WO2020066860A1 - 試料分離装置および試料分離方法 - Google Patents

試料分離装置および試料分離方法 Download PDF

Info

Publication number
WO2020066860A1
WO2020066860A1 PCT/JP2019/036858 JP2019036858W WO2020066860A1 WO 2020066860 A1 WO2020066860 A1 WO 2020066860A1 JP 2019036858 W JP2019036858 W JP 2019036858W WO 2020066860 A1 WO2020066860 A1 WO 2020066860A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
sample
main body
width
sample separation
Prior art date
Application number
PCT/JP2019/036858
Other languages
English (en)
French (fr)
Inventor
西内 健一
俊裕 坂本
浩之 田中
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2020066860A1 publication Critical patent/WO2020066860A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis

Definitions

  • the present disclosure relates to a sample separation device and a sample separation method, and more particularly, to a sample separation device and a sample separation method for developing a sample in two different directions on a two-dimensional plane.
  • the two-dimensional sample separation analysis in which the sample is developed in two different directions such as orthogonal on a two-dimensional surface, and the development pattern and relative position are analyzed to obtain knowledge on the components in the sample, is to investigate the physical characteristics of the components and Since components can be easily identified, they are widely used for research purposes.
  • a fully automatic two-dimensional sample separation device and the like with improved convenience have been developed (for example, see Patent Document 1).
  • Patent Literature 1 discloses an apparatus for automating an operation required for analysis so that anyone can perform analysis with high reproducibility with respect to a two-dimensional sample separation analysis that has required advanced technology and analysis time. Is disclosed.
  • “smileing” is a phenomenon in which the physical properties of a carrier used for development are deviated due to heat generated by the application of a voltage, and consequently, even if the components are the same, the mobility in the development direction is deviated.
  • the electrophoresis method when the electrophoresis method is applied to the development in the first direction, the bias of the mobility generated in the first direction at the time of development in the second direction is reflected. It is known that this leads to a result that different components in a sample cannot be completely separated.
  • an object of the present disclosure is to provide a sample separation device and a sample separation method having high resolution in two-dimensional sample development involving electrophoresis.
  • a long plate-shaped first carrier that expands a sample in a first direction, and a second direction different from the first direction are used.
  • a sample separation device that two-dimensionally separates the sample by using a second carrier that is developed, a voltage application unit that applies a voltage to the first carrier, and the sample carrier that is transferred from the first carrier to the second carrier.
  • a pressurizing unit for transferring the pressurizing unit presses the first carrier, and a central portion excluding both ends in the width direction of the first carrier is stronger than the both ends. , Pressed against the second carrier.
  • a long plate-shaped first carrier for developing a sample in a first direction, and a second direction different from the first direction are provided.
  • a center portion excluding both ends in the width direction of the first carrier is stronger than the both ends, and is applied to the second carrier. Apply pressure.
  • the sample separation device and the sample separation method according to the present disclosure can increase the separation ability in two-dimensional sample development involving electrophoresis.
  • FIG. 1A is a first cross-sectional view of the sample separation device according to the present embodiment.
  • FIG. 1B is a second sectional view of the sample separation device according to the present embodiment.
  • FIG. 2 is an enlarged cross-sectional view of the main body of the sample separation device according to the present embodiment and a comparative example.
  • FIG. 3A is a first diagram illustrating a sample separation method according to the present embodiment.
  • FIG. 3B is a second diagram illustrating the sample separation method according to the present embodiment.
  • FIG. 4 is a flowchart illustrating a sample separation method according to the present embodiment.
  • FIG. 5A is a first diagram illustrating the relationship between the width of the main body and the development pattern in the second direction in the present embodiment.
  • FIG. 5A is a first diagram illustrating the relationship between the width of the main body and the development pattern in the second direction in the present embodiment.
  • FIG. 5B is a second diagram illustrating the relationship between the width of the main body and the development pattern in the second direction in the present embodiment.
  • FIG. 5C is a third diagram illustrating the relationship between the width of the main body and the development pattern in the second direction in the present embodiment.
  • FIG. 6 is a diagram illustrating the relationship between the main body of the sample separation device according to the present embodiment and the comparative example and the two-dimensional development pattern.
  • FIG. 7 is a cross-sectional view of a sample separation device according to a modification.
  • FIG. 8 is a perspective view of an isolation unit of a sample separation device according to a modification.
  • FIG. 9 is a cross-sectional view of an isolation unit of a sample separation device according to a modification.
  • FIG. 10 is a cross-sectional view of another example 1 of the isolation unit of the sample separation device according to the modification.
  • FIG. 11 is a cross-sectional view of another example 2 of the isolation unit of the sample separation device according to the modification.
  • FIG. 12 is a flowchart illustrating a sample separation method according to another embodiment.
  • each figure is a schematic diagram, and is not necessarily strictly illustrated.
  • substantially the same components are denoted by the same reference numerals, and redundant description may be omitted or simplified.
  • FIGS. 1A and 1B are cross-sectional views of the sample separation device 100 according to the present embodiment.
  • FIG. 1A is a cross-sectional view of the sample separation device 100 taken along the line ii-ii shown in FIG. 1B (that is, the XY plane where the first carrier 50 and the second carrier 60 are in contact).
  • FIG. 1B is a sectional view of the sample separation apparatus 100 taken along the line ii shown in FIG. 1A. 1A and 1B also show the first carrier 50, the second carrier 60, and the developing solvent 26 used for the development.
  • the sample separation apparatus 100 is used for developing a sample, and includes a container section 10, a lid section 20, and a sample supply device 30. Although not shown here, the sample separation device 100 according to the present embodiment further includes a voltage application unit described below, and applies a voltage to the first carrier 50 including the sample to thereby apply the sample to the first carrier 50. To expand.
  • development is a separation method in which one or more components contained in a sample are moved at different mobilities (that is, moving distances) for each component based on the physical characteristics of the component. More specifically, when a sample containing one or more components is provided to a carrier which is a stationary phase, and physical energy for moving the carrier is applied, the sample moves in the carrier. In addition, since the moving speed corresponds to the physical characteristics of each component contained in the sample, the moving speed in the carrier differs for each component. If all movements are stopped at a certain point during the movement of the sample using a method of applying energy that defines the direction in which the sample moves, each component ends its movement with a different mobility in the movement direction. , A spot for each component (that is, a set of the same components) is formed.
  • development The analysis method for separating components contained in a sample by mobility as described above is defined as “development” in this specification.
  • the container unit 10 is a container used when developing a sample.
  • the container unit 10 includes a storage unit 11, a placement unit 22, a recess 21, a supply strip 24, and an extrusion unit 25.
  • the accommodating portion 11 has a bottom portion located in the Z axis minus direction (ie, downward direction), and first to fourth side walls 12 to 15 located in the plus and minus four directions of the X and Y axes. It is a rectangular box-shaped container that opens in the direction (ie, upward direction).
  • the accommodation section 11 is a basic part of the container section 10 and is formed of a hard material such as resin or metal. Further, among the first to fourth side walls 12 to 15, the first side wall 12 located in the negative direction of the X axis shown in FIGS. Holes are provided.
  • the hole substantially matches the shape of the penetrating portion of the push-out portion 25, and when the push-out portion 25 penetrates, the passage of gas and liquid existing inside and outside the storage portion 11 is suppressed as much as possible. Should. That is, it is desirable that the container section 10 be configured to be substantially hermetically sealed together with the lid section 20 described later.
  • the mounting portion 22 is a base made of a hard material such as a resin or a metal for horizontally mounting the second carrier 60 for developing the sample, and the bottom of the housing portion 11 is protruded upward. It is a structure including the formed top plate surface.
  • the mounting section 22 may be formed integrally with the housing section 11 or may be formed by combining individually formed ones.
  • the size of the top plate surface is large enough to place the second carrier 60, and more preferably, it is provided with an area larger than the area of the second carrier 60 for operating the second carrier 60. Is desirable.
  • the mounting portion has first to fourth end surfaces 16 to 19 which are independent of all of the first to fourth side walls 12 to 15 and face the inner surfaces of the first to fourth side walls 12 to 15 respectively.
  • the configuration of the sample separation device 100 including the sample 22 will be described.
  • the mounting section 22 may be in contact with the inner surface of one or more of the first to fourth side walls 12 to 15.
  • the concave portion 21 is a hollow portion surrounded by the first to fourth end surfaces 16 to 19 of the mounting portion 22 and the first to fourth side walls 12 to 15, and the developing solvent used for developing the sample. 26 is the space where it is stored. Further, of the bottom facing the recess 21, a portion located on the first side wall 12 side has a structure protruding upward, and the bottom facing the recess 21 has a two-stage structure 23. You.
  • the supply strip 24 is a plate-like component formed of a hard material such as resin or metal, and guides the developing solvent 26 to the second carrier 60 placed on the placement unit 22 in developing the sample. More specifically, the supply strip 24 is disposed between the two-stage structure 23 and the first end face 16 in the recess 21. Also, as shown by the dashed line in FIG. 1B, the supply strip 24 is normally in an inclined state, and the upper end of the supply strip 24 is in contact with the first side wall 12. When the upper end of the supply strip 24 is pressed in the positive X-axis direction by an extruding portion 25 described later, the movement of the lower end of the supply strip 24 on the X-axis positive side surface of the two-stage structure 23 is restricted.
  • the supply strip 24 is inclined in a state close to the first end face 16, and the first end face 16 of the mounting portion 22 and the X-axis positive direction side plate face of the supply strip 24 are substantially in contact with each other.
  • a slight gap is formed between the first end surface 16 of the mounting portion 22 and the plate surface of the supply strip 24. Since the gap extends from the recess 21 to the second carrier 60 in the Z-axis direction, the developing solvent 26 stored in the recess 21 is guided to the second carrier 60 by capillary action. In the present embodiment, the developing solvent 26 is guided by the gap formed between the X-axis positive side plate surface of the supply strip 24 and the first end surface 16 of the mounting portion 22.
  • the supply strip 24 itself may be formed from a plurality of small tubes. In this case, since the developing solvent 26 is guided to the second carrier 60 by the two paths of the gap formed between the supply strip 24 and the mounting portion 22 and the narrow tube forming the supply strip 24, the developing solvent 26 Can be further increased.
  • the push-out portion 25 is a long member made of resin or metal, and penetrates a hole provided in the first side wall 12.
  • the push-out unit 25 is an operation unit for operating the supply strip 24 installed inside the storage unit 11 from outside the storage unit 11.
  • the push-out section 25 is provided with fixing means such as a screw or a pin lock so as to fix the supply strip 24 in a substantially upright state, and has a configuration capable of keeping the supply of the developing solvent 26 constant in the sample development.
  • the lid 20 is a plate-like structure that can be opened and closed to restrict access to the inside of the container 10 from above.
  • the lid 20 includes a main lid 27 having an opening 28 and a slide 29.
  • the main lid 27 is a plate-like structure that covers the entire container 10 from above, and is made of a hard material such as resin or metal.
  • the main lid portion 27 is sealed at a position in contact with the first to fourth side walls 12 to 15 of the housing portion 11 so that the inside and the outside of the container portion 10 can be separated when the sample is developed inside the container portion 10. May be provided.
  • An opening 28 is provided in the main lid 27, and even when the access to the inside of the container 10 is restricted by the installation of the main lid 27, the inside of the container 10 can be accessed from the opening 28. Becomes
  • the slide portion 29 is a plate-like structure that is slidably attached to the main lid portion 27 and has a larger area than the opening portion 28.
  • the slide portion 29 is a door for switching between the opening and the closing of the opening 28, and can be switched by sliding between a position overlapping with the opening 28 of the lid 20 and a position not overlapping in a plan view from above. It is configured as follows.
  • the opening 28 is covered by the slide portion 29.
  • any shape may be used as long as the opening 28 is covered, and it may be realized by a cap or the like.
  • the sample supply device 30 is an apparatus for supplying a sample to the inside of the container unit 10 when the sample is developed inside the container unit 10.
  • the sample supply device 30 is a structure made of a hard material such as a resin or a metal, and includes a load unit 31 and a main unit 32.
  • the main body 32 may be made of an elastic material such as silicon rubber as needed.
  • the sample supply device 30 is also a pressurizing unit that generates a pressure for transferring a sample contained in the first carrier 50 to the second carrier 60 or transmits an external force.
  • the load unit 31 is a load generating device for pressing the first carrier 50 against the second carrier 60 or a transmission device for transmitting an external force to the main unit 32 as a force having a downward vector.
  • the load portion 31 may be a simple weight, or may be a structure that generates a downward pressure by a spring or the like. Alternatively, the load unit 31 may be a device that generates a constant pressure by electric power such as a hydraulic system.
  • the load section 31 is also an operation section for moving the main body section 32 supporting the first carrier 50 from the outside of the container section 10 to the inside thereof. Is moved to the inside of the container part 10. For example, if the load unit 31 is moved by the mechanical arm for moving the load unit 31 and the pressure is applied to the load unit 31 at the same time, the load unit 31 itself is not configured to generate pressure. You may.
  • the main body portion 32 is an elongated structure in the Y-axis direction that is integrated with the load portion 31 on the upper end face and carries the first carrier 50 on the lower end face 33.
  • the main body 32 presses the first carrier 50 against the second carrier 60 by transmitting the pressure from the load unit 31 to the first carrier 50, and causes the sample contained in the first carrier 50 to pass through the second carrier 60. Transfer to
  • FIG. 2 is an enlarged cross-sectional view of the main body 32 of the sample separation device 100 according to the present embodiment and a comparative example.
  • FIG. 2 is a cross-sectional view on the same plane as that of FIG. 1B (that is, an XZ plane).
  • FIG. 2A shows a cross-sectional view of the main body 32a in the first example of the present embodiment
  • FIG. 2B shows a cross-sectional view of the main body 32b in a comparative example.
  • FIG. 2C is a cross-sectional view of the main body 32c in the second example
  • FIG. 2D is a cross-sectional view of the main body 32d in the third example.
  • FIG. 2A shows the main body 32a in the first example of the present embodiment, the first carrier 50 carried on the lower end surface 33a of the main body 32a, and the pressure transmitted from the load 31.
  • a second carrier 60 with which the first carrier 50 contacts is shown.
  • the load 31 is not shown, and the upper side of the main body 32a and both ends in the X-axis direction of the second carrier 60 are broken for convenience.
  • the main body 32a of the sample separation device 100 has a length (ie, width) in the X-axis direction at the lower end surface 33a of the main body 32a that is longer than the longest width of the main body 32a. It has a short configuration. More specifically, in the cross section of the main body 32a in the XZ plane, the main body 32a has a shape in which the width decreases from the middle of the main body 32a toward the lower side. In addition, since the shortened shape is the same at both ends on the plus side and the minus side in the X-axis direction, a downward end face 33a corresponding to the center in the width direction of the main body 32a is formed.
  • the width of the lower end face 33a of the main body 32a in the first example is shorter than the length (that is, the width) of the first carrier 50 in the X-axis direction. Therefore, the pressure transmitted from the load portion 31 is concentrated by the presence of the main body portion 32a. Therefore, the main body part 32a presses only the central part in the width direction of the first carrier 50 corresponding to the downward end face 33a.
  • FIG. 2B shows a main body 32b in a comparative example, and the other parts are the same as FIG. 2A except for the main body 32b.
  • the width of the main body 32b of the sample separation device in the comparative example is constant at any position of the main body 32b.
  • the width of the main body 32b in the comparative example is longer than the width of the first carrier 50. Therefore, the pressure transmitted from the load portion 31 is dispersed and transmitted to the entire surface of the first carrier 50 due to the presence of the main body portion 32b. Therefore, the main body 32b presses the entire surface of the first carrier 50 including both ends in the width direction.
  • FIG. 2 (c) shows the main body 32c in the second example of the present embodiment, and the other parts are the same as those in FIG. 2 (a).
  • the main body 32c of the sample separation device 100 according to the second example of the present embodiment is the same as the comparative example in that the width is constant at any position of the main body 32c.
  • the width of the main body 32c is shorter than the width of the first carrier 50. Therefore, the pressure transmitted from the load portion 31 is concentrated by the presence of the main body 32c. Therefore, the main body part 32c presses only the central part in the width direction of the first carrier 50 corresponding to the downward end face 33c.
  • FIG. 2 (d) shows the main body 32d in the third example of the present embodiment, and is the same as FIG. 2 (a) except for the main body 32d.
  • the main body 32d of the sample separation device 100 has a curved surface in which the downward end surface 33d is not flat but convex downward.
  • the plane part of the side surface of the semi-cylinder forms a solid body extending in a direction orthogonal to the plane, the height direction of the semi-cylinder is located in the Y-axis direction,
  • the main body 32d is fixed to the lower end face of the load 31 so that the central portion is oriented downward. Therefore, the pressure transmitted from the load 31 is concentrated by the presence of the main body 32d. Therefore, the main body part 32d presses the center of the first carrier 50 in the width direction most strongly, and the pressure of the pressure gradually decreases toward the end in the width direction. Further, the main body portion 32d is configured not to press the end portion in the width direction of the first carrier 50, or to press the first carrier 50 at a pressure weaker than any position in the width direction.
  • the main body part 32b in the comparative example is pressurized at a substantially constant pressure over the entire surface of the first carrier 50.
  • the pressure applied to the first carrier 50 at the central portion in the width direction and at the end is different. For this reason, the sample 40 included in the center part in the width direction is transferred more than the both ends in the width direction.
  • the shape of the semicircular portion forming the main body 32d does not need to be a perfect semicircle, but may be an elliptical semicircle. .
  • the shape of the side end portion orthogonal to the Y-axis direction is not limited to a semicircle, but may be a fan-shaped end formed by an arc. More specifically, the conditions of use such as the elasticity of the first carrier 50 and the second carrier 60, and the extent to which the first carrier 50 is pressed from the center to the end in the width direction and how much pressure is applied. Based on this, the user may appropriately set the curvature to configure the lower end surface 33d of the main body 32d.
  • the configuration of the main body 32 in the present embodiment is not limited to the above three examples, and may be any configuration that strongly presses the central portion in the width direction of the first carrier 50 as compared with the both ends in the width direction.
  • the above-described configuration can be realized by a main body having a shape similar to that of the comparative example, in which both ends in the width direction are formed using a material having high elasticity and a center portion in the width direction is formed using a low elastic material.
  • the above-described configuration may be realized by changing the packing density between the end portion and the center portion in the width direction during molding.
  • FIGS. 3A, 3B, and 4 are diagrams illustrating a sample separation method according to the present embodiment.
  • FIG. 4 is a flowchart illustrating a sample separation method according to the present embodiment.
  • FIG. 3A is a schematic diagram showing sample introduction into the first carrier 50 in the present embodiment.
  • FIG. 3A shows the first carrier 50, the sample 40, and the microvolume meter 71 for introducing the sample 40 into the first carrier 50.
  • the first carrier 50 in the form of a long plate is arranged so that the plate surface is horizontal, and the sample 40 having a specified volume is applied to the upper surface of the first carrier 50 using the microvolume meter 71.
  • the applied sample 40 infiltrates into the first carrier 50 (that is, downward in the thickness direction) by diffusion.
  • the first carrier 50 is placed in the container so that the plate surface is horizontal. It is good also as composition which arranges.
  • the sample 40 in the container infiltrates into the first carrier 50 (that is, upward in the thickness direction) by diffusion.
  • FIG. 3A is a schematic diagram showing sample development in the first direction using the first carrier 50 in the present embodiment.
  • FIG. 3B shows the first carrier 50, the developed samples 41 to 44, the voltage application unit 72, and the electrodes 73 and 74.
  • a voltage is already applied to the first carrier 50 using the voltage applying unit 72, and the sample 40 is developed according to the polarities of the electrodes 73 and 74 at which both ends in the longitudinal direction of the first carrier 50 are in contact.
  • the sample 40 is separated for each component, and distributed as developed samples 41 to 44 at four locations in the longitudinal direction of the first carrier 50 in this example.
  • Each of the developed samples 41 to 44 has a curved shape at both ends in the short direction (that is, the width direction) of the first carrier 50, which is different from the mobility at the center in the width direction.
  • each of the samples 41 to 44 developed on the first carrier 50 shown in FIG. 3B (b) has a curved shape due to the smile.
  • Specific examples of the development in the first direction performed on the first carrier 50 include isoelectric focusing of proteins, SDS-PAGE, and Native-PAGE, and agarose gel electrophoresis of nucleic acids. It is not limited to. Any form may be used as long as the voltage applied to the first carrier 50 is used as an energy source for movement and develops in the first direction according to the properties of each component included in the sample 40.
  • FIG. 3A is a schematic diagram showing the movement of the first carrier 50 onto the second carrier 60 in the present embodiment.
  • FIG. 3C is a plan view of the plate-like second carrier 60 installed in the sample separation device 100 as viewed from above the sample separation device 100.
  • FIG. 3C shows the first carrier 50, the developed samples 41 to 44, and the second carrier 60. Note that, for convenience, components of the sample separation device 100 other than the first carrier 50 and the second carrier 60 are not shown.
  • the first carrier 50 is carried on the lower end surface 33 of the main body 32 of the sample supply device 30 (S102 in FIG. 4).
  • the slide portion 29 is operated to open the opening 28, and is moved to a position on the second carrier 60 where the first carrier 50 is pressed.
  • the first carrier 50 is not in contact with the second carrier 60, and is kept in a floating state with respect to the second carrier 60.
  • the pressurized first carrier 50 is pressed against the second carrier 60.
  • the main body 32 of the sample separation device 100 has a configuration in which the center in the width direction is more strongly pressed against the second carrier 60 than the both ends in the width direction of the first carrier 50. Therefore, a part of the developed samples 41 to 44 included in the central portion in the width direction of the first carrier 50 is mainly transferred to the second carrier 60.
  • the sample supply device 30 is arranged below the lid 20, but is arranged above the lid 20. You may. In this case, during the permeation of the developing solvent 26, the lid 20 is kept in a closed state (that is, the slide portion is closed), and the slide portion is opened only for a minimum time required for pressurization by the sample supply device 30. Configuration can be realized.
  • the pressurization of the first carrier 50 by the sample supply device 30 is released, and the sample supply device 30 is taken out of the container 10. That is, the sample supply device 30 is moved to a spatial position above the lid 20. Thereafter, the slide portion 29 is operated to close the opening portion 28, the container portion 10 is kept sealed, and the development is continued until the boundary 61 reaches a predetermined position (S106 in FIG. 4). When the boundary 61 reaches a predetermined position (Yes in S107 of FIG. 4), the development of the sample 40 is stopped, and the spot position where each component of the sample 40 is developed is analyzed.
  • FIG. 3B is a schematic diagram showing the second carrier 60 after the development in the present embodiment has been completed.
  • FIG. 3B shows the second carrier 60 and the samples 401 to 409 developed in the second direction.
  • the first carrier 50 that has been removed but has been pressurized is illustrated for convenience.
  • the samples 41 to 44 developed on the first carrier 50 are transferred to the second carrier 60, they are further developed in the second direction using the principle of chromatography.
  • the sample 41 developed on the first carrier 50 shows a single spot when developed in the first direction, and appears to be a single component, but actually, under the electrophoresis conditions performed on the first carrier 50, Consists of three components exhibiting similar properties. Therefore, when the sample was developed in the second direction, the sample was separated into three spots as samples 401 to 403 developed on a dashed-dotted arrow extending from the developed sample 41.
  • the developed samples 42-44 which appear to be single component in appearance, are one-component developed sample 404, two-component developed sample 405, 406, and three-component developed sample, respectively. It is shown that the sample was composed of samples 407 to 409.
  • the spot after the two-dimensional development is substantially a perfect circle in a plan view.
  • the sample 410- Reference numeral 418 denotes an elliptical shape that extends in the minus Y-axis direction as compared with the present embodiment.
  • the smiles occur. Therefore, when the first carrier 50 is viewed from the X-axis direction, the samples 41 to 44 developed on the first carrier 50 have a shape extending in the Y-axis minus direction. I have.
  • the developed samples 41 to 44 on the first carrier 50 do not extend in the negative Y-axis direction, and only the central portion in the width direction is removed. Transfer to the second carrier 60.
  • the extension of the developed samples 41 to 44 on the first carrier 50 in the minus direction of the Y-axis is not inherited, and is substantially a circle in plan view, or according to the development conditions in the second direction.
  • a long elliptical component spot is formed in the X-axis direction.
  • the two-dimensional sample development with high resolution is realized by using the sample separation device 100 of the present embodiment.
  • the operation of the sample separation device 100 in the present embodiment described above may be realized by a manual operation performed sequentially, and a power device suitable for each operation is provided. It may be realized by controlled automatic control.
  • FIGS. 5A to 5C are diagrams illustrating the relationship between the width of the main body 32 and the development pattern in the second direction in the present embodiment.
  • ((A) of FIG. 5A is a cross-sectional view for explaining the shape of the main body 32b used for transfer from the first carrier 50a to the second carrier 60.
  • the main body part 32b is shown by breaking off the upper part in the Z-axis direction.
  • both ends of the second carrier 60 in the X-axis direction are cut away.
  • FIG. 5A shows a schematic view of the first carrier 50a and the second carrier 60, which are actually developed by applying the electrophoresis method under a certain condition and are superimposed.
  • the first carrier 50a is broken midway at both ends in the Y-axis direction and is shown connected to the schematic diagram of the first carrier 50, but these are combined and treated as the first carrier 50a.
  • the width of the first carrier 50a is defined as Wsa
  • the width of the lower end surface 33b of the main body 32b is defined as Wp1. Note that the same applies to Wsa in FIGS. 5B and 5C.
  • FIG. 5B shows the ranges in which the developed samples 45a to 47a transcribed from the first carrier 50a to the second carrier 60 are expected to pass during the development in the second direction, respectively. It is shown as predicted passage ranges 451a, 461a, and 471a.
  • the mobility of each component in the second direction (that is, the length of the predicted passage ranges 451a, 461a, and 471a in the X-axis direction) is shown as an example.
  • FIG. 5A shows a condition in which Wp1 is equal to or longer than Wsa, that is, a condition in which the entire width of the first carrier 50a in the width direction is pressed against the second carrier 60. That is, a case is shown in which a configuration like the main body 32b of the comparative example shown in FIG. 2B is applied.
  • the samples 45a to 47a developed on the first carrier 50a are all transferred to the second carrier. Therefore, the effect of the smile generated on the first carrier 50a is passed on to the second carrier 60 as it is. Therefore, the developed samples 45a to 47a pass through the predicted passage ranges 451a, 461a, and 471a and are developed in the second direction.
  • the predicted passing range 451a and the predicted passing range 461a partially overlap. Further, the predicted passing range 461a and the predicted passing range 471a also partially overlap. Note that there is no overlap between the predicted passage range 451a and the predicted passage range 471a, and the samples 45a and 47a developed in the first direction are completely separated.
  • samples 45a and 46a developed in the first direction include components showing the same degree of mobility in the second direction
  • these two components can be separated by the configuration like the main body 32b.
  • these two components are also separated in the configuration like the main body 32b. Unable to form overlapping spots.
  • FIG. 5A is a cross-sectional view illustrating the shape of the main body 32 used for transfer from the first carrier 50a to the second carrier 60.
  • FIG. 5B (b) shows a schematic view of the first carrier 50a and the second carrier 60, which are developed by actually applying the electrophoresis method under a certain condition, in an overlapping manner.
  • the width of the lower end surface 33 of the main body 32 (that is, the pressing width) is defined as Wp2.
  • FIG. 5B shows only the center of the first carrier 50a in the width direction. For this reason, FIG. 5B (b) shows only the position corresponding to the downward end face 33 of the first carrier 50a, and the others (that is, both ends in the width direction of the first carrier 50a) show only the general shape. I have.
  • FIG. 5B (b) shows the ranges in which the developed samples 45b to 47b transferred from the first carrier 50a to the second carrier 60 are expected to pass during the development in the second direction, respectively. It is shown as predicted passage ranges 451b, 461b, and 471b.
  • the mobility of each component in the second direction (that is, the length of the predicted passing ranges 451b, 461b, and 471b in the X-axis direction) is shown as an example.
  • FIG. 5B shows a condition in which Wp2 is 68% of Wsa, that is, a condition in which a portion located at the 68% center in the width direction of the first carrier 50a is pressed against the second carrier 60.
  • Wp2 is 68% of Wsa
  • the developed samples 45a to 47a included in the first carrier 50a are located at 68% of the widthwise center of the first carrier 50a with respect to the second carrier 60. Is transferred only partially. For this reason, the effect of the smiling generated on the first carrier 50 a is partially transferred to the second carrier 60. Therefore, the developed samples 45b to 47b pass through the predicted passage ranges 451b to 471b and are developed in the second direction.
  • the predicted passage ranges 451b and 461b have no overlapping portions, and the samples 45b and 46b developed in the first direction are completely separated.
  • the predicted passing range 461a and the predicted passing range 471a partially overlap. Note that there is no overlap between the predicted passing range 451b and the predicted passing range 471b, and the samples 45b and 47b developed in the first direction are also completely separated.
  • FIG. 5A is a cross-sectional view illustrating the shape of the main body 32 used when transferring from the first carrier 50a to the second carrier 60.
  • FIG. 5C (b) shows a schematic view of the first carrier 50a and the second carrier 60, which are actually developed by applying the electrophoresis method under a certain condition, in an overlapping manner.
  • the width (that is, the pressing width) of the lower end surface 33 of the main body 32 is defined as Wp3.
  • FIG. 5C only the central portion in the width direction of the first carrier 50a is configured to be pressurized. Therefore, FIG. 5B shows only the position of the first carrier 50a corresponding to the downward end surface 33, and the other (that is, both ends in the width direction of the first carrier 50a) shows only a schematic shape. I have.
  • FIG. 5 (b) shows the ranges where the developed samples 45c to 47c transcribed from the first carrier 50a to the second carrier 60 are expected to pass at the time of development in the second direction, respectively. It is shown as predicted passage ranges 451c, 461c, and 471c.
  • the mobility of each component in the second direction (that is, the length of the predicted passage ranges 451c, 461c, and 471c in the X-axis direction) is shown as an example.
  • FIG. 5C shows a condition in which Wp3 is 34% of Wsa, that is, a condition in which the portion of the first carrier 50a located at the 34% center in the width direction is pressed against the second carrier 60. That is, the case where the width of the lower end surface 33 of the main body 32 is 34% of the width of the first carrier 50a is applied to the main body 32 in the present embodiment.
  • the developed samples 45a to 47a which are included in the first carrier 50a, are located at 34% of the widthwise center of the first carrier 50a with respect to the second carrier 60. Is transferred only partially. Therefore, most of the effect of the smiling generated on the first carrier 50a is not transferred to the second carrier 60. Therefore, the developed samples 45c to 47c pass through the predicted passage ranges 451c to 471c and are developed in the second direction.
  • the predicted passage range 451c and the predicted passage range 461c have no overlapping portions, and the samples 45c and 46c developed in the first direction are completely separated. There is no overlap between the predicted passage range 451c and the predicted passage range 461c, and the samples 45c and 46c developed in the first direction are completely separated. Further, the predicted passage range 451c and the predicted passage range 471c do not overlap, and the samples 45c and 47c developed in the first direction are completely separated.
  • the width of the lower end surface 33 of the main body 32 (that is, the pressing width) in the present embodiment is defined as Wp
  • the width of the first carrier 50 is defined as Ws.
  • Wp the width of the lower end surface 33 of the main body 32
  • Ws the width of the first carrier 50
  • FIG. 6 is a diagram illustrating the relationship between the main body 32 and the two-dimensional development pattern of the sample separation device according to the embodiment and the comparative example.
  • FIG. 6 is a cross-sectional view showing the shape of the main body 32 used, the resulting second carriers 60a, 60b, and 60c after two-dimensional development, and the pattern of the developed sample (that is, the developed sample). Pattern) are shown side by side with the corresponding ones.
  • FIG. 6 ((A1) of FIG. 6 is a cross-sectional view illustrating a schematic shape of the main body 32a used.
  • FIG. 6 (a1) illustrates the main body 32a, the downward end surface 33a, the first carrier 50, and the second carrier 60.
  • the second carrier 60 is omitted by cutting both ends in the X-axis direction for convenience. doing.
  • the omitted portion of the second carrier 60 is the same in (b1) of FIG. 6 and (c1) of FIG.
  • FIG. 6A2 is a development pattern when the sample separation device 100 according to the present embodiment to which the main body 32a is applied is used.
  • (A2) of FIG. 6 shows the second carrier 60a, and among the plurality of developed samples, the developed sample 48a is surrounded by a broken-line circle and shown as an example.
  • FIG. 6 is a cross-sectional view showing the outline of the main body 32b used.
  • FIG. 6 (b1) illustrates the main body 32b, the downward end surface 33b, the first carrier 50, and the second carrier 60.
  • FIG. 6B2 is a development pattern when the sample separation device of the comparative example to which the main body 32b is applied is used.
  • (B2) of FIG. 6 shows the second carrier 60b, and among the plurality of developed samples, the developed sample 48b is surrounded and shown by a broken-line circle as an example.
  • FIG. 6 is a cross-sectional view showing the outline of the main body 32d used.
  • FIG. 6C1 illustrates the main body 32d, the downward end face 33d, the first carrier 50, and the second carrier 60.
  • FIG. 6C2 is a development pattern when the sample separation device 100 according to the third example of the present embodiment to which the main body 32d is applied is used.
  • (C2) of FIG. 6 shows the second carrier 60c, and among the plurality of developed samples, the developed sample 48c is surrounded and shown by a broken-line circle as an example.
  • the sample separation device 100 of the present embodiment can realize a two-dimensional sample separation having a high resolution in any of the embodiments as compared with the sample separation device of the comparative example.
  • the sample 40 is developed in the long plate-shaped first carrier 50 that expands in the first direction, and in the second direction that is different from the first direction.
  • a sample separation apparatus 100 for two-dimensionally separating a sample 40 by a second carrier 60 comprising a voltage application unit 72 for applying a voltage to the first carrier 50 and a sample 40 from the first carrier 50 to the second carrier 60.
  • a sample supply device 30 (pressing unit) for transferring the first carrier 50.
  • the sample supply device 30 presses the first carrier 50, and removes the center of the first carrier 50 except for both ends in the width direction. It presses against the second carrier 60 more strongly than the part.
  • the sample separation device 100 according to the present embodiment can transfer more of the sample 40 included in the first carrier 50, the sample included in the center portion than the end portion in the width direction.
  • the sample supply device 30 (pressing unit) has a downward end surface 33 (end surface) that presses the first carrier 50 against the second carrier 60, and the downward end surface 33 has a width in the width direction of the first carrier 50.
  • the configuration may be shorter than the width of the carrier 50. Thereby, the sample contained in the center part in the width direction can be efficiently transferred to the second carrier 60 without pressing the end part in the width direction of the first carrier 50.
  • the sample supply device 30 (pressurizing unit) includes a main body 32 having a downward end face 33 (end face) at the tip, and the length of the main body 32 in the width direction becomes shorter as approaching the lower end face 33. It may be. Thereby, while maintaining the strength by maintaining the width of the main body portion 32 constant, only the central portion in the width direction of the first carrier 50 is formed by the lower end surface 33 having a width smaller than the width Ws of the first carrier 50. Can be pressurized.
  • the length in the width direction of the lower end surface 33 (end surface) may be less than 0.7 times the width of the first carrier 50. Accordingly, a portion of the first carrier 50 whose central portion in the width direction is less than 70% of the whole can be pressurized.
  • sample supply device 30 may have a configuration in which the first carrier 50 is pressed against the second carrier 60 and has a downward end surface 33d (curved surface) protruding toward the first carrier 50. Good.
  • pressure can be applied from the center to the end in the width direction of the first carrier 50, with the characteristic that the pressure gradually decreases.
  • the first carrier 50 in the form of a long plate that expands the sample 40 in the first direction, and the second carrier 60 that expands in the second direction different from the first direction.
  • a sample separation method for separating the sample 40 two-dimensionally the step of expanding the sample 40 on the first carrier 50 by applying a voltage, and pressing the first carrier 50 on which the sample 40 is expanded against the second carrier 60. And pressurizing the second carrier 60 at the center of the first carrier 50 except for both ends in the width direction, as compared with the both ends.
  • the sample separation method according to the present embodiment can transfer more of the sample 40 included in the first carrier 50, which is included in the center portion than in the end portion in the width direction.
  • the first carrier 50 on which the sample 40 has been developed is pressed against the second carrier 60 using the sample supply device 30 (pressing unit), and the sample supply device 30 pushes the first carrier 50 to the second carrier 60.
  • the second end 60 has a downward end surface 33 (end surface) pressed against the carrier 60, and the length in the width direction may be shorter than the width of the first carrier 50. Thereby, the sample contained in the center part in the width direction can be efficiently transferred to the second carrier 60 without pressing the end part in the width direction of the first carrier 50.
  • FIG. 7 is a cross-sectional view of a sample separation device 100a according to a modification.
  • FIG. 7A is a cross-sectional view of the entire sample separation device 100a, and shows a cross-sectional view on the same plane as FIG. 1B. In FIG. 7A, the X-axis positive direction side is broken for convenience.
  • FIG. 7B is an enlarged cross-sectional view of the isolation unit 80 according to the first modification.
  • FIG. 7C is an enlarged cross-sectional view of the isolation portion 80a according to the second modification.
  • Modification Example 1 is different from the above-described embodiment in that it has an isolating portion 80 provided between both ends in the width direction of the first carrier 50 and the second carrier 60. . Therefore, in the following description, the separating unit 80 which is a difference between the two embodiments will be described. In addition, the modified example 1 and the above-described embodiment have the same configuration with respect to other portions, and thus the description is omitted.
  • the sample separation device 100a includes an isolation unit 80 in addition to the components of the sample separation device 100 according to the above-described embodiment.
  • the separating portion 80 is a structure formed of a hard member such as a resin or a metal, and is a three-dimensional structure in which, for example, a rectangular parallelepiped elongated in the Y-axis direction is provided with a hole penetrating in the Z-axis direction. .
  • the isolation unit 80 will be described in more detail with reference to FIG. FIG. 7B shows the main body 32, the downward end face 33, the isolation part 80, the first carrier 50, and the second carrier 60.
  • both ends in the X-axis direction of the second carrier 60 are broken for convenience.
  • the separating portion 80 is a structure for preventing contact between the both ends of the first carrier 50 in the width direction and the second carrier 60, and includes the supporting portions 81 and 82, the supporting walls 83 and 84, and the two separating portions. , And 86.
  • the separating portion 80 is a single unit in which the support portions 81 and 82 and the support walls 83 and 84 are integrated by an integrated wall at both ends in the Y-axis direction. It is one member.
  • the integrated wall is formed so as to separate the separator 85 from the separator 86.
  • the support portions 81 and 82 are each a rectangular parallelepiped member.
  • the support portion 81 and the support portion 82 are separated by a width at a predetermined position in the Z-axis direction of the main body portion 32 and are integrated by the above-described integrated wall.
  • the support portions 81 and 82 are detachably fixed to the main body portion 32, and fix the separating portion 80 to the main body portion 32 in a predetermined positional relationship. That is, the support portions 81 and 82 have, for example, a convex portion on a surface facing the main body portion 32 and engage with a concave portion provided at a predetermined position of the main body portion 32 so as to be fixed in a predetermined positional relationship with the main body portion 32. Is done.
  • the support walls 83 and 84 are walls configured by extending the lower end surfaces of the support portions 81 and 82 further downward, and include the support portions 81 and 82, the separators 85 and 86, and Are fixed in a predetermined positional relationship. Note that the support walls 83 and 84 may be configured only in a part of the Y-axis direction as long as the support portions 81 and 82 and the separators 85 and 86 can be fixed in a predetermined positional relationship.
  • the separators 85 and 86 are plate-like structures horizontal to the XY plane.
  • the separators 85 and 86 have upper surfaces fixed to support walls 83 and 84, respectively, and are integrated with the support portions 81 and 82 via the support walls 83 and 84, respectively.
  • the end surface of the separator 85 in the X-axis minus direction and the end surface of the separator 86 in the X-axis plus direction form a Z-axis direction in a cross-sectional view so as to form a surface parallel to the surface of the main body 32 facing each other. And a predetermined angle.
  • the separators 85 and 86 are formed with a distance corresponding to the thickness of the main body 32 and the first carrier 50.
  • the main body 32 facing the separators 85 and 86 When the surface of the main body 32 facing the separators 85 and 86 is not a flat surface, the main body 32 facing the main body 32 at any position of the end surface facing the main body 32 of the separators 85 and 86 is not required.
  • An end surface having the same distance as the surface may be formed.
  • Gp is shorter than Ws. , Wp.
  • the positional relationship between the second carrier 60, the main body 32, and the isolation unit 80 is determined by setting the lengths of Ws, Gp, and Wp, and the transfer width required by the user. For example, when Gp is less than 0.7 times Ws, contact with the second carrier 60 is prevented at 15% of the first carrier 50 at both ends in the width direction and is not transferred.
  • the width of the transferred image also changes.
  • transfer is not performed at least at both ends in the width direction of the first carrier 50 where contact with the second carrier 60 is prevented by the separating portion 80. Therefore, by setting Gp, it is possible to define at least both widthwise ends of the first carrier 50 that do not contact.
  • the sample separation device 100a does not have to have a configuration in which the separating unit 80 is fixed to the main body 32.
  • This configuration will be described as a second modification with reference to FIG.
  • FIG. 7C shows the main body 32, the downward end face 33, the isolation part 80 a, the first carrier 50, and the second carrier 60.
  • both ends in the X-axis direction of the second carrier 60 are broken for convenience.
  • the separating portion 80a is a plate-like member formed of a hard material such as a resin or a metal and formed in the Y-axis direction and formed of the separating members 85a and 86a.
  • the separating portion 80a is a single member in which the separating body 85a and the separating body 86a are integrated at both ends in the Y-axis direction by an integrated wall. .
  • the isolation part 80a is not fixed to the main body part 32, but is mounted on the upper surface of the second carrier 60.
  • a configuration may be employed in which the longitudinal end of the isolation portion 80a is fixed on the second side wall 13 and the fourth side wall 15 so as to be located on the upper surface of the second carrier 60.
  • the detailed configuration of the separators 85a and 86a is the same as that of the separators 85 and 86 in Modification Example 1 described above, and thus the description is omitted.
  • FIG. 8 is a perspective view of an isolation unit 80 of a sample separation device 100a according to a modification.
  • FIG. 9 is a cross-sectional view of the isolation unit 80 of the sample separation device 100a according to the modification. 8 and 9 both show the main body 32, the first carrier 50 carried by the main body 32, and FIG. 8 further shows the second carrier 60. In addition, both ends in the X-axis direction of the second carrier 60 are broken for convenience.
  • the sample separation device 100a according to the modified example is different from the sample separation device 100 according to the above-described embodiment in that the sample separation device 100a includes the isolation unit 80. Therefore, the following description will focus on the operation of the isolating unit 80 when the first carrier 50 is pressed against the second carrier 60 by the main body unit 32, omitting the overlapping portions.
  • the first carrier 50 is carried on the lower end surface 33 of the main body 32.
  • the separating portion 80 is attached from the lower end surface 33 side of the main body portion 32 that supports the first carrier 50. More specifically, as shown in FIG. 8 (a), the main body is opposed to the support portions 81 and 82 of the isolation portion 80 and the upward opening formed by the integral walls at both ends in the Y-axis direction. The part 32 is inserted from the lower end side. After the main body 32 has been inserted for a predetermined length, the lower end of the main body 32 comes into contact with the separators 85 and 86 of the separator 80 so that it cannot be further inserted.
  • the first carrier 50 is carried on the lower end surface 33 of the main body 32, the lower end of the main body 32 is contacted with the lower end of the main body 32 and the separators 85 and 86.
  • the first carrier 50 is interposed between the end and the separators 85 and 86. That is, both ends in the width direction of the first carrier 50 are sandwiched by the lower end of the main body 32 and the separators 85 and 86.
  • FIG. 9 shows a state in which the main body 32 carrying the first carrier 50, which has passed through the opening in the upward direction of the isolating portion 80, is further inserted downwardly of the isolating portion 80.
  • the first carrier 50 is kept in a plate shape in the horizontal direction (on the XY plane) in the internal space of the isolation unit 80.
  • both ends in the width direction of the first carrier 50 are bent upward in contact with the separators 85 and 86 with the insertion of the main body 32.
  • the separators 85 and 86 is prevented by the separators 85 and 86 via the first carrier 50 as shown in FIG. 9C.
  • the insertion of the main body 32 is stopped at the maximum insertion length (the insertion position where the main body 32 cannot be further advanced).
  • any one of the support portions 81 and 82 of the isolation portion 80 or the integrated wall, or the surface of the support portions 81 and 82 and the surface facing both the main body 32 of the integrated wall may have an uneven shape.
  • the separating portion 80 is fixed to the main body 32 at the position of the maximum insertion length. Therefore, the first carrier 50 is fixed to the main body 32 by the separating portions 80 in a state where both ends in the width direction are bent upward, and as a result, as shown in FIG. The central portion is located at the lowermost surface. In this state, the main body 32 is moved downward as shown in FIG. 8C, and only the center of the first carrier 50 in the width direction is pressed against the second carrier 60.
  • the configuration in which the main body 32 supports the first carrier 50 has been described.
  • the separators 85 and 86 of the separator 80 are provided on the upper surfaces of the separators 85 and 86.
  • the configuration of FIG. 8B may be realized by placing the first carrier 50 so as to bridge the separator 86 and thereafter inserting the main body 32.
  • FIG. 10 is a cross-sectional view of an isolation unit 80b in another example 1 of the sample separation device 100a in the modification.
  • FIG. 11 is a cross-sectional view of an isolation unit 80c in another example 2 of the sample separation device 100a according to the modification.
  • FIGS. 10 and 11 illustrate the main body portions 32c and 32b and the isolation portions 80b and 80c according to the first and second alternative examples.
  • the main bodies 32c and 32b in the figure carry the first carrier 50.
  • the main body 32 in the modification may have a shape like the main body 32c shown in the second example of the embodiment.
  • the main body portion 32c is inserted into the isolation portion 80b while holding the first carrier 50.
  • the first carrier 50 is cut by the upper surfaces of the supporting portions 81b and 82b of the isolating portion 80b and the lower end surface 33c of the main body 32c. Therefore, it is desirable that the separating portion 80b has a configuration in which an integrated wall is formed only at one end in the Y-axis direction. With such a configuration, the main body 32c is inserted along the Y-axis direction from the other end of the isolation portion 80b that is released in the Y-axis direction, thereby realizing the configuration shown in FIG.
  • the first carrier 50 may be formed in the isolation part 80b.
  • the lower end face 33c of the main body 32 and the lower end faces of the support portions 81b and 82b have a first fixing point such as an uneven structure at the insertion position of the main body part 32c where the lower end faces are flush.
  • the first carrier 50 is formed on one surface. After the development in the first direction is performed on the flush surface, the main body 32c is further inserted downward to realize a configuration in which the first carrier 50 is carried by the lower end surface 33c of the main body 32c. .
  • both ends in the width direction of the first carrier 50 are bent upward as shown in FIG. 10B.
  • the separators 85b and 86b do not contact the main body 32c, the first carrier 50 has a predetermined width-wise central portion protruding below the isolation portion 80b. In the insertion length, it is desirable to provide a second fixing portion with an uneven structure or the like so that the insertion of the main body portion 32c is stopped.
  • the first carrier 50 has a configuration in which the center in the width direction is located at the lowermost surface. In this state, the main body 32c is moved downward, and only the widthwise central portion of the first carrier 50 is pressed against the second carrier 60.
  • the main body 32 when the main body 32 is made of an elastic body in the modification, the main body 32 may have a shape like the main body 32b shown in the comparative example.
  • the isolation part 80c is attached to the main body part 32b in a state where the first carrier 50 is carried. More specifically, the main body 32b is inserted from the lower end side into the upward opening formed by the support portions 81c and 82c of the isolation portion 80c and the integrated wall at both ends in the Y-axis direction.
  • An embodiment as shown in FIG. 11A is realized.
  • both ends in the width direction of the first carrier 50 become the lower end face 33b of the main body 32b as shown in FIG. It is sandwiched between the separators 85c and 86c. At this time, the main body 32b is deformed by the elasticity of the main body 32b. More specifically, when the main body 32b is moved downward with respect to the isolating portion 80c, both ends in the width direction of the main body 32b are moved by the isolator 85c and 86c via the first carrier 50. Limited.
  • both ends in the width direction of the main body 32b are crushed in the vertical direction.
  • the central portion in the width direction of the main body 32b continues to move so as to enter between the separators 85c and 86c. In this way, the center of the main body 32b is pushed out by the deformation of both ends in the width direction.
  • the first carrier 50 is similarly deformed along the deformation of the lower end surface 33b of the main body 32b, and is pushed out of the separating portion 80c together with the main body 32b.
  • the first carrier 50 extruded as described above is disposed below the separators 85c and 86c at the center in the width direction. Therefore, also in the second example, the widthwise central portion of the first carrier 50 is located at the lowermost surface. In this state, the main body 32b is moved downward, and only the center of the first carrier 50 in the width direction is pressed against the second carrier 60.
  • the operation of the sample separation device 100a in the above-described modified example may be realized by a manual operation that is sequentially performed, and an appropriate power device is provided for each operation, and the power device is controlled by an appropriate program. May be realized by automatic control.
  • the sample separation device 100a may further include the separation unit 80 provided between both ends and the second carrier 60. Thereby, it is possible to prevent the end of the first carrier 50 in the width direction of the first carrier 50 which is not required to be transferred to the second carrier 60 from being in contact with the second carrier 60, and the unnecessary transfer to the second carrier 60 is prevented. It is possible to prevent the mixture of the sample 40.
  • the separating portion 80 has separators 85 and 86 (two separated portions) provided apart from each other by a gap corresponding to the central portion of the first carrier 50, and the length of the gap in the width direction is equal to the second length. It may be less than 0.7 times the width of one carrier 50. This can prevent a portion of the first carrier 50 whose end in the width direction is 30% or more of the whole from coming into contact with the second carrier 60 and prevent the unnecessary sample 40 from being mixed into the second carrier 60. Can be.
  • the sample separation device 100a further includes a separation unit 80 provided between both ends and the second carrier 60, and the separation unit 80 is provided separated by a gap corresponding to the center of the first carrier 50.
  • Isolators 85 and 86 may be provided, and the length in the width direction of the lower end face 33 (end face) may be shorter than the length of the gap in the width direction.
  • only the central portion in the width direction of the first carrier 50 can be pressed against the second carrier 60 by using the main body 32 from the gap between the separators 85 and 86.
  • the length of the gap in the width direction may be less than 0.7 times the width of the first carrier 50. This can prevent a portion of the first carrier 50 whose end in the width direction is 30% or more of the whole from coming into contact with the second carrier 60 and prevent the unnecessary sample 40 from being mixed into the second carrier 60. Can be.
  • the separating section 80 is provided between both ends and the second carrier 60, and the separating section 80 is used to press the second carrier 60 at both ends in the pressing step. Contact may be prevented. Thereby, it is possible to prevent the end of the first carrier 50 in the width direction of the first carrier 50 which is not required to be transferred to the second carrier 60 from being in contact with the second carrier 60, and the unnecessary transfer to the second carrier 60 is prevented. It is possible to prevent the mixture of the sample 40.
  • the configuration in which the first carrier 50 is pressed toward the upper surface of the second carrier 60 has been described. Therefore, the sample 40 contained in the first carrier 50 is transferred to the upper surface of the second carrier 60.
  • the positional relationship in the transfer between the first carrier 50 and the second carrier 60 is not limited to such a form.
  • the configuration may be such that the first carrier 50 is pressed toward the side end of the second carrier 60 to which the developing solvent 26 is supplied by the supply strip 24.
  • a configuration may be adopted in which a hole is provided in the placement unit 22 so as to penetrate the placement unit 22 in the up-down direction, and the first carrier 50 is pressed from below against the placed second carrier 60.
  • the sample 40 is developed in the second direction using the principle of chromatography using the developing solvent 26.
  • the electrophoresis method including the second carrier having a required composition and a voltage applying unit is used. May be used.
  • FIG. 12 is a flowchart illustrating a sample separation method according to the present embodiment. In FIG. 12, differences from the flowchart in the above-described embodiment shown in FIG. 4 will be described.
  • steps S104a and S105a are different from those in the above embodiment. Specifically, after the supply of the developing solvent 26 to the second carrier 60 is started (S103), it is determined whether or not the developing solvent 26 has passed the contact portion of the first carrier 50 (S104a). When it is not determined that the developing solvent 26 has passed the contact portion of the first carrier 50 (No in S104a), step S104a is repeated. On the other hand, when it is determined that the developing solvent 26 has passed the contact portion of the first carrier 50 (Yes in S104a), the transfer region having a width of less than 50% of the width of the first carrier 50 is brought into contact with the second carrier 60. (S105a).
  • the developed samples 41 to 44 contained in the first carrier 50 are transferred by infiltration into the second carrier 60 by diffusion or the like. Therefore, by configuring so that only a part of the first carrier 50 in the width direction of the first carrier 50 is in contact with the second carrier 60, the part of the first carrier 50 corresponding to the transfer region of the first carrier 50 is The developed samples 41 to 44 included in the location are transferred. In this way, the same effect as in the above embodiment can be obtained.
  • the configuration in which the developed samples 41 to 44 included in the central portion in the width direction of the first carrier 50 are mainly transferred has been described. Not limited to department. For example, by transferring an area that does not include at least one end of both ends in the width direction of the first carrier 50, the smile in the second direction in the at least one end of the first carrier 50 is transferred. The influence on the deployment to the Internet may be reduced. In other words, any configuration may be used as long as a part of the sample 40 included in the first carrier 50 and a part of the sample included in the transfer region including the center in the width direction of the first carrier 50 is transferred to the second carrier 60.
  • the width of the transfer region is preferably a region of less than 50% of the width of the first carrier 50.
  • the width of the transfer region is preferably less than 0.5 times the width of the first carrier 50.
  • the pattern of the smile generated by the development on the first carrier 50 can be considered to be substantially line-symmetric, and the target line is often a line that bisects the first carrier 50 in the width direction. Therefore, by setting the width of the transfer region to be less than 50% of the width of the first carrier 50, it is possible to reduce the influence of the smile generated on the one carrier 50 on the development in the second direction.
  • the sample 40 is two-dimensionally separated by the long carrier-like first carrier 50 that develops the sample in the first direction and the second carrier 60 that develops in the second direction different from the first direction.
  • a transfer step of transferring the sample 40 to the second carrier 60 In the transfer step, the sample 40 included in the first carrier 50 is included in a transfer area having a width smaller than the width of the first carrier 50.
  • the sample separation method according to the present disclosure may be realized by transferring the sample to the second carrier 60.
  • the width of the transfer region may be less than 0.5 times the width of the first carrier 50.
  • the smiling pattern generated by the development on the first carrier 50 can be considered to be substantially line-symmetric, and the target line is often a line that bisects the first carrier 50 in the width direction. Accordingly, if the width of the transfer region is less than 0.5 times the width of the first carrier 50, the effect of the smile generated on the first carrier 50 on the development in the second direction can be reduced more reliably. Therefore, in two-dimensional sample development involving electrophoresis, sample separation with higher resolution can be performed.
  • the configuration is such that the separating portion 80 is attached to the main body 32 having the first carrier 50 on the downward end surface 33.
  • the isolation portion 80 is configured such that the first position where the first carrier 50 is disposed in the internal space of the isolation portion 80 and the second position where the first carrier 50 is pushed downward from the isolation portion 80 can be switched by sliding or the like. It may be configured.
  • the isolation portion 80 is normally kept at the first position by a load that presses the isolation portion 80 downward against the main body portion 32 or an artificial pressure such as a spring. Further, when the first carrier 50 carried by the main body 32 is pressed against the second carrier 60, the separating portion 80 is pushed up by an appropriate pushing up portion to be in the second position.
  • sample separation device 100 and the sample separation method of the present disclosure it is possible to separate components with similar mobilities, which has been difficult in the two-dimensional sample development, and to perform various analyzes such as comprehensive analysis of metabolic systems. Component analysis can contribute to the development of research fields that are envisioned.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

試料(40)を第1方向に展開する長尺板状の第1担体(50)、および第1方向とは異なる第2方向に展開する第2担体(60)により、試料(40)を二次元分離する試料分離装置(100)であって、第1担体(50)に電圧を印加するための電圧印加部(72)と、第1担体(50)から第2担体(60)へ試料を転写するための加圧部とを備え、加圧部は、第1担体(50)を加圧し、第1担体(50)の幅方向における両端部を除く中央部を、両端部と比較して強く、第2担体(60)へ押圧する。

Description

試料分離装置および試料分離方法
 本開示は、試料分離装置および試料分離方法に関し、特に、二次元面上の異なる二方向に試料を展開する試料分離装置および試料分離方法に関する。
 二次元面上において直交等の異なる二方向に試料を展開させ、展開パターンや相対位置を解析することで、試料中の成分に対する知見を得る二次元試料分離分析は、成分の物理特性の調査や成分の同定などを簡便に行えることから、研究用途に幅広く利用されている。また近年、より利便性を向上させた、全自動の二次元試料分離装置なども開発されている(たとえば、特許文献1参照)。
 特許文献1は、これまで高度な技術と、分析のための時間が要求されてきた二次元試料分離分析に関して、誰もが再現性高く分析を行えるよう、分析に要する操作を自動化するための装置を開示するものである。
特開2007-64848号公報
 ところで、上述のような分析において、試料を展開させる際に電気泳動法を適用した場合、「スマイリング」と呼ばれる問題が生じうる。「スマイリング」とは電圧印加に伴って発生する熱により、展開に用いる担体の物性に偏りが生じ、結果的に同一成分であっても展開方向への移動度が偏る現象のことである。たとえば二次元試料展開において、第1方向の展開に電気泳動法を適用した際、第2方向への展開時に第1方向で生じた移動度の偏りを反映してしまうため、本来分離されるべき、試料中の異なる成分どうしを分離しきれないといった結果を導いてしまうことが知られている。
 このようにして電気泳動を伴う二次元試料展開においては、スマイリングによって試料の分離能が低下するという問題がある。
 そこで本開示は、上記問題を解決するためになされたものであり、電気泳動を伴う二次元試料展開における分離能の高い試料分離装置および試料分離方法を提供することを目的とする。
 上記目的を達成するために、本開示に係る試料分離装置の一態様においては、試料を第1方向に展開する長尺板状の第1担体、および前記第1方向とは異なる第2方向に展開する第2担体により、前記試料を二次元分離する試料分離装置であって、前記第1担体に電圧を印加するための電圧印加部と、前記第1担体から前記第2担体へ前記試料を転写するための加圧部と、を備え、前記加圧部は、前記第1担体を加圧し、前記第1担体の幅方向における両端部を除く中央部を、前記両端部と比較して強く、前記第2担体へ押圧する。
 また上記目的を達成するために、本開示に係る試料分離方法の一態様においては、試料を第1方向に展開する長尺板状の第1担体、および前記第1方向とは異なる第2方向に展開する第2担体により、前記試料を二次元分離する試料分離方法であって、電圧印加により第1担体において前記試料を展開する展開ステップと、前記試料が展開された前記第1担体を前記第2担体に押圧する加圧ステップと、を含み、前記加圧ステップにおいて、前記第1担体の幅方向における両端部を除く中央部を、前記両端部と比較して強く、前記第2担体へ加圧する。
 本開示に係る試料分離装置および試料分離方法により、電気泳動を伴う二次元試料展開における分離能を高くできる。
図1Aは本実施の形態における試料分離装置の第1の断面図である。 図1Bは本実施の形態における試料分離装置の第2の断面図である。 図2は本実施の形態、および比較例における試料分離装置の本体部の拡大断面図である。 図3Aは本実施の形態における試料分離方法を説明する第1の図である。 図3Bは本実施の形態における試料分離方法を説明する第2の図である。 図4は本実施の形態における試料分離方法を説明するフローチャートである。 図5Aは本実施の形態における本体部の幅と第2方向への展開パターンとの関係を説明する第1の図である。 図5Bは本実施の形態における本体部の幅と第2方向への展開パターンとの関係を説明する第2の図である。 図5Cは本実施の形態における本体部の幅と第2方向への展開パターンとの関係を説明する第3の図である。 図6は本実施の形態、および比較例に係る試料分離装置の本体部と二次元展開パターンとの関係を説明する図である。 図7は変形例における試料分離装置の断面図である。 図8は変形例における試料分離装置の隔離部の斜視図である。 図9は変形例における試料分離装置の隔離部の断面図である。 図10は変形例における試料分離装置の隔離部の別例1の断面図である。 図11は変形例における試料分離装置の隔離部の別例2の断面図である。 図12はその他の実施の形態における試料分離方法を説明するフローチャートである。
 (実施の形態)
 [装置構成]
 以下、本開示の実施の一形態について、図面を用いて詳細に説明する。なお以下で説明する実施の形態は、いずれも本開示の好ましい一具体例を示す。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置および接続形態、動作の順序等は、一例であり、本開示を限定する主旨ではない。また以下の実施の形態における構成要素のうち、本開示の独立請求項に記載されていない構成要素については、より好ましい形態を構成する任意の構成要素として説明する。
 なお、各図は模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成に対しては同一の符合を付し、重複する説明は省略、または簡略化される場合がある。
 はじめに図1A、および図1Bを用いて本実施の形態における試料分離装置100の構成要素について説明する。
 図1A、および図1Bは本実施の形態における試料分離装置100の断面図である。図1Aは図1Bに示すii-ii線(つまり第1担体50と第2担体60とが接するXY平面)における試料分離装置100の断面図である。また図1Bは図1Aに示すi-i線における試料分離装置100の断面図である。また、図1A、および図1Bには展開に用いる第1担体50、第2担体60、および展開溶媒26を併せて図示している。
 本実施の形態における試料分離装置100は、試料を展開するために用いられ、容器部10、蓋部20、および試料供給デバイス30によって構成される。またここでは図示しないが、本実施の形態における試料分離装置100は、後述する電圧印加部をさらに備え、試料を含んだ第1担体50に対して電圧を印加することで第1担体50における試料の展開を行う。
 ここで「展開」とは、試料に含まれる1以上の成分を、その成分が有する物理的特性に基づいて、成分ごとに異なる移動度(つまり移動距離)で移動させる分離手法である。より具体的には、固定相である担体に対して、1以上の成分を含む試料を供し、担体の中を移動するための物理的エネルギーを与えると、試料は担体の中を移動する。また、移動速度は試料に含まれる成分ごとの物理的特性に対応しているため、成分ごとに担体中を移動する速度は異なる。試料が進む方向を規定したエネルギーの与え方を用い、試料移動中のある時点ですべての移動を停止させると、各成分は移動方向における移動度が異なった状態で移動を終了するため、担体中には成分ごとのスポット(つまり同一成分の集合)が形成される。以上に示すような、試料中に含まれる成分を移動度によって分離させる分析手法を本明細書中では「展開」と定義する。
 はじめに容器部10について説明する。容器部10は試料を展開する際に使用される容器である。容器部10は、収容部11、載置部22、凹部21、供給ストリップ24、および押し出し部25によって構成される。
 収容部11は、Z軸マイナス方向(すなわち下方向)に位置する底部と、X、およびY軸のプラスマイナス4方向に位置する第1~第4側壁12~15とを有し、Z軸プラス方向(すなわち上方向)に開口した長方形箱型の容器である。また収容部11は、容器部10の基本部分であり、樹脂、または金属などの硬質素材によって成型される。また第1~第4側壁12~15のうち、図1A、および図1Bに示すX軸マイナス方向に位置する第1側壁12は、後述する押し出し部25が容器部10の外部から内部へと貫通するための孔が設けられている。当該孔は押し出し部25の貫通部分の形状と略一致しており、押し出し部25が貫通した際には収容部11の内外に存在する気体や液体の通過が極力抑制されるように構成されるべきである。すなわち、後述する蓋部20と合わせて、容器部10は略密閉されるような構成であることが望ましい。
 載置部22は試料を展開するための第2担体60を水平に載置するための樹脂、または金属などの硬質素材製の土台であり、収容部11の底部が上方向にせり出すようにして形成された天板面を含む構造体である。なお載置部22は収容部11と一体成形されてもよく、また個別に成形したものを、組み合わせて使用する構成でもよい。また天板面の広さは、第2担体60を載置できるだけの広さであり、より好ましくは、第2担体60を操作するために第2担体60の面積よりも広い面積をもって設けられていることが望ましい。
 本実施の形態においては、第1~第4側壁12~15すべてから独立し、第1~第4側壁12~15の内面それぞれに対向する第1~第4端面16~19を有する載置部22を含む試料分離装置100の構成について説明する。なお、載置部22は、第1~第4側壁12~15のうち1以上のいずれかの側壁の内面に接していてもよい。
 凹部21は、載置部22の第1~第4端面16~19と、第1~第4側壁12~15とによって囲まれた中空部分であり、試料の展開の際に使用される展開溶媒26が貯留される空間である。また、凹部21に面する底部のうち、第1側壁12側に位置する一部は上方向にせり出した構造となっており、凹部21に面する底部が二段構造23を有するように構成される。
 供給ストリップ24は樹脂製、または金属製など硬質素材によって形成された板状部品であり、試料の展開において、展開溶媒26を載置部22に載置された第2担体60へと導く。より具体的には、供給ストリップ24は、凹部21のうち、二段構造23と、第1端面16との間に配置される。また図1Bに破線で示すように、供給ストリップ24は通常、傾倒した状態にあり、供給ストリップ24の上方向端部が第1側壁12に接触している。後述の押し出し部25により供給ストリップ24の上方向端部をX軸プラス方向に押し付けると、二段構造23のX軸プラス方向側面において供給ストリップ24の下方向端部の移動が制限される。これにより供給ストリップ24は第1端面16に近接した状態で傾斜が起こされ、載置部22の第1端面16と供給ストリップ24のX軸プラス方向側板面とが略接する状態となる。載置部22の第1端面16と供給ストリップ24の板面との間には、わずかな隙間部分が形成される。隙間部分はZ軸方向において凹部21から第2担体60までに至るため、毛細管現象によって凹部21に貯留された展開溶媒26を第2担体60へと誘導する。なお、本実施の形態においては、供給ストリップ24が有するX軸プラス方向側板面と載置部22の第1端面16との間に形成される隙間部分により展開溶媒26を誘導する構成としたが、供給ストリップ24自体が複数の細管から形成される構成としてもよい。この場合においては供給ストリップ24と載置部22とにおいて形成される隙間部分、および供給ストリップ24を形成する細管の2経路により展開溶媒26が第2担体60へと誘導されるため、展開溶媒26の誘導速度をさらに増加させることができる。
 押し出し部25は、樹脂、または金属製の長尺部材であり、第1側壁12に設けられた孔を貫通している。押し出し部25は、収容部11内部に設置された供給ストリップ24を収容部11外部から操作するための操作部である。押し出し部25は供給ストリップ24を略直立の状態に固定できるよう、たとえば、ねじ、またはピンロックなどの固定手段を備え、試料展開における展開溶媒26の供給を一定に保つことができる構成である。
 次に蓋部20について説明する。蓋部20は上方向からの容器部10内部へのアクセスを制限する開閉可能な板状構造である。蓋部20は開口部28を有した主蓋部27と、スライド部29によって構成される。
 主蓋部27は容器部10の全体を上方向から覆う板状構造体であり、樹脂、または金属等の硬質素材によって構成される。主蓋部27は容器部10の内部において試料を展開している際に容器部10の内部と外部とを分離できるよう、収容部11の第1~第4側壁12~15と接する箇所においてシーリングが設けられる構成としてもよい。また主蓋部27には開口部28が設けられ、主蓋部27の設置によって容器部10の内部へのアクセスが制限された状態においても、開口部28から容器部10の内部へアクセスが可能となる。
 スライド部29は主蓋部27に対してスライド可能に取り付けられた、開口部28よりも大きい面積を有する板状構造体である。スライド部29は開口部28の開口と閉口とを切り替えるための扉であり、上方向からの平面視において、蓋部20の開口部28と重複する位置、および重複しない位置をスライドによって切り替え可能なように構成される。
 なお、本実施の形態においてはスライド部29によって開口部28を覆う構造としたが、開口部28を覆う構成であればどのような形状であってもよく、キャップなどによって実現されてもよい。
 次に試料供給デバイス30について説明する。試料供給デバイス30は、容器部10の内部において試料の展開を行う際に、容器部10の内部へ試料を供給するための装置である。試料供給デバイス30は樹脂、または金属などの硬質材料により構成される構造体であり、荷重部31、および本体部32から構成される。なお、本体部32は必要に応じてシリコンゴムなどの弾性体で構成される場合がある。試料供給デバイス30はまた、第1担体50に含まれる試料を第2担体60へと転写させるための圧力を発生する、または外力を伝達する加圧部でもある。
 荷重部31は第1担体50を第2担体60へ押圧するための荷重発生装置、または外力を下方向のベクトルをもった力として本体部32へ伝達する伝達装置である。荷重部31は単純な錘であってもよく、ばねなどによって下方向への圧力を発生させる構造体であってもよい。もしくは、荷重部31は油圧システムなど電力によって一定の圧力を発生させる装置であってもよい。荷重部31はまた、第1担体50を担持する本体部32を容器部10の外部から内部へと移動させる操作部でもあり、手動、または機械駆動方式により荷重部31を移動させることで、他所において準備された第1担体50を容器部10の内部へと移動させる。たとえば、荷重部31を移動させるための機械アームなどによって、荷重部31を移動させると同時に、荷重部31に対して圧力もかける構成とすれば、荷重部31そのものは圧力を発生する構成でなくてもよい。
 本体部32は上方向端面において荷重部31と一体化され、下方向端面33において第1担体50を担持するY軸方向に長尺状の構造体である。本体部32は、荷重部31による圧力を第1担体50へ伝達することで、第1担体50を第2担体60に対して押圧して、第1担体50に含まれる試料を第2担体60へと転写する。
 ここで、図2を用いて本体部32における下方向端面33の形状について詳しく説明する。
 図2は本実施の形態、および比較例における試料分離装置100の本体部32の拡大断面図である。なお、図2は図1Bと同じ面(すなわちX-Z平面)における断面図である。図2の(a)は本実施の形態の第1例における本体部32aの断面図を示し、図2の(b)は比較例における本体部32bの断面図を示している。また図2の(c)は第2例における本体部32cの断面図を、図2の(d)は第3例における本体部32dの断面図をそれぞれ示している。
 図2の(a)には、本実施の形態の第1例における本体部32a、および本体部32aの下方向端面33aに担持された第1担体50、および荷重部31から伝達された圧力により第1担体50が接触する第2担体60が図示されている。なお、荷重部31は図示を省略し、本体部32aの上側、および第2担体60のX軸方向における両端部は便宜上破断されている。
 本実施の形態の第1例における試料分離装置100の本体部32aは、本体部32aの下方向端面33aにおいて、X軸方向における長さ(すなわち幅)が、本体部32aにおける最も長い幅よりも短い構成となっている。より詳しくは、本体部32aのX-Z平面の断面において、本体部32aの途中から下方向に向かうにつれて幅が短くなる形状を成している。また、この短くなる形状は、X軸方向のプラス側、およびマイナス側の両端部で同様であるため、本体部32aの幅方向中央部に対応する下方向端面33aが形成される。
 このような形状により、第1例における本体部32aの下方向端面33aにおける幅が、第1担体50のX軸方向における長さ(すなわち幅)よりも短い。したがって、荷重部31から伝達される圧力は、本体部32aの存在によって集約される。よって本体部32aは、下方向端面33aに対応する第1担体50の幅方向中央部のみを加圧する。
 一方で、図2の(b)には、比較例における本体部32bが図示されており、本体部32bの他は図2の(a)と同様である。
 比較例における試料分離装置の本体部32bは、幅が本体部32bのどの位置においても一定である。また、比較例における本体部32bの幅は第1担体50の幅に対して長い形状となっている。したがって、荷重部31から伝達される圧力は、本体部32bの存在によって第1担体50の全面へと分散して伝達される。よって本体部32bは、第1担体50の幅方向両端部を含む全面を加圧する。
 本実施の形態の第1例と比較例とを比べると、最終的に第1担体50の加圧される箇所が、幅方向中央部のみであるか、幅方向両端部を含む全面であるかの点が異なる。
 また図2の(c)には、本実施の形態の第2例における本体部32cが図示されており、本体部32cの他は図2の(a)と同様である。
 本実施の形態の第2例における試料分離装置100の本体部32cは、幅が本体部32cのどの位置においても一定である点で比較例と同様である。しかしながら本体部32cの幅は第1担体50の幅に対して短い形状となっている。したがって、荷重部31から伝達される圧力は、本体部32cの存在によって集約される。よって本体部32cは、下方向端面33cに対応する第1担体50の幅方向中央部のみを加圧する。
 また図2の(d)には、本実施の形態の第3例における本体部32dが図示されており、本体部32dの他は図2の(a)と同様である。
 本実施の形態の第3例における試料分離装置100の本体部32dは、下方向端面33dが平面ではなく、下方向に向かって凸となる曲面を有する。より詳しくは、半円柱の側面のうち平面の部分を、平面と直交する方向に延伸した立体を形成し、半円柱の高さ方向がY軸方向に位置し、半円柱の側面のうち曲面の中央部分が下方向に配向するように荷重部31の下方向端面に固定した本体部32dによって構成される。したがって、荷重部31から伝達される圧力は、本体部32dの存在によって集約される。よって本体部32dは、第1担体50の幅方向中央部を最も強く加圧し、幅方向端部に向かうにつれて加圧の圧力は徐々に弱くなる。また本体部32dは、第1担体50の幅方向最端部を加圧しない、もしくは幅方向のいずれの位置よりも弱い圧力で加圧する構成となる。
 ここで、比較例における本体部32bを用いた加圧において、本体部32bは第1担体50の全面にわたって略一定の圧力で加圧する。一方で本実施の形態の第3例における本体部32dでは第1担体50のうち、幅方向中央部と端部とで加圧される圧力が異なる。このため幅方向両端部に比べて幅方向中央部に含まれる試料40が多く転写される構成となる。
 なお、本体部32dを形成する半円箇所(すなわち本体部32dにおけるY軸方向と直交する側面先端部)の形状は正円の半円である必要はなく、楕円の半円であってもよい。またさらにY軸方向と直交する側面先端部の形状は半円に限られず、円弧によって形成される扇形の端部などであってもよい。より具体的には、第1担体50、および第2担体60の弾性、ならびに第1担体50のうち幅方向の中央部から端部にかけ、どの程度の範囲までを加圧するかなどの使用条件に基づいて、使用者は適宜曲率を設定し、本体部32dの下方向端面33dを構成してもよい。
 また、本実施の形態における本体部32の構成は以上の3例に限らず、第1担体50の幅方向両端部に比べて幅方向中央部を強く加圧する構成であればよい。たとえば、幅方向両端部に高弾性の材料、幅方向中央部に低弾性の材料を用いて成形した、比較例と同様形状の本体部によっても上述の構成が実現できる。また単一の材料を用いる構成においては、成形の際に幅方向の端部と中央部とで充填密度を変化させることで上述の構成を実現してもよい。
 [装置の動作]
 次に、以上のように構成された本実施の形態における試料分離装置100の動作について図3A~図6を用いて説明する。
 はじめに図3A、図3B、および図4を用いて本実施の形態における試料分離装置100を用いた試料分離方法について、全体を概説する。図3A、および図3Bは本実施の形態における試料分離方法を説明する図である。また図4は本実施の形態における試料分離方法を説明するフローチャートである。
 図3Aの(a)は、本実施の形態における第1担体50への試料導入を示す模式図である。図3Aの(a)には第1担体50、試料40、および第1担体50へ試料40を導入する微量体積計71が示されている。まず、長尺板状の第1担体50を板面が水平となるように配置し、微量体積計71を用いて規定容量の試料40を第1担体50の板面上側に塗布する。塗布された試料40は拡散によって第1担体50内部(すなわち厚み方向下方)へと浸潤する。なお、第1担体50を収容可能な容器に対して、微量体積計71を用いて規定容量の試料40を計り入れたのち、第1担体50を当該容器内に板面が水平となるように配置する構成としてもよい。この場合、当該容器内の試料40は拡散によって第1担体50内部(すなわち厚み方向上方)へと浸潤する。
 図3Aの(b)は、本実施の形態における第1担体50を用いた第1方向への試料展開を示す模式図である。図3Aの(b)には第1担体50、展開された試料41~44、電圧印加部72、および電極73、および74が示されている。ここではすでに第1担体50に対して電圧印加部72を用いた電圧印加が行われ、第1担体50の長手方向両端がそれぞれ接触する電極73、および74の極性に応じて試料40が展開されている(図4の展開ステップS101)。
 第1担体50において実施された展開方法に基づき、試料40は成分ごとに分離され、展開された試料41~44として本例では第1担体50の長手方向における4か所に分配されている。また展開された試料41~44のそれぞれは、第1担体50の短手方向(つまり幅方向)の両端部において、長手方向に対する移動度が幅方向中央部の移動度と異なり、湾曲した形状を呈している。
 ここで、ある担体において電気泳動法によって試料を展開した際に、電圧印加に伴う担体の発熱により、担体の中央部と端部とで担体の物理的性質の偏りが引き起こされる。このため試料が展開される際、展開方向と直交する方向(つまり幅方向)において中央部を通るか、端部を通るかによって、試料に含まれる成分は、たとえ同一成分であっても展開方向における移動度が異なる。このような現象は一般的にスマイリングと呼ばれ、認識されている。
 たとえば、スマイリングが生じる条件において、展開方向と直交する方向における端部を通る成分と、中央部を通る同一成分とで移動度に差が生じる。このためスマイリングが発生した担体を平面視した際には、同一成分が展開方向に向けて凸となる弧状(つまり湾曲した形状)を呈する。
 したがって、前述の図3Aの(b)に示した第1担体50において展開された試料41~44のそれぞれは、スマイリングによって湾曲した形状を呈している。
 なお第1担体50において行われる第1方向の展開として具体的には、タンパク質の等電点電気泳動、SDS-PAGE、およびNative-PAGE、並びに核酸のアガロースゲル電気泳動などが考えられるが、これらに限られるものではない。第1担体50に印加した電圧を、移動のためのエネルギー源として用いた、試料40に含まれる各成分の性質に応じた第1方向への展開であれば、いかなる形態であってもよい。
 図3Aの(c)は本実施の形態における第1担体50の、第2担体60上への移動を示す模式図である。また図3Aの(c)は、試料分離装置100に設置した板状の第2担体60を試料分離装置100の上方向から平面視した図である。図3Aの(c)には、第1担体50、展開された試料41~44、および第2担体60が示されている。なお、便宜上、第1担体50、および第2担体60を除き、試料分離装置100を構成する要素については図示を省略している。
 第1担体50における試料の展開(図4の展開ステップS101)が終了した後、試料供給デバイス30の本体部32の下方向端面33に、第1担体50を担持させる(図4のS102)。スライド部29を操作して開口部28を開口させ、第2担体60上における第1担体50の押圧箇所の上まで移動させる。この時点では第1担体50は、第2担体60に接触しておらず、第2担体60に対して浮いた状態に保たれている。
 また第2担体60への展開溶媒26の供給を開始する(図4のS103)。第2担体60のX軸マイナス方向端部からX軸プラス方向にかけて展開溶媒26が徐々に浸透していく。図3A、および図3Bには、第2担体60のうち、展開溶媒26の浸透している箇所と浸透していない箇所との境目を、境界線61として破線で示している。境界線61が第2担体60上において、第1担体50の押圧箇所を超えた際(図4のS104でYes)に、試料供給デバイス30を下方向へと移動させ、この動作により第1担体50を加圧する(図4の加圧ステップS105)。加圧された第1担体50は第2担体60へと押圧される。この時、試料分離装置100の本体部32は、第1担体50の幅方向両端部に比べて幅方向中央部が強く第2担体60へ押圧される構成である。よって、展開された試料41~44のうち、第1担体50の幅方向中央部に含まれる一部が主として第2担体60へと転写される。
 なお、第2担体60に対して第1担体50を押圧するまでの待機期間において、試料供給デバイス30は蓋部20よりも下方に配置されるとしたが、蓋部20よりも上方に配置されてもよい。この場合、展開溶媒26の浸透の間は蓋部20を密閉状態(つまり、スライド部が閉口状態)に保ち、試料供給デバイス30による加圧において最低限必要な時間のみスライド部が開口されるような構成が実現できる。
 あらかじめ定められた押圧時間が経過した後、試料供給デバイス30による第1担体50への加圧を解除し、試料供給デバイス30を容器部10内部から取り出す。すなわち、試料供給デバイス30を蓋部20よりも上の空間位置まで移動させる。その後スライド部29を操作して開口部28を閉口させ、容器部10が密閉された状態に保ち、境界線61が所定の位置に達するまで展開を継続する(図4のS106)。境界線61が所定の位置に達した際に(図4のS107でYes)試料40の展開を停止し、試料40の各成分が展開されたスポット位置の解析処理を行う。
 図3Bは本実施の形態における展開が終了した第2担体60を示す模式図である。図3Bには、第2担体60、および第2方向に展開された試料401~409を図示している。また実施の形態においてはすでに除去されているが、加圧された後の第1担体50を便宜的に図示している。なお、図2の(b)において比較例として示した本体部32bを用いて、同様の操作を行った場合に予想される第2方向に展開された試料410~418のスポットを破線楕円でさらに図示している。
 第1担体50において展開された試料41~44は第2担体60に転写された後、クロマトグラフィの原理を用いてさらに第2方向に展開される。第1担体50において展開された試料41は第1方向における展開では単一のスポットを示し、見かけ上単一成分であるように見えるが、実際には第1担体50において実施した電気泳動条件において同様の性質を示す、3成分から構成される。このため第2方向に展開した際に、展開された試料41から伸びる一点鎖線矢印上に展開された試料401~403として3つのスポットに分離された。同様に、見かけ上単一成分であるように見える展開された試料42~44は、それぞれ1成分の展開された試料404、2成分の展開された試料405、406、および3成分の展開された試料407~409から構成されていたことが示されている。
 ここで、本実施の形態においては二次元展開後におけるスポットは平面視において略正円となったが、比較例における本体部32bの構成を用いた場合、第2方向に展開された試料410~418は本実施の形態と比較してY軸マイナス方向に延びた楕円形を示す。
 第1担体50における展開でスマイリングが生じたため、X軸方向から第1担体50を見た際に、第1担体50において展開された試料41~44はY軸マイナス方向に延びた形状となっている。
 以上のようにして得られた第1担体50について、図2の(b)に示した比較例に係る試料分離装置の本体部32bを用いた場合、第1担体50における展開された試料41~44のY軸マイナス方向への延びは、第2方向への展開においても引き継がれる。結果として、同一の成分であるにもかかわらずY軸方向における移動度の異なる分子が含まれ、平面視においてY軸方向に長尺の楕円形に延びたスポットを形成する。
 一方で本実施の形態に係る試料分離装置100の本体部32を用いた場合、第1担体50における展開された試料41~44のY軸マイナス方向への延びがない、幅方向中央部のみを第2担体60へと転写する。
 なお、図3Bには第1担体50のうちの幅方向中央部に対応する展開された試料41~44が欠損され、欠損箇所に保持されていた展開された試料41~44が第2担体60へ転写されたことが示されている。
 よって第2方向への展開において、第1担体50における展開された試料41~44のY軸マイナス方向への延びは引き継がれず平面視において略正円、または第2方向への展開条件に応じたX軸方向に長尺の楕円の成分スポットが形成される。
 これにより、電気泳動を伴う二次元試料展開においても、本実施の形態における試料分離装置100を用いることで分離能の高い二次元試料展開が実現される。
 なお、以上に示した本実施の形態における試料分離装置100の動作は、逐次実施される手動の操作によって実現されてもよく、各動作に適当な動力装置を備え、適切なプログラムによって動力装置が制御される自動制御によって実現されてもよい。
 また、第2担体60への転写を行った第1担体50には、第1方向に展開された試料41~44の一部が、第1担体50の幅方向両端部において残留する。すなわち本実施の形態では、第2担体60への試料40の転写において、試料40のうち一部が廃棄される。このため、本実施の形態において実現される試料40の分離能と、二次元展開後の展開された試料の絶対量に基づく検出感度との間にはトレードオフの関係がある。よって第1担体50における展開の際に試料40をどの程度用いるか、および第2担体60への転写の際に第1担体50の幅方向中央部におけるどの程度の領域までを使用するか一義的に定めることはできない。つまり、本体部32の下方向端面33の幅を第1担体50の幅に対して何%にすべきか等の条件は、予備試験などによって適宜使用者が設定すべきである。
 一例として、図5A~図5Cを用いて、ある条件下における電気泳動後の第1担体50aについて、本体部32の下方向端面33の幅と、第二方向への展開パターンとの関係を説明する。なお、図5A~図5Cにおいては、二次元展開後の展開された試料の絶対量による検出感度については言及しない。
 図5A~図5Cは本実施の形態における本体部32の幅と第2方向への展開パターンとの関係を説明する図である。
 図5Aの(a)には第1担体50aから第2担体60へ転写の際に用いた本体部32bの形状を説明する断面図を示している。なお、本体部32bはZ軸方向の上部を破断して示している。また、第2担体60のうちX軸方向における両端部を破断して示している。
 また、図5Aの(b)にはある条件下において実際に電気泳動法を適用して展開した第1担体50a、および第2担体60の模式図を重ね合わせて示している。第1担体50aは、Y軸方向の両端において途中で破断し、第1担体50の模式図と接続して示しているが、これらを合わせて第1担体50aとして扱う。
 なお、以上の本体部、第2担体60、および第1担体50aの破断箇所等に関しての説明は後述する図5B、および図5Cにおいても同様である。また、図5Aの(a)において第1担体50aの幅をWsaとし、本体部32bの下方向端面33bにおける幅(すなわち加圧幅)をWp1と定義する。なお、図5B、および図5CにおいてもWsaについて同様である。
 また、図5Aの(b)には、第1担体50aから第2担体60へ転写された、展開された試料45a~47aが、第2方向への展開時に通過すると予想される範囲を、それぞれ予測通過範囲451a、461a、および471aとして示している。なお第二方向への各成分の移動度(つまり、予測通過範囲451a、461a、および471aのX軸方向における長さ)については一例として示すものである。
 図5AはWp1がWsa以上の長さである場合、すなわち第1担体50aのうち、幅方向の全域が第2担体60へ押圧される条件を示している。つまり、図2の(b)に示す比較例の本体部32bのような構成を適用した場合を示している。
 図5Aでは、第1担体50aにおいて展開された試料45a~47aは、第2担体に対してすべて転写される。このため第1担体50aにおいて発生しているスマイリングの影響はそのまま第2担体60へと引き継がれる。よって展開された試料45a~47aは予測通過範囲451a、461a、および471aを通過して第2方向へと展開される。
 ここで予測通過範囲451a、および予測通過範囲461aは一部が重複している。また予測通過範囲461aおよび予測通過範囲471aも一部が重複している。なお、予測通過範囲451a、および予測通過範囲471aは重複する箇所はなく、第1方向において展開された試料45a、および47aは完全に分離されている。
 たとえば第1方向に展開された試料45a、および46aが第2方向において同程度の移動度を示す成分を含んでいた場合、これらの2成分は、上記の本体部32bのような構成では分離できず重複したスポットを形成する。またたとえば第1方向に展開された試料46a、および47aが第2方向において同程度の移動度を示す成分を含んでいた場合、これらの2成分も、上記の本体部32bのような構成では分離できず重複したスポットを形成する。
 次に図5Bの(a)には第1担体50aから第2担体60へ転写の際に用いた本体部32の形状を説明する断面図を示している。また、図5Bの(b)にはある条件下において実際に電気泳動法を適用して展開した第1担体50a、および第2担体60の模式図を重ね合わせて示している。また、図5Bの(a)において本体部32の下方向端面33における幅(すなわち加圧幅)をWp2と定義する。
 なお、図5Bにおいては第1担体50aのうち幅方向中央部のみが加圧される構成である。このため図5Bの(b)には、第1担体50aのうち下方向端面33に対応する位置のみを図示し、その他(つまり第1担体50aの幅方向両端部)は概形のみを示している。
 また、図5Bの(b)には、第1担体50aから第2担体60へ転写された、展開された試料45b~47bが、第2方向への展開時に通過すると予想される範囲を、それぞれ予測通過範囲451b、461b、および471bとして示している。なお第二方向への各成分の移動度(つまり、予測通過範囲451b、461b、および471bのX軸方向における長さ)については一例として示すものである。
 図5Bは、Wp2がWsaの68%の長さである場合、すなわち第1担体50aのうち、幅方向の中央68%に位置する箇所が第2担体60へ押圧される条件を示している。つまり、本実施の形態における本体部32であり、本体部32の下方向端面33の幅が第1担体50aの幅の68%である構成を適用した場合を示している。
 図5Bでは、第1担体50aにおいて展開された試料45a~47aは、第2担体60に対して、第1担体50aの幅方向中央の68%の位置に含まれる、展開された試料45b~47bの一部のみが転写される。このため第1担体50aにおいて発生しているスマイリングの影響は一部が第2担体60へと引き継がれる。よって展開された試料45b~47bは予測通過範囲451b~471bを通過して第2方向へと展開される。ここで予測通過範囲451b、および予測通過範囲461bは重複する箇所はなく、第1方向において展開された試料45b、および46bは完全に分離されている。一方で予測通過範囲461aおよび予測通過範囲471aは一部が重複している。なお、予測通過範囲451b、および予測通過範囲471bは重複する箇所はなく、第1方向において展開された試料45b、および47bも完全に分離されている。
 次に、図5Cの(a)には第1担体50aから第2担体60へ転写の際に用いた本体部32の形状を説明する断面図を示している。また、図5Cの(b)にはある条件下において実際に電気泳動法を適用して展開した第1担体50a、および第2担体60の模式図を重ね合わせて示している。また、図5Cの(a)において本体部32の下方向端面33における幅(すなわち加圧幅)をWp3と定義する。
 なお、図5Cにおいては第1担体50aのうち幅方向中央部のみが加圧される構成である。このため図5Cの(b)には、第1担体50aのうち下方向端面33に対応する位置のみを図示し、その他(つまり第1担体50aの幅方向両端部)は概形のみを示している。
 また、図5Cの(b)には、第1担体50aから第2担体60へ転写された、展開された試料45c~47cが、第2方向への展開時に通過すると予想される範囲を、それぞれ予測通過範囲451c、461c、および471cとして示している。なお第二方向への各成分の移動度(つまり、予測通過範囲451c、461c、および471cのX軸方向における長さ)については一例として示すものである。
 図5Cは、Wp3がWsaの34%の長さである場合、すなわち第1担体50aのうち、幅方向の中央34%に位置する箇所が第2担体60へ押圧される条件を示している。つまり、本実施の形態における本体部32であり、本体部32の下方向端面33の幅が第1担体50aの幅の34%である構成を適用した場合を示している。
 図5Cでは、第1担体50aにおいて展開された試料45a~47aは、第2担体60に対して、第1担体50aの幅方向中央の34%の位置に含まれる、展開された試料45c~47cの一部のみが転写される。このため第1担体50aにおいて発生しているスマイリングの影響はその大部分が第2担体60へ引き継がれない。よって展開された試料45c~47cは予測通過範囲451c~471cを通過して第2方向へと展開される。ここで予測通過範囲451c、および予測通過範囲461cは重複する箇所はなく、第1方向において展開された試料45c、および46cは完全に分離されている。また予測通過範囲451c、および予測通過範囲461cも重複する箇所はなく、第1方向において展開された試料45c、および46cも完全に分離されている。さらに予測通過範囲451c、および予測通過範囲471cも重複する箇所はなく、第1方向において展開された試料45c、および47cも完全に分離されている。
 ここで、本実施の形態における本体部32の下方向端面33の幅(すなわち加圧幅)をWp、第1担体50の幅をWsと定義する。以上の一例に示すように、たとえばWpをWsの70%未満(すなわちWpがWsの0.7倍未満)の長さとすれば、第1担体50において生じたスマイリングの、第2方向への展開に対する影響を低減、もしくは排除できる。本実施の形態に係る試料分離装置100の使用者は、あらかじめ予備試験などによって分離したいスポットを特定し、それに応じた本体部32を使用すればよい。言い換えれば、本体部32の構成を変更するのみで、必要な分離能を有した二次元試料分離を容易に実現することが可能となる。
 [実施例]
 さらに図6を用いて本実施の形態における本体部32の先端の形状について実施例をもとに説明する。
 図6は本実施の形態、および比較例に係る試料分離装置の本体部32と二次元展開パターンとの関係を説明する図である。なお、図6には使用した本体部32の形状を示す断面図と、それにより得られた二次元展開後の第2担体60a、60b、および60c、ならびに展開された試料のパターン(すなわち、展開パターン)を対応するものどうし左右に並べて示している。
 図6の(a1)は、使用した本体部32aの概形を示す断面図である。図6の(a1)においては本体部32a、下方向端面33a、第1担体50、および第2担体60を図示しており、第2担体60は便宜上X軸方向における両端部を破断して省略している。なお、第2担体60の省略箇所については、図6の(b1)、および図6の(c1)においても同様である。また図6の(a2)は、本体部32aを適用した、本実施の形態における試料分離装置100を使用した際の展開パターンである。図6の(a2)には、第2担体60aを示し、複数の展開された試料のうち、一例として展開された試料48aを破線円によって囲み、示している。
 また図6の(b1)は、使用した本体部32bの概形を示す断面図である。図6の(b1)においては本体部32b、下方向端面33b、第1担体50、および第2担体60を図示している。また図6の(b2)は、本体部32bを適用した、比較例における試料分離装置を使用した際の展開パターンである。図6の(b2)には、第2担体60bを示し、複数の展開された試料のうち、一例として展開された試料48bを破線円によって囲み、示している。
 さらに、図6の(c1)は、使用した本体部32dの概形を示す断面図である。図6の(c1)においては本体部32d、下方向端面33d、第1担体50、および第2担体60を図示している。また図6の(c2)は、本体部32dを適用した本実施の形態の第3例における試料分離装置100を使用した際の展開パターンである。図6の(c2)には、第2担体60cを示し、複数の展開された試料のうち、一例として展開された試料48cを破線円によって囲み、示している。
 図6の(a2)、図6の(b2)、および図6の(c2)の各図において、展開パターンはおよそ一致しており、二次元試料分離装置として問題なく動作していることが示されている。
 ここで、破線円で囲んで示す、展開された試料48a~48cに着目する。図6の(a2)に示す、本実施の形態における試料分離装置100において展開された試料48aは、スポットがY軸方向に2か所検出でき、明確に2成分含まれていることがわかる。一方で、図6の(b2)に示す、比較例における試料分離装置において展開された試料48bは、Y軸方向に延びた単一のスポットしか検出できず、展開された試料48bが単一成分であるか、2成分含まれるかが明確ではない。また、図6の(c2)に示す、本実施の形態の第3例における試料分離装置100において展開された試料48cは、スポットがY軸方向に2か所検出でき、この形態においても明確に2成分含まれていることがわかる。
 また図6の(b2)と比較して、図6の(a2)、さらに図6の(c2)は、展開パターン中の各スポットのY軸方向における幅が、順次シャープになっていることがわかる。すなわち、図6の(b2)、図6の(a2)、および図6の(c2)の順に、Y軸方向における分解能が高くなっている。
 以上より、比較例における試料分離装置に比べ、本実施の形態における試料分離装置100は、いずれの形態においても分離能の高い二次元試料分離が実現できることが示された。
 以上のように、本実施の形態における試料分離装置100によれば、試料40を第1方向に展開する長尺板状の第1担体50、および第1方向とは異なる第2方向に展開する第2担体60により、試料40を二次元分離する試料分離装置100であって、第1担体50に電圧を印加するための電圧印加部72と、第1担体50から第2担体60へ試料40を転写するための試料供給デバイス30(加圧部)と、を備え、試料供給デバイス30は、第1担体50を加圧し、第1担体50の幅方向における両端部を除く中央部を、両端部と比較して強く、第2担体60へ押圧する。これにより、本実施の形態に係る試料分離装置100は、第1担体50に含まれる試料40のうち、幅方向における端部に比べ、中央部に含まれる試料を多く転写できる。
 また、試料供給デバイス30(加圧部)は、第1担体50を第2担体60に押圧する下方向端面33(端面)を有し、下方向端面33は、幅方向の長さが第1担体50の幅よりも短い構成であってもよい。これにより、第1担体50の幅方向における端部を加圧することなく、幅方向における中央部に含まれる試料を効率的に第2担体60に転写できる。
 また、試料供給デバイス30(加圧部)は、下方向端面33(端面)を先端に有する本体部32を含み、本体部32の幅方向の長さが下方向端面33に近づくにつれて短くなる構成であってもよい。これにより、本体部32の幅を一定に確保して強度を維持しながらも、第1担体50の幅Wsよりも短い幅の下方向端面33により、第1担体50の幅方向中央部のみを加圧できる。
 また、下方向端面33(端面)における幅方向の長さは、第1担体50の幅の0.7倍未満であってもよい。これにより、第1担体50のうち幅方向における中央部が全体の70%未満となる部分を加圧できる。
 また、試料供給デバイス30(加圧部)は、第1担体50を第2担体60に押圧する、第1担体50に向けて凸となる下方向端面33d(曲面)を有する構成であってもよい。これにより、第1担体50の幅方向における中央部から端部にかけて、徐々に圧力が弱くなる特徴をもった加圧を行うことができる。
 また、本実施の形態における試料分離方法によれば、試料40を第1方向に展開する長尺板状の第1担体50、および第1方向とは異なる第2方向に展開する第2担体60により、試料40を二次元分離する試料分離方法であって、電圧印加により第1担体50において試料40を展開する展開ステップと、試料40が展開された第1担体50を第2担体60に押圧する加圧ステップと、を含み、加圧ステップにおいて、第1担体50の幅方向における両端部を除く中央部を、両端部と比較して強く、第2担体60へ加圧する。これにより、本実施の形態に係る試料分離方法は、第1担体50に含まれる試料40のうち、幅方向における端部に比べ、中央部に含まれる試料を多く転写できる。
 また、加圧ステップにおいて、試料供給デバイス30(加圧部)を用いて試料40が展開された第1担体50を第2担体60に押圧し、試料供給デバイス30は、第1担体50を第2担体60に押圧する下方向端面33(端面)を有し、下方向端面33は、幅方向の長さが第1担体50の幅よりも短くてもよい。これにより、第1担体50の幅方向における端部を加圧することなく、幅方向における中央部に含まれる試料を効率的に第2担体60に転写できる。
 (変形例)
 [装置構成]
 次に、実施の形態の変形例について図7~図11を用いて詳細に説明する。
 はじめに図7を用いて、変形例における試料分離装置100aについて説明する。図7は変形例における試料分離装置100aの断面図である。また図7の(a)は試料分離装置100a全体の断面図であり、図1Bと同一平面における断面図を示している。なお図7の(a)はX軸プラス方向側が便宜上破断されている。また図7の(b)は変形例1における隔離部80を拡大した断面図である。さらに図7の(c)は変形例2における隔離部80aを拡大した断面図である。
 変形例1は、前述の実施の形態と比較して、第1担体50の幅方向両端部と、第2担体60との間に設けられる隔離部80を有するか否かの点で異なっている。このため、以降の説明では2つの形態における差異の箇所である隔離部80について説明する。なお変形例1と前述の実施の形態とでは、その他の箇所に関して同一の構成であるため説明を省略する。
 変形例1において、試料分離装置100aは、前述の実施の形態における試料分離装置100の構成要素に加えて、隔離部80を備える。隔離部80は樹脂、または金属等の硬質部材によって構成された構造体であり、たとえばY軸方向に長尺状の直方体に、Z軸方向において貫通した孔を設けた立体を成す構造体である。
 図7の(b)を用いて隔離部80をより詳しく説明する。図7の(b)には本体部32、下方向端面33、および隔離部80、ならびに第1担体50、および第2担体60が図示されている。なお、第2担体60は、便宜上X軸方向における両端部が破断されている。隔離部80は、第1担体50の幅方向両端部と、第2担体60との接触を防止する構造物であり、支持部81、および82、支持壁83、および84、ならびに2つの隔離箇所である隔離体85、および86から構成される。また図7の(b)における断面図上では図示されないが、隔離部80はY軸方向の両端において支持部81、および82、ならびに支持壁83、および84が一体化壁によって一体化された単一の部材である。なお一体化壁は隔離体85と、隔離体86との間が離隔されるように成形される。
 支持部81、および82はそれぞれ直方体の部材である。支持部81と支持部82とは、本体部32のZ軸方向の所定の位置における幅だけ離間して、前述の一体化壁によって一体化されている。また支持部81、および82は、本体部32と取り外し可能に固定され、隔離部80を本体部32と所定の位置関係に固定する。つまり支持部81、および82は、たとえば本体部32と対向する面に凸部を備え、本体部32の所定の位置に設けられた凹部とかみ合うことで、本体部32と所定の位置関係に固定される。
 支持壁83、および84は、支持部81、および82の下方向における端面がさらに下方向に延伸されて構成された壁部であり、支持部81、および82と、隔離体85、および86とを所定の位置関係に固定する。なお支持壁83、および84は、支持部81、および82と、隔離体85、および86とを所定の位置関係に固定できれば、Y軸方向の一部のみに構成されてもよい。
 隔離体85、および86は、XY平面に水平な板状構造体である。隔離体85、および86は、それぞれ上方向の面が支持壁83、および84に固定され、支持壁83、および84を介して支持部81、および82と一体化されている。また、隔離体85のX軸マイナス方向の端面、および隔離体86のX軸プラス方向端面は、それぞれが対向する本体部32の面と平行な面を形成するよう、断面図上でZ軸方向と所定の角度を成す。ここで、隔離体85、および86は、本体部32と、第1担体50の厚みに対応する距離をもって形成される。なお、隔離体85、および86が対向する本体部32の面が、平面でない場合においては、隔離体85、および86の本体部32に対向する端面のいずれの箇所においても対向する本体部32の面と同一の距離となるような端面を形成してもよい。
 また隔離体85のX軸マイナス側最端部と、隔離体86のX軸プラス側最端部とによって形成される離隔のX軸方向における長さをGpと定義すると、GpはWsよりも短く、Wpよりも長い。なお、Ws、Gp、およびWpの長さの設定、および使用者の要求する転写の幅により、第2担体60、本体部32、および隔離部80の位置関係が決定される。たとえば、GpはWsの0.7倍未満である場合、第1担体50の幅方向両端側15%ずつの箇所は第2担体60への接触が防止され、転写されない。この時、本体部32が下方向端面33に向かって徐々に幅が短くなる、実施の形態の第1例のような形状であれば、第2担体60と隔離部80の距離(すなわち本体部32が隔離部80からどの程度突出するか)によっても転写される幅が変化する。ただし少なくとも、隔離部80によって第2担体60への接触が防止される、第1担体50の幅方向両端部においては転写が行われない。よってGpの設定により、少なくとも接触しない第1担体50の幅方向両端部を規定することができる。
 なお、変形例における試料分離装置100aは、隔離部80が本体部32に固定される構成でなくてもよい。この構成について、変形例2として図7の(c)を用いて説明する。図7の(c)には本体部32、下方向端面33、および隔離部80a、ならびに第1担体50、および第2担体60が図示されている。なお、第2担体60は、便宜上X軸方向における両端部が破断されている。また隔離部80aは隔離体85a、および86aから構成される、樹脂または金属などの硬質材料によって成形されるY軸方向に長尺を成す板状部材である。また図7の(c)における断面図上では図示されないが、隔離部80aはY軸方向の両端において隔離体85aと、隔離体86aとが一体化壁によって一体化された単一の部材である。
 変形例2において、隔離部80aは本体部32には固定されず、第2担体60の上面に載置される。またもしくは、第2担体60の上面に位置するよう、第2側壁13、および第4側壁15において、隔離部80aの長手方向端部が固定される構成としてもよい。なお隔離体85a、および86aの詳細な構成については上述の変形例1における隔離体85、および86と同様であるため説明を省略する。
 なお、以降の説明については変形例1、および変形例2を包括して変形例として説明する。
 [装置の動作]
 次に、図8~図11を用いて変形例における装置の動作について説明する。図8は変形例における試料分離装置100aの隔離部80の斜視図である。また図9は変形例における試料分離装置100aの隔離部80の断面図である。なお図8、図9ともに本体部32、本体部32が担持する第1担体50を、図8にはさらに第2担体60を併せて図示している。なお、第2担体60は、便宜上X軸方向における両端部が破断されている。
 変形例における試料分離装置100aは、前述の実施の形態における試料分離装置100と比較して隔離部80を有するか否かの点で異なっている。したがって以降では本体部32によって第1担体50を第2担体60に対して押圧する際の隔離部80の動作を中心に、重複箇所については省略して説明する。
 第1担体50において行われる第1方向の展開が終了した後、第1担体50を本体部32の下方向端面33に担持させる。続いて、本体部32の第1担体50を担持する下方向端面33側から隔離部80を取り付ける。より具体的には図8の(a)に示すように、隔離部80の支持部81、および82、ならびにY軸方向両端の一体化壁によって形成される上方向への開口に対して、本体部32を下端側から挿入する。本体部32は、所定の長さ挿入された後、本体部32の下方向端部が、隔離部80の隔離体85、および86に接触するためそれ以上挿入できなくなる。この時、本体部32の下方向端面33に第1担体50が担持されている場合、本体部32の下方向端部と、隔離体85、および86との接触箇所において本体部32の下方向端部と隔離体85、および86との間に第1担体50が介在する。すなわち本体部32の下端部と隔離体85、および86とによって第1担体50の幅方向両端部が挟持される。
 図9には隔離部80の上方向の開口を通過した、第1担体50を担持する本体部32が隔離部80の下方向に向けてさらに挿入されていく様子が示されている。図9の(a)に示すように、隔離部80の内部空間において第1担体50は水平方向(XY平面上)の板状に保たれる。その後、図9の(b)に示すように、本体部32の挿入に伴って第1担体50の幅方向両端部は、隔離体85、および86に接触して上方向に折り曲げられる。さらに本体部32の挿入が進むと、図9の(c)に示すように、本体部32の挿入が第1担体50を介して隔離体85、および86によって阻まれる。
 このように本体部32は、最大挿入長(それ以上進めない挿入位置)において挿入が停止される。なお、最大挿入長において隔離部80の支持部81、および82、もしくは一体化壁のいずれか一方、または支持部81、および82、ならびに一体化壁の両方の本体部32に対向する面と、本体部32の対応する側面において凹凸形状を有してもよい。このような凹凸形状が互いに篏合することによって、本体部32に最大挿入長の位置で隔離部80が固定される。よって第1担体50は隔離部80によって、幅方向両端部が上方向に折り曲げられた状態で本体部32に固定され、結果として図8の(b)に示すように第1担体50の幅方向中央部が最下面に位置する形態となる。この形態のまま、図8の(c)に示すように本体部32を下方向へと移動させ、第1担体50の幅方向中央部のみを第2担体60へと押圧する。
 なお、変形例においては第1担体50を本体部32が担持する構成を説明したが、第1方向への展開後に、隔離部80の隔離体85、および86の上面に、隔離体85、および隔離体86を架橋するように第1担体50を載置し、その後、本体部32を挿入することで図8の(b)の形態を実現してもよい。
 [別例1]
 次に、以上の変形例において説明した本体部32と隔離部80の形状について、図10、および図11を用いて別の例をさらに説明する。
 図10は変形例における試料分離装置100aの別例1における隔離部80bの断面図である。また図11は変形例における試料分離装置100aの別例2における隔離部80cの断面図である。図10、および図11には、別例1、および別例2に係る本体部32c、および32b、ならびに隔離部80b、および80cが図示されている。また図中の本体部32c、および32bは、第1担体50を担持している。
 図10に示すように、変形例における本体部32は、実施の形態の第2例に示した本体部32cのような形状であってもよい。図10に示す別例1においては、本体部32cは第1担体50を担持した状態で隔離部80bに挿入される。この時、隔離部80bの上方向から本体部32cを挿入しようとすると、隔離部80bの支持部81b、および82bの上面と本体部32cの下方向端面33cとによって第1担体50が切断されるため、隔離部80bはY軸方向の一端のみにて一体化壁が形成される構成が望ましい。このような構成によって隔離部80bのY軸方向における解放された他端からY軸方向に沿って本体部32cを挿入して図10の(a)に示す形態を実現する。
 もしくは、第1担体50を隔離部80b内にて成形してもよい。この場合には、本体部32の下方向端面33cと支持部81b、および82bの下方向端面とが面一となる本体部32cの挿入位置において凹凸構造等による第1固定箇所を有し、面一となる面上において第1担体50を形成する。面一となる面上において第1方向への展開を行った後に、本体部32cをさらに下方向に挿入することで第1担体50を本体部32cの下方向端面33cが担持する構成を実現できる。
 その後、本体部32cを隔離部80bに対して下方向に移動させることで、図10の(b)に示すように第1担体50の幅方向両端部を上方向に折り曲げる。ただし、前述の変形例と異なり、隔離体85b、および86bと本体部32cとは接触しない構成であるため、第1担体50の幅方向中央部が隔離部80bよりも下方までせり出すような所定の挿入長において、本体部32cの挿入が停止されるよう、凹凸構造等による第2固定箇所を備えることが望ましい。
 このようにして別例1においても、図10の(c)に示すように、第1担体50の幅方向中央部が最下面に位置する形態となる。この形態のまま、本体部32cを下方向へと移動させ、第1担体50の幅方向中央部のみを第2担体60へと押圧する。
 [別例2]
 さらに図11に示すように、変形例において本体部32を弾性体で構成した場合は、比較例に示した本体部32bのような形状であってもよい。図11に示す別例2においては、本体部32bに対して第1担体50を担持した状態で隔離部80cを取り付ける。より具体的には、隔離部80cの支持部81c、および82c、ならびにY軸方向両端の一体化壁によって形成される上方向への開口に対して、本体部32bを下端側から挿入することで図11の(a)に示すような形態を実現する。
 その後、本体部32bを隔離部80cに対して下方向に移動させることで、図11の(b)に示すように第1担体50の幅方向両端部が本体部32bの下方向端面33bと、隔離体85c、および86cとによって挟まれる。この際、本体部32bは、本体部32bの弾性によって変形する。より具体的には、隔離部80cに対して本体部32bを下方向に移動させた際、本体部32bの幅方向両端部は第1担体50を介して隔離体85c、および86cにより、移動が制限される。
 さらに本体部32bの移動を継続すると、本体部32bの幅方向両端部は上下方向に押しつぶされる。一方本体部32bの幅方向中央部は隔離体85cと隔離体86cとの間に入り込むように移動を継続する。このようにして本体部32bは、幅方向の両端部の変形によって中央部が押し出される。第1担体50は、本体部32bの下方向端面33bの変形に沿って同様に変形することで本体部32bとともに隔離部80cから押し出される。
 なお隔離体85c、および86cの上面において、離隔の方向に向かうにつれて下方向に傾くような傾斜を設けることで、本体部32bの幅方向中央部が押し出される力(つまり、第1担体50が押し出される力)が発生しやすくなる構成としてもよい。
 以上のようにして押し出された第1担体50は、幅方向中央部において隔離体85c、および86cよりも下方に配置される。よって別例2においても、第1担体50の幅方向中央部が最下面に位置する形態となる。この形態のまま、本体部32bを下方向へと移動させ、第1担体50の幅方向中央部のみを第2担体60へと押圧する。
 なお、以上に示した変形例における試料分離装置100aの動作は、逐次実施される手動の操作によって実現されてもよく、各動作に適当な動力装置を備え、適切なプログラムによって動力装置が制御される自動制御によって実現されてもよい。
 以上のように、変形例における試料分離装置100aによれば、試料分離装置100aはさらに、両端部と第2担体60との間に設けられる隔離部80を備えてもよい。これにより、第1担体50のうち、第2担体60への転写が不要な第1担体50の幅方向における端部について、第2担体60への接触を防止でき、第2担体60への不要な試料40の混入を防ぐことができる。
 また、隔離部80は、第1担体50の中央部に対応するギャップだけ離間して設けられた隔離体85、および86(2つの離間箇所)を有し、幅方向におけるギャップの長さは第1担体50の幅の0.7倍未満であってもよい。これにより、第1担体50のうち幅方向における端部が全体の30%以上となる部分の第2担体60への接触を防止でき、第2担体60への不要な試料40の混入を防ぐことができる。
 また、試料分離装置100aはさらに、両端部と第2担体60との間に設けられる隔離部80を備え、隔離部80は、第1担体50の中央部に対応するギャップだけ離間して設けられた隔離体85、および86(2つの離間箇所)を有し、下方向端面33(端面)における幅方向の長さは、幅方向におけるギャップの長さよりも短い構成であってもよい。これにより、隔離体85、および隔離体86の間隙から本体部32を用いて、第1担体50の幅方向における中央部のみを第2担体60へと押圧できる。
 また、幅方向におけるギャップの長さは、第1担体50の幅の0.7倍未満であってもよい。これにより、第1担体50のうち幅方向における端部が全体の30%以上となる部分の第2担体60への接触を防止でき、第2担体60への不要な試料40の混入を防ぐことができる。
 また、変形例における試料分離方法によれば、両端部と第2担体60との間には隔離部80が設けられ、加圧ステップにおいて、隔離部80を用いて両端部の第2担体60への接触を防止してもよい。これにより、第1担体50のうち、第2担体60への転写が不要な第1担体50の幅方向における端部について、第2担体60への接触を防止でき、第2担体60への不要な試料40の混入を防ぐことができる。
 (その他の実施の形態)
 以上、例示的な各実施の形態について説明したが、本願の請求の範囲は、これらの実施の形態に限定されるものではない。添付の請求の範囲に記載された主題の新規な教示および利点から逸脱することなく、上記各実施の形態においてさまざまな変形を施してもよく、上記各実施の形態の構成要素を任意に組み合わせて他の実施の形態を得てもよいことを、当業者であれば容易に理解するであろう。したがって、そのような変形例や他の実施の形態も本開示に含まれる。
 たとえば本実施の形態においては、第1担体50を第2担体60の上面に向けて押圧する構成について説明した。このため第1担体50に含まれる試料40は第2担体60の上面へと転写される。しかしながら、第1担体50と第2担体60との転写における位置関係はこのような形態に限定されない。
 たとえば、板状の第2担体60において、供給ストリップ24によって展開溶媒26が供給される第2担体60の側端に向けて、第1担体50を押圧する構成であってもよい。またもしくは、載置部22において、載置部22を上下方向に貫通する孔を設け、載置された第2担体60に対して下方向から第1担体50を押圧する構成であってもよい。
 また、本実施の形態において第2方向における試料40の展開は展開溶媒26を用いたクロマトグラフィの原理を用いた展開としたが、必要な組成の第2担体、および電圧印加部を備える電気泳動法を用いてもよい。
 また、上記実施の形態では、加圧により第1担体50を第2担体60に押圧する構成について説明したが、加圧によって押圧することなく、本開示の効果を得ることもできる。これについて、図12を用いて具体的に説明する。図12は、本形態における試料分離方法を説明するフローチャートである。図12では、図4に示した上記の実施の形態におけるフローチャートに比べて異なる点について説明する。
 図12に示すように、本形態においては、ステップS104aおよびステップS105aが上記の実施の形態に比べて異なる。具体的には、第2担体60への展開溶媒26の供給が開始(S103)された後、展開溶媒26が第1担体50の接触箇所を過ぎたか否かを判定する(S104a)。展開溶媒26が第1担体50の接触箇所を過ぎたと判定されなかった場合(S104aでNo)、ステップS104aを繰り返す。一方で、展開溶媒26が第1担体50の接触箇所を過ぎたと判定された場合(S104aでYes)、第2担体60に第1担体50の幅の50%未満の幅を有する転写領域を接触させる(S105a)。
 第1担体50が第2担体60に接触していれば、拡散等によって第1担体50に含まれる展開された試料41~44は、第2担体60へと浸潤することで転写される。したがって、第1担体50のうち、当該第1担体50の幅方向における一部のみが第2担体60に接触するように構成することで、第1担体50のうちの転写領域にあたる当該一部の箇所に含まれる展開された試料41~44が転写される。このようにして上記の実施の形態と同等の効果を得ることができる。
 上記の実施の形態においては、第1担体50の幅方向における中央部に含まれる展開された試料41~44が主として転写される構成について説明したが、ここでは特に、転写される箇所は、中央部に限られない。例えば、第1担体50の幅方向における両端部のうち、少なくとも一方の端部を含まない領域を転写することで、第1担体50の当該少なくとも一方の端部において生じたスマイリングの、第2方向への展開に対する影響を低減してもよい。つまり、第1担体50に含まれる試料40のうち、第1担体50の幅方向中央部を含む転写領域に含まれる一部の試料が第2担体60へと転写される構成であればよい。
 また、図12に示すように、転写領域の幅は、第1担体50の幅の50%未満の領域であるとよい。言い換えると、転写領域の幅は、第1担体50の幅の0.5倍未満であるとよい。第1担体50における展開で生じるスマイリングのパターンは、略線対称であるとみなすことができ、当該対象線は、第1担体50を幅方向に二分する線である場合が多い。したがって、転写領域の幅を第1担体50の幅の50%未満とすることで、1担体50において生じたスマイリングの、第2方向への展開に対する影響を低減できる。
 以降は、図4に示したフローチャートと同様であるため、説明を省略する。
 以上説明したように、試料を第1方向に展開する長尺板状の第1担体50、および第1方向とは異なる第2方向に展開する第2担体60により、試料40を二次元分離する試料分離方法であって、電圧印加により第1担体50において試料40を展開する展開ステップと、試料が展開された第1担体50を第2担体60に接触させて、第1担体50に含まれる試料40を第2担体60へ転写する転写ステップと、を含み、転写ステップでは、第1担体50に含まれる試料40のうち、第1担体50の幅よりも小さい幅を有する転写領域に含まれる試料が第2担体60へ転写されることで、本開示における試料分離方法が実現されてもよい。
 これによれば、第1担体50において生じたスマイリングの、第2方向への展開に対する影響を低減できる。
 また、例えば、転写領域の幅は、第1担体50の幅の0.5倍未満であってもよい。
 第1担体50における展開で生じるスマイリングのパターンは、略線対称であるとみなすことができ、当該対象線は、第1担体50を幅方向に二分する線である場合が多い。したがって、転写領域の幅は、第1担体50の幅の0.5倍未満であれば、第1担体50において生じたスマイリングの、第2方向への展開に対する影響をより確実に低減できる。よって、電気泳動を伴う二次元試料展開において、より分離能の高い試料分離が実施できる。
 また本実施の形態の変形例において、第1担体50を下方向端面33に有する本体部32に対して隔離部80を取り付ける構成とした。たとえば隔離部80の内部空間に第1担体50が配置されるような第1位置、および第1担体50が隔離部80から下方に押し出される第2位置をスライド等によって切り替え可能な隔離部80の構成としてもよい。この場合、本体部32に対して隔離部80を下方向に押し付けるような荷重、もしくはばねなどの人為的な圧力によって通常は第1位置に保たれる。さらに、本体部32が担持する第1担体50が第2担体60に対して押圧される際に、隔離部80が適切な押上げ部により押し上げられて第2位置となる。
 本開示における試料分離装置100、および試料分離方法によれば、二次元試料展開においてこれまで困難であった移動度の近い成分どうしを分離することができ、代謝系の網羅的解析などといった、多成分分析が想定される研究分野の発展に寄与することができる。
  10 容器部
  11 収容部
  12 第1側壁
  13 第2側壁
  14 第3側壁
  15 第4側壁
  16 第1端面
  17 第2端面
  18 第3端面
  19 第4端面
  20 蓋部
  21 凹部
  22 載置部
  23 二段構造
  24 供給ストリップ
  25 押し出し部
  26 展開溶媒
  27 主蓋部
  28 開口部
  29 スライド部
  30 試料供給デバイス
  31 荷重部
  32、32a、32b、32c、32d 本体部
  33、33a、33b、33c、33d 下方向端面
  40 試料
  41、42、43、44、45a、45b、45c、46a、46b、46c、47a、47b、47c、48a、48b、48c、401、402、403、404、405、406、407、408、409、410、411、412、413、414、415、416、417、418 展開された試料
  50、50a 第1担体
  60、60a 第2担体
  61 境界線
  71 微量体積計
  72 電圧印加部
  73、74 電極
  80、80a、80b、80c 隔離部
  81、81b、81c、82、82b、82c 支持部
  83、83b、83c、84、84b、84c 支持壁
  85、85a、85b、85c、86、86a、86b、86c 隔離体
 100、100a 試料分離装置
 451a、451b、451c、461a、461b、461c、471a、471b、471c 予測通過範囲

Claims (14)

  1.  試料を第1方向に展開する長尺板状の第1担体、および前記第1方向とは異なる第2方向に展開する第2担体により、前記試料を二次元分離する試料分離装置であって、
     前記第1担体に電圧を印加するための電圧印加部と、
     前記第1担体から前記第2担体へ前記試料を転写するための加圧部と、を備え、
     前記加圧部は、
     前記第1担体を加圧し、
     前記第1担体の幅方向における両端部を除く中央部を、前記両端部と比較して強く、前記第2担体へ押圧する
     試料分離装置。
  2.  前記加圧部は、前記第1担体を前記第2担体に押圧する端面を有し、
     前記端面は、前記幅方向の長さが前記第1担体の幅よりも短い
     請求項1に記載の試料分離装置。
  3.  前記加圧部は、前記端面を先端に有する本体部を含み、
     前記本体部の前記幅方向の長さが前記端面に近づくにつれて短くなる
     請求項2に記載の試料分離装置。
  4.  前記端面における前記幅方向の長さは、前記第1担体の幅の0.7倍未満である
     請求項2、または3に記載の試料分離装置。
  5.  前記加圧部は、前記第1担体を前記第2担体に押圧する、前記第1担体に向けて凸となる曲面を有する
     請求項1に記載の試料分離装置。
  6.  前記試料分離装置はさらに、前記両端部と前記第2担体との間に設けられる隔離部を備える
     請求項1~5のいずれか1項に記載の試料分離装置。
  7.  前記隔離部は、前記第1担体の中央部に対応するギャップだけ離間して設けられた2つの離間箇所を有し、
     前記幅方向における前記ギャップの長さは前記第1担体の幅の0.7倍未満である
     請求項6に記載の試料分離装置。
  8.  前記試料分離装置はさらに、前記両端部と前記第2担体との間に設けられる隔離部を備え、
     前記隔離部は、前記第1担体の中央部に対応するギャップだけ離間して設けられた2つの離間箇所を有し、
     前記端面における前記幅方向の長さは、前記幅方向における前記ギャップの長さよりも短い
     請求項2~4のいずれか1項に記載の試料分離装置。
  9.  前記幅方向における前記ギャップの長さは、前記第1担体の幅の0.7倍未満である
     請求項8に記載の試料分離装置。
  10.  試料を第1方向に展開する長尺板状の第1担体、および前記第1方向とは異なる第2方向に展開する第2担体により、前記試料を二次元分離する試料分離方法であって、
     電圧印加により第1担体において前記試料を展開する展開ステップと、
     前記試料が展開された前記第1担体を前記第2担体に押圧する加圧ステップと、を含み、
     前記加圧ステップにおいて、前記第1担体の幅方向における両端部を除く中央部を、前記両端部と比較して強く、前記第2担体へ加圧する
     試料分離方法。
  11.  前記加圧ステップにおいて、加圧部を用いて前記試料が展開された前記第1担体を前記第2担体に押圧し、
     前記加圧部は、前記第1担体を前記第2担体に押圧する端面を有し、
     前記端面は、前記幅方向の長さが前記第1担体の幅よりも短い
     請求項10に記載の試料分離方法。
  12.  前記両端部と前記第2担体との間には隔離部が設けられ、
     前記加圧ステップにおいて、前記隔離部を用いて前記両端部の前記第2担体への接触を防止する
     請求項10、または11に記載の試料分離方法。
  13.  試料を第1方向に展開する長尺板状の第1担体、および前記第1方向とは異なる第2方向に展開する第2担体により、前記試料を二次元分離する試料分離方法であって、
     電圧印加により第1担体において前記試料を展開する展開ステップと、
     前記試料が展開された前記第1担体を前記第2担体に接触させて、前記第1担体に含まれる前記試料を前記第2担体へ転写する転写ステップと、を含み、
     前記転写ステップでは、前記第1担体に含まれる前記試料のうち、前記第1担体の幅よりも小さい幅を有する転写領域に含まれる試料が前記第2担体へ転写される
     試料分離方法。
  14.  前記転写領域の幅は、前記第1担体の幅の0.5倍未満である
     請求項13に記載の試料分離方法。
PCT/JP2019/036858 2018-09-28 2019-09-19 試料分離装置および試料分離方法 WO2020066860A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-185039 2018-09-28
JP2018185039 2018-09-28

Publications (1)

Publication Number Publication Date
WO2020066860A1 true WO2020066860A1 (ja) 2020-04-02

Family

ID=69949379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/036858 WO2020066860A1 (ja) 2018-09-28 2019-09-19 試料分離装置および試料分離方法

Country Status (1)

Country Link
WO (1) WO2020066860A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6275248A (ja) * 1985-09-28 1987-04-07 Shimadzu Corp 二次元電気泳動装置
JPS62115160U (ja) * 1985-11-25 1987-07-22
JPS62115166U (ja) * 1985-12-19 1987-07-22
JP2007064848A (ja) * 2005-08-31 2007-03-15 Sharp Corp 自動化2次元電気泳動装置および装置構成器具
JP2013117541A (ja) * 2013-02-26 2013-06-13 Sharp Corp 電気泳動用器具および電気泳動装置
JP2013228317A (ja) * 2012-04-26 2013-11-07 Sharp Corp 等電点電気泳動用試験具およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6275248A (ja) * 1985-09-28 1987-04-07 Shimadzu Corp 二次元電気泳動装置
JPS62115160U (ja) * 1985-11-25 1987-07-22
JPS62115166U (ja) * 1985-12-19 1987-07-22
JP2007064848A (ja) * 2005-08-31 2007-03-15 Sharp Corp 自動化2次元電気泳動装置および装置構成器具
JP2013228317A (ja) * 2012-04-26 2013-11-07 Sharp Corp 等電点電気泳動用試験具およびその製造方法
JP2013117541A (ja) * 2013-02-26 2013-06-13 Sharp Corp 電気泳動用器具および電気泳動装置

Similar Documents

Publication Publication Date Title
EP3232559B1 (en) Vibration energy harvester
US10170261B2 (en) Contact device and electromagnetic contactor using same
JP2000065855A (ja) 半導体加速度スイッチ、半導体加速度スイッチの製造方法
Campbell et al. Peptide and protein drug analysis by MS: challenges and opportunities for the discovery environment
KR20160019425A (ko) 게터층을 갖는 mems 소자
Janini et al. On-column sample enrichment for capillary electrophoresis sheathless electrospray ionization mass spectrometry: evaluation for peptide analysis and protein identification
WO2020066860A1 (ja) 試料分離装置および試料分離方法
JPH05173638A (ja) 並進装置
JP2019179040A (ja) 電気生理学のための置換可能な接地電極、電極再活性化装置、および関連する方法およびシステム
EP3401689B1 (en) Capacitive microelectromechanical accelerometer
US9972926B2 (en) Electric component socket
US20150160156A1 (en) Cassette for electrophoresis and electrophoresis method
WO2019031437A1 (ja) 光モジュール、及び、光モジュールの製造方法
Kleitz et al. New compounds for ISFETs
KR101808465B1 (ko) 디바이스 검사 방법
Stava et al. Single-ion channel recordings on quartz substrates
JP2001196021A (ja) ターゲット移動装置
CN104385574B (zh) 支撑组件
JP6841926B2 (ja) 電気泳動装置に用いるキャピラリカートリッジ
Hong et al. Liquid-phase ion trap for ion trapping, transfer, and sequential ejection in solutions
CN111392688A (zh) 基于阳极键合的封装装置及方法
WO2008147576A1 (en) Electrostatically driven high speed micro droplet switch
JPH0618622A (ja) Icの試験装置
US20220080410A1 (en) Pre-Shaping Fluidic Sample in a Planar Way Before Processing
JP7227101B2 (ja) 分析チップデバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19864828

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19864828

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP