X” indicates that the number is 4 to 10.
 (スパークル値の測定)
 各試験例の透明物品におけるアンチグレア面のスパークル値を測定した。その結果を表2及び表3に示す。スパークル値は、透明物品のアンチグレア面の反対に位置する面側にパターンマスクを挟んで面光源を配置し、許容錯乱円径53μmにおける前方被写界深度内に透明物品のアンチグレア面及びパターンマスクのトップ面が含まれるようにして、アンチグレア面側から透明物品を撮像し、撮像することで得られた画像データを解析して得られるパターンマスクのピクセル輝度の標準偏差を、上記画像データを解析して得られるパターンマスクのピクセル輝度の平均値で除した値である。
(Measurement of sparkle value)
The sparkle value of the antiglare surface of the transparent article of each test example was measured. The results are shown in Tables 2 and 3. The sparkle value is determined by arranging a surface light source with a pattern mask interposed on the surface opposite to the anti-glare surface of the transparent article, and setting the anti-glare surface of the transparent article and the pattern mask within the front depth of field at an allowable confusion circle diameter of 53 μm. The top surface is included, the transparent article is imaged from the anti-glare side, and the standard deviation of the pixel brightness of the pattern mask obtained by analyzing the image data obtained by imaging is analyzed by analyzing the image data. This is a value obtained by dividing the average value of the pixel luminance of the pattern mask obtained by the above.
 上記スパークル値は、アンチグレア面におけるスパークルの度合を示す値であり、アンチグレア面におけるスパークルが抑制されているほど、上記スパークル値は低くなる。上記スパークル値を用いることにより、スパークルに関して、人の視覚に基づく画像認識に近い定量的な評価を行うことができる。以下、上記スパークル値の具体的な測定方法について記載する。 The sparkle value is a value indicating the degree of sparkle on the anti-glare surface. The more the sparkle on the anti-glare surface is suppressed, the lower the sparkle value. By using the sparkle value, it is possible to perform a quantitative evaluation of the sparkle that is close to image recognition based on human vision. Hereinafter, a specific method for measuring the sparkle value will be described.
 図6に示すように、面光源20の上に、500ppi(ピクセルサイズ51μm)のパターンマスク21を配置するとともに、パターンマスク21の上に、アンチグレア面12aの反対側に位置する面がパターンマスク21側を向くようにして透明物品10を配置した。また、透明物品10のアンチグレア面12a側に、許容錯乱円径を53μmに設定した光検出器22を配置した。光検出器22としては、SMS-1000(Display-Messtechnik&Systeme社製)を用いた。 As shown in FIG. 6, a pattern mask 21 of 500 ppi (pixel size 51 μm) is arranged on the surface light source 20, and a surface located on the side opposite to the anti-glare surface 12 a is placed on the pattern mask 21. The transparent article 10 was arranged so as to face the side. Further, on the anti-glare surface 12a side of the transparent article 10, a photodetector 22 having a permissible circle of confusion set to 53 μm was arranged. As the photodetector 22, SMS-1000 (manufactured by Display-Messtechnik & System) was used.
 光検出器22のセンサーサイズは1/3型であり、ピクセルサイズは3.75μm×3.75μmである。光検出器22のレンズの焦点距離は100mmであり、レンズ絞り径は4.5mmである。パターンマスク21は、そのトップ面21aが光検出器22の焦点位置に位置するように配置し、透明物品10は、パターンマスク21のトップ面21aからアンチグレア面12aまでの距離が1.8mmとなる位置に配置した。 セ ン サ ー The sensor size of the photodetector 22 is 1/3 type, and the pixel size is 3.75 μm × 3.75 μm. The focal length of the lens of the photodetector 22 is 100 mm, and the lens aperture diameter is 4.5 mm. The pattern mask 21 is arranged such that its top surface 21a is located at the focal position of the photodetector 22, and the transparent article 10 has a distance from the top surface 21a of the pattern mask 21 to the anti-glare surface 12a of 1.8 mm. Placed in position.
 次に、透明物品10のアンチグレア面12aに対して、パターンマスク21を介して面光源20からの光を照射した状態として、光検出器22により、透明物品10を撮像し、透明物品10のアンチグレア面12aの画像データを取得した。得られた画像データを、SMS-1000のスパークル測定モード(ソフトウェア Sparkle measurement system)により解析して、パターンマスク21の各ピクセルのピクセル輝度、ピクセル間のピクセル輝度の標準偏差、及びピクセル輝度の平均値を求めた。得られたピクセル間のピクセル輝度の標準偏差及びピクセル輝度の平均値に基づいて、下記式(3)によりスパークル値を算出した。 Next, with the anti-glare surface 12a of the transparent article 10 being irradiated with light from the surface light source 20 via the pattern mask 21, the transparent detector 10 is imaged by the photodetector 22, and the anti-glare surface of the transparent article 10 is imaged. Image data of the surface 12a was obtained. The obtained image data is analyzed by the sparkle measurement mode (software {Sparkle measurement} system) of the SMS-1000, and the pixel luminance of each pixel of the pattern mask 21, the standard deviation of the pixel luminance between pixels, and the average value of the pixel luminance I asked. The sparkle value was calculated by the following equation (3) based on the obtained standard deviation of pixel luminance between pixels and the average value of pixel luminance.
 スパークル値=[パターンマスクのピクセル輝度の標準偏差]/[パターンマスクのピクセル輝度の平均値] ・・・(3) {Sparkle value = [standard deviation of pixel brightness of pattern mask] / [average value of pixel brightness of pattern mask]} (3)
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表2及び表3に示すように、勾配角5°以上の割合が45%以下である試験例1~7は、白ボケを感じ難いという結果が得られた。この結果から、勾配角5°以上の割合が45%以下である凹凸構造のアンチグレア面とすることにより、明所コントラストが向上することが分かる。
Figure JPOXMLDOC01-appb-T000005
As shown in Tables 2 and 3, in Test Examples 1 to 7 in which the ratio of the gradient angle of 5 ° or more was 45% or less, a result was obtained in which it was difficult to feel white blur. From this result, it can be seen that the contrast in the bright place is improved by using the anti-glare surface having the uneven structure in which the ratio of the gradient angle of 5 ° or more is 45% or less.
 また、周期長さdが20μm以下である試験例3,5~10は、周期長さdが20μmを超える試験例1,2,4と比較して、スパークル値が低い値であった。この結果から、周期長さdが20μm以下である凹凸構造のアンチグレア面とすることにより、スパークルを抑制できることが分かる。 Further, in Test Examples 3, 5 to 10 in which the cycle length d was 20 μm or less, the sparkle value was lower than those in Test Examples 1, 2, and 4 in which the cycle length d exceeded 20 μm. From this result, it can be seen that sparkle can be suppressed by using an anti-glare surface having a concavo-convex structure having a period length d of 20 μm or less.
 10…透明物品、11…透明基材、12…アンチグレア層、12a…アンチグレア面。 # 10: transparent article, 11: transparent substrate, 12: anti-glare layer, 12a: anti-glare surface.

Claims (2)

  1.  凹凸構造のアンチグレア面を有する透明物品であって、
     前記アンチグレア面の凹凸構造は、前記アンチグレア面の法線と前記アンチグレア面における微小平面の法線とがなす勾配角分布における勾配角5°以上の割合が45%以下であることを特徴とする透明物品。
    A transparent article having an anti-glare surface having an uneven structure,
    The transparent structure is characterized in that a ratio of a gradient angle of 5 ° or more in a gradient angle distribution formed by a normal line of the antiglare surface and a normal line of a minute plane in the antiglare surface is 45% or less. Goods.
  2.  ガラスからなる透明基材と、前記透明基材に設けられたアンチグレア層とを備えることを特徴とする請求項1に記載の透明物品。 The transparent article according to claim 1, further comprising a transparent substrate made of glass, and an anti-glare layer provided on the transparent substrate.
PCT/JP2019/037540 2018-09-25 2019-09-25 Transparent article WO2020067135A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020549278A JPWO2020067135A1 (en) 2018-09-25 2019-09-25 Transparent goods

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018178645 2018-09-25
JP2018-178645 2018-09-25

Publications (1)

Publication Number Publication Date
WO2020067135A1 true WO2020067135A1 (en) 2020-04-02

Family

ID=69949877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037540 WO2020067135A1 (en) 2018-09-25 2019-09-25 Transparent article

Country Status (2)

Country Link
JP (1) JPWO2020067135A1 (en)
WO (1) WO2020067135A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003222713A (en) * 2002-01-31 2003-08-08 Fuji Photo Film Co Ltd Glare shielding optical film, polarizing plate and display device using the same
JP2005195819A (en) * 2004-01-06 2005-07-21 Daicel Chem Ind Ltd Glareproof film
JP2007187952A (en) * 2006-01-16 2007-07-26 Sumitomo Chemical Co Ltd Anti-glare film, method of manufacturing same, method of manufacturing die for same, and display device
JP2009288650A (en) * 2008-05-30 2009-12-10 Nitto Denko Corp Antiglare hard coat film, polarizing plate and image display apparatus using the same
JP2011047982A (en) * 2009-08-25 2011-03-10 Sumitomo Chemical Co Ltd Antiglare film, method for manufacturing the same and method for manufacturing die

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003222713A (en) * 2002-01-31 2003-08-08 Fuji Photo Film Co Ltd Glare shielding optical film, polarizing plate and display device using the same
JP2005195819A (en) * 2004-01-06 2005-07-21 Daicel Chem Ind Ltd Glareproof film
JP2007187952A (en) * 2006-01-16 2007-07-26 Sumitomo Chemical Co Ltd Anti-glare film, method of manufacturing same, method of manufacturing die for same, and display device
JP2009288650A (en) * 2008-05-30 2009-12-10 Nitto Denko Corp Antiglare hard coat film, polarizing plate and image display apparatus using the same
JP2011047982A (en) * 2009-08-25 2011-03-10 Sumitomo Chemical Co Ltd Antiglare film, method for manufacturing the same and method for manufacturing die

Also Published As

Publication number Publication date
JPWO2020067135A1 (en) 2021-08-30

Similar Documents

Publication Publication Date Title
WO2020067134A1 (en) Transparent article
JP7395350B2 (en) Transparent article and method for manufacturing transparent article
JP7253382B2 (en) transparent goods
JP7353971B2 (en) Method for manufacturing transparent articles
JP7120241B2 (en) transparent goods
WO2019194176A1 (en) Article with anti-glare surface
JP7293662B2 (en) Display device cover member
WO2020067135A1 (en) Transparent article
JP7044078B2 (en) Articles with anti-glare surfaces and methods for manufacturing articles
JP7351329B2 (en) transparent articles
JP7124299B2 (en) transparent goods
WO2018123869A1 (en) Transparent article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19865093

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020549278

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19865093

Country of ref document: EP

Kind code of ref document: A1