WO2020067087A1 - Multilayered structure, authenticity determination method, authenticity determination system, and program - Google Patents

Multilayered structure, authenticity determination method, authenticity determination system, and program Download PDF

Info

Publication number
WO2020067087A1
WO2020067087A1 PCT/JP2019/037454 JP2019037454W WO2020067087A1 WO 2020067087 A1 WO2020067087 A1 WO 2020067087A1 JP 2019037454 W JP2019037454 W JP 2019037454W WO 2020067087 A1 WO2020067087 A1 WO 2020067087A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
multilayer body
laser marking
resin layer
film
Prior art date
Application number
PCT/JP2019/037454
Other languages
French (fr)
Japanese (ja)
Inventor
聖英 武田
鈴木 健太郎
彰太 若山
福井 眞彌
田中 正規
Original Assignee
三菱瓦斯化学株式会社
Mgcフィルシート株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社, Mgcフィルシート株式会社 filed Critical 三菱瓦斯化学株式会社
Publication of WO2020067087A1 publication Critical patent/WO2020067087A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/40Manufacture
    • B42D25/405Marking
    • B42D25/41Marking using electromagnetic radiation

Definitions

  • the present invention relates to a multilayer body, an authentication method, an authentication system and a program.
  • resin films have been used in ID cards, e-passports, IC cards, and the like.
  • a resin film there is known a laser marking film capable of printing a specific area by irradiating a laser beam (see Patent Document 1).
  • an object of the present invention is to provide a multilayer body having improved anti-counterfeiting properties, an authentication method thereof, an authentication system, and a program that can be incorporated in the system.
  • ⁇ 1> It has a resin layer (A) containing a first luminous body and a resin layer (B) containing a laser beam energy absorber, and further satisfies at least one of the following (1) and (2) , Multilayer body; (1) the resin layer (B) contains a second illuminant different from the first illuminant; (2) further comprising a resin layer (C), the resin layer (C) being located on the opposite side of the resin layer (B) from the resin layer (A), and Contains a different second illuminant.
  • ⁇ 2> The multilayer body according to ⁇ 1>, which satisfies the above (1).
  • ⁇ 3> The multilayer body according to ⁇ 1> or ⁇ 2>, which satisfies the above (2).
  • ⁇ 4> The method according to any one of ⁇ 1> to ⁇ 3>, wherein the second luminous body is at least one selected from luminous bodies excited by at least one of ultraviolet light and infrared light. Multilayer body.
  • the first light emitter and the second light emitter are at least one selected from light emitters excited by light supplied from the same light source, any of ⁇ 1> to ⁇ 4>.
  • ⁇ 6> The first light-emitting body according to any one of ⁇ 1> to ⁇ 5>, wherein the first light-emitting body is at least one selected from a light-emitting body that is excited by at least one of ultraviolet light and infrared light.
  • ⁇ 7> The multilayer body according to any one of ⁇ 1> to ⁇ 6>, wherein the resin layer (A) contains at least one of a polycarbonate resin and a polyester resin.
  • ⁇ 8> The method according to any one of ⁇ 1> to ⁇ 7>, wherein at least one of the resin layer (B) and the resin layer (C) contains at least one of a polycarbonate resin and an amorphous polyester resin. Multi-layer body.
  • the first luminous body is composed of B, F, Mg, Al, Si, P, S, Cl, Ca, V, Mn, Cu, Zn, Ge, Sr, Y, Ba, La, Ce, Pr. , Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu, the element according to any one of ⁇ 1> to ⁇ 8>, Multi-layer body.
  • the second luminous body is composed of B, F, Mg, Al, Si, P, S, Cl, Ca, V, Mn, Cu, Zn, Ge, Sr, Y, Ba, La, Ce, Pr.
  • Multi-layer body the element according to any one of ⁇ 1> to ⁇ 9>, Multi-layer body.
  • ⁇ 11> The multilayer body according to any one of ⁇ 1> to ⁇ 10>, which is used for determining authenticity.
  • ⁇ 12> The multilayer body according to any one of ⁇ 1> to ⁇ 11>, which is a security card.
  • ⁇ 13> The multilayer body according to any one of ⁇ 1> to ⁇ 12>, wherein a laser marking process is performed on the resin layer (B).
  • ⁇ 14> The multilayer body according to any one of ⁇ 1> to ⁇ 13>, further having a light shielding layer.
  • the multilayer body according to ⁇ 14> wherein the light shielding layer contains a white pigment or a black pigment.
  • the first luminous body and the second luminous body emit light, respectively.
  • a method for determining the authenticity of a multilayer body comprising irradiating a specific light capable of performing the method.
  • the authenticity determination method according to ⁇ 16> wherein the wavelength of the specific light is in a range of 200 to 450 nm.
  • the wavelength of the specific light is in a range of 800 to 10,000 nm.
  • ⁇ 19> The authentication method according to any one of ⁇ 16> to ⁇ 18>, wherein the multilayer body is a security card.
  • ⁇ 20> The multilayer body according to any one of ⁇ 1> to ⁇ 15>, wherein the multilayer body after laser marking processing is irradiated with specific light to emit light from the multilayer body. Irradiation unit, the light emitted by the multilayer body after the laser marking process is performed, if the light emitted by the multilayer body after the pre-registered laser marking process matches, the multilayer body,
  • An authenticity determination system comprising: an authenticity determination unit that determines that the light emitted by the device is authentic light.
  • the light emitted from the multilayer body after the pre-registered laser marking processing is performed is light emitted from the laser marking non-processing portion and light emitted from the laser marking processing portion having a specific optical density.
  • the authenticity determination system according to ⁇ 20> comprising: ⁇ 22> A program described in a computer-readable format, the method comprising: detecting light emitted by the multilayer body according to any one of ⁇ 1> to ⁇ 15>; The light emitted from the multilayer body after the pre-registered laser marking processing is performed, and the light emitted from the multilayer body is an authenticity determining step of determining that the emitted light is genuine light.
  • the present invention it is possible to provide a multilayer body having improved anti-counterfeiting properties, an authentication method thereof, an authentication system, and a program that can be incorporated in the system.
  • FIG. 16 is an apparatus configuration diagram illustrating an example of an authentication determination system according to a preferred embodiment of the present invention.
  • the multilayer body of the present invention has a resin layer (A) containing a first luminous body and a resin layer (B) containing a laser beam energy absorber, and further comprises the following (1) and (2) Meet at least one.
  • the resin layer (B) contains a second luminous body different from the first luminous body.
  • (2) further comprising a resin layer (C), the resin layer (C) being located on the opposite side of the resin layer (B) from the resin layer (A), and Contains a different second illuminant.
  • FIG. 1 is a cross-sectional view schematically illustrating an example of a multilayer body according to a preferred embodiment of the present invention.
  • the multilayer body of this embodiment includes a violet light-emitting film 1 that emits purple light in response to a first light (light 1), and a yellow-green LM that emits yellow-green in response to the first light (light 1). And a film 23.
  • the purple light emitting film 1 contains a purple light emitter (first light emitter) that emits purple light in response to the first light.
  • the yellow-green LM film 23 absorbs laser light and emits yellow-green light in response to the first light and emits yellow-green light, and discolors the matrix resin to black by its energy.
  • thermoplastic resin for example, a polycarbonate resin or an amorphous polyester resin, it looks so-called transparent.
  • “transparent” means that the value of the total light transmittance specified by ISO13468-1: 1996 indicates 50% or more.
  • the color of the thermoplastic resin including such additives will be confirmed.
  • the portion of the yellow-green LM film 23 that has been irradiated with the laser light usually turns black. Therefore, when the first light (light beam 1) is irradiated, the laser marking processing section causes the violet luminous body to emit light on the black region, and shows a slightly dark purple. On the other hand, the laser marking non-processed portion remains white.
  • the violet light-emitting film 1 and the yellow-green LM film 23 do not emit light in the laser-marking non-processed portion, so that the color of the thermoplastic resin as it is can be confirmed.
  • the laser marking processing section normally looks black when irradiated with laser light.
  • the color detected by the emission of the first light (light 1) differs before and after the laser marking process. Therefore, by performing the laser marking process, an irreversible change can be given to the emission color of the multilayer body, which can be used for authenticity determination. Further, by further laminating the multilayer body of the present embodiment on the already written true information portion, it is possible to distinguish from the already written true information portion for additional counterfeit laser marking processing. As a result, an additional counterfeit laser marking process can be prevented.
  • the method of determining the authenticity utilizing such properties will be described later, but a typical advantage is that the laser-marked portion is predetermined because the color of the light emitted from the multilayer body is different.
  • Irradiation with light of a wavelength changes the color of the multilayer body.
  • information on the emission color (light) after the laser marking process is recorded in advance.
  • the card is subjected to laser marking processing, and the luminescent color (light) at that time is compared with the recorded luminescent color (light) so that the card can be checked.
  • FIG. 2 is a cross-sectional view schematically showing another example of the multilayer body according to the preferred embodiment of the present invention.
  • the multilayer body shown in FIG. 2A emits yellow-green LM film 23 that emits yellow-green in response to the first light (light 1) and emits purple in response to the first light (light 1). And a violet light-emitting film 1.
  • the yellow-green LM film 23 and the purple light-emitting film 1 are the same as in the embodiment of FIG.
  • a yellow-green luminescent material is obtained before the laser light energy absorber is irradiated with the first light (light beam 1) before being irradiated with the laser light (before the laser marking process).
  • the violet illuminant both emit light and appear white.
  • the second light light ray 2
  • the yellow-green light emitter and the purple light emitter do not emit light, and the color of the thermoplastic resin can be seen as it is.
  • a part of the yellow-green LM film 23 turns black in the thickness direction. Therefore, when the first light (light beam 1) is irradiated, the laser marking processing unit emits the yellow-green illuminant on the black region 30, and exhibits a slightly dark yellow-green. On the other hand, the laser marking non-processed portion remains white.
  • FIG. 3 is a cross-sectional view schematically showing another example of the multilayer body according to the preferred embodiment of the present invention.
  • the multilayer body of this embodiment includes a violet light-emitting film 1 that emits purple light in response to a first light (light beam 1), a laser marking film 3 including a laser light energy absorber, And a yellow-green light-emitting film 2 that emits yellow-green light in this order.
  • the embodiment of the violet light-emitting film 1 is the same as that of FIG.
  • the laser marking film 3 contains a laser light energy absorber, and the laser marking portion usually turns black.
  • the yellow-green luminescent film 2 contains a yellow-green luminescent material that emits yellow-green in response to the first light, and emits yellow-green when irradiated with the first light.
  • the multilayer body of this embodiment emits purple light from the purple light-emitting film 1 and yellow-green light from the yellow-green light-emitting film 2 due to the irradiation of the first light, and looks white.
  • the laser marking film 3 since the laser marking film 3 is usually discolored to black, when the first light is irradiated, the yellow-green luminescence intensity from the yellow-green luminescent film 2 therebelow is irradiated. Becomes weaker.
  • the purple emission contribution of the purple emission film over the black laser marking film is enhanced. That is, in the same manner as in the embodiment of FIG. 1, irradiation of the first light causes the treated multilayer body to exhibit a slightly dark purple color. On the other hand, when the violet light emitter and the yellow-green light emitter emit light that does not emit light (second light), as in FIG. The processing section normally appears black when irradiated with the laser beam.
  • FIG. 4 is a cross-sectional view schematically showing another example of the multilayer body according to the preferred embodiment of the present invention.
  • the multilayer body of this embodiment has a light emitting film 11, a laser marking film 3, and a light emitting film 21 in that order.
  • the light-emitting film 11 responds to the first light (light 1) and the first light (light 1) and the second light (light 2) which emits yellow-green light in response to the first light (light 1).
  • a red light emitter (light beam 2) that emits red light.
  • the light-emitting film 21 responds to the first light (light 1), a violet luminous body (light 1) that emits purple light, and a first light (light 1) and a second light (light 2).
  • the multilayer body of this embodiment causes the film 11 to emit orange light, the film 21 to emit blue light, and appear white when irradiated with the first light.
  • the laser marking film 3 is normally discolored to black, even if the first light is irradiated, the blue light emission intensity of the film 21 thereunder becomes weak. As a result, orange emission on the black laser marking film is strongly detected. That is, the irradiated multilayer body exhibits a slightly dark orange color by the first light irradiation.
  • the film 11 emits red light
  • the film 21 emits blue-green light
  • the multilayer body appears white before the laser marking process.
  • the laser marking film 3 since the laser marking film 3 has changed color to black, even if the second light is irradiated, the blue-green light emission intensity from the film 21 thereunder becomes weak. As a result, the red emission on the black laser marking film is strongly detected. That is, by the irradiation of the second light, the treated multilayer body exhibits a slightly dark red color.
  • FIG. 5 is a cross-sectional view schematically showing another example of the multilayer body according to the preferred embodiment of the present invention.
  • the multilayer body of the present embodiment shown in FIG. 5 has a red light emitting film 6, a laser marking film 3, a blue light emitting film 7, a laser marking film 3 ', and a green light emitting film 8 in that order. I have.
  • the laser marking film 3 is the same as that shown in FIG. In the laser marking film 3 ′, the concentration of the laser beam energy absorber is higher than the concentration of the laser beam energy absorber contained in the laser marking film 3.
  • the red light emitting film 6, the blue light emitting film 7, and the green light emitting film 8 emit red light, blue light, and green light, respectively, when irradiated with the first light (light 1) and the second light (light 2), respectively. It is a film containing the body.
  • the multilayer body of the present embodiment emits red light from the red light emitting film 6, emits blue light from the blue light emitting film 7, and emits green light from the green light emitting film 8 by the first light irradiation. It emits light and looks white.
  • the concentration of the laser light energy absorber contained in the laser marking film 3 ′ is made higher than the concentration of the laser light energy absorber The marking film 3 'is selectively marked.
  • the laser marking film 3 ′ is normally discolored to black, even if the first light is irradiated, the light emission of the green light-emitting film 8 thereunder is weak. Red light emission and blue light emission on the film are strongly detected. That is, the irradiated multilayer body exhibits a slightly dark purple color by the irradiation of the first light.
  • laser marking is performed on both the laser marking film 3 ′ and the laser marking film 3.
  • the laser marking film 3 is usually discolored to black, even if the second light is irradiated, the blue light-emitting film 7 and the green light-emitting film 8 thereunder weakly emit light. The red emission on the black laser marking film 3 will be strongly detected. That is, the treated multilayer body exhibits a slightly dark red color by the irradiation of the first light.
  • FIG. 6 is a cross-sectional view schematically showing another example of the multilayer body according to the preferred embodiment of the present invention.
  • the multilayer body of the present embodiment shown in FIG. 6 has a red light emitting film 6, a laser marking film 3, and a blue green light emitting film 9 in that order.
  • the red light emitting film 6 is the same as that shown in FIG.
  • the laser marking film 3 is the same as that shown in FIG.
  • the blue-green light-emitting film 9 is a luminous body that mixes blue and green and emits blue-green in response to the first light and the second light. Before the laser marking process, the multilayer body shown in FIG.
  • the red light-emitting film 6 emits red light from the red light-emitting film 6, emits blue light from the blue-green light-emitting film 9, and emits white light from the multilayer body when irradiated with the first light. Looks like.
  • the laser marking film 3 is normally discolored to black, even if the first light is irradiated, the light emission of the blue-green light-emitting film 9 thereunder is weakened. As a result, the red emission on the black laser marking film is strongly detected, giving a slightly darker red color.
  • the irradiation of the second light in the multilayer body before the laser marking treatment, all the films emit light in the same manner as when the first light is irradiated, and the same result is obtained. Even by the irradiation of the second light, light is emitted in the same manner as when the first light is irradiated, and the treated multilayer body exhibits a slightly dark red color.
  • the black optical density (OD value) of the laser marking portion may be adjusted to a predetermined value. According to this aspect, the authenticity can be determined only by the first light.
  • the first light irradiates the red light-emitting film 6 to emit red light
  • the blue-green light-emitting film 9 emits blue-green light
  • the multilayer body looks white.
  • the laser marking portion by adjusting the laser marking portion so as to have a certain OD value, even if the first light is irradiated, the light emitted from the blue-green light-emitting film 9 therebelow. Is attenuated at a constant rate. As a result, mixed light of red emission on the black laser marking film and slightly weak blue-green light will be detected. By pre-registering the red and blue-green lights at this time, the authenticity can be determined without irradiating the second light.
  • FIG. 7 shows an embodiment in which a light shielding layer 31 is provided on the opposite side of the multilayer violet light emitting film 1 shown in FIG.
  • a light shielding layer 31 is provided on the opposite side of the multilayer violet light emitting film 1 shown in FIG.
  • the light shielding layer is not particularly limited as long as it is a layer that shields light, but usually includes a resin film mixed with a white pigment or a black pigment.
  • a chromatic pigment may be used as long as light emission used in the present invention can be confirmed.
  • FIG. 8 shows a state in which a multilayer body corresponding to FIG. 3 is further provided on the surface of the light shielding layer 31 on the surface opposite to the multilayer body shown in FIG. 1 in the multilayer body shown in FIG. is there.
  • the system displays the processing information after the laser marking process on the entire surface of the multilayer body.
  • the multilayer body depending on the use of the multilayer body, only a part of the area in the surface direction of the multilayer body is used. May be provided.
  • a preferred embodiment of the present invention includes an embodiment in which the multilayer body shown in FIG. 1 is incorporated in a partial region in the plane direction of the multilayer body and the multilayer body shown in FIG. 3 is incorporated in another part.
  • FIG. 9 is a cross-sectional view schematically illustrating a multilayer body of a comparative example.
  • the multilayer body of the comparative example shown in FIG. 9 has a blank film (resin film not containing a light-emitting body) 4 and a yellow-green LM film 23 in that order.
  • the yellow-green light-emitting film 23 is the same as the example in FIG.
  • the yellow-green light-emitting film 23 emits yellow-green light by irradiating the first light before the laser marking process. After the laser marking process, it usually looks black due to the irradiation of the laser beam.
  • the yellow-green light emitter when the yellow-green light emitter emits light (second light) that does not emit light, the yellow-green light emitter does not emit light before the laser marking process. After the laser marking process, it usually looks black. That is, irradiating the first light and irradiating the second light have the same emission color after the laser marking process.
  • FIG. 10 is a sectional view schematically showing a multilayer body of another comparative example.
  • the multilayer body of the comparative example shown in FIG. 10 has a violet light emitting film 1 and a laser marking film 3 in that order.
  • the purple light emitting film 1 is the same as the example of FIG.
  • the violet light-emitting body when the first light is not irradiated, the violet light-emitting body does not emit light, and the color of the thermoplastic resin can be seen as it is. By irradiating this with the first light, the purple light-emitting film 1 emits purple light, and the multilayer body exhibits purple color.
  • the laser marking film 3 turns black.
  • the purple light-emitting film 1 emits purple light, and the multilayer body looks slightly dark purple.
  • the second light light beam 2
  • the violet light-emitting film 1 does not emit light in the laser marking processing section
  • the same color (normally transparent) of the thermoplastic resin can be confirmed.
  • the non-laser-marked portion usually looks black. That is, irradiating the first light and irradiating the second light have the same emission color after the laser marking process.
  • FIG. 11 is a sectional view schematically showing a multilayer body of another comparative example.
  • the multilayer body of the comparative example shown in FIG. 11 has a blank film 4 (a resin film containing no luminous body), a laser marking film 3, and a yellow-green luminescent film 2 in that order.
  • the yellow-green light emitting film 2 is the same as the example of FIG.
  • the first light when the first light is not irradiated, the color of the thermoplastic resin as it is can be confirmed.
  • the yellow-green light-emitting film 2 emits yellow-green light.
  • the laser marking film 3 turns black.
  • the yellow-green light emission intensity of the yellow-green light-emitting film 2 becomes weak and remains black.
  • the laser marking processing section does not emit light from the yellow-green light emitting film 2, so that the color of the thermoplastic resin as it is (usually transparent) can be confirmed.
  • the non-laser-marked portion usually looks black. That is, irradiating the first light and irradiating the second light have the same emission color after the laser marking process.
  • FIG. 12 is a sectional view schematically showing a multilayer body of another comparative example.
  • the multilayer body of the comparative example shown in FIG. 12 has a violet light emitting film 1, a blank film 4, and a yellow-green light emitting film 2 in that order.
  • the violet light-emitting film 1 and the yellow-green light-emitting film 2 are the same as in the example of FIG.
  • the same color (normally transparent) of the thermoplastic resin can be confirmed.
  • the purple light-emitting film 1 emits purple light
  • the yellow-green light-emitting film 2 emits yellow-green light
  • the multilayer body exhibits white. Further, even after the laser marking processing, there is no discoloration due to the laser marking processing, and there is no change.
  • the untreated multilayer body and the treated multilayer body do not respond to the second light, and the same color (usually transparent) of the thermoplastic resin can be confirmed. That is, irradiating the first light and irradiating the second light have the same emission color after the laser marking process.
  • FIG. 13 is a sectional view schematically showing a multilayer body 5C of another comparative example.
  • the multilayer body of the comparative example has a violet light-emitting film 1, a laser marking film 3, and a blank film 4 in that order.
  • the purple light emitting film 1 is the same as the example of FIG.
  • the color of the thermoplastic resin can be confirmed as it is when the first light is not irradiated. By irradiating this with the first light, the purple light-emitting film 1 emits purple light, and the multilayer body exhibits purple color. When this is subjected to a laser marking process, the laser marking film 3 turns black.
  • the purple light emitting film 1 emits purple light, and the multilayer body becomes slightly dark purple.
  • the untreated multilayer body can confirm the color of the thermoplastic resin (usually transparent), and the treated multilayer body becomes black. That is, irradiating the first light and irradiating the second light have the same emission color after the laser marking process.
  • FIG. 14 is a sectional view schematically showing a multilayer body of another comparative example.
  • the multilayer body of the comparative example shown in FIG. 14 includes a yellow-green light-emitting film 2 that emits yellow-green light in response to a first light (light beam 1), a laser marking film 3 including a laser light energy absorber, and an orange. And an orange dye film 5 colored with this dye in this order.
  • the embodiment of the yellow-green light-emitting film 2 is the same as that of FIG.
  • the laser marking film 3 is the same as the embodiment of FIG.
  • the orange dye film 5 has no responsiveness to ultraviolet light, and shows absorption of orange light in the visible light region.
  • the yellow-green light-emitting film 2 emits light by the first light irradiation, and yellow-green light is observed. It looks yellow-green because it is weak.
  • the laser marking film 3 is usually discolored to black, even if the first light is irradiated, the orange coloring effect of the orange dye film 5 thereunder can be obtained. I can't. As a result, only the yellow-green emission of the yellow-green emitting film over the black laser marking film is detected. That is, similarly to the embodiment of FIG. 1, the irradiated multilayer body exhibits a slightly dark yellow-green color by the irradiation of the first light.
  • the laser marking non-processed portion presents the same color of the thermoplastic resin (orange in this example), and when irradiated with the second light, the laser marking processed portion is usually Looks black. Therefore, even if the additional laser marking processing is performed, the authenticity cannot be determined. That is, irradiating the first light and irradiating the second light have the same emission color after the laser marking process.
  • FIG. 15 is a sectional view schematically showing a multilayer body of another comparative example.
  • the multilayer body of the comparative example shown in FIG. 15 has an orange dye film 5 colored with an orange dye, a laser marking film 3 including a laser light energy absorber, and yellow in response to the first light (light 1). And a yellow-green light-emitting film 2 that emits green light.
  • the orange dye film 5 is the same as in FIG.
  • the laser marking film 3 is the same as the embodiment of FIG.
  • the embodiment of the yellow-green light-emitting film 2 is the same as that of FIG.
  • the coloring effect of the orange dye film 5 thereunder is weak. Therefore, it looks yellow-green.
  • the orange dye film 5 is translucent, and the yellow-green emission of the yellow-green light-emitting film 2 thereunder can be visually recognized or detected via the orange dye film 5.
  • the laser marking film 3 is usually discolored to black, even if the first light is irradiated, the yellow-green light-emitting film 2 thereunder does not emit light, and only black is emitted. appear.
  • the laser-marked non-processed portion shows the same color of the thermoplastic resin (orange in this example),
  • the part usually looks black. That is, even if the laser marking processing unit irradiates the light beam 1, it irradiates the light beam 2 and looks black. That is, irradiating the first light and irradiating the second light have the same emission color after the laser marking process.
  • the multilayer body of the present invention may have a printing layer.
  • the printing layer is also called a design layer.
  • a method of forming a printing layer a method of printing a desired design directly on a multilayer body by gravure printing, flexo printing, etc., and forming by heating and drying, and formed by printing on a transfer sheet such as a biaxially stretched PET film.
  • the printed layer is transferred to a multilayer body by a method such as heat transfer.
  • the printing layer can be printed using, for example, a polyester-based, polycarbonate-based, acrylic-based, or urethane-based printing ink.In particular, when there is a problem with adhesion to the hard coat layer, plasma, ion etching, or corona discharge can be used.
  • a method in which a metal layer, a metal oxide layer, or the like is provided on a thermoformed sheet by using a physical vapor deposition method or a chemical vapor deposition method to form a printed layer is also included.
  • the print layer can be incorporated without departing from the spirit of the present invention.
  • a print layer is provided as in the configuration of resin layer (A) / print layer / resin layer (B), and the print portion is formed of resin (B).
  • the effect of light emission by the resin layer (A) can be reduced, and a multilayer body in which the influence (light emission) of the resin layer (A) is visually recognized can be produced.
  • the multilayer body of the present invention is not limited to the above-described one, and the lamination structure of the film can be set by appropriately changing or applying within a range not departing from the gist of the present invention.
  • a resin or a resin composition commonly used as appropriate within a range in which the effects of the present invention are exhibited can be applied.
  • a resin composition suitable for constituting the layers, and preferably for keeping the shape as a film it is preferable to use a resin composition suitable for constituting the layers, and preferably for keeping the shape as a film.
  • the resin contained in the resin composition includes an ultraviolet curable resin, a thermosetting resin, an adhesive resin, an adhesive resin, an ink binder resin, and a thermoplastic resin. Is preferred from the viewpoint of molding processing. Above all, it is preferable to include at least one of a polycarbonate resin and a polyester resin, more preferably at least one of a polycarbonate resin and an amorphous polyester resin, and still more preferably at least one of a polycarbonate resin.
  • the polycarbonate resin is a-[OR-OCO] -unit (R is an aliphatic group, an aromatic group, or a group containing both an aliphatic group and an aromatic group) containing a carbonate ester bond in the molecular main chain. And the aliphatic group may have a straight-chain structure or a branched structure).
  • each film contains an aromatic polycarbonate resin.
  • the weight average molecular weight of the polycarbonate resin is preferably from 20,000 to 80,000, more preferably from 21,000 to 50,000, even more preferably from 22,000 to 40,000.
  • the glass transition temperature of the polycarbonate resin is preferably 120 ° C. or higher, more preferably 130 ° C. or higher.
  • the upper limit is preferably 160 ° C. or lower, more preferably 155 ° C. or lower.
  • the polyester resin may be an amorphous polyester resin or a crystalline polyester resin.
  • the amorphous polyester resin include a PETG resin and a PCTG resin.
  • the PETG resin is a polyester copolymer composed of a dicarboxylic acid unit mainly composed of terephthalic acid units, an ethylene glycol unit and a glycol unit mainly composed of 1,4-cyclohexanedimethanol units. Account for less than 50% of all glycol units on a molar basis.
  • the terephthalic acid units preferably occupy all dicarboxylic acid units.
  • PCTG resin is a polyester copolymer composed of a dicarboxylic acid unit mainly composed of terephthalic acid units, an ethylene glycol unit, and a glycol unit mainly composed of 1,4-cyclohexanedimethanol units, and is 1,4-cyclohexanedimethanol.
  • the units account for at least 50% of all glycol units on a molar basis.
  • the terephthalic acid units preferably occupy all dicarboxylic acid units.
  • Polycaprolactone is an example of the crystalline polyester resin.
  • the polycarbonate resin or polyester resin preferably accounts for 50% by mass or more, more preferably 60% by mass or more, and preferably 80% by mass or more of the entire thermoplastic resin. Is more preferred.
  • the upper limit is not particularly limited, and the polycarbonate resin or the polyester resin may be 100% by mass.
  • One or more polycarbonate resins may be used.
  • the polyester resin one type or a plurality of types may be used. In the case where a plurality of materials are used, the total amount is within the above range.
  • the resin layer (A) constituting the multilayer body contains the first luminous body, and the luminous body gives energy (for example, irradiation of ultraviolet light, visible light, or infrared light). It is preferably a luminous body that receives and emits light. Further, in the multilayer body of the present invention, the resin layer (B) or the resin layer (C) can contain the second luminous body. Further, the resin layer (B) and the resin layer (C) may include a third light emitter and a fourth light emitter.
  • one resin layer (A), one resin layer (B), and one resin layer (C) may further include as the second and subsequent luminous bodies, At least one of (A), the resin layer (B) and the resin layer (C) may be two or more layers.
  • the multilayer body of the present invention includes both the resin layer (B) and the resin layer (C)
  • the luminous body contained in the resin layer (B) and the luminous body contained in the resin layer (C) are usually different. Types of light emitters.
  • the preferred compounds employed as the first luminous body and the second luminous body are as described above, but the first luminous body and the second luminous body are different from each other.
  • the luminous body is a material that emits light upon receiving energy.
  • the first luminous body and the second luminous body preferably emit light by irradiation with electromagnetic waves, and can emit light by radio waves, microwaves, far infrared rays, infrared rays, ultraviolet light, far ultraviolet light, X-rays, and ⁇ -rays. It is more preferable to emit light by ultraviolet light or infrared light.
  • the short-wavelength light examples include light having a wavelength of 200 to 450 nm, and short-wavelength light having a wavelength of 250 to 420 nm is more preferable.
  • Examples of the long-wavelength light include light having a wavelength of 800 to 10,000 nm, and light having a wavelength of 900 to 1500 nm is more preferable.
  • the first light emitter and the second light emitter are preferably light emitters excited by light supplied from the same light source.
  • the first luminous body and the second luminous body may be excited by light of the same wavelength from the same light source, or may be excited by light of a different wavelength from the same light source.
  • the difference between the maximum excitation wavelengths of the first luminous body and the second luminous body is within 50 nm, more preferably within 10 nm.
  • the maximum excitation wavelength refers to a wavelength at which the luminous body is excited most.
  • B, F, Mg, Al, Si, P, S, Cl, Ca, V, Mn, Cu, Zn, Ge, Sr, Y, Ba are each independently used as the first light emitter and the second light emitter.
  • the compound constituting the light emitting body include a composite oxide of these elements and an oxygen atom, and an organometallic compound combined with an organic group.
  • the luminous body it is preferable to use a luminous body that emits infrared light or ultraviolet light, and it is more preferable to use a luminous body that emits ultraviolet light.
  • a luminous body that emits light with ultraviolet light include those that are excited by ultraviolet light and have a peak in the emitted spectrum in a wavelength range of blue, green, red, and the like.
  • a trace amount of metal copper, silver, manganese, bismuth, lead, etc.
  • the hue, brightness, and degree of color attenuation can be adjusted by a combination of a host crystal and an activator.
  • Examples of the compound that can be used as a light-emitting material in the present invention include, for example, paragraphs 0019 and 0090 to 0097 of JP-A-2015-168728, and paragraphs 0033, 0034 and 0069 of JP-A-10-129107. References can be made and these descriptions are incorporated herein.
  • Each of the first luminous body and the second luminous body preferably contains 0.01% by mass or more in the resin composition, more preferably 0.05% by mass or more, and 0.1% by mass or more. More preferably, it is at least 07% by mass.
  • the upper limit is preferably 5.0% by mass or less, more preferably 2.0% by mass or less, even more preferably 1.0% by mass or less.
  • the content ratio of the luminous body is equal to or more than the lower limit, the detection with the detector becomes easier.
  • the content ratio of the luminous body is equal to or less than the upper limit, the luminescent color becomes clearer, which is preferable.
  • only one kind of luminous body may be used in one kind of resin composition, or two or more kinds may be used. When two or more kinds are used, the total amount is preferably within the above range.
  • the resin layer (B) contains a laser beam energy absorber.
  • a laser marking agent can be used as the laser light energy absorber.
  • the laser light energy absorber can change the color of the thermoplastic resin. Usually, it turns black. From such a viewpoint, the wavelength of the laser beam is preferably 700 nm or more, more preferably 800 nm or more, and further preferably 900 nm or more. The upper limit is practically 1200 nm or less.
  • the laser light energy absorber preferably has a maximum absorption wavelength at a wavelength different from the maximum excitation wavelength of the luminous body.
  • the difference between the maximum excitation wavelength of the luminous body and the maximum absorption wavelength of the laser light energy absorber is preferably 50 nm or more, more preferably 100 nm or more, and more preferably 200 nm or more. Is more preferred.
  • the upper limit of the difference between the maximum excitation wavelength of the luminous body and the maximum absorption wavelength of the laser light energy absorber is not particularly limited, but is usually 1000 nm or less.
  • the laser light energy absorber includes, for example, at least one selected from the group consisting of carbon black, titanium black, metal oxides, metal sulfides, and metal nitrides. Among them, one or more selected from the group consisting of carbon black, titanium black, and metal oxides are preferred.
  • the average particle size is preferably 150 nm or less, more preferably 100 nm or less, and even more preferably 90 nm or less. It is practical that the lower limit is 10 nm or more.
  • the laser light energy absorber is preferably carbon black having a dibutyl phthalate (DBT) oil absorption of 60 to 170 mL / 100 gr. It is preferable that the average particle diameter is equal to or less than the above upper limit because laser colorability can be maintained high. It is preferable that the average particle size is not less than the above lower limit because the coloring of the film can be suppressed. Further, when the DBT oil absorption is equal to or more than the above lower limit, dispersibility can be maintained.
  • DBT dibutyl phthalate
  • Titanium black and metal oxides having an average particle size of 10 ⁇ m or less are preferable because laser colorability and print clarity can be maintained.
  • the metal forming the oxide include zinc, magnesium, aluminum, iron, titanium, silicon, antimony, tin, copper, manganese, cobalt, bismuth, vanadium, niobium, molybdenum, ruthenium, tungsten, palladium, silver, and platinum.
  • the composite metal oxide include ITO, ATO, and AZO.
  • the metal sulfide include zinc sulfide and cadmium sulfide.
  • the metal nitride titanium nitride or the like can be given.
  • the content of the laser beam energy absorber in the resin composition is preferably 0.0005 parts by mass or more, more preferably 0.001 part by mass, based on 100 parts by mass of the resin. More preferably, it is still more preferably 0.005 parts by mass or more.
  • the upper limit is preferably 5 parts by mass or less, more preferably 3 parts by mass or less, even more preferably 1 part by mass or less. Only one laser light energy absorber may be used, or two or more laser light energy absorbers may be used. When two or more kinds are used, the total amount is preferably within the above range.
  • the resin layer (B) containing the laser light energy absorber be effectively discolored by irradiating the multilayer body with a laser beam.
  • the laser light include He-Ne laser (wavelength: 633 nm), Ar laser, CO 2 laser (wavelength: 9.3 ⁇ m to 10.6 ⁇ m), gas lasers such as excimer laser (ArF excimer laser (wavelength: 193 nm)), KrF excimer laser (wavelength 248 nm), XeCl excimer laser (wavelength 308 nm), XeF excimer laser (wavelength 351 nm)), YAG laser (wavelength 1064nm), Nd ⁇ YVO 4 laser (wavelength 1065 nm) solid state lasers such as a semiconductor laser, dye laser or the like No.
  • YAG lasers, Nd ⁇ YVO 4 laser are preferable.
  • the resin composition constituting the film may contain additives such as an antioxidant, a heat stabilizer, a flame retardant, a flame retardant auxiliary, and a release agent, in addition to the components described above.
  • additives such as an ultraviolet light absorber, an antistatic agent, a fluorescent brightener, an antifogging agent, a flow improver, a plasticizer, a dispersant, and an antibacterial agent are contained. Is also good.
  • the content of the additive as described above in the thermoplastic resin is preferably 1.0% by mass or less, more preferably 0.5% by mass or less, based on the mass of the entire thermoplastic resin, More preferably, it is 0.1% by mass or less.
  • the method for forming the multilayer body of the present invention is not particularly limited, and a conventional method can be appropriately employed.
  • a mode is exemplified in which the thermoplastic resin composition constituting each layer of the multilayer body is formed into a film by extrusion or the like, and a film corresponding to each obtained layer is hot-pressed. Further, the thermoplastic resin composition constituting each layer of the multilayer body can be co-extruded.
  • the multilayer body of the present invention can be suitably used for an authenticity judgment method using the same.
  • the authenticity determination method according to a preferred embodiment of the present invention will be described. After performing a laser marking process on the resin layer (B) of the above-mentioned multilayer body, the resin layer (A) side or from the opposite side, A method including irradiating light capable of causing each of the first light emitter and the second light emitter to emit light may be used. In the present invention, light irradiation is preferably performed from the resin layer (A) side.
  • the light capable of causing the first luminous body and the second luminous body to emit is a wavelength within the maximum excitation wavelength ⁇ 50 nm for the first luminous body and the second luminous body, respectively. It is preferable to irradiate light having a wavelength within a maximum excitation wavelength ⁇ 30 nm, more preferably, to irradiate light having a wavelength within a maximum excitation wavelength ⁇ 10 nm, and a maximum excitation wavelength ⁇ 5 nm. It is more preferable to irradiate light having a wavelength within the range.
  • the light emitted from the multilayer body is detected. The detection here may be mechanically performed by a sensor or the like, but it means that a person visually confirms it.
  • the resin layer (A) and the resin layer (B) It is determined whether or not the light is assumed to be light emission from the resin layer (C). If this corresponds to genuine light, the multilayer body tested for authenticity is determined to be authentic (Yes in FIG. 16), otherwise it is determined to be counterfeit (No in FIG. 16).
  • a true light emission database true light emission DB
  • the specific light is preferably ultraviolet light, and the wavelength of the light is preferably in a range of 200 to 450 nm.
  • the specific light is preferably infrared light, and the wavelength of the light is preferably in the range of 800 to 10,000 nm.
  • the light-emitting body 1 manufactured by Nemoto Special Chemical Co., product number D20001, excitation wavelength 825 nm, emission wavelength 965 nm
  • the light-emitting body 2 manufactured by Nemoto Special Chemical Company, product number ASG, excitation wavelength 950 nm, emission wavelength 670 nm
  • the multilayer body applied to the authenticity determination method of the present embodiment is preferably a security card.
  • FIG. 18 is an apparatus configuration diagram showing an example of the authenticity determination system according to the preferred embodiment of the present invention.
  • the multilayer body 10 is irradiated with the specific light C1 from the light source 51.
  • the preferable range of the specific light is the same as the above-described authenticity determination method.
  • the specific light is applied to the multilayer body after the laser marking processing to cause the multilayer body to emit light, and the light emission C2 is detected by the detection unit 52.
  • the light source (light irradiation unit) 51 and the detection unit 52 are connected to a computer 53 and operated under the control thereof.
  • the computer 53 determines whether the light emitted by the multilayer body is genuine light emitted by the multilayer body after the laser marking process is performed.
  • the procedure for this determination is the same as the flowchart shown in the authenticity determination method (FIGS. 16 and 17).
  • detection is performed by the detection unit without assuming that detection is performed by human eyes.
  • DB genuine light emission database
  • the system according to the present embodiment includes an image display unit 54 for displaying the determination result, a printing unit 55 for printing the determination result and its analysis result, and a medium recording unit for recording the determination result on a recording medium. 56 and the like, and the entire system is controlled by a computer.
  • the recording medium include a magnetic tape, a magnetic disk, an optical disk, and a semiconductor memory.
  • a program described in a computer-readable format according to a preferred embodiment of the present invention is programmed to sequentially advance the procedure shown in the flowchart of FIG.
  • the program is a program described in a computer-readable format, wherein the step of detecting the light emitted by the multilayer body of the present invention, and the step of detecting the light emitted by the multilayer body are performed by laser marking registered in advance.
  • a program for causing a computer to execute a process including: an authenticity determining step of determining that the light emitted by the multilayer body is genuine light when the light emitted by the multilayer body after the process is performed matches the light emitted by the multilayer body. It has become.
  • the light emitted from the multilayer body after the pre-registered laser marking processing is performed is a combination of light emitted from the laser marking non-processing part and light emitted from the laser marking processing part, Examples include light emitted by the processing unit and light emitted by the laser marking processing unit having a specific optical density of blackness. Further, the embodiment will be described with a series of steps based on FIG. 16. When the program is started, a laser marking process of a multilayer body is executed. However, the laser marking process may not be performed in this program, and a multilayer body subjected to a laser marking process may be separately supplied because of the pretreatment of the specimen.
  • specific light is emitted from, for example, the resin layer (A) side of the multilayer body.
  • the specific light is as defined above, with UV light or infrared light being preferred.
  • light emission from the multilayer body subjected to the laser marking process is detected. The detection at this time may be confirmed visually, and the result may be input and sent to the computer, but is preferably performed by a detection unit connected to the computer.
  • it is determined whether the detected light is the authentic light of the multilayer body. If determined to be authentic (Yes in FIG. 16), the tested multilayer body is determined to be authentic. Otherwise (No in FIG. 16), it is determined to be forgery.
  • the detected light from the multilayer body is compared with a genuine luminescence database (genuine luminescence DB) storing a lot of genuine luminescence information, and If the information exists in the database, it is determined to be authentic, and if not, it is determined to be forgery (incorrect).
  • a genuine luminescence database (genuine luminescence DB) storing a lot of genuine luminescence information, and If the information exists in the database, it is determined to be authentic, and if not, it is determined to be forgery (incorrect).
  • the genuine light emission database may be recorded and stored as a data structure in the present program, but it is also preferable that the genuine light emission database be stored in a different form from the present program, such as a server or a cloud service platform.
  • the multilayer body of the present invention is suitably used as a security card such as an ID card, an e-passport, and a contactless IC card.
  • a security card such as an ID card, an e-passport, and a contactless IC card.
  • its use is not limited, and it can be widely used in fields where prevention of forgery is desired, such as product tags, distribution information, personal data management, and security systems.
  • the unit of each component is a mass ratio.
  • the films obtained above were stacked so as to have a layer configuration shown in Table 3 or Table 4 described below, and were sandwiched between auxiliary press plates.
  • the auxiliary press plate is composed of four sheets of a 0.5 mm SUS plate, a 1 mm silicon rubber sheet, a 100 ⁇ m SUS plate, and a 0.78 mm Teflon (registered trademark) sheet.
  • the laminated film was sandwiched so that the Teflon sheet was on the inside.
  • the laminated film is sandwiched between a pair of press plates of a press machine such that the SUS plate of 0.5 mm is on the outside, and a pneumatic heating press (IMC-1839: manufactured by Imoto Seisakusho) Was pressed at 180 ° C. under an air pressure of 0.2 MPa for 180 seconds to produce a multilayer body.
  • a pneumatic heating press IMC-1839: manufactured by Imoto Seisakusho
  • the use of the multilayer body of the present invention makes it possible to determine the authenticity of the multilayer body.
  • Example 6 a multilayer body having the layer configuration shown in FIG. 6 was manufactured.
  • 6 is a red light-emitting film
  • 3 is a laser marking film
  • 9 is a blue-green light-emitting film.
  • the OD value optical density
  • the color of the laser-marked part and the color of the laser-unmarked part were compared, and the difference was visually observed. The lower the OD value of the laser marking section, the lighter the red color of the laser marking section, and the higher the OD value of the laser marking section, the darker the red color of the laser marking section.

Abstract

The purpose of the present invention is to provide a multilayered structure with an improved forgery resistant property, an authenticity determination method and an authenticity determination system thereof, and a program that can be integrated into the system. Provided is a multilayered structure comprising a resin layer (A) containing a first luminescent material, and a resin layer (B) containing laser light energy absorber, the multilayered structure satisfying at least one of (1) and (2): (1) the resin layer (B) contains a second luminescent material different from the first luminescent material; and (2) the multilayered structure further includes a resin layer (C), the resin layer (C) being located opposite side to the resin layer (A) across the resin layer (B) and containing the second luminescent material different from the first luminescent material.

Description

多層体、真贋判定方法、真贋判定システムおよびプログラムMultilayer body, authentication method, authentication system and program
 本発明は、多層体、真贋判定方法、真贋判定システムおよびプログラムに関する。 The present invention relates to a multilayer body, an authentication method, an authentication system and a program.
 従来、IDカード、e-パスポート、およびICカード等において、樹脂フィルムが使用されている。このような樹脂フィルムとして、レーザー光の照射により特定の領域を印字可能としたレーザーマーキング用フィルムが知られている(特許文献1参照)。 樹脂 Conventionally, resin films have been used in ID cards, e-passports, IC cards, and the like. As such a resin film, there is known a laser marking film capable of printing a specific area by irradiating a laser beam (see Patent Document 1).
WO2010/089035号公報WO2010 / 089035
 ところで、各種の個人認証カードなどにおいて、個人情報が印字されていたりするものがある。このようなカード類では、印字が削られて偽造されやすいという問題がある。上記の特許文献1に例示されたレーザーマーキング用フィルムでは、ラミネートしたフィルムの内側の層をレーザー彫刻により印字ないし描画することができる。そのため、表面に印字や描画されている従来のものと比べ、偽造防止という観点では改善されている。しかしながら、情報が目視により確認できるため、偽造を防ぐ効果も限定的であるという問題があった。また、追加でレーザーマーキング加工することによる内容改竄も可能である課題があった。
 そこで本発明は、偽造防止性が改善された多層体、その真贋判定方法、真贋判定システムおよびこのシステムに組み込むことができるプログラムの提供を目的とする。
By the way, in various personal authentication cards, personal information may be printed. In such cards, there is a problem that the prints are easily shaved and forged. In the laser marking film exemplified in Patent Document 1, the inner layer of the laminated film can be printed or drawn by laser engraving. Therefore, it is improved from the viewpoint of preventing forgery as compared with the conventional one in which printing or drawing is performed on the surface. However, since the information can be visually confirmed, there is a problem that the effect of preventing forgery is limited. Further, there is a problem that the content can be falsified by additionally performing laser marking.
Therefore, an object of the present invention is to provide a multilayer body having improved anti-counterfeiting properties, an authentication method thereof, an authentication system, and a program that can be incorporated in the system.
 上記の課題は以下の手段により解決された。
<1> 第一の発光体を含有する樹脂層(A)、およびレーザー光エネルギー吸収体を含有する樹脂層(B)を有し、さらに、下記(1)および(2)の少なくとも一方を満たす、多層体;
(1)前記樹脂層(B)が前記第一の発光体とは異なる第二の発光体を含有する;
(2)さらに、樹脂層(C)を有し、該樹脂層(C)が、樹脂層(B)の樹脂層(A)とは反対側に位置し、かつ、前記第一の発光体とは異なる第二の発光体を含有する。
<2> 前記(1)を満たす、<1>に記載の多層体。
<3> 前記(2)を満たす、<1>または<2>に記載の多層体。
<4> 前記第二の発光体が、紫外光および赤外光の少なくとも一方で励起される発光体から選択される少なくとも1種である、<1>~<3>のいずれか1つに記載の多層体。
<5> 前記第一の発光体と第二の発光体は、同一の光源から供給される光によって励起される発光体から選択される少なくとも1種である、<1>~<4>のいずれか1つに記載の多層体。
<6> 前記第一の発光体が、紫外光および赤外光の少なくとも一方で励起される発光体から選択される少なくとも1種である、<1>~<5>のいずれか1つに記載の多層体。
<7> 前記樹脂層(A)がポリカーボネート樹脂およびポリエステル樹脂の少なくとも1種を含む、<1>~<6>のいずれか1つに記載の多層体。
<8> 前記樹脂層(B)および樹脂層(C)の少なくとも一方が、ポリカーボネート樹脂および非晶性ポリエステル樹脂の少なくとも1種を含む、<1>~<7>のいずれか1つに記載の多層体。
<9> 前記第一の発光体が、B、F、Mg、Al、Si、P、S、Cl、Ca、V、Mn、Cu、Zn、Ge、Sr、Y、Ba、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuからなる群から選択される元素を含む、<1>~<8>のいずれか1つに記載の多層体。
<10> 前記第二の発光体が、B、F、Mg、Al、Si、P、S、Cl、Ca、V、Mn、Cu、Zn、Ge、Sr、Y、Ba、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuからなる群から選択される元素を含む、<1>~<9>のいずれか1つに記載の多層体。
<11> 真贋の判定に用いられる、<1>~<10>のいずれか1つに記載の多層体。
<12> セキュリティカードである、<1>~<11>のいずれか1つに記載の多層体。
<13> 前記樹脂層(B)に対し、レーザーマーキング処理が行われている、<1>~<12>のいずれか1つに記載の多層体。
<14> さらに、光遮蔽層を有する、<1>~<13>のいずれか1つに記載の多層体。
<15> 前記光遮蔽層が白色顔料または黒色顔料を含む、<14>に記載の多層体。
<16> <1>~<15>のいずれか1つに記載の多層体の樹脂層(B)にレーザーマーキング処理を行った後に、第一の発光体および第二の発光体をそれぞれ発光させることが可能な特定の光を照射することを含む、多層体の真贋判定方法。
<17> 前記特定の光の波長が200~450nmの範囲である、<16>に記載の真贋判定方法。
<18> 前記特定の光の波長が800~10,000nmの範囲である、<16>に記載の真贋判定方法。
<19> 前記多層体がセキュリティカードである、<16>~<18>のいずれか1つに記載の真贋判定方法。
<20> <1>~<15>のいずれか1つに記載の多層体であって、レーザーマーキング処理が行われた後の多層体に、特定の光を照射して多層体を発光させる光照射部と、前記レーザーマーキング処理が行われた後の多層体が発光した光が、予め登録されたレーザーマーキング処理が行われた後の多層体が発光する光と一致する場合に、前記多層体が発光した光が真正な光であると判定する真贋判定部とを有する真贋判定システム。
<21> 前記予め登録されたレーザーマーキング処理が行われた後の多層体が発光する光が、レーザーマーキング非処理部が発光する光と、特定の光学濃度を有するレーザーマーキング処理部が発光する光を含む、<20>に記載の真贋判定システム。
<22> コンピュータにより読み取り可能な形式で記述されたプログラムであって、<1>~<15>のいずれか1つに記載の多層体が発光した光を検出するステップと、前記多層体が発光した光が、予め登録されたレーザーマーキング処理が行われた後の多層体が発光する光と一致する場合に、前記多層体が発光した光が真正な光であると判定する真贋判定ステップとを含む処理をコンピュータに実行させるためのプログラム。
The above problem has been solved by the following means.
<1> It has a resin layer (A) containing a first luminous body and a resin layer (B) containing a laser beam energy absorber, and further satisfies at least one of the following (1) and (2) , Multilayer body;
(1) the resin layer (B) contains a second illuminant different from the first illuminant;
(2) further comprising a resin layer (C), the resin layer (C) being located on the opposite side of the resin layer (B) from the resin layer (A), and Contains a different second illuminant.
<2> The multilayer body according to <1>, which satisfies the above (1).
<3> The multilayer body according to <1> or <2>, which satisfies the above (2).
<4> The method according to any one of <1> to <3>, wherein the second luminous body is at least one selected from luminous bodies excited by at least one of ultraviolet light and infrared light. Multilayer body.
<5> The first light emitter and the second light emitter are at least one selected from light emitters excited by light supplied from the same light source, any of <1> to <4>. A multilayer body according to any one of the preceding claims.
<6> The first light-emitting body according to any one of <1> to <5>, wherein the first light-emitting body is at least one selected from a light-emitting body that is excited by at least one of ultraviolet light and infrared light. Multilayer body.
<7> The multilayer body according to any one of <1> to <6>, wherein the resin layer (A) contains at least one of a polycarbonate resin and a polyester resin.
<8> The method according to any one of <1> to <7>, wherein at least one of the resin layer (B) and the resin layer (C) contains at least one of a polycarbonate resin and an amorphous polyester resin. Multi-layer body.
<9> The first luminous body is composed of B, F, Mg, Al, Si, P, S, Cl, Ca, V, Mn, Cu, Zn, Ge, Sr, Y, Ba, La, Ce, Pr. , Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu, the element according to any one of <1> to <8>, Multi-layer body.
<10> The second luminous body is composed of B, F, Mg, Al, Si, P, S, Cl, Ca, V, Mn, Cu, Zn, Ge, Sr, Y, Ba, La, Ce, Pr. , Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu, the element according to any one of <1> to <9>, Multi-layer body.
<11> The multilayer body according to any one of <1> to <10>, which is used for determining authenticity.
<12> The multilayer body according to any one of <1> to <11>, which is a security card.
<13> The multilayer body according to any one of <1> to <12>, wherein a laser marking process is performed on the resin layer (B).
<14> The multilayer body according to any one of <1> to <13>, further having a light shielding layer.
<15> The multilayer body according to <14>, wherein the light shielding layer contains a white pigment or a black pigment.
<16> After performing the laser marking process on the resin layer (B) of the multilayer body according to any one of <1> to <15>, the first luminous body and the second luminous body emit light, respectively. A method for determining the authenticity of a multilayer body, comprising irradiating a specific light capable of performing the method.
<17> The authenticity determination method according to <16>, wherein the wavelength of the specific light is in a range of 200 to 450 nm.
<18> The authenticity determination method according to <16>, wherein the wavelength of the specific light is in a range of 800 to 10,000 nm.
<19> The authentication method according to any one of <16> to <18>, wherein the multilayer body is a security card.
<20> The multilayer body according to any one of <1> to <15>, wherein the multilayer body after laser marking processing is irradiated with specific light to emit light from the multilayer body. Irradiation unit, the light emitted by the multilayer body after the laser marking process is performed, if the light emitted by the multilayer body after the pre-registered laser marking process matches, the multilayer body, An authenticity determination system comprising: an authenticity determination unit that determines that the light emitted by the device is authentic light.
<21> The light emitted from the multilayer body after the pre-registered laser marking processing is performed is light emitted from the laser marking non-processing portion and light emitted from the laser marking processing portion having a specific optical density. The authenticity determination system according to <20>, comprising:
<22> A program described in a computer-readable format, the method comprising: detecting light emitted by the multilayer body according to any one of <1> to <15>; The light emitted from the multilayer body after the pre-registered laser marking processing is performed, and the light emitted from the multilayer body is an authenticity determining step of determining that the emitted light is genuine light. A program that causes a computer to execute the processing that includes it.
 本発明により、偽造防止性が改善された多層体、その真贋判定方法、真贋判定システムおよびこのシステムに組み込むことができるプログラムを提供することができる。 According to the present invention, it is possible to provide a multilayer body having improved anti-counterfeiting properties, an authentication method thereof, an authentication system, and a program that can be incorporated in the system.
本発明の好ましい実施形態に係る多層体の一例を模式的に示す断面図である。It is a sectional view showing typically an example of a multilayer object concerning a preferred embodiment of the present invention. 本発明の好ましい実施形態に係る多層体の他の一例を模式的に示す断面図である。It is sectional drawing which shows typically another example of the multilayer body which concerns on preferable embodiment of this invention. 本発明の好ましい実施形態に係る多層体の他の一例を模式的に示す断面図である。It is sectional drawing which shows typically another example of the multilayer body which concerns on preferable embodiment of this invention. 本発明の好ましい実施形態に係る多層体の他の一例を模式的に示す断面図である。It is sectional drawing which shows typically another example of the multilayer body which concerns on preferable embodiment of this invention. 本発明の好ましい実施形態に係る多層体の他の一例を模式的に示す断面図である。It is sectional drawing which shows typically another example of the multilayer body which concerns on preferable embodiment of this invention. 本発明の好ましい実施形態に係る多層体の他の一例を模式的に示す断面図である。It is sectional drawing which shows typically another example of the multilayer body which concerns on preferable embodiment of this invention. 本発明の好ましい実施形態に係る多層体の他の一例を模式的に示す断面図である。It is sectional drawing which shows typically another example of the multilayer body which concerns on preferable embodiment of this invention. 本発明の好ましい実施形態に係る多層体の他の一例を模式的に示す断面図である。It is sectional drawing which shows typically another example of the multilayer body which concerns on preferable embodiment of this invention. 本発明の比較例の多層体の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the multilayer body of the comparative example of this invention. 本発明の比較例の多層体の他の一例を模式的に示す断面図である。It is sectional drawing which shows another example of the multilayer body of the comparative example of this invention typically. 本発明の比較例の多層体の他の一例を模式的に示す断面図である。It is sectional drawing which shows another example of the multilayer body of the comparative example of this invention typically. 本発明の比較例の多層体の他の一例を模式的に示す断面図である。It is sectional drawing which shows another example of the multilayer body of the comparative example of this invention typically. 本発明の比較例の多層体の他の一例を模式的に示す断面図である。It is sectional drawing which shows another example of the multilayer body of the comparative example of this invention typically. 本発明の比較例の多層体の他の一例を模式的に示す断面図である。It is sectional drawing which shows another example of the multilayer body of the comparative example of this invention typically. 本発明の比較例の多層体の他の一例を模式的に示す断面図である。It is sectional drawing which shows another example of the multilayer body of the comparative example of this invention typically. 本発明の好ましい実施形態に係る多層体を用いた真贋判定方法の一例を示すフローチャートである。It is a flowchart which shows an example of the authentication judgment method using the multilayer body which concerns on the preferable embodiment of this invention. 図16に示した真贋判定方法の変形例を示すフローチャートの一部である。17 is a part of a flowchart showing a modification of the authentication method shown in FIG. 16. 本発明の好ましい実施形態に係る真贋判定システムの一例を示す装置構成図である。1 is an apparatus configuration diagram illustrating an example of an authentication determination system according to a preferred embodiment of the present invention.
 以下、本発明を詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、発明の効果を有する範囲において任意に変更して実施することができる。 Hereinafter, the present invention will be described in detail. Note that the present invention is not limited to the following embodiments, and can be arbitrarily modified and implemented within the scope of the effects of the invention.
 本発明の多層体は、第一の発光体を含有する樹脂層(A)、およびレーザー光エネルギー吸収体を含有する樹脂層(B)を有し、さらに、下記(1)および(2)の少なくとも一方を満たす。
(1)前記樹脂層(B)が前記第一の発光体とは異なる第二の発光体を含有する。
(2)さらに、樹脂層(C)を有し、該樹脂層(C)が、樹脂層(B)の樹脂層(A)とは反対側に位置し、かつ、前記第一の発光体とは異なる第二の発光体を含有する。
The multilayer body of the present invention has a resin layer (A) containing a first luminous body and a resin layer (B) containing a laser beam energy absorber, and further comprises the following (1) and (2) Meet at least one.
(1) The resin layer (B) contains a second luminous body different from the first luminous body.
(2) further comprising a resin layer (C), the resin layer (C) being located on the opposite side of the resin layer (B) from the resin layer (A), and Contains a different second illuminant.
 図1は本発明の好ましい実施形態に係る多層体の一例を模式的に示す断面図である。
 本実施形態の多層体は、第一の光(光線1)に応答して紫色に発光する紫発光フィルム1と、第一の光(光線1)に応答して黄緑に発光する黄緑LMフィルム23とを有する。紫発光フィルム1は、第一の光に応答して紫色に発光する紫発光体(第一の発光体)を含有する。黄緑LMフィルム23は、第一の光に応答して黄緑に発光する黄緑発光体(第二の発光体)と、レーザー光を吸収して、そのエネルギーによりマトリックス樹脂を黒に変色させるレーザー光エネルギー吸収体(例えば、レーザーマーキング剤が例示される)を含有する。本実施形態においては、レーザー光エネルギー吸収体が、レーザー光の照射を受ける前(レーザーマーキング処理前)は、第一の光(光線1)を照射すると、紫発光体と、黄緑発光体の両方が発光し、白く見える。一方、第二の光(光線2)を照射しても、上記紫発光体および黄緑発光体は発光せず、熱可塑性樹脂の色がそのまま見える。熱可塑性樹脂が、例えば、ポリカーボネート樹脂や非晶性ポリエステル樹脂などであれば、いわゆる、透明に見える。なお、本明細書において、「透明」とは、ISO13468-1:1996にて規定される全光線透過率の値が50%以上を示すことをいう。また、熱可塑性樹脂に本発明の趣旨を逸脱しない範囲で、他の成分が添加されている場合は、かかる添加剤を含めた熱可塑性樹脂の色が確認できるであろう。
 一方、レーザー光の照射を受けた後(レーザーマーキング処理後)は、黄緑LMフィルム23は、レーザー光の照射を受けた部分が、通常は黒に変色する。そのため、第一の光(光線1)を照射すると、レーザーマーキング処理部は、黒色の領域の上に、紫発光体が発光し、やや暗い紫を示す。一方、レーザーマーキング非処理部は、白いままである。
 対して、第二の光(光線2)を照射した場合は、レーザーマーキング非処理部においては、紫発光フィルム1および黄緑LMフィルム23は発光しないため、熱可塑性樹脂のそのままの色が確認できる。一方、レーザーマーキング処理部は、レーザー光の照射を受けて、通常黒く見える。
 また、特に述べない限り、多層体の断面図はいずれも図面の上から目視ないし検出することを前提にしている(以下の図面についても同じ)。
FIG. 1 is a cross-sectional view schematically illustrating an example of a multilayer body according to a preferred embodiment of the present invention.
The multilayer body of this embodiment includes a violet light-emitting film 1 that emits purple light in response to a first light (light 1), and a yellow-green LM that emits yellow-green in response to the first light (light 1). And a film 23. The purple light emitting film 1 contains a purple light emitter (first light emitter) that emits purple light in response to the first light. The yellow-green LM film 23 absorbs laser light and emits yellow-green light in response to the first light and emits yellow-green light, and discolors the matrix resin to black by its energy. It contains a laser light energy absorber (for example, a laser marking agent is exemplified). In the present embodiment, before the laser light energy absorber is irradiated with the first light (light beam 1) before being irradiated with the laser light (before the laser marking process), the purple light emitter and the yellow-green light emitter are irradiated with the first light (light beam 1). Both glow and appear white. On the other hand, even if the second light (light ray 2) is irradiated, the violet light emitter and the yellow-green light emitter do not emit light, and the color of the thermoplastic resin can be seen as it is. If the thermoplastic resin is, for example, a polycarbonate resin or an amorphous polyester resin, it looks so-called transparent. In this specification, “transparent” means that the value of the total light transmittance specified by ISO13468-1: 1996 indicates 50% or more. In the case where other components are added to the thermoplastic resin without departing from the spirit of the present invention, the color of the thermoplastic resin including such additives will be confirmed.
On the other hand, after being irradiated with the laser light (after the laser marking process), the portion of the yellow-green LM film 23 that has been irradiated with the laser light usually turns black. Therefore, when the first light (light beam 1) is irradiated, the laser marking processing section causes the violet luminous body to emit light on the black region, and shows a slightly dark purple. On the other hand, the laser marking non-processed portion remains white.
On the other hand, when the second light (light beam 2) is applied, the violet light-emitting film 1 and the yellow-green LM film 23 do not emit light in the laser-marking non-processed portion, so that the color of the thermoplastic resin as it is can be confirmed. . On the other hand, the laser marking processing section normally looks black when irradiated with laser light.
Unless otherwise stated, it is assumed that all cross-sectional views of the multilayer body are visually observed or detected from above the drawings (the same applies to the following drawings).
 本実施形態の多層体によれば、このように、レーザーマーキング処理の前後で、第一の光(光線1)による発光により検出される色が異なる。そのため、レーザーマーキング処理することにより、多層体の発光色に不可逆的な変化を与えることができる為、真贋判定に利用できる。また、既に書き込まれた真の情報部分の上に、本実施形態の多層体をさらに積層させることにより、追加の偽造レーザーマーキング処理に対して、既に書き込まれた真の情報部分と区別することが可能になる為、追加の偽造レーザーマーキング処理を防止することができる。
 このような性質を利用した真贋の判定方法等は後述するが、代表的な利点を挙げると、レーザーマーキング処理がなされた部分は、多層体が発光する光の色が異なるため、あらかじめ定められた波長の光を照射することにより多層体の色が変化する。これを利用して、例えば、後記で説明するように、レーザーマーキング処理後の発光色(光)の情報を予め記録しておく態様が挙げられる。これにより、カード(多層体の例)について確認が必要になった場合に、レーザーマーキング処理を施し、その時の発光色(光)と記録された発光色(光)を照合することで、当該カードが偽造されたものであるか否かを簡便かつ非破壊の方法で確認することができる。
According to the multilayer body of the present embodiment, the color detected by the emission of the first light (light 1) differs before and after the laser marking process. Therefore, by performing the laser marking process, an irreversible change can be given to the emission color of the multilayer body, which can be used for authenticity determination. Further, by further laminating the multilayer body of the present embodiment on the already written true information portion, it is possible to distinguish from the already written true information portion for additional counterfeit laser marking processing. As a result, an additional counterfeit laser marking process can be prevented.
The method of determining the authenticity utilizing such properties will be described later, but a typical advantage is that the laser-marked portion is predetermined because the color of the light emitted from the multilayer body is different. Irradiation with light of a wavelength changes the color of the multilayer body. Using this, for example, as will be described later, there is an embodiment in which information on the emission color (light) after the laser marking process is recorded in advance. In this way, when it is necessary to confirm the card (example of a multilayer body), the card is subjected to laser marking processing, and the luminescent color (light) at that time is compared with the recorded luminescent color (light) so that the card can be checked. Can be checked in a simple and non-destructive manner as to whether or not it is forged.
 図2は本発明の好ましい実施形態に係る多層体の他の一例を模式的に示す断面図である。
 図2(a)に示す多層体は、第一の光(光線1)に応答して黄緑に発光する黄緑LMフィルム23と第一の光(光線1)に応答して紫色に発光する紫発光フィルム1とを有する。黄緑LMフィルム23、紫発光フィルム1は、図1の態様と同じである。図2(a)に示す多層体においては、レーザー光エネルギー吸収体が、レーザー光の照射を受ける前(レーザーマーキング処理前)は、第一の光(光線1)を照射すると、黄緑発光体と紫発光体の両方が発光し、白く見える。一方、第二の光(光線2)を照射しても、上記黄緑発光体および紫発光体が発光せず、熱可塑性樹脂の色がそのまま見える。
 図2に示す実施形態では、レーザーマーキング処理後は、黄緑LMフィルム23は、厚さ方向において、一部が黒に変色する。そのため、第一の光(光線1)を照射すると、レーザーマーキング処理部は、黒色の領域30の上に、黄緑発光体が発光し、やや暗い黄緑を呈する。一方、レーザーマーキング非処理部は、白いままである。
FIG. 2 is a cross-sectional view schematically showing another example of the multilayer body according to the preferred embodiment of the present invention.
The multilayer body shown in FIG. 2A emits yellow-green LM film 23 that emits yellow-green in response to the first light (light 1) and emits purple in response to the first light (light 1). And a violet light-emitting film 1. The yellow-green LM film 23 and the purple light-emitting film 1 are the same as in the embodiment of FIG. In the multilayer body shown in FIG. 2A, before the laser light energy absorber is irradiated with the first light (light beam 1) before being irradiated with the laser light (before the laser marking process), a yellow-green luminescent material is obtained. And the violet illuminant both emit light and appear white. On the other hand, even when the second light (light ray 2) is irradiated, the yellow-green light emitter and the purple light emitter do not emit light, and the color of the thermoplastic resin can be seen as it is.
In the embodiment shown in FIG. 2, after the laser marking process, a part of the yellow-green LM film 23 turns black in the thickness direction. Therefore, when the first light (light beam 1) is irradiated, the laser marking processing unit emits the yellow-green illuminant on the black region 30, and exhibits a slightly dark yellow-green. On the other hand, the laser marking non-processed portion remains white.
 図3は本発明の好ましい実施形態に係る多層体の他の一例を模式的に示す断面図である。
 本実施形態の多層体は、第一の光(光線1)に応答して紫色に発光する紫発光フィルム1と、レーザー光エネルギー吸収体を含むレーザーマーキング・フィルム3と、第一の光に応答して黄緑に発光する黄緑発光フィルム2とをこの順に有する。紫発光フィルム1の態様は図1と同様である。レーザーマーキング・フィルム3は、レーザー光エネルギー吸収体を含んでおり、レーザーマーキング処理部は、通常、黒色に変化する。黄緑発光フィルム2は、第一の光に応答して黄緑に発光する黄緑発光体を含有しており、第一の光の照射により黄緑に発光する。
 本実施形態の多層体は、レーザーマーキング処理前においては、第一の光の照射による紫発光フィルム1の紫色の発光と黄緑発光フィルム2の黄緑の発光がなされ、白く見える。対して、レーザーマーキング処理後においては、レーザーマーキング・フィルム3が、通常、黒に変色しているため、第一の光を照射すると、その下の黄緑発光フィルム2からの黄緑の発光強度が弱くなる。結果として、黒いレーザーマーキング・フィルムの上の紫発光フィルムの紫色の発光の寄与が強くなる。すなわち、図1の態様と同じで、第一の光の照射によって、処理済の多層体はやや暗い紫色を呈することとなる。
 一方、紫発光体および黄緑発光体が発光しない光(第二の光)を照射した場合は、図1と同様に、レーザーマーキング非処理部は、熱可塑性樹脂の色がそのまま見え、レーザーマーキング処理部は、レーザー光の照射を受けて、通常黒く見える。
FIG. 3 is a cross-sectional view schematically showing another example of the multilayer body according to the preferred embodiment of the present invention.
The multilayer body of this embodiment includes a violet light-emitting film 1 that emits purple light in response to a first light (light beam 1), a laser marking film 3 including a laser light energy absorber, And a yellow-green light-emitting film 2 that emits yellow-green light in this order. The embodiment of the violet light-emitting film 1 is the same as that of FIG. The laser marking film 3 contains a laser light energy absorber, and the laser marking portion usually turns black. The yellow-green luminescent film 2 contains a yellow-green luminescent material that emits yellow-green in response to the first light, and emits yellow-green when irradiated with the first light.
Before the laser marking process, the multilayer body of this embodiment emits purple light from the purple light-emitting film 1 and yellow-green light from the yellow-green light-emitting film 2 due to the irradiation of the first light, and looks white. On the other hand, after the laser marking process, since the laser marking film 3 is usually discolored to black, when the first light is irradiated, the yellow-green luminescence intensity from the yellow-green luminescent film 2 therebelow is irradiated. Becomes weaker. As a result, the purple emission contribution of the purple emission film over the black laser marking film is enhanced. That is, in the same manner as in the embodiment of FIG. 1, irradiation of the first light causes the treated multilayer body to exhibit a slightly dark purple color.
On the other hand, when the violet light emitter and the yellow-green light emitter emit light that does not emit light (second light), as in FIG. The processing section normally appears black when irradiated with the laser beam.
 図4は本発明の好ましい実施形態に係る多層体の他の一例を模式的に示す断面図である。
 本実施形態の多層体は、発光フィルム11と、レーザーマーキング・フィルム3と、発光フィルム21とをその順に有している。発光フィルム11は、第一の光(光線1)に応答して黄緑に発光する黄緑発光体(光線1)と第一の光(光線1)および第二の光(光線2)に応答して赤に発光する赤発光体(光線2)とを含有する。発光フィルム21は、第一の光(光線1)に応答して、紫に発光する紫発光体(光線1)と第一の光(光線1)および第二の光(光線2)に応答して青緑に発光する青と緑を混合した発光体とを含有する。レーザーマーキング・フィルムを挟んで、上層と下層に異なる光に応答して、異なる色に発光する発光体が組み合わされている。
 本実施形態の多層体は、レーザーマーキング処理前においては、第一の光の照射により、フィルム11がオレンジに発光し、フィルム21が青に発光し、白色に見える。対して、レーザーマーキング処理後では、レーザーマーキング・フィルム3が、通常、黒に変色しているため、第一の光を照射しても、その下のフィルム21の青の発光強度が弱くなる。結果として、黒いレーザーマーキング・フィルムの上のオレンジの発光が強く検出されることとなる。すなわち、第一の光の照射によって、処理済の多層体はやや暗いオレンジを呈することとなる。
 一方、第二の光の照射により、レーザーマーキング処理前においては、多層体は、フィルム11が赤に発光し、フィルム21が青緑に発光し、白色に見える。対して、レーザーマーキング処理後では、レーザーマーキング・フィルム3が黒に変色しているため、第二の光を照射しても、その下のフィルム21からの青緑の発光強度が弱くなる。結果として、黒いレーザーマーキング・フィルムの上の赤の発光が強く検出されることとなる。すなわち、第二の光の照射によって、処理済の多層体はやや暗い赤色を呈することとなる。
FIG. 4 is a cross-sectional view schematically showing another example of the multilayer body according to the preferred embodiment of the present invention.
The multilayer body of this embodiment has a light emitting film 11, a laser marking film 3, and a light emitting film 21 in that order. The light-emitting film 11 responds to the first light (light 1) and the first light (light 1) and the second light (light 2) which emits yellow-green light in response to the first light (light 1). And a red light emitter (light beam 2) that emits red light. The light-emitting film 21 responds to the first light (light 1), a violet luminous body (light 1) that emits purple light, and a first light (light 1) and a second light (light 2). And a luminous body in which blue and green light are emitted. With the laser marking film in between, the upper and lower layers combine light emitters that emit different colors in response to different light.
Before the laser marking process, the multilayer body of this embodiment causes the film 11 to emit orange light, the film 21 to emit blue light, and appear white when irradiated with the first light. On the other hand, after the laser marking process, since the laser marking film 3 is normally discolored to black, even if the first light is irradiated, the blue light emission intensity of the film 21 thereunder becomes weak. As a result, orange emission on the black laser marking film is strongly detected. That is, the irradiated multilayer body exhibits a slightly dark orange color by the first light irradiation.
On the other hand, by the irradiation of the second light, the film 11 emits red light, the film 21 emits blue-green light, and the multilayer body appears white before the laser marking process. On the other hand, after the laser marking process, since the laser marking film 3 has changed color to black, even if the second light is irradiated, the blue-green light emission intensity from the film 21 thereunder becomes weak. As a result, the red emission on the black laser marking film is strongly detected. That is, by the irradiation of the second light, the treated multilayer body exhibits a slightly dark red color.
 図5は本発明の好ましい実施形態に係る多層体の他の一例を模式的に示す断面図である。
 図5に示す本実施形態の多層体は、赤発光フィルム6と、レーザーマーキング・フィルム3と、青発光フィルム7と、レーザーマーキング・フィルム3’と、緑発光フィルム8とをその順に有している。レーザーマーキング・フィルム3は図3に示したものと同じである。レーザーマーキング・フィルム3’は、レーザー光エネルギー吸収体の濃度をレーザーマーキング・フィルム3に含まれるレーザー光エネルギー吸収体の濃度より濃くしたものである。赤発光フィルム6、青発光フィルム7および緑発光フィルム8は、それぞれ、第一の光(光線1)および第二の光(光線2)の照射により、それぞれ、赤色、青色、緑色に発光する発光体を含有するフィルムである。本実施形態の多層体は、レーザーマーキング処理前においては、第一の光の照射により、赤発光フィルム6は赤に発光し、青発光フィルム7は青に発光し、緑発光フィルム8は緑に発光し、白色に見える。
 対して、第一のレーザーマーキング処理では、レーザーマーキング・フィルム3’に含まれるレーザー光エネルギー吸収体の濃度をレーザーマーキング・フィルム3に含まれるレーザー光エネルギー吸収体の濃度より濃くすることにより、レーザーマーキング・フィルム3’を選択的にマーキングしている。この場合、レーザーマーキング・フィルム3’が、通常、黒に変色しているため、第一の光を照射しても、その下の緑発光フィルム8の発光は弱く、結果として、黒いレーザーマーキング・フィルムの上の赤発光、青発光が強く検出されることとなる。すなわち、第一の光の照射によって、処理済の多層体はやや暗い紫色を呈することとなる。
 さらに、第二のレーザーマーキング処理では、レーザーマーキング・フィルム3’およびレーザーマーキング・フィルム3の両方にレーザーマーキングを実施する。この場合、レーザーマーキング・フィルム3が、通常、黒に変色しているため、第二の光を照射しても、その下の青発光フィルム7、緑発光フィルム8の発光は弱く、結果として、黒いレーザーマーキング・フィルム3の上の赤の発光が強く検出されることとなる。すなわち、第一の光の照射によって、処理済の多層体はやや暗い赤色を呈することとなる。
FIG. 5 is a cross-sectional view schematically showing another example of the multilayer body according to the preferred embodiment of the present invention.
The multilayer body of the present embodiment shown in FIG. 5 has a red light emitting film 6, a laser marking film 3, a blue light emitting film 7, a laser marking film 3 ', and a green light emitting film 8 in that order. I have. The laser marking film 3 is the same as that shown in FIG. In the laser marking film 3 ′, the concentration of the laser beam energy absorber is higher than the concentration of the laser beam energy absorber contained in the laser marking film 3. The red light emitting film 6, the blue light emitting film 7, and the green light emitting film 8 emit red light, blue light, and green light, respectively, when irradiated with the first light (light 1) and the second light (light 2), respectively. It is a film containing the body. Before the laser marking process, the multilayer body of the present embodiment emits red light from the red light emitting film 6, emits blue light from the blue light emitting film 7, and emits green light from the green light emitting film 8 by the first light irradiation. It emits light and looks white.
On the other hand, in the first laser marking process, the concentration of the laser light energy absorber contained in the laser marking film 3 ′ is made higher than the concentration of the laser light energy absorber The marking film 3 'is selectively marked. In this case, since the laser marking film 3 ′ is normally discolored to black, even if the first light is irradiated, the light emission of the green light-emitting film 8 thereunder is weak. Red light emission and blue light emission on the film are strongly detected. That is, the irradiated multilayer body exhibits a slightly dark purple color by the irradiation of the first light.
Further, in the second laser marking process, laser marking is performed on both the laser marking film 3 ′ and the laser marking film 3. In this case, since the laser marking film 3 is usually discolored to black, even if the second light is irradiated, the blue light-emitting film 7 and the green light-emitting film 8 thereunder weakly emit light. The red emission on the black laser marking film 3 will be strongly detected. That is, the treated multilayer body exhibits a slightly dark red color by the irradiation of the first light.
 一方、第二の光の照射により、レーザーマーキング処理前の多層体では、いずれのフィルムも第一の光の照射時と同様に発光し同様の結果が得られる。第二の光の照射によっても、第一の光の照射時と同様に発光し、処理済の多層体はやや暗い赤色を呈することとなる。 On the other hand, by the irradiation of the second light, in the multilayer body before the laser marking treatment, all the films emit light in the same manner as at the time of the irradiation of the first light, and the same result is obtained. Even by the irradiation of the second light, light is emitted in the same manner as when the first light is irradiated, and the treated multilayer body exhibits a slightly dark red color.
 図6は、本発明の好ましい実施形態に係る多層体の他の一例を模式的に示す断面図である。
 図6に示す本実施形態の多層体は、赤発光フィルム6と、レーザーマーキング・フィルム3と、青緑発光フィルム9とをその順に有している。赤発光フィルム6は図5に示したものと同じである。レーザーマーキング・フィルム3は、図4に示したものと同じである。青緑発光フィルム9は、第一の光および第二の光に応答して青緑に発光する青と緑を混合した発光体である。図6に示す多層体は、レーザーマーキング処理前においては、第一の光の照射により、赤発光フィルム6は赤に発光し、青緑発光フィルム9は青緑に発光し、多層体は、白色に見える。対して、レーザーマーキング処理後では、レーザーマーキング・フィルム3が、通常、黒に変色しているため、第一の光を照射しても、その下の青緑発光フィルム9の発光は弱くなる。結果として、黒いレーザーマーキング・フィルムの上の赤の発光が強く検出されることとなり、やや暗い赤色を呈することになる。
 一方、第二の光の照射により、レーザーマーキング処理前の多層体では、いずれのフィルムも第一の光の照射時と同様に発光し同様の結果が得られる。第二の光の照射によっても、第一の光の照射時と同様に発光し、処理済の多層体はやや暗い赤色を呈することとなる。
 図6の実施形態において、レーザーマーキング条件を調整することによって、レーザーマーキング部分の黒色の光学濃度(OD値)が所定の値となるように調整してもよい。この態様とすることにより、第一の光のみで真贋を判定することができる。具体的には、レーザーマーキング処理前においては、第一の光の照射により、赤発光フィルム6は赤に発光し、青緑発光フィルム9は青緑に発光し、多層体は、白色に見える。対して、レーザーマーキング処理後では、レーザーマーキング処理部をある一定のOD値を持つように調整することで、第一の光を照射しても、その下の青緑発光フィルム9より発光した光が一定の割合で減衰される。結果として、黒いレーザーマーキング・フィルムの上の赤の発光と、やや弱い青緑の光が混合した光が検出されることとなる。この時の赤と青緑の光を予め登録しておくことにより、第二の光の照射を行わなくても、真贋の判定が可能になる。図6の実施形態では、レーザーマーキング処理部の黒色のOD値が低いと薄い赤発光を示し、OD値が高くなるにつれて、赤発光の視認性が増す。
 光学濃度の調整に関して、図6の実施形態を例にとって示したが、他の実施形態の多層体でも同様の構成とできることは言うまでもない。
FIG. 6 is a cross-sectional view schematically showing another example of the multilayer body according to the preferred embodiment of the present invention.
The multilayer body of the present embodiment shown in FIG. 6 has a red light emitting film 6, a laser marking film 3, and a blue green light emitting film 9 in that order. The red light emitting film 6 is the same as that shown in FIG. The laser marking film 3 is the same as that shown in FIG. The blue-green light-emitting film 9 is a luminous body that mixes blue and green and emits blue-green in response to the first light and the second light. Before the laser marking process, the multilayer body shown in FIG. 6 emits red light from the red light-emitting film 6, emits blue light from the blue-green light-emitting film 9, and emits white light from the multilayer body when irradiated with the first light. Looks like. On the other hand, after the laser marking process, since the laser marking film 3 is normally discolored to black, even if the first light is irradiated, the light emission of the blue-green light-emitting film 9 thereunder is weakened. As a result, the red emission on the black laser marking film is strongly detected, giving a slightly darker red color.
On the other hand, by the irradiation of the second light, in the multilayer body before the laser marking treatment, all the films emit light in the same manner as when the first light is irradiated, and the same result is obtained. Even by the irradiation of the second light, light is emitted in the same manner as when the first light is irradiated, and the treated multilayer body exhibits a slightly dark red color.
In the embodiment of FIG. 6, by adjusting the laser marking conditions, the black optical density (OD value) of the laser marking portion may be adjusted to a predetermined value. According to this aspect, the authenticity can be determined only by the first light. Specifically, before the laser marking process, the first light irradiates the red light-emitting film 6 to emit red light, the blue-green light-emitting film 9 emits blue-green light, and the multilayer body looks white. On the other hand, after the laser marking process, by adjusting the laser marking portion so as to have a certain OD value, even if the first light is irradiated, the light emitted from the blue-green light-emitting film 9 therebelow. Is attenuated at a constant rate. As a result, mixed light of red emission on the black laser marking film and slightly weak blue-green light will be detected. By pre-registering the red and blue-green lights at this time, the authenticity can be determined without irradiating the second light. In the embodiment of FIG. 6, when the black OD value of the laser marking processing unit is low, light red emission is shown, and as the OD value increases, the visibility of red emission increases.
Regarding the adjustment of the optical density, the embodiment of FIG. 6 has been described as an example, but it is needless to say that the same configuration can be applied to the multilayer body of other embodiments.
 図7は、図1に示す多層体の紫発光フィルム1とは反対側に光遮蔽層31を設けた態様である。図7の矢印の方向から、第一の光および第二の光を照射して、真贋を判定することができる。光遮蔽層を設けることにより、視認する方向と反対側からの光の寄与がなくなり、レーザーマーキング処理部の変色効果の視認がより容易になる。また、本発明の多層体を被着体の印刷面とラミネーションすることによって、真贋判定機能を有する印刷保護フィルムとして使用することも可能である。ここで光遮蔽層は、光を遮蔽する層であれば特にさだめるものではないが、通常、樹脂フィルムに白色顔料や黒色顔料を配合したものが挙げられる。また、本発明で利用する発光が確認できる限りにおいて、有彩色顔料を用いてもよい。 FIG. 7 shows an embodiment in which a light shielding layer 31 is provided on the opposite side of the multilayer violet light emitting film 1 shown in FIG. By irradiating the first light and the second light from the direction of the arrow in FIG. 7, the authenticity can be determined. By providing the light shielding layer, the contribution of light from the side opposite to the viewing direction is eliminated, and the visual recognition of the discoloration effect of the laser marking processing unit becomes easier. Further, by laminating the multilayer body of the present invention with a printing surface of an adherend, it is possible to use the multilayer body as a print protection film having an authenticity judgment function. Here, the light shielding layer is not particularly limited as long as it is a layer that shields light, but usually includes a resin film mixed with a white pigment or a black pigment. In addition, a chromatic pigment may be used as long as light emission used in the present invention can be confirmed.
 図8は、図7に示す多層体において、光遮蔽層31の表面であって、図1に示す多層体とは反対側の面に、さらに、図3に対応する多層体を設けた態様である。このような態様とすることにより、図1に示す多層体によるレーザーマーキング処理後の光情報と、図3に示す多層体によるレーザーマーキング処理後の光情報の2つの光情報を1つの多層体に含めることができる。結果として、より性能の高い真贋判定フィルムとすることもできる。 FIG. 8 shows a state in which a multilayer body corresponding to FIG. 3 is further provided on the surface of the light shielding layer 31 on the surface opposite to the multilayer body shown in FIG. 1 in the multilayer body shown in FIG. is there. By adopting such an embodiment, two pieces of optical information, that is, the optical information after the laser marking processing by the multilayer body shown in FIG. 1 and the optical information after the laser marking processing by the multilayer body shown in FIG. 3 are combined into one multilayer body. Can be included. As a result, a higher performance authentication film can be obtained.
 以上の実施例では、多層体の全面において、上記レーザーマーキング処理後の処理情報を表示するシステムとしているが、多層体の用途によっては、多層体の面方向の一部の領域にのみ、本発明の多層体を設けてもよい。
 また、多層体の面方向の一部の領域に図1に示す多層体を組み込み、他の一部に図3に示す多層体を組み込むなどの態様も本発明の好ましい態様として例示される。
In the above embodiments, the system displays the processing information after the laser marking process on the entire surface of the multilayer body. However, depending on the use of the multilayer body, only a part of the area in the surface direction of the multilayer body is used. May be provided.
Further, a preferred embodiment of the present invention includes an embodiment in which the multilayer body shown in FIG. 1 is incorporated in a partial region in the plane direction of the multilayer body and the multilayer body shown in FIG. 3 is incorporated in another part.
 図9は比較例の多層体を模式的に示す断面図である。図9に示す比較例の多層体は、ブランクフィルム(発光体を含まない樹脂フィルム)4と黄緑LMフィルム23とをその順に有する。黄緑発光フィルム23は図1の例と同じである。この比較例の多層体は、レーザーマーキング処理前において、第一の光を照射することにより、黄緑発光フィルム23が黄緑に発光する。レーザーマーキング処理後は、レーザー光の照射を受けて、通常黒く見える。
 一方、黄緑発光体が発光しない光(第二の光)を照射した場合は、レーザーマーキング処理前において、黄緑発光体は発光しない。また、レーザーマーキング処理後は、通常黒く見える。
 すなわち、第一の光を照射しても、第二の光を照射しても、レーザーマーキング処理後に見える発光色は同じである。
FIG. 9 is a cross-sectional view schematically illustrating a multilayer body of a comparative example. The multilayer body of the comparative example shown in FIG. 9 has a blank film (resin film not containing a light-emitting body) 4 and a yellow-green LM film 23 in that order. The yellow-green light-emitting film 23 is the same as the example in FIG. In the multilayer body of this comparative example, the yellow-green light-emitting film 23 emits yellow-green light by irradiating the first light before the laser marking process. After the laser marking process, it usually looks black due to the irradiation of the laser beam.
On the other hand, when the yellow-green light emitter emits light (second light) that does not emit light, the yellow-green light emitter does not emit light before the laser marking process. After the laser marking process, it usually looks black.
That is, irradiating the first light and irradiating the second light have the same emission color after the laser marking process.
 図10は他の比較例の多層体を模式的に示す断面図である。図10に示す比較例の多層体は、紫発光フィルム1とレーザーマーキング・フィルム3とをその順に有する。紫発光フィルム1は図1の例と同じである。この比較例の多層体は、第一の光を照射しないときには、上記紫発光体が発光せず、熱可塑性樹脂の色がそのまま見える。これに第一の光を照射することにより、紫発光フィルム1が紫に発光し、多層体は紫色を呈する。
 一方、レーザーマーキング処理後は、レーザーマーキング・フィルム3が黒色に変化する。その後に第一の光を照射すると、紫発光フィルム1が紫に発光し、多層体はやや暗い紫色に見える。
 対して、第二の光(光線2)を照射した場合は、レーザーマーキング処理部において、紫発光フィルム1は発光しないため、熱可塑性樹脂のそのままの色(通常は透明)が確認できる。一方、レーザーマーキング非処理部は、通常黒く見える。
 すなわち、第一の光を照射しても、第二の光を照射しても、レーザーマーキング処理後に見える発光色は同じである。
FIG. 10 is a sectional view schematically showing a multilayer body of another comparative example. The multilayer body of the comparative example shown in FIG. 10 has a violet light emitting film 1 and a laser marking film 3 in that order. The purple light emitting film 1 is the same as the example of FIG. In the multilayer body of this comparative example, when the first light is not irradiated, the violet light-emitting body does not emit light, and the color of the thermoplastic resin can be seen as it is. By irradiating this with the first light, the purple light-emitting film 1 emits purple light, and the multilayer body exhibits purple color.
On the other hand, after the laser marking process, the laser marking film 3 turns black. Thereafter, when the first light is applied, the purple light-emitting film 1 emits purple light, and the multilayer body looks slightly dark purple.
On the other hand, when the second light (light beam 2) is irradiated, since the violet light-emitting film 1 does not emit light in the laser marking processing section, the same color (normally transparent) of the thermoplastic resin can be confirmed. On the other hand, the non-laser-marked portion usually looks black.
That is, irradiating the first light and irradiating the second light have the same emission color after the laser marking process.
 図11は他の比較例の多層体を模式的に示す断面図である。図11に示す比較例の多層体は、ブランクフィルム4(発光体を含まない樹脂フィルム)と、レーザーマーキング・フィルム3と、黄緑発光フィルム2とをその順に有する。黄緑発光フィルム2は図1の例と同じである。図11に示す比較例の多層体は、第一の光を照射しないときには、熱可塑性樹脂のそのままの色が確認できる。一方、第一の光を照射することにより、黄緑発光フィルム2が黄緑に発光する。レーザーマーキング処理後は、レーザーマーキング・フィルム3が黒色に変化する。その後に第一の光を照射しても、黄緑発光フィルム2の黄緑の発光強度は弱くなり、黒色のままである。
 対して、第二の光(光線2)を照射した場合は、レーザーマーキング処理部は、黄緑発光フィルム2は発光しないため、熱可塑性樹脂のそのままの色(通常は透明)が確認できる。一方、レーザーマーキング非処理部は、通常黒く見える。
 すなわち、第一の光を照射しても、第二の光を照射しても、レーザーマーキング処理後に見える発光色は同じである。
FIG. 11 is a sectional view schematically showing a multilayer body of another comparative example. The multilayer body of the comparative example shown in FIG. 11 has a blank film 4 (a resin film containing no luminous body), a laser marking film 3, and a yellow-green luminescent film 2 in that order. The yellow-green light emitting film 2 is the same as the example of FIG. In the multilayer body of the comparative example shown in FIG. 11, when the first light is not irradiated, the color of the thermoplastic resin as it is can be confirmed. On the other hand, by irradiating the first light, the yellow-green light-emitting film 2 emits yellow-green light. After the laser marking process, the laser marking film 3 turns black. After that, even if the first light is applied, the yellow-green light emission intensity of the yellow-green light-emitting film 2 becomes weak and remains black.
On the other hand, when the second light (light beam 2) is irradiated, the laser marking processing section does not emit light from the yellow-green light emitting film 2, so that the color of the thermoplastic resin as it is (usually transparent) can be confirmed. On the other hand, the non-laser-marked portion usually looks black.
That is, irradiating the first light and irradiating the second light have the same emission color after the laser marking process.
 図12は他の比較例の多層体を模式的に示す断面図である。図12に示す比較例の多層体は、紫発光フィルム1と、ブランクフィルム4と、黄緑発光フィルム2とをその順に有する。紫発光フィルム1および黄緑発光フィルム2は図1の例と同じである。図12に示す比較例の多層体は、第一の光を照射しないときには、熱可塑性樹脂のそのままの色(通常は透明)が確認できる。これに第一の光を照射することにより、紫発光フィルム1は紫に発光し、黄緑発光フィルム2が黄緑に発光し、多層体は、白色を呈する。また、レーザーマーキング処理後も、レーザーマーキング処理による変色がなく、変化はない。
 対して、第二の光には応答せず、非処理の多層体および処理済の多層体は、熱可塑性樹脂のそのままの色(通常は透明)が確認できる。
 すなわち、第一の光を照射しても、第二の光を照射しても、レーザーマーキング処理後に見える発光色は同じである。
FIG. 12 is a sectional view schematically showing a multilayer body of another comparative example. The multilayer body of the comparative example shown in FIG. 12 has a violet light emitting film 1, a blank film 4, and a yellow-green light emitting film 2 in that order. The violet light-emitting film 1 and the yellow-green light-emitting film 2 are the same as in the example of FIG. In the multilayer body of the comparative example shown in FIG. 12, when the first light is not irradiated, the same color (normally transparent) of the thermoplastic resin can be confirmed. By irradiating this with the first light, the purple light-emitting film 1 emits purple light, the yellow-green light-emitting film 2 emits yellow-green light, and the multilayer body exhibits white. Further, even after the laser marking processing, there is no discoloration due to the laser marking processing, and there is no change.
On the other hand, the untreated multilayer body and the treated multilayer body do not respond to the second light, and the same color (usually transparent) of the thermoplastic resin can be confirmed.
That is, irradiating the first light and irradiating the second light have the same emission color after the laser marking process.
 図13は他の比較例の多層体5Cを模式的に示す断面図である。比較例の多層体は、紫発光フィルム1と、レーザーマーキング・フィルム3と、ブランクフィルム4とをその順に有する。紫発光フィルム1は図1の例と同じである。図13に示す比較例の多層体は、第一の光を照射しないときには、熱可塑性樹脂のそのままの色が確認できる。これに第一の光を照射することにより、紫発光フィルム1が紫に発光し、多層体は紫色を呈する。これにレーザーマーキング処理を施すと、レーザーマーキング・フィルム3が黒色に変化する。その後に第一の光を照射すると、紫発光フィルム1は紫に発光し、多層体はやや暗い紫色となる。
 対して、第二の光には応答せず、非処理の多層体は熱可塑性樹脂のそのままの色(通常は透明)が確認でき、処理済の多層体は黒色となる。
 すなわち、第一の光を照射しても、第二の光を照射しても、レーザーマーキング処理後に見える発光色は同じである。
FIG. 13 is a sectional view schematically showing a multilayer body 5C of another comparative example. The multilayer body of the comparative example has a violet light-emitting film 1, a laser marking film 3, and a blank film 4 in that order. The purple light emitting film 1 is the same as the example of FIG. In the multilayer body of the comparative example shown in FIG. 13, the color of the thermoplastic resin can be confirmed as it is when the first light is not irradiated. By irradiating this with the first light, the purple light-emitting film 1 emits purple light, and the multilayer body exhibits purple color. When this is subjected to a laser marking process, the laser marking film 3 turns black. Thereafter, when the first light is applied, the purple light emitting film 1 emits purple light, and the multilayer body becomes slightly dark purple.
On the other hand, it does not respond to the second light, and the untreated multilayer body can confirm the color of the thermoplastic resin (usually transparent), and the treated multilayer body becomes black.
That is, irradiating the first light and irradiating the second light have the same emission color after the laser marking process.
 図14は他の比較例の多層体を模式的に示す断面図である。
 図14に示す比較例の多層体は、第一の光(光線1)に応答して黄緑に発光する黄緑発光フィルム2と、レーザー光エネルギー吸収体を含むレーザーマーキング・フィルム3と、オレンジの染料で着色したオレンジ染料フィルム5とをこの順に有する。黄緑発光フィルム2の態様は図1と同様である。レーザーマーキング・フィルム3は図3の態様と同じである。オレンジ染料フィルム5は、紫外光への応答性はなく、可視光領域においてオレンジ色を呈する光の吸収を示す。
 本実施形態の多層体は、レーザーマーキング処理前においては、第一の光の照射による黄緑発光フィルム2が発光し、黄緑の光が観察されるが、発光しないオレンジフィルム5の着色効果は弱いため黄緑色に見える。対して、レーザーマーキング処理後においては、レーザーマーキング・フィルム3が通常黒に変色しているため、第一の光を照射しても、その下のオレンジ染料フィルム5のオレンジ色の着色効果は得られない。結果として、黒いレーザーマーキング・フィルムの上の黄緑発光フィルムの黄緑色の発光のみが検出されることとなる。すなわち、図1の態様と同じで、第一の光の照射によって、処理済の多層体はやや暗い黄緑色を呈することとなる。
 一方、第二の光を照射した場合は、レーザーマーキング非処理部は熱可塑性樹脂のそのままの色(本例ではオレンジ)を呈し、第二の光を照射した場合は、レーザーマーキング処理部は通常黒く見える。従って、追加のレーザーマーキング処理がされても、真贋を判定できない。
 すなわち、第一の光を照射しても、第二の光を照射しても、レーザーマーキング処理後に見える発光色は同じである。
FIG. 14 is a sectional view schematically showing a multilayer body of another comparative example.
The multilayer body of the comparative example shown in FIG. 14 includes a yellow-green light-emitting film 2 that emits yellow-green light in response to a first light (light beam 1), a laser marking film 3 including a laser light energy absorber, and an orange. And an orange dye film 5 colored with this dye in this order. The embodiment of the yellow-green light-emitting film 2 is the same as that of FIG. The laser marking film 3 is the same as the embodiment of FIG. The orange dye film 5 has no responsiveness to ultraviolet light, and shows absorption of orange light in the visible light region.
In the multilayer body of the present embodiment, before the laser marking treatment, the yellow-green light-emitting film 2 emits light by the first light irradiation, and yellow-green light is observed. It looks yellow-green because it is weak. On the other hand, after the laser marking process, since the laser marking film 3 is usually discolored to black, even if the first light is irradiated, the orange coloring effect of the orange dye film 5 thereunder can be obtained. I can't. As a result, only the yellow-green emission of the yellow-green emitting film over the black laser marking film is detected. That is, similarly to the embodiment of FIG. 1, the irradiated multilayer body exhibits a slightly dark yellow-green color by the irradiation of the first light.
On the other hand, when irradiated with the second light, the laser marking non-processed portion presents the same color of the thermoplastic resin (orange in this example), and when irradiated with the second light, the laser marking processed portion is usually Looks black. Therefore, even if the additional laser marking processing is performed, the authenticity cannot be determined.
That is, irradiating the first light and irradiating the second light have the same emission color after the laser marking process.
 図15は他の比較例の多層体を模式的に示す断面図である。
 図15に示す比較例の多層体は、オレンジの染料で着色したオレンジ染料フィルム5と、レーザー光エネルギー吸収体を含むレーザーマーキング・フィルム3と、第一の光(光線1)に応答して黄緑発光する黄緑発光フィルム2とをこの順に有する。オレンジ染料フィルム5は図14と同じである。レーザーマーキング・フィルム3は図3の態様と同じである。黄緑発光フィルム2の態様は図1と同様である。
 本実施形態の多層体は、レーザーマーキング処理前においては、第一の光の照射による黄緑発光フィルム2の黄緑色の発光が確認されるが、その下層のオレンジ染料フィルム5の着色効果は弱いため、黄緑色に見える。このとき、オレンジ染料フィルム5は半透明であり、その下の黄緑発光フィルム2の黄緑の発光を、オレンジ染料フィルム5を介して視認ないし検出できるようにされている。レーザーマーキング処理後においては、レーザーマーキング・フィルム3が、通常、黒に変色しているため、第一の光を照射しても、その下の黄緑発光フィルム2は発光せず、黒色のみが見える。一方、黄緑発光体およびオレンジ染料が発光しない光(第二の光)を照射した場合は、レーザーマーキング非処理部は熱可塑性樹脂のそのままの色(本例ではオレンジ)を呈し、レーザーマーキング処理部は、通常黒く見える。すなわち、レーザーマーキング処理部は、光線1を照射しても、光線2を照射して黒く見える。
 すなわち、第一の光を照射しても、第二の光を照射しても、レーザーマーキング処理後に見える発光色は同じである。
FIG. 15 is a sectional view schematically showing a multilayer body of another comparative example.
The multilayer body of the comparative example shown in FIG. 15 has an orange dye film 5 colored with an orange dye, a laser marking film 3 including a laser light energy absorber, and yellow in response to the first light (light 1). And a yellow-green light-emitting film 2 that emits green light. The orange dye film 5 is the same as in FIG. The laser marking film 3 is the same as the embodiment of FIG. The embodiment of the yellow-green light-emitting film 2 is the same as that of FIG.
In the multilayer body of the present embodiment, before the laser marking treatment, yellow-green light emission of the yellow-green light-emitting film 2 due to irradiation of the first light is confirmed, but the coloring effect of the orange dye film 5 thereunder is weak. Therefore, it looks yellow-green. At this time, the orange dye film 5 is translucent, and the yellow-green emission of the yellow-green light-emitting film 2 thereunder can be visually recognized or detected via the orange dye film 5. After the laser marking process, since the laser marking film 3 is usually discolored to black, even if the first light is irradiated, the yellow-green light-emitting film 2 thereunder does not emit light, and only black is emitted. appear. On the other hand, when the yellow-green light-emitting body and the orange dye are irradiated with light (second light) that does not emit light, the laser-marked non-processed portion shows the same color of the thermoplastic resin (orange in this example), The part usually looks black. That is, even if the laser marking processing unit irradiates the light beam 1, it irradiates the light beam 2 and looks black.
That is, irradiating the first light and irradiating the second light have the same emission color after the laser marking process.
 本発明の多層体は、印刷層を有していてもよい。印刷層は、意匠層とも呼ばれるものである。印刷層の形成法として、多層体上に直接、グラビア印刷、フレキソ印刷等により所望の意匠を印刷し、加熱乾燥することにより形成する方法、2軸延伸PETフィルム等の転写シートに印刷により形成された印刷層を、加熱転写等の方法により多層体に転写する方法が挙げられる。
 印刷層は、例えば、ポリエステル系、ポリカーボネート系、アクリル系、ウレタン系の印刷インクを用いて印刷可能であり、特にハードコート層との密着性に問題がある場合は、プラズマやイオンエッチング、コロナ放電等の表面処理によって表面改質して密着力を高めることも可能である。また、物理気相成長法や化学気相成長法を用いて、熱成形シート上に金属層、金属酸化物層等を設け印刷層とする方法も併せて挙げられる。印刷層は、本発明の趣旨を逸脱しない範囲で組み込むことができ、例えば、樹脂層(A)/印刷層/樹脂層(B)の構成の様に印刷層を設け印刷部分が樹脂(B)による発光の寄与を弱め、樹脂層(A)の影響(発光)が大きく視認される多層体を作製することもできる。
 本発明の多層体は上記図示したものに限られず、本発明の趣旨を逸脱しない範囲で、適宜変更ないし応用してフィルムの積層構成を設定することができる。
The multilayer body of the present invention may have a printing layer. The printing layer is also called a design layer. As a method of forming a printing layer, a method of printing a desired design directly on a multilayer body by gravure printing, flexo printing, etc., and forming by heating and drying, and formed by printing on a transfer sheet such as a biaxially stretched PET film. The printed layer is transferred to a multilayer body by a method such as heat transfer.
The printing layer can be printed using, for example, a polyester-based, polycarbonate-based, acrylic-based, or urethane-based printing ink.In particular, when there is a problem with adhesion to the hard coat layer, plasma, ion etching, or corona discharge can be used. It is also possible to improve the adhesion by surface modification such as surface treatment. In addition, a method in which a metal layer, a metal oxide layer, or the like is provided on a thermoformed sheet by using a physical vapor deposition method or a chemical vapor deposition method to form a printed layer is also included. The print layer can be incorporated without departing from the spirit of the present invention. For example, a print layer is provided as in the configuration of resin layer (A) / print layer / resin layer (B), and the print portion is formed of resin (B). , The effect of light emission by the resin layer (A) can be reduced, and a multilayer body in which the influence (light emission) of the resin layer (A) is visually recognized can be produced.
The multilayer body of the present invention is not limited to the above-described one, and the lamination structure of the film can be set by appropriately changing or applying within a range not departing from the gist of the present invention.
<樹脂組成物>
 本発明の多層体には、本発明の効果を奏する範囲で適宜常用されている樹脂や樹脂組成物を適用することができる。樹脂層(A)、樹脂層(B)、樹脂層(C)には、その層を構成し、好ましくはフィルムとして保形されるよう、それに適した樹脂組成物が用いられることが好ましい。
<Resin composition>
To the multilayer body of the present invention, a resin or a resin composition commonly used as appropriate within a range in which the effects of the present invention are exhibited can be applied. For the resin layer (A), the resin layer (B), and the resin layer (C), it is preferable to use a resin composition suitable for constituting the layers, and preferably for keeping the shape as a film.
<<樹脂>>
 上記の樹脂組成物に含まれる樹脂は、紫外線硬化性樹脂、熱硬化性樹脂、粘着用樹脂、接着用樹脂、インキ用バインダー樹脂、熱可塑性樹脂が挙げられるが、なかでも熱可塑性樹脂であることが成形加工の観点から好ましい。なかでも、ポリカーボネート樹脂およびポリエステル樹脂の少なくとも1種を含むことが好ましく、ポリカーボネート樹脂および非晶性ポリエステル樹脂の少なくとも1種を含むことがより好ましく、ポリカーボネート樹脂の少なくとも1種を含むことがさらに好ましい。
<< Resin >>
The resin contained in the resin composition includes an ultraviolet curable resin, a thermosetting resin, an adhesive resin, an adhesive resin, an ink binder resin, and a thermoplastic resin. Is preferred from the viewpoint of molding processing. Above all, it is preferable to include at least one of a polycarbonate resin and a polyester resin, more preferably at least one of a polycarbonate resin and an amorphous polyester resin, and still more preferably at least one of a polycarbonate resin.
 ポリカーボネート樹脂は、分子主鎖中に炭酸エステル結合を含む-[O-R-OCO]-単位(Rは、脂肪族基、芳香族基、または脂肪族基と芳香族基の双方を含む基であり、脂肪族基は直鎖構造でも分岐構造でもよい)を含むことが好ましい。本発明においては、各フィルムが芳香族ポリカーボネート樹脂を含むことが特に好ましい。
 ポリカーボネート樹脂の重量平均分子量は、20,000~80,000が好ましく、21,000~50,000がより好ましく、22,000~40,000がさらに好ましい。
 ポリカーボネート樹脂のガラス転移温度は、120℃以上であることが好ましく、130℃以上であることがより好ましい。上限としては、160℃以下であることが好ましく、155℃以下であることがより好ましい。
The polycarbonate resin is a-[OR-OCO] -unit (R is an aliphatic group, an aromatic group, or a group containing both an aliphatic group and an aromatic group) containing a carbonate ester bond in the molecular main chain. And the aliphatic group may have a straight-chain structure or a branched structure). In the present invention, it is particularly preferable that each film contains an aromatic polycarbonate resin.
The weight average molecular weight of the polycarbonate resin is preferably from 20,000 to 80,000, more preferably from 21,000 to 50,000, even more preferably from 22,000 to 40,000.
The glass transition temperature of the polycarbonate resin is preferably 120 ° C. or higher, more preferably 130 ° C. or higher. The upper limit is preferably 160 ° C. or lower, more preferably 155 ° C. or lower.
 ポリエステル樹脂としては、非晶性ポリエステル樹脂であっても、結晶性ポリエステル樹脂であってもよい。
 非晶性ポリエステル樹脂としては、例えば、PETG樹脂およびPCTG樹脂が挙げられる。
 PETG樹脂は、テレフタル酸単位を主とするジカルボン酸単位、エチレングリコール単位、および1,4-シクロヘキサンジメタノール単位を主とするグリコール単位からなるポリエステルコポリマーであり、1,4-シクロヘキサンジメタノール単位が、モル基準で全てのグリコール単位の50%未満を占める。テレフタル酸単位は、これが全てのジカルボン酸単位を占めることが好ましい。
 また、PCTG樹脂は、テレフタル酸単位を主とするジカルボン酸単位、エチレングリコール単位、および1,4-シクロヘキサンジメタノール単位を主とするグリコール単位からなるポリエステルコポリマーであり、1,4-シクロヘキサンジメタノール単位が、モル基準で全てのグリコール単位の50%以上を占める。テレフタル酸単位は、これが全てのジカルボン酸単位を占めることが好ましい。
The polyester resin may be an amorphous polyester resin or a crystalline polyester resin.
Examples of the amorphous polyester resin include a PETG resin and a PCTG resin.
The PETG resin is a polyester copolymer composed of a dicarboxylic acid unit mainly composed of terephthalic acid units, an ethylene glycol unit and a glycol unit mainly composed of 1,4-cyclohexanedimethanol units. Account for less than 50% of all glycol units on a molar basis. The terephthalic acid units preferably occupy all dicarboxylic acid units.
PCTG resin is a polyester copolymer composed of a dicarboxylic acid unit mainly composed of terephthalic acid units, an ethylene glycol unit, and a glycol unit mainly composed of 1,4-cyclohexanedimethanol units, and is 1,4-cyclohexanedimethanol. The units account for at least 50% of all glycol units on a molar basis. The terephthalic acid units preferably occupy all dicarboxylic acid units.
 結晶性ポリエステル樹脂としては、ポリカプロラクトンが挙げられる。 Polycaprolactone is an example of the crystalline polyester resin.
 熱可塑性樹脂においては、ポリカーボネート樹脂とポリエステル樹脂とを組み合わせても、ポリカーボネート樹脂またはポリエステル樹脂と他の熱可塑性樹脂とを組み合わせても、ポリカーボネート樹脂とポリエステル樹脂と他の熱可塑性樹脂とを組み合わせてもよい。本発明においては、ポリカーボネート樹脂またはポリエステル樹脂(好ましくはポリカーボネート樹脂)が熱可塑性樹脂全体の50質量%以上を占めることが好ましく、60質量%以上を占めることがより好ましく、80質量%以上を占めることがさらに好ましい。上限としては特に制限されず、ポリカーボネート樹脂またはポリエステル樹脂が100質量%であってもよい。ポリカーボネート樹脂は1種を用いても複数のものを用いてもよい。ポリエステル樹脂についても、1種を用いても複数のものを用いてもよい。いずれも複数のものを用いる場合はその合計量が上記の範囲となる。 In the thermoplastic resin, even if the polycarbonate resin and the polyester resin are combined, even if the polycarbonate resin or the polyester resin is combined with another thermoplastic resin, the polycarbonate resin and the polyester resin are combined with the other thermoplastic resin. Good. In the present invention, the polycarbonate resin or polyester resin (preferably, polycarbonate resin) preferably accounts for 50% by mass or more, more preferably 60% by mass or more, and preferably 80% by mass or more of the entire thermoplastic resin. Is more preferred. The upper limit is not particularly limited, and the polycarbonate resin or the polyester resin may be 100% by mass. One or more polycarbonate resins may be used. As the polyester resin, one type or a plurality of types may be used. In the case where a plurality of materials are used, the total amount is within the above range.
<発光体>
 本発明の多層体においては、これを構成する樹脂層(A)には第一の発光体が含有されており、発光体はエネルギーの付与(例えば、紫外光、可視光、赤外線の照射)を受けて発光する発光体であることが好ましい。また、本発明の多層体においては、樹脂層(B)または樹脂層(C)が第二の発光体を含有することができる。さらに、樹脂層(B)および樹脂層(C)は、第三の発光体、第四の発光体を含んでいてもよい。第三以降の発光体は、1つの樹脂層(A)、1つの樹脂層(B)および1つの樹脂層(C)がさらに、2種目以降の発光体として含んでいてもよいし、樹脂層(A)、樹脂層(B)および樹脂層(C)の少なくとも1つが2層以上であってもよい。
 本発明の多層体が、樹脂層(B)と樹脂層(C)の両方を含む場合、樹脂層(B)に含まれる発光体と樹脂層(C)に含まれる発光体は、通常、異なる種類の発光体である。
<Light-emitting body>
In the multilayer body of the present invention, the resin layer (A) constituting the multilayer body contains the first luminous body, and the luminous body gives energy (for example, irradiation of ultraviolet light, visible light, or infrared light). It is preferably a luminous body that receives and emits light. Further, in the multilayer body of the present invention, the resin layer (B) or the resin layer (C) can contain the second luminous body. Further, the resin layer (B) and the resin layer (C) may include a third light emitter and a fourth light emitter. In the third and subsequent luminous bodies, one resin layer (A), one resin layer (B), and one resin layer (C) may further include as the second and subsequent luminous bodies, At least one of (A), the resin layer (B) and the resin layer (C) may be two or more layers.
When the multilayer body of the present invention includes both the resin layer (B) and the resin layer (C), the luminous body contained in the resin layer (B) and the luminous body contained in the resin layer (C) are usually different. Types of light emitters.
 第一の発光体および第二の発光体として採用される好ましい化合物は上記のとおりであるが、第一の発光体および第二の発光体は、互いに異なる化合物である。 好 ま し い The preferred compounds employed as the first luminous body and the second luminous body are as described above, but the first luminous body and the second luminous body are different from each other.
 発光体は、エネルギーの付与を受けて発光する材料である。
 第一の発光体および第二の発光体は電磁波の照射によって発光することが好ましく、ラジオ波、マイクロ波、遠赤外線、赤外線、紫外光、遠紫外光、X線、γ線によって発光することがより好ましく、紫外光また赤外線によって発光することがさらに好ましい。このように、可視光以外の電磁波によって発光することで、多層体の色の状態を目視によって認識されることがなく、情報の拡散や、安易な偽造を防ぐことができる。
 短波長光としては、200~450nmの波長の光が挙げられ、250~420nmの短波長光がより好ましい。
 長波長光としては、800~10,000nmの波長の光が挙げられ、900~1500nmの光がより好ましい。
 さらに、第一の発光体および第二の発光体は同一の光源から供給される光によって励起される発光体であることが好ましい。第一の発光体および第二の発光体は、同一光源の同一波長の光によって励起されてもよいし、同一光源の異なる波長の光によって励起されてもよい。好ましくは、第一の発光体および第二の発光体の極大励起波長の差が50nm以内であることが好ましく、10nm以内であることがより好ましい。極大励起波長とは、発光体が最もよく励起される波長をいう。
The luminous body is a material that emits light upon receiving energy.
The first luminous body and the second luminous body preferably emit light by irradiation with electromagnetic waves, and can emit light by radio waves, microwaves, far infrared rays, infrared rays, ultraviolet light, far ultraviolet light, X-rays, and γ-rays. It is more preferable to emit light by ultraviolet light or infrared light. By emitting light by electromagnetic waves other than visible light as described above, the color state of the multilayer body is not visually recognized, so that information diffusion and easy forgery can be prevented.
Examples of the short-wavelength light include light having a wavelength of 200 to 450 nm, and short-wavelength light having a wavelength of 250 to 420 nm is more preferable.
Examples of the long-wavelength light include light having a wavelength of 800 to 10,000 nm, and light having a wavelength of 900 to 1500 nm is more preferable.
Further, the first light emitter and the second light emitter are preferably light emitters excited by light supplied from the same light source. The first luminous body and the second luminous body may be excited by light of the same wavelength from the same light source, or may be excited by light of a different wavelength from the same light source. Preferably, the difference between the maximum excitation wavelengths of the first luminous body and the second luminous body is within 50 nm, more preferably within 10 nm. The maximum excitation wavelength refers to a wavelength at which the luminous body is excited most.
 第一の発光体および第二の発光体として、それぞれ独立に、B、F、Mg、Al、Si、P、S、Cl、Ca、V、Mn、Cu、Zn、Ge、Sr、Y、Ba、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuからなる群から選択される元素を含む化合物が挙げられる。発光体を構成する化合物としては、例えば、これらの元素と酸素原子の複合酸化物や、有機基と組み合わせた有機金属化合物などが挙げられる。 B, F, Mg, Al, Si, P, S, Cl, Ca, V, Mn, Cu, Zn, Ge, Sr, Y, Ba are each independently used as the first light emitter and the second light emitter. , La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and a compound containing an element selected from the group consisting of Lu. Examples of the compound constituting the light emitting body include a composite oxide of these elements and an oxygen atom, and an organometallic compound combined with an organic group.
 発光体は、赤外光または紫外光で発光する発光体を用いることが好ましく、紫外光で発光する発光体を用いることがより好ましい。紫外光で発光する発光体としては、紫外光により励起され、発するスペクトルのピークが青、緑、赤等の波長域にあるものが挙げられる。具体的には、硫化亜鉛やアルカリ土類金属の硫化物などの高純度発光体に発光をより強くするために微量の金属(銅、銀、マンガン、ビスマス、鉛など)を付活剤として加え高温焼成して得られるものが挙げられる。紫外光で発光する発光体は、母体結晶と付活剤の組み合わせにより色相、明るさ、色の減衰の度合いを調整することができる。 As the luminous body, it is preferable to use a luminous body that emits infrared light or ultraviolet light, and it is more preferable to use a luminous body that emits ultraviolet light. Examples of a luminous body that emits light with ultraviolet light include those that are excited by ultraviolet light and have a peak in the emitted spectrum in a wavelength range of blue, green, red, and the like. Specifically, a trace amount of metal (copper, silver, manganese, bismuth, lead, etc.) is added as an activator to enhance the emission of high-purity luminous substances such as zinc sulfide and sulfides of alkaline earth metals. Examples include those obtained by firing at high temperature. For a light-emitting body that emits ultraviolet light, the hue, brightness, and degree of color attenuation can be adjusted by a combination of a host crystal and an activator.
 本発明において発光体として用いることができる化合物としては、例えば、特開2015-168728号公報の段落0019、0090~0097の記載等、特開平10-129107号公報の段落0033、0034、0069等を参照することができ、これらの記載を本明細書に組み込む。 Examples of the compound that can be used as a light-emitting material in the present invention include, for example, paragraphs 0019 and 0090 to 0097 of JP-A-2015-168728, and paragraphs 0033, 0034 and 0069 of JP-A-10-129107. References can be made and these descriptions are incorporated herein.
 第一の発光体および第二の発光体としては、それぞれ、樹脂組成物に0.01質量%以上で含有していることが好ましく、0.05質量%以上であることがより好ましく、0.07質量%以上であることがさらに好ましい。上限としては、5.0質量%以下であることが好ましく、2.0質量%以下であることがより好ましく、1.0質量%以下であることがさらに好ましい。発光体の含有割合が下限値以上とすることにより、検出器での検出がより容易となる。発光体の含有割合が上限値以下であると、発光色がより鮮明になり好ましい。
 発光体は、上述の通り、1種の樹脂組成物に、1種のみ用いてもよく、2種以上用いてもよい。2種以上用いる場合は、合計量が上記範囲となることが好ましい。
Each of the first luminous body and the second luminous body preferably contains 0.01% by mass or more in the resin composition, more preferably 0.05% by mass or more, and 0.1% by mass or more. More preferably, it is at least 07% by mass. The upper limit is preferably 5.0% by mass or less, more preferably 2.0% by mass or less, even more preferably 1.0% by mass or less. When the content ratio of the luminous body is equal to or more than the lower limit, the detection with the detector becomes easier. When the content ratio of the luminous body is equal to or less than the upper limit, the luminescent color becomes clearer, which is preferable.
As described above, only one kind of luminous body may be used in one kind of resin composition, or two or more kinds may be used. When two or more kinds are used, the total amount is preferably within the above range.
<レーザー光エネルギー吸収体>
 本発明の多層体においては、樹脂層(B)にレーザー光エネルギー吸収体を含有する。レーザー光エネルギー吸収体は、レーザーマーキング剤を用いることができる。
 レーザー光エネルギー吸収体(レーザーマーキング剤)は熱可塑性樹脂を変色させることができる。通常は、黒く変色する。かかる観点から、レーザービームの波長は、700nm以上であることが好ましく、800nm以上であることがより好ましく、900nm以上であることがさらに好ましい。上限としては、1200nm以下が実際的である。
 レーザー光エネルギー吸収体は、上記発光体が有する極大励起波長とは異なる波長に極大吸収波長を有することが好ましい。より具体的には、上記発光体が有する極大励起波長とレーザー光エネルギー吸収体の極大吸収波長の差は、50nm以上であることが好ましく、100nm以上であることがより好ましく、200nm以上であることがさらに好ましい。上記発光体が有する極大励起波長とレーザー光エネルギー吸収体の極大吸収波長の差の上限値は特に定めるものではないが、通常は、1000nm以下である。
<Laser energy absorber>
In the multilayer body of the present invention, the resin layer (B) contains a laser beam energy absorber. As the laser light energy absorber, a laser marking agent can be used.
The laser light energy absorber (laser marking agent) can change the color of the thermoplastic resin. Usually, it turns black. From such a viewpoint, the wavelength of the laser beam is preferably 700 nm or more, more preferably 800 nm or more, and further preferably 900 nm or more. The upper limit is practically 1200 nm or less.
The laser light energy absorber preferably has a maximum absorption wavelength at a wavelength different from the maximum excitation wavelength of the luminous body. More specifically, the difference between the maximum excitation wavelength of the luminous body and the maximum absorption wavelength of the laser light energy absorber is preferably 50 nm or more, more preferably 100 nm or more, and more preferably 200 nm or more. Is more preferred. The upper limit of the difference between the maximum excitation wavelength of the luminous body and the maximum absorption wavelength of the laser light energy absorber is not particularly limited, but is usually 1000 nm or less.
 レーザー光エネルギー吸収体は、例えば、カーボンブラック、チタンブラック、金属酸化物、金属硫化物、および金属窒化物からなる群から選ばれる少なくとも1種が挙げられる。中でも好ましくは、カーボンブラック、チタンブラック、および金属酸化物からなる群から選ばれる1種または2種以上である。 The laser light energy absorber includes, for example, at least one selected from the group consisting of carbon black, titanium black, metal oxides, metal sulfides, and metal nitrides. Among them, one or more selected from the group consisting of carbon black, titanium black, and metal oxides are preferred.
 ここで、レーザー光エネルギー吸収体がカーボンブラックである場合の平均粒径は、150nm以下であることが好ましく、100nm以下であることがより好ましく、90nm以下であることがさらに好ましい。下限値としては10nm以上であることが実際的である。また、レーザー光エネルギー吸収体は、ジブチルフタレート(DBT)吸油量60~170mL/100grのカーボンブラックが好ましい。平均粒径が上記の上限値以下であるとレーザー発色性を高く維持できるため好ましい。平均粒径が上記の下限値以上であると、フィルムの着色を抑制することができ好ましい。また、DBT吸油量が上記下限値以上であることで、分散性を維持することができる。 Here, when the laser light energy absorber is carbon black, the average particle size is preferably 150 nm or less, more preferably 100 nm or less, and even more preferably 90 nm or less. It is practical that the lower limit is 10 nm or more. The laser light energy absorber is preferably carbon black having a dibutyl phthalate (DBT) oil absorption of 60 to 170 mL / 100 gr. It is preferable that the average particle diameter is equal to or less than the above upper limit because laser colorability can be maintained high. It is preferable that the average particle size is not less than the above lower limit because the coloring of the film can be suppressed. Further, when the DBT oil absorption is equal to or more than the above lower limit, dispersibility can be maintained.
 チタンブラック、金属酸化物としては、平均粒径10μm以下であることが、レーザー発色性、印字鮮明性を維持できるため好ましい。酸化物を形成する金属として、亜鉛、マグネシウム、アルミニウム、鉄、チタン、珪素、アンチモン、錫、銅、マンガン、コバルト、ビスマス、バナジウム、ニオブ、モリブデン、ルテニウム、タングステン、パラジウム、銀、白金などが挙げられる。さらに、複合金属酸化物としてITO、ATO、AZO等が挙げられる。
 金属硫化物としては、硫化亜鉛、硫化カドミニウムなどが挙げられる。さらに、金属窒化物としては窒化チタンなどが挙げられる。
Titanium black and metal oxides having an average particle size of 10 μm or less are preferable because laser colorability and print clarity can be maintained. Examples of the metal forming the oxide include zinc, magnesium, aluminum, iron, titanium, silicon, antimony, tin, copper, manganese, cobalt, bismuth, vanadium, niobium, molybdenum, ruthenium, tungsten, palladium, silver, and platinum. Can be Furthermore, examples of the composite metal oxide include ITO, ATO, and AZO.
Examples of the metal sulfide include zinc sulfide and cadmium sulfide. Further, as the metal nitride, titanium nitride or the like can be given.
 上記樹脂組成物中のレーザー光エネルギー吸収体の含有量は、樹脂100質量部に対して、レーザー光エネルギー吸収体が0.0005質量部以上であることが好ましく、0.001質量部以上であることがより好ましく、0.005質量部以上であることがさらに好ましい。上限としては、5質量部以下であることが好ましく、3質量部以下であることがより好ましく、1質量部以下であることがさらに好ましい。
 レーザー光エネルギー吸収体は、1種のみ用いてもよく、2種以上用いてもよい。2種以上用いる場合は、合計量が上記範囲となることが好ましい。
The content of the laser beam energy absorber in the resin composition is preferably 0.0005 parts by mass or more, more preferably 0.001 part by mass, based on 100 parts by mass of the resin. More preferably, it is still more preferably 0.005 parts by mass or more. The upper limit is preferably 5 parts by mass or less, more preferably 3 parts by mass or less, even more preferably 1 part by mass or less.
Only one laser light energy absorber may be used, or two or more laser light energy absorbers may be used. When two or more kinds are used, the total amount is preferably within the above range.
 本発明において、多層体は、レーザー光線を照射してレーザー光エネルギー吸収体を含有する樹脂層(B)が効果的に変色することが好ましい。レーザー光としては、He-Neレーザー(波長633nm)、Arレーザー、COレーザー(波長:9.3μm~10.6μm)、エキシマレーザー等の気体レーザー(ArFエキシマレーザ(波長193nm)、KrFエキシマレーザ(波長248nm)、XeClエキシマレーザ(波長308nm)、XeFエキシマレーザ(波長351nm))、YAGレーザー(波長1064nm)、Nd・YVOレーザー(波長1065nm)等の固体レーザー、半導体レーザー、色素レーザー等が挙げられる。これらのうち、YAGレーザー、Nd・YVOレーザーが好ましい。 In the present invention, it is preferred that the resin layer (B) containing the laser light energy absorber be effectively discolored by irradiating the multilayer body with a laser beam. Examples of the laser light include He-Ne laser (wavelength: 633 nm), Ar laser, CO 2 laser (wavelength: 9.3 μm to 10.6 μm), gas lasers such as excimer laser (ArF excimer laser (wavelength: 193 nm)), KrF excimer laser (wavelength 248 nm), XeCl excimer laser (wavelength 308 nm), XeF excimer laser (wavelength 351 nm)), YAG laser (wavelength 1064nm), Nd · YVO 4 laser (wavelength 1065 nm) solid state lasers such as a semiconductor laser, dye laser or the like No. Among these, YAG lasers, Nd · YVO 4 laser are preferable.
<その他の成分>
 フィルムを構成する樹脂組成物は、上述の成分に加えて、酸化防止剤、熱安定剤、難燃剤、難燃助剤、離型剤等の添加剤を含有してもよい。あるいは、本発明の効果を損なわない限り、紫外光吸収剤、帯電防止剤、蛍光増白剤、防曇剤、流動性改良剤、可塑剤、分散剤、抗菌剤等の添加剤を含有してもよい。熱可塑性樹脂における上述したような添加剤の含有量は、熱可塑性樹脂全体の質量を基準として、1.0質量%以下であることが好ましく、0.5質量%以下であることがより好ましく、0.1質量%以下であることがさらに好ましい。
<Other ingredients>
The resin composition constituting the film may contain additives such as an antioxidant, a heat stabilizer, a flame retardant, a flame retardant auxiliary, and a release agent, in addition to the components described above. Alternatively, as long as the effects of the present invention are not impaired, additives such as an ultraviolet light absorber, an antistatic agent, a fluorescent brightener, an antifogging agent, a flow improver, a plasticizer, a dispersant, and an antibacterial agent are contained. Is also good. The content of the additive as described above in the thermoplastic resin is preferably 1.0% by mass or less, more preferably 0.5% by mass or less, based on the mass of the entire thermoplastic resin, More preferably, it is 0.1% by mass or less.
<フィルムの成形>
 本発明の多層体を成形する方法は特に限定されず、適宜常法を採用することができる。
 例えば、多層体の各層を構成する熱可塑性樹脂組成物を、押出成形等によって、フィルム状に成形し、得られた各層に相当するフィルムを熱プレスする態様が例示される。
 また、多層体の各層を構成する熱可塑性樹脂組成物を、共押出成形することもできる。
<Film molding>
The method for forming the multilayer body of the present invention is not particularly limited, and a conventional method can be appropriately employed.
For example, a mode is exemplified in which the thermoplastic resin composition constituting each layer of the multilayer body is formed into a film by extrusion or the like, and a film corresponding to each obtained layer is hot-pressed.
Further, the thermoplastic resin composition constituting each layer of the multilayer body can be co-extruded.
<真贋判定方法>
 本発明の多層体は、これを用いた真贋判定方法に好適に利用することができる。本発明の好ましい実施形態に係る真贋判定方法について述べると、上記の多層体の樹脂層(B)にレーザーマーキング処理を行った後に、前記樹脂層(A)側から、あるいは、反対側から、第一の発光体および第二の発光体をそれぞれ発光させることが可能な光を照射することを含む方法が挙げられる。本発明では、樹脂層(A)側から光照射することが好ましい。ここで、第一の発光体および第二の発光体を発光させることが可能な光とは、それぞれ、第一の発光体および第二の発光体について、それぞれ、極大励起波長±50nm以内の波長の光を照射することが好ましく、極大励起波長±30nm以内の波長の光を照射することがより好ましく、極大励起波長±10nm以内の波長の光を照射することがさらに好ましく、極大励起波長±5nm以内の波長の光を照射することがさらに好ましい。本発明では、さらに、この多層体から発光された光を検出する。ここでの検出は機械的にセンサーなどで行ってもよいが、人が目視で確認することを含む意味である。次いで、上記で検出した光が多層体の真正な光か、つまりレーザーマーキング処理された後の多層体として、特定の光を照射したときに、樹脂層(A)および樹脂層(B)、必要により樹脂層(C)からの発光として想定された光か否かを判定する。これが真正な光に該当すれば、真贋の試験をされた多層体は真正物と判定され(図16のYes)、そうでなければ偽造物と判定される(図16のNo)。上記の判定には、真正な発光を記録し格納した真正発光データベース(真正発光DB)を用いることが好ましい(図17)。
 本発明の一実施形態においては、前記特定の光が紫外光であることが好ましく、光の波長が200~450nmの範囲であることが好ましい。
 これとは別の実施形態としては、特定の光が赤外光であることが好ましく、光の波長が800~10,000nmの範囲であることが好ましい。上記別の実施形態は、例えば、発光体1(根本特殊化学社製、品番D20001、励起波長825nm、発光波長965nm)、発光体2(根本特殊化学社製、品番ASG、励起波長950nm、発光波長670nm)を用いることにより、実現することができる。
 本実施形態の真贋判定方法に適用される多層体としては、セキュリティカードであることが好ましい。
<Authentication judgment method>
The multilayer body of the present invention can be suitably used for an authenticity judgment method using the same. The authenticity determination method according to a preferred embodiment of the present invention will be described. After performing a laser marking process on the resin layer (B) of the above-mentioned multilayer body, the resin layer (A) side or from the opposite side, A method including irradiating light capable of causing each of the first light emitter and the second light emitter to emit light may be used. In the present invention, light irradiation is preferably performed from the resin layer (A) side. Here, the light capable of causing the first luminous body and the second luminous body to emit is a wavelength within the maximum excitation wavelength ± 50 nm for the first luminous body and the second luminous body, respectively. It is preferable to irradiate light having a wavelength within a maximum excitation wavelength ± 30 nm, more preferably, to irradiate light having a wavelength within a maximum excitation wavelength ± 10 nm, and a maximum excitation wavelength ± 5 nm. It is more preferable to irradiate light having a wavelength within the range. In the present invention, the light emitted from the multilayer body is detected. The detection here may be mechanically performed by a sensor or the like, but it means that a person visually confirms it. Next, when the light detected above is the genuine light of the multilayer body, that is, as a multilayer body after the laser marking processing, the resin layer (A) and the resin layer (B) It is determined whether or not the light is assumed to be light emission from the resin layer (C). If this corresponds to genuine light, the multilayer body tested for authenticity is determined to be authentic (Yes in FIG. 16), otherwise it is determined to be counterfeit (No in FIG. 16). For the above determination, it is preferable to use a true light emission database (true light emission DB) in which true light emission is recorded and stored (FIG. 17).
In one embodiment of the present invention, the specific light is preferably ultraviolet light, and the wavelength of the light is preferably in a range of 200 to 450 nm.
In another embodiment, the specific light is preferably infrared light, and the wavelength of the light is preferably in the range of 800 to 10,000 nm. In another embodiment, for example, the light-emitting body 1 (manufactured by Nemoto Special Chemical Co., product number D20001, excitation wavelength 825 nm, emission wavelength 965 nm), and the light-emitting body 2 (manufactured by Nemoto Special Chemical Company, product number ASG, excitation wavelength 950 nm, emission wavelength) 670 nm).
The multilayer body applied to the authenticity determination method of the present embodiment is preferably a security card.
<真贋判定システム>
 図18は、本発明の好ましい実施形態に係る真贋判定システムの一例を示す装置構成図である。本実施形態においては、多層体10に光源51から特定の光C1を照射している。この特定の光の好ましい範囲は、上記の真贋判定方法と同じである。本実施形態の真贋判定システムにおいては、レーザーマーキング処理後の多層体に上記特定の光を照射し、多層体を発光させ、その発光C2を検出部52で検出している。上記光源(光照射部)51と検出部52はコンピュータ53に接続され、その制御下で動作させられている。次いで、コンピュータ53では、前記多層体が発光した光が、レーザーマーキング処理が行われた後の多層体が発光する真正な光であるかを判定する。この判定の手順は、真贋判定方法で示したフローチャート(図16、図17)と同じである。ただし、本実施形態の真贋判定システムでは、検出は人の目によることを前提とせず、検出部によって行っている。判定の仕方は様々あるが、次にプログラムの実施態様で説明する真正発光データベース(DB)と、検出した光とを照合して判定する方法が挙げられる。
 さらに、本実施形態のシステムは、判定結果を表示する画像表示手段54、判定結果やその分析結果を印字することができる印刷手段55、判定結果を記録媒体に記録しておくための媒体記録手段56等と接続され、全体がコンピュータにより制御されたシステムとされている。記録媒体としては、例えば、磁気テープ、磁気ディスク、光ディスク、半導体メモリなどが挙げられる。
<Authentication judgment system>
FIG. 18 is an apparatus configuration diagram showing an example of the authenticity determination system according to the preferred embodiment of the present invention. In the present embodiment, the multilayer body 10 is irradiated with the specific light C1 from the light source 51. The preferable range of the specific light is the same as the above-described authenticity determination method. In the authenticity determination system of the present embodiment, the specific light is applied to the multilayer body after the laser marking processing to cause the multilayer body to emit light, and the light emission C2 is detected by the detection unit 52. The light source (light irradiation unit) 51 and the detection unit 52 are connected to a computer 53 and operated under the control thereof. Next, the computer 53 determines whether the light emitted by the multilayer body is genuine light emitted by the multilayer body after the laser marking process is performed. The procedure for this determination is the same as the flowchart shown in the authenticity determination method (FIGS. 16 and 17). However, in the authenticity determination system of the present embodiment, detection is performed by the detection unit without assuming that detection is performed by human eyes. Although there are various determination methods, a method of determining by comparing a genuine light emission database (DB), which will be described in the embodiment of the program, with the detected light can be used.
Further, the system according to the present embodiment includes an image display unit 54 for displaying the determination result, a printing unit 55 for printing the determination result and its analysis result, and a medium recording unit for recording the determination result on a recording medium. 56 and the like, and the entire system is controlled by a computer. Examples of the recording medium include a magnetic tape, a magnetic disk, an optical disk, and a semiconductor memory.
<真贋判定プログラム>
 本発明の好ましい実施形態に係る、コンピュータにより読み取り可能な形式で記述されたプログラムは、図16のフローチャートに示した手順を順次進めていくようプログラミングされている。具体的には、コンピュータにより読み取り可能な形式で記述されたプログラムであって、本発明の多層体が発光した光を検出するステップと、前記多層体が発光した光が、予め登録されたレーザーマーキング処理が行われた後の多層体が発光する光と一致する場合に、前記多層体が発光した光が真正な光であると判定する真贋判定ステップとを含む処理をコンピュータに実行させるためのプログラムとなっている。予め登録されたレーザーマーキング処理が行われた後の多層体が発光する光とは、レーザーマーキング非処理部が発光する光とレーザーマーキング処理部が発光する光の組み合わせである場合や、レーザーマーキング非処理部が発光する光と、特定の光学濃度の黒色度を有するレーザーマーキング処理部が発光する光である場合などが例示される。
 さらに図16に基づいて一連の工程で実施態様を説明すると、プログラムが開始されると、多層体のレーザーマーキング処理が実行される。ただし、レーザーマーキング処理は本プログラム内で行わずに、試験体の前処理ということで、別途レーザーマーキング処理された多層体の供給を受けてもよい。本プログラムの好ましい実施形態では、多層体の、例えば、樹脂層(A)側から特定の光を照射する。特定の光は前記で規定されたとおりであり、紫外光または赤外光が好ましい。次いで、レーザーマーキング処理された多層体からの発光を検出する。このときの検出は、目視によって確認し、その結果をインプットしてコンピュータに送ってもよいが、コンピュータにつながれた検出部によって行われることが好ましい。次いで、検出された光が多層体の真正な光かを判定する。真正と判断されれば(図16のYes)、試験された多層体は真正物と判定される。そうでなければ(図16のNo)偽造と判定する。
<Authentication judgment program>
A program described in a computer-readable format according to a preferred embodiment of the present invention is programmed to sequentially advance the procedure shown in the flowchart of FIG. Specifically, the program is a program described in a computer-readable format, wherein the step of detecting the light emitted by the multilayer body of the present invention, and the step of detecting the light emitted by the multilayer body are performed by laser marking registered in advance. A program for causing a computer to execute a process including: an authenticity determining step of determining that the light emitted by the multilayer body is genuine light when the light emitted by the multilayer body after the process is performed matches the light emitted by the multilayer body. It has become. The light emitted from the multilayer body after the pre-registered laser marking processing is performed is a combination of light emitted from the laser marking non-processing part and light emitted from the laser marking processing part, Examples include light emitted by the processing unit and light emitted by the laser marking processing unit having a specific optical density of blackness.
Further, the embodiment will be described with a series of steps based on FIG. 16. When the program is started, a laser marking process of a multilayer body is executed. However, the laser marking process may not be performed in this program, and a multilayer body subjected to a laser marking process may be separately supplied because of the pretreatment of the specimen. In a preferred embodiment of the program, specific light is emitted from, for example, the resin layer (A) side of the multilayer body. The specific light is as defined above, with UV light or infrared light being preferred. Next, light emission from the multilayer body subjected to the laser marking process is detected. The detection at this time may be confirmed visually, and the result may be input and sent to the computer, but is preferably performed by a detection unit connected to the computer. Next, it is determined whether the detected light is the authentic light of the multilayer body. If determined to be authentic (Yes in FIG. 16), the tested multilayer body is determined to be authentic. Otherwise (No in FIG. 16), it is determined to be forgery.
 本発明のプログラムの好ましい実施形態において、前記真贋判定ステップでは、検出された多層体からの光を、真正な発光の情報を多数格納した真正発光データベース(真正発光DB)と照合し、該当する発光の情報がデータベース内に存在した場合に真正であると判定し、ない場合には偽造(不真正)と判定する。このとき、真正発光データベースは本プログラム内にデータ構造として記録格納されていてもよいが、サーバやクラウドサービスプラットフォームなど、本プログラムとは別の場所に別の形で保持しておくことも好ましい。 In a preferred embodiment of the program of the present invention, in the authenticity determining step, the detected light from the multilayer body is compared with a genuine luminescence database (genuine luminescence DB) storing a lot of genuine luminescence information, and If the information exists in the database, it is determined to be authentic, and if not, it is determined to be forgery (incorrect). At this time, the genuine light emission database may be recorded and stored as a data structure in the present program, but it is also preferable that the genuine light emission database be stored in a different form from the present program, such as a server or a cloud service platform.
<用途>
 本発明の多層体は、IDカード、e-パスポート、および非接触型ICカード等のセキュリティカードとして好適に用いられる。ただし、その用途が限定されるものではなく、製品のタグや、流通情報、個人データ管理、防犯システムなど、偽造の防止が望まれる分野で広く活用することができる。
<Application>
The multilayer body of the present invention is suitably used as a security card such as an ID card, an e-passport, and a contactless IC card. However, its use is not limited, and it can be widely used in fields where prevention of forgery is desired, such as product tags, distribution information, personal data management, and security systems.
 以下、実施例を示して本発明についてさらに具体的に説明する。ただし、本発明は以下の実施例に限定されるものではなく、本発明の趣旨を逸脱しない範囲において任意に変更して実施することができる。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following embodiments, and can be arbitrarily modified and implemented without departing from the spirit of the present invention.
<フィルムの製造>
 表1および表2に記載の組成を有する樹脂組成物を用いて、以下のように試験片のシートを製造した。
 バレル直径32mm、スクリューのL/D=31.5の二軸押出機からなるTダイ溶融押出機を用い、吐出量20kg/h、スクリュー回転数200rpmで幅300mmの鏡面シートを成形した。シリンダー・ダイヘッド温度は、280℃にて、樹脂組成物毎に300μm(0.3mm)の厚みを有するフィルムを成形した。
<Production of film>
Using the resin compositions having the compositions shown in Tables 1 and 2, sheets of test pieces were produced as follows.
Using a T-die melt extruder consisting of a twin screw extruder having a barrel diameter of 32 mm and a screw L / D = 31.5, a 300 mm wide mirror surface sheet was formed at a discharge rate of 20 kg / h and a screw rotation speed of 200 rpm. At a cylinder / die head temperature of 280 ° C., a film having a thickness of 300 μm (0.3 mm) was formed for each resin composition.
<<原料>>
ポリカーボネート樹脂:三菱ガス化学社製、E-2000F
紫発光体:製造元:根本特殊化学株式会社、品番:V-300M、光線1(波長365nmの光)に応答して発光する
赤発光体:製造元:根本特殊化学株式会社、品番:D1124、光線1(波長365nmの光)と光線2(波長254nmの光)の両方に応答して発光する
黄緑発光体:製造元:根本特殊化学株式会社、品番:G-300FF、光線1に応答して発光する
青発光体:製造元:根本特殊化学株式会社、品番:D1184T、光線1と光線2の両方に応答して発光する
緑発光体:製造元:根本特殊化学株式会社、品番:D1164、光線1と光線2の両方に応答して発光する
オレンジ染料:製造元:ランクセス株式会社、品番:オレンジ3G
レーザーマーキング剤(LM剤、レーザー光エネルギー吸収体):カーボンブラック、製造元:キャボットジャパン株式会社、品番:MONARCH 800
<< raw material >>
Polycarbonate resin: Mitsubishi Gas Chemical Company, E-2000F
Purple light emitter: Manufacturer: Nemoto Special Chemical Co., Ltd., product number: V-300M, red light emitter that emits light in response to light beam 1 (light having a wavelength of 365 nm): Manufacturer: Nemoto Special Chemical Co., product number: D1124, light beam 1 (A light having a wavelength of 365 nm) and a yellow-green luminous body that emits light in response to both light 2 (light having a wavelength of 254 nm): Manufacturer: Nemoto Special Chemical Co., Ltd., product number: G-300FF, emits light in response to light 1 Blue light emitter: Manufacturer: Nemoto Special Chemical Co., Ltd., product number: D1184T, green light emitter that emits light in response to both light 1 and light 2: Manufacturer: Nemoto Special Chemical Co., product number: D1164, light 1 and light 2 Orange dye that emits light in response to both: manufacturer: LANXESS, part number: orange 3G
Laser marking agent (LM agent, laser light energy absorber): carbon black, manufacturer: Cabot Japan, part number: MONARCH 800
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 上記表において、各成分の単位は質量比である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
In the above table, the unit of each component is a mass ratio.
<評価>
試験片作製
 上記で得られたフィルムを、後述する表3または表4に示す層構成となるように重ね、プレス用補助板で挟んだ。プレス用補助板は、順に、0.5mmのSUS板、1mmのシリコンゴムシート、100μmのSUS板、0.78mmのテフロン(登録商標)シートの4枚からなる。テフロンシートが内側となるように、上記重ねたフィルムを挟んだ。プレス用補助板で挟んだ状態で、重ねたフィルムをプレス機の一対のプレス板に0.5mmのSUS板が外側となるように挟み込み、空圧式加熱プレス(IMC-1839型:井元製作所製)を用いて、180℃、エアー圧力0.2MPaで180秒間プレスして多層体を作製した。
<Evaluation>
Preparation of Test Specimens The films obtained above were stacked so as to have a layer configuration shown in Table 3 or Table 4 described below, and were sandwiched between auxiliary press plates. The auxiliary press plate is composed of four sheets of a 0.5 mm SUS plate, a 1 mm silicon rubber sheet, a 100 μm SUS plate, and a 0.78 mm Teflon (registered trademark) sheet. The laminated film was sandwiched so that the Teflon sheet was on the inside. While sandwiched between the auxiliary press plates, the laminated film is sandwiched between a pair of press plates of a press machine such that the SUS plate of 0.5 mm is on the outside, and a pneumatic heating press (IMC-1839: manufactured by Imoto Seisakusho) Was pressed at 180 ° C. under an air pressure of 0.2 MPa for 180 seconds to produce a multilayer body.
<レーザーマーキング処理>
 レーザーマーキング装置(ロフィンバーゼル製「EasyMark IV-E10」)を用いて、プレスにて得られた多層体に以下の照射条件にてレーザーマーキングを実施した。
 レーザーは、レーザーマーキング剤を含む層に焦点を当てた。
<Laser marking processing>
Using a laser marking device (“EasyMark IV-E10” manufactured by Roffin Basel), the multilayer body obtained by pressing was subjected to laser marking under the following irradiation conditions.
The laser focused on the layer containing the laser marking agent.
レーザーマーキング条件
 Wavelength:1064nm(YAGレーザー)
 Scan Speed:1,000mm/s
 Output Energy:21~30A
 Pulse Frequency:10~100kHz
Laser marking conditions Wavelength: 1064 nm (YAG laser)
Scan Speed: 1,000mm / s -
Output Energy: 21-30A
Pulse Frequency: 10-100kHz
<評価>
 レーザーマーキング処理を施した多層体に光1(光線1、波長365nmの光)、光2(光線2、波長254nmの光)をそれぞれ照射し、レーザーマーキング処理部分と非処理部分の色の差異を暗室中で目視にて観察した。
 結果を表3および4に記載した。実施例および比較例のフィルムの積層順を図1~図13に示している。
<Evaluation>
Light 1 (light 1, light of wavelength 365 nm) and light 2 (light 2, light of wavelength 254 nm) are applied to the laser-treated multilayer body, and the color difference between the laser-marked part and the non-treated part is determined. It was observed visually in a dark room.
The results are shown in Tables 3 and 4. The order of lamination of the films of the examples and comparative examples is shown in FIGS.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 上記結果から明らかなとおり、本発明の多層体を用いることにより、多層体の真贋判定が可能になった。 と お り As is clear from the above results, the use of the multilayer body of the present invention makes it possible to determine the authenticity of the multilayer body.
<実施例6>
 実施例6においては、図6に示す層構成の多層体を製造した。図6において、6は赤発光フィルムであり、3は、レーザーマーキング・フィルムであり、9は、青緑発光フィルムである。レーザーマーキング・フィルム3におけるレーザーマーキング剤の濃度を表5に示す光学濃度となるように調整して、3つの多層体を製造した。他は、実施例1と同様に行った。
 OD値(光学濃度)は、-Log10(透過光/入射光)で計算され、黒さの指標として用いるものである。レーザーマーキング処理部分とレーザーマーキング非処理部の色を比較し、差異を目視にて観察した。レーザーマーキング処理部のOD値が低いほど、レーザーマーキング処理部の赤色は薄く、レーザーマーキング処理部のOD値が高いほど、レーザーマーキング処理部の赤色は濃い赤であった。
<Example 6>
In Example 6, a multilayer body having the layer configuration shown in FIG. 6 was manufactured. In FIG. 6, 6 is a red light-emitting film, 3 is a laser marking film, and 9 is a blue-green light-emitting film. By adjusting the concentration of the laser marking agent in the laser marking film 3 so as to have the optical density shown in Table 5, three multilayer bodies were manufactured. Otherwise, the procedure was the same as in Example 1.
The OD value (optical density) is calculated by -Log 10 (transmitted light / incident light) and used as an index of blackness. The color of the laser-marked part and the color of the laser-unmarked part were compared, and the difference was visually observed. The lower the OD value of the laser marking section, the lighter the red color of the laser marking section, and the higher the OD value of the laser marking section, the darker the red color of the laser marking section.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
1 紫発光フィルム
2 黄緑発光フィルム
3、3’ レーザーマーキング・フィルム
4 ブランクフィルム
5 オレンジ染料フィルム
6 赤発光フィルム
7 青発光フィルム
8 緑発光フィルム
9 青緑発光フィルム
10 多層体
11 黄緑発光体(光線1)と赤発光体(光線1、光線2)を含むフィルム(黄緑・赤フィルム)
21 紫発光体(光線1)と青緑発光体(光線2)を含むフィルム(紫・青緑フィルム)
23 レーザーマーキング剤と黄緑発光体とを含むフィルム(黄緑LMフィルム)
30 レーザー照射部
31 光遮蔽層
51 光源
52 検出部
53 コンピュータ
54 画像表示手段
55 印刷手段
56 媒体記録手段
C1 照射光
C2 発光色
DESCRIPTION OF SYMBOLS 1 Purple light-emitting film 2 Yellow-green light-emitting film 3, 3 'Laser marking film 4 Blank film 5 Orange dye film 6 Red light-emitting film 7 Blue light-emitting film 8 Green light-emitting film 9 Blue-green light-emitting film 10 Multilayer body 11 Yellow-green light-emitting body ( Film containing light 1) and red light emitters (light 1 and light 2) (yellow-green / red film)
21 Film containing violet (light 1) and blue-green (light 2) films (purple / blue-green film)
23 Film containing laser marking agent and yellow-green luminescent material (yellow-green LM film)
Reference Signs List 30 laser irradiation part 31 light shielding layer 51 light source 52 detection part 53 computer 54 image display means 55 printing means 56 medium recording means C1 irradiation light C2 emission color

Claims (22)

  1.  第一の発光体を含有する樹脂層(A)、および
     レーザー光エネルギー吸収体を含有する樹脂層(B)を有し、
     さらに、下記(1)および(2)の少なくとも一方を満たす、多層体;
    (1)前記樹脂層(B)が前記第一の発光体とは異なる第二の発光体を含有する;
    (2)さらに、樹脂層(C)を有し、該樹脂層(C)が、樹脂層(B)の樹脂層(A)とは反対側に位置し、かつ、前記第一の発光体とは異なる第二の発光体を含有する。
    A resin layer (A) containing a first luminous body, and a resin layer (B) containing a laser light energy absorber,
    Further, a multilayer body which satisfies at least one of the following (1) and (2);
    (1) the resin layer (B) contains a second illuminant different from the first illuminant;
    (2) further comprising a resin layer (C), the resin layer (C) being located on the opposite side of the resin layer (B) from the resin layer (A), and Contains a different second illuminant.
  2.  前記(1)を満たす、請求項1に記載の多層体。 多層 The multilayer body according to claim 1, which satisfies (1).
  3.  前記(2)を満たす、請求項1または2に記載の多層体。 多層 The multilayer body according to claim 1 or 2, which satisfies (2).
  4.  前記第二の発光体が、紫外光および赤外光の少なくとも一方で励起される発光体から選択される少なくとも1種である、請求項1~3のいずれか1項に記載の多層体。 The multilayer body according to any one of claims 1 to 3, wherein the second luminous body is at least one selected from luminous bodies excited by at least one of ultraviolet light and infrared light.
  5.  前記第一の発光体と第二の発光体は、同一の光源から供給される光によって励起される発光体から選択される少なくとも1種である、請求項1~4のいずれか1項に記載の多層体。 The method according to any one of claims 1 to 4, wherein the first light emitter and the second light emitter are at least one selected from light emitters excited by light supplied from the same light source. Multilayer body.
  6.  前記第一の発光体が、紫外光および赤外光の少なくとも一方で励起される発光体から選択される少なくとも1種である、請求項1~5のいずれか1項に記載の多層体。 The multilayer body according to any one of claims 1 to 5, wherein the first luminous body is at least one selected from luminous bodies excited by at least one of ultraviolet light and infrared light.
  7.  前記樹脂層(A)がポリカーボネート樹脂およびポリエステル樹脂の少なくとも1種を含む、請求項1~6のいずれか1項に記載の多層体。 The multilayer body according to any one of claims 1 to 6, wherein the resin layer (A) contains at least one of a polycarbonate resin and a polyester resin.
  8.  前記樹脂層(B)および樹脂層(C)の少なくとも一方が、ポリカーボネート樹脂および非晶性ポリエステル樹脂の少なくとも1種を含む、請求項1~7のいずれか1項に記載の多層体。 (8) The multilayer body according to any one of (1) to (7), wherein at least one of the resin layer (B) and the resin layer (C) contains at least one of a polycarbonate resin and an amorphous polyester resin.
  9.  前記第一の発光体が、B、F、Mg、Al、Si、P、S、Cl、Ca、V、Mn、Cu、Zn、Ge、Sr、Y、Ba、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuからなる群から選択される元素を含む、請求項1~8のいずれか1項に記載の多層体。 The first luminous body is composed of B, F, Mg, Al, Si, P, S, Cl, Ca, V, Mn, Cu, Zn, Ge, Sr, Y, Ba, La, Ce, Pr, Nd, The multilayer body according to any one of claims 1 to 8, comprising an element selected from the group consisting of Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu.
  10.  前記第二の発光体が、B、F、Mg、Al、Si、P、S、Cl、Ca、V、Mn、Cu、Zn、Ge、Sr、Y、Ba、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuからなる群から選択される元素を含む、請求項1~9のいずれか1項に記載の多層体。 The second luminous body is composed of B, F, Mg, Al, Si, P, S, Cl, Ca, V, Mn, Cu, Zn, Ge, Sr, Y, Ba, La, Ce, Pr, Nd, The multilayer body according to any one of claims 1 to 9, comprising an element selected from the group consisting of Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.
  11.  真贋の判定に用いられる、請求項1~10のいずれか1項に記載の多層体。 The multilayer body according to any one of claims 1 to 10, which is used for determining authenticity.
  12.  セキュリティカードである、請求項1~11のいずれか1項に記載の多層体。 The multilayer body according to any one of claims 1 to 11, which is a security card.
  13.  前記樹脂層(B)に対し、レーザーマーキング処理が行われている、請求項1~12のいずれか1項に記載の多層体。 The multilayer body according to any one of claims 1 to 12, wherein the resin layer (B) has been subjected to a laser marking process.
  14.  さらに、光遮蔽層を有する、請求項1~13のいずれか1項に記載の多層体。 (14) The multilayer body according to any one of (1) to (13), further comprising a light shielding layer.
  15.  前記光遮蔽層が白色顔料または黒色顔料を含む、請求項14に記載の多層体。 The multilayer body according to claim 14, wherein the light shielding layer contains a white pigment or a black pigment.
  16.  請求項1~15のいずれか1項に記載の多層体の樹脂層(B)にレーザーマーキング処理を行った後に、第一の発光体および第二の発光体をそれぞれ発光させることが可能な特定の光を照射することを含む、多層体の真贋判定方法。 The first light-emitting body and the second light-emitting body each capable of emitting light after performing a laser marking process on the resin layer (B) of the multilayer body according to any one of claims 1 to 15. A method for determining the authenticity of a multilayer body, which comprises irradiating light of the type described above.
  17.  前記特定の光の波長が200~450nmの範囲である、請求項16に記載の真贋判定方法。 17. The authenticity determination method according to claim 16, wherein the wavelength of the specific light is in a range of 200 to 450 nm.
  18.  前記特定の光の波長が800~10,000nmの範囲である、請求項16に記載の真贋判定方法。 17. The authenticity determination method according to claim 16, wherein the wavelength of the specific light is in a range of 800 to 10,000 nm.
  19.  前記多層体がセキュリティカードである、請求項16~18のいずれか1項に記載の真贋判定方法。 19. The authenticity determination method according to claim 16, wherein the multilayer body is a security card.
  20.  請求項1~15のいずれか1項に記載の多層体であって、レーザーマーキング処理が行われた後の多層体に、特定の光を照射して多層体を発光させる光照射部と、
     前記レーザーマーキング処理が行われた後の多層体が発光した光が、予め登録されたレーザーマーキング処理が行われた後の多層体が発光する光と一致する場合に、前記多層体が発光した光が真正な光であると判定する真贋判定部と
    を有する真贋判定システム。
    16. The multilayer body according to any one of claims 1 to 15, wherein the multilayer body after the laser marking processing is performed is irradiated with specific light to emit light from the multilayer body, and
    The light emitted by the multilayer body when the light emitted by the multilayer body after the laser marking processing is performed coincides with the light emitted by the multilayer body after the laser registration processing performed in advance is performed. And an authenticity judgment unit for judging that the light is genuine light.
  21.  前記予め登録されたレーザーマーキング処理が行われた後の多層体が発光する光が、レーザーマーキング非処理部が発光する光と、特定の光学濃度を有するレーザーマーキング処理部が発光する光を含む、請求項20に記載の真贋判定システム。 The light emitted by the multilayer body after the pre-registered laser marking processing is performed, the light emitted by the laser marking non-processing section, and the light emitted by the laser marking processing section having a specific optical density, An authenticity determination system according to claim 20.
  22.  コンピュータにより読み取り可能な形式で記述されたプログラムであって、
     請求項1~15のいずれか1項に記載の多層体が発光した光を検出するステップと、
     前記多層体が発光した光が、予め登録されたレーザーマーキング処理が行われた後の多層体が発光する光と一致する場合に、前記多層体が発光した光が真正な光であると判定する真贋判定ステップとを含む処理をコンピュータに実行させるためのプログラム。
     
    A program written in a computer-readable format,
    Detecting light emitted by the multilayer body according to any one of claims 1 to 15,
    If the light emitted by the multilayer body matches the light emitted by the multilayer body after the laser marking process registered in advance is performed, it is determined that the light emitted by the multilayer body is genuine light. A program for causing a computer to execute a process including an authentication step.
PCT/JP2019/037454 2018-09-28 2019-09-25 Multilayered structure, authenticity determination method, authenticity determination system, and program WO2020067087A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-183424 2018-09-28
JP2018183424 2018-09-28

Publications (1)

Publication Number Publication Date
WO2020067087A1 true WO2020067087A1 (en) 2020-04-02

Family

ID=69952903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037454 WO2020067087A1 (en) 2018-09-28 2019-09-25 Multilayered structure, authenticity determination method, authenticity determination system, and program

Country Status (2)

Country Link
JP (1) JP2020075487A (en)
WO (1) WO2020067087A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6871464B1 (en) 2020-08-18 2021-05-12 三菱瓦斯化学株式会社 Resin composition, resin sheet, multilayer body, and card

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10129107A (en) * 1996-11-01 1998-05-19 Toppan Printing Co Ltd Image indicating body
JP2005320439A (en) * 2004-05-10 2005-11-17 Plagenom Co Ltd Thermoplastic and method for producing the same
JP2011201026A (en) * 2010-03-24 2011-10-13 Toppan Printing Co Ltd Laminated display body
JP2015003430A (en) * 2013-06-20 2015-01-08 大日本印刷株式会社 Authenticity determinable medium
JP2015168728A (en) * 2014-03-05 2015-09-28 日本カラリング株式会社 security film
JP2017517415A (en) * 2014-05-07 2017-06-29 オーファウデー キネグラム アーゲー Multilayer body and method for producing the same
WO2018074481A1 (en) * 2016-10-18 2018-04-26 三菱瓦斯化学株式会社 Thermoplastic resin film laminate and resin sheet for card

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10129107A (en) * 1996-11-01 1998-05-19 Toppan Printing Co Ltd Image indicating body
JP2005320439A (en) * 2004-05-10 2005-11-17 Plagenom Co Ltd Thermoplastic and method for producing the same
JP2011201026A (en) * 2010-03-24 2011-10-13 Toppan Printing Co Ltd Laminated display body
JP2015003430A (en) * 2013-06-20 2015-01-08 大日本印刷株式会社 Authenticity determinable medium
JP2015168728A (en) * 2014-03-05 2015-09-28 日本カラリング株式会社 security film
JP2017517415A (en) * 2014-05-07 2017-06-29 オーファウデー キネグラム アーゲー Multilayer body and method for producing the same
WO2018074481A1 (en) * 2016-10-18 2018-04-26 三菱瓦斯化学株式会社 Thermoplastic resin film laminate and resin sheet for card

Also Published As

Publication number Publication date
JP2020075487A (en) 2020-05-21

Similar Documents

Publication Publication Date Title
US9250183B2 (en) Luminescent materials, articles incorporating luminescent materials, and methods for performing article authentication
US6241289B1 (en) Laser labels and their use
JP7294353B2 (en) Printed matter, booklet, combination of light source and printed matter, and method for judging authenticity of printed matter
SE450779B (en) SECURITY PAPERS WITH AUTHENTIC MARKS, SET FOR TESTING THE AUTHENTICITY OF SECURITY PAPERS AND DEVICE FOR TESTING SECURITIES
JP2008055639A (en) Authenticity-discriminable printed matter and truth authenticity discriminating method
US20160053169A1 (en) Multi-Luminescent Security Element and Value or Security Product Containing Said Security Element
WO2020067087A1 (en) Multilayered structure, authenticity determination method, authenticity determination system, and program
US20070054067A1 (en) Security document with upconverting material
JPH10315605A (en) Fluorescent image forming material and fluorescent image reader
US20120153184A1 (en) Luminescent phosphor-containing materials, and methods for their production and use in authenticating articles
EP1695838B1 (en) Image, recording method, information recognition method, and information recognition system
US11887427B2 (en) Security print media
JP5186687B2 (en) Afterglow luminescent material, method for producing the same and luminescent printed material
JP7457313B2 (en) Thermoplastic resin flat plate-shaped molded body, multi-layer body, authenticity determination method, authenticity determination system, and program
EP3842254A1 (en) Personalizable luminescent security element
KR102313462B1 (en) Security pattern sheet using UV blocking material and method for preparing the same
JP7268472B2 (en) Counterfeit prevention medium and authenticity determination method
EP3489030B1 (en) Method of providing a security element on a security document by laser marking
AU2004245651A1 (en) Value document provided with a safety element and method for producing said value document
JP5966255B2 (en) Authenticity identification medium and identification method of authenticity identification medium
US20230331021A1 (en) Multilayer body and method for producing a multilayer body
JP2006142688A (en) Forgery preventing printed matter
JP2014030921A (en) Identification medium and identification device
JP2022036531A (en) Fluorescent printed matter
JP6642449B2 (en) Luminescent medium and inspection method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19865481

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19865481

Country of ref document: EP

Kind code of ref document: A1