WO2020066855A1 - 端末装置、基地局装置、および、通信方法 - Google Patents

端末装置、基地局装置、および、通信方法 Download PDF

Info

Publication number
WO2020066855A1
WO2020066855A1 PCT/JP2019/036836 JP2019036836W WO2020066855A1 WO 2020066855 A1 WO2020066855 A1 WO 2020066855A1 JP 2019036836 W JP2019036836 W JP 2019036836W WO 2020066855 A1 WO2020066855 A1 WO 2020066855A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdsch
ofdm symbol
pdcch
transmission
symbol
Prior art date
Application number
PCT/JP2019/036836
Other languages
English (en)
French (fr)
Inventor
友樹 吉村
中嶋 大一郎
智造 野上
翔一 鈴木
渉 大内
李 泰雨
会発 林
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2020066855A1 publication Critical patent/WO2020066855A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/10Interfaces between hierarchically different network devices between terminal device and access point, i.e. wireless air interface

Definitions

  • the present invention relates to a terminal device, a base station device, and a communication method.
  • Priority is claimed on Japanese Patent Application No. 2018-181506 filed on Sep. 27, 2018, the content of which is incorporated herein by reference.
  • LTE Long Term Evolution
  • EUTRA Evolved Universal Terrestrial Radio Access is a third generation partnership project (3GPP: 3 rd Generation Partnership Project).
  • 3GPP 3 rd Generation Partnership Project
  • a base station device is also called an eNodeB (evolved NodeB), and a terminal device is also called a UE (User Equipment).
  • LTE is a cellular communication system in which a plurality of areas covered by a base station device are arranged in a cell shape. A single base station device may manage a plurality of serving cells.
  • IMT International Mobile Telecommunication
  • NR New Radio
  • eMBB enhanced Mobile Broadband
  • mMTC massive Machine Type Communication
  • URLLC Ultra Reliable and Low Latency Communication
  • One embodiment of the present invention provides a terminal device that performs efficient communication, a communication method used for the terminal device, a base station device that performs efficient communication, and a communication method used for the base station device.
  • a first aspect of the present invention is a terminal device, and includes an upper layer processing unit that acquires an upper layer parameter related to PDCCH setting, and a reception that receives a PDSCH and the PDCCH used for scheduling the PDSCH.
  • the transmission start symbol of the PDSCH indicated by the time domain resource allocation field included in the DCI format included in the PDCCH is earlier than the first OFDM symbol of the PDCCH, and the transmission of the PDSCH is started.
  • the symbol is an OFDM symbol next to the end OFDM symbol of the PDCCH.
  • a second aspect of the present invention is a base station apparatus, which transmits an upper layer processing unit that provides an upper layer parameter related to PDCCH setting, and the PDCCH used for scheduling the PDSCH and the PDSCH.
  • a transmission unit wherein the transmission start symbol of the PDSCH indicated by the time domain resource allocation field included in the DCI format included in the PDCCH is before the first OFDM symbol of the PDCCH, and the transmission of the PDSCH is started.
  • the OFDM symbol is an OFDM symbol next to the terminal OFDM symbol of the PDCCH.
  • a third aspect of the present invention is a communication method used for a terminal device, wherein a step of acquiring an upper layer parameter related to PDCCH setting, and receiving the PDSCH and the PDCCH used for scheduling the PDSCH are performed. And the transmission start symbol of the PDSCH indicated by the time domain resource allocation field included in the DCI format included in the PDCCH is before the first OFDM symbol of the PDCCH, and the transmission of the PDSCH is started.
  • the OFDM symbol is an OFDM symbol next to the terminal OFDM symbol of the PDCCH.
  • a fourth aspect of the present invention is a communication method used for a base station apparatus, wherein a step of providing an upper layer parameter related to the setting of a PDCCH, and the step of providing the PDCCH used for scheduling the PDSCH and the PDSCH. Transmitting, the transmission start symbol of the PDSCH indicated by the time domain resource allocation field included in the DCI format included in the PDCCH is earlier than the first OFDM symbol of the PDCCH, and the transmission of the PDSCH is started.
  • the OFDM symbol is the next OFDM symbol after the OFDM symbol at the end of the PDCCH.
  • the terminal device can efficiently communicate. Further, the base station device can communicate efficiently.
  • FIG. 1 is a conceptual diagram of a wireless communication system according to one aspect of the present embodiment.
  • 7 is an example showing a relationship among N slot symb , subcarrier interval setting ⁇ , and CP setting according to an aspect of the present embodiment.
  • FIG. 9 is a schematic diagram illustrating an example of a resource grid in a subframe according to an aspect of the present embodiment.
  • FIG. 11 is a diagram illustrating an example of a relationship between a PUCCH format and a length N PUCCH symb of the PUCCH format according to an aspect of the present embodiment. It is a figure showing an example of a monitoring opportunity of a search field set concerning one mode of this embodiment.
  • FIG. 1 is a conceptual diagram of a wireless communication system according to one aspect of the present embodiment.
  • 7 is an example showing a relationship among N slot symb , subcarrier interval setting ⁇ , and CP setting according to an aspect of the present embodiment.
  • FIG. 9 is a schematic diagram illustrating an
  • FIG. 1 is a schematic block diagram illustrating a configuration of a terminal device 1 according to one aspect of the present embodiment.
  • FIG. 2 is a schematic block diagram illustrating a configuration of a base station device 3 according to one aspect of the present embodiment.
  • FIG. 3 is a diagram illustrating an example of transmission of a physical signal according to one aspect of the present embodiment.
  • FIG. 3 is a diagram illustrating an example of transmission of a physical signal according to one aspect of the present embodiment.
  • FIG. 9 is a diagram illustrating an example of DMRS mapping related to a PDSCH according to an aspect of the present embodiment.
  • FIG. 1 is a conceptual diagram of a wireless communication system according to one aspect of the present embodiment.
  • the wireless communication system includes terminal devices 1A to 1C and a base station device 3 (BS # 3: @ Base @ station # 3).
  • BS # 3 Base @ station # 3
  • the terminal devices 1A to 1C are also referred to as terminal devices 1.
  • the base station apparatus 3 may include one or both of an MCG (Master Cell Group) and an SCG (Secondary Cell Group).
  • the MCG is a group of serving cells that includes at least PCell (Primary @ Cell).
  • the SCG is a group of serving cells including at least a PSCell (Primary @ Secondary @ Cell).
  • the PCell may be a serving cell provided based on an initial connection.
  • the MCG may include one or more SCells (Secondary @ Cells).
  • the SCG may include one or more SCells.
  • PCell is also called a primary cell.
  • PSCell is also called a primary secondary cell.
  • SCell is also called a secondary cell.
  • the MCG may be configured with a serving cell on EUTRA.
  • the SCG may be configured with a serving cell based on the next-generation standard (NR: ⁇ New ⁇ Radio).
  • At least OFDM Orthogonal Frequency Division Multiplex
  • An OFDM symbol is a unit of the time domain of OFDM.
  • An OFDM symbol includes at least one or more subcarriers.
  • the OFDM symbol is converted to a time-continuous signal (time-continuous signal) in baseband signal generation.
  • CP-OFDM Cyclic ⁇ Prefix ⁇ - ⁇ Orthogonal ⁇ Frequency ⁇ Division ⁇ Multiplex
  • DFT-s-OFDM Discrete Fourier Transform—spread—Orthogonal Frequency Division Multiplex
  • DFT-s-OFDM may be provided by applying Transform @ precoding to CP-OFDM.
  • the OFDM symbol may be a name including a CP added to the OFDM symbol. That is, a certain OFDM symbol may be configured to include the certain OFDM symbol and the CP added to the certain OFDM symbol.
  • the subcarrier spacing configuration ⁇ may be set to 0, 1, 2, 3, 4, and / or 5.
  • the setting ⁇ of the subcarrier interval may be given by an upper layer parameter.
  • a time unit (time unit) Tc is used to represent the length of the time domain.
  • ⁇ f max may be the maximum value of the subcarrier interval supported in the wireless communication system according to an aspect of the present embodiment.
  • ⁇ f ref may be 15 kHz.
  • N f, ref may be 2048.
  • the constant ⁇ may be a value indicating the relationship between the reference subcarrier interval and Tc .
  • the constant ⁇ may be used for subframe length.
  • the number of slots included in the subframe may be given based at least on the constant ⁇ .
  • ⁇ f ref is a reference subcarrier interval
  • N f, ref is a value corresponding to the reference subcarrier interval.
  • Transmission of a signal in the downlink and / or transmission of a signal in the uplink is configured by a 10 ms frame.
  • the frame is configured to include ten subframes.
  • the length of the subframe is 1 ms.
  • the length of the frame may be given regardless of the subcarrier interval ⁇ f. That is, the frame setting may be given regardless of ⁇ .
  • the length of the subframe may be given regardless of the subcarrier interval ⁇ f. That is, the setting of the subframe may be given regardless of ⁇ .
  • the number and index of slots included in a subframe may be given.
  • the slot number n mu s is from 0 to N subframe in a subframe may be given in ascending order in the range of mu slot -1.
  • the number and index of the slots included in the frame may be given.
  • the slot number n mu s, f may be given from 0 in the frame N frame, in ascending order in the range of mu slot -1.
  • Consecutive N slot symb OFDM symbols may be included in one slot.
  • the N slot symb may be provided based at least on part or all of a CP (Cyclic Prefix) setting.
  • the CP setting may be given based at least on upper layer parameters.
  • the CP configuration may be provided based at least on dedicated RRC signaling.
  • the slot number is also called a slot index.
  • FIG. 2 is an example illustrating a relationship between N slot symb , a setting ⁇ of a subcarrier interval, and a CP setting according to an aspect of the present embodiment.
  • N slot symb 14
  • N slot symb 12
  • Antenna ports are defined by the fact that the channel on which a symbol is transmitted at one antenna port can be estimated from the channel on which other symbols are transmitted at the same antenna port. If the large-scale property of a channel to which a symbol is transmitted at one antenna port can be estimated from the channel to which a symbol is transmitted at another antenna port, the two antenna ports are QCL (Quasi-Co-Located). ).
  • the large-scale characteristics may include at least the long-range characteristics of the channel. Large-scale characteristics include delay spread, delay Doppler spread, Doppler shift Doppler shift, average gain, average delay, average delay, and beam parameters spatialDxparameters. At least some or all of them may be included.
  • the receiving beam assumed by the receiving side with respect to the first antenna port and the receiving beam assumed by the receiving side with respect to the second antenna port May be the same. That the first antenna port and the second antenna port are QCL with respect to the beam parameter means that the transmission beam assumed by the receiving side for the first antenna port and the transmission beam assumed by the receiving side for the second antenna port May be the same.
  • the terminal device 1 assumes that the two antenna ports are QCL if the large-scale characteristics of the channel on which the symbol is transmitted on one antenna port can be estimated from the channel on which the symbol is transmitted on another antenna port. May be done.
  • the fact that the two antenna ports are QCLs may mean that the two antenna ports are QCLs.
  • a resource grid defined by N size, ⁇ grid, x N RB sc subcarriers and N subframe, ⁇ symb OFDM symbols is provided for setting a subcarrier interval and setting a carrier.
  • N size, ⁇ grid, x may indicate the number of resource blocks provided for setting ⁇ of the subcarrier interval for carrier x.
  • N size, ⁇ grid, x may indicate the bandwidth of the carrier.
  • N size, ⁇ grid, and x may correspond to the value of the upper layer parameter CarrierBandwidth.
  • Carrier x may indicate either a downlink carrier or an uplink carrier. That is, x may be either “DL” or “UL”.
  • N RB sc may indicate the number of subcarriers included in one resource block.
  • N RB sc may be 12.
  • At least one resource grid may be provided for each antenna port p and / or for each setting ⁇ of the subcarrier spacing and / or for each setting of the transmission direction.
  • the transmission direction includes at least a downlink (DL: DownLink) and an uplink (UL: UpLink).
  • DL: DownLink downlink
  • UL: UpLink uplink
  • a set of parameters including at least part or all of the antenna port p, the setting ⁇ of the subcarrier interval, and the setting of the transmission direction is also referred to as a first wireless parameter set. That is, one resource grid may be provided for each first wireless parameter set.
  • a carrier included in a serving cell is referred to as a downlink carrier (or a downlink component carrier).
  • a carrier included in a serving cell is referred to as an uplink carrier (uplink component carrier).
  • the downlink component carrier and the uplink component carrier are collectively referred to as a component carrier (or a carrier).
  • the type of the serving cell may be any of PCell, PSCell, and SCell.
  • the PCell may be a serving cell identified based on at least the cell ID obtained from the SS / PBCH in the initial connection.
  • the SCell may be a serving cell used in carrier aggregation.
  • the SCell may be a serving cell provided at least based on dedicated RRC signaling.
  • Each element in the resource grid provided for each first radio parameter set is called a resource element.
  • a resource element is specified by a frequency domain index k sc and a time domain index l sym .
  • the resource element is identified by a frequency domain index k sc and a time domain index l sym .
  • the resource element specified by the frequency domain index k sc and the time domain index l sym is also referred to as a resource element (k sc , l sym ).
  • the frequency domain index k sc indicates any value from 0 to N ⁇ RB N RB sc ⁇ 1.
  • N ⁇ RB may be the number of resource blocks given for setting ⁇ of the subcarrier interval.
  • N ⁇ RB may be N size, ⁇ grid, x .
  • the frequency domain index k sc may correspond to the subcarrier index k sc .
  • the time domain index l sym may correspond to the OFDM symbol index l sym .
  • FIG. 3 is a schematic diagram illustrating an example of a resource grid in a subframe according to an aspect of the present embodiment.
  • the horizontal axis is the index l sym in the time domain
  • the vertical axis is the index k sc in the frequency domain.
  • the frequency domain resource grid including N ⁇ RB N RB sc subcarriers.
  • the time domain of the resource grid may include 14.2 ⁇ OFDM symbols.
  • One resource block is configured to include N RB sc subcarriers.
  • the time domain of a resource block may correspond to one OFDM symbol.
  • the time domain of the resource block may correspond to 14 OFDM symbols.
  • the time domain of a resource block may correspond to one or more slots.
  • the time domain of the resource block may correspond to one subframe.
  • the terminal device 1 may be instructed to perform transmission and reception using only a subset of the resource grid.
  • a subset of the resource grid is also referred to as BWP, which may be provided based at least on higher layer parameters and / or some or all of the DCI.
  • BWP is also called a carrier band part (Carrier @ Bandwidth @ Part).
  • the terminal device 1 may not be instructed to perform transmission and reception using all sets of the resource grid.
  • the terminal device 1 may be instructed to perform transmission and reception using some frequency resources in the resource grid.
  • One BWP may be configured from a plurality of resource blocks in the frequency domain.
  • One BWP may be configured from a plurality of resource blocks that are continuous in the frequency domain.
  • BWP set for a downlink carrier is also referred to as downlink BWP.
  • BWP set for an uplink carrier is also referred to as uplink BWP.
  • the BWP may be a subset of the carrier's band.
  • One or more downlink BWPs may be set for each of the serving cells.
  • One or more uplink BWPs may be configured for each of the serving cells.
  • One or a plurality of downlink BWPs set for the serving cell may be configured as one active downlink BWP.
  • the downlink BWP switch is used to deactivate one active downlink BWP and to activate inactive downlink BWPs other than the one active downlink BWP.
  • the downlink BWP switch may be controlled by a BWP field included in the downlink control information.
  • the downlink BWP switch may be controlled based on upper layer parameters.
  • the DL-SCH may be received in the active downlink BWP.
  • the PDCCH may be monitored.
  • a PDSCH may be received.
  • DL DL-SCH is not received in inactive downlink BWP.
  • the PDCCH is not monitored. No CSI for inactive downlink BWP is reported.
  • two or more downlink BWPs may not be set as the active downlink BWP.
  • one uplink BWP may be set as the active uplink BWP.
  • the uplink BWP switch is used to deactivate one active uplink BWP and activate (deactivate) inactive uplink BWPs other than the one active uplink BWP.
  • An uplink BWP switch may be controlled by a BWP field included in downlink control information. Uplink BWP switches may be controlled based on upper layer parameters.
  • ⁇ ⁇ ⁇ ⁇ UL-SCH may be transmitted in active uplink BWP.
  • the PUCCH may be transmitted.
  • the PRACH may be transmitted.
  • the SRS may be transmitted.
  • U UL-SCH is not transmitted in inactive uplink BWP.
  • PUCCH is not transmitted in the inactive uplink BWP.
  • the PRACH is not transmitted.
  • no SRS is transmitted.
  • two or more uplink BWPs may not be set as the active uplink BWP.
  • the upper layer parameters are parameters included in the upper layer signal.
  • the upper layer signal may be RRC (Radio Resource Control) signaling or MAC CE (Medium Access Control Control Element).
  • the upper layer signal may be an RRC layer signal or a MAC layer signal.
  • the upper layer signal may be common RRC signaling.
  • the common RRC signaling may include at least some or all of the following features C1 to C3. Feature C1) Feature mapped to BCCH logical channel or CCCH logical channel C2) Feature C3) including at least ReconfigurationWithSync information element Mapped to PBCH
  • the ReconfigurationWithSync information element may include information indicating a setting commonly used in the serving cell.
  • the setting commonly used in the serving cell may include at least the setting of the PRACH.
  • the setting of the PRACH may indicate at least one or a plurality of random access preamble indexes.
  • the configuration of the PRACH may indicate at least a time / frequency resource of the PRACH.
  • Common RRC signaling may include at least a common RRC parameter.
  • the common RRC parameter may be a cell-specific parameter commonly used in the serving cell.
  • the upper layer signal may be dedicated RRC signaling.
  • the dedicated RRC signaling may include at least some or all of the following features D1 to D2. Feature D1) Feature Mapped to DCCH Logical Channel D2) Does Not Include ReconfigurationWithSync Information Element
  • MIB Master Information Block
  • SIB System Information Block
  • higher layer messages that are mapped to the DCCH logical channel and that include at least the ReconfigurationWithSync information element may be included in the common RRC signaling.
  • an upper layer message that is mapped to the DCCH logical channel and does not include the ReconfigurationWithSync information element may be included in dedicated RRC signaling.
  • SIB may indicate at least a time index of an SS (Synchronization Signal) block.
  • An SS block (SS @ block) is also called an SS / PBCH block (SS / PBCH @ block).
  • the SIB may include at least information related to the PRACH resource.
  • the SIB may include at least information related to the setting of the initial connection.
  • the ReconfigurationWithSync information element may include at least information related to the PRACH resource.
  • the ReconfigurationWithSync information element may include at least information related to the setting of the initial connection.
  • the dedicated RRC signaling may include at least a dedicated RRC parameter.
  • the dedicated RRC parameter may be a (UE-specific) parameter used exclusively for the terminal device 1.
  • Dedicated RRC signaling may include at least common RRC parameters.
  • RRC parameters and dedicated RRC parameters are also referred to as upper layer parameters.
  • An uplink physical channel may correspond to a set of resource elements that carry information that occurs in higher layers.
  • An uplink physical channel is a physical channel used in an uplink carrier. In the wireless communication system according to one aspect of the present embodiment, at least some or all of the following uplink physical channels are used.
  • ⁇ PUCCH Physical Uplink Control CHannel
  • PUSCH Physical Uplink Shared CHannel
  • PRACH Physical Random Access CHannel
  • PUCCH may be used to transmit uplink control information (UCI: Uplink Control Information).
  • the uplink control information includes channel state information (CSI: Channel State Information), scheduling request (SR: Scheduling Request), transport block (TB: Transport block, MAC PDU: Medium Access Control Protocol Data Unit, DL-SCH: Downlink).
  • CSI Channel State Information
  • SR Scheduling Request
  • transport block Transport block
  • MAC PDU Medium Access Control Protocol Data Unit
  • DL-SCH Downlink.
  • HARQ-ACK Hybrid Automatic Repeat Request ACKnowledgement
  • Uplink control information may be multiplexed on PUCCH.
  • the multiplexed PUCCH may be transmitted.
  • the HARQ-ACK information may include at least a HARQ-ACK bit corresponding to the transport block.
  • the HARQ-ACK bit may indicate ACK (acknowledgement) or NACK (negative-acknowledgement) corresponding to the transport block.
  • the ACK may be a value indicating that decoding of the transport block has been successfully completed.
  • NACK may be a value indicating that the transport block has not been successfully decoded.
  • the HARQ-ACK information may include at least one HARQ-ACK codebook including one or more HARQ-ACK bits. That the HARQ-ACK bit corresponds to one or more transport blocks may be that the HARQ-ACK bit corresponds to a PDSCH including the one or more transport blocks.
  • the HARQ-ACK bit may indicate ACK or NACK corresponding to one CBG (Code Block Group) included in the transport block.
  • HARQ-ACK information is also referred to as HARQ-ACK, HARQ feedback, HARQ information, HARQ control information, and HARQ-ACK message.
  • the scheduling request may be used at least to request PUSCH resources for initial transmission.
  • the scheduling request bit may be used to indicate either a positive SR (positive SR) or a negative SR (negative SR).
  • the fact that the scheduling request bit indicates a positive SR is also referred to as “a positive SR is transmitted”.
  • a positive SR may indicate that the terminal device 1 requests a PUSCH resource for initial transmission.
  • a positive SR may indicate that the scheduling request is triggered by higher layers.
  • the positive SR may be transmitted when the upper layer indicates to transmit a scheduling request.
  • the fact that the scheduling request bit indicates a negative SR is also referred to as “a negative SR is transmitted”.
  • a negative SR may indicate that PUSCH resources for initial transmission are not required by the terminal device 1.
  • a negative SR may indicate that the scheduling request is not triggered by higher layers.
  • a negative SR may be sent if the upper layer does not indicate to send a scheduling request.
  • the scheduling request bit may be used to indicate either a positive SR or a negative SR for any one or more SR configurations (SR configuration).
  • Each of the one or more SR settings may correspond to one or more logical channels.
  • the positive SR for a certain SR setting may be a positive SR for any or all of one or more logical channels corresponding to the certain SR setting.
  • a negative SR may not correspond to a particular SR setting. Indicating a negative SR may indicate a negative SR for all SR settings.
  • the SR setting may be a scheduling request ID (Scheduling Request ID).
  • the scheduling request ID may be given by an upper layer parameter.
  • the channel state information may include at least a part or all of a channel quality indicator (CQI: Channel Quality Indicator), a precoder matrix indicator (PMI: Precoder Matrix Indicator), and a rank indicator (RI: Rank Indicator).
  • CQI is an index related to channel quality (for example, propagation strength)
  • PMI is an index indicating a precoder
  • RI is an index indicating the transmission rank (or the number of transmission layers).
  • Channel state information may be provided based at least on receiving a physical signal (eg, CSI-RS) used at least for channel measurements.
  • the channel state information may include a value selected by the terminal device 1.
  • the channel state information may be selected by the terminal device 1 based at least on receiving a physical signal used at least for channel measurement.
  • Channel measurements include interference measurements.
  • the channel state information report is a report of the channel state information.
  • the channel state information report may include CSI part 1 and / or CSI part 2.
  • CSI part 1 may be configured to include at least part or all of wideband channel quality information (wideband CQI), wideband precoder matrix indicator (wideband ⁇ PMI), and rank indicator.
  • the number of bits of the CSI part 1 multiplexed on the PUCCH may be a predetermined value regardless of the value of the rank indicator of the channel state information report.
  • the number of bits of the CSI part 2 multiplexed on the PUCCH may be given based on the value of the rank indicator of the channel state information report.
  • the rank indicator of the channel state information report may be a value of the rank indicator used for calculating the channel state information report.
  • the rank indicator of the channel state information may be a value indicated by a rank indicator field included in the channel state information report.
  • the set of rank indicators allowed in the channel state information report may be a part or all of 1 to 8.
  • the set of rank indicators allowed in the channel state information report may be given at least based on the parameter RankRestriction of the upper layer. If the set of rank indicators allowed in the channel state information report includes only one value, the rank indicator of the channel state information report may be the one value.
  • the priority may be set for the channel state information report.
  • the priority of the channel state information report may be set based on the time domain behavior of the channel state information report, the content type of the channel state information report, the index of the channel state information report, and / or the channel state information report.
  • the measurement may be given based at least on part or all of the index of the serving cell for which the measurement is set.
  • the setting relating to the time domain behavior of the channel state information report is performed such that the channel state information report is performed aperiodicly, the channel state information report is performed semi-persistently, or , Or a setting indicating any of quasi-static.
  • the content type of the channel state information report may indicate whether or not the channel state information report includes Layer 1 RSRP (Reference Signals Received Power).
  • the index of the channel state information report may be given by an upper layer parameter.
  • PUCCH supports PUCCH format (PUCCH format 0 to PUCCH format 4).
  • the PUCCH format may be transmitted on the PUCCH.
  • the transmission of the PUCCH format may be the transmission of the PUCCH.
  • FIG. 4 is a diagram illustrating an example of the relationship between the PUCCH format and the length N PUCCH symb of the PUCCH format according to an aspect of the present embodiment.
  • the length N PUCCH symb of PUCCH format 0 is 1 or 2OFDM symbol.
  • the length N PUCCH symb of PUCCH format 1 is any one of 4 14OFDM symbols.
  • the length N PUCCH symb of PUCCH format 2 is 1 or 2OFDM symbol.
  • the length N PUCCH symb of PUCCH format 3 is any one of 4 14OFDM symbols.
  • the length N PUCCH symb of PUCCH format 4 is any one of 4 14OFDM symbols.
  • the PUSCH is used at least for transmitting a transport block (TB, MAC PDU, UL-SCH).
  • the PUSCH may be used to transmit at least some or all of the transport blocks, HARQ-ACK information, channel state information, and scheduling requests.
  • the PUSCH is used at least for transmitting the random access message 3.
  • PRACH is used at least for transmitting a random access preamble (random access message 1).
  • the PRACH includes an initial connection establishment procedure, a handover procedure, a connection re-establishment procedure, synchronization (timing adjustment) for PUSCH transmission, and a part or all of a resource request for the PUSCH. May be used at least to indicate
  • the random access preamble may be used to notify the base station device 3 of an index (random access preamble index) given from an upper layer of the terminal device 1.
  • the random access preamble may be given by cyclically shifting the Zadoff-Chu sequence corresponding to the physical root sequence index u.
  • the Zadoff-Chu sequence may be generated based on the physical root sequence index u.
  • a plurality of random access preambles may be defined in one serving cell (serving @ cell).
  • the random access preamble may be specified based at least on the index of the random access preamble. Different random access preambles corresponding to different indexes of the random access preamble may correspond to different combinations of the physical root sequence index u and the cyclic shift.
  • the physical root sequence index u and the cyclic shift may be given based at least on information included in the system information.
  • the physical root sequence index u may be an index for identifying a sequence included in the random access preamble.
  • the random access preamble may be specified based at least on the physical root sequence index u.
  • the following uplink physical signals are used in uplink wireless communication.
  • the uplink physical signal may not be used for transmitting information output from the upper layer, but is used by the physical layer.
  • ⁇ UL DMRS UpLink Demodulation Reference Signal
  • SRS Sounding Reference Signal
  • UL PTRS UpLink Phase Tracking Reference Signal
  • ⁇ UL ⁇ DMRS is related to the transmission of PUSCH and / or PUCCH.
  • UL @ DMRS is multiplexed with PUSCH or PUCCH.
  • the base station apparatus 3 may use UL @ DMRS in order to perform the PUSCH or PUCCH propagation path correction.
  • transmitting the PUSCH and the UL @ DMRS related to the PUSCH together is simply referred to as transmitting the PUSCH.
  • transmitting the PUCCH and the UL @ DMRS related to the PUCCH together is simply referred to as transmitting the PUCCH.
  • UL @ DMRS related to PUSCH is also referred to as UL @ DMRS for PUSCH.
  • UL @ DMRS related to PUCCH is also referred to as UL @ DMRS for PUCCH.
  • the SRS may not be related to PUSCH or PUCCH transmission.
  • the base station device 3 may use the SRS for measuring the channel state.
  • the SRS may be transmitted at the end of a subframe in an uplink slot or a predetermined number of OFDM symbols from the end.
  • ⁇ UL ⁇ PTRS may be a reference signal used at least for phase tracking.
  • the UL @ PTRS may be associated with a UL @ DMRS group that includes at least an antenna port used for one or more UL @ DMRS.
  • the association between the UL @ PTRS and the UL @ DMRS group may be that at least a part or all of the antenna ports of the UL @ PTRS and the antenna ports included in the UL @ DMRS group are QCLs.
  • the UL @ DMRS group may be identified based at least on the antenna port with the smallest index in the UL @ DMRS included in the UL @ DMRS group.
  • UL @ PTRS may be mapped to the antenna port with the smallest index in one or more antenna ports to which one codeword is mapped.
  • UL @ PTRS may be mapped to a first layer if one codeword is at least mapped to the first layer and the second layer.
  • UL @ PTRS may not be mapped to the second layer.
  • the index of the antenna port to which UL @ PTRS is mapped may be given based at least on the downlink control information.
  • the following downlink physical channel is used in downlink wireless communication from the base station device 3 to the terminal device 1.
  • the downlink physical channel is used by the physical layer to transmit information output from an upper layer.
  • ⁇ PBCH Physical Broadcast Channel
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • $ PBCH is at least used to transmit MIB and / or PBCH payloads.
  • the PBCH payload may include at least information indicating an index related to the transmission timing of the SS block.
  • the PBCH payload may include information related to the SS block identifier (index).
  • the PBCH may be transmitted based on a predetermined transmission interval.
  • the PBCH may be transmitted at 80 ms intervals.
  • the PBCH may be transmitted at an interval of 160 ms.
  • the content of the information included in the PBCH may be updated every 80 ms. Part or all of the information included in the PBCH may be updated every 160 ms.
  • the PBCH may be configured with 288 subcarriers.
  • the PBCH may be configured to include 2, 3, or 4 OFDM symbols.
  • the MIB may include information related to the identifier (index) of the SS block.
  • the MIB may include information indicating a slot number in which the PBCH is transmitted, a subframe number, and / or at least a part of a radio frame number.
  • the PDCCH may be used at least for transmission of downlink control information (DCI: Downlink Control Information).
  • the PDCCH may be transmitted including at least downlink control information.
  • Downlink control information is also called DCI format.
  • the downlink control information may indicate at least either a downlink grant (downlink @ grant) or an uplink grant (uplink @ grant).
  • the DCI format used for PDSCH scheduling is also called a downlink DCI format.
  • the DCI format used for PUSCH scheduling is also called an uplink DCI format.
  • a downlink grant is also called a downlink assignment (downlink @ assignment) or a downlink assignment (downlink @ allocation).
  • the uplink DCI format includes at least one or both of DCI format 0_0 and DCI format 0_1.
  • the DCI format 0_0 includes at least a part or all of 1A to 1F.
  • the DCI format specifying field may be used at least to indicate whether the DCI format including the DCI format specifying field corresponds to one or a plurality of DCI formats.
  • the one or more DCI formats may be provided based at least on part or all of DCI format 1_0, DCI format 1_1, DCI format 0_0, and / or DCI format 0_1.
  • the frequency domain resource allocation field may be at least used to indicate frequency resource allocation for a PUSCH scheduled by a DCI format including the frequency domain resource allocation field.
  • the time domain resource allocation field may be used at least to indicate time resource allocation for a PUSCH scheduled according to the DCI format including the time domain resource allocation field.
  • the frequency hopping flag field may be used at least to indicate whether frequency hopping is applied to a PUSCH scheduled according to the DCI format including the frequency hopping flag field.
  • the MCS field may be used at least to indicate a modulation scheme for a PUSCH scheduled by a DCI format including the MCS field and / or a part or all of a target coding rate.
  • the target coding rate may be a target coding rate for a transport block of the PUSCH.
  • the size of the transport block (TBS: Transport Block Size) may be given based at least on the target coding rate.
  • the first CSI request field is used at least to indicate CSI reporting.
  • the size of the first CSI request field may be a predetermined value.
  • the size of the first CSI request field may be zero, one, two, or three.
  • the DCI format 0_1 is configured to include at least a part or all of 2A to 2G.
  • the BWP field may be used to indicate the uplink BWP to which the PUSCH scheduled according to DCI format 0_1 is mapped.
  • the second CSI request field is used at least to indicate CSI reporting.
  • the size of the second CSI request field may be given at least based on an upper layer parameter ReportTriggerSize.
  • the downlink DCI format includes at least one or both of DCI format 1_0 and DCI format 1_1.
  • the DCI format 1_0 includes at least a part or all of 3A to 3H.
  • the timing indication field from the PDSCH to the HARQ feedback may be a field indicating the timing K1.
  • the index of the slot including the last OFDM symbol of the PDSCH is slot n
  • the index of the PUCCH including at least HARQ-ACK corresponding to the transport block included in the PDSCH or the index of the slot including the PUSCH is n + K1. Is also good.
  • the index of the slot including the last OFDM symbol of the PDSCH is slot n
  • the first OFDM symbol of the PUCCH or the first OFDM symbol of the PUSCH including at least HARQ-ACK corresponding to the transport block included in the PDSCH is The index of the included slot may be n + K1.
  • the PUCCH resource indication field may be a field indicating an index of one or more PUCCH resources included in the PUCCH resource set.
  • the DCI format 1_1 is configured to include at least a part or all of 4A to 4J.
  • the BWP field may be used to indicate a downlink BWP to which a PDSCH scheduled according to DCI format 1_1 is mapped.
  • DCI format 2 may include a parameter used for transmission power control of PUSCH or PUCCH.
  • the number of resource blocks indicates the number of resource blocks in the frequency domain unless otherwise specified.
  • One physical channel may be mapped to one serving cell.
  • One physical channel may be mapped to one carrier band part set to one carrier included in one serving cell.
  • the terminal device 1 is provided with one or a plurality of control resource sets (CORESET: COntrol REsource SET).
  • the terminal device 1 monitors the PDCCH in one or a plurality of control resource sets.
  • the control resource set may indicate a time-frequency domain to which one or more PDCCHs can be mapped.
  • the control resource set may be an area where the terminal device 1 monitors the PDCCH.
  • the control resource set may be configured by continuous resources (Localized @ resource).
  • the control resource set may be configured by discontinuous resources (distributed @ resource).
  • the unit of mapping of the control resource set may be a resource block.
  • the unit of mapping of the control resource set may be six resource blocks.
  • the unit of mapping of the control resource set may be an OFDM symbol.
  • the unit of mapping of the control resource set may be one OFDM symbol.
  • the frequency domain of the control resource set may be provided based on at least an upper layer signal and / or downlink control information.
  • the time domain of the control resource set may be given based on at least an upper layer signal and / or downlink control information.
  • a certain control resource set may be a common control resource set (Common control resource set).
  • the common control resource set may be a control resource set commonly set for a plurality of terminal devices 1.
  • the common control resource set may be given based at least on MIB, SIB, common RRC signaling, and part or all of the cell ID.
  • the time resources and / or frequency resources of the control resource set configured to monitor the PDCCH used for SIB scheduling may be provided based at least on the MIB.
  • a certain control resource set may be a dedicated control resource set (Dedicated control resource set).
  • the dedicated control resource set may be a control resource set set to be used exclusively for the terminal device 1.
  • a dedicated control resource set may be provided based at least on dedicated RRC signaling.
  • a set of PDCCH candidates monitored by the terminal device 1 may be defined in terms of a search area. That is, the set of PDCCH candidates monitored by the terminal device 1 may be given by the search area.
  • the search area may be configured to include one or more PDCCH candidates of one or more aggregation levels (Aggregationgreglevel).
  • the aggregation level of the PDCCH candidates may indicate the number of CCEs constituting the PDCCH.
  • the terminal device 1 may monitor at least one or a plurality of search areas in a slot where DRX (Discontinuous reception) is not set. DRX may be given based at least on upper layer parameters. The terminal device 1 may monitor at least one or a plurality of search area sets (Search ⁇ space ⁇ set) in slots in which DRX is not set.
  • DRX discontinuous reception
  • the terminal device 1 may monitor at least one or a plurality of search area sets (Search ⁇ space ⁇ set) in slots in which DRX is not set.
  • the search area set may include at least one or a plurality of search areas.
  • the type of the search area set is a type 0 PDCCH common search area (common @ search ⁇ space), a type 0a PDCCH common search area, a type 1 PDCCH common search area, a type 2 PDCCH common search area, a type 3 PDCCH common search area, and / or a UE-specific PDCCH search. It may be any of the regions.
  • the type 0 PDCCH common search area, the type 0a PDCCH common search area, the type 1 PDCCH common search area, the type 2 PDCCH common search area, and the type 3 PDCCH common search area are also referred to as CSS (Common Search Space).
  • the UE-specific PDCCH search area is also called USS (UE ⁇ specific ⁇ Search ⁇ Space).
  • Each of the search area sets may be associated with one control resource set.
  • Each of the search area sets may be at least included in one control resource set.
  • an index of a control resource set associated with the search area set may be given.
  • a monitoring interval (Monitoring @ periodicity) of the search area set may be set for each of the search area sets.
  • the monitoring interval of the search area set may indicate at least an interval between slots in which the terminal device 1 monitors the search area set.
  • the upper layer parameter indicating at least the monitoring interval of the search area set may be given for each search area set.
  • a monitoring offset (Monitoring @ offset) of the search area set may be set.
  • the monitoring offset of the search area set may indicate at least a shift (offset) of the index of the slot in which the terminal apparatus 1 monitors the search area set from a reference index (for example, slot # 0).
  • An upper layer parameter indicating at least the monitoring offset of the search area set may be given for each search area set.
  • a monitoring pattern of the search area set may be set for each of the search area sets.
  • the monitoring pattern of the search area set may indicate the first OFDM symbol for the search area set to be monitored.
  • the monitoring pattern of the search area set may be given by a bitmap indicating the leading OFDM symbol in one or a plurality of slots.
  • the upper layer parameter indicating at least the monitoring pattern of the search area set may be given for each search area set.
  • the monitoring opportunity of the search area set (Monitoring @ occasion) is given based at least on a part or all of the monitoring interval of the search area set, the monitoring offset of the search area set, the monitoring pattern of the search area set, and / or the DRX setting. You may.
  • FIG. 5 is a diagram illustrating an example of a monitoring opportunity of a search area set according to an aspect of the present embodiment.
  • a search area set 91 and a search area set 92 are set in the primary cell 301
  • a search area set 93 is set in the secondary cell 302
  • a search area set 94 is set in the secondary cell 303.
  • a block indicated by a grid line indicates a search area set 91
  • a block indicated by an ascending diagonal indicates a search area set 92
  • a block indicated by an ascending diagonal indicates a search area set 93
  • a horizontal line indicates a search area set 93.
  • the block shown shows the search area set 94.
  • the monitoring interval of the search area set 91 is set to one slot, the monitoring offset of the search area set 91 is set to 0 slot, and the monitoring pattern of the search area set 91 is [1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]. That is, the monitoring opportunity of the search area set 91 is the first OFDM symbol (OFDM symbol # 0) and the eighth OFDM symbol (OFDM symbol # 7) in each of the slots.
  • the monitoring interval of the search area set 92 is set to 2 slots, the monitoring offset of the search area set 92 is set to 0 slot, and the monitoring pattern of the search area set 92 is [1, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0]. That is, the monitoring opportunity of the search area set 92 is the first OFDM symbol (OFDM symbol # 0) in each of the even-numbered slots.
  • the monitoring interval of the search area set 93 is set to 2 slots, the monitoring offset of the search area set 93 is set to 0 slot, and the monitoring pattern of the search area set 93 is [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]. That is, the monitoring opportunity of the search area set 93 is the eighth OFDM symbol (OFDM symbol # 7) in each of the even-numbered slots.
  • the monitoring interval of the search area set 94 is set to two slots, the monitoring offset of the search area set 94 is set to one slot, and the monitoring pattern of the search area set 94 is [1, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0]. That is, the monitoring opportunity of the search area set 94 is the first OFDM symbol (OFDM symbol # 0) in each of the odd-numbered slots.
  • the type 0 PDCCH common search area may be at least used for a DCI format with a CRC (Cyclic Redundancy Check) sequence scrambled by an SI-RNTI (System Information-Radio Network Temporary Identifier).
  • the setting of the type 0 PDCCH common search area may be given based on at least four bits of LSB (Least Significant Bits) of the upper layer parameter PDCCH-ConfigSIB1.
  • the upper layer parameter PDCCH-ConfigSIB1 may be included in the MIB.
  • the setting of the type-0 PDCCH common search area may be given based at least on the upper layer parameter SearchSpaceZero.
  • the interpretation of the bits of the upper layer parameter SearchSpaceZero may be the same as the interpretation of the four bits of the LSB of the upper layer parameter PDCCH-ConfigSIB1.
  • the setting of the type-0 PDCCH common search area may be given based at least on the upper layer parameter SearchSpaceSIB1.
  • the upper layer parameter SearchSpaceSIB1 may be included in the upper layer parameter PDCCH-ConfigCommon.
  • the PDCCH detected in the type 0 PDCCH common search area may be used at least for scheduling of the PDSCH transmitted including the SIB1.
  • SIB1 is a type of SIB.
  • SIB1 may include scheduling information of SIBs other than SIB1.
  • the terminal device 1 may receive the upper layer parameter PDCCH-ConfigCommon in EUTRA.
  • the terminal device 1 may receive the upper layer parameter PDCCH-ConfigCommon in the MCG.
  • the type 0a PDCCH common search area may be used at least for a DCI format with a CRC (Cyclic Redundancy Check) sequence scrambled by an SI-RNTI (System Information-Radio Network Temporary Identifier).
  • the setting of the type 0a PDCCH common search area may be given at least based on the upper layer parameter SearchSpaceOtherSystemInformation.
  • the upper layer parameter SearchSpaceOtherSystemInformation may be included in SIB1.
  • the upper layer parameter SearchSpaceOtherSystemInformation may be included in the upper layer parameter PDCCH-ConfigCommon.
  • the PDCCH detected in the type-0 PDCCH common search area may be at least used for scheduling the PDSCH transmitted including SIBs other than SIB1.
  • the type 1 PDCCH common search area is accompanied by a CRC sequence scrambled by RA-RNTI (Random Access-Radio Network Temporary Identifier) and / or a CRC sequence scrambled by TC-RNTI (Temporary Common-Radio Network Temporary Identifier). It may be used at least for the DCI format.
  • the RA-RNTI may be given based at least on the time / frequency resource of the random access preamble transmitted by the terminal device 1.
  • the TC-RNTI may be provided by a PDSCH (also called Message 2 or Random Access Response) scheduled in a DCI format with a CRC sequence scrambled by the RA-RNTI.
  • the type-1 PDCCH common search area may be provided based at least on the parameter ra-SearchSpace of the upper layer.
  • the parameter ra-SearchSpace of the upper layer may be included in SIB1.
  • the upper layer parameter ra-SearchSpace may be included in the upper layer parameter PDCCH-ConfigCommon.
  • the type 2 PDCCH common search area may be used for a DCI format with a CRC sequence scrambled by P-RNTI (Paging- Radio Network Temporary Identifier).
  • P-RNTI Paging- Radio Network Temporary Identifier
  • the P-RNTI may be used at least for transmission of a DCI format including information for notifying a change of the SIB.
  • the type-2 PDCCH common search area may be given based at least on the upper layer parameter PagingSearchSpace.
  • the parameter PagingSearchSpace of the upper layer may be included in SIB1.
  • the upper layer parameter PagingSearchSpace may be included in the upper layer parameter PDCCH-ConfigCommon.
  • the Type 3 PDCCH common search region may be used for a DCI format with a CRC sequence scrambled by a C-RNTI (Cell-Radio Network Network Temporary Identifier).
  • the C-RNTI may be provided at least based on a PDSCH (also called message 4 or contention resolution) scheduled in a DCI format with a CRC sequence scrambled by the TC-RNTI.
  • the type 3 PDCCH common search region may be a search region set given when the parameter SearchSpaceType of the upper layer is set to common.
  • the UE-specific PDCCH search region may be at least used for a DCI format with a CRC sequence scrambled by C-RNTI.
  • the type-0 PDCCH common search area, the type-0a PDCCH common search area, the type-1 PDCCH common search area, and / or the type-2 PDCCH common search area includes a CRC scrambled by the C-RNTI. It may be used at least for the DCI format with sequences.
  • the search area set given at least based on any of the parameters PagingSearchSpace may be used at least for the DCI format with a CRC sequence scrambled with C-RNTI.
  • the common control resource set may include at least one of CSS and USS.
  • the dedicated control resource set may include at least one or both of CSS and USS.
  • the physical resources of the search area are configured by control channel constituent units (CCE: Control @ Channel @ Element).
  • CCE Control @ Channel @ Element
  • the CCE is composed of six resource element groups (REG: Resource ⁇ Element ⁇ Group).
  • the REG may be configured by one OFDM symbol of one PRB (Physical Resource Block). That is, the REG may include 12 resource elements (RE: Resource @ Element).
  • PRB is also simply called RB (Resource @ Block: resource block).
  • the PDSCH is used at least for transmitting a transport block.
  • the PDSCH may be used at least for transmitting the random access message 2 (random access response).
  • the PDSCH may be used at least to transmit system information including parameters used for initial access.
  • the following downlink physical signals are used in downlink wireless communication.
  • the downlink physical signal may not be used for transmitting information output from the upper layer, but is used by the physical layer.
  • SS Synchronization signal
  • DL DMRS DownLink DeModulation Reference Signal
  • CSI-RS Channel State Information-Reference Signal
  • DL PTRS DownLink Phase Tracking Reference Signal
  • TRS Track Reference Signal
  • the synchronization signal is used for the terminal device 1 to synchronize in the downlink frequency domain and / or the time domain.
  • the synchronization signal includes PSS (Primary @ Synchronization @ Signal) and SSS (Secondary @ Synchronization @ Signal).
  • the SS block (SS / PBCH block) is configured to include at least a part or all of the PSS, the SSS, and the PBCH. Some or all of the antenna ports of the PSS, the SSS, and the PBCH included in the SS block may be the same. Some or all of the PSS, SSS, and PBCH included in the SS block may be mapped to consecutive OFDM symbols. Each of the PSS, SSS, and some or all of the PBCH included in the SS block may have the same CP setting. The setting ⁇ of the subcarrier interval of each of the PSS, the SSS, and a part or all of the PBCH included in the SS block may be the same.
  • ⁇ DL ⁇ DMRS is related to the transmission of PBCH, PDCCH and / or PDSCH.
  • DL @ DMRS is multiplexed on PBCH, PDCCH, and / or PDSCH.
  • the terminal device 1 may use the PBCH, the PDCCH, or the DL @ DMRS corresponding to the PDSCH in order to perform channel correction of the PBCH, the PDCCH, or the PDSCH.
  • transmitting the PBCH and the DL @ DMRS associated with the PBCH together is referred to as transmitting the PBCH.
  • the fact that the PDCCH and the DL @ DMRS related to the PDCCH are transmitted together is simply referred to as the transmission of the PDCCH.
  • DL @ DMRS related to PBCH is also referred to as DL @ DMRS for PBCH.
  • the DL @ DMRS associated with PDSCH is also referred to as DL @ DMRS for PDSCH.
  • the DL @ DMRS associated with the PDCCH is also referred to as the DL @ DMRS associated with the PDCCH.
  • ⁇ DL ⁇ DMRS may be a reference signal individually set in the terminal device 1.
  • the DL DMRS sequence may be given at least based on parameters individually set in the terminal device 1.
  • the DL DMRS sequence may be provided based on at least a UE-specific value (eg, C-RNTI, etc.).
  • DL @ DMRS may be sent separately for PDCCH and / or PDSCH.
  • CSI-RS may be a signal used at least for calculating channel state information.
  • the CSI-RS pattern assumed by the terminal device may be given at least by a parameter of an upper layer.
  • PTRS may be a signal used at least for phase noise compensation.
  • the pattern of the PTRS assumed by the terminal device may be given based on at least a parameter of an upper layer and / or DCI.
  • the DL PTRS may be associated with a DL DMRS group that includes at least an antenna port used for one or more DL DMRS.
  • the association between the DL @ PTRS and the DL @ DMRS group may be that part or all of the antenna port of the DL @ PTRS and the antenna port included in the DL @ DMRS group are at least QCL.
  • the DL @ DMRS group may be identified based at least on the antenna port with the smallest index in the DL @ DMRS included in the DL @ DMRS group.
  • TRS may be a signal used at least for time and / or frequency synchronization.
  • the TRS pattern assumed by the terminal device may be given based at least on upper layer parameters and / or DCI.
  • the downlink physical channel and the downlink physical signal are also referred to as a downlink signal.
  • the uplink physical channel and the uplink physical signal are also called an uplink signal.
  • the downlink signal and the uplink signal are also collectively called a physical signal.
  • the downlink signal and the uplink signal are also collectively called a signal.
  • the downlink physical channel and the uplink physical channel are collectively referred to as a physical channel.
  • the downlink physical signal and the uplink physical signal are collectively referred to as a physical signal.
  • BCH Broadcast CHannel
  • UL-SCH Uplink-Shared CHannel
  • DL-SCH Downlink-Shared CHannel
  • a channel used in a medium access control (MAC) layer is called a transport channel.
  • the unit of the transport channel used in the MAC layer is also called a transport block (TB) or MAC @ PDU.
  • HARQ Hybrid Automatic Repeat reQuest
  • the transport block is a unit of data that the MAC layer delivers to the physical layer.
  • transport blocks are mapped to codewords, and modulation processing is performed for each codeword.
  • the base station device 3 and the terminal device 1 exchange (transmit and receive) upper layer signals in the upper layer (higher layer).
  • the base station device 3 and the terminal device 1 may transmit and receive RRC signaling (RRC message: Radio Resource Control message, RRC information: Radio Resource Control information) in a radio resource control (RRC: Radio Resource Control) layer.
  • RRC Radio Resource Control
  • the base station device 3 and the terminal device 1 may transmit and receive MAC @ CE (Control @ Element) in the MAC layer.
  • RRC signaling and / or MAC @ CE are also referred to as higher layer signaling.
  • the PUSCH and PDSCH may be at least used for transmitting RRC signaling and / or MAC CE.
  • the RRC signaling transmitted by the PDSCH from the base station device 3 may be a common signaling to a plurality of terminal devices 1 in the serving cell. Signaling common to a plurality of terminal devices 1 in a serving cell is also referred to as common RRC signaling.
  • the RRC signaling transmitted by the PDSCH from the base station device 3 may be signaling dedicated to a certain terminal device 1 (also referred to as dedicated @ signaling or UE @ specific @ signaling). Signaling dedicated to the terminal device 1 is also referred to as dedicated RRC signaling.
  • Upper layer parameters unique to the serving cell may be transmitted using common signaling for a plurality of terminal devices 1 in the serving cell or dedicated signaling for a certain terminal device 1. UE-specific upper layer parameters may be transmitted to a certain terminal device 1 using dedicated signaling.
  • the BCCH Broadcast Control CHannel
  • the CCCH Common Control CHannel
  • the DCCH Dedicated Control CHannel
  • the BCCH is an upper layer channel used for transmitting MIB.
  • the CCCH Common ⁇ Control ⁇ CHannel
  • the DCCH is an upper layer channel used at least for transmitting dedicated control information (dedicated control information) to the terminal device 1.
  • the DCCH may be used, for example, for the terminal device 1 connected to the RRC.
  • the BCCH in the logical channel may be mapped to the BCH, DL-SCH, or UL-SCH in the transport channel.
  • the CCCH in a logical channel may be mapped to a DL-SCH or a UL-SCH in a transport channel.
  • the DCCH in the logical channel may be mapped to the DL-SCH or UL-SCH in the transport channel.
  • UUL-SCH in transport channel may be mapped to PUSCH in physical channel.
  • the DL-SCH in the transport channel may be mapped to the PDSCH in the physical channel.
  • the BCH in the transport channel may be mapped to the PBCH in the physical channel.
  • FIG. 6 is a schematic block diagram illustrating the configuration of the terminal device 1 according to one aspect of the present embodiment.
  • the terminal device 1 is configured to include a wireless transmission / reception unit 10 and an upper layer processing unit 14.
  • the wireless transmission / reception unit 10 includes at least a part or all of an antenna unit 11, an RF (RadioRFrequency) unit 12, and a baseband unit 13.
  • the upper layer processing unit 14 is configured to include at least a part or all of the medium access control layer processing unit 15 and the radio resource control layer processing unit 16.
  • the wireless transmission / reception unit 10 is also referred to as a transmission unit, a reception unit, or a physical layer processing unit.
  • the upper layer processing unit 14 outputs the uplink data (transport block) generated by a user operation or the like to the wireless transmission / reception unit 10.
  • the upper layer processing unit 14 performs processing of a MAC layer, a packet data integration protocol (PDCP: Packet Data Convergence Protocol) layer, a radio link control (RLC: Radio Link Control) layer, and an RRC layer.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • the medium access control layer processing unit 15 included in the upper layer processing unit 14 performs processing of the MAC layer.
  • the radio resource control layer processing unit 16 included in the upper layer processing unit 14 performs processing of the RRC layer.
  • the radio resource control layer processing unit 16 manages various setting information / parameters of the own device.
  • the radio resource control layer processing unit 16 sets various setting information / parameters based on the upper layer signal received from the base station device 3. That is, the radio resource control layer processing unit 16 sets various setting information / parameters based on information indicating various setting information / parameters received from the base station device 3.
  • the parameter may be an upper layer parameter.
  • the wireless transmission / reception unit 10 performs physical layer processing such as modulation, demodulation, encoding, and decoding.
  • the wireless transmission / reception unit 10 separates, demodulates, and decodes the received physical signal, and outputs the decoded information to the upper layer processing unit 14.
  • the wireless transmission / reception unit 10 generates a physical signal by modulating, encoding, and generating a baseband signal (conversion to a time continuous signal), and transmits the physical signal to the base station device 3.
  • the RF unit 12 converts a signal received via the antenna unit 11 into a baseband signal by orthogonal demodulation (down-conversion: down : convert), and removes unnecessary frequency components.
  • the RF unit 12 outputs the processed analog signal to the baseband unit.
  • the baseband unit 13 converts an analog signal input from the RF unit 12 into a digital signal.
  • the baseband unit 13 removes a portion corresponding to CP (Cyclic Prefix) from the converted digital signal, performs fast Fourier transform (FFT: Fast Fourier Transform) on the signal from which the CP has been removed, and converts the frequency domain signal. Extract.
  • FFT Fast Fourier Transform
  • the baseband unit 13 performs an inverse fast Fourier transform (IFFT) on the data to generate an OFDM symbol, adds a CP to the generated OFDM symbol, generates a baseband digital signal, The band digital signal is converted into an analog signal.
  • the baseband unit 13 outputs the converted analog signal to the RF unit 12.
  • IFFT inverse fast Fourier transform
  • the RF unit 12 removes extra frequency components from the analog signal input from the baseband unit 13 using a low-pass filter, up-converts the analog signal to a carrier frequency, and transmits the analog signal via the antenna unit 11. I do. Further, the RF unit 12 amplifies the power. Further, the RF unit 12 may have a function of controlling transmission power. The RF unit 12 is also called a transmission power control unit.
  • FIG. 7 is a schematic block diagram illustrating a configuration of the base station device 3 according to one aspect of the present embodiment.
  • the base station device 3 is configured to include a radio transmission / reception unit 30 and an upper layer processing unit 34.
  • the wireless transmission / reception unit 30 includes an antenna unit 31, an RF unit 32, and a baseband unit 33.
  • the upper layer processing unit 34 includes a medium access control layer processing unit 35 and a radio resource control layer processing unit 36.
  • the wireless transmission / reception unit 30 is also referred to as a transmission unit, a reception unit, or a physical layer processing unit.
  • the upper layer processing unit 34 performs processing of the MAC layer, PDCP layer, RLC layer, and RRC layer.
  • the medium access control layer processing unit 35 included in the upper layer processing unit 34 performs processing of the MAC layer.
  • the radio resource control layer processing unit 36 included in the upper layer processing unit 34 performs processing of the RRC layer.
  • the radio resource control layer processing unit 36 generates downlink data (transport block), system information, RRC message, MAC @ CE, and the like arranged in the PDSCH, or acquires the data from the upper node, and outputs the acquired data to the radio transmission / reception unit 30. .
  • the radio resource control layer processing unit 36 manages various setting information / parameters of each terminal device 1.
  • the radio resource control layer processing unit 36 may set various setting information / parameters for each of the terminal devices 1 via a signal of an upper layer. That is, the radio resource control layer processing unit 36 transmits / reports information indicating various setting information / parameters.
  • the function of the wireless transmission / reception unit 30 is the same as that of the wireless transmission / reception unit 10, and the description is omitted.
  • Each of the units provided with reference numerals 10 to 16 included in the terminal device 1 may be configured as a circuit.
  • Each of the units denoted by reference numerals 30 to 36 included in the base station device 3 may be configured as a circuit.
  • Some or all of the units denoted by reference numerals 10 to 16 included in the terminal device 1 may be configured as a memory and a processor connected to the memory.
  • Part or all of the units denoted by reference numerals 30 to 36 included in the base station device 3 may be configured as a memory and a processor connected to the memory.
  • Various aspects (operations and processing) according to the present embodiment may be realized (performed) in a memory included in the terminal device 1 and / or the base station device 3 and a processor connected to the memory.
  • the terminal device 1 may execute carrier sense before transmitting a physical signal.
  • the base station device 3 may perform carrier sense prior to transmission of the physical signal.
  • Carrier sensing may be to perform energy detection on a radio channel. Whether or not the physical signal can be transmitted may be given based on carrier sense performed prior to the transmission of the physical signal. For example, when the amount of energy detected by carrier sense performed prior to transmission of a physical signal is larger than a predetermined threshold, transmission of the physical channel may not be performed, or transmission may not be performed. May be determined. Further, when the amount of energy detected by carrier sense performed prior to the transmission of the physical signal is smaller than a predetermined threshold, transmission of the physical channel may be performed, or transmission may be performed. It may be determined.
  • transmission of the physical channel may or may not be performed. That is, when the amount of energy detected by the carrier sense performed prior to the transmission of the physical signal is equal to the predetermined threshold, transmission may be determined to be impossible or transmission may be determined. Good.
  • a procedure in which the transmission permission / non-permission of the physical channel is given based on the ⁇ carrier sense ⁇ is also called LBT (Listen Before Talk).
  • LBT Listen Before Talk
  • a situation in which transmission of a physical signal is determined to be impossible as a result of the LBT is also referred to as a busy state or busy.
  • the busy state may be a state in which the amount of energy detected by carrier sense is larger than a predetermined threshold.
  • an idle state or idle a situation in which it is determined that a physical signal can be transmitted as a result of the LBT.
  • the idle state may be a state in which the amount of energy detected by carrier sense is smaller than a predetermined threshold.
  • FIG. 8 is a diagram illustrating an example of transmission of a physical signal according to an aspect of the present embodiment.
  • the base station apparatus 3 assumes that transmission of a PDCCH in OFDM symbol # 0 and transmission of a PDSCH in OFDM symbol # 2 are started (BS # 3's @ assumption).
  • the OFDM symbol # 0 and the OFDM symbol # 1 are in the busy state, and the OFDM symbol # 2 is in the idle state. It starts from OFDM symbol # 3 (Actual transmission).
  • As shown in FIG. 8, when the LBT procedure is performed prior to the transmission of the physical signal, a difference may occur between the assumption regarding the transmission of the physical signal and the actual transmission of the physical signal. On the other hand, even if a difference between the assumption regarding the transmission of the physical signal and the actual transmission of the physical signal occurs, the configuration of the physical signal (the content of the information bit sequence transmitted by the physical signal, It is desirable that the size, mapping of modulation symbols, etc.) be not changed. Changing the configuration of a physical signal according to the LBT procedure may increase the load on a device (the terminal device 1 or the base station device 3) that transmits the physical signal.
  • FIG. 9 is a diagram illustrating an example of transmission of a physical signal according to an aspect of the present embodiment.
  • base station apparatus 3 assumes that transmission of a PDCCH in OFDM symbol # 0 and transmission of a PDSCH in OFDM symbol # 2 are started (BS # 3's assumption).
  • the OFDM symbol # 0 is in the busy state and the OFDM symbol # 1 is in the idle state, so that the actual transmission of the PDCCH starts from the OFDM symbol # 2.
  • Has been started (Actual transmission).
  • the time domain resource allocation field included in the DCI format included in the PDCCH indicates that transmission of PDSCH is started in OFDM symbol # 2 and that the number (duration) of OFDM symbols of the PDSCH is 4 OFDM symbols. May be shown. On the other hand, since OFDM symbol # 2 and OFDM symbol # 3 are used for PDCCH transmission, actual transmission of PDSCH may be started from OFDM symbol # 4.
  • the time domain resource allocation field includes an index of a slot in which the PDSCH is transmitted, an index of an OFDM symbol in which transmission of the PDSCH is started, a number of OFDM symbols in the PDSCH, and / or a mapping type of a DMRS related to the PDSCH. May be used to indicate at least part or all of
  • the TBS (Transport Block Size) of the transport block included in the PDSCH may be given based at least on the number of OFDM symbols of the PDSCH indicated by the time domain resource allocation field.
  • the mapping of the PDSCH modulation symbols may be provided based at least on the index of the OFDM symbol at which transmission of the PDSCH is started, as indicated by the time domain resource allocation field.
  • the mapping of the DMRS related to the PDSCH may be given based at least on the index of the OFDM symbol at which the transmission of the PDSCH is actually started.
  • the transmission start symbol of the scheduled PDSCH may be a value indicated based at least on the PDCCH used for PDSCH scheduling.
  • the transmission start symbol of the scheduled PDSCH may be a value indicated based at least on the time domain resource allocation field included in the DCI format included in the PDCCH used for PDSCH scheduling.
  • the number of OFDM symbols of the scheduled PDSCH may be a value indicated based at least on the PDCCH used for the PDSCH scheduling.
  • the number of OFDM symbols of the scheduled PDSCH may be a value indicated based at least on the time domain resource allocation field included in the DCI format included in the PDCCH used for PDSCH scheduling.
  • the transmission end symbol of the scheduled PDSCH may be a value indicated based at least on the PDCCH used for PDSCH scheduling.
  • the transmission end symbol of the scheduled PDSCH may be indicated based at least on the transmission start symbol of the scheduled PDSCH and the number of OFDM symbols of the scheduled PDSCH.
  • the scheduled transmission end symbol of the PDSCH may be indicated by a predetermined field of the DCI format included in the PDCCH used for the scheduling of the PDSCH.
  • the PDSCH transmission start symbol that is actually transmitted may be the index of the OFDM symbol at which the PDSCH transmission is started.
  • the transmission start symbol of the PDSCH actually transmitted may be different from the transmission start symbol of the scheduled PDSCH.
  • the transmission start symbol of the PDSCH that is actually transmitted may be given based at least on the index of the OFDM symbol at which the transmission of the PDCCH including the PDCCH used for scheduling the PDSCH ends.
  • the transmission start symbol of the PDSCH that is actually transmitted may be the index of the OFDM symbol next to the OFDM symbol at which the transmission of the PDCCH used for PDSCH scheduling ends.
  • the transmission start symbol of the PDSCH that is actually transmitted may be given based at least on the index of the OFDM symbol at which the transmission of the PDCCH used for scheduling the PDSCH is started.
  • the transmission start symbol of the PDSCH that is actually transmitted may be the index of the OFDM symbol next to the OFDM symbol from which the transmission of the PDCCH used for PDSCH scheduling is started.
  • the transmission start symbol of the PDSCH that is actually transmitted may be an index of an OFDM symbol at which transmission of the PDCCH used for PDSCH scheduling is started.
  • the terminal device 1 may start receiving the PDSCH from the transmission start symbol of the PDSCH that is actually transmitted.
  • the number of OFDM symbols of PDSCH actually transmitted is the number of OFDM symbols transmitted of PDSCH.
  • the number of OFDM symbols of the PDSCH actually transmitted may be different from the number of OFDM symbols of the scheduled PDSCH.
  • the number of OFDM symbols of the actually transmitted PDSCH may be given based at least on the transmission start symbol of the actually transmitted PDSCH and the transmission termination symbol of the scheduled PDSCH.
  • a mapping pattern of a DMRS related to the PDSCH may be given.
  • the transmission terminal symbol of the PDSCH actually transmitted may be equal to or different from the transmission terminal symbol of the scheduled PDSCH.
  • the transmission end symbol of the PDSCH actually transmitted may be the last OFDM symbol of the slot.
  • the transmission termination symbol of the PDSCH that is actually transmitted may be given based at least on the transmission termination symbol of the scheduled PDSCH.
  • the terminal device 1 may end the reception of the PDSCH in the transmission terminal symbol of the actually transmitted PDSCH.
  • the reference point for the OFDM symbol index may be a reference point for determining the index of the OFDM symbol.
  • the reference point for the OFDM symbol index may indicate OFDM symbol index # 0.
  • FIG. 10 is a diagram illustrating an example of mapping of the DMRS related to the PDSCH according to an aspect of the present embodiment.
  • two types of OFDM symbol indexes are shown on the horizontal axis, the lower part shows the OFDM symbol index in the slot, and the upper part shows the OFDM symbol index for DMRS mapping.
  • the mapping of the DMRS related to the PDSCH is indicated by a shaded block.
  • the reference point of the OFDM symbol index for DMRS related to the PDSCH is set to OFDM symbol index # 3 in the slot.
  • the reference point of the OFDM symbol index of the DMRS related to the PDSCH may be set to the first OFDM symbol index of the slot.
  • the mapping pattern of DMRS related to PDSCH may be configured to include OFDM symbol # 3, OFDM symbol # 6, and OFDM symbol # 11.
  • the reference point of the OFDM symbol index of the DMRS related to the PDSCH may be set to the transmission start symbol of the scheduled PDSCH.
  • the mapping pattern of the DMRS related to the PDSCH may be configured to include OFDM symbol # 0, OFDM symbol # 3, and OFDM symbol # 8.
  • the reference point of the OFDM symbol index of the DMRS related to the PDSCH may be set to the transmission start symbol of the actually transmitted PDSCH.
  • the mapping type of the DMRS related to the PDSCH is the first mapping type or the second mapping type is indicated at least based on a time domain resource allocation field included in the DCI format used for the scheduling of the PDSCH. Is also good.
  • the DMRS mapping pattern associated with the PDSCH may indicate an index of an OFDM symbol to which the DMRS associated with the PDSCH is mapped.
  • the mapping pattern of the DMRS related to the PDSCH may indicate an index of an OFDM symbol to which the DMRS related to the PDSCH is mapped with reference to a reference point of an index of the OFDM symbol of the DMRS related to the PDSCH.
  • the index l 0 of the leading OFDM symbol of the DMRS associated with the PDSCH may be configured to at least include.
  • the first OFDM symbol of the DMRS is also referred to as a front-loaded DMRS.
  • the first mapping types, the index l 0 of the leading OFDM symbol of the DMRS associated with PDSCH may be provided at least on the basis of the parameters of the upper layer.
  • the second mapping types, the index l 0 of the leading OFDM symbol of the DMRS associated with PDSCH may be zero.
  • Index l 0 of the leading OFDM symbol of the DMRS associated with PDSCH may be provided at least on the basis of the actual transmission start symbol of PDSCH to be transmitted.
  • the terminal device 1 may begin receiving from the index l 0 of the beginning of the OFDM symbol of the DMRS associated with the PDSCH.
  • the TBS of the transport block included in the PDSCH may be given based at least on the number of OFDM symbols of the scheduled PDSCH.
  • the mapping of the PDSCH modulation symbol may be provided based at least on the scheduled transmission start symbol of the PDSCH.
  • the mapping of the PDSCH modulation symbol may be provided based at least on the PDSCH transmission start symbol that is actually transmitted.
  • the mapping of the DMRS associated with the PDSCH may be provided based at least on the transmission start symbol of the PDSCH that is actually transmitted. For example, a reference point for the OFDM symbol index at which the DMRS associated with the PDSCH is transmitted may be given based at least on the transmission start symbol of the PDSCH actually transmitted.
  • mapping of the DMRS related to the PDSCH is given at least based on the transmission start symbol of the actually transmitted PDSCH may be given at least based on the search area set in which the PDCCH used for the scheduling of the PDSCH is detected. Good.
  • the mapping of the DMRS related to the PDSCH is based at least on the transmission start symbol of the PDSCH actually transmitted. May be given. Further, when the PDCCH used for scheduling the PDSCH is different from the predetermined index, the mapping of the DMRS related to the PDSCH may be given based at least on the transmission start symbol of the scheduled PDSCH.
  • the mapping of the DMRS related to the PDSCH is based at least on the transmission start symbol of the actually transmitted PDSCH. May be given. Further, when the type of the search area set in which the PDCCH used for the scheduling of the PDSCH is detected is different from the predetermined type, the mapping of the DMRS related to the PDSCH is based at least on the transmission start symbol of the scheduled PDSCH. May be given.
  • the predetermined type is a special search region set, a type 0 PDCCH common search region, a type 0a PDCCH common search region, a type 1 PDCCH common search region, a type 2 PDCCH common search region, a type 3 PDCCH common search region, and / or a UE-specific search region. It may include at least a part or all of the PDCCH search area.
  • mapping of the DMRS related to the PDSCH is given at least based on the transmission start symbol of the actually transmitted PDSCH is given at least based on the monitoring opportunity of the search area set in which the PDCCH used for the scheduling of the PDSCH is detected. You may be.
  • the mapping of the DMRS related to the PDSCH is performed in the transmission start symbol of the actually transmitted PDSCH. It may be given at least based on. Further, when the monitoring opportunity of the search area set in which the PDCCH used for the scheduling of the PDSCH is detected is not the special monitoring opportunity, the mapping of the DMRS related to the PDSCH is based at least on the transmission start symbol of the scheduled PDSCH. May be given.
  • mapping of the DMRS related to the PDSCH is given at least based on the transmission start symbol of the actually transmitted PDSCH may be given at least based on the DCI format included in the PDCCH used for the scheduling of the PDSCH.
  • the mapping of the DMRS related to the PDSCH may be given based at least on the transmission start symbol of the actually transmitted PDSCH. Good. Further, when the DCI format included in the PDCCH used for PDSCH scheduling is different from the predetermined format, the mapping of the DMRS related to the PDSCH may be given based at least on the transmission start symbol of the scheduled PDSCH. Good.
  • the predetermined format may include at least part or all of DCI format 1_0, DCI format 1_1, and / or a special format.
  • mapping of the DMRS related to the PDSCH is given at least based on the transmission start symbol of the actually transmitted PDSCH depends on the scrambling of the CRC added to the DCI format included in the PDCCH used for the scheduling of the PDSCH. It may be provided based at least on the value of the RNTI used.
  • the mapping of the DMRS related to the PDSCH is actually transmitted. It may be given at least based on the transmission start symbol of PDSCH. Further, when the RNTI used for scrambling the CRC added to the DCI format included in the PDCCH used for scheduling the PDSCH is different from the special RNTI, the mapping of the DMRS related to the PDSCH is scheduled. It may be given at least based on the transmission start symbol of PDSCH.
  • the special search area set may be a search area set monitored in a predetermined state. Also, the special search area set may not be monitored except in the predetermined state.
  • the predetermined state may be a state that satisfies at least a part or all of the following conditions 1 to 3.
  • Condition 1 The monitoring opportunity of the search area set is set outside the COT (Channel Occupancy Time), or the monitoring opportunity of the search area set is not set within the COT.
  • Condition 2 An initial signal is detected.
  • Condition 3 which is a monitoring opportunity of a search area set set in a slot (or a predetermined period): information on a slot format of a slot in which a monitoring opportunity of a search area set is set is not acquired
  • COT is also referred to as channel occupancy time. COT may be secured by an LBT procedure.
  • the initial signal may be any of a synchronization signal, CSI-RS, and / or PDCCH DMRS.
  • Activation of a special set of search areas may be performed based on detection of the initial signal.
  • the activated special search area set may be monitored for a predetermined period of time.
  • the slot format is information indicating the UL / DL setting of the slot.
  • the slot format may be transmitted on the PDCCH.
  • the special monitoring opportunity is a monitoring opportunity of the search area set, and may be a monitoring opportunity of the search area set monitored in the predetermined state.
  • the monitoring opportunity of the search area set monitored other than the predetermined state may not be included in the special monitoring opportunity.
  • the special format may be a DCI format used for PDSCH scheduling and may not include a time-domain resource allocation field. Further, the special format may be a DCI format used for PDSCH scheduling, and may be a DCI format that does not indicate at least an index of an OFDM symbol from which transmission of the PDSCH is started. Also, the special format may be a DCI format used for PDSCH scheduling, and may be a DCI format that does not indicate at least the number of OFDM symbols of the PDSCH. In addition, the special format may be a DCI format used for PDSCH scheduling, and may be a DCI format that does not at least indicate a mapping type of DMRS related to the PDSCH. The special format may indicate the transmission termination symbol of the scheduled PDSCH.
  • the transmission end symbol of the actually transmitted PDSCH of the PDSCH scheduled based on at least the special format may be the last OFDM symbol of the slot to which the PDSCH is mapped.
  • the special format may be a DCI format monitored in the predetermined state.
  • a special RNTI may be used for scrambling the CRC added to the DCI format monitored in the predetermined state.
  • the transmission start symbol of the scheduled PDSCH indicated by the time domain resource allocation field is earlier than (earlier than) the first OFDM symbol of the PDCCH used for PDSCH scheduling, and the transmission of the actually transmitted PDSCH
  • the start symbol may be an OFDM symbol next to the end OFDM symbol of the PDCCH.
  • the transmission start symbol of the scheduled PDSCH indicated by the time domain resource allocation field is earlier than the terminal OFDM symbol of the PDCCH used for scheduling of the PDSCH (earlier than the terminal OFDM symbol), and the transmission of the actually transmitted PDSCH
  • the start symbol may be an OFDM symbol next to the end OFDM symbol of the PDCCH.
  • the transmission start symbol of the scheduled PDSCH indicated by the time-domain resource allocation field is the same as the first OFDM symbol of the PDCCH used for PDSCH scheduling (equal to the first OFDM symbol), and the transmission of the actually transmitted PDSCH
  • the start symbol may be an OFDM symbol next to the end OFDM symbol of the PDCCH.
  • the transmission start symbol of the scheduled PDSCH indicated by the time-domain resource allocation field is the same as the terminal OFDM symbol of the PDCCH used for PDSCH scheduling (equal to the terminal OFDM symbol), and the transmission of the actually transmitted PDSCH
  • the start symbol may be an OFDM symbol next to the end OFDM symbol of the PDCCH.
  • the transmission start symbol of the scheduled PDSCH indicated by the time domain resource allocation field is after the first OFDM symbol of the PDCCH used for PDSCH scheduling (later than the first OFDM symbol), and the transmission start of the actually transmitted PDSCH is started.
  • the symbol may be equal to the transmission start symbol of the scheduled PDSCH.
  • the transmission start symbol of the scheduled PDSCH indicated by the time domain resource allocation field is after the terminal OFDM symbol of the PDCCH used for the PDSCH scheduling (later than the terminal OFDM symbol), and the transmission start of the actually transmitted PDSCH is started.
  • the symbol may be equal to the transmission start symbol of the scheduled PDSCH.
  • the transmission start symbol of the scheduled PDSCH indicated by the time resource allocation field is earlier than the first OFDM symbol of the PDCCH used for PDSCH scheduling (if earlier than the first OFDM symbol), the actually transmitted PDSCH
  • the transmission start symbol may be the OFDM symbol next to the OFDM symbol at the end of the PDCCH.
  • the transmission start symbol of the scheduled PDSCH indicated by the time resource allocation field is earlier than the terminal OFDM symbol of the PDCCH used for PDSCH scheduling (if earlier than the terminal OFDM symbol), the PDSCH of the actually transmitted PDSCH
  • the transmission start symbol may be the OFDM symbol next to the OFDM symbol at the end of the PDCCH.
  • the PDSCH actually transmitted May be the OFDM symbol next to the OFDM symbol at the end of the PDCCH.
  • the PDSCH actually transmitted May be the OFDM symbol next to the OFDM symbol at the end of the PDCCH.
  • the transmission start symbol of the scheduled PDSCH indicated by the time-domain resource allocation field is after the first OFDM symbol of the PDCCH used for PDSCH scheduling (when it is later than the first OFDM symbol)
  • the PDSCH of the actually transmitted PDSCH The transmission start symbol may be equal to the transmission start symbol of the scheduled PDSCH.
  • the transmission start symbol of the scheduled PDSCH indicated by the time-domain resource allocation field is later than the terminal OFDM symbol of the PDCCH used for scheduling the PDSCH (if later than the terminal OFDM symbol), the PDSCH of the actually transmitted PDSCH
  • the transmission start symbol may be equal to the transmission start symbol of the scheduled PDSCH.
  • the mapping type of the DMRS associated with the PDSCH is the second mapping, and the transmission start symbol of the scheduled PDSCH indicated by the time domain resource allocation field is before the first OFDM symbol of the PDCCH used for the PDSCH scheduling. If present (earlier than the first OFDM symbol), the transmission start symbol of the PDSCH that is actually transmitted may be the OFDM symbol next to the end OFDM symbol of the PDCCH.
  • the mapping type of the DMRS associated with the PDSCH is the second mapping, and the transmission start symbol of the scheduled PDSCH indicated by the time domain resource allocation field is earlier than the end OFDM symbol of the PDCCH used for the PDSCH scheduling. Yes (earlier than the terminal OFDM symbol), the transmission start symbol of the PDSCH actually transmitted may be the next OFDM symbol after the terminal OFDM symbol of the PDCCH.
  • the mapping type of the DMRS associated with the PDSCH is the second mapping, and the transmission start symbol of the scheduled PDSCH indicated by the time domain resource allocation field is the same as the first OFDM symbol of the PDCCH used for the PDSCH scheduling. Yes (equal to the first OFDM symbol), the transmission start symbol of the PDSCH that is actually transmitted may be the OFDM symbol next to the end OFDM symbol of the PDCCH.
  • the mapping type of the DMRS associated with the PDSCH is the second mapping, and the transmission start symbol of the scheduled PDSCH indicated by the time domain resource allocation field is the same as the terminal OFDM symbol of the PDCCH used for the PDSCH scheduling. Yes (equal to the terminal OFDM symbol), the transmission start symbol of the PDSCH that is actually transmitted may be the next OFDM symbol of the terminal OFDM symbol of the PDCCH.
  • the mapping type of the DMRS related to the PDSCH is the second mapping, and the transmission start symbol of the scheduled PDSCH indicated by the time domain resource allocation field is after the first OFDM symbol of the PDCCH used for the scheduling of the PDSCH.
  • the transmission start symbol of the PDSCH actually transmitted may be equal to the transmission start symbol of the scheduled PDSCH.
  • the mapping type of the DMRS associated with the PDSCH is the second mapping, and the transmission start symbol of the scheduled PDSCH indicated by the time domain resource allocation field is after the end OFDM symbol of the PDCCH used for the scheduling of the PDSCH.
  • the transmission start symbol of the PDSCH actually transmitted may be equal to the transmission start symbol of the scheduled PDSCH.
  • the mapping type of the DMRS associated with the PDSCH is the second mapping, and the transmission start symbol of the scheduled PDSCH indicated by the time domain resource allocation field is before the first OFDM symbol of the PDCCH used for the PDSCH scheduling.
  • the transmission start symbol of the PDSCH that is actually transmitted may be the OFDM symbol next to the end OFDM symbol of the PDCCH.
  • the mapping type of the DMRS associated with the PDSCH is the second mapping, and the transmission start symbol of the scheduled PDSCH indicated by the time domain resource allocation field is earlier than the end OFDM symbol of the PDCCH used for the PDSCH scheduling.
  • the transmission start symbol of the PDSCH that is actually transmitted may be the OFDM symbol next to the terminal OFDM symbol of the PDCCH.
  • the mapping type of the DMRS associated with the PDSCH is the second mapping, and the transmission start symbol of the scheduled PDSCH indicated by the time domain resource allocation field is the same as the first OFDM symbol of the PDCCH used for the PDSCH scheduling.
  • the transmission start symbol of the PDSCH that is actually transmitted may be the OFDM symbol next to the end OFDM symbol of the PDCCH.
  • the mapping type of the DMRS associated with the PDSCH is the second mapping, and the transmission start symbol of the scheduled PDSCH indicated by the time domain resource allocation field is the same as the terminal OFDM symbol of the PDCCH used for the PDSCH scheduling.
  • the transmission start symbol of the PDSCH that is actually transmitted may be the next OFDM symbol after the terminal OFDM symbol of the PDCCH.
  • the mapping type of the DMRS associated with the PDSCH is the second mapping, and the transmission start symbol of the scheduled PDSCH indicated by the time domain resource allocation field is after the first OFDM symbol of the PDCCH used for the scheduling of the PDSCH.
  • the transmission start symbol of the PDSCH actually transmitted may be equal to the transmission start symbol of the scheduled PDSCH.
  • the mapping type of the DMRS associated with the PDSCH is the second mapping, and the transmission start symbol of the scheduled PDSCH indicated by the time domain resource allocation field is after the end OFDM symbol of the PDCCH used for the scheduling of the PDSCH.
  • the transmission start symbol of the PDSCH actually transmitted may be equal to the transmission start symbol of the scheduled PDSCH.
  • the transmission start symbol of the actually transmitted PDSCH may be equal to the transmission start symbol of the scheduled PDSCH, without the OFDM symbols of the PDCCH colliding in the time domain.
  • the mapping type of the DMRS associated with the PDSCH is the second mapping, and the transmission start symbol of the scheduled PDSCH indicated by the time domain resource allocation field and the OFDM of the scheduled PDSCH indicated by the time domain resource allocation field At least a part of the OFDM symbol of the PDSCH given by the number of symbols and at least a part of the OFDM symbol of the PDCCH used for the scheduling of the PDSCH collide in the time domain, and the transmission start symbol of the actually transmitted PDSCH is the PDCCH. It may be the next OFDM symbol after the terminal OFDM symbol.
  • the mapping type of the DMRS associated with the PDSCH is the second mapping, and the transmission start symbol of the scheduled PDSCH indicated by the time domain resource allocation field and the OFDM of the scheduled PDSCH indicated by the time domain resource allocation field
  • the OFDM symbol of the PDSCH given by the number of symbols and the OFDM symbol of the PDCCH used for scheduling the PDSCH do not collide in the time domain, and the transmission start symbol of the PDSCH actually transmitted is the transmission start symbol of the scheduled PDSCH. May be equal to
  • the transmission start symbol of the PDSCH that is actually transmitted may be the OFDM symbol next to the end OFDM symbol of the PDCCH.
  • the mapping type of the DMRS associated with the PDSCH is the second mapping, and the transmission start symbol of the scheduled PDSCH indicated by the time domain resource allocation field and the OFDM of the scheduled PDSCH indicated by the time domain resource allocation field
  • the transmission start symbol of the PDSCH actually transmitted is PDCCH May be the next OFDM symbol after the end OFDM symbol.
  • the mapping type of the DMRS associated with the PDSCH is the second mapping, and the transmission start symbol of the scheduled PDSCH indicated by the time domain resource allocation field and the OFDM of the scheduled PDSCH indicated by the time domain resource allocation field If the OFDM symbol of the PDSCH given by the number of symbols and the OFDM symbol of the PDCCH used for scheduling the PDSCH do not collide in the time domain, the transmission start symbol of the PDSCH actually transmitted is the transmission start symbol of the scheduled PDSCH May be equal to
  • the transmission start symbol of the PDSCH actually transmitted is , The next OFDM symbol of the end of the PDCCH including the DCI format, or the transmission start symbol of the scheduled PDSCH.
  • the transmission start symbol of the actually transmitted PDSCH is the next OFDM symbol after the end OFDM symbol of the PDCCH. Or not.
  • the transmission start symbol of the PDSCH actually transmitted is the transmission start symbol of the scheduled PDSCH. May be given.
  • the transmission start symbol of the actually transmitted PDSCH is the next OFDM symbol after the OFDM symbol at the end of the PDCCH.
  • the transmission start symbol of the actually transmitted PDSCH is the transmission start symbol of the scheduled PDSCH.
  • the transmission start symbol of the PDSCH actually transmitted is the transmission start symbol of the scheduled PDSCH. You may be.
  • a first aspect of the present invention is a terminal device, which is an upper layer processing unit that acquires an upper layer parameter related to PDCCH configuration, and a receiving unit that receives the PDSCH and the PDCCH used for scheduling the PDSCH.
  • the transmission start symbol of the PDSCH indicated by the time domain resource allocation field included in the DCI format included in the PDCCH is before the first OFDM symbol of the PDCCH, and the OFDM symbol from which the transmission of the PDSCH is started Is the OFDM symbol next to the OFDM symbol at the end of the PDCCH.
  • the reference point for mapping the DMRS related to the PDSCH is an OFDM symbol at which transmission of the PDSCH starts.
  • the index of the first OFDM symbol in the DMRS related to the PDSCH is an OFDM symbol at which transmission of the PDSCH is started.
  • a second aspect of the present invention is a base station apparatus, comprising: an upper layer processing unit that provides an upper layer parameter related to PDCCH setting; and a PSCH used for scheduling the PDSCH and the PDSCH.
  • a transmitting unit for transmitting, the transmission start symbol of the PDSCH indicated by the time domain resource allocation field included in the DCI format included in the PDCCH is earlier than the first OFDM symbol of the PDCCH, and the transmission of the PDSCH starts.
  • the OFDM symbol to be used is the next OFDM symbol after the OFDM symbol at the end of the PDCCH.
  • the reference point for mapping the DMRS related to the PDSCH is an OFDM symbol at which transmission of the PDSCH starts.
  • the index of the first OFDM symbol in the DMRS related to the PDSCH is an OFDM symbol from which transmission of the PDSCH is started.
  • the program operating on the base station device 3 and the terminal device 1 according to the present invention controls the CPU (Central Processing Unit) and the like (the computer causes the computer to function) so as to realize the functions of the above-described embodiment according to the present invention.
  • Program The information handled by these devices is temporarily stored in a RAM (Random Access Memory) at the time of processing, and thereafter stored in various ROMs such as a Flash ROM (Read Only Memory) or an HDD (Hard Disk Drive). Reading, correction and writing are performed by the CPU as necessary.
  • the terminal device 1 and a part of the base station device 3 in the above-described embodiment may be realized by a computer.
  • a program for realizing this control function may be recorded on a computer-readable recording medium, and the program recorded on this recording medium may be read and executed by a computer system.
  • the “computer system” here is a computer system built in the terminal device 1 or the base station device 3 and includes an OS and hardware such as peripheral devices.
  • the “computer-readable recording medium” refers to a portable medium such as a flexible disk, a magneto-optical disk, a ROM, and a CD-ROM, and a storage device such as a hard disk built in a computer system.
  • the "computer-readable recording medium” is a medium that holds the program dynamically for a short time, such as a communication line for transmitting the program through a network such as the Internet or a communication line such as a telephone line,
  • a program holding a program for a certain period of time such as a volatile memory in a computer system serving as a server or a client, may be included.
  • the program may be for realizing a part of the functions described above, or may be for realizing the functions described above in combination with a program already recorded in the computer system.
  • the base station device 3 in the above-described embodiment can also be realized as an aggregate (device group) including a plurality of devices.
  • Each of the devices constituting the device group may include a part or all of each function or each function block of the base station device 3 according to the above-described embodiment. It is only necessary that the device group has each function or each function block of the base station device 3.
  • the terminal device 1 according to the above-described embodiment can also communicate with the base station device as an aggregate.
  • the base station device 3 in the above-described embodiment may be an EUTRAN (Evolved Universal Terrestrial Radio Access Network) and / or an NG-RAN (NextGen RAN, NR RAN). Further, the base station device 3 in the above-described embodiment may have some or all of the functions of the upper node for the eNodeB and / or gNB.
  • EUTRAN Evolved Universal Terrestrial Radio Access Network
  • NG-RAN NextGen RAN, NR RAN
  • part or all of the terminal device 1 and the base station device 3 in the above-described embodiment may be typically realized as an LSI which is an integrated circuit, or may be realized as a chipset.
  • Each functional block of the terminal device 1 and the base station device 3 may be individually formed into a chip, or a part or all may be integrated and formed into a chip.
  • the method of circuit integration is not limited to an LSI, and may be realized by a dedicated circuit or a general-purpose processor. Further, in the case where a technology for forming an integrated circuit that replaces the LSI appears due to the advance of the semiconductor technology, an integrated circuit based on the technology can be used.
  • the terminal device is described as an example of the communication device.
  • the present invention is not limited to this, and a stationary or non-movable electronic device installed indoors and outdoors,
  • the present invention can be applied to a terminal device or a communication device such as an AV device, a kitchen device, a cleaning / washing device, an air conditioner, an office device, a vending machine, and other living devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

効率的に通信を行う。PDCCHの設定に関する上位層のパラメータを取得する上位層処理部と、PDSCHおよび前記PDSCHのスケジューリングに用いられる前記PDCCHを受信する受信部を備え、前記PDCCHに含まれるDCIフォーマットに含まれる時間領域リソース割り当てフィールドにより示される前記PDSCHの送信開始シンボルが前記PDCCHの先頭のOFDMシンボルより前にあり、前記PDSCHの送信が開始されるOFDMシンボルは、前記PDCCHの終端のOFDMシンボルの次のOFDMシンボルである。

Description

端末装置、基地局装置、および、通信方法
 本発明は、端末装置、基地局装置、および、通信方法に関する。本願は、2018年9月27日に日本に出願された特願2018-181506号に基づき優先権を主張し、その内容をここに援用する。
 セルラー移動通信の無線アクセス方式および無線ネットワーク(以下、「Long Term Evolution (LTE)」、または、「EUTRA:Evolved Universal Terrestrial Radio Access」と称する。)が、第三世代パートナーシッププロジェクト(3GPP:3rd Generation Partnership Project)において検討されている。LTEにおいて、基地局装置はeNodeB(evolved NodeB)、端末装置はUE(User Equipment)とも呼称される。LTEは、基地局装置がカバーするエリアをセル状に複数配置するセルラー通信システムである。単一の基地局装置は複数のサービングセルを管理してもよい。
 3GPPでは、国際電気通信連合(ITU:International Telecommunication Union)が策定する次世代移動通信システムの規格であるIMT(International Mobile Telecommunication)―2020に提案するため、次世代規格(NR: New Radio)の検討が行われている(非特許文献1)。NRは、単一の技術の枠組みにおいて、eMBB(enhanced Mobile BroadBand)、mMTC(massive Machine Type Communication)、URLLC(Ultra Reliable and Low Latency Communication)の3つのシナリオを想定した要求を満たすことが求められている。
"New SID proposal: Study on New Radio Access Technology", RP-160671, NTT docomo, 3GPP TSG RAN Meeting #71, Goteborg, Sweden, 7th ― 10th March, 2016.
 本発明の一態様は、効率的に通信を行う端末装置、該端末装置に用いられる通信方法、効率的に通信を行う基地局装置、該基地局装置に用いられる通信方法を提供する。
 (1)本発明の第1の態様は、端末装置であって、PDCCHの設定に関する上位層のパラメータを取得する上位層処理部と、PDSCHおよび前記PDSCHのスケジューリングに用いられる前記PDCCHを受信する受信部を備え、前記PDCCHに含まれるDCIフォーマットに含まれる時間領域リソース割り当てフィールドにより示される前記PDSCHの送信開始シンボルが前記PDCCHの先頭のOFDMシンボルより前にあり、前記PDSCHの送信が開始されるOFDMシンボルは、前記PDCCHの終端のOFDMシンボルの次のOFDMシンボルである。
 (2)本発明の第2の態様は、基地局装置であって、PDCCHの設定に関する上位層のパラメータを提供する上位層処理部と、PDSCHおよび前記PDSCHのスケジューリングに用いられる前記PDCCHを送信する送信部を備え、前記PDCCHに含まれるDCIフォーマットに含まれる時間領域リソース割り当てフィールドにより示される前記PDSCHの送信開始シンボルが前記PDCCHの先頭のOFDMシンボルより前にあり、前記PDSCHの送信が開始されるOFDMシンボルは、前記PDCCHの終端のOFDMシンボルの次のOFDMシンボルである。
 (3)本発明の第3の態様は、端末装置に用いられる通信方法であって、PDCCHの設定に関する上位層のパラメータを取得するステップと、PDSCHおよび前記PDSCHのスケジューリングに用いられる前記PDCCHを受信するステップを備え、前記PDCCHに含まれるDCIフォーマットに含まれる時間領域リソース割り当てフィールドにより示される前記PDSCHの送信開始シンボルが前記PDCCHの先頭のOFDMシンボルより前にあり、前記PDSCHの送信が開始されるOFDMシンボルは、前記PDCCHの終端のOFDMシンボルの次のOFDMシンボルである。
 (4)本発明の第4の態様は、基地局装置に用いられる通信方法であって、PDCCHの設定に関する上位層のパラメータを提供するステップと、PDSCHおよび前記PDSCHのスケジューリングに用いられる前記PDCCHを送信するステップを備え、前記PDCCHに含まれるDCIフォーマットに含まれる時間領域リソース割り当てフィールドにより示される前記PDSCHの送信開始シンボルが前記PDCCHの先頭のOFDMシンボルより前にあり、前記PDSCHの送信が開始されるOFDMシンボルは、前記PDCCHの終端のOFDMシンボルの次のOFDMシンボルである。
 この発明の一態様によれば、端末装置は効率的に通信を行うことができる。また、基地局装置は効率的に通信を行うことができる。
本実施形態の一態様に係る無線通信システムの概念図である。 本実施形態の一態様に係るNslot symb、サブキャリア間隔の設定μ、および、CP設定の関係を示す一例である。 本実施形態の一態様に係るサブフレームにおけるリソースグリッドの一例を示す概略図である。 本実施形態の一態様に係るPUCCHフォーマットとPUCCHフォーマットの長さNPUCCH symbの関係の一例を示す図である。 本実施形態の一態様に係る探索領域セットの監視機会の一例を示す図である。 本実施形態の一態様に係る端末装置1の構成を示す概略ブロック図である。 本実施形態の一態様に係る基地局装置3の構成を示す概略ブロック図である。 本実施形態の一態様に係る物理信号の送信の一例を示す図である。 本実施形態の一態様に係る物理信号の送信の一例を示す図である。 本実施形態の一態様に係るPDSCHに関連するDMRSのマッピングの一例を示す図である。
 以下、本発明の実施形態について説明する。
 図1は、本実施形態の一態様に係る無線通信システムの概念図である。図1において、無線通信システムは、端末装置1A~1C、および基地局装置3(BS#3: Base station#3)を具備する。以下、端末装置1A~1Cを端末装置1とも呼称する。
 基地局装置3は、MCG(Master Cell Group)、および、SCG(Secondary Cell Group)の一方または両方を含んで構成されてもよい。MCGは、少なくともPCell(Primary Cell)を含んで構成されるサービングセルのグループである。SCGは、少なくともPSCell(Primary Secondary Cell)を含んで構成されるサービングセルのグループである。PCellは、初期接続に基づき与えられるサービングセルであってもよい。MCGは、1または複数のSCell(Secondary Cell)を含んで構成されてもよい。SCGは、1または複数のSCellを含んで構成されてもよい。PCellは、プライマリセルとも呼称される。PSCellは、プライマリセカンダリセルとも呼称される。SCellは、セカンダリセルとも呼称される。
 MCGは、EUTRA上のサービングセルで構成されてもよい。SCGは、次世代規格(NR: New Radio)上のサービングセルで構成されてもよい。
 以下、フレーム構成について説明する。
 本実施形態の一態様に係る無線通信システムにおいて、OFDM(Orthogonal Frequency Division Multiplex)が少なくとも用いられる。OFDMシンボルは、OFDMの時間領域の単位である。OFDMシンボルは、少なくとも1または複数のサブキャリア(subcarrier)を含む。OFDMシンボルは、ベースバンド信号生成において時間連続信号(time―continuous signal)に変換される。下りリンクにおいて、CP-OFDM(Cyclic Prefix ― Orthogonal Frequency Division Multiplex)が少なくとも用いられる。上りリンクにおいて、CP-OFDM、または、DFT-s-OFDM(Discrete Fourier Transform ― spread ― Orthogonal Frequency Division Multiplex)のいずれかが用いられる。DFT-s-OFDMは、CP-OFDMに対して変形プレコーディング(Transform precoding)が適用されることで与えられてもよい。
 OFDMシンボルは、該OFDMシンボルに付加されるCPを含んだ呼称であってもよい。つまり、あるOFDMシンボルは、該あるOFDMシンボルと、該あるOFDMシンボルに付加されるCPを含んで構成されてもよい。
 サブキャリア間隔(SCS: SubCarrier Spacing)は、サブキャリア間隔Δf=2μ・15kHzによって与えられてもよい。例えば、サブキャリア間隔の設定(subcarrier spacing configuration)μは0、1、2、3、4、および/または、5のいずれかに設定されてもよい。あるBWP(BandWidth Part)のために、サブキャリア間隔の設定μが上位層のパラメータにより与えられてもよい。
 本実施形態の一態様に係る無線通信システムにおいて、時間領域の長さの表現のために時間単位(タイムユニット)Tが用いられる。時間単位Tは、T=1/(Δfmax・N)で与えられてもよい。Δfmaxは、本実施形態の一態様に係る無線通信システムにおいてサポートされるサブキャリア間隔の最大値であってもよい。Δfmaxは、Δfmax=480kHzであってもよい。Nは、N=4096であってもよい。定数κは、κ=Δfmax・N/(Δfreff,ref)=64である。Δfrefは、15kHzであってもよい。Nf,refは、2048であってもよい。
 定数κは、参照サブキャリア間隔とTの関係を示す値であってもよい。定数κはサブフレームの長さのために用いられてもよい。定数κに少なくとも基づき、サブフレームに含まれるスロットの数が与えられてもよい。Δfrefは、参照サブキャリア間隔であり、Nf,refは、参照サブキャリア間隔に対応する値である。
 下りリンクにおける信号の送信、および/または、上りリンクにおける信号の送信は、10msのフレームにより構成される。フレームは、10個のサブフレームを含んで構成される。サブフレームの長さは1msである。フレームの長さは、サブキャリア間隔Δfに関わらず与えられてもよい。つまり、フレームの設定はμに関わらず与えられてもよい。サブフレームの長さは、サブキャリア間隔Δfに関わらず与えられてもよい。つまり、サブフレームの設定はμに関わらず与えられてもよい。
 あるサブキャリア間隔の設定μのために、サブフレームに含まれるスロットの数とインデックスが与えられてもよい。例えば、スロット番号nμ は、サブフレームにおいて0からNsubframe,μ slot-1の範囲で昇順に与えられてもよい。サブキャリア間隔の設定μのために、フレームに含まれるスロットの数とインデックスが与えられてもよい。また、スロット番号nμ s,fは、フレームにおいて0からNframe,μ slot-1の範囲で昇順に与えられてもよい。連続するNslot symb個のOFDMシンボルが1つのスロットに含まれてもよい。Nslot symbは、および/または、CP(Cyclic Prefix)設定の一部または全部に少なくとも基づき与えられてもよい。CP設定は、上位層のパラメータに少なくとも基づき与えられてもよい。CP設定は、専用RRCシグナリングに少なくとも基づき与えられてもよい。スロット番号は、スロットインデックスとも呼称される。
 図2は、本実施形態の一態様に係るNslot symb、サブキャリア間隔の設定μ、および、CP設定の関係を示す一例である。図2Aにおいて、例えば、サブキャリア間隔の設定μが2であり、CP設定がノーマルCP(normal cyclic prefix)である場合、Nslot symb=14、Nframe,μ slot=40、Nsubframe,μ slot=4である。また、図2Bにおいて、例えば、サブキャリア間隔の設定μが2であり、CP設定が拡張CP(extended cyclic prefix)である場合、Nslot symb=12、Nframe,μ slot=40、Nsubframe,μ slot=4である。
 以下、物理リソースについて説明を行う。
 アンテナポートは、1つのアンテナポートにおいてシンボルが伝達されるチャネルが、同一のアンテナポートにおいてその他のシンボルが伝達されるチャネルから推定できることによって定義される。1つのアンテナポートにおいてシンボルが伝達されるチャネルの大規模特性(large scale property)が、もう一つのアンテナポートにおいてシンボルが伝達されるチャネルから推定できる場合、2つのアンテナポートはQCL(Quasi Co-Located)であると呼称される。大規模特性は、チャネルの長区間特性を少なくとも含んでもよい。大規模特性は、遅延拡がり(delay spread)、ドップラー拡がり(Doppler spread)、ドップラーシフト(Doppler shift)、平均利得(average gain)、平均遅延(average delay)、および、ビームパラメータ(spatial Rx parameters)の一部または全部を少なくとも含んでもよい。第1のアンテナポートと第2のアンテナポートがビームパラメータに関してQCLであるとは、第1のアンテナポートに対して受信側が想定する受信ビームと第2のアンテナポートに対して受信側が想定する受信ビームとが同一であることであってもよい。第1のアンテナポートと第2のアンテナポートがビームパラメータに関してQCLであるとは、第1のアンテナポートに対して受信側が想定する送信ビームと第2のアンテナポートに対して受信側が想定する送信ビームとが同一であることであってもよい。端末装置1は、1つのアンテナポートにおいてシンボルが伝達されるチャネルの大規模特性が、もう一つのアンテナポートにおいてシンボルが伝達されるチャネルから推定できる場合、2つのアンテナポートはQCLであることが想定されてもよい。2つのアンテナポートがQCLであることは、2つのアンテナポートがQCLであることが想定されることであってもよい。
 サブキャリア間隔の設定とキャリアのセットのために、Nsize,μ grid,xRB sc個のサブキャリアとNsubframe,μ symb個のOFDMシンボルで定義されるリソースグリッドが与えられる。Nsize,μ grid,xは、キャリアxのためのサブキャリア間隔の設定μのために与えられるリソースブロック数を示してもよい。Nsize,μ grid,xは、キャリアの帯域幅を示してもよい。Nsize,μ grid,xは、上位層のパラメータCarrierBandwidthの値に対応してもよい。キャリアxは下りリンクキャリアまたは上りリンクキャリアのいずれかを示してもよい。つまり、xは“DL”、または、“UL”のいずれかであってもよい。NRB scは、1つのリソースブロックに含まれるサブキャリア数を示してもよい。NRB scは12であってもよい。アンテナポートpごとに、および/または、サブキャリア間隔の設定μごとに、および/または、送信方向(Transmission direction)の設定ごとに少なくとも1つのリソースグリッドが与えられてもよい。送信方向は、少なくとも下りリンク(DL: DownLink)および上りリンク(UL: UpLink)を含む。以下、アンテナポートp、サブキャリア間隔の設定μ、および、送信方向の設定の一部または全部を少なくとも含むパラメータのセットは、第1の無線パラメータセットとも呼称される。つまり、リソースグリッドは、第1の無線パラメータセットごとに1つ与えられてもよい。
 下りリンクにおいて、サービングセルに含まれるキャリアを下りリンクキャリア(または、下りリンクコンポーネントキャリア)と称する。上りリンクにおいて、サービングセルに含まれるキャリアを上りリンクキャリア(上りリンクコンポーネントキャリア)と称する。下りリンクコンポーネントキャリア、および、上りリンクコンポーネントキャリアを総称して、コンポーネントキャリア(または、キャリア)と称する。
 サービングセルのタイプは、PCell、PSCell、および、SCellのいずれかであってもよい。PCellは、初期接続においてSS/PBCHから取得されるセルIDに少なくとも基づき識別されるサービングセルであってもよい。SCellは、キャリアアグリゲーションにおいて用いられるサービングセルであってもよい。SCellは、専用RRCシグナリングに少なくとも基づき与えられるサービングセルであってもよい。
 第1の無線パラメータセットごとに与えられるリソースグリッドの中の各要素は、リソースエレメントと呼称される。リソースエレメントは周波数領域のインデックスkscと、時間領域のインデックスlsymにより特定される。ある第1の無線パラメータセットのために、リソースエレメントは周波数領域のインデックスkscと、時間領域のインデックスlsymにより特定される。周波数領域のインデックスkscと時間領域のインデックスlsymにより特定されるリソースエレメントは、リソースエレメント(ksc、lsym)とも呼称される。周波数領域のインデックスkscは、0からNμ RBRB sc-1のいずれかの値を示す。Nμ RBはサブキャリア間隔の設定μのために与えられるリソースブロック数であってもよい。Nμ RBは、Nsize,μ grid,xであってもよい。NRB scは、リソースブロックに含まれるサブキャリア数であり、NRB sc=12である。周波数領域のインデックスkscは、サブキャリアインデックスkscに対応してもよい。時間領域のインデックスlsymは、OFDMシンボルインデックスlsymに対応してもよい。
 図3は、本実施形態の一態様に係るサブフレームにおけるリソースグリッドの一例を示す概略図である。図3のリソースグリッドにおいて、横軸は時間領域のインデックスlsymであり、縦軸は周波数領域のインデックスkscである。1つのサブフレームにおいて、リソースグリッドの周波数領域はNμ RBRB sc個のサブキャリアを含む。1つのサブフレームにおいて、リソースグリッドの時間領域は14・2μ個のOFDMシンボルを含んでもよい。1つのリソースブロックは、NRB sc個のサブキャリアを含んで構成される。リソースブロックの時間領域は、1OFDMシンボルに対応してもよい。リソースブロックの時間領域は、14OFDMシンボルに対応してもよい。リソースブロックの時間領域は、1または複数のスロットに対応してもよい。リソースブロックの時間領域は、1つのサブフレームに対応してもよい。
 端末装置1は、リソースグリッドのサブセットのみを用いて送受信を行うことが指示されてもよい。リソースグリッドのサブセットは、BWPとも呼称され、BWPは上位層のパラメータ、および/または、DCIの一部または全部に少なくとも基づき与えられてもよい。BWPをキャリアバンドパート(Carrier Bandwidth Part)とも称する。端末装置1は、リソースグリッドのすべてのセットを用いて送受信を行なうことが指示されなくてもよい。端末装置1は、リソースグリッド内の一部の周波数リソースを用いて送受信を行なうことが指示されてもよい。1つのBWPは、周波数領域における複数のリソースブロックから構成されてもよい。1つのBWPは、周波数領域において連続する複数のリソースブロックから構成されてもよい。下りリンクキャリアに対して設定されるBWPは、下りリンクBWPとも呼称される。上りリンクキャリアに対して設定されるBWPは、上りリンクBWPとも呼称される。BWPは、キャリアの帯域のサブセットであってもよい。
 サービングセルのそれぞれに対して1または複数の下りリンクBWPが設定されてもよい。サービングセルのそれぞれに対して1または複数の上りリンクBWPが設定されてもよい。
 サービングセルに対して設定される1または複数の下りリンクBWPのうち、1つの下りリンクBWPがアクティブ下りリンクBWPに設定されてもよい。下りリンクのBWPスイッチは、1つのアクティブ下りリンクBWPをディアクティベート(deactivate)し、該1つのアクティブ下りリンクBWP以外のインアクティブ下りリンクBWPをアクティベート(activate)するために用いられる。下りリンクのBWPスイッチは、下りリンク制御情報に含まれるBWPフィールドにより制御されてもよい。下りリンクのBWPスイッチは、上位層のパラメータに基づき制御されてもよい。
 アクティブ下りリンクBWPにおいて、DL-SCHが受信されてもよい。アクティブ下りリンクBWPにおいて、PDCCHがモニタされてもよい。アクティブ下りリンクBWPにおいて、PDSCHが受信されてもよい。
 インアクティブ下りリンクBWPにおいて、DL-SCHが受信されない。インアクティブ下りリンクBWPにおいて、PDCCHがモニタされない。インアクティブ下りリンクBWPのためのCSIは報告されない。
 サービングセルに対して設定される1または複数の下りリンクBWPのうち、2つ以上の下りリンクBWPがアクティブ下りリンクBWPに設定されなくてもよい。
 サービングセルに対して設定される1または複数の上りリンクBWPのうち、1つの上りリンクBWPがアクティブ上りリンクBWPに設定されてもよい。上りリンクのBWPスイッチは、1つのアクティブ上りリンクBWPをディアクティベート(deactivate)し、該1つのアクティブ上りリンクBWP以外のインアクティブ上りリンクBWPをアクティベート(activate)するために用いられる。上りリンクのBWPスイッチは、下りリンク制御情報に含まれるBWPフィールドにより制御されてもよい。上りリンクのBWPスイッチは、上位層のパラメータに基づき制御されてもよい。
 アクティブ上りリンクBWPにおいて、UL-SCHが送信されてもよい。アクティブ上りリンクBWPにおいて、PUCCHが送信されてもよい。アクティブ上りリンクBWPにおいて、PRACHが送信されてもよい。アクティブ上りリンクBWPにおいて、SRSが送信されてもよい。
 インアクティブ上りリンクBWPにおいて、UL-SCHが送信されない。インアクティブ上りリンクBWPにおいて、PUCCHが送信されない。インアクティブ上りリンクBWPにおいて、PRACHが送信されない。インアクティブ上りリンクBWPにおいて、SRSが送信されない。
 サービングセルに対して設定される1または複数の上りリンクBWPのうち、2つ以上の上りリンクBWPがアクティブ上りリンクBWPに設定されなくてもよい。
 上位層のパラメータは、上位層の信号に含まれるパラメータである。上位層の信号は、RRC(Radio Resource Control)シグナリングであってもよいし、MAC CE(Medium Access Control Control Element)であってもよい。ここで、上位層の信号は、RRC層の信号であってもよいし、MAC層の信号であってもよい。
 上位層の信号は、共通RRCシグナリング(common RRC signaling)であってもよい。共通RRCシグナリングは、以下の特徴C1から特徴C3の一部または全部を少なくとも備えてもよい。
特徴C1)BCCHロジカルチャネル、または、CCCHロジカルチャネルにマップされる
特徴C2)ReconfigrationWithSync情報要素を少なくとも含む
特徴C3)PBCHにマップされる
 ReconfigrationWithSync情報要素は、サービングセルにおいて共通に用いられる設定を示す情報を含んでもよい。サービングセルにおいて共通に用いられる設定は、PRACHの設定を少なくとも含んでもよい。該PRACHの設定は、1または複数のランダムアクセスプリアンブルインデックスを少なくとも示してもよい。該PRACHの設定は、PRACHの時間/周波数リソースを少なくとも示してもよい。
 共通RRCシグナリングは、共通RRCパラメータを少なくとも含んでもよい。共通RRCパラメータは、サービングセル内において共通に用いられる(Cell-specific)パラメータであってもよい。
 上位層の信号は、専用RRCシグナリング(dedicated RRC signaling)であってもよい。専用RRCシグナリングは、以下の特徴D1からD2の一部または全部を少なくとも備えてもよい。
特徴D1)DCCHロジカルチャネルにマップされる
特徴D2)ReconfigrationWithSync情報要素を含まない
 例えば、MIB(Master Information Block)、および、SIB(System Information Block)は共通RRCシグナリングに含まれてもよい。また、DCCHロジカルチャネルにマップされ、かつ、ReconfigrationWithSync情報要素を少なくとも含む上位層のメッセージは、共通RRCシグナリングに含まれてもよい。また、DCCHロジカルチャネルにマップされ、かつ、ReconfigrationWithSync情報要素を含まない上位層のメッセージは、専用RRCシグナリングに含まれてもよい。
 SIBは、SS(Synchronization Signal)ブロックの時間インデックスを少なくとも示してもよい。SSブロック(SS block)は、SS/PBCHブロック(SS/PBCH block)とも呼称される。SIBは、PRACHリソースに関連する情報を少なくとも含んでもよい。SIBは、初期接続の設定に関連する情報を少なくとも含んでもよい。
 ReconfigrationWithSync情報要素は、PRACHリソースに関連する情報を少なくとも含んでもよい。ReconfigrationWithSync情報要素は、初期接続の設定に関連する情報を少なくとも含んでもよい。
 専用RRCシグナリングは、専用RRCパラメータを少なくとも含んでもよい。専用RRCパラメータは、端末装置1に専用に用いられる(UE-specific)パラメータであってもよい。専用RRCシグナリングは、共通RRCパラメータを少なくとも含んでもよい。
 共通RRCパラメータおよび専用RRCパラメータは、上位層のパラメータとも呼称される。
 以下、本実施形態の種々の態様に係る物理チャネルおよび物理シグナルを説明する。
 上りリンク物理チャネルは、上位層において発生する情報を運ぶリソースエレメントのセットに対応してもよい。上りリンク物理チャネルは、上りリンクキャリアにおいて用いられる物理チャネルである。本実施形態の一態様に係る無線通信システムにおいて、少なくとも下記の一部または全部の上りリンク物理チャネルが用いられる。
・PUCCH(Physical Uplink Control CHannel)
・PUSCH(Physical Uplink Shared CHannel)
・PRACH(Physical Random Access CHannel)
 PUCCHは、上りリンク制御情報(UCI:Uplink Control Information)を送信するために用いられてもよい。上りリンク制御情報は、チャネル状態情報(CSI:Channel State Information)、スケジューリングリクエスト(SR:Scheduling Request)、トランスポートブロック(TB:Transport block, MAC PDU:Medium Access Control Protocol Data Unit, DL-SCH:Downlink-Shared Channel, PDSCH:Physical Downlink Shared Channel)に対応するHARQ-ACK(Hybrid Automatic Repeat request ACKnowledgement)情報の一部または全部を含む。
 PUCCHに上りリンク制御情報が多重されてもよい。該多重されたPUCCHは送信されてもよい。
 HARQ-ACK情報は、トランスポートブロックに対応するHARQ-ACKビットを少なくとも含んでもよい。HARQ-ACKビットは、トランスポートブロックに対応するACK(acknowledgement)またはNACK(negative-acknowledgement)を示してもよい。ACKは、該トランスポートブロックの復号が成功裏に完了していることを示す値であってもよい。NACKは、該トランスポートブロックの復号が成功裏に完了していないことを示す値であってもよい。HARQ-ACK情報は、1または複数のHARQ-ACKビットを含むHARQ-ACKコードブックを少なくとも1つ含んでもよい。HARQ-ACKビットが1または複数のトランスポートブロックに対応することは、HARQ-ACKビットが該1または複数のトランスポートブロックを含むPDSCHに対応することであってもよい。
 HARQ-ACKビットは、トランスポートブロックに含まれる1つのCBG(Code Block Group)に対応するACKまたはNACKを示してもよい。HARQ-ACK情報は、HARQ-ACK、HARQフィードバック、HARQ情報、HARQ制御情報、HARQ-ACKメッセージとも呼称される。
 スケジューリングリクエスト(SR: Scheduling Request)は、初期送信のためのPUSCHのリソースを要求するために少なくとも用いられてもよい。スケジューリングリクエストビットは、正のSR(positive SR)または、負のSR(negative SR)のいずれかを示すために用いられてもよい。スケジューリングリクエストビットが正のSRを示すことは、“正のSRが送信される”とも呼称される。正のSRは、端末装置1によって初期送信のためのPUSCHのリソースが要求されることを示してもよい。正のSRは、上位層によりスケジューリングリクエストがトリガされることを示してもよい。正のSRは、上位層によりスケジューリングリクエストを送信することが指示された場合に、送信されてもよい。スケジューリングリクエストビットが負のSRを示すことは、“負のSRが送信される”とも呼称される。負のSRは、端末装置1によって初期送信のためのPUSCHのリソースが要求されないことを示してもよい。負のSRは、上位層によりスケジューリングリクエストがトリガされないことを示してもよい。負のSRは、上位層によりスケジューリングリクエストを送信することが指示されない場合に、送信されてもよい。
 スケジューリングリクエストビットは、1または複数のSR設定(SR configuration)のいずれかに対する正のSR、または、負のSRのいずれかを示すために用いられてもよい。該1または複数のSR設定のそれぞれは、1または複数のロジカルチャネルに対応してもよい。あるSR設定に対する正のSRは、該あるSR設定に対応する1または複数のロジカルチャネルのいずれかまたは全部に対する正のSRであってもよい。負のSRは、特定のSR設定に対応しなくてもよい。負のSRが示されることは、全てのSR設定に対して負のSRが示されることであってもよい。
 SR設定は、スケジューリングリクエストID(Scheduling Request ID)であってもよい。スケジューリングリクエストIDは、上位層のパラメータにより与えられてもよい。
 チャネル状態情報は、チャネル品質指標(CQI: Channel Quality Indicator)、プレコーダ行列指標(PMI:Precoder Matrix Indicator)、および、ランク指標(RI: Rank Indicator)の一部または全部を少なくとも含んでもよい。CQIは、チャネルの品質(例えば、伝搬強度)に関連する指標であり、PMIは、プレコーダを指示する指標である。RIは、送信ランク(または、送信レイヤ数)を指示する指標である。
 チャネル状態情報は、チャネル測定のために少なくとも用いられる物理信号(例えば、CSI-RS)を受信することに少なくとも基づき与えられてもよい。チャネル状態情報は、端末装置1によって選択される値が含まれてもよい。チャネル状態情報は、チャネル測定のために少なくとも用いられる物理信号を受信することに少なくとも基づき、端末装置1によって選択されてもよい。チャネル測定は、干渉測定を含む。
 チャネル状態情報報告は、チャネル状態情報の報告である。チャネル状態情報報告は、CSIパート1、および/または、CSIパート2を含んでもよい。CSIパート1は、広帯域チャネル品質情報(wideband CQI)、広帯域プレコーダ行列指標(wideband PMI)、ランク指標の一部または全部を少なくとも含んで構成されてもよい。PUCCHに多重されるCSIパート1のビット数は、チャネル状態情報報告のランク指標の値に関わらず所定の値であってもよい。PUCCHに多重されるCSIパート2のビット数は、チャネル状態情報報告のランク指標の値に基づき与えられてもよい。チャネル状態情報報告のランク指標は、該チャネル状態情報報告の算出のために用いられるランク指標の値であってもよい。チャネル状態情報のランク指標は、該チャネル状態情報報告に含まれるランク指標フィールドにより示される値であってもよい。
 チャネル状態情報報告において許可されるランク指標のセットは、1から8の一部または全部であってもよい。チャネル状態情報報告において許可されるランク指標のセットは、上位層のパラメータRankRestrictionに少なくとも基づき与えられてもよい。チャネル状態情報報告において許可されるランク指標のセットが1つの値のみを含む場合、該チャネル状態情報報告のランク指標は該1つの値であってもよい。
 チャネル状態情報報告に対して、優先度が設定されてもよい。チャネル状態情報報告の優先度は、該チャネル状態情報報告の時間領域のふるまいに関する設定、該チャネル状態情報報告のコンテンツのタイプ、該チャネル状態情報報告のインデックス、および/または、該チャネル状態情報報告の測定が設定されるサービングセルのインデックスの一部または全部に少なくとも基づき与えられてもよい。
 チャネル状態情報報告の時間領域のふるまいに関する設定は、該チャネル状態情報報告が非周期的に(aperiodic)行われるか、該チャネル状態情報報告が半永続的に(semi-persistent)行われるか、または、準静的に行われるか、のいずれかを示す設定であってもよい。
 チャネル状態情報報告のコンテンツのタイプは、該チャネル状態情報報告がレイヤ1のRSRP(Reference Signals Received Power)を含むか否かを示してもよい。
 チャネル状態情報報告のインデックスは、上位層のパラメータにより与えられてもよい。
 PUCCHは、PUCCHフォーマット(PUCCHフォーマット0からPUCCHフォーマット4)をサポートする。PUCCHフォーマットは、PUCCHで送信されてもよい。PUCCHフォーマットが送信されることは、PUCCHが送信されることであってもよい。
 図4は、本実施形態の一態様に係るPUCCHフォーマットとPUCCHフォーマットの長さNPUCCH symbの関係の一例を示す図である。PUCCHフォーマット0の長さNPUCCH symbは、1または2OFDMシンボルである。PUCCHフォーマット1の長さNPUCCH symbは、4から14OFDMシンボルのいずれかである。PUCCHフォーマット2の長さNPUCCH symbは、1または2OFDMシンボルである。PUCCHフォーマット3の長さNPUCCH symbは、4から14OFDMシンボルのいずれかである。PUCCHフォーマット4の長さNPUCCH symbは、4から14OFDMシンボルのいずれかである。
 PUSCHは、トランスポートブロック(TB, MAC PDU, UL-SCH)を送信するために少なくとも用いられる。PUSCHは、トランスポートブロック、HARQ-ACK情報、チャネル状態情報、および、スケジューリングリクエストの一部または全部を少なくとも送信するために用いられてもよい。PUSCHは、ランダムアクセスメッセージ3を送信するために少なくとも用いられる。
 PRACHは、ランダムアクセスプリアンブル(ランダムアクセスメッセージ1)を送信するために少なくとも用いられる。PRACHは、初期コネクション確立(initial connection establishment)プロシージャ、ハンドオーバプロシージャ、コネクション再確立(connection re-establishment)プロシージャ、PUSCHの送信に対する同期(タイミング調整)、およびPUSCHのためのリソースの要求の一部または全部を示すために少なくとも用いられてもよい。ランダムアクセスプリアンブルは、端末装置1の上位層より与えられるインデックス(ランダムアクセスプリアンブルインデックス)を基地局装置3に通知するために用いられてもよい。
 ランダムアクセスプリアンブルは、物理ルートシーケンスインデックスuに対応するZadoff-Chu系列をサイクリックシフトすることによって与えられてもよい。Zadoff-Chu系列は、物理ルートシーケンスインデックスuに基づいて生成されてもよい。1つのサービングセル(serving cell)において、複数のランダムアクセスプリアンブルが定義されてもよい。ランダムアクセスプリアンブルは、ランダムアクセスプリアンブルのインデックスに少なくとも基づき特定されてもよい。ランダムアクセスプリアンブルの異なるインデックスに対応する異なるランダムアクセスプリアンブルは、物理ルートシーケンスインデックスuとサイクリックシフトの異なる組み合わせに対応してもよい。物理ルートシーケンスインデックスu、および、サイクリックシフトは、システム情報に含まれる情報に少なくとも基づいて与えられてもよい。物理ルートシーケンスインデックスuは、ランダムアクセスプリアンブルに含まれる系列を識別するインデックスであってもよい。ランダムアクセスプリアンブルは、物理ルートシーケンスインデックスuに少なくとも基づき特定されてもよい。
 図1において、上りリンクの無線通信では、以下の上りリンク物理シグナルが用いられる。上りリンク物理シグナルは、上位層から出力された情報を送信するために使用されなくてもよいが、物理層によって使用される。
・UL DMRS(UpLink Demodulation Reference Signal)
・SRS(Sounding Reference Signal)
・UL PTRS(UpLink Phase Tracking Reference Signal)
 UL DMRSは、PUSCH、および/または、PUCCHの送信に関連する。UL DMRSは、PUSCHまたはPUCCHと多重される。基地局装置3は、PUSCHまたはPUCCHの伝搬路補正を行なうためにUL DMRSを使用してよい。以下、PUSCHと、該PUSCHに関連するUL DMRSを共に送信することを、単に、PUSCHを送信する、と称する。以下、PUCCHと該PUCCHに関連するUL DMRSを共に送信することを、単に、PUCCHを送信する、と称する。PUSCHに関連するUL DMRSは、PUSCH用UL DMRSとも称される。PUCCHに関連するUL DMRSは、PUCCH用UL DMRSとも称される。
 SRSは、PUSCHまたはPUCCHの送信に関連しなくてもよい。基地局装置3は、チャネル状態の測定のためにSRSを用いてもよい。SRSは、上りリンクスロットにおけるサブフレームの最後、または、最後から所定数のOFDMシンボルにおいて送信されてもよい。
 UL PTRSは、位相トラッキングのために少なくとも用いられる参照信号であってもよい。UL PTRSは、1または複数のUL DMRSに用いられるアンテナポートを少なくとも含むUL DMRSグループに関連してもよい。UL PTRSとUL DMRSグループが関連することは、UL PTRSのアンテナポートとUL DMRSグループに含まれるアンテナポートの一部または全部が少なくともQCLであることであってもよい。UL DMRSグループは、UL DMRSグループに含まれるUL DMRSにおいて最も小さいインデックスのアンテナポートに少なくとも基づき識別されてもよい。UL PTRSは、1つのコードワードがマップされる1または複数のアンテナポートにおいて、最もインデックスの小さいアンテナポートにマップされてもよい。UL PTRSは、1つのコードワードが第1のレイヤ及び第2のレイヤに少なくともマップされる場合に、該第1のレイヤにマップされてもよい。UL PTRSは、該第2のレイヤにマップされなくてもよい。UL PTRSがマップされるアンテナポートのインデックスは、下りリンク制御情報に少なくとも基づき与えられてもよい。
 図1において、基地局装置3から端末装置1への下りリンクの無線通信では、以下の下りリンク物理チャネルが用いられる。下りリンク物理チャネルは、上位層から出力された情報を送信するために、物理層によって使用される。
・PBCH(Physical Broadcast Channel)
・PDCCH(Physical Downlink Control Channel)
・PDSCH(Physical Downlink Shared Channel)
 PBCHは、MIB、および/または、PBCHペイロードを送信するために少なくとも用いられる。PBCHペイロードは、SSブロックの送信タイミングに関するインデックスを示す情報を少なくとも含んでもよい。PBCHペイロードは、SSブロックの識別子(インデックス)に関連する情報を含んでもよい。PBCHは、所定の送信間隔に基づき送信されてもよい。PBCHは、80msの間隔で送信されてもよい。PBCHは、160msの間隔で送信されてもよい。PBCHに含まれる情報の中身は、80msごとに更新されてもよい。PBCHに含まれる情報の一部または全部は、160msごとに更新されてもよい。PBCHは、288サブキャリアにより構成されてもよい。PBCHは、2、3、または、4つのOFDMシンボルを含んで構成されてもよい。MIBは、SSブロックの識別子(インデックス)に関連する情報を含んでもよい。MIBは、PBCHが送信されるスロットの番号、サブフレームの番号、および/または、無線フレームの番号の少なくとも一部を指示する情報を含んでもよい。
 PDCCHは、下りリンク制御情報(DCI:Downlink Control Information)の送信のために少なくとも用いられてもよい。PDCCHは、下りリンク制御情報を少なくとも含んで送信されてもよい。下りリンク制御情報は、DCIフォーマットとも呼称される。下りリンク制御情報は、下りリンクグラント(downlink grant)または上りリンクグラント(uplink grant)のいずれかを少なくとも示してもよい。PDSCHのスケジューリングのために用いられるDCIフォーマットは、下りリンクDCIフォーマットとも呼称される。PUSCHのスケジューリングのために用いられるDCIフォーマットは、上りリンクDCIフォーマットとも呼称される。下りリンクグラントは、下りリンクアサインメント(downlink assignment)または下りリンク割り当て(downlink allocation)とも呼称される。上りリンクDCIフォーマットは、DCIフォーマット0_0およびDCIフォーマット0_1の一方または両方を少なくとも含む。
 DCIフォーマット0_0は、1Aから1Fの一部または全部を少なくとも含んで構成される。
1A)DCIフォーマット特定フィールド(Identifier for DCI formats field)
1B)周波数領域リソース割り当てフィールド(Frequency domain resource assignment field)
1C)時間領域リソース割り当てフィールド(Time domain resource assignment field)
1D)周波数ホッピングフラグフィールド(Frequency hopping flag field)
1E)MCSフィールド(MCS field: Modulation and Coding Scheme field)
1F)第1のCSIリスエストフィールド(First CSI request field)
 DCIフォーマット特定フィールドは、該DCIフォーマット特定フィールドを含むDCIフォーマットが1または複数のDCIフォーマットのいずれに対応するかを示すために少なくとも用いられてもよい。該1または複数のDCIフォーマットは、DCIフォーマット1_0、DCIフォーマット1_1、DCIフォーマット0_0、および/または、DCIフォーマット0_1の一部または全部に少なくとも基づき与えられてもよい。
 周波数領域リソース割り当てフィールドは、該周波数領域リソース割り当てフィールドを含むDCIフォーマットによりスケジューリングされるPUSCHのための周波数リソースの割り当てを示すために少なくとも用いられてもよい。
 時間領域リソース割り当てフィールドは、該時間領域リソース割り当てフィールドを含むDCIフォーマットによりスケジューリングされるPUSCHのための時間リソースの割り当てを示すために少なくとも用いられてもよい。
 周波数ホッピングフラグフィールドは、該周波数ホッピングフラグフィールドを含むDCIフォーマットによりスケジューリングされるPUSCHに対して周波数ホッピングが適用されるか否かを示すために少なくとも用いられてもよい。
 MCSフィールドは、該MCSフィールドを含むDCIフォーマットによりスケジューリングされるPUSCHのための変調方式、および/または、ターゲット符号化率の一部または全部を示すために少なくとも用いられてもよい。該ターゲット符号化率は、該PUSCHのトランスポートブロックのためのターゲット符号化率であってもよい。該トランスポートブロックのサイズ(TBS: Transport Block Size)は、該ターゲット符号化率に少なくとも基づき与えられてもよい。
 第1のCSIリクエストフィールドは、CSIの報告を指示するために少なくとも用いられる。第1のCSIリクエストフィールドのサイズは、所定の値であってもよい。第1のCSIリクエストフィールドのサイズは、0であってもよいし、1であってもよいし、2であってもよいし、3であってもよい。
 DCIフォーマット0_1は、2Aから2Gの一部または全部を少なくとも含んで構成される。
2A)DCIフォーマット特定フィールド
2B)周波数領域リソース割り当てフィールド
2C)時間領域リソース割り当てフィールド
2D)周波数ホッピングフラグフィールド
2E)MCSフィールド
2F)第2のCSIリクエストフィールド(Second CSI request field)
2G)BWPフィールド(BWP field)
 BWPフィールドは、DCIフォーマット0_1によりスケジューリングされるPUSCHがマップされる上りリンクBWPを指示するために用いられてもよい。
 第2のCSIリクエストフィールドは、CSIの報告を指示するために少なくとも用いられる。第2のCSIリクエストフィールドのサイズは、上位層のパラメータReportTriggerSizeに少なくとも基づき与えられてもよい。
 下りリンクDCIフォーマットは、DCIフォーマット1_0、および、DCIフォーマット1_1の一方または両方を少なくとも含む。
 DCIフォーマット1_0は、3Aから3Hの一部または全部を少なくとも含んで構成される。
3A)DCIフォーマット特定フィールド(Identifier for DCI formats field)
3B)周波数領域リソース割り当てフィールド(Frequency domain resource assignment field)
3C)時間領域リソース割り当てフィールド(Time domain resource assignment field)
3D)周波数ホッピングフラグフィールド(Frequency hopping flag field)
3E)MCSフィールド(MCS field: Modulation and Coding Scheme field)
3F)第1のCSIリスエストフィールド(First CSI request field)
3G)PDSCHからHARQフィードバックへのタイミング指示フィールド(PDSCH to HARQ feedback timing indicator field)
3H)PUCCHリソース指示フィールド(PUCCH resource indicator field)
 PDSCHからHARQフィードバックへのタイミング指示フィールドは、タイミングK1を示すフィールドであってもよい。PDSCHの最後のOFDMシンボルが含まれるスロットのインデックスがスロットnである場合、該PDSCHに含まれるトランスポートブロックに対応するHARQ-ACKを少なくとも含むPUCCHまたはPUSCHが含まれるスロットのインデックスはn+K1であってもよい。PDSCHの最後のOFDMシンボルが含まれるスロットのインデックスがスロットnである場合、該PDSCHに含まれるトランスポートブロックに対応するHARQ-ACKを少なくとも含むPUCCHの先頭のOFDMシンボルまたはPUSCHの先頭のOFDMシンボルが含まれるスロットのインデックスはn+K1であってもよい。
 PUCCHリソース指示フィールドは、PUCCHリソースセットに含まれる1または複数のPUCCHリソースのインデックスを示すフィールドであってもよい。
 DCIフォーマット1_1は、4Aから4Jの一部または全部を少なくとも含んで構成される。
4A)DCIフォーマット特定フィールド(Identifier for DCI formats field)
4B)周波数領域リソース割り当てフィールド(Frequency domain resource assignment field)
4C)時間領域リソース割り当てフィールド(Time domain resource assignment field)
4D)周波数ホッピングフラグフィールド(Frequency hopping flag field)
4E)MCSフィールド(MCS field: Modulation and Coding Scheme field)
4F)第1のCSIリスエストフィールド(First CSI request field)
4G)PDSCHからHARQフィードバックへのタイミング指示フィールド(PDSCH to HARQ feedback timing indicator field)
4H)PUCCHリソース指示フィールド(PUCCH resource indicator field)
4J)BWPフィールド(BWP field)
 BWPフィールドは、DCIフォーマット1_1によりスケジューリングされるPDSCHがマップされる下りリンクBWPを指示するために用いられてもよい。
 DCIフォーマット2は、PUSCH、または、PUCCHの送信電力制御のために用いられるパラメータを含んでもよい。
 本実施形態の種々の態様において、特別な記載のない限り、リソースブロックの数は周波数領域におけるリソースブロックの数を示す。
 1つの物理チャネルは、1つのサービングセルにマップされてもよい。1つの物理チャネルは、1つのサービングセルに含まれる1つのキャリアに設定される1つのキャリアバンドパートにマップされてもよい。
 端末装置1は、1または複数の制御リソースセット(CORESET:COntrol REsource SET)が与えられる。端末装置1は、1または複数の制御リソースセットにおいてPDCCHを監視(monitor)する。
 制御リソースセットは、1つまたは複数のPDCCHがマップされうる時間周波数領域を示してもよい。制御リソースセットは、端末装置1がPDCCHを監視する領域であってもよい。制御リソースセットは、連続的なリソース(Localized resource)により構成されてもよい。制御リソースセットは、非連続的なリソース(distributed resource)により構成されてもよい。
 周波数領域において、制御リソースセットのマッピングの単位はリソースブロックであってもよい。例えば、周波数領域において、制御リソースセットのマッピングの単位は6リソースブロックであってもよい。時間領域において、制御リソースセットのマッピングの単位はOFDMシンボルであってもよい。例えば、時間領域において、制御リソースセットのマッピングの単位は1OFDMシンボルであってもよい。
 制御リソースセットの周波数領域は、上位層の信号、および/または、下りリンク制御情報に少なくとも基づき与えられてもよい。
 制御リソースセットの時間領域は、上位層の信号、および/または、下りリンク制御情報に少なくとも基づき与えられてもよい。
 ある制御リソースセットは、共通制御リソースセット(Common control resource set)であってもよい。共通制御リソースセットは、複数の端末装置1に対して共通に設定される制御リソースセットであってもよい。共通制御リソースセットは、MIB、SIB、共通RRCシグナリング、および、セルIDの一部または全部に少なくとも基づき与えられてもよい。例えば、SIBのスケジューリングのために用いられるPDCCHをモニタすることが設定される制御リソースセットの時間リソース、および/または、周波数リソースは、MIBに少なくとも基づき与えられてもよい。
 ある制御リソースセットは、専用制御リソースセット(Dedicated control resource set)であってもよい。専用制御リソースセットは、端末装置1のために専用に用いられるように設定される制御リソースセットであってもよい。専用制御リソースセットは、専用RRCシグナリングに少なくとも基づき与えられてもよい。
 端末装置1によって監視されるPDCCHの候補のセットは、探索領域の観点から定義されてもよい。つまり、端末装置1によって監視されるPDCCH候補のセットは、探索領域によって与えられてもよい。
 探索領域は、1または複数の集約レベル(Aggregation level)のPDCCH候補を1または複数含んで構成されてもよい。PDCCH候補の集約レベルは、該PDCCHを構成するCCEの個数を示してもよい。
 端末装置1は、DRX(Discontinuous reception)が設定されないスロットにおいて少なくとも1または複数の探索領域を監視してもよい。DRXは、上位層のパラメータに少なくとも基づき与えられてもよい。端末装置1は、DRXが設定されないスロットにおいて少なくとも1または複数の探索領域セット(Search space set)を監視してもよい。
 探索領域セットは、1または複数の探索領域を少なくとも含んで構成されてもよい。探索領域セットのタイプは、タイプ0PDCCH共通探索領域(common search space)、タイプ0aPDCCH共通探索領域、タイプ1PDCCH共通探索領域、タイプ2PDCCH共通探索領域、タイプ3PDCCH共通探索領域、および/または、UE個別PDCCH探索領域のいずれかであってもよい。
 タイプ0PDCCH共通探索領域、タイプ0aPDCCH共通探索領域、タイプ1PDCCH共通探索領域、タイプ2PDCCH共通探索領域、および、タイプ3PDCCH共通探索領域は、CSS(Common Search Space)とも呼称される。UE個別PDCCH探索領域は、USS(UE specific Search Space)とも呼称される。
 探索領域セットのそれぞれは、1つの制御リソースセットに関連してもよい。探索領域セットのそれぞれは、1つの制御リソースセットに少なくとも含まれてもよい。探索領域セットのそれぞれに対して、該探索領域セットに関連する制御リソースセットのインデックスが与えられてもよい。
 探索領域セットのそれぞれに対して、探索領域セットの監視間隔(Monitoring periodicity)が設定されてもよい。探索領域セットの監視間隔は、端末装置1によって探索領域セットの監視が行われるスロットの間隔を少なくとも示してもよい。探索領域セットの監視間隔を少なくとも示す上位層のパラメータは、探索領域セットごとに与えられてもよい。
 探索領域セットのそれぞれに対して、探索領域セットの監視オフセット(Monitoring offset)が設定されてもよい。探索領域セットの監視オフセットは、端末装置1によって探索領域セットの監視が行われるスロットのインデックスの基準インデックス(例えば、スロット#0)からのずれ(offset)を少なくとも示してもよい。探索領域セットの監視オフセットを少なくとも示す上位層のパラメータは、探索領域セットごとに与えられてもよい。
 探索領域セットのそれぞれに対して、探索領域セットの監視パターン(Monitoring pattern)が設定されてもよい。探索領域セットの監視パターンは、監視が行われる探索領域セットのための先頭のOFDMシンボルを示してもよい。探索領域セットの監視パターンは、1または複数のスロットにおける該先頭のOFDMシンボルを示すビットマップにより与えられてもよい。探索領域セットの監視パターンを少なくとも示す上位層のパラメータは、探索領域セットごとに与えられてもよい。
 探索領域セットの監視機会(Monitoring occasion)は、探索領域セットの監視間隔、探索領域セットの監視オフセット、探索領域セットの監視パターン、および/または、DRXの設定の一部または全部に少なくとも基づき与えられてもよい。
 図5は、本実施形態の一態様に係る探索領域セットの監視機会の一例を示す図である。図5において、プライマリセル301に探索領域セット91、および、探索領域セット92が設定され、セカンダリセル302に探索領域セット93が設定され、セカンダリセル303に探索領域セット94が設定されている。
 図5において、格子線で示されるブロックは探索領域セット91を示し、右上がり対角線で示されるブロックは探索領域セット92を示し、左上がり対角線で示されるブロックは探索領域セット93を示し、横線で示されるブロックは探索領域セット94を示している。
 探索領域セット91の監視間隔は1スロットにセットされ、探索領域セット91の監視オフセットは0スロットにセットされ、探索領域セット91の監視パターンは、[1,0,0,0,0,0,0,1,0,0,0,0,0,0]にセットされている。つまり、探索領域セット91の監視機会はスロットのそれぞれにおける先頭のOFDMシンボル(OFDMシンボル#0)および8番目のOFDMシンボル(OFDMシンボル#7)である。
 探索領域セット92の監視間隔は2スロットにセットされ、探索領域セット92の監視オフセットは0スロットにセットされ、探索領域セット92の監視パターンは、[1,0,0,0,0,0,0,0,0,0,0,0,0,0]にセットされている。つまり、探索領域セット92の監視機会は偶数スロットのそれぞれにおける先頭のOFDMシンボル(OFDMシンボル#0)である。
 探索領域セット93の監視間隔は2スロットにセットされ、探索領域セット93の監視オフセットは0スロットにセットされ、探索領域セット93の監視パターンは、[0,0,0,0,0,0,0,1,0,0,0,0,0,0]にセットされている。つまり、探索領域セット93の監視機会は偶数スロットのそれぞれにおける8番目のOFDMシンボル(OFDMシンボル#7)である。
 探索領域セット94の監視間隔は2スロットにセットされ、探索領域セット94の監視オフセットは1スロットにセットされ、探索領域セット94の監視パターンは、[1,0,0,0,0,0,0,0,0,0,0,0,0,0]にセットされている。つまり、探索領域セット94の監視機会は奇数スロットのそれぞれにおける先頭のOFDMシンボル(OFDMシンボル#0)である。
 タイプ0PDCCH共通探索領域は、SI-RNTI(System Information-Radio Network Temporary Identifier)によってスクランブルされたCRC(Cyclic Redundancy Check)系列を伴うDCIフォーマットのために少なくとも用いられてもよい。タイプ0PDCCH共通探索領域の設定は、上位層パラメータPDCCH-ConfigSIB1のLSB(Least Significant Bits)の4ビットに少なくとも基づき与えられてもよい。上位層パラメータPDCCH-ConfigSIB1は、MIBに含まれてもよい。タイプ0PDCCH共通探索領域の設定は、上位層のパラメータSearchSpaceZeroに少なくとも基づき与えられてもよい。上位層のパラメータSearchSpaceZeroのビットの解釈は、上位層パラメータPDCCH-ConfigSIB1のLSBの4ビットの解釈と同様であってもよい。タイプ0PDCCH共通探索領域の設定は、上位層のパラメータSearchSpaceSIB1に少なくとも基づき与えられてもよい。上位層のパラメータSearchSpaceSIB1は、上位層のパラメータPDCCH-ConfigCommonに含まれてもよい。タイプ0PDCCH共通探索領域で検出されるPDCCHは、SIB1を含んで送信されるPDSCHのスケジューリングのために少なくとも用いられてもよい。SIB1は、SIBの一種である。SIB1は、SIB1以外のSIBのスケジューリング情報を含んでもよい。端末装置1は、EUTRAにおいて上位層のパラメータPDCCH-ConfigCommonを受信してもよい。端末装置1は、MCGにおいて上位層のパラメータPDCCH-ConfigCommonを受信してもよい。
 タイプ0aPDCCH共通探索領域は、SI-RNTI(System Information-Radio Network Temporary Identifier)によってスクランブルされたCRC(Cyclic Redundancy Check)系列を伴うDCIフォーマットのために少なくとも用いられてもよい。タイプ0aPDCCH共通探索領域の設定は、上位層パラメータSearchSpaceOtherSystemInformationに少なくとも基づき与えられてもよい。上位層パラメータSearchSpaceOtherSystemInformationは、SIB1に含まれてもよい。上位層のパラメータSearchSpaceOtherSystemInformationは、上位層のパラメータPDCCH-ConfigCommonに含まれてもよい。タイプ0PDCCH共通探索領域で検出されるPDCCHは、SIB1以外のSIBを含んで送信されるPDSCHのスケジューリングのために少なくとも用いられてもよい。
 タイプ1PDCCH共通探索領域は、RA-RNTI(Random Access-Radio Network Temporary Identifier)によってスクランブルされたCRC系列、および/または、TC-RNTI(Temporary Common-Radio Network Temporary Identifier)によってスクランブルされたCRC系列を伴うDCIフォーマットのために少なくとも用いられてもよい。RA-RNTIは、端末装置1によって送信されるランダムアクセスプリアンブルの時間/周波数リソースに少なくとも基づき与えられてもよい。TC-RNTIは、RA-RNTIによってスクランブルされたCRC系列を伴うDCIフォーマットによりスケジューリングされるPDSCH(メッセージ2、または、ランダムアクセスレスポンスとも呼称される)により与えられてもよい。タイプ1PDCCH共通探索領域は、上位層のパラメータra-SearchSpaceに少なくとも基づき与えられてもよい。上位層のパラメータra-SearchSpaceは、SIB1に含まれてもよい。上位層のパラメータra-SearchSpaceは、上位層のパラメータPDCCH-ConfigCommonに含まれてもよい。
 タイプ2PDCCH共通探索領域は、P-RNTI(Paging- Radio Network Temporary Identifier)によってスクランブルされたCRC系列を伴うDCIフォーマットのために用いられてもよい。P-RNTIは、SIBの変更を通知する情報を含むDCIフォーマットの送信のために少なくとも用いられてもよい。タイプ2PDCCH共通探索領域は、上位層のパラメータPagingSearchSpaceに少なくとも基づき与えられてもよい。上位層のパラメータPagingSearchSpaceは、SIB1に含まれてもよい。上位層のパラメータPagingSearchSpaceは、上位層のパラメータPDCCH-ConfigCommonに含まれてもよい。
 タイプ3PDCCH共通探索領域は、C-RNTI(Cell-Radio Network Temporary Identifier)によってスクランブルされたCRC系列を伴うDCIフォーマットのために用いられてもよい。C-RNTIは、TC-RNTIによってスクランブルされたCRC系列を伴うDCIフォーマットによりスケジューリングされるPDSCH(メッセージ4、または、コンテンションレゾリューションとも呼称される)に少なくとも基づき与えられてもよい。タイプ3PDCCH共通探索領域は、上位層のパラメータSearchSpaceTypeがcommonにセットされている場合に与えられる探索領域セットであってもよい。
 UE個別PDCCH探索領域は、C-RNTIによってスクランブルされたCRC系列を伴うDCIフォーマットのために少なくとも用いられてもよい。
 端末装置1にC-RNTIが与えられた場合、タイプ0PDCCH共通探索領域、タイプ0aPDCCH共通探索領域、タイプ1PDCCH共通探索領域、および/または、タイプ2PDCCH共通探索領域は、C-RNTIでスクランブルされたCRC系列を伴うDCIフォーマットのために少なくとも用いられてもよい。
 端末装置1にC-RNTIが与えられた場合、上位層パラメータPDCCH-ConfigSIB1、上位層のパラメータSearchSpaceZero、上位層のパラメータSearchSpaceSIB1、上位層のパラメータSearchSpaceOtherSystemInformation、上位層のパラメータra-SearchSpace、または、上位層パラメータPagingSearchSpaceのいずれかに少なくとも基づき与えられる探索領域セットは、C-RNTIでスクランブルされたCRC系列を伴うDCIフォーマットのために少なくとも用いられてもよい。
 共通制御リソースセットは、CSSおよびUSSの一方または両方を少なくとも含んでもよい。専用制御リソースセットは、CSSおよびUSSの一方または両方を少なくとも含んでもよい。
 探索領域の物理リソースは制御チャネルの構成単位(CCE:Control Channel Element)により構成される。CCEは6つのリソース要素グループ(REG:Resource Element Group)により構成される。REGは1つのPRB(Physical Resource Block)の1OFDMシンボルにより構成されてもよい。つまり、REGは12個のリソースエレメント(RE:Resource Element)を含んで構成されてもよい。PRBは、単にRB(Resource Block:リソースブロック)とも呼称される。
 PDSCHは、トランスポートブロックを送信するために少なくとも用いられる。PDSCHは、ランダムアクセスメッセージ2(ランダムアクセスレスポンス)を送信するために少なくとも用いられてもよい。PDSCHは、初期アクセスのために用いられるパラメータを含むシステム情報を送信するために少なくとも用いられてもよい。
 図1において、下りリンクの無線通信では、以下の下りリンク物理シグナルが用いられる。下りリンク物理シグナルは、上位層から出力された情報を送信するために使用されなくてもよいが、物理層によって使用される。
・同期信号(SS:Synchronization signal)
・DL DMRS(DownLink DeModulation Reference Signal)
・CSI-RS(Channel State Information-Reference Signal)
・DL PTRS(DownLink Phase Tracking Reference Signal)
・TRS(Tracking Reference Signal)
 同期信号は、端末装置1が下りリンクの周波数領域、および/または、時間領域の同期をとるために用いられる。同期信号は、PSS(Primary Synchronization Signal)、および、SSS(Secondary Synchronization Signal)を含む。
 SSブロック(SS/PBCHブロック)は、PSS、SSS、および、PBCHの一部または全部を少なくとも含んで構成される。SSブロックに含まれるPSS、SSS、および、PBCHの一部または全部のそれぞれのアンテナポートは同一であってもよい。SSブロックに含まれるPSS、SSS、およびPBCHの一部または全部は、連続するOFDMシンボルにマップされてもよい。SSブロックに含まれるPSS、SSS、および、PBCHの一部または全部のそれぞれのCP設定は同一であってもよい。SSブロックに含まれるPSS、SSS、および、PBCHの一部または全部のそれぞれのサブキャリア間隔の設定μは同一であってもよい。
 DL DMRSは、PBCH、PDCCH、および/または、PDSCHの送信に関連する。DL DMRSは、PBCH、PDCCH、および/または、PDSCHに多重される。端末装置1は、PBCH、PDCCH、または、PDSCHの伝搬路補正を行なうために該PBCH、該PDCCH、または、該PDSCHと対応するDL DMRSを使用してよい。以下、PBCHと、該PBCHと関連するDL DMRSが共に送信されることは、PBCHが送信されると呼称される。また、PDCCHと、該PDCCHと関連するDL DMRSが共に送信されることは、単にPDCCHが送信されると呼称される。また、PDSCHと、該PDSCHと関連するDL DMRSが共に送信されることは、単にPDSCHが送信されると呼称される。PBCHと関連するDL DMRSは、PBCH用DL DMRSとも呼称される。PDSCHと関連するDL DMRSは、PDSCH用DL DMRSとも呼称される。PDCCHと関連するDL DMRSは、PDCCHと関連するDL DMRSとも呼称される。
 DL DMRSは、端末装置1に個別に設定される参照信号であってもよい。DL DMRSの系列は、端末装置1に個別に設定されるパラメータに少なくとも基づいて与えられてもよい。DL DMRSの系列は、UE固有の値(例えば、C-RNTI等)に少なくとも基づき与えられてもよい。DL DMRSは、PDCCH、および/または、PDSCHのために個別に送信されてもよい。
 CSI-RSは、チャネル状態情報を算出するために少なくとも用いられる信号であってもよい。端末装置によって想定されるCSI-RSのパターンは、少なくとも上位層のパラメータにより与えられてもよい。
 PTRSは、位相雑音の補償のために少なくとも用いられる信号であってもよい。端末装置によって想定されるPTRSのパターンは、上位層のパラメータ、および/または、DCIに少なくとも基づき与えられてもよい。
 DL PTRSは、1または複数のDL DMRSに用いられるアンテナポートを少なくとも含むDL DMRSグループに関連してもよい。DL PTRSとDL DMRSグループが関連することは、DL PTRSのアンテナポートとDL DMRSグループに含まれるアンテナポートの一部または全部が少なくともQCLであることであってもよい。DL DMRSグループは、DL DMRSグループに含まれるDL DMRSにおいて最も小さいインデックスのアンテナポートに少なくとも基づき識別されてもよい。
 TRSは、時間、および/または、周波数の同期のために少なくとも用いられる信号であってもよい。端末装置によって想定されるTRSのパターンは、上位層のパラメータ、および/または、DCIに少なくとも基づき与えられてもよい。
 下りリンク物理チャネルおよび下りリンク物理シグナルは、下りリンク信号とも呼称される。上りリンク物理チャネルおよび上りリンク物理シグナルは、上りリンク信号とも呼称される。下りリンク信号および上りリンク信号はまとめて物理信号とも呼称される。下りリンク信号および上りリンク信号はまとめて信号とも呼称される。下りリンク物理チャネルおよび上りリンク物理チャネルを総称して、物理チャネルと称する。下りリンク物理シグナルおよび上りリンク物理シグナルを総称して、物理シグナルと称する。
 BCH(Broadcast CHannel)、UL-SCH(Uplink-Shared CHannel)およびDL-SCH(Downlink-Shared CHannel)は、トランスポートチャネルである。媒体アクセス制御(MAC:Medium Access Control)層で用いられるチャネルはトランスポートチャネルと呼称される。MAC層で用いられるトランスポートチャネルの単位は、トランスポートブロック(TB)またはMAC PDUとも呼称される。MAC層においてトランスポートブロック毎にHARQ(Hybrid Automatic Repeat reQuest)の制御が行なわれる。トランスポートブロックは、MAC層が物理層に渡す(deliver)データの単位である。物理層において、トランスポートブロックはコードワードにマップされ、コードワード毎に変調処理が行なわれる。
 基地局装置3と端末装置1は、上位層(higher layer)において上位層の信号をやり取り(送受信)する。例えば、基地局装置3と端末装置1は、無線リソース制御(RRC:Radio Resource Control)層において、RRCシグナリング(RRC message:Radio Resource Control message、RRC information:Radio Resource Control information)を送受信してもよい。また、基地局装置3と端末装置1は、MAC層において、MAC CE(Control Element)を送受信してもよい。ここで、RRCシグナリング、および/または、MAC CEを、上位層の信号(higher layer signaling)とも称する。
 PUSCHおよびPDSCHは、RRCシグナリング、および/または、MAC CEを送信するために少なくとも用いられてよい。ここで、基地局装置3よりPDSCHで送信されるRRCシグナリングは、サービングセル内における複数の端末装置1に対して共通のシグナリングであってもよい。サービングセル内における複数の端末装置1に対して共通のシグナリングは、共通RRCシグナリングとも呼称される。基地局装置3からPDSCHで送信されるRRCシグナリングは、ある端末装置1に対して専用のシグナリング(dedicated signalingまたはUE specific signalingとも呼称される)であってもよい。端末装置1に対して専用のシグナリングは、専用RRCシグナリングとも呼称される。サービングセルにおいて固有な上位層のパラメータは、サービングセル内における複数の端末装置1に対して共通のシグナリング、または、ある端末装置1に対して専用のシグナリングを用いて送信されてもよい。UE固有な上位層のパラメータは、ある端末装置1に対して専用のシグナリングを用いて送信されてもよい。
 BCCH(Broadcast Control CHannel)、CCCH(Common Control CHannel)、および、DCCH(Dedicated Control CHannel)は、ロジカルチャネルである。例えば、BCCHは、MIBを送信するために用いられる上位層のチャネルである。また、CCCH(Common Control CHannel)は、複数の端末装置1において共通な情報を送信するために用いられる上位層のチャネルである。ここで、CCCHは、例えば、RRC接続されていない端末装置1のために用いられてもよい。また、DCCH(Dedicated Control CHannel)は、端末装置1に専用の制御情報(dedicated control information)を送信するために少なくとも用いられる上位層のチャネルである。ここで、DCCHは、例えば、RRC接続されている端末装置1のために用いられてもよい。
 ロジカルチャネルにおけるBCCHは、トランスポートチャネルにおいてBCH、DL-SCH、または、UL-SCHにマップされてもよい。ロジカルチャネルにおけるCCCHは、トランスポートチャネルにおいてDL-SCHまたはUL-SCHにマップされてもよい。ロジカルチャネルにおけるDCCHは、トランスポートチャネルにおいてDL-SCHまたはUL-SCHにマップされてもよい。
 トランスポートチャネルにおけるUL-SCHは、物理チャネルにおいてPUSCHにマップされてもよい。トランスポートチャネルにおけるDL-SCHは、物理チャネルにおいてPDSCHにマップされてもよい。トランスポートチャネルにおけるBCHは、物理チャネルにおいてPBCHにマップされてもよい。
 以下、本実施形態の一態様に係る端末装置1の構成例を説明する。
 図6は、本実施形態の一態様に係る端末装置1の構成を示す概略ブロック図である。図示するように、端末装置1は、無線送受信部10、および、上位層処理部14を含んで構成される。無線送受信部10は、アンテナ部11、RF(Radio Frequency)部12、および、ベースバンド部13の一部または全部を少なくとも含んで構成される。上位層処理部14は、媒体アクセス制御層処理部15、および、無線リソース制御層処理部16の一部または全部を少なくとも含んで構成される。無線送受信部10を送信部、受信部、または、物理層処理部とも称する。
 上位層処理部14は、ユーザーの操作等により生成された上りリンクデータ(トランスポートブロック)を、無線送受信部10に出力する。上位層処理部14は、MAC層、パケットデータ統合プロトコル(PDCP:Packet Data Convergence Protocol)層、無線リンク制御(RLC:Radio Link Control)層、RRC層の処理を行なう。
 上位層処理部14が備える媒体アクセス制御層処理部15は、MAC層の処理を行う。
 上位層処理部14が備える無線リソース制御層処理部16は、RRC層の処理を行う。無線リソース制御層処理部16は、自装置の各種設定情報/パラメータの管理をする。無線リソース制御層処理部16は、基地局装置3から受信した上位層の信号に基づいて各種設定情報/パラメータをセットする。すなわち、無線リソース制御層処理部16は、基地局装置3から受信した各種設定情報/パラメータを示す情報に基づいて各種設定情報/パラメータをセットする。該パラメータは上位層のパラメータであってもよい。
 無線送受信部10は、変調、復調、符号化、復号化などの物理層の処理を行う。無線送受信部10は、受信した物理信号を、分離、復調、復号し、復号した情報を上位層処理部14に出力する。無線送受信部10は、データを変調、符号化、ベースバンド信号生成(時間連続信号への変換)することによって物理信号を生成し、基地局装置3に送信する。
 RF部12は、アンテナ部11を介して受信した信号を、直交復調によりベースバンド信号に変換し(ダウンコンバート:down covert)、不要な周波数成分を除去する。RF部12は、処理をしたアナログ信号をベースバンド部に出力する。
 ベースバンド部13は、RF部12から入力されたアナログ信号をディジタル信号に変換する。ベースバンド部13は、変換したディジタル信号からCP(Cyclic Prefix)に相当する部分を除去し、CPを除去した信号に対して高速フーリエ変換(FFT:Fast Fourier Transform)を行い、周波数領域の信号を抽出する。
 ベースバンド部13は、データを逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)して、OFDMシンボルを生成し、生成されたOFDMシンボルにCPを付加し、ベースバンドのディジタル信号を生成し、ベースバンドのディジタル信号をアナログ信号に変換する。ベースバンド部13は、変換したアナログ信号をRF部12に出力する。
 RF部12は、ローパスフィルタを用いてベースバンド部13から入力されたアナログ信号から余分な周波数成分を除去し、アナログ信号を搬送波周波数にアップコンバート(up convert)し、アンテナ部11を介して送信する。また、RF部12は、電力を増幅する。また、RF部12は送信電力を制御する機能を備えてもよい。RF部12を送信電力制御部とも称する。
 以下、本実施形態の一態様に係る基地局装置3の構成例を説明する。
 図7は、本実施形態の一態様に係る基地局装置3の構成を示す概略ブロック図である。図示するように、基地局装置3は、無線送受信部30、および、上位層処理部34を含んで構成される。無線送受信部30は、アンテナ部31、RF部32、および、ベースバンド部33を含んで構成される。上位層処理部34は、媒体アクセス制御層処理部35、および、無線リソース制御層処理部36を含んで構成される。無線送受信部30を送信部、受信部、または、物理層処理部とも称する。
 上位層処理部34は、MAC層、PDCP層、RLC層、RRC層の処理を行なう。
 上位層処理部34が備える媒体アクセス制御層処理部35は、MAC層の処理を行う。
 上位層処理部34が備える無線リソース制御層処理部36は、RRC層の処理を行う。無線リソース制御層処理部36は、PDSCHに配置される下りリンクデータ(トランスポートブロック)、システム情報、RRCメッセージ、MAC CEなどを生成し、又は上位ノードから取得し、無線送受信部30に出力する。また、無線リソース制御層処理部36は、端末装置1各々の各種設定情報/パラメータの管理をする。無線リソース制御層処理部36は、上位層の信号を介して端末装置1各々に対して各種設定情報/パラメータをセットしてもよい。すなわち、無線リソース制御層処理部36は、各種設定情報/パラメータを示す情報を送信/報知する。
 無線送受信部30の機能は、無線送受信部10と同様であるため説明を省略する。
 端末装置1が備える符号10から符号16が付された部のそれぞれは、回路として構成されてもよい。基地局装置3が備える符号30から符号36が付された部のそれぞれは、回路として構成されてもよい。端末装置1が備える符号10から符号16が付された部の一部または全部は、メモリと該メモリに接続されるプロセッサとして構成されてもよい。基地局装置3が備える符号30から符号36が付された部の一部または全部は、メモリと該メモリに接続されるプロセッサとして構成されてもよい。本実施形態に係る種々の態様(動作、処理)は、端末装置1および/または基地局装置3に含まれるメモリおよび該メモリに接続されるプロセッサにおいて実現されて(行われて)もよい。
 以下、種々の態様例を説明する。
 本実施形態の種々の態様において、端末装置1は物理信号の送信に先立ってキャリアセンス(Carrier sense)を実施してもよい。また、基地局装置3は物理信号の送信に先立ってキャリアセンスを実施してもよい。キャリアセンスは、無線チャネル(Radio channel)においてエネルギー検出(Energy detection)を実施することであってもよい。物理信号の送信に先立って実施されるキャリアセンスに基づき、該物理信号の送信可否が与えられてもよい。例えば、物理信号の送信に先立って実施されるキャリアセンスによって検出されるエネルギー量が所定のしきい値よりも大きい場合に、該物理チャネルの送信が行われなくてもよい、または、送信が不可と判断されてもよい。また、物理信号の送信に先立って実施されるキャリアセンスによって検出されるエネルギー量が所定のしきい値よりも小さい場合に、該物理チャネルの送信が行われてもよい、または、送信が可能と判断されてもよい。また、物理信号の送信に先立って実施されるキャリアセンスによって検出されるエネルギー量が所定のしきい値と等しい場合に、該物理チャネルの送信が行われてもよいし、行われなくてもよい。つまり、物理信号の送信に先立って実施されるキャリアセンスによって検出されるエネルギー量が所定のしきい値と等しい場合に、送信が不可と判断されてもよいし、送信が可能と判断されてもよい。
 キャリアセンスに基づき物理チャネルの送信可否が与えられる手順は、LBT(Listen Before Talk)とも呼称される。LBTの結果として物理信号の送信が不可と判断される状況は、busy状態、または、busyとも呼称される。例えば、busy状態は、キャリアセンスによって検出されるエネルギー量が所定のしきい値よりも大きい状態であってもよい。また、LBTの結果として物理信号の送信が可能と判断される状況は、idle状態、または、idleとも呼称される。例えば、idle状態は、キャリアセンスによって検出されるエネルギー量が所定のしきい値よりも小さい状態であってもよい。
 図8は、本実施形態の一態様に係る物理信号の送信の一例を示す図である。図8において、基地局装置3はOFDMシンボル#0におけるPDCCHの送信開始、OFDMシンボル#2におけるPDSCHの送信開始を想定している(BS#3’s assumption)。一方で、PDCCHの送信に先立って実施されるLBT手順の結果、OFDMシンボル#0およびOFDMシンボル#1はbusy状態であり、OFDMシンボル#2がidle状態であったために、実際のPDCCHの送信はOFDMシンボル#3から開始されている(Actual transmission)。
 図8に示されるように、物理信号の送信に先立ってLBT手順が実施される場合、該物理信号の送信に関する想定と、該物理信号の実際の送信にずれが生じる場合がある。一方で、物理信号の送信に関する想定と、該物理信号の実際の送信にずれが生じたとしても、該物理信号の構成(該物理信号によって送信される情報ビット系列の内容、該情報ビット系列のサイズ、変調シンボルのマッピング等)は変更されないことが望ましい。LBT手順によって、物理信号の構成を変更することは、該物理信号を送信する装置(端末装置1、または、基地局装置3)の負荷増大をもたらす可能性がある。
 図9は、本実施形態の一態様に係る物理信号の送信の一例を示す図である。図9において、基地局装置3はOFDMシンボル#0におけるPDCCHの送信開始、および、OFDMシンボル#2におけるPDSCHの送信開始を想定している(BS#3’s assumption)。一方で、PDCCHの送信に先立って実施されるLBT手順の結果、OFDMシンボル#0はbusy状態であり、OFDMシンボル#1がidle状態であったために、実際のPDCCHの送信はOFDMシンボル#2から開始されている(Actual transmission)。
 図9において、PDCCHに含まれるDCIフォーマットに含まれる時間領域リソース割り当てフィールドは、OFDMシンボル#2においてPDSCHの送信が開始され、該PDSCHのOFDMシンボルの数(duration)が4OFDMシンボルであることを少なくとも示してもよい。一方で、OFDMシンボル#2、および、OFDMシンボル#3は、PDCCHの送信に用いられるため、PDSCHの実際の送信はOFDMシンボル#4から開始されてもよい。
 ここで、時間領域リソース割り当てフィールドは、PDSCHが送信されるスロットのインデックス、PDSCHの送信が開始されるOFDMシンボルのインデックス、PDSCHのOFDMシンボルの数、および/または、PDSCHに関連するDMRSのマッピングタイプの一部または全部を少なくとも示すために用いられてもよい。
 図9において、PDSCHに含まれるトランスポートブロックのTBS(Transport Block Size)は、時間領域リソース割り当てフィールドにより示される、PDSCHのOFDMシンボルの数に少なくとも基づき与えられてもよい。PDSCHの変調シンボルのマッピングは、時間領域リソース割り当てフィールドにより示される、PDSCHの送信が開始されるOFDMシンボルのインデックスに少なくとも基づき与えられてもよい。一方、PDSCHに関連するDMRSのマッピングは、実際にPDSCHの送信が開始されるOFDMシンボルのインデックスに少なくとも基づき与えられてもよい。
 以下、各種用語の定義を行う。
 スケジューリングされたPDSCHの送信開始シンボルは、PDSCHのスケジューリングに用いられるPDCCHに少なくとも基づき示される値であってもよい。例えば、スケジューリングされたPDSCHの送信開始シンボルは、PDSCHのスケジューリングに用いられるPDCCHに含まれるDCIフォーマットに含まれる時間領域リソース割り当てフィールドに少なくとも基づき示される値であってもよい。
 スケジューリングされたPDSCHのOFDMシンボル数は、PDSCHのスケジューリングに用いられるPDCCHに少なくとも基づき示される値であってもよい。例えば、スケジューリングされたPDSCHのOFDMシンボル数は、PDSCHのスケジューリングに用いられるPDCCHに含まれるDCIフォーマットに含まれる時間領域リソース割り当てフィールドに少なくとも基づき示される値であってもよい。
 スケジューリングされたPDSCHの送信終端シンボルは、PDSCHのスケジューリングに用いられるPDCCHに少なくとも基づき示される値であってもよい。例えば、スケジューリングされたPDSCHの送信終端シンボルは、スケジューリングされたPDSCHの送信開始シンボル、および、スケジューリングされたPDSCHのOFDMシンボル数に少なくとも基づき示されてもよい。また、スケジューリングされたPDSCHの送信終端シンボルは、PDSCHのスケジューリングに用いられるPDCCHに含まれるDCIフォーマットの所定のフィールドにより示されてもよい。
 実際に送信されるPDSCHの送信開始シンボルは、PDSCHの送信が開始されるOFDMシンボルのインデックスであってもよい。実際に送信されるPDSCHの送信開始シンボルは、スケジューリングされたPDSCHの送信開始シンボルと異なってもよい。実際に送信されるPDSCHの送信開始シンボルは、PDSCHのスケジューリングに用いられるPDCCHを含んで送信されるPDCCHの送信が終端するOFDMシンボルのインデックスに少なくとも基づき与えられてもよい。例えば、実際に送信されるPDSCHの送信開始シンボルは、PDSCHのスケジューリングに用いられるPDCCHの送信が終端するOFDMシンボルの次のOFDMシンボルのインデックスであってもよい。実際に送信されるPDSCHの送信開始シンボルは、PDSCHのスケジューリングに用いられるPDCCHの送信が開始されるOFDMシンボルのインデックスに少なくとも基づき与えられてもよい。例えば、実際に送信されるPDSCHの送信開始シンボルは、PDSCHのスケジューリングに用いられるPDCCHの送信が開始されるOFDMシンボルの次のOFDMシンボルのインデックスであってもよい。また、実際に送信されるPDSCHの送信開始シンボルは、PDSCHのスケジューリングに用いられるPDCCHの送信が開始されるOFDMシンボルのインデックスであってもよい。
 例えば、端末装置1は、実際に送信されるPDSCHの送信開始シンボルから、PDSCHの受信を開始してもよい。
 実際に送信されるPDSCHのOFDMシンボル数は、PDSCHが送信されるOFDMシンボルの数である。実際に送信されるPDSCHのOFDMシンボル数は、スケジューリングされたPDSCHのOFDMシンボル数と異なってもよい。例えば、実際に送信されるPDSCHのOFDMシンボル数は、実際に送信されるPDSCHの送信開始シンボル、および、スケジューリングされたPDSCHの送信終端シンボルに少なくとも基づき与えられてもよい。実際に送信されるPDSCHのOFDMシンボル数に少なくとも基づき、PDSCHに関連するDMRSのマッピングパターンが与えられてもよい。
 実際に送信されるPDSCHの送信終端シンボルは、スケジューリングされたPDSCHの送信終端シンボルと等しくてもよいし、異なってもよい。実際に送信されるPDSCHの送信終端シンボルは、スロットの最後のOFDMシンボルであってもよい。実際に送信されるPDSCHの送信終端シンボルは、スケジューリングされたPDSCHの送信終端シンボルに少なくとも基づき与えられてもよい。
 例えば、端末装置1は、実際に送信されるPDSCHの送信終端シンボルにおいて、PDSCHの受信を終了してもよい。
 OFDMシンボルインデックスのための参照ポイントは、OFDMシンボルのインデックス決定のための基準点であってもよい。OFDMシンボルインデックスのための参照ポイントは、OFDMシンボルインデックス#0を示してもよい。
 図10は、本実施形態の一態様に係るPDSCHに関連するDMRSのマッピングの一例を示す図である。図10において、横軸に2種類のOFDMシンボルインデックスが示されており、下方はスロット内のOFDMシンボルインデックスを示し、上方はDMRSのマッピングのためのOFDMシンボルインデックスを示す。PDSCHに関連するDMRSが、OFDMシンボルインデックス#0、OFDMシンボルインデックス#3、および、OFDMシンボルインデックス#8にマップされる場合、該PDSCHに関連するDMRSのマッピングは斜線のブロックで示される。ここで、該PDSCHに関連するDMRSのためのOFDMシンボルインデックスの参照ポイント(reference point)は、スロット内のOFDMシンボルインデックス#3に設定されている。
 第1のマッピングタイプにおいて、PDSCHに関連するDMRSのOFDMシンボルインデックスの参照ポイントは、スロットの先頭のOFDMシンボルインデックスに設定されてもよい。図10における第1のマッピングタイプにおいて、PDSCHに関連するDMRSのマッピングパターンは、OFDMシンボル#3、OFDMシンボル#6、および、OFDMシンボル#11を含んで構成されてもよい。第2のマッピングタイプにおいて、PDSCHに関連するDMRSのOFDMシンボルインデックスの参照ポイントは、スケジューリングされたPDSCHの送信開始シンボルに設定されてもよい。図10における第2のマッピングタイプにおいて、PDSCHに関連するDMRSのマッピングパターンは、OFDMシンボル#0、OFDMシンボル#3、および、OFDMシンボル#8を含んで構成されてもよい。第2のマッピングタイプにおいて、PDSCHに関連するDMRSのOFDMシンボルインデックスの参照ポイントは、実際に送信されるPDSCHの送信開始シンボルに設定されてもよい。PDSCHに関連するDMRSのマッピングタイプが第1のマッピングタイプであるか第2のマッピングタイプであるかは、該PDSCHのスケジューリングに用いられるDCIフォーマットに含まれる時間領域リソース割り当てフィールドに少なくとも基づき示されてもよい。
 PDSCHに関連するDMRSのマッピングパターンは、該PDSCHに関連するDMRSがマップされるOFDMシンボルのインデックスを示してもよい。該PDSCHに関連するDMRSのマッピングパターンは、該PDSCHに関連するDMRSのOFDMシンボルのインデックスの参照ポイントを基準に、該PDSCHに関連するDMRSがマップされるOFDMシンボルのインデックスを示してもよい。
 PDSCHに関連するDMRSのマッピングパターンは、該PDSCHに関連するDMRSのうちの先頭のOFDMシンボルのインデックスlを少なくとも含んで構成されてもよい。該DMRSのうちの先頭のOFDMシンボルは、前倒しDMRS(front-loaded DMRS)とも呼称される。第1のマッピングタイプに対して、PDSCHに関連するDMRSのうちの先頭のOFDMシンボルのインデックスlは、上位層のパラメータに少なくとも基づき与えられてもよい。第2のマッピングタイプに対して、PDSCHに関連するDMRSのうちの先頭のOFDMシンボルのインデックスlは0であってもよい。
 PDSCHに関連するDMRSのうちの先頭のOFDMシンボルのインデックスlは、実際に送信されるPDSCHの送信開始シンボルに少なくとも基づき与えられてもよい。
 例えば、端末装置1は、該先頭のOFDMシンボルのインデックスlから該PDSCHに関連するDMRSの受信を開始してもよい。
 PDSCHに含まれるトランスポートブロックのTBSは、スケジューリングされたPDSCHのOFDMシンボル数に少なくとも基づき与えられてもよい。
 PDSCHの変調シンボルのマッピングは、スケジューリングされたPDSCHの送信開始シンボルに少なくとも基づき与えられてもよい。PDSCHの変調シンボルのマッピングは、実際に送信されるPDSCHの送信開始シンボルに少なくとも基づき与えられてもよい。
 PDSCHに関連するDMRSのマッピングは、実際に送信されるPDSCHの送信開始シンボルに少なくとも基づき与えられてもよい。例えば、PDSCHに関連するDMRSが送信されるOFDMシンボルインデックスのための参照ポイントは、実際に送信されるPDSCHの送信開始シンボルに少なくとも基づき与えられてもよい。
 PDSCHに関連するDMRSのマッピングが実際に送信されるPDSCHの送信開始シンボルに少なくとも基づき与えられるか否かは、該PDSCHのスケジューリングに用いられるPDCCHが検出される探索領域セットに少なくとも基づき与えられてもよい。
 例えば、PDSCHのスケジューリングに用いられるPDCCHが検出される探索領域セットのインデックスが所定のインデックスである場合に、該PDSCHに関連するDMRSのマッピングは、実際に送信されるPDSCHの送信開始シンボルに少なくとも基づき与えられてもよい。また、PDSCHのスケジューリングに用いられるPDCCHが該所定のインデックスとは異なる場合に、該PDSCHに関連するDMRSのマッピングは、スケジューリングされたPDSCHの送信開始シンボルに少なくとも基づき与えられてもよい。
 例えば、PDSCHのスケジューリングに用いられるPDCCHが検出される探索領域セットのタイプが所定のタイプである場合に、該PDSCHに関連するDMRSのマッピングは、実際に送信されるPDSCHの送信開始シンボルに少なくとも基づき与えられてもよい。また、PDSCHのスケジューリングに用いられるPDCCHが検出される探索領域セットのタイプが該所定のタイプとは異なる場合に、該PDSCHに関連するDMRSのマッピングは、スケジューリングされたPDSCHの送信開始シンボルに少なくとも基づき与えられてもよい。
 例えば、該所定のタイプは、特別な探索領域セット、タイプ0PDCCH共通探索領域、タイプ0aPDCCH共通探索領域、タイプ1PDCCH共通探索領域、タイプ2PDCCH共通探索領域、タイプ3PDCCH共通探索領域、および/または、UE個別PDCCH探索領域の一部または全部を少なくとも含んでもよい。
 PDSCHに関連するDMRSのマッピングが実際に送信されるPDSCHの送信開始シンボルに少なくとも基づき与えられるか否かは、該PDSCHのスケジューリングに用いられるPDCCHが検出される探索領域セットの監視機会に少なくとも基づき与えられてもよい。
 例えば、PDSCHのスケジューリングに用いられるPDCCHが検出される探索領域セットの監視機会が特別な監視機会である場合に、該PDSCHに関連するDMRSのマッピングは、実際に送信されるPDSCHの送信開始シンボルに少なくとも基づき与えられてもよい。また、PDSCHのスケジューリングに用いられるPDCCHが検出される探索領域セットの監視機会が該特別な監視機会でない場合に、該PDSCHに関連するDMRSのマッピングは、スケジューリングされたPDSCHの送信開始シンボルに少なくとも基づき与えられてもよい。
 PDSCHに関連するDMRSのマッピングが実際に送信されるPDSCHの送信開始シンボルに少なくとも基づき与えられるか否かは、該PDSCHのスケジューリングに用いられるPDCCHに含まれるDCIフォーマットに少なくとも基づき与えられてもよい。
 例えば、PDSCHのスケジューリングに用いられるPDCCHに含まれるDCIフォーマットが所定のフォーマットである場合に、該PDSCHに関連するDMRSのマッピングは、実際に送信されるPDSCHの送信開始シンボルに少なくとも基づき与えられてもよい。また、PDSCHのスケジューリングに用いられるPDCCHに含まれるDCIフォーマットが該所定のフォーマットとは異なる場合に、該PDSCHに関連するDMRSのマッピングは、スケジューリングされたPDSCHの送信開始シンボルに少なくとも基づき与えられてもよい。
 例えば、該所定のフォーマットは、DCIフォーマット1_0、DCIフォーマット1_1、および/または、特別なフォーマットの一部または全部を少なくとも含んでもよい。
 PDSCHに関連するDMRSのマッピングが実際に送信されるPDSCHの送信開始シンボルに少なくとも基づき与えられるか否かは、該PDSCHのスケジューリングに用いられるPDCCHに含まれるDCIフォーマットに付加されるCRCのスクランブリングに用いられるRNTIの値に少なくとも基づき与えられてもよい。
 例えば、PDSCHのスケジューリングに用いられるPDCCHに含まれるDCIフォーマットに付加されるCRCのスクランブリングに用いられるRNTIが特別なRNTIである場合に、該PDSCHに関連するDMRSのマッピングは、実際に送信されるPDSCHの送信開始シンボルに少なくとも基づき与えられてもよい。また、PDSCHのスケジューリングに用いられるPDCCHに含まれるDCIフォーマットに付加されるCRCのスクランブリングに用いられるRNTIが該特別なRNTIとは異なる場合に、該PDSCHに関連するDMRSのマッピングは、スケジューリングされたPDSCHの送信開始シンボルに少なくとも基づき与えられてもよい。
 以下、特別な探索領域セット、特別な監視機会、特別なフォーマット、および、特別なRNTIの説明を行う。
 特別な探索領域セットは、所定の状態においてモニタされる探索領域セットであってもよい。また、特別な探索領域セットは、該所定の状態以外においてモニタされなくてもよい。該所定の状態は、以下の条件1から条件3の一部または全部を少なくとも満たす状態であってもよい。
条件1:探索領域セットの監視機会がCOT(Channel Occupancy Time)の外に設定されている、または、探索領域セットの監視機会がCOTの内に設定されていない
条件2:初期信号が検出されるスロット(または所定の期間)において設定される探索領域セットの監視機会である
条件3:探索領域セットの監視機会が設定されるスロットのスロットフォーマットに関する情報を取得していない
 COTは、チャネル専有時間とも呼称される。COTは、LBT手順によって確保されてもよい。
 初期信号は、同期信号、CSI-RS、および/または、PDCCH DMRSのいずれかであってもよい。初期信号の検出に基づき、特別な探索領域セットの活性化(activation)が行われてもよい。活性化された特別な探索領域セットは、所定の期間においてモニタされてもよい。
 スロットフォーマットは、スロットのUL/DL設定を示す情報である。スロットフォーマットは、PDCCHで送信されてもよい。
 特別な監視機会は、探索領域セットの監視機会であって、該所定の状態においてモニタされる該探索領域セットの監視機会であってもよい。該所定の状態以外にモニタされる探索領域セットの監視機会は、該特別な監視機会に含まれなくてもよい。
 例えば、特別なフォーマットは、PDSCHのスケジューリングに用いられるDCIフォーマットであって、時間領域リソース割り当てフィールドを含まないDCIフォーマットであってもよい。また、特別なフォーマットは、PDSCHのスケジューリングに用いられるDCIフォーマットであって、該PDSCHの送信が開始されるOFDMシンボルのインデックスを少なくとも示さないDCIフォーマットであってもよい。また、特別なフォーマットは、PDSCHのスケジューリングに用いられるDCIフォーマットであって、該PDSCHのOFDMシンボルの数を少なくとも示さないDCIフォーマットであってもよい。また、特別なフォーマットは、PDSCHのスケジューリングに用いられるDCIフォーマットであって、該PDSCHに関連するDMRSのマッピングタイプを少なくとも示さないDCIフォーマットであってもよい。特別なフォーマットは、スケジューリングされたPDSCHの送信終端シンボルを示してもよい。
 特別なフォーマットに少なくとも基づきスケジューリングされるPDSCHの、実際に送信されるPDSCHの送信終端シンボルは、該PDSCHがマップされるスロットの最後のOFDMシンボルであってもよい。
 例えば、特別なフォーマットは、該所定の状態においてモニタされるDCIフォーマットであってもよい。
 例えば、特別なRNTIは、該所定の状態においてモニタされるDCIフォーマットに付加されるCRCのスクランブリングに用いられてもよい。
 時間領域リソース割り当てフィールドにより示されるスケジューリングされたPDSCHの送信開始シンボルがPDSCHのスケジューリングに用いられるPDCCHの先頭のOFDMシンボルより前にあり(先頭のOFDMシンボルより早く)、実際に送信されるPDSCHの送信開始シンボルはPDCCHの終端のOFDMシンボルの次のOFDMシンボルであってもよい。
 時間領域リソース割り当てフィールドにより示されるスケジューリングされたPDSCHの送信開始シンボルがPDSCHのスケジューリングに用いられるPDCCHの終端のOFDMシンボルより前にあり(終端のOFDMシンボルより早く)、実際に送信されるPDSCHの送信開始シンボルはPDCCHの終端のOFDMシンボルの次のOFDMシンボルであってもよい。
 時間領域リソース割り当てフィールドにより示されるスケジューリングされたPDSCHの送信開始シンボルがPDSCHのスケジューリングに用いられるPDCCHの先頭のOFDMシンボルと同じであり(先頭のOFDMシンボルと等しく)、実際に送信されるPDSCHの送信開始シンボルはPDCCHの終端のOFDMシンボルの次のOFDMシンボルであってもよい。
 時間領域リソース割り当てフィールドにより示されるスケジューリングされたPDSCHの送信開始シンボルがPDSCHのスケジューリングに用いられるPDCCHの終端のOFDMシンボルと同じであり(終端のOFDMシンボルと等しく)、実際に送信されるPDSCHの送信開始シンボルはPDCCHの終端のOFDMシンボルの次のOFDMシンボルであってもよい。
 時間領域リソース割り当てフィールドにより示されるスケジューリングされたPDSCHの送信開始シンボルがPDSCHのスケジューリングに用いられるPDCCHの先頭のOFDMシンボルより後にあり(先頭のOFDMシンボルより遅く)、実際に送信されるPDSCHの送信開始シンボルは該スケジューリングされたPDSCHの送信開始シンボルに等しくてもよい。
 時間領域リソース割り当てフィールドにより示されるスケジューリングされたPDSCHの送信開始シンボルがPDSCHのスケジューリングに用いられるPDCCHの終端のOFDMシンボルより後にあり(終端のOFDMシンボルより遅く)、実際に送信されるPDSCHの送信開始シンボルは該スケジューリングされたPDSCHの送信開始シンボルに等しくてもよい。
 時間リソース割り当てフィールドにより示されるスケジューリングされたPDSCHの送信開始シンボルがPDSCHのスケジューリングに用いられるPDCCHの先頭のOFDMシンボルより前にある場合(先頭のOFDMシンボルより早い場合)、実際に送信されるPDSCHの送信開始シンボルはPDCCHの終端のOFDMシンボルの次のOFDMシンボルであってもよい。
 時間リソース割り当てフィールドにより示されるスケジューリングされたPDSCHの送信開始シンボルがPDSCHのスケジューリングに用いられるPDCCHの終端のOFDMシンボルより前にある場合(終端のOFDMシンボルより早い場合)、実際に送信されるPDSCHの送信開始シンボルはPDCCHの終端のOFDMシンボルの次のOFDMシンボルであってもよい。
 時間領域リソース割り当てフィールドにより示されるスケジューリングされたPDSCHの送信開始シンボルがPDSCHのスケジューリングに用いられるPDCCHの先頭のOFDMシンボルと同じである場合(先頭のOFDMシンボルと等しい場合)、実際に送信されるPDSCHの送信開始シンボルはPDCCHの終端のOFDMシンボルの次のOFDMシンボルであってもよい。
 時間領域リソース割り当てフィールドにより示されるスケジューリングされたPDSCHの送信開始シンボルがPDSCHのスケジューリングに用いられるPDCCHの終端のOFDMシンボルと同じである場合(終端のOFDMシンボルと等しい場合)、実際に送信されるPDSCHの送信開始シンボルはPDCCHの終端のOFDMシンボルの次のOFDMシンボルであってもよい。
 時間領域リソース割り当てフィールドにより示されるスケジューリングされたPDSCHの送信開始シンボルがPDSCHのスケジューリングに用いられるPDCCHの先頭のOFDMシンボルより後にある場合(先頭のOFDMシンボルより遅い場合)、実際に送信されるPDSCHの送信開始シンボルは該スケジューリングされたPDSCHの送信開始シンボルに等しくてもよい。
 時間領域リソース割り当てフィールドにより示されるスケジューリングされたPDSCHの送信開始シンボルがPDSCHのスケジューリングに用いられるPDCCHの終端のOFDMシンボルより後にある場合(終端のOFDMシンボルより遅い場合)、実際に送信されるPDSCHの送信開始シンボルは該スケジューリングされたPDSCHの送信開始シンボルに等しくてもよい。
 PDSCHに関連するDMRSのマッピングタイプが第2のマッピングであり、かつ、時間領域リソース割り当てフィールドにより示されるスケジューリングされたPDSCHの送信開始シンボルがPDSCHのスケジューリングに用いられるPDCCHの先頭のOFDMシンボルより前にあり(先頭のOFDMシンボルより早く)、実際に送信されるPDSCHの送信開始シンボルはPDCCHの終端のOFDMシンボルの次のOFDMシンボルであってもよい。
 PDSCHに関連するDMRSのマッピングタイプが第2のマッピングであり、かつ、時間領域リソース割り当てフィールドにより示されるスケジューリングされたPDSCHの送信開始シンボルがPDSCHのスケジューリングに用いられるPDCCHの終端のOFDMシンボルより前にあり(終端のOFDMシンボルより早く)、実際に送信されるPDSCHの送信開始シンボルはPDCCHの終端のOFDMシンボルの次のOFDMシンボルであってもよい。
 PDSCHに関連するDMRSのマッピングタイプが第2のマッピングであり、かつ、時間領域リソース割り当てフィールドにより示されるスケジューリングされたPDSCHの送信開始シンボルがPDSCHのスケジューリングに用いられるPDCCHの先頭のOFDMシンボルと同じであり(先頭のOFDMシンボルと等しく)、実際に送信されるPDSCHの送信開始シンボルはPDCCHの終端のOFDMシンボルの次のOFDMシンボルであってもよい。
 PDSCHに関連するDMRSのマッピングタイプが第2のマッピングであり、かつ、時間領域リソース割り当てフィールドにより示されるスケジューリングされたPDSCHの送信開始シンボルがPDSCHのスケジューリングに用いられるPDCCHの終端のOFDMシンボルと同じであり(終端のOFDMシンボルと等しく)、実際に送信されるPDSCHの送信開始シンボルはPDCCHの終端のOFDMシンボルの次のOFDMシンボルであってもよい。
 PDSCHに関連するDMRSのマッピングタイプが第2のマッピングであり、かつ、時間領域リソース割り当てフィールドにより示されるスケジューリングされたPDSCHの送信開始シンボルがPDSCHのスケジューリングに用いられるPDCCHの先頭のOFDMシンボルより後にあり(先頭のOFDMシンボルより遅く)、実際に送信されるPDSCHの送信開始シンボルは該スケジューリングされたPDSCHの送信開始シンボルに等しくてもよい。
 PDSCHに関連するDMRSのマッピングタイプが第2のマッピングであり、かつ、時間領域リソース割り当てフィールドにより示されるスケジューリングされたPDSCHの送信開始シンボルがPDSCHのスケジューリングに用いられるPDCCHの終端のOFDMシンボルより後にあり(終端のOFDMシンボルより遅く)、実際に送信されるPDSCHの送信開始シンボルは該スケジューリングされたPDSCHの送信開始シンボルに等しくてもよい。
 PDSCHに関連するDMRSのマッピングタイプが第2のマッピングであり、かつ、時間領域リソース割り当てフィールドにより示されるスケジューリングされたPDSCHの送信開始シンボルがPDSCHのスケジューリングに用いられるPDCCHの先頭のOFDMシンボルより前にある場合(先頭のOFDMシンボルより早い場合)、実際に送信されるPDSCHの送信開始シンボルはPDCCHの終端のOFDMシンボルの次のOFDMシンボルであってもよい。
 PDSCHに関連するDMRSのマッピングタイプが第2のマッピングであり、かつ、時間領域リソース割り当てフィールドにより示されるスケジューリングされたPDSCHの送信開始シンボルがPDSCHのスケジューリングに用いられるPDCCHの終端のOFDMシンボルより前にある場合(終端のOFDMシンボルより早い場合)、実際に送信されるPDSCHの送信開始シンボルはPDCCHの終端のOFDMシンボルの次のOFDMシンボルであってもよい。
 PDSCHに関連するDMRSのマッピングタイプが第2のマッピングであり、かつ、時間領域リソース割り当てフィールドにより示されるスケジューリングされたPDSCHの送信開始シンボルがPDSCHのスケジューリングに用いられるPDCCHの先頭のOFDMシンボルと同じである場合(先頭のOFDMシンボルと等しい場合)、実際に送信されるPDSCHの送信開始シンボルはPDCCHの終端のOFDMシンボルの次のOFDMシンボルであってもよい。
 PDSCHに関連するDMRSのマッピングタイプが第2のマッピングであり、かつ、時間領域リソース割り当てフィールドにより示されるスケジューリングされたPDSCHの送信開始シンボルがPDSCHのスケジューリングに用いられるPDCCHの終端のOFDMシンボルと同じである場合(終端のOFDMシンボルと等しい場合)、実際に送信されるPDSCHの送信開始シンボルはPDCCHの終端のOFDMシンボルの次のOFDMシンボルであってもよい。
 PDSCHに関連するDMRSのマッピングタイプが第2のマッピングであり、かつ、時間領域リソース割り当てフィールドにより示されるスケジューリングされたPDSCHの送信開始シンボルがPDSCHのスケジューリングに用いられるPDCCHの先頭のOFDMシンボルより後にある場合(先頭のOFDMシンボルより遅い場合)、実際に送信されるPDSCHの送信開始シンボルは該スケジューリングされたPDSCHの送信開始シンボルに等しくてもよい。
 PDSCHに関連するDMRSのマッピングタイプが第2のマッピングであり、かつ、時間領域リソース割り当てフィールドにより示されるスケジューリングされたPDSCHの送信開始シンボルがPDSCHのスケジューリングに用いられるPDCCHの終端のOFDMシンボルより後にある場合(終端のOFDMシンボルより遅い場合)、実際に送信されるPDSCHの送信開始シンボルは該スケジューリングされたPDSCHの送信開始シンボルに等しくてもよい。
 時間領域リソース割り当てフィールドにより示されるスケジューリングされたPDSCHの送信開始シンボルと該時間領域リソース割り当てフィールドにより示されるスケジューリングされたPDSCHのOFDMシンボル数により与えられるPDSCHのOFDMシンボルの少なくとも一部と、該PDSCHのスケジューリングに用いられるPDCCHのOFDMシンボルの少なくとも一部が時間領域で衝突し、実際に送信されるPDSCHの送信開始シンボルはPDCCHの終端のOFDMシンボルの次のOFDMシンボルであってもよい。
 時間領域リソース割り当てフィールドにより示されるスケジューリングされたPDSCHの送信開始シンボルと該時間領域リソース割り当てフィールドにより示されるスケジューリングされたPDSCHのOFDMシンボル数により与えられるPDSCHのOFDMシンボルと、該PDSCHのスケジューリングに用いられるPDCCHのOFDMシンボルが時間領域で衝突せず、実際に送信されるPDSCHの送信開始シンボルは該スケジューリングされたPDSCHの送信開始シンボルに等しくてもよい。
 PDSCHに関連するDMRSのマッピングタイプが第2のマッピングであり、かつ、時間領域リソース割り当てフィールドにより示されるスケジューリングされたPDSCHの送信開始シンボルと該時間領域リソース割り当てフィールドにより示されるスケジューリングされたPDSCHのOFDMシンボル数により与えられるPDSCHのOFDMシンボルの少なくとも一部と、該PDSCHのスケジューリングに用いられるPDCCHのOFDMシンボルの少なくとも一部が時間領域で衝突し、実際に送信されるPDSCHの送信開始シンボルはPDCCHの終端のOFDMシンボルの次のOFDMシンボルであってもよい。
 PDSCHに関連するDMRSのマッピングタイプが第2のマッピングであり、かつ、時間領域リソース割り当てフィールドにより示されるスケジューリングされたPDSCHの送信開始シンボルと該時間領域リソース割り当てフィールドにより示されるスケジューリングされたPDSCHのOFDMシンボル数により与えられるPDSCHのOFDMシンボルと、該PDSCHのスケジューリングに用いられるPDCCHのOFDMシンボルが時間領域で衝突せず、実際に送信されるPDSCHの送信開始シンボルは該スケジューリングされたPDSCHの送信開始シンボルに等しくてもよい。
 時間領域リソース割り当てフィールドにより示されるスケジューリングされたPDSCHの送信開始シンボルと該時間領域リソース割り当てフィールドにより示されるスケジューリングされたPDSCHのOFDMシンボル数により与えられるPDSCHのOFDMシンボルの少なくとも一部と、該PDSCHのスケジューリングに用いられるPDCCHのOFDMシンボルの少なくとも一部が時間領域で衝突する場合、実際に送信されるPDSCHの送信開始シンボルはPDCCHの終端のOFDMシンボルの次のOFDMシンボルであってもよい。
 時間領域リソース割り当てフィールドにより示されるスケジューリングされたPDSCHの送信開始シンボルと該時間領域リソース割り当てフィールドにより示されるスケジューリングされたPDSCHのOFDMシンボル数により与えられるPDSCHのOFDMシンボルと、該PDSCHのスケジューリングに用いられるPDCCHのOFDMシンボルが時間領域で衝突しない場合、実際に送信されるPDSCHの送信開始シンボルは該スケジューリングされたPDSCHの送信開始シンボルに等しくてもよい。
 PDSCHに関連するDMRSのマッピングタイプが第2のマッピングであり、かつ、時間領域リソース割り当てフィールドにより示されるスケジューリングされたPDSCHの送信開始シンボルと該時間領域リソース割り当てフィールドにより示されるスケジューリングされたPDSCHのOFDMシンボル数により与えられるPDSCHのOFDMシンボルの少なくとも一部と、該PDSCHのスケジューリングに用いられるPDCCHのOFDMシンボルの少なくとも一部が時間領域で衝突する場合、実際に送信されるPDSCHの送信開始シンボルはPDCCHの終端のOFDMシンボルの次のOFDMシンボルであってもよい。
 PDSCHに関連するDMRSのマッピングタイプが第2のマッピングであり、かつ、時間領域リソース割り当てフィールドにより示されるスケジューリングされたPDSCHの送信開始シンボルと該時間領域リソース割り当てフィールドにより示されるスケジューリングされたPDSCHのOFDMシンボル数により与えられるPDSCHのOFDMシンボルと、該PDSCHのスケジューリングに用いられるPDCCHのOFDMシンボルが時間領域で衝突しない場合、実際に送信されるPDSCHの送信開始シンボルは該スケジューリングされたPDSCHの送信開始シンボルに等しくてもよい。
 PDSCHのスケジューリングに用いられるDCIフォーマットに含まれる時間領域リソース割り当てフィールドにより示される値、および、該DCIフォーマットを含むPDCCHがマップされるOFDMシンボルに少なくとも基づき、実際に送信されるPDSCHの送信開始シンボルが、該DCIフォーマットを含むPDCCHの終端のOFDMシンボルの次のOFDMシンボルであるか、該スケジューリングされたPDSCHの送信開始シンボルであるか、が与えられてもよい。
 PDSCHのスケジューリングに用いられるDCIフォーマットを含むPDCCHが検出される探索領域セットに少なくとも基づき、実際に送信されるPDSCHの送信開始シンボルが該PDCCHの終端のOFDMシンボルの次のOFDMシンボルであるか否かが与えられてもよい。
 PDSCHのスケジューリングに用いられるDCIフォーマットを含むPDCCHが検出される探索領域セットに少なくとも基づき、実際に送信されるPDSCHの送信開始シンボルがスケジューリングされたPDSCHの送信開始シンボルであるか否かが与えられてもよい。
 PDSCHのスケジューリングに用いられるDCIフォーマットを含むPDCCHが検出される探索領域セットの監視機会に少なくとも基づき、実際に送信されるPDSCHの送信開始シンボルが該PDCCHの終端のOFDMシンボルの次のOFDMシンボルであるか否かが与えられてもよい。
 PDSCHのスケジューリングに用いられるDCIフォーマットを含むPDCCHが検出される探索領域セットの監視機会に少なくとも基づき、実際に送信されるPDSCHの送信開始シンボルがスケジューリングされたPDSCHの送信開始シンボルであるか否かが与えられてもよい。
 PDSCHのスケジューリングに用いられるDCIフォーマットに少なくとも基づき、実際に送信されるPDSCHの送信開始シンボルが該PDCCHの終端のOFDMシンボルの次のOFDMシンボルであるか否かが与えられてもよい。
 PDSCHのスケジューリングに用いられるDCIフォーマットに少なくとも基づき、実際に送信されるPDSCHの送信開始シンボルがスケジューリングされたPDSCHの送信開始シンボルであるか否かが与えられてもよい。
 PDSCHのスケジューリングに用いられるDCIフォーマットに付加されるCRCのスクランブリングに用いられるRNTIに少なくとも基づき、実際に送信されるPDSCHの送信開始シンボルが該PDCCHの終端のOFDMシンボルの次のOFDMシンボルであるか否かが与えられてもよい。
 PDSCHのスケジューリングに用いられるDCIフォーマットに付加されるCRCのスクランブリングに用いられるRNTIに少なくとも基づき、実際に送信されるPDSCHの送信開始シンボルがスケジューリングされたPDSCHの送信開始シンボルであるか否かが与えられてもよい。
 以下、本実施形態の一態様に係る種々の装置の態様を説明する。
 (1)上記の目的を達成するために、本発明の態様は、以下のような手段を講じた。すなわち、本発明の第1の態様は、端末装置であって、PDCCHの設定に関する上位層のパラメータを取得する上位層処理部と、PDSCHおよび前記PDSCHのスケジューリングに用いられる前記PDCCHを受信する受信部を備え、前記PDCCHに含まれるDCIフォーマットに含まれる時間領域リソース割り当てフィールドにより示される前記PDSCHの送信開始シンボルが前記PDCCHの先頭のOFDMシンボルより前にあり、前記PDSCHの送信が開始されるOFDMシンボルは、前記PDCCHの終端のOFDMシンボルの次のOFDMシンボルである。
 (2)また、本発明の第1の態様において、前記PDSCHに関連するDMRSのマッピングのための参照ポイントは、前記PDSCHの送信が開始されるOFDMシンボルである。
 (3)また、本発明の第1の態様において、前記PDSCHに関連するDMRSのうちの先頭のOFDMシンボルのインデックスは、前記PDSCHの送信が開始されるOFDMシンボルである。
 (4)また、本発明の第2の態様は、基地局装置であって、PDCCHの設定に関する上位層のパラメータを提供する上位層処理部と、PDSCHおよび前記PDSCHのスケジューリングに用いられる前記PDCCHを送信する送信部を備え、前記PDCCHに含まれるDCIフォーマットに含まれる時間領域リソース割り当てフィールドにより示される前記PDSCHの送信開始シンボルが前記PDCCHの先頭のOFDMシンボルより前にあり、前記PDSCHの送信が開始されるOFDMシンボルは、前記PDCCHの終端のOFDMシンボルの次のOFDMシンボルである。
 (5)また、本発明の第2の態様において、前記PDSCHに関連するDMRSのマッピングのための参照ポイントは、前記PDSCHの送信が開始されるOFDMシンボルである。
 (6)また、本発明の第2の態様において、前記PDSCHに関連するDMRSのうちの先頭のOFDMシンボルのインデックスは、前記PDSCHの送信が開始されるOFDMシンボルである。
 本発明に関わる基地局装置3、および端末装置1で動作するプログラムは、本発明に関わる上記実施形態の機能を実現するように、CPU(Central Processing Unit)等を制御するプログラム(コンピュータを機能させるプログラム)であっても良い。そして、これら装置で取り扱われる情報は、その処理時に一時的にRAM(Random Access Memory)に蓄積され、その後、Flash ROM(Read Only Memory)などの各種ROMやHDD(Hard Disk Drive)に格納され、必要に応じてCPUによって読み出し、修正・書き込みが行われる。
 尚、上述した実施形態における端末装置1、基地局装置3の一部、をコンピュータで実現するようにしても良い。その場合、この制御機能を実現するためのプログラムをコンピュータが読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現しても良い。
 尚、ここでいう「コンピュータシステム」とは、端末装置1、又は基地局装置3に内蔵されたコンピュータシステムであって、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。
 さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでも良い。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。
 また、上述した実施形態における基地局装置3は、複数の装置から構成される集合体(装置グループ)として実現することもできる。装置グループを構成する装置の各々は、上述した実施形態に関わる基地局装置3の各機能または各機能ブロックの一部、または、全部を備えてもよい。装置グループとして、基地局装置3の一通りの各機能または各機能ブロックを有していればよい。また、上述した実施形態に関わる端末装置1は、集合体としての基地局装置と通信することも可能である。
 また、上述した実施形態における基地局装置3は、EUTRAN(Evolved Universal Terrestrial Radio Access Network)および/またはNG-RAN(NextGen RAN,NR RAN)であってもよい。また、上述した実施形態における基地局装置3は、eNodeBおよび/またはgNBに対する上位ノードの機能の一部または全部を有してもよい。
 また、上述した実施形態における端末装置1、基地局装置3の一部、又は全部を典型的には集積回路であるLSIとして実現してもよいし、チップセットとして実現してもよい。端末装置1、基地局装置3の各機能ブロックは個別にチップ化してもよいし、一部、又は全部を集積してチップ化してもよい。また、集積回路化の手法はLSIに限らず専用回路、又は汎用プロセッサで実現しても良い。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能である。
 また、上述した実施形態では、通信装置の一例として端末装置を記載したが、本願発明は、これに限定されるものではなく、屋内外に設置される据え置き型、または非可動型の電子機器、たとえば、AV機器、キッチン機器、掃除・洗濯機器、空調機器、オフィス機器、自動販売機、その他生活機器などの端末装置もしくは通信装置にも適用出来る。
 以上、この発明の実施形態に関して図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。また、本発明は、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、上記各実施形態に記載された要素であり、同様の効果を奏する要素同士を置換した構成も含まれる。

Claims (8)

  1.  PDCCHの設定に関する上位層のパラメータを取得する上位層処理部と、
     PDSCHおよび前記PDSCHのスケジューリングに用いられる前記PDCCHを受信する受信部を備え、
     前記PDCCHに含まれるDCIフォーマットに含まれる時間領域リソース割り当てフィールドにより示される前記PDSCHの送信開始シンボルが前記PDCCHの先頭のOFDMシンボルより前にあり、
     前記PDSCHの送信が開始されるOFDMシンボルは、前記PDCCHの終端のOFDMシンボルの次のOFDMシンボルである
     端末装置。
  2.  前記PDSCHに関連するDMRSのマッピングのための参照ポイントは、前記PDSCHの送信が開始されるOFDMシンボルである
     請求項1に記載の端末装置。
  3.  前記PDSCHに関連するDMRSのうちの先頭のOFDMシンボルのインデックスは、前記PDSCHの送信が開始されるOFDMシンボルである
     請求項1または2に記載の端末装置。
  4.  PDCCHの設定に関する上位層のパラメータを提供する上位層処理部と、
     PDSCHおよび前記PDSCHのスケジューリングに用いられる前記PDCCHを送信する送信部を備え、
     前記PDCCHに含まれるDCIフォーマットに含まれる時間領域リソース割り当てフィールドにより示される前記PDSCHの送信開始シンボルが前記PDCCHの先頭のOFDMシンボルより前にあり、
     前記PDSCHの送信が開始されるOFDMシンボルは、前記PDCCHの終端のOFDMシンボルの次のOFDMシンボルである
     基地局装置。
  5.  前記PDSCHに関連するDMRSのマッピングのための参照ポイントは、前記PDSCHの送信が開始されるOFDMシンボルである
     請求項4に記載の基地局装置。
  6.  前記PDSCHに関連するDMRSのうちの先頭のOFDMシンボルのインデックスは、前記PDSCHの送信が開始されるOFDMシンボルである
     請求項4または5に記載の基地局装置。
  7.  端末装置に用いられる通信方法であって、
     PDCCHの設定に関する上位層のパラメータを取得するステップと、
     PDSCHおよび前記PDSCHのスケジューリングに用いられる前記PDCCHを受信するステップを備え、
     前記PDCCHに含まれるDCIフォーマットに含まれる時間領域リソース割り当てフィールドにより示される前記PDSCHの送信開始シンボルが前記PDCCHの先頭のOFDMシンボルより前にあり、
     前記PDSCHの送信が開始されるOFDMシンボルは、前記PDCCHの終端のOFDMシンボルの次のOFDMシンボルである
     通信方法。
  8.  基地局装置に用いられる通信方法であって、
     PDCCHの設定に関する上位層のパラメータを提供するステップと、
     PDSCHおよび前記PDSCHのスケジューリングに用いられる前記PDCCHを送信するステップを備え、
     前記PDCCHに含まれるDCIフォーマットに含まれる時間領域リソース割り当てフィールドにより示される前記PDSCHの送信開始シンボルが前記PDCCHの先頭のOFDMシンボルより前にあり、
     前記PDSCHの送信が開始されるOFDMシンボルは、前記PDCCHの終端のOFDMシンボルの次のOFDMシンボルである
     通信方法。
PCT/JP2019/036836 2018-09-27 2019-09-19 端末装置、基地局装置、および、通信方法 WO2020066855A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-181506 2018-09-27
JP2018181506A JP2020053850A (ja) 2018-09-27 2018-09-27 端末装置、基地局装置、および、通信方法

Publications (1)

Publication Number Publication Date
WO2020066855A1 true WO2020066855A1 (ja) 2020-04-02

Family

ID=69952037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/036836 WO2020066855A1 (ja) 2018-09-27 2019-09-19 端末装置、基地局装置、および、通信方法

Country Status (2)

Country Link
JP (1) JP2020053850A (ja)
WO (1) WO2020066855A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180220400A1 (en) * 2017-02-02 2018-08-02 Sharp Laboratories Of America, Inc. User equipments, base stations and methods

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180220400A1 (en) * 2017-02-02 2018-08-02 Sharp Laboratories Of America, Inc. User equipments, base stations and methods

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project, Technical Specification Group Radio Access Network; NR ; Physical layer procedures for data (Release 15", 3GPP TS 38.214, June 2018 (2018-06-01), pages 1 - 2 , 10-14, XP055701130 *
SHARP: "Downlink structure and procedure for NR-U operation", 3GPP TSG RAN WG1 #96 RI-1902655, 1 March 2019 (2019-03-01), XP051600350 *

Also Published As

Publication number Publication date
JP2020053850A (ja) 2020-04-02

Similar Documents

Publication Publication Date Title
WO2019216430A1 (ja) 端末装置、基地局装置、および、通信方法
CN112997527B (zh) 终端装置、基站装置以及通信方法
JP7156887B2 (ja) 端末装置、基地局装置、および、通信方法
WO2019176914A1 (ja) 端末装置、基地局装置、および、通信方法
WO2020091050A1 (ja) 端末装置、基地局装置、および、通信方法
WO2020059671A1 (ja) 端末装置、基地局装置、および、通信方法
WO2020004627A1 (ja) 端末装置、基地局装置、および、通信方法
WO2020031699A1 (ja) 端末装置、基地局装置、および、通信方法
WO2020129592A1 (ja) 端末装置、基地局装置、および、通信方法
WO2020031758A1 (ja) 基地局装置、および、方法
WO2020031757A1 (ja) 端末装置、および、方法
WO2020145306A1 (ja) 端末装置、基地局装置、および、通信方法
WO2020166627A1 (ja) 端末装置、基地局装置、および、通信方法
WO2020166626A1 (ja) 端末装置、基地局装置、および、通信方法
WO2020153482A1 (ja) 端末装置、基地局装置、および、通信方法
WO2020066758A1 (ja) 端末装置、および、方法
WO2020090367A1 (ja) 端末装置、基地局装置、および、通信方法
WO2020066855A1 (ja) 端末装置、基地局装置、および、通信方法
JP7319817B2 (ja) 端末装置、基地局装置、および、通信方法
WO2023100751A1 (ja) 端末装置、基地局装置、および、通信方法
WO2020170913A1 (ja) 端末装置、基地局装置、および、通信方法
WO2020137735A1 (ja) 基地局装置、および、通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19864175

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19864175

Country of ref document: EP

Kind code of ref document: A1