WO2020031758A1 - 基地局装置、および、方法 - Google Patents

基地局装置、および、方法 Download PDF

Info

Publication number
WO2020031758A1
WO2020031758A1 PCT/JP2019/029485 JP2019029485W WO2020031758A1 WO 2020031758 A1 WO2020031758 A1 WO 2020031758A1 JP 2019029485 W JP2019029485 W JP 2019029485W WO 2020031758 A1 WO2020031758 A1 WO 2020031758A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
random access
pdcch
terminal device
init
Prior art date
Application number
PCT/JP2019/029485
Other languages
English (en)
French (fr)
Inventor
渉 大内
智造 野上
中嶋 大一郎
翔一 鈴木
友樹 吉村
李 泰雨
会発 林
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2020031758A1 publication Critical patent/WO2020031758A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the present invention relates to a base station device and a method.
  • Priority is claimed on Japanese Patent Application No. 2018-151354, filed on Aug. 10, 2018, the content of which is incorporated herein by reference.
  • LTE Long Term Evolution
  • EUTRA Evolved Universal Terrestrial Radio Access
  • 3GPP Third Generation Partnership Project
  • a base station apparatus may be referred to as an eNodeB (evolved NodeB), and a terminal apparatus may be referred to as a UE (User Equipment).
  • LTE is a cellular communication system in which a plurality of areas covered by a base station device are arranged in a cell shape.
  • One base station device may manage a plurality of serving cells.
  • next-generation wireless communication standards (NR: ⁇ New ⁇ Radio) are examined in order to propose to IMT (International Mobile Telecommunication) -2020, which is a standard for next-generation mobile communication systems formulated by the International Telecommunication Union (ITU).
  • ITU International Telecommunication Union
  • Non-Patent Document 1 The NR is required to satisfy the requirements assuming three scenarios of eMBB (enhanced Mobile Broadband), mMTC (massive Machine Type Communication), and URLLC (Ultra Reliable and Low Latency Communication) in the framework of a single technology. I have.
  • NR-U NR-Unlicensed
  • NR-U NR-Unlicensed
  • NR-U NR-Unlicensed
  • One embodiment of the present invention provides a base station device that performs efficient communication and a method used for the base station device.
  • a first aspect of the present invention is a base station apparatus, which transmits a PDCCH (Physical Downlink Control Channel) order for performing resource allocation of a random access preamble, and transmits the PDCCH order, A radio transmission / reception unit that monitors a random access preamble corresponding to a PDCCH order, wherein the radio transmission / reception unit transmits a CCA (Clear Channel Assessment) before transmitting the PDCCH order on an NR-U (New Radio-Unlicensed) carrier. And set an initial value N init used to determine the measurement period for the CCA as the value of a counter N, wherein the N init is at least the N init before the N init is set to the N. Based on the CW (Contention Window) value (CW size) set for the PDCCH order The CW value is updated when it is determined that the random access preamble has not been successfully received.
  • PDCCH Physical Downlink Control Channel
  • a second aspect of the present invention is a base station apparatus, wherein in a random access procedure, after receiving a random access preamble, transmitting a corresponding random access response (RAR), and transmitting the RAR, A radio transmission / reception unit that monitors a PUSCH (Msg3) corresponding to the RAR; the radio transmission / reception unit transmits a CCA (Clear Channel Assessment) before transmitting the RAR on an NR-U (New Radio-Unlicensed) carrier; And set an initial value N init used to determine the measurement period for the CCA as the value of a counter N, wherein the N init is at least the N init before the N init is set to the N. It is determined based on the value (CW size) of CW (Contention Window) set for the RAR, and the value of CW is , Are updated when it is determined that the reception of the Msg3 has not been successful.
  • Msg3 PUSCH
  • a third aspect of the present invention is a method used for a base station apparatus, wherein a PDCCH (Physical Downlink Control Channel) order for allocating resources of a random access preamble is transmitted, and the PDCCH order is transmitted. After that, a random access preamble corresponding to the PDCCH order is monitored, and a CCA (Clear Channel Assessment) is performed on the NR-U (New Radio-Unlicensed) carrier before transmitting the PDCCH order.
  • PDCCH Physical Downlink Control Channel
  • N init used to determine the measurement period as the value of the counter N, wherein the N init, before the N init is set to the N, is set for at least the PDCCH order Determined based on the value (CW size) of the CW (Contention Window) Is updated when it is determined that the random access preamble has not been successfully received.
  • a fourth aspect of the present invention is a method used for a base station apparatus, wherein in a random access procedure, a random access preamble is received, a corresponding random access response (RAR) is transmitted, and the RAR is transmitted. After the transmission, the PUSCH (Msg3) corresponding to the RAR is monitored, and a CCA (Clear Channel Assessment) is performed on the NR-U (New Radio-Unlicensed) carrier before transmitting the RAR.
  • PUSCH Msg3
  • CCA Carrier Channel Assessment
  • the N init used to determine the measurement period as the value of the counter N, wherein the N init, before the N init is set to the N, it is set to at least the RAR It is determined based on the value (CW size) of the CW (Contention Window), and the value of the CW is determined when the Msg3 is received. It will be updated if it is not considered successful.
  • the terminal device can efficiently communicate. Further, the base station device can communicate efficiently.
  • FIG. 1 is a conceptual diagram of a wireless communication system according to one aspect of the present embodiment. It is an example showing the relationship between N slot symb , SCS setting ⁇ , and CP setting according to an aspect of the present embodiment.
  • FIG. 9 is a schematic diagram illustrating an example of a resource grid in a subframe according to an aspect of the present embodiment.
  • FIG. 11 is a diagram illustrating an example of a relationship between a PUCCH format and a length N PUCCH symb of the PUCCH format according to an aspect of the present embodiment.
  • FIG. 1 is a schematic block diagram illustrating a configuration of a terminal device 1 according to one aspect of the present embodiment.
  • FIG. 2 is a schematic block diagram illustrating a configuration of a base station device 3 according to one aspect of the present embodiment.
  • FIG. 9 is a diagram illustrating an example of a random access procedure according to an aspect of the embodiment.
  • FIG. 11 is a diagram illustrating an example of a channel access procedure according to an aspect of the present embodiment.
  • FIG. 11 is a diagram illustrating an example of a channel access priority class (CAPC) and a CW adjustment procedure according to an aspect of the embodiment.
  • CAC channel access priority class
  • FIG. 1 is a conceptual diagram of a wireless communication system according to one aspect of the present embodiment.
  • the wireless communication system includes terminal devices 1A to 1C and a base station device 3.
  • the terminal devices 1A to 1C may also be referred to as a terminal device 1.
  • the base station device 3 may include some or all of a communication device, a node, an NB (NodeB), an eNB, a gNB, a network device (a core network, a gateway), and an access point.
  • the terminal device 1 may be referred to as a UE (User @ equipment).
  • the base station apparatus 3 may configure one or both of an MCG (Master Cell Group) and an SCG (Secondary Cell Group).
  • the MCG is a group of serving cells that includes at least PCell (Primary @ Cell).
  • An SCG is a group of serving cells including at least a PSCell (Primary @ Secondary @ Cell).
  • the PCell may be a serving cell provided based on an initial connection.
  • the MCG may include one or more SCells (Secondary @ Cells).
  • the SCG may include one or more SCells.
  • MCG may be composed of one or more serving cells on EUTRA. Further, the SCG may be configured by one or a plurality of serving cells on the NR. Further, the MCG may be configured by one or a plurality of serving cells on the NR. Also, the SCG may be composed of one or more serving cells on EUTRA. In addition, the MCG and the SCG may be configured with one or a plurality of serving cells of either EUTRA or NR.
  • MCG may be composed of one or more serving cells on EUTRA. Further, the SCG may be configured by one or more serving cells on the NR-U. Further, the MCG may be configured by one or a plurality of serving cells on the NR. Further, the SCG may be configured by one or more serving cells on the NR-U. Further, the MCG may be composed of one or more serving cells of one of EUTRA, NR and NR-U. Further, the SCG may be configured by one or more serving cells of one of EUTRA, NR, and NR-U.
  • Operating bands applied to each of EUTRA, NR, and NR-U may be individually defined.
  • the MCG may be configured by the first base station device.
  • the SCG may be configured by a second base station device. That is, the PCell may be configured by the first base station device.
  • PSCell may be configured by a second base station device. The first base station device and the second base station device may be the same as the base station device 3, respectively.
  • At least OFDM Orthogonal Frequency Division Multiplex
  • An OFDM symbol is a unit of the time domain of OFDM.
  • An OFDM symbol includes at least one or more subcarriers.
  • An OFDM symbol is converted into a time-continuous signal (time-continuous signal) in baseband signal generation.
  • CP-OFDM Cyclic Prefix-Orthogonal Frequency Division Multiplex
  • DFT-s-OFDM Discrete Fourier Transform-spread-Orthogonal Frequency Division Multiplex
  • DFT-s-OFDM may be provided by applying Transform @ precoding to CP-OFDM.
  • the SCS setting ⁇ may be set to any of 0, 1, 2, 3, 4, and / or 5.
  • the SCS setting ⁇ may be given by an upper layer parameter.
  • a time unit Tc is used to represent the length of the time domain.
  • ⁇ f max may be the maximum value of the SCS supported in the wireless communication system according to an aspect of the present embodiment.
  • ⁇ f ref may be 15 kHz.
  • N f, ref may be 2048.
  • the constant ⁇ may be a value indicating the relationship between the reference SCS and Tc .
  • the constant ⁇ may be used for subframe length.
  • the number of slots included in the subframe may be given based at least on the constant ⁇ .
  • ⁇ f ref is a reference SCS
  • N f, ref is a value corresponding to the reference SCS.
  • Transmission of a signal in the downlink and / or transmission of a signal in the uplink is configured by a 10 ms frame.
  • the frame is configured to include ten subframes.
  • the length of the subframe is 1 ms.
  • the length of the frame may be given regardless of the SCS ⁇ f. That is, the frame setting may be given regardless of the value of ⁇ .
  • the length of the subframe may be given regardless of SCS ⁇ f. That is, the setting of the subframe may be given regardless of ⁇ .
  • the number and index of slots included in one subframe may be given.
  • the slot number n mu s is from 0 to N subframe in a subframe may be given in ascending order in the range of mu slot -1.
  • the number and index of the slots included in one frame may be given to the SCS setting ⁇ .
  • the slot number n mu s, f may be given from 0 in the frame N frame, in ascending order in the range of mu slot -1.
  • Consecutive N slot symb OFDM symbols may be included in one slot.
  • the N slot symb may be provided based at least on part or all of a CP (Cyclic Prefix) setting.
  • the CP setting may be given based at least on upper layer parameters.
  • the CP configuration may be provided based at least on dedicated RRC signaling.
  • the slot number may also be called a slot index.
  • FIG. 2 is an example showing a relationship among N slot symb , SCS setting ⁇ , and CP setting according to an aspect of the present embodiment.
  • NCP normal CP
  • ⁇ slot 4.
  • NCP extended CP
  • N slot symb 12
  • Antenna ports are defined by the fact that the channel on which a symbol is transmitted at one antenna port can be estimated from the channel on which other symbols are transmitted at the same antenna port. If the large-scale property of a channel on which a symbol is transmitted at one antenna port can be estimated from the channel on which the symbol is transmitted at another antenna port, the two antenna ports are QCL (Quasi-Co-Located). ).
  • the large-scale characteristics may include at least the long-range characteristics of the channel. Large-scale characteristics include delay spread (Dlay spread), Doppler spread (Doppler spread), Doppler shift (Doppler shift), average gain (average gain), average delay (average delay), and beam parameters (spatial Rx parameters). At least some or all of them may be included.
  • the receiving beam assumed by the receiving side for the first antenna port and the receiving beam assumed by the receiving side for the second antenna port May be the same. That the first antenna port and the second antenna port are QCL with respect to the beam parameter means that the transmission beam assumed by the receiving side for the first antenna port and the transmission beam assumed by the receiving side for the second antenna port May be the same.
  • the terminal device 1 assumes that the two antenna ports are QCL if the large-scale characteristics of the channel on which the symbol is transmitted on one antenna port can be estimated from the channel on which the symbol is transmitted on another antenna port May be done.
  • the fact that the two antenna ports are QCLs may mean that the two antenna ports are QCLs.
  • N size, ⁇ grid, x may indicate the number of resource blocks provided for SCS setting ⁇ for carrier x.
  • N size, ⁇ grid, x may indicate the bandwidth of the carrier.
  • N size, ⁇ grid, and x may correspond to the value of the upper layer parameter CarrierBandwidth.
  • Carrier x may indicate either a downlink carrier or an uplink carrier. That is, x may be either “DL” or “UL”.
  • N RB sc may indicate the number of subcarriers included in one resource block. N RB sc may be 12.
  • At least one resource grid may be provided for each antenna port p and / or for each SCS setting ⁇ and / or for each setting of the transmission direction.
  • the transmission direction includes at least a downlink (DL: DownLink) and an uplink (UL: UpLink).
  • DL: DownLink downlink
  • UL: UpLink uplink
  • a set of parameters including at least part or all of the settings of the antenna port p, the SCS setting ⁇ , and the transmission direction may be referred to as a first wireless parameter set. That is, one resource grid may be provided for each first wireless parameter set.
  • the wireless parameter set may be one or a plurality of sets including one or a plurality of wireless parameters (physical layer parameters or upper layer parameters).
  • a carrier included in a serving cell is referred to as a downlink carrier (or a downlink component carrier).
  • a carrier included in a serving cell is referred to as an uplink carrier (uplink component carrier).
  • the downlink component carrier and the uplink component carrier may be collectively referred to as a component carrier (or a carrier).
  • the type of the serving cell may be any of PCell, PSCell, and SCell.
  • the PCell may be a serving cell identified based on at least the cell ID obtained from the SSB (Synchronization signal / Physical broadcast channel channel block) in the initial connection.
  • the SCell may be a serving cell used in carrier aggregation.
  • the SCell may be a serving cell provided at least based on dedicated RRC signaling.
  • Each element in the resource grid provided for each first radio parameter set may be referred to as a resource element.
  • the resource element is specified by an index k sc in the frequency domain and an index l sym in the time domain.
  • the resource element is identified by a frequency domain index k sc and a time domain index l sym .
  • the resource element specified by the frequency domain index k sc and the time domain index l sym may also be referred to as a resource element (k sc , l sym ).
  • the frequency domain index k sc indicates any value from 0 to N ⁇ RB N RB sc ⁇ 1.
  • N ⁇ RB may be the number of resource blocks given for SCS setting ⁇ .
  • N ⁇ RB may be N size, ⁇ grid, x .
  • the frequency domain index k sc may correspond to the subcarrier index k sc .
  • the time domain index l sym may correspond to the OFDM symbol index l sym .
  • FIG. 3 is a schematic diagram illustrating an example of a resource grid in a subframe according to an aspect of the present embodiment.
  • the horizontal axis is the index l sym in the time domain
  • the vertical axis is the index k sc in the frequency domain.
  • the frequency domain resource grid including N ⁇ RB N RB sc subcarriers.
  • the time domain of the resource grid may include 14.2 ⁇ OFDM symbols.
  • One resource block is configured to include N RB sc subcarriers.
  • the time domain of a resource block may correspond to one OFDM symbol.
  • the time domain of the resource block may correspond to 14 OFDM symbols.
  • the time domain of a resource block may correspond to one or more slots.
  • the time domain of the resource block may correspond to one subframe.
  • the terminal device 1 may be instructed to perform transmission and reception using only a subset of the resource grid.
  • a subset of the resource grid is also referred to as BWP, which may be provided based at least on higher layer parameters and / or some or all of the DCI.
  • BWP may also be referred to as CBP (Carrier Bandwidth Part).
  • CBP Carrier Bandwidth Part
  • the terminal device 1 may not be instructed to perform transmission and reception using all sets of the resource grid.
  • the terminal device 1 may be instructed to perform transmission and reception using some frequency resources in the resource grid.
  • One BWP may be configured from a plurality of resource blocks in the frequency domain.
  • One BWP may be configured from a plurality of resource blocks that are continuous in the frequency domain.
  • a BWP set for a downlink carrier may also be referred to as a downlink BWP.
  • BWP set for an uplink carrier may also be referred to as uplink BWP.
  • the BWP may be a subset of the carrier's band.
  • One or more downlink BWPs may be set for each of the serving cells.
  • One or more uplink BWPs may be configured for each of the serving cells.
  • One or a plurality of downlink BWPs set for the serving cell may be configured as one active downlink BWP.
  • the downlink BWP switch is used to deactivate one active downlink BWP and to activate inactive downlink BWPs other than the one active downlink BWP.
  • Switching of the downlink BWP may be controlled by a BWP field included in the downlink control information. Switching of the downlink BWP may be controlled based on upper layer parameters.
  • the DL-SCH may be received in the active downlink BWP.
  • the PDCCH may be monitored.
  • a PDSCH may be received.
  • DL DL-SCH is not received in inactive downlink BWP.
  • the PDCCH is not monitored. No CSI for inactive downlink BWP is reported.
  • two or more downlink BWPs may not be set as the active downlink BWP.
  • one uplink BWP may be set as the active uplink BWP.
  • the uplink BWP switch is used to deactivate one active uplink BWP and activate (deactivate) inactive uplink BWPs other than the one active uplink BWP.
  • Uplink BWP switching may be controlled by a BWP field included in downlink control information. Uplink BWP switching may be controlled based on upper layer parameters.
  • ⁇ ⁇ ⁇ ⁇ UL-SCH may be transmitted in active uplink BWP.
  • the PUCCH may be transmitted.
  • the PRACH may be transmitted.
  • the SRS may be transmitted.
  • U UL-SCH is not transmitted in inactive uplink BWP.
  • PUCCH is not transmitted in the inactive uplink BWP.
  • the PRACH is not transmitted.
  • no SRS is transmitted.
  • two or more uplink BWPs may not be set as the active uplink BWP.
  • the upper layer parameters are parameters included in the upper layer signal.
  • the upper layer signal may be RRC (Radio Resource Control) signaling or MAC CE (Medium Access Control Control Element).
  • the upper layer signal may be an RRC layer signal or a MAC layer signal.
  • the upper layer signal may be common RRC signaling.
  • the common RRC signaling may include at least some or all of the following features C1 to C3. Feature C1) Feature mapped to BCCH logical channel or CCCH logical channel C2) Feature C3) including at least ReconfigurationWithSync information element Mapped to PBCH
  • the ReconfigurationWithSync information element may include information indicating a setting commonly used in the serving cell.
  • the setting commonly used in the serving cell may include at least the setting of the PRACH.
  • the setting of the PRACH may indicate at least one or a plurality of random access preamble indexes.
  • the configuration of the PRACH may indicate at least a time / frequency resource of the PRACH.
  • Common RRC signaling may include at least a common RRC parameter.
  • the common RRC parameter may be a cell-specific parameter commonly used in the serving cell.
  • the upper layer signal may be dedicated RRC signaling.
  • the dedicated RRC signaling may include at least some or all of the following features D1 to D2. Feature D1) Feature Mapped to DCCH Logical Channel D2) Does Not Include ReconfigurationWithSync Information Element
  • MIB Master Information Block
  • SIB System Information Block
  • higher layer messages that are mapped to the DCCH logical channel and that include at least the ReconfigurationWithSync information element may be included in the common RRC signaling.
  • an upper layer message that is mapped to the DCCH logical channel and does not include the ReconfigurationWithSync information element may be included in dedicated RRC signaling.
  • the MIB and the SIB may be collectively referred to as system information.
  • $ SIB may indicate at least the time index of SSB.
  • the SIB may include at least information related to the PRACH resource.
  • the SIB may include at least information related to the setting of the initial connection.
  • the ReconfigurationWithSync information element may include at least information related to the PRACH resource.
  • the ReconfigurationWithSync information element may include at least information related to the setting of the initial connection.
  • the dedicated RRC signaling may include at least a dedicated RRC parameter.
  • the dedicated RRC parameter may be a (UE-specific) parameter used exclusively for the terminal device 1.
  • Dedicated RRC signaling may include at least common RRC parameters.
  • ⁇ Common RRC parameters and dedicated RRC parameters may also be referred to as upper layer parameters.
  • An uplink physical channel may correspond to a set of resource elements that carry information that occurs in higher layers.
  • An uplink physical channel is a physical channel used in an uplink carrier. In the wireless communication system according to one aspect of the present embodiment, at least some or all of the following uplink physical channels are used.
  • ⁇ PUCCH Physical Uplink Control CHannel
  • PUSCH Physical Uplink Shared CHannel
  • PRACH Physical Random Access CHannel
  • the PUCCH may be used to transmit uplink control information (UCI).
  • the uplink control information includes part or all of HARQ-ACK (Hybrid Automatic Transmission Repeat Request ACKnowledgement) information corresponding to channel state information (CSI), scheduling request (SR), and transport block (TB).
  • CSI channel state information
  • SR scheduling request
  • TB transport block
  • the TB may be called a MAC PDU (Medium Access Control Protocol Data Unit), a DL-SCH (Downlink-Shared Channel) or a PDSCH (Physical Downlink Shared Channel).
  • MAC PDU Medium Access Control Protocol Data Unit
  • DL-SCH Downlink-Shared Channel
  • PDSCH Physical Downlink Shared Channel
  • One or more types of uplink control information may be multiplexed on the PUCCH.
  • the multiplexed PUCCH may be transmitted. That is, a plurality of HARQ-ACKs may be multiplexed on the PUCCH, a plurality of CSIs may be multiplexed, a plurality of SRs may be multiplexed, or the HARQ-ACK and the CSI may be multiplexed.
  • HARQ-ACK and SR may be multiplexed, or may be multiplexed with another UCI type.
  • the HARQ-ACK information may include at least a HARQ-ACK bit corresponding to the TB.
  • the HARQ-ACK bit may indicate ACK (acknowledgement) or NACK (negative-acknowledgement) corresponding to the TB.
  • the ACK may be a value indicating that decoding of the TB has been successfully completed.
  • NACK may be a value indicating that decoding of the TB has not been successfully completed.
  • the HARQ-ACK information may include at least one HARQ-ACK codebook including one or more HARQ-ACK bits. The fact that the HARQ-ACK bit corresponds to one or more TBs may correspond to the fact that the HARQ-ACK bit corresponds to a PDSCH including the one or more TBs.
  • the HARQ-ACK bit may indicate ACK or NACK corresponding to one CBG (Code Block Group) included in the TB.
  • HARQ-ACK may also be referred to as HARQ feedback, HARQ information, and HARQ control information.
  • SR may be at least used to request PUSCH resources for initial transmission. Also, the SR may be used to request UL-SCH resources for new transmissions.
  • the SR bit may be used to indicate either positive SR (positive SR) or negative SR (negative SR). The fact that the SR bit indicates a positive SR may also be referred to as “a positive SR is transmitted”.
  • a positive SR may indicate that the terminal device 1 requests a PUSCH resource for initial transmission.
  • a positive SR may indicate that the SR is triggered by higher layers.
  • the positive SR may be transmitted when the upper layer instructs to transmit the SR.
  • the fact that the SR bit indicates a negative SR may also be referred to as “a negative SR is transmitted”.
  • a negative SR may indicate that PUSCH resources for initial transmission are not required by the terminal device 1.
  • a negative SR may indicate that no SR is triggered by higher layers.
  • a negative SR may be sent if no higher layer indicates to send the SR.
  • the SR bit may be used to indicate either a positive SR or a negative SR for any one or more SR configurations (SR configuration).
  • Each of the one or more SR settings may correspond to one or more logical channels.
  • the positive SR for a certain SR setting may be a positive SR for any or all of one or more logical channels corresponding to the certain SR setting.
  • a negative SR may not correspond to a particular SR setting. Indicating a negative SR may indicate a negative SR for all SR settings.
  • the SR setting may be an SR-ID (Scheduling Request ID).
  • the SR-ID may be given by an upper layer parameter.
  • CSI may include at least a part or all of a channel quality indicator (CQI), a precoder matrix indicator (PMI), and a rank indicator (RI).
  • CQI is an index related to channel quality (for example, propagation strength)
  • PMI is an index indicating a precoder.
  • RI is an index indicating the transmission rank (or the number of transmission layers).
  • the CSI may be provided based at least on receiving a physical signal (eg, CSI-RS) used at least for channel measurement.
  • the CSI may include a value selected by the terminal device 1.
  • the CSI may be selected by the terminal device 1 based at least on receiving a physical signal used at least for channel measurement.
  • Channel measurements may include interference measurements.
  • the CSI report is a CSI report.
  • the CSI report may include CSI part 1 and / or CSI part 2.
  • CSI part 1 may be configured to include at least part or all of wideband channel quality information (wideband CQI), wideband precoder matrix indicator (wideband PMI), and RI.
  • the number of bits of the CSI part 1 multiplexed on the PUCCH may be a predetermined value regardless of the value of the RI of the CSI report.
  • the number of bits of the CSI part 2 multiplexed on the PUCCH may be given based on the value of the RI of the CSI report.
  • the rank index of the CSI report may be a value of the rank index used for calculating the CSI report.
  • the RI of the CSI information may be a value indicated by an RI field included in the CSI report.
  • the set of RIs allowed in the CSI report may be some or all of 1-8.
  • the set of RIs allowed in the CSI report may be given at least based on the parameter RankRestriction of the upper layer. If the set of RIs allowed in the CSI report includes only one value, the RI of the CSI report may be the one value.
  • the priority may be set for the CSI report.
  • the priority of the CSI report may be set for the behavior (processing) of the time domain of the CSI report, the type of the content of the CSI report, the index of the CSI report, and / or the serving cell in which the measurement of the CSI report is set. It may be given at least based on part or all of the index.
  • the setting relating to the time domain behavior (processing) of the CSI report may be performed in a non-periodic manner (aperiodic), in a semi-persistent manner in the CSI report, or in a quasi-static manner. May be set to indicate whether the setting is to be performed.
  • the content type of the CSI report may indicate whether the CSI report includes Layer 1 RSRP (Reference Signals Received Power).
  • the index of the CSI report may be given by an upper layer parameter.
  • PUCCH supports PUCCH format (PUCCH format 0 to PUCCH format 4).
  • the PUCCH format may be transmitted on the PUCCH.
  • the transmission of the PUCCH format may be the transmission of the PUCCH.
  • FIG. 4 is a diagram illustrating an example of the relationship between the PUCCH format and the length N PUCCH symb of the PUCCH format according to an aspect of the present embodiment.
  • the length N PUCCH symb of PUCCH format 0 is 1 or 2OFDM symbol.
  • the length N PUCCH symb of PUCCH format 1 is any one of 4 14OFDM symbols.
  • the length N PUCCH symb of PUCCH format 2 is 1 or 2OFDM symbol.
  • the length N PUCCH symb of PUCCH format 3 is any one of 4 14OFDM symbols.
  • the length N PUCCH symb of PUCCH format 4 is any one of 4 14OFDM symbols.
  • the PUSCH is used at least to transmit a TB (MAC PDU, UL-SCH).
  • the PUSCH may be used to transmit at least part or all of the TB, HARQ-ACK information, CSI, and SR.
  • the PUSCH is used at least to transmit a random access message 3 (message 3 (Msg3)) corresponding to the RAR (Msg2) and / or RAR grant in the random access procedure.
  • Msg3 messages 3 corresponding to the RAR (Msg2) and / or RAR grant in the random access procedure.
  • PRACH is used at least for transmitting a random access preamble (random access message 1, message 1 (Msg1)).
  • the PRACH includes an initial connection establishment procedure, a handover procedure, a connection re-establishment procedure, an initial access procedure, synchronization for PUSCH transmission (timing adjustment), and a request for a resource for the PUSCH. It may be used at least to indicate part or all.
  • the random access preamble may be used to notify the base station device 3 of an index (random access preamble index) given from an upper layer of the terminal device 1.
  • the random access preamble may be given by cyclically shifting the Zadoff-Chu sequence corresponding to the physical root sequence index u.
  • the Zadoff-Chu sequence may be generated based on the physical root sequence index u.
  • a plurality of random access preambles may be defined in one serving cell (serving @ cell).
  • the random access preamble may be specified based at least on the index of the random access preamble. Different random access preambles corresponding to different indexes of the random access preamble may correspond to different combinations of the physical root sequence index u and the cyclic shift.
  • the physical root sequence index u and the cyclic shift may be given based at least on information included in the system information.
  • the physical root sequence index u may be an index for identifying a sequence included in the random access preamble.
  • the random access preamble may be specified based at least on the physical root sequence index u.
  • the following uplink physical signals are used in uplink wireless communication.
  • the uplink physical signal may not be used for transmitting information output from the upper layer, but is used by the physical layer.
  • ⁇ UL DMRS UpLink Demodulation Reference Signal
  • SRS Sounding Reference Signal
  • UL PTRS UpLink Phase Tracking Reference Signal
  • ⁇ UL ⁇ DMRS is related to the transmission of PUSCH and / or PUCCH.
  • UL @ DMRS is multiplexed with PUSCH or PUCCH.
  • the base station apparatus 3 may use UL @ DMRS in order to perform the PUSCH or PUCCH propagation path correction.
  • transmitting the PUSCH and the UL @ DMRS related to the PUSCH together is simply referred to as transmitting the PUSCH.
  • transmitting the PUCCH and the UL @ DMRS related to the PUCCH together is simply referred to as transmitting the PUCCH.
  • UL @ DMRS related to PUSCH is also referred to as UL @ DMRS for PUSCH.
  • UL @ DMRS related to PUCCH is also referred to as UL @ DMRS for PUCCH.
  • the SRS may not be related to PUSCH or PUCCH transmission.
  • the base station device 3 may use the SRS for measuring the channel state.
  • the SRS may be transmitted at the end of a subframe in an uplink slot or a predetermined number of OFDM symbols from the end.
  • ⁇ UL ⁇ PTRS may be a reference signal used at least for phase tracking.
  • the UL @ PTRS may be associated with a UL @ DMRS group that includes at least an antenna port used for one or more UL @ DMRS.
  • the association between the UL @ PTRS and the UL @ DMRS group may be that at least a part or all of the antenna ports of the UL @ PTRS and the antenna ports included in the UL @ DMRS group are QCLs.
  • the UL @ DMRS group may be identified based at least on the antenna port with the smallest index in the UL @ DMRS included in the UL @ DMRS group.
  • UL @ PTRS may be mapped to the antenna port with the smallest index in one or more antenna ports to which one codeword is mapped.
  • UL @ PTRS may be mapped to a first layer if one codeword is at least mapped to the first layer and the second layer.
  • UL @ PTRS may not be mapped to the second layer.
  • the index of the antenna port to which UL @ PTRS is mapped may be given based at least on the downlink control information.
  • the following downlink physical channel is used in downlink wireless communication from the base station device 3 to the terminal device 1.
  • the downlink physical channel is used by the physical layer to transmit information output from an upper layer.
  • ⁇ PBCH Physical Broadcast Channel
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • $ PBCH is at least used to transmit MIB and / or PBCH payloads.
  • the PBCH payload may include at least information indicating an index related to SSB transmission timing (SSB @ occasion).
  • the PBCH payload may include information related to the SSB identifier (index).
  • the PBCH may be transmitted based on a predetermined transmission interval.
  • the PBCH may be transmitted at intervals of 80 milliseconds (ms).
  • the PBCH may be transmitted at an interval of 160 ms.
  • the content of the information included in the PBCH may be updated every 80 ms. Part or all of the information included in the PBCH may be updated every 160 ms.
  • the PBCH may be configured with 288 subcarriers.
  • the PBCH may be configured to include 2, 3, or 4 OFDM symbols.
  • the MIB may include information related to the identifier (index) of the SSB.
  • the MIB may include information indicating a slot number in which the PBCH is transmitted, a subframe number, and / or at least a part of a radio frame number.
  • the PDCCH is used at least for transmission of downlink control information (DCI).
  • the PDCCH may be transmitted including at least DCI.
  • the PDCCH may be transmitted including DCI.
  • DCI may also be referred to as DCI format.
  • the DCI may indicate at least either a downlink grant or an uplink grant.
  • the DCI format used for PDSCH scheduling may also be referred to as a downlink DCI format.
  • the DCI format used for PUSCH scheduling may also be referred to as an uplink DCI format.
  • a downlink grant may also be referred to as a downlink assignment or a downlink assignment.
  • the uplink DCI format includes at least one or both of DCI format 0_0 and DCI format 0_1.
  • the DCI format 0_0 may be configured to include at least a part or all of 1A to 1F.
  • the DCI format specifying field may be used at least to indicate whether the DCI format including the DCI format specifying field corresponds to one or a plurality of DCI formats.
  • the one or more DCI formats may be provided based at least on part or all of DCI format 1_0, DCI format 1_1, DCI format 0_0, and / or DCI format 0_1.
  • the frequency domain resource allocation field may be at least used to indicate frequency resource allocation for a PUSCH scheduled by a DCI format including the frequency domain resource allocation field.
  • the time domain resource allocation field may be used at least to indicate time resource allocation for a PUSCH scheduled according to the DCI format including the time domain resource allocation field.
  • the frequency hopping flag field may be used at least to indicate whether frequency hopping is applied to a PUSCH scheduled according to the DCI format including the frequency hopping flag field.
  • the MCS field may be used at least to indicate a modulation scheme for a PUSCH scheduled by a DCI format including the MCS field and / or a part or all of a target coding rate.
  • the target coding rate may be a target coding rate for the PUSCH TB.
  • the size of the TB (TBS) may be given based at least on the target code rate.
  • the first CSI request field is used at least to indicate CSI reporting.
  • the size of the first CSI request field may be a predetermined value.
  • the size of the first CSI request field may be zero, one, two, or three.
  • the size of the first CSI request field may be determined according to the number of CSI settings set in the terminal device 1.
  • the DCI format 0_1 is configured to include at least a part or all of 2A to 2G.
  • the BWP field may be used to indicate the uplink BWP to which the PUSCH scheduled according to DCI format 0_1 is mapped.
  • the second CSI request field is used at least to indicate CSI reporting.
  • the size of the second CSI request field may be given at least based on an upper layer parameter ReportTriggerSize.
  • the downlink DCI format includes at least one or both of DCI format 1_0 and DCI format 1_1.
  • the DCI format 1_0 may be configured to include at least a part or all of 3A to 3H.
  • the timing indication field from the PDSCH to the HARQ feedback may be a field indicating the timing K1.
  • the index of the slot including the last OFDM symbol of the PDSCH is slot n
  • the index of the PUCCH including at least HARQ-ACK corresponding to the transport block included in the PDSCH or the index of the slot including the PUSCH is n + K1. Is also good.
  • the index of the slot including the last OFDM symbol of the PDSCH is slot n
  • the first OFDM symbol of the PUCCH or the first OFDM symbol of the PUSCH including at least the HARQ-ACK corresponding to the transport block included in the PDSCH is The index of the included slot may be n + K1.
  • the PUCCH resource indication field may be a field indicating an index of one or more PUCCH resources included in the PUCCH resource set.
  • the DCI format 1_1 may be configured to include at least a part or all of 4A to 4J.
  • the BWP field may be used to indicate a downlink BWP to which a PDSCH scheduled according to DCI format 1_1 is mapped.
  • DCI format 2 may include a parameter used for transmission power control of PUSCH or PUCCH.
  • the number of resource blocks indicates the number of resource blocks in the frequency domain unless otherwise specified.
  • the resource block index is assigned in ascending order from a resource block mapped to a low frequency region to a resource block mapped to a high frequency region.
  • the resource block is a general term for a common resource block and a physical resource block.
  • One physical channel may be mapped to one serving cell.
  • One physical channel may be mapped to one CBP set to one carrier included in one serving cell.
  • the terminal device 1 is provided with one or a plurality of control resource sets (CORESET).
  • the terminal device 1 monitors the PDCCH in one or a plurality of resets.
  • $ CORESET may indicate a time-frequency domain to which one or more PDCCHs may be mapped.
  • CORESET may be an area where the terminal device 1 monitors the PDCCH.
  • CORRESET may be configured by a continuous resource (Localized @ resource).
  • the CORESET may be configured by a discontinuous resource (distributed @ resource).
  • the unit of the mapping of the coreset may be a resource block.
  • the unit of the mapping of the coreset may be six resource blocks.
  • the mapping unit of the coreset may be an OFDM symbol.
  • the unit of the mapping of the reset may be one OFDM symbol.
  • the CORESET frequency domain may be provided based on at least a higher layer signal and / or DCI.
  • the CORESET time domain may be provided based at least on upper layer signals and / or DCI.
  • a certain RESET may be a common RESET (Common) RESET).
  • the common coreset may be a coreset commonly set for a plurality of terminal devices 1.
  • the common CORESET may be given based at least on MIB, SIB, common RRC signaling, and part or all of the cell ID. For example, a time resource and / or a frequency resource of CODE configured to monitor a PDCCH used for scheduling of SIB may be provided based at least on MIB.
  • a certain CORESET may be a dedicated CORESET (Dedicated $ CORESET).
  • the dedicated RESET may be a RESET that is set to be used exclusively for the terminal device 1.
  • the dedicated coreset may be provided based at least on dedicated RRC signaling.
  • a set of PDCCH candidates monitored by the terminal device 1 may be defined in terms of a search area. That is, the set of PDCCH candidates monitored by the terminal device 1 may be given by the search area.
  • the search area may be configured to include one or more PDCCH candidates of one or more aggregation levels (Aggregationgreglevel).
  • the aggregation level of the PDCCH candidates may indicate the number of CCEs constituting the PDCCH.
  • the terminal device 1 may monitor at least one or a plurality of search areas in a slot where DRX (Discontinuous reception) is not set. DRX may be given based at least on upper layer parameters. The terminal device 1 may monitor at least one or a plurality of search area sets (Search ⁇ space ⁇ set) in slots in which DRX is not set.
  • DRX discontinuous reception
  • the terminal device 1 may monitor at least one or a plurality of search area sets (Search ⁇ space ⁇ set) in slots in which DRX is not set.
  • the search area set may include at least one or a plurality of search areas.
  • the type of the search area set is a type 0 PDCCH common search area (common @ search ⁇ space), a type 0a PDCCH common search area, a type 1 PDCCH common search area, a type 2 PDCCH common search area, a type 3 PDCCH common search area, and / or a UE-specific PDCCH search. It may be any of the regions.
  • the type 0 PDCCH common search area, the type 0a PDCCH common search area, the type 1 PDCCH common search area, the type 2 PDCCH common search area, and the type 3 PDCCH common search area may be referred to as CSS (Common Search Space).
  • the UE-specific PDCCH search area may also be referred to as USS (UE specific search space).
  • Each of the search area sets may be associated with one control resource set.
  • Each of the search area sets may be at least included in one control resource set.
  • an index of a control resource set associated with the search area set may be given.
  • the type 0 PDCCH common search area may be at least used for a DCI format with a CRC (Cyclic Redundancy Check) sequence scrambled by an SI-RNTI (System Information-Radio Network Temporary Identifier).
  • the setting of the type 0 PDCCH common search area may be given based on at least four bits of LSB (Least Significant Bits) of the upper layer parameter PDCCH-ConfigSIB1.
  • the upper layer parameter PDCCH-ConfigSIB1 may be included in the MIB.
  • the setting of the type-0 PDCCH common search area may be given based at least on the upper layer parameter SearchSpaceZero.
  • the interpretation of the bits of the upper layer parameter SearchSpaceZero may be the same as the interpretation of the four bits of the LSB of the upper layer parameter PDCCH-ConfigSIB1.
  • the setting of the type-0 PDCCH common search area may be given based at least on the upper layer parameter SearchSpaceSIB1.
  • the upper layer parameter SearchSpaceSIB1 may be included in the upper layer parameter PDCCH-ConfigCommon.
  • the PDCCH detected in the type-0 PDCCH common search area may be used at least for scheduling of the PDSCH transmitted including the SIB1.
  • SIB1 is a type of SIB.
  • SIB1 may include scheduling information of SIBs other than SIB1.
  • the terminal device 1 may receive the upper layer parameter PDCCH-ConfigCommon in EUTRA.
  • the terminal device 1 may receive the upper layer parameter PDCCH-ConfigCommon in the MCG.
  • the type 0a PDCCH common search area may be used at least for a DCI format with a CRC (Cyclic Redundancy Check) sequence scrambled by an SI-RNTI (System Information-Radio Network Temporary Identifier).
  • the setting of the type 0a PDCCH common search area may be given at least based on the upper layer parameter SearchSpaceOtherSystemInformation.
  • the upper layer parameter SearchSpaceOtherSystemInformation may be included in SIB1.
  • the upper layer parameter SearchSpaceOtherSystemInformation may be included in the upper layer parameter PDCCH-ConfigCommon.
  • the PDCCH detected in the type-0 PDCCH common search area may be at least used for scheduling the PDSCH transmitted including SIBs other than SIB1.
  • the type 1 PDCCH common search area is accompanied by a CRC sequence scrambled by RA-RNTI (Random Access-Radio Network Temporary Identifier) and / or a CRC sequence scrambled by TC-RNTI (Temporary Common-Radio Network Temporary Identifier). It may be used at least for the DCI format.
  • the RA-RNTI may be given based at least on the time / frequency resource of the random access preamble transmitted by the terminal device 1.
  • the TC-RNTI is provided by a PDSCH (also referred to as random access message 2, message 2 (Msg2), or random access response (RAR)) scheduled in a DCI format with a CRC sequence scrambled by RA-RNTI. You may be.
  • the type-1 PDCCH common search area may be provided based at least on the parameter ra-SearchSpace of the upper layer.
  • the parameter ra-SearchSpace of the upper layer may be included in SIB1.
  • the upper layer parameter ra-SearchSpace may be included in the upper layer parameter PDCCH-ConfigCommon.
  • the type 2 PDCCH common search area may be used for a DCI format with a CRC sequence scrambled by P-RNTI (Paging- Radio Network Temporary Identifier).
  • P-RNTI Paging- Radio Network Temporary Identifier
  • the P-RNTI may be used at least for transmission of a DCI format including information for notifying a change of the SIB.
  • the type-2 PDCCH common search area may be given based at least on the upper layer parameter PagingSearchSpace.
  • the parameter PagingSearchSpace of the upper layer may be included in SIB1.
  • the upper layer parameter PagingSearchSpace may be included in the upper layer parameter PDCCH-ConfigCommon.
  • the Type 3 PDCCH common search region may be used for a DCI format with a CRC sequence scrambled by a C-RNTI (Cell-Radio Network Network Temporary Identifier).
  • the C-RNTI is a PDSCH (also referred to as random access message 4, message 4 (Msg4), or contention resolution) scheduled in a DCI format with a CRC sequence scrambled by the TC-RNTI. It may be given at least based on.
  • the type 3 PDCCH common search region may be a search region set given when the parameter SearchSpaceType of the upper layer is set to common.
  • the UE-specific PDCCH search region may be at least used for a DCI format with a CRC sequence scrambled by C-RNTI.
  • the type-0 PDCCH common search area, the type-0a PDCCH common search area, the type-1 PDCCH common search area, and / or the type-2 PDCCH common search area includes a CRC scrambled by the C-RNTI. It may be used at least for the DCI format with sequences.
  • the search area set given at least based on any of the parameters PagingSearchSpace may be used at least for the DCI format with a CRC sequence scrambled with C-RNTI.
  • Common CORESET may include at least one or both of CSS and USS.
  • the dedicated coreset may include at least one or both of CSS and USS.
  • the physical resource of the search area is configured by a control channel constituent unit (CCE: Control Channel Element).
  • CCE Control Channel Element
  • the CCE is composed of six resource element groups (REG: ⁇ Resource ⁇ Element ⁇ Group).
  • the REG may be configured by one OFDM symbol of one PRB (Physical Resource Block). That is, the REG may be configured to include 12 resource elements (RE: ⁇ Resource ⁇ Element).
  • the PRB may be simply referred to as a resource block (RB).
  • the PDSCH is used at least to transmit TB. Further, the PDSCH may be used at least for transmitting the random access message 2 (RAR, Msg2). Also, the PDSCH may be used at least for transmitting system information including parameters used for initial access.
  • RAR random access message 2
  • Msg2 the random access message 2
  • the following downlink physical signals are used in downlink wireless communication.
  • the downlink physical signal may not be used for transmitting information output from the upper layer, but is used by the physical layer.
  • ⁇ Synchronization signal ⁇ DL DMRS (DownLink DeModulation Reference Signal) ⁇ CSI-RS (Channel State Information-Reference Signal) ⁇ DL PTRS (DownLink Phase Tracking Reference Signal) ⁇ TRS (Tracking Reference Signal)
  • the synchronization signal is used for the terminal device 1 to synchronize in the downlink frequency domain and / or the time domain.
  • the synchronization signal includes PSS (Primary @ Synchronization @ Signal) and SSS (Secondary @ Synchronization @ Signal).
  • SSB (SS / PBCH block) is configured to include at least a part or all of PSS, SSS, and PBCH. Some or all of the antenna ports of the PSS, the SSS, and the PBCH included in the SS block may be the same. Some or all of the PSS, SSS, and PBCH included in the SSB may be mapped to consecutive OFDM symbols. Each of the PSS, SSS, and some or all of the PBCH included in the SSB may have the same CP setting. The same value may be applied to the SCS setting ⁇ for each of some or all of the PSS, SSS, and PBCH included in the SSB.
  • ⁇ DL ⁇ DMRS is related to the transmission of PBCH, PDCCH and / or PDSCH.
  • DL @ DMRS is multiplexed on PBCH, PDCCH, and / or PDSCH.
  • the terminal device 1 may use the PBCH, the PDCCH, or the DL @ DMRS corresponding to the PDSCH to perform propagation path correction on the PBCH, the PDCCH, or the PDSCH.
  • the transmission of the PBCH and the DL @ DMRS associated with the PBCH may be referred to as the transmission of the PBCH.
  • the fact that the PDCCH and the DL @ DMRS associated with the PDCCH are transmitted together may be simply referred to as the transmission of the PDCCH.
  • a DL @ DMRS associated with a PBCH may also be referred to as a DL @ DMRS for the PBCH.
  • a DL @ DMRS associated with a PDSCH may also be referred to as a DL @ DMRS for PDSCH.
  • a DL @ DMRS associated with a PDCCH may also be referred to as a DL @ DMRS associated with a PDCCH.
  • ⁇ DL ⁇ DMRS may be a reference signal individually set in the terminal device 1.
  • the DL DMRS sequence may be given at least based on parameters individually set in the terminal device 1.
  • the DL DMRS sequence may be provided based on at least a UE-specific value (eg, C-RNTI, etc.).
  • DL @ DMRS may be sent separately for PDCCH and / or PDSCH.
  • CSI-RS may be a signal used at least for calculating CSI.
  • the CSI-RS may be used to measure RSRP (Reference Signal Received Power) or RSRQ (Reference Signal Received Quality).
  • the CSI-RS pattern assumed by the terminal device 1 may be given at least by a parameter of an upper layer.
  • PTRS may be a signal used at least for phase noise compensation.
  • the pattern of the PTRS assumed by the terminal device 1 may be given based on at least a parameter of an upper layer and / or DCI.
  • the DL PTRS may be associated with a DL DMRS group that includes at least an antenna port used for one or more DL DMRS.
  • the association between the DL @ PTRS and the DL @ DMRS group may be that part or all of the antenna port of the DL @ PTRS and the antenna port included in the DL @ DMRS group are at least QCL.
  • the DL @ DMRS group may be identified based at least on the antenna port with the smallest index in the DL @ DMRS included in the DL @ DMRS group.
  • TRS may be a signal used at least for time and / or frequency synchronization.
  • the TRS pattern assumed by the terminal device may be given based at least on upper layer parameters and / or DCI.
  • the downlink physical channel and the downlink physical signal may also be referred to as a downlink signal.
  • the uplink physical channel and the uplink physical signal may also be referred to as an uplink signal.
  • the downlink signal and the uplink signal may be collectively referred to as a physical signal or a signal.
  • the downlink signal and the uplink signal may be collectively referred to as a signal.
  • the downlink physical channel and the uplink physical channel may be collectively referred to as a physical channel.
  • the downlink physical signal and the uplink physical signal may be collectively referred to as a physical signal.
  • BCH Broadcast CHannel
  • UL-SCH Uplink-Shared CHannel
  • DL-SCH Downlink-Shared CHannel
  • HARQ control is performed for each TB in the MAC layer.
  • the TB is a unit of data that the MAC layer delivers to the physical layer. In the physical layer, TBs are mapped to codewords, and modulation processing is performed for each codeword.
  • the base station device 3 and the terminal device 1 exchange (transmit and receive) upper layer signals in the upper layer (higher layer).
  • the base station device 3 and the terminal device 1 may transmit and receive RRC signaling (RRC message, RRC information, RRC information element) in a radio resource control (RRC) layer.
  • RRC radio resource control
  • the base station device 3 and the terminal device 1 may transmit and receive MAC @ CE (Control @ Element) in the MAC layer.
  • RRC signaling and / or MAC @ CE are also referred to as higher layer signaling.
  • the PUSCH and PDSCH may be at least used for transmitting RRC signaling and / or MAC CE.
  • the RRC signaling transmitted by the PDSCH from the base station device 3 may be a common signaling to a plurality of terminal devices 1 in the serving cell. Signaling common to a plurality of terminal devices 1 in the serving cell may be referred to as common RRC signaling.
  • the RRC signaling transmitted by the PDSCH from the base station device 3 may be signaling dedicated to a certain terminal device 1 (which may also be referred to as dedicated signaling or UE specific signaling).
  • the dedicated signaling for the terminal device 1 may also be referred to as dedicated RRC signaling.
  • Upper layer parameters unique to the serving cell may be transmitted using common signaling for a plurality of terminal devices 1 in the serving cell or dedicated signaling for a certain terminal device 1. UE-specific upper layer parameters may be transmitted to a certain terminal device 1 using dedicated signaling.
  • the BCCH Broadcast Control CHannel
  • the CCCH Common Control CHannel
  • the DCCH Dedicated Control CHannel
  • the BCCH is an upper layer channel used for transmitting MIB.
  • the CCCH Common ⁇ Control ⁇ CHannel
  • the DCCH is an upper layer channel used at least for transmitting dedicated control information (dedicated control information) to the terminal device 1.
  • the DCCH may be used, for example, for the RRC-connected terminal device 1.
  • the BCCH in the logical channel may be mapped to the BCH, DL-SCH, or UL-SCH in the transport channel.
  • the CCCH in a logical channel may be mapped to a DL-SCH or a UL-SCH in a transport channel.
  • the DCCH in the logical channel may be mapped to the DL-SCH or UL-SCH in the transport channel.
  • UUL-SCH in transport channel may be mapped to PUSCH in physical channel.
  • the DL-SCH in the transport channel may be mapped to the PDSCH in the physical channel.
  • the BCH in the transport channel may be mapped to the PBCH in the physical channel.
  • FIG. 5 is a schematic block diagram illustrating a configuration of the terminal device 1 according to an aspect of the present embodiment.
  • the terminal device 1 is configured to include a wireless transmission / reception unit 10 and an upper layer processing unit 14.
  • the wireless transmission / reception unit 10 includes at least a part or all of an antenna unit 11, an RF (RadioRFrequency) unit 12, and a baseband unit 13.
  • the upper layer processing unit 14 is configured to include at least a part or all of the medium access control layer processing unit 15 and the radio resource control layer processing unit 16.
  • the wireless transmission / reception unit 10 may also be referred to as a transmission unit, a reception unit, a physical layer processing unit, and / or a lower layer processing unit.
  • the upper layer processing unit 14 outputs the uplink data (TB, UL-SCH) generated by the operation of the user or the like to the wireless transmission / reception unit 10.
  • the upper layer processing unit 14 performs processing of a MAC layer, a packet data integration protocol (PDCP) layer, a radio link control (RLC) layer, and an RRC layer.
  • PDCP packet data integration protocol
  • RLC radio link control
  • the medium access control layer processing unit 15 provided in the upper layer processing unit 14 performs processing of the MAC layer.
  • the radio resource control layer processing unit 16 included in the upper layer processing unit 14 performs processing of the RRC layer.
  • the radio resource control layer processing unit 16 manages various setting information / parameters of the own device.
  • the radio resource control layer processing unit 16 sets various setting information / parameters based on the upper layer signal received from the base station device 3. That is, the radio resource control layer processing unit 16 sets various setting information / parameters based on information indicating various setting information / parameters received from the base station device 3.
  • the parameters may be upper layer parameters and / or information elements.
  • the wireless transmission / reception unit 10 performs physical layer processing such as modulation, demodulation, encoding, and decoding.
  • the wireless transmission / reception unit 10 separates, demodulates, and decodes the received physical signal, and outputs the decoded information to the upper layer processing unit 14. These processes may be referred to as reception processes.
  • the wireless transmission / reception unit 10 generates a physical signal (uplink signal) by modulating, encoding, and generating a baseband signal (conversion to a time continuous signal), and transmits the physical signal (uplink signal) to the base station device 3. These processes may be referred to as transmission processes.
  • the RF unit 12 converts a signal received via the antenna unit 11 into a baseband signal by quadrature demodulation (down-conversion), and removes unnecessary frequency components.
  • the RF unit 12 outputs the processed analog signal to the baseband unit.
  • the baseband unit 13 converts an analog signal input from the RF unit 12 into a digital signal.
  • the baseband unit 13 removes a portion corresponding to the CP from the converted digital signal, performs fast Fourier transform (FFT) on the signal from which the CP has been removed, and extracts a signal in the frequency domain.
  • FFT fast Fourier transform
  • the baseband unit 13 performs an inverse fast Fourier transform (IFFT) on the data, generates an OFDM symbol, adds a CP to the generated OFDM symbol, generates a baseband digital signal, and converts the baseband digital signal. Convert to analog signal.
  • the baseband unit 13 outputs the converted analog signal to the RF unit 12.
  • IFFT inverse fast Fourier transform
  • the RF unit 12 removes unnecessary frequency components from the analog signal input from the baseband unit 13 using a low-pass filter, upconverts the analog signal to a carrier frequency, and transmits the analog signal via the antenna unit 11. Further, the RF unit 12 amplifies the power. Further, the RF unit 12 may have a function of controlling transmission power.
  • the RF unit 12 is also called a transmission power control unit.
  • FIG. 6 is a schematic block diagram illustrating a configuration of the base station device 3 according to one aspect of the present embodiment.
  • the base station device 3 is configured to include a radio transmission / reception unit 30 and an upper layer processing unit 34.
  • the wireless transmission / reception unit 30 includes an antenna unit 31, an RF unit 32, and a baseband unit 33.
  • the upper layer processing unit 34 includes a medium access control layer processing unit 35 and a radio resource control layer processing unit 36.
  • the wireless transmission / reception unit 30 is also referred to as a transmission unit, a reception unit, or a physical layer processing unit.
  • the upper layer processing unit 34 performs processing of the MAC layer, PDCP layer, RLC layer, and RRC layer.
  • the medium access control layer processing unit 35 included in the upper layer processing unit 34 performs processing of the MAC layer.
  • the radio resource control layer processing unit 36 included in the upper layer processing unit 34 performs processing of the RRC layer.
  • the radio resource control layer processing unit 36 generates downlink data (TB, DL-SCH), system information, an RRC message, a MAC @ CE, etc., allocated to the PDSCH, or obtains it from an upper node, and Output. Further, the radio resource control layer processing unit 36 manages various setting information / parameters of each terminal device 1.
  • the radio resource control layer processing unit 36 may set various setting information / parameters for each of the terminal devices 1 via a signal of an upper layer. That is, the radio resource control layer processing unit 36 transmits / reports information indicating various setting information / parameters.
  • the basic functions of the wireless transmitting / receiving unit 30 are the same as those of the wireless transmitting / receiving unit 10, and a description thereof will be omitted.
  • the physical signal generated by the wireless transmission / reception unit 30 is transmitted to the terminal device 1 (that is, transmission processing is performed). Further, the wireless transmission / reception unit 30 performs a reception process of the received physical signal.
  • the medium access control layer processing unit 15 and / or 35 may be referred to as a MAC entity.
  • Each of the units denoted by reference numerals 10 to 16 included in the terminal device 1 may be configured as a circuit.
  • Each of the units denoted by reference numerals 30 to 36 included in the base station device 3 may be configured as a circuit.
  • Some or all of the units denoted by reference numerals 10 to 16 included in the terminal device 1 may be configured as a memory and a processor connected to the memory.
  • Part or all of the units denoted by reference numerals 30 to 36 included in the base station device 3 may be configured as a memory and a processor connected to the memory.
  • Various aspects (operations and processing) according to the present embodiment may be realized (performed) in a memory included in the terminal device 1 and / or the base station device 3 and a processor connected to the memory.
  • FIG. 7 is a diagram illustrating an example of the random access procedure according to an aspect of the present embodiment.
  • FIG. 7A is an example of contention-based RA (Content-based-Random-Access- (CBRA)) based on contention.
  • FIG. 7B shows an example of contention-free RA (Contention free RA (CFRA), non-contention based RA (NCBRA)).
  • CBRA Content-based-Random-Access-
  • NCBRA non-contention based RA
  • the random access procedure is performed for initial access from RRC idle, RRC connection (re) establishment, recovery from beam failure, handover, downlink data arrival, uplink data arrival, positioning, TA (Timing Advance, Timing Alignment). It is.
  • CBRA may be performed in all cases, but CFRA is performed for handover, downlink data arrival, positioning, and TA.
  • the CFRA can instruct the terminal device 1 to which the base station device 3 is connected to perform a random access procedure so that collision does not occur between a plurality of terminal devices 1.
  • Step S7001 is a step in which the terminal device 1 requests a response for initial access to the target cell via the PRACH.
  • the message transmitted by the terminal device 1 via the PRACH may be referred to as Msg1.
  • Msg1 may be a random access preamble set by an upper layer parameter.
  • the terminal device 1 Before performing the process of S7001, the terminal device 1 receives the SSB and obtains time-frequency synchronization, frame synchronization, and / or acquisition of system information (acquisition / setting of one or more upper layer parameters related to a cell). May be performed.
  • Step S7002 is a step in which the base station apparatus 3 makes a response to the terminal apparatus 1 to Msg1.
  • the message used for the response may be referred to as Msg2.
  • Msg2 may be transmitted via PDSCH.
  • the PDSCH containing Msg2 may be scheduled with a PDCCH mapped to type 1 PDCCHCSS. That is, the terminal device 1 may monitor the PDCCH used for scheduling the PDSCH including the Msg2 after transmitting the Msg1.
  • a CRC (Cyclic Redundancy Check) bit included in the PDCCH may be scrambled by RA-RNTI (Random Access-Radio Network Network Temporary Identifier (Identity)).
  • RA-RNTI Random Access-Radio Network Network Temporary Identifier
  • Msg2 may include an uplink grant (RAR grant) to be used for scheduling of PUSCH including Msg3.
  • the RAR grant may include at least TC-RNTI (Temporary @ Cell @-@ RNTI).
  • the RAR grant may include a TPC (Transmission Power Control) command indicating a correction value for the power control adjustment value used for the transmission power of the PUSCH including Msg3.
  • TPC Transmission Power Control
  • Step S7003 is a step in which the terminal device 1 transmits at least an RRC connection, an RRC connection re-establishment request, and the C-RNTI of the terminal device 1 to the target cell (target base station device 3).
  • the message transmitted by the terminal device 1 may be referred to as Msg3.
  • Msg3 may include an ID (Identifier, $ Identity) for identifying the terminal device 1.
  • the ID may be an ID managed by an upper layer.
  • the ID may be S-TMSI (SAE Temporary Mobile Subscriber Identity).
  • the ID may be mapped to a logical channel CCCH.
  • Step S7004 is a step in which the base station device 3 transmits a collision resolution message (Msg4) to the terminal device 1.
  • the terminal device 1 may monitor the PDCCH used for scheduling the PDSCH including the Msg4.
  • Msg4 may include a collision resolution ID (UE collision resolution ID).
  • the collision resolution ID may be used to resolve a collision in which a plurality of terminal devices 1 transmit signals using the same radio resource.
  • the terminal device 1 when the collision resolution ID included in the Msg4 received by the terminal device 1 is the same value as the ID for identifying the terminal device 1, the terminal device 1 has successfully completed the collision resolution. And the value of TC-RNTI may be set in the C-RNTI field. The terminal device 1 in which the value of TC-RNTI is set in the C-RNTI field may consider that the RRC connection has been completed. Note that, in order to notify the base station apparatus 3 that the RRC connection has been completed, the terminal device 1 having completed the RRC connection has an Ack on the PUCCH (PUCCH resource) indicated by the PUCCH resource indicator included in the PDCCH that has scheduled the Msg4. (Msg5) may be set (mapped) and transmitted. This Ack may correspond to the HARQ process ID (HARQ process number) included in the PDCCH that has scheduled Msg4.
  • PUCCH PUCCH resource
  • Msg5 PUCCH resource indicator included in the PDCCH that has scheduled the Msg4.
  • the RESET for monitoring the PDCCH used for the scheduling of the Msg4 may be the same as the RESET for monitoring the PDCCH used for the scheduling of the Msg2, may be different, or may be individually set. May be done.
  • S7001, S7002, and S7003 may be performed in a SpCell
  • S7004 may be performed in a cell (SpCell or SCell) specified by cross carrier scheduling.
  • Step S7100 is a step of requesting the base station device 3 to transmit a random access preamble (Msg1) to the terminal device 1 for a purpose such as handover.
  • S7100 is a random access procedure performed when the base station device 3 and the terminal device 1 have established an RRC connection.
  • the base station device 3 may perform allocation (resource allocation) of the random access preamble (Msg1) via dedicated signaling.
  • the PDCCH for such dedicated signaling may be referred to as a PDCCH order.
  • the Msg1 may be assigned using a different set from the Msg1 used in the CBRA.
  • the terminal device 1 monitors a PDCCH (PDCCH order) for allocating Msg1 resources.
  • the PDCCH order may be a DCI format in which the CRC of DCI format 1_0 is scrambled by C-RNTI and the value of 3B is all “1”.
  • the DCI format 1_0 used for the random access procedure started by the PDCCH order may include at least one or all of the following 5A to 5E as a field.
  • 5A corresponds to the upper layer parameter ra-PreambleIndex.
  • 5B is used to indicate the carrier transmitting the PRACH if the value of 5A is not all 0s, otherwise this field is reserved.
  • 5C indicates the index of the SSB used for determining the PRACH transmission timing (PRACH occasion) if the value of 5A is not all 0, and if not, this field is reserved.
  • the 5D is used to indicate the transmission timing of the RACH associated with the SSB corresponding to the 5C if the value of the 5A is not all 0s, otherwise this field is reserved.
  • 0 may be a zero padding bit.
  • Step S7101 is a step of transmitting the Msg1 to which the terminal device 1 is allocated when the PDCCH including the resource allocation of the Msg1 is received. After transmitting Msg1, the terminal device 1 may monitor the PDCCH (PDCCH search area) used for scheduling the PDSCH including Msg2.
  • PDCCH PDCCH search area
  • Step S7102 is a step in which the base station apparatus 3 makes a response to the terminal apparatus 1 to Msg1.
  • the basic processing is the same as that in step S7002, and a description thereof will not be repeated.
  • ⁇ Upper layer parameters for the random access procedure may be set.
  • 6A to 6I may be used in the MAC entity of the terminal device 1 as variables of the terminal device 1.
  • the MAC entity of the terminal device 1 flushes the Msg3 buffer and sets the value of 6B to 1;
  • the value of 6C is set to 1
  • the value of 6F is set to 0 ms
  • the value of 6H is set to 1
  • the values of 6D, 6E, and 6G are set to one or more corresponding values.
  • the random access resource selection procedure may be performed by setting based on upper layer parameters.
  • the terminal device 1 may set a PRACH resource (resource of a random access preamble) corresponding to the set index and perform a random access preamble transmission procedure.
  • the MAC entity of the terminal device 1 may increment the value of 6C by one. Further, the MAC entity of the terminal device 1 sets the value of 6E to at least the upper layer parameter preambleReceivedTargetPower, the value of 6C, and the value of transmission power based on the value of 6D, and selects the PRACH and the corresponding RA-RNTI , 6A and 6E, the physical layer may be instructed to transmit a random access preamble.
  • the upper layer parameter preambleReceivedTargetPower corresponds to the initial value of the transmission power of the random access preamble.
  • step S7101 the MAC entity of the terminal device 1 ranks higher at the first PDCCH reception timing (first @ PDCCH @ occasion) from the end of the random access preamble transmission.
  • the ra-ResponseWindow set in the layer parameter BeamFailureRecoveryConfig is started. While the ra-ResponseWindow is running, the MAC entity of the terminal device 1 may monitor the SpCell PDCCH for a response to the beam failure recovery request identified by the C-RNTI.
  • the MAC entity of the terminal device 1 starts the ra-ResponseWindow set in the upper layer parameter RACH-ConfigCommon from the end of the random access preamble transmission to the first PDCCH reception timing.
  • the MAC entity of the terminal device 1 may monitor the PDCCH of the SpCell for the RAR identified by the RA-RNTI while the ra-ResponseWindow is running.
  • the MAC entity of the terminal device 1 may increment the value of the above 6B by 1 if the ra-ResponseWindow expires and the corresponding Msg2 is not received. . Assuming that the incremented value of 6B is the upper layer parameter preambleTransMax + 1, the random access problem is indicated to the upper layer (RRC layer).
  • the MAC entity of the terminal device 1 starts or restarts the upper layer parameter ra-ContentionResolutionTimer in the first symbol at the end of the transmission of Msg3, while the ra-ContentionResolutionTimer is running.
  • PDCCH may be monitored.
  • steps S7003 to S7004 when the ra-ContentionTimer expires, the MAC entity of the terminal device 1 discards (discards) the value of 6I, and considers that the collision resolution has not been successful. If it is determined that the collision resolution is not successful, the MAC entity of the terminal device 1 may flush the HARQ buffer used for the transmission of the MAC @ PDU of the Msg3 buffer, and increment the value of the above 6B by one. . Assuming that the incremented value of 6B is the upper layer parameter preambleTransMax + 1, the random access problem is indicated to the upper layer (RRC layer).
  • a random backoff time may be selected from 0 to 6F, the transmission of the random access preamble is delayed by the backoff time, and the random access resource selection procedure may be performed.
  • the value of the upper layer parameter preambleTransMax may be the maximum value of the above 6B.
  • the MAC entity of the terminal device 1 discards the CFRA resources except the CFRA resource for the beam failure recovery request, and flushes the HARQ buffer used for the transmission of the Msg3 MAC PDU.
  • FIG. 8 is a diagram showing an example of the channel access procedure according to one aspect of the present embodiment.
  • the terminal device 1 or the base station device 3 performs idle (clear, free, and communication) for a predetermined period on a carrier (ie, NR-U carrier) or BWP (carrier BWP) in which NR-U cell transmission is performed. If the physical signal is not transmitted (the power (energy) of the physical signal is not detected), the physical signal may be transmitted using the carrier or the BWP. That is, when performing communication in the NR-U cell, the terminal device 1 or the base station device 3 performs CCA (Clear Channel Assessment) or channel measurement for confirming that the NR-U cell is idle for a predetermined period.
  • CCA Carrier Channel Assessment
  • the predetermined period may be determined from the delay period Td , the counter N, and the CCA slot period T sl .
  • the CCA may be performed by the wireless transmitting / receiving unit 10 of the terminal device 1 and / or the wireless transmitting / receiving unit 30 of the base station device 3.
  • the channel access procedure may include performing CCA for a predetermined period before the terminal device 1 or the base station device 3 transmits a physical signal in a certain channel.
  • the predetermined period is a period in which the counter N becomes 0 in a channel that first sensed idle in a delay period after detecting signals other than the own device.
  • the terminal device 1 or the base station device 3 can transmit a signal after the value of the counter N becomes 0. If it is determined that the counter is busy during the CCA slot period, the decrement of the counter N may be postponed.
  • the initial value N int of the counter N may be determined based on the value of the channel access priority class and the corresponding value of CW p (Contention Window) (CWS: CW size). For example, the value of N int may be determined based on a uniformly distributed random function from between 0 and the value of CW p .
  • the terminal device 1 or the base station device 3 sets the value of the counter N to N int when transmitting a physical signal in a carrier or BWP (BWP of a carrier) in which NR-U cell transmission is performed.
  • the terminal device 1 or the base station device 3 sets the value of N to N ⁇ 1 if it is determined that it is clear in one CCA slot period. That is, if it is determined that the terminal device 1 or the base station device 3 is clear during one CCA slot period, the value of the counter N may be decremented by one.
  • the terminal device 1 or the base station device 3 may stop the CCA in the CCA slot period. If not, that is, if the value of N is larger than 0, the terminal device 1 or the base station device 3 continuously performs CCA in the CCA slot period until the value of N becomes 0. You may.
  • the terminal device 1 or the base station device 3 performs CCA during the added CCA slot period, determines that the terminal device is idle, and can transmit a physical signal if the value of N is 0. .
  • the terminal device 1 or the base station device 3 may perform CCA until it is determined that it is busy in the added delay period or it is determined that it is idle in all slots in the added delay period. . In the added delay period, if it is determined that the terminal is idle and the value of N is 0, the terminal device 1 or the base station device 3 can transmit a physical signal. The terminal device 1 or the base station device 3 may continue the CCA if it determines that it is busy during the added delay period.
  • FIG. 9 is a diagram illustrating an example of a channel access priority class (CAPC) and CW adjustment procedure according to an aspect of the present embodiment.
  • CAC channel access priority class
  • the value p of CAPC is to indicate the number m p of CCA slot period T sl included in the delay time T d, the minimum and maximum values of CW, the maximum channel occupation time, acceptable values of CW p a (CWS) Used for
  • the value p of the CAPC may be set according to the priority of the physical signal.
  • the value p of the CAPC may be included and indicated in the DCI format.
  • the terminal device 1 may adjust the value of the CW for determining the value of N init before setting the value of the counter N to N init .
  • the terminal device 1 may maintain the updated value of CW for the random access procedure.
  • the terminal device 1 may set the updated value of CW to CW min for the random access procedure.
  • CW min may be, for example, CW # 0 shown in FIG. 9, that is, an initial value of CW p corresponding to the value p of CAPC.
  • the value of the updated CW to set the CW min is the value of CW is updated when a predetermined condition is satisfied it may be to update the CW min.
  • the value of the updated CW to set the CW min may be that re-sets the value of CW to CW min.
  • the terminal device 1 may adjust the value of CW for determining the value of N init before setting the value of N init to the value of the counter N corresponding to CCA performed before transmitting Msg1. Note that the terminal device 1 may maintain the updated value of the CW when it is determined that the reception of the Msg2 is successful and / or when it is determined that the reception of the Msg4 is successful. In addition, the terminal device 1 may set the updated value of CW to CW min when it is determined that the reception of the Msg2 is successful and / or when it is determined that the reception of the Msg4 is successful. .
  • adjusting the value of CW may mean increasing the value of CW p by one step from CW min to CW max when the value of CW p satisfies a predetermined condition.
  • CW max also increases by one step. That is, adjusting the value of CW may be updating the value of CW p .
  • updates the value of CW p is the value of CW p may be to one step larger value. For example, CW # 3 may be changed to CW # 4, or CW # n-1 may be changed to CW # n.
  • the terminal device 1 and / or the base station device 3 each time the terminal device 1 and / or the base station device 3 adjust the value of CW, the terminal device 1 and / or the base station device 3 change the value of N init based on a random function uniformly distributed from 0 to the updated value of CW p. You may decide.
  • the value p of the channel access priority class (CAPC) applied to the transmission of Msg1 may be determined based on system information, may be determined based on upper layer parameters, or may be associated with SSB. Good. For example, when the value p of the CAPC corresponding to Msg1 is P, the value of N init is determined based on a random function uniformly distributed between 0 and CW # 0.
  • CAPC channel access priority class
  • the terminal device 1 increments the value of the above 6B by 1 when it is determined that reception of Msg2 or Msg4 fails (fails). Thereafter, when the terminal apparatus 1 transmits the Msg1, updates the value of CW p used for the value of N init from CW # 0 to CW # 1.
  • the value of CW p is, mod (value of the 6B, the total number of CW p (e.g., CW W pieces of CW # W-1 from # 0)) may correspond to a value obtained by.
  • mod (A, B) may be a function that outputs a remainder obtained by dividing A by B (divisor). For example, when the value of 6B is 10 and the total number of CW p is 7, the value of CW p may be CW # 3.
  • the base station apparatus 3 Before performing transmission or retransmission, and before setting N init to the value of counter N corresponding to CCA for Msg4, the value of CW for determining the value of N init may be adjusted.
  • the base station device 3 may determine whether to adjust the value of CW based on the success rate of reception of Msg5.
  • base station apparatus 3 when the success rate of the reception of the Msg5 exceeds the predetermined threshold, the base station apparatus 3 does not need to adjust (maintain) the updated CW value.
  • base station apparatus 3 may set the value of CW to CW min .
  • the terminal device 1 may set the length (value) of the ra-ResponseWindow to a value that is one step longer. Further, when the terminal device 1 considers that the reception of the Msg4 has failed, the terminal device 1 may set the length (value) of the ra-ContentionResolutionTimer to a value one step longer. Terminal device 1, the length of ra-ResponseWindow, and / or the length of ra-ContentionResolutionTimer, a value based on the upper layer parameter, and may be determined based on the values and CCA slot period of CW p.
  • the length of ra-ResponseWindow and / or ra-ContentionResolutionTimer May be obtained from 10 ms + 63 ⁇ 9 ⁇ s + T d (eg, 25 ⁇ s).
  • the value based on the upper layer parameter may be set for each of ra-ResponseWindow and ra-ContentionResolutionTimer.
  • the terminal device 1 may maintain the length (value) of the ra-ResponseWindow when it is determined that the reception of the Msg2 is successful.
  • the terminal device 1 may maintain the length (value) of the ra-ContentionResolutionTimer.
  • the terminal device 1 determines that the reception of the Msg2 is successful, the terminal device 1 sets the length (value) of the ra-ResponseWindow to the value (that is, the initial value) set as the upper layer parameter (returns). May be).
  • the terminal device 1 determines that the reception of the Msg4 has been successful, the terminal device 1 sets the length (value) of the ra-ContentionResolutionTimer to a value (that is, an initial value) set as an upper layer parameter ( Back).
  • the base station apparatus 3 transmits Msg4 and then receives the Msg1 received in S7001 again, the base station apparatus 3 transmits the Msg2 corresponding to the retransmitted Msg1 before transmitting. Also, before setting N init to the value of the counter N corresponding to CCA for Msg2, the value of CW for determining the value of N init may be adjusted. If the base station apparatus 3 receives the Ack (Msg5) for Msg4 after transmitting Msg4, that is, if the random access procedure is successfully completed, the base station apparatus 3 transmits the updated CW The value may be maintained. When the random access procedure has been successfully completed, the base station device 3 may set the updated value of CW to CW min .
  • the base station apparatus 3 3 adjusts the value of the CW for determining the value of N init before transmitting or retransmitting the PDCCH order and before setting the value of the counter N corresponding to the CCA for the PDCCH order to N init May be.
  • the base station device 3 may maintain the updated value of CW. Further, when it is determined that the base station device 3 has successfully received the Msg1 corresponding to the PDCCH order, the base station device 3 may set the updated value of CW to CW min .
  • the PDCCH order is transmitted from the terminal device A to the terminal device E in the first predetermined period, if the corresponding Msg1 is received from each of the terminal devices E from the terminal device A, the PDCCH order Is considered successful, and the base station apparatus 3 does not need to adjust the value of CW. Further, when the PDCCH order is transmitted from the terminal device A to the terminal device E in the predetermined first period, the corresponding Msg1 is received from the terminal device A and the terminal device E, and the other terminal devices are transmitted.
  • the base station apparatus 3 determines the value of the CW for the PDCCH order. May be adjusted.
  • the base station apparatus 3 may regard the transmission of the PDCCH order as successful, and may maintain the updated value of the CW. If the success rate of receiving Msg1 exceeds a predetermined threshold, the base station device 3 may set the updated value of CW to CW min .
  • the value p of CAPC may be set individually for each of PUSCH, PUCCH, and PRACH. Further, the value p of the CAPC may be set to a common value as a cell-specific upper layer parameter for PUSCH, PUCCH, and PRACH. Also, the value p of CAPC may be set as an individual upper layer parameter for each of PUSCH, PUCCH, and PRACH. Further, the value p of the CAPC for the PUSCH may be included and indicated in the DCI format used for the PUSCH scheduling. Further, the value p of the CAPC for the PUCCH may be included in the DCI format including the PUCCH resource indicator and indicated.
  • the value p of the CAPC for the PRACH may be included and indicated in the DCI format for the PDCCH order. Further, the value p of CAPC for PRACH may be determined according to the type of the random access procedure. For example, the value p of CAPC for CBRA may be determined based on system information and / or higher layer parameters. Further, the value p of CAPC for CFRA may be determined based on upper layer parameters or a DCI format for PDCCH order. In the CFRA, whether the value p of the CAPC is based on the upper layer parameter or the DCI format field may be determined based on the system information and / or the setting of the upper layer parameter.
  • the value p of CAPC may be determined for PUSCH and PUCCH in association with information to be transmitted. For example, when transmitting USCH on PUSCH or PUCCH, the value p of CAPC may be individually set according to the type (eg, HARQ-ACK, SR, CSI) or combination of information included in UCI.
  • the type eg, HARQ-ACK, SR, CSI
  • the value p of CAPC is described, but the value of CW and T mcot may be set in the same manner.
  • a first aspect of the present invention is a terminal device, which transmits a random access preamble in a random access procedure and monitors a corresponding random access response (RAR); And a MAC (Medium Access Control) layer processing unit that increments a value of a preamble transmission counter for counting the number of times of transmission of the random access preamble when it is determined that the transmission is not successful.
  • RAR random access response
  • MAC Medium Access Control
  • the N init is, in the N Before serial N init is set, is determined based on the value of CW is set to at least the random access preamble (Contention Window) (CW size) , the value of the CW, the value of the preamble transmission counter Is updated when is incremented.
  • CW size the random access preamble
  • a second aspect of the present invention is the terminal device according to the first aspect, wherein in the random access procedure, the RAR is successfully received, and a PUSCH (Msg3) corresponding to the RAR is transmitted. Then, it monitors the collision resolution message (Msg4) corresponding to the Msg3, and when it is deemed that the reception of the Msg4 was not successful in the NR-U carrier, increments the value of the preamble transmission counter, and Update the value of.
  • a third aspect of the present invention is a method used in a terminal device, wherein in a random access procedure, a random access preamble is transmitted, a corresponding random access response (RAR) is monitored, and the RAR is monitored. If it is determined that the random access preamble has not been successfully received, the value of a preamble transmission counter for counting the number of times of transmission of the random access preamble is incremented, and the random access preamble is transmitted in an NR-U (New Radio-Unlicensed) carrier.
  • NR-U New Radio-Unlicensed
  • the fourth aspect of the present invention is the method according to the third aspect, wherein in the random access procedure, the RAR is successfully received, and a PUSCH (Msg3) corresponding to the RAR is transmitted. , Monitor the collision resolution message (Msg4) corresponding to the Msg3, and when it is considered that the reception of the Msg4 is not successful in the NR-U carrier, increment the value of the preamble transmission counter, and Update the value.
  • a fifth aspect of the present invention is a base station apparatus, which transmits a PDCCH (Physical Downlink Control Channel) order for performing resource allocation of a random access preamble, and after transmitting the PDCCH order.
  • a radio transmission / reception unit that monitors a random access preamble corresponding to the PDCCH order, wherein the radio transmission / reception unit transmits a CCA (Clear Channel) before transmitting the PDCCH order on an NR-U (New Radio-Unlicensed) carrier.
  • CCA Carrier Access Control Channel
  • a counter N is used to determine the measurement period for the CCA, the N init, before the N init is set to the N, At least a value (CW size) of a CW (Contention Window) set for the PDCCH order ), And the value of the CW is updated when it is determined that the reception of the random access preamble has not been successful.
  • a sixth aspect of the present invention is a base station apparatus, in a random access procedure, receiving a random access preamble, transmitting a corresponding random access response (RAR), and transmitting the RAR. And a radio transmission / reception unit that monitors a PUSCH (Msg3) corresponding to the RAR.
  • the radio transmission / reception unit transmits a CCA (Clear Channel) on the NR-U (New Radio-Unlicensed) carrier before transmitting the RAR.
  • a counter N is used to determine the measurement period for the CCA, the N init, before the N init is set to the N,
  • the CW is determined based on at least a CW (Contention Window) value (CW size) set for the RAR. Is updated when it is determined that the reception of the Msg3 has not been successful.
  • a seventh aspect of the present invention is a method used for a base station apparatus, wherein a PDCCH (Physical Downlink Control Channel) order for allocating resources of a random access preamble is transmitted, and the PDCCH order is transmitted.
  • a PDCCH Physical Downlink Control Channel
  • An eighth aspect of the present invention is a method used in a base station apparatus, wherein in a random access procedure, a random access preamble is received, and a corresponding random access response (RAR) is transmitted.
  • the PUSCH (Msg3) corresponding to the RAR is monitored, and a CCA (Clear Channel Assessment) is performed on the NR-U (New Radio-Unlicensed) carrier before transmitting the RAR.
  • setting an initial value N init used to determine the measurement period is set as the value of the counter N, wherein the N init, before the N init is set to the N, for at least the RAR for Is determined on the basis of the value (CW size) of the CW (Contention Window) to be executed. It is updated when it is considered that the communication was not successful.
  • the program that operates in the base station device 3 and the terminal device 1 according to the present invention is a program (a computer that functions as a computer) that controls a CPU (Central Processing Unit) and the like so as to realize the functions of the above-described embodiment according to the present invention.
  • Program The information handled by these devices is temporarily stored in a RAM (Random Access Memory) at the time of processing, and thereafter stored in various ROMs such as a Flash ROM (Read Only Memory) or an HDD (Hard Disk Drive). Reading, correction, and writing are performed by the CPU as necessary.
  • the terminal device 1 and a part of the base station device 3 in the above-described embodiment may be realized by a computer.
  • a program for realizing this control function may be recorded on a computer-readable recording medium, and the program recorded on this recording medium may be read by a computer system and executed.
  • the “computer system” here is a computer system built in the terminal device 1 or the base station device 3 and includes an OS and hardware such as peripheral devices.
  • the “computer-readable recording medium” refers to a portable medium such as a flexible disk, a magneto-optical disk, a ROM, and a CD-ROM, and a storage device such as a hard disk built in a computer system.
  • the "computer-readable recording medium” is a medium that dynamically holds the program for a short time, such as a communication line for transmitting the program through a network such as the Internet or a communication line such as a telephone line,
  • a program holding a program for a certain period of time such as a volatile memory in a computer system serving as a server or a client, may be included.
  • the above-mentioned program may be for realizing a part of the above-described functions, or may be for realizing the above-mentioned functions in combination with a program already recorded in a computer system.
  • the base station device 3 in the above-described embodiment can also be realized as an aggregate (device group) including a plurality of devices.
  • Each of the devices included in the device group may include a part or all of each function or each function block of the base station device 3 according to the above-described embodiment. What is necessary is that the device group has only one kind of each function or each function block of the base station device 3.
  • the terminal device 1 according to the above-described embodiment can also communicate with the base station device as an aggregate.
  • the base station device 3 in the above-described embodiment may be an EUTRAN (Evolved Universal Terrestrial Radio Access Network) and / or an NG-RAN (NextGen RAN, NR RAN). Further, the base station device 3 in the above-described embodiment may have some or all of the functions of the upper node for the eNodeB and / or gNB.
  • EUTRAN Evolved Universal Terrestrial Radio Access Network
  • NG-RAN NextGen RAN, NR RAN
  • part or all of the terminal device 1 and the base station device 3 in the above-described embodiment may be typically realized as an LSI which is an integrated circuit, or may be realized as a chipset.
  • Each functional block of the terminal device 1 and the base station device 3 may be individually formed into a chip, or a part or all may be integrated and formed into a chip.
  • the method of circuit integration is not limited to an LSI, and may be realized by a dedicated circuit or a general-purpose processor. Further, in the case where a technology for forming an integrated circuit that replaces the LSI appears due to the progress of the semiconductor technology, an integrated circuit based on the technology can be used.
  • the terminal device is described as an example of the communication device.
  • the present invention is not limited thereto, and a stationary or non-movable electronic device installed indoors and outdoors,
  • the present invention can be applied to a terminal device or a communication device such as an AV device, a kitchen device, a cleaning / washing device, an air conditioner, an office device, a vending machine, and other living devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

効率的に通信を行なう。ランダムアクセスプリアンブルのリソース割り当てを行なうためのPDCCHオーダを送信し、前記PDCCHオーダを送信した後に、前記PDCCHオーダに対応するランダムアクセスプリアンブルを監視する無線送受信部を備え、前記無線送受信部は、NR-Uキャリアにおいて、前記PDCCHオーダを送信する前に、CCAを行ない、前記CCAのための測定期間を決定するために用いられる初期値NinitをカウンタNの値としてセットし、前記Ninitは、前記Nに前記Ninitがセットされる前に、少なくとも前記PDCCHオーダに対して設定されるCWの値に基づいて決定され、前記CWの値は、前記ランダムアクセスプリアンブルの受信に成功しなかったとみなした場合に、更新される。

Description

基地局装置、および、方法
 本発明は、基地局装置、および、方法に関する。本願は、2018年8月10日に日本で出願された特願2018-151354号に基づき優先権を主張し、その内容をここに援用する。
 セルラー移動通信の無線アクセス方式および無線ネットワーク(以下、「LTE(Long Term Evolution)」、または、「EUTRA(Evolved Universal Terrestrial Radio Access)」と称する。)が、第三世代パートナーシッププロジェクト(3GPP:3rd Generation Partnership Project)において検討されている。LTEにおいて、基地局装置はeNodeB(evolved NodeB)、端末装置はUE(User Equipment)とも称されてもよい。LTEは、基地局装置がカバーするエリアをセル状に複数配置するセルラー通信システムである。1つの基地局装置は複数のサービングセルを管理してもよい。
 3GPPでは、国際電気通信連合(ITU)が策定する次世代移動通信システムの規格であるIMT(International Mobile Telecommunication)―2020に提案するため、次世代無線通信規格(NR: New Radio)の検討が行なわれている(非特許文献1)。NRは、単一の技術の枠組みにおいて、eMBB(enhanced Mobile BroadBand)、mMTC(massive Machine Type Communication)、URLLC(Ultra Reliable and Low Latency Communication)の3つのシナリオを想定した要求を満たすことが求められている。
 さらに、無免許周波数帯(Unlicensed band, unlicensed spectrum)にNR技術を適用する無線通信技術および/または無線通信方式および/または無線通信システムであるNR-U(NR-Unlicensed)の検討が行なわれている(非特許文献2)。
"New SID proposal: Study on New Radio Access Technology", RP-160671, NTT DOCOMO, 3GPP TSG RAN Meeting #71, Goteborg, Sweden, 7th - 10th March, 2016. "TR38.889 v0.0.2 Study on NR-based Access to Unlicensed Spectrum", R1-1807617, Qualcomm Incorporated, 3GPP TSG RAN WG1 Meeting #93, Busan, Korea, 21st - 25th May, 2018.
 本発明の一態様は、効率的に通信を行う基地局装置、該基地局装置に用いられる方法を提供する。
 (1)本発明の第1の態様は、基地局装置であって、ランダムアクセスプリアンブルのリソース割り当てを行なうためのPDCCH(Physical Downlink Control Channel)オーダを送信し、前記PDCCHオーダを送信した後に、前記PDCCHオーダに対応するランダムアクセスプリアンブルを監視する無線送受信部を備え、前記無線送受信部は、NR-U(New Radio - Unlicensed)キャリアにおいて、前記PDCCHオーダを送信する前に、CCA(Clear Channel Assessment)を行ない、前記CCAのための測定期間を決定するために用いられる初期値NinitをカウンタNの値としてセットし、前記Ninitは、前記Nに前記Ninitがセットされる前に、少なくとも前記PDCCHオーダに対して設定されるCW(Contention Window)の値(CW size)に基づいて決定され、前記CWの値は、前記ランダムアクセスプリアンブルの受信に成功しなかったとみなした場合に、更新される。
 (2)本発明の第2の態様は、基地局装置であって、ランダムアクセスプロシージャにおいて、ランダムアクセスプリアンブルを受信し、対応するランダムアクセスレスポンス(RAR)を送信し、前記RARを送信した後、前記RARに対応するPUSCH(Msg3)を監視する無線送受信部を備え、前記無線送受信部は、NR-U(New Radio - Unlicensed)キャリアにおいて、前記RARを送信する前に、CCA(Clear Channel Assessment)を行ない、前記CCAのための測定期間を決定するために用いられる初期値NinitをカウンタNの値としてセットし、前記Ninitは、前記Nに前記Ninitがセットされる前に、少なくとも前記RARに対して設定されるCW(Contention Window)の値(CW size)に基づいて決定され、前記CWの値は、前記Msg3の受信に成功しなかったとみなした場合に、更新される。
 (3)本発明の第3の態様は、基地局装置に用いられる方法であって、ランダムアクセスプリアンブルのリソース割り当てを行なうためのPDCCH(Physical Downlink Control Channel)オーダを送信し、前記PDCCHオーダを送信した後に、前記PDCCHオーダに対応するランダムアクセスプリアンブルを監視し、NR-U(New Radio - Unlicensed)キャリアにおいて、前記PDCCHオーダを送信する前に、CCA(Clear Channel Assessment)を行ない、前記CCAのための測定期間を決定するために用いられる初期値NinitをカウンタNの値としてセットし、前記Ninitは、前記Nに前記Ninitがセットされる前に、少なくとも前記PDCCHオーダに対して設定されるCW(Contention Window)の値(CW size)に基づいて決定され、前記CWの値は、前記ランダムアクセスプリアンブルの受信に成功しなかったとみなした場合に、更新される。
 (4)本発明の第4の態様は、基地局装置に用いられる方法であって、ランダムアクセスプロシージャにおいて、ランダムアクセスプリアンブルを受信し、対応するランダムアクセスレスポンス(RAR)を送信し、前記RARを送信した後、前記RARに対応するPUSCH(Msg3)を監視し、NR-U(New Radio - Unlicensed)キャリアにおいて、前記RARを送信する前に、CCA(Clear Channel Assessment)を行ない、前記CCAのための測定期間を決定するために用いられる初期値NinitをカウンタNの値としてセットし、前記Ninitは、前記Nに前記Ninitがセットされる前に、少なくとも前記RARに対して設定されるCW(Contention Window)の値(CW size)に基づいて決定され、前記CWの値は、前記Msg3の受信に成功しなかったとみなした場合に、更新される。
 この発明の一態様によれば、端末装置は効率的に通信を行うことができる。また、基地局装置は効率的に通信を行うことができる。
本実施形態の一態様に係る無線通信システムの概念図である。 本実施形態の一態様に係るNslot symb、SCS設定μ、および、CP設定の関係を示す一例である。 本実施形態の一態様に係るサブフレームにおけるリソースグリッドの一例を示す概略図である。 本実施形態の一態様に係るPUCCHフォーマットとPUCCHフォーマットの長さNPUCCH symbの関係の一例を示す図である。 本実施形態の一態様に係る端末装置1の構成を示す概略ブロック図である。 本実施形態の一態様に係る基地局装置3の構成を示す概略ブロック図である。 本実施形態の一態様に係るランダムアクセスプロシージャの一例を示す図である。 本実施形態の一態様に係るチャネルアクセスプロシージャの一例を示す図である。 本実施形態の一態様に係るチャネルアクセス優先クラス(CAPC)およびCW調整プロシージャの一例を示す図である。
 以下、本発明の実施形態について説明する。
 図1は、本実施形態の一態様に係る無線通信システムの概念図である。図1において、無線通信システムは、端末装置1A~1C、および基地局装置3を具備する。以下、端末装置1A~1Cを端末装置1とも称されてもよい。なお、基地局装置3は、通信装置、ノード、NB(NodeB)、eNB、gNB、ネットワーク装置(コアネットワーク、ゲートウェイ)、アクセスポイントの一部または全部を含んでもよい。また、端末装置1は、UE(User equipment)と称されてもよい。
 基地局装置3は、MCG(Master Cell Group)、および、SCG(Secondary Cell Group)の一方または両方を構成してもよい。MCGは、少なくともPCell(Primary Cell)を含んで構成されるサービングセルのグループである。また、SCGは、少なくともPSCell(Primary Secondary Cell)を含んで構成されるサービングセルのグループである。PCellは、初期接続に基づき与えられるサービングセルであってもよい。MCGは、1または複数のSCell(Secondary Cell)を含んで構成されてもよい。SCGは、1または複数のSCellを含んで構成されてもよい。PCellおよびPSCellは、SpCell(Special Cell)と称されてもよい。1つのSpCellと1または複数のSCellで1つのCGを構成し、通信を行なうことをキャリアアグリゲーションと称してもよい。
 MCGは、EUTRA上の1または複数のサービングセルで構成されてもよい。また、SCGは、NR上の1または複数のサービングセルで構成されてもよい。また、MCGは、NR上の1または複数のサービングセルで構成されてもよい。また、SCGは、EUTRA上の1または複数のサービングセルで構成されてもよい。また、MCGおよびSCGは、EUTRAまたはNRのいずれか一方の1または複数のサービングセルで構成されてもよい。
 MCGは、EUTRA上の1または複数のサービングセルで構成されてもよい。また、SCGは、NR-U上の1または複数のサービングセルで構成されてもよい。また、MCGは、NR上の1または複数のサービングセルで構成されてもよい。また、SCGは、NR-U上の1または複数のサービングセルで構成されてもよい。また、MCGは、EUTRAまたはNRまたはNR-Uのいずれか一方の1または複数のサービングセルで構成されてもよい。また、SCGは、EUTRAまたはNRまたはNR-Uのいずれか一方の1または複数のサービングセルで構成されてもよい。
 EUTRA、NR、NR-Uのそれぞれに対して適用されるオペレーティングバンドは個別に定義されてもよい。
 また、MCGは、第1の基地局装置によって構成されてもよい。また、SCGは、第2の基地局装置によって構成されてもよい。つまり、PCellは、第1の基地局装置によって構成されてもよい。PSCellは、第2の基地局装置によって構成されてもよい。第1の基地局装置および第2の基地局装置はそれぞれ、基地局装置3と同じであってもよい。
 以下、フレーム構成について説明する。
 本実施形態の一態様に係る無線通信システムにおいて、OFDM(Orthogonal Frequency Division Multiplex)が少なくとも用いられる。OFDMシンボルは、OFDMの時間領域の単位である。OFDMシンボルは、少なくとも1または複数のサブキャリア(subcarrier)を含む。OFDMシンボルは、ベースバンド信号生成において時間連続信号(time - continuous signal)に変換される。下りリンクにおいて、CP-OFDM(Cyclic Prefix - Orthogonal Frequency Division Multiplex)が少なくとも用いられる。上りリンクにおいて、CP-OFDM、または、DFT-s-OFDM(Discrete Fourier Transform - spread - Orthogonal Frequency Division Multiplex)のいずれかが用いられる。DFT-s-OFDMは、CP-OFDMに対して変形プレコーディング(Transform precoding)が適用されることで与えられてもよい。
 サブキャリア間隔(SCS)は、サブキャリア間隔Δf=2μ・15kHzによって与えられてもよい。例えば、SCS設定μは0、1、2、3、4、および/または、5のいずれかに設定されてもよい。あるBWP(BandWidth Part)のために、SCS設定μが上位層のパラメータにより与えられてもよい。
 本実施形態の一態様に係る無線通信システムにおいて、時間領域の長さの表現のために時間単位Tが用いられる。時間単位Tは、T=1/(Δfmax・N)で与えられてもよい。Δfmaxは、本実施形態の一態様に係る無線通信システムにおいてサポートされるSCSの最大値であってもよい。Δfmaxは、Δfmax=480kHzであってもよい。Nは、N=4096であってもよい。定数κは、κ=Δfmax・N/(Δfreff,ref)=64である。Δfrefは、15kHzであってもよい。Nf,refは、2048であってもよい。
 定数κは、参照SCSとTの関係を示す値であってもよい。定数κはサブフレームの長さのために用いられてもよい。定数κに少なくとも基づき、サブフレームに含まれるスロットの数が与えられてもよい。Δfrefは、参照SCSであり、Nf,refは、参照SCSに対応する値である。
 下りリンクにおける信号の送信、および/または、上りリンクにおける信号の送信は、10msのフレームにより構成される。フレームは、10個のサブフレームを含んで構成される。サブフレームの長さは1msである。フレームの長さは、SCSΔfに関わらず与えられてもよい。つまり、フレームの設定はμの値に係らず与えられてもよい。サブフレームの長さは、SCSΔfに関わらず与えられてもよい。つまり、サブフレームの設定はμに係らず与えられてもよい。
 あるSCS設定μに対して、1つのサブフレームに含まれるスロットの数とインデックスが与えられてもよい。例えば、スロット番号nμ は、サブフレームにおいて0からNsubframe,μ slot-1の範囲で昇順に与えられてもよい。SCS設定μに対して、1つのフレームに含まれるスロットの数とインデックスが与えられてもよい。また、スロット番号nμ s,fは、フレームにおいて0からNframe,μ slot-1の範囲で昇順に与えられてもよい。連続するNslot symb個のOFDMシンボルが1つのスロットに含まれてもよい。Nslot symbは、および/または、CP(Cyclic Prefix)設定の一部または全部に少なくとも基づき与えられてもよい。CP設定は、上位層のパラメータに少なくとも基づき与えられてもよい。CP設定は、専用RRCシグナリングに少なくとも基づき与えられてもよい。スロット番号は、スロットインデックスとも称されてもよい。
 図2は、本実施形態の一態様に係るNslot symb、SCS設定μ、および、CP設定の関係を示す一例である。図2Aにおいて、例えば、SCS設定μが2であり、CP設定がノーマルCP(NCP)である場合、Nslot symb=14、Nframe,μ slot=40、Nsubframe,μ slot=4である。また、図2Bにおいて、例えば、SCS設定μが2であり、CP設定が拡張CP(ECP)である場合、Nslot symb=12、Nframe,μ slot=40、Nsubframe,μ slot=4である。
 以下、本実施形態に係る物理リソースについて説明を行なう。
 アンテナポートは、1つのアンテナポートにおいてシンボルが伝達されるチャネルが、同一のアンテナポートにおいてその他のシンボルが伝達されるチャネルから推定できることによって定義される。1つのアンテナポートにおいてシンボルが伝達されるチャネルの大規模特性(large scale property)が、もう一つのアンテナポートにおいてシンボルが伝達されるチャネルから推定できる場合、2つのアンテナポートはQCL(Quasi Co-Located)であると称されてもよい。大規模特性は、チャネルの長区間特性を少なくとも含んでもよい。大規模特性は、遅延拡がり(delay spread)、ドップラー拡がり(Doppler spread)、ドップラーシフト(Doppler shift)、平均利得(average gain)、平均遅延(average delay)、および、ビームパラメータ(spatial Rx parameters)の一部または全部を少なくとも含んでもよい。第1のアンテナポートと第2のアンテナポートがビームパラメータに関してQCLであるとは、第1のアンテナポートに対して受信側が想定する受信ビームと第2のアンテナポートに対して受信側が想定する受信ビームとが同一であることであってもよい。第1のアンテナポートと第2のアンテナポートがビームパラメータに関してQCLであるとは、第1のアンテナポートに対して受信側が想定する送信ビームと第2のアンテナポートに対して受信側が想定する送信ビームとが同一であることであってもよい。端末装置1は、1つのアンテナポートにおいてシンボルが伝達されるチャネルの大規模特性が、もう一つのアンテナポートにおいてシンボルが伝達されるチャネルから推定できる場合、2つのアンテナポートはQCLであることが想定されてもよい。2つのアンテナポートがQCLであることは、2つのアンテナポートがQCLであることが想定されることであってもよい。
 SCS設定μとキャリアのセットのために、Nsize,μ grid,xRB sc個のサブキャリアとNsubframe,μ symb個のOFDMシンボルで定義されるリソースグリッドが与えられる。Nsize,μ grid,xは、キャリアxのためのSCS設定μのために与えられるリソースブロック数を示してもよい。Nsize,μ grid,xは、キャリアの帯域幅を示してもよい。Nsize,μ grid,xは、上位層のパラメータCarrierBandwidthの値に対応してもよい。キャリアxは下りリンクキャリアまたは上りリンクキャリアのいずれかを示してもよい。つまり、xは“DL”、または、“UL”のいずれかであってもよい。NRB scは、1つのリソースブロックに含まれるサブキャリア数を示してもよい。NRB scは12であってもよい。アンテナポートpごとに、および/または、SCS設定μごとに、および/または、送信方向(Transmission direction)の設定ごとに少なくとも1つのリソースグリッドが与えられてもよい。送信方向は、少なくとも下りリンク(DL: DownLink)および上りリンク(UL: UpLink)を含む。以下、アンテナポートp、SCS設定μ、および、送信方向の設定の一部または全部を少なくとも含むパラメータのセットは、第1の無線パラメータセットとも称されてもよい。つまり、リソースグリッドは、第1の無線パラメータセットごとに1つ与えられてもよい。なお、無線パラメータセットは、1または複数の無線パラメータ(物理層パラメータまたは上位層パラメータ)を含む1または複数のセットであってもよい。
 下りリンクにおいて、サービングセルに含まれるキャリアを下りリンクキャリア(または、下りリンクコンポーネントキャリア)と称する。上りリンクにおいて、サービングセルに含まれるキャリアを上りリンクキャリア(上りリンクコンポーネントキャリア)と称する。下りリンクコンポーネントキャリア、および、上りリンクコンポーネントキャリアを総称して、コンポーネントキャリア(または、キャリア)と称してもよい。
 サービングセルのタイプは、PCell、PSCell、および、SCellのいずれかであってもよい。PCellは、初期接続においてSSB(Synchronization signal/Physical broadcast channel block)から取得されるセルIDに少なくとも基づき識別されるサービングセルであってもよい。SCellは、キャリアアグリゲーションにおいて用いられるサービングセルであってもよい。SCellは、専用RRCシグナリングに少なくとも基づき与えられるサービングセルであってもよい。
 第1の無線パラメータセットごとに与えられるリソースグリッドの中の各要素は、リソースエレメントと称されてもよい。リソースエレメントは周波数領域のインデックスkscと、時間領域のインデックスlsymにより特定される。ある第1の無線パラメータセットのために、リソースエレメントは周波数領域のインデックスkscと、時間領域のインデックスlsymにより特定される。周波数領域のインデックスkscと時間領域のインデックスlsymにより特定されるリソースエレメントは、リソースエレメント(ksc、lsym)とも称されてもよい。周波数領域のインデックスkscは、0からNμ RBRB sc-1のいずれかの値を示す。Nμ RBはSCS設定μのために与えられるリソースブロック数であってもよい。Nμ RBは、Nsize,μ grid,xであってもよい。NRB scは、リソースブロックに含まれるサブキャリア数であり、NRB sc=12である。周波数領域のインデックスkscは、サブキャリアインデックスkscに対応してもよい。時間領域のインデックスlsymは、OFDMシンボルインデックスlsymに対応してもよい。
 図3は、本実施形態の一態様に係るサブフレームにおけるリソースグリッドの一例を示す概略図である。図3のリソースグリッドにおいて、横軸は時間領域のインデックスlsymであり、縦軸は周波数領域のインデックスkscである。1つのサブフレームにおいて、リソースグリッドの周波数領域はNμ RBRB sc個のサブキャリアを含む。1つのサブフレームにおいて、リソースグリッドの時間領域は14・2μ個のOFDMシンボルを含んでもよい。1つのリソースブロックは、NRB sc個のサブキャリアを含んで構成される。リソースブロックの時間領域は、1OFDMシンボルに対応してもよい。リソースブロックの時間領域は、14OFDMシンボルに対応してもよい。リソースブロックの時間領域は、1または複数のスロットに対応してもよい。リソースブロックの時間領域は、1つのサブフレームに対応してもよい。
 端末装置1は、リソースグリッドのサブセットのみを用いて送受信を行うことが指示されてもよい。リソースグリッドのサブセットは、BWPとも呼称され、BWPは上位層のパラメータ、および/または、DCIの一部または全部に少なくとも基づき与えられてもよい。BWPをCBP(Carrier Bandwidth Part)とも称してもよい。端末装置1は、リソースグリッドのすべてのセットを用いて送受信を行なうことが指示されなくてもよい。端末装置1は、リソースグリッド内の一部の周波数リソースを用いて送受信を行なうことが指示されてもよい。1つのBWPは、周波数領域における複数のリソースブロックから構成されてもよい。1つのBWPは、周波数領域において連続する複数のリソースブロックから構成されてもよい。下りリンクキャリアに対して設定されるBWPは、下りリンクBWPとも称されてもよい。上りリンクキャリアに対して設定されるBWPは、上りリンクBWPとも称されてもよい。BWPは、キャリアの帯域のサブセットであってもよい。
 サービングセルのそれぞれに対して1または複数の下りリンクBWPが設定されてもよい。サービングセルのそれぞれに対して1または複数の上りリンクBWPが設定されてもよい。
 サービングセルに対して設定される1または複数の下りリンクBWPのうち、1つの下りリンクBWPがアクティブ下りリンクBWPに設定されてもよい。下りリンクのBWPスイッチは、1つのアクティブ下りリンクBWPをディアクティベート(deactivate)し、該1つのアクティブ下りリンクBWP以外のインアクティブ下りリンクBWPをアクティベート(activate)するために用いられる。下りリンクBWPのスイッチングは、下りリンク制御情報に含まれるBWPフィールドにより制御されてもよい。下りリンクBWPのスイッチングは、上位層のパラメータに基づき制御されてもよい。
 アクティブ下りリンクBWPにおいて、DL-SCHが受信されてもよい。アクティブ下りリンクBWPにおいて、PDCCHがモニタされてもよい。アクティブ下りリンクBWPにおいて、PDSCHが受信されてもよい。
 インアクティブ下りリンクBWPにおいて、DL-SCHが受信されない。インアクティブ下りリンクBWPにおいて、PDCCHがモニタされない。インアクティブ下りリンクBWPのためのCSIは報告されない。
 サービングセルに対して設定される1または複数の下りリンクBWPのうち、2つ以上の下りリンクBWPがアクティブ下りリンクBWPに設定されなくてもよい。
 サービングセルに対して設定される1または複数の上りリンクBWPのうち、1つの上りリンクBWPがアクティブ上りリンクBWPに設定されてもよい。上りリンクのBWPスイッチは、1つのアクティブ上りリンクBWPをディアクティベート(deactivate)し、該1つのアクティブ上りリンクBWP以外のインアクティブ上りリンクBWPをアクティベート(activate)するために用いられる。上りリンクBWPのスイッチングは、下りリンク制御情報に含まれるBWPフィールドにより制御されてもよい。上りリンクBWPのスイッチングは、上位層のパラメータに基づき制御されてもよい。
 アクティブ上りリンクBWPにおいて、UL-SCHが送信されてもよい。アクティブ上りリンクBWPにおいて、PUCCHが送信されてもよい。アクティブ上りリンクBWPにおいて、PRACHが送信されてもよい。アクティブ上りリンクBWPにおいて、SRSが送信されてもよい。
 インアクティブ上りリンクBWPにおいて、UL-SCHが送信されない。インアクティブ上りリンクBWPにおいて、PUCCHが送信されない。インアクティブ上りリンクBWPにおいて、PRACHが送信されない。インアクティブ上りリンクBWPにおいて、SRSが送信されない。
 サービングセルに対して設定される1または複数の上りリンクBWPのうち、2つ以上の上りリンクBWPがアクティブ上りリンクBWPに設定されなくてもよい。
 上位層のパラメータは、上位層の信号に含まれるパラメータである。上位層の信号は、RRC(Radio Resource Control)シグナリングであってもよいし、MAC CE(Medium Access Control Control Element)であってもよい。ここで、上位層の信号は、RRC層の信号であってもよいし、MAC層の信号であってもよい。
 上位層の信号は、共通RRCシグナリング(common RRC signaling)であってもよい。共通RRCシグナリングは、以下の特徴C1から特徴C3の一部または全部を少なくとも備えてもよい。
特徴C1)BCCHロジカルチャネル、または、CCCHロジカルチャネルにマップされる
特徴C2)ReconfigrationWithSync情報要素を少なくとも含む
特徴C3)PBCHにマップされる
 ReconfigrationWithSync情報要素は、サービングセルにおいて共通に用いられる設定を示す情報を含んでもよい。サービングセルにおいて共通に用いられる設定は、PRACHの設定を少なくとも含んでもよい。該PRACHの設定は、1または複数のランダムアクセスプリアンブルインデックスを少なくとも示してもよい。該PRACHの設定は、PRACHの時間/周波数リソースを少なくとも示してもよい。
 共通RRCシグナリングは、共通RRCパラメータを少なくとも含んでもよい。共通RRCパラメータは、サービングセル内において共通に用いられる(Cell-specific)パラメータであってもよい。
 上位層の信号は、専用RRCシグナリング(dedicated RRC signaling)であってもよい。専用RRCシグナリングは、以下の特徴D1からD2の一部または全部を少なくとも備えてもよい。
特徴D1)DCCHロジカルチャネルにマップされる
特徴D2)ReconfigrationWithSync情報要素を含まない
 例えば、MIB(Master Information Block)、および、SIB(System Information Block)は共通RRCシグナリングに含まれてもよい。また、DCCHロジカルチャネルにマップされ、かつ、ReconfigrationWithSync情報要素を少なくとも含む上位層のメッセージは、共通RRCシグナリングに含まれてもよい。また、DCCHロジカルチャネルにマップされ、かつ、ReconfigrationWithSync情報要素を含まない上位層のメッセージは、専用RRCシグナリングに含まれてもよい。なお、MIBおよびSIBをまとめてシステム情報と称してもよい。
 SIBは、SSBの時間インデックスを少なくとも示してもよい。SIBは、PRACHリソースに関連する情報を少なくとも含んでもよい。SIBは、初期接続の設定に関連する情報を少なくとも含んでもよい。
 ReconfigrationWithSync情報要素は、PRACHリソースに関連する情報を少なくとも含んでもよい。ReconfigrationWithSync情報要素は、初期接続の設定に関連する情報を少なくとも含んでもよい。
 専用RRCシグナリングは、専用RRCパラメータを少なくとも含んでもよい。専用RRCパラメータは、端末装置1に専用に用いられる(UE-specific)パラメータであってもよい。専用RRCシグナリングは、共通RRCパラメータを少なくとも含んでもよい。
 共通RRCパラメータおよび専用RRCパラメータは、上位層のパラメータとも称されてもよい。
 以下、本実施形態の種々の態様に係る物理チャネルおよび物理シグナルを説明する。
 上りリンク物理チャネルは、上位層において発生する情報を運ぶリソースエレメントのセットに対応してもよい。上りリンク物理チャネルは、上りリンクキャリアにおいて用いられる物理チャネルである。本実施形態の一態様に係る無線通信システムにおいて、少なくとも下記の一部または全部の上りリンク物理チャネルが用いられる。
・PUCCH(Physical Uplink Control CHannel)
・PUSCH(Physical Uplink Shared CHannel)
・PRACH(Physical Random Access CHannel)
 PUCCHは、上りリンク制御情報(UCI)を送信するために用いられてもよい。上りリンク制御情報は、チャネル状態情報(CSI)、スケジューリングリクエスト(SR)、トランスポートブロック(TB)に対応するHARQ-ACK(Hybrid Automatic Repeat request ACKnowledgement)情報の一部または全部を含む。なお、TBは、MAC PDU(Medium Access Control Protocol Data Unit)、DL-SCH(Downlink-Shared Channel)やPDSCH(Physical Downlink Shared Channel)と称されてもよい。
 PUCCHには1または複数種類の上りリンク制御情報が多重されてもよい。該多重されたPUCCHは送信されてもよい。つまり、PUCCHには、複数のHARQ-ACKが多重されてもよいし、複数のCSIが多重されてもよいし、複数のSRが多重されてもよいし、HARQ-ACKとCSIが多重されてもよいし、HARQ-ACKとSRが多重されてもよいし、他のUCIの種類と多重されてもよい。
 HARQ-ACK情報は、TBに対応するHARQ-ACKビットを少なくとも含んでもよい。HARQ-ACKビットは、TBに対応するACK(acknowledgement)またはNACK(negative-acknowledgement)を示してもよい。ACKは、該TBの復号が成功裏に完了していることを示す値であってもよい。NACKは、該TBの復号が成功裏に完了していないことを示す値であってもよい。HARQ-ACK情報は、1または複数のHARQ-ACKビットを含むHARQ-ACKコードブックを少なくとも1つ含んでもよい。HARQ-ACKビットが1または複数のTBに対応することは、HARQ-ACKビットが該1または複数のTBを含むPDSCHに対応することであってもよい。
 HARQ-ACKビットは、TBに含まれる1つのCBG(Code Block Group)に対応するACKまたはNACKを示してもよい。HARQ-ACKは、HARQフィードバック、HARQ情報、HARQ制御情報とも称されてもよい。
 SRは、初期送信のためのPUSCHのリソースを要求するために少なくとも用いられてもよい。また、SRは、新しい送信のためのUL-SCHリソースを要求するために用いられてもよい。SRビットは、正のSR(positive SR)または、負のSR(negative SR)のいずれかを示すために用いられてもよい。SRビットが正のSRを示すことは、“正のSRが送信される”とも称されてもよい。正のSRは、端末装置1によって初期送信のためのPUSCHのリソースが要求されることを示してもよい。正のSRは、上位層によりSRがトリガされることを示してもよい。正のSRは、上位層によりSRを送信することが指示された場合に、送信されてもよい。SRビットが負のSRを示すことは、“負のSRが送信される”とも称されてもよい。負のSRは、端末装置1によって初期送信のためのPUSCHのリソースが要求されないことを示してもよい。負のSRは、上位層によりSRがトリガされないことを示してもよい。負のSRは、上位層によりSRを送信することが指示されない場合に、送信されてもよい。
 SRビットは、1または複数のSR設定(SR configuration)のいずれかに対する正のSR、または、負のSRのいずれかを示すために用いられてもよい。該1または複数のSR設定のそれぞれは、1または複数のロジカルチャネルに対応してもよい。あるSR設定に対する正のSRは、該あるSR設定に対応する1または複数のロジカルチャネルのいずれかまたは全部に対する正のSRであってもよい。負のSRは、特定のSR設定に対応しなくてもよい。負のSRが示されることは、全てのSR設定に対して負のSRが示されることであってもよい。
 SR設定は、SR-ID(Scheduling Request ID)であってもよい。SR-IDは、上位層のパラメータにより与えられてもよい。
 CSIは、チャネル品質指標(CQI)、プレコーダ行列指標(PMI)、および、ランク指標(RI)の一部または全部を少なくとも含んでもよい。CQIは、チャネルの品質(例えば、伝搬強度)に関連する指標であり、PMIは、プレコーダを指示する指標である。RIは、送信ランク(または、送信レイヤ数)を指示する指標である。
 CSIは、チャネル測定のために少なくとも用いられる物理信号(例えば、CSI-RS)を受信することに少なくとも基づき与えられてもよい。CSIは、端末装置1によって選択される値が含まれてもよい。CSIは、チャネル測定のために少なくとも用いられる物理信号を受信することに少なくとも基づき、端末装置1によって選択されてもよい。チャネル測定は、干渉測定を含んでもよい。
 CSI報告は、CSIの報告である。CSI報告は、CSIパート1、および/または、CSIパート2を含んでもよい。CSIパート1は、広帯域チャネル品質情報(wideband CQI)、広帯域プレコーダ行列指標(wideband PMI)、RIの一部または全部を少なくとも含んで構成されてもよい。PUCCHに多重されるCSIパート1のビット数は、CSI報告のRIの値に係らず所定の値であってもよい。PUCCHに多重されるCSIパート2のビット数は、CSI報告のRIの値に基づき与えられてもよい。CSI報告のランク指標は、該CSI報告の算出のために用いられるランク指標の値であってもよい。CSI情報のRIは、該CSI報告に含まれるRIフィールドにより示される値であってもよい。
 CSI報告において許可されるRIのセットは、1から8の一部または全部であってもよい。また、CSI報告において許可されるRIのセットは、上位層のパラメータRankRestrictionに少なくとも基づき与えられてもよい。CSI報告において許可されるRIのセットが1つの値のみを含む場合、該CSI報告のRIは該1つの値であってもよい。
 CSI報告に対して、優先度が設定されてもよい。CSI報告の優先度は、該CSI報告の時間領域のふるまい(処理)に関する設定、該CSI報告のコンテンツのタイプ、該CSI報告のインデックス、および/または、該CSI報告の測定が設定されるサービングセルのインデックスの一部または全部に少なくとも基づき与えられてもよい。
 CSI報告の時間領域のふるまい(処理)に関する設定は、該CSI報告が非周期的に(aperiodic)行なわれるか、該CSI報告が半永続的に(semi-persistent)行なわれるか、または、準静的に行なわれるか、のいずれかを示す設定であってもよい。
 CSI報告のコンテンツのタイプは、該CSI報告がレイヤ1のRSRP(Reference Signals Received Power)を含むか否かを示してもよい。
 CSI報告のインデックスは、上位層のパラメータにより与えられてもよい。
 PUCCHは、PUCCHフォーマット(PUCCHフォーマット0からPUCCHフォーマット4)をサポートする。PUCCHフォーマットは、PUCCHで送信されてもよい。PUCCHフォーマットが送信されることは、PUCCHが送信されることであってもよい。
 図4は、本実施形態の一態様に係るPUCCHフォーマットとPUCCHフォーマットの長さNPUCCH symbの関係の一例を示す図である。PUCCHフォーマット0の長さNPUCCH symbは、1または2OFDMシンボルである。PUCCHフォーマット1の長さNPUCCH symbは、4から14OFDMシンボルのいずれかである。PUCCHフォーマット2の長さNPUCCH symbは、1または2OFDMシンボルである。PUCCHフォーマット3の長さNPUCCH symbは、4から14OFDMシンボルのいずれかである。PUCCHフォーマット4の長さNPUCCH symbは、4から14OFDMシンボルのいずれかである。
 PUSCHは、TB(MAC PDU, UL-SCH)を送信するために少なくとも用いられる。PUSCHは、TB、HARQ-ACK情報、CSI、および、SRの一部または全部を少なくとも送信するために用いられてもよい。PUSCHは、ランダムアクセスプロシージャにおけるRAR(Msg2)および/またはRARグラントに対応するランダムアクセスメッセージ3(メッセージ3(Msg3))を送信するために少なくとも用いられる。
 PRACHは、ランダムアクセスプリアンブル(ランダムアクセスメッセージ1、メッセージ1(Msg1))を送信するために少なくとも用いられる。PRACHは、初期コネクション確立(initial connection establishment)プロシージャ、ハンドオーバプロシージャ、コネクション再確立(connection re-establishment)プロシージャ、初期アクセスプロシージャ、PUSCHの送信に対する同期(タイミング調整)、およびPUSCHのためのリソースの要求の一部または全部を示すために少なくとも用いられてもよい。ランダムアクセスプリアンブルは、端末装置1の上位層より与えられるインデックス(ランダムアクセスプリアンブルインデックス)を基地局装置3に通知するために用いられてもよい。
 ランダムアクセスプリアンブルは、物理ルートシーケンスインデックスuに対応するZadoff-Chu系列をサイクリックシフトすることによって与えられてもよい。Zadoff-Chu系列は、物理ルートシーケンスインデックスuに基づいて生成されてもよい。1つのサービングセル(serving cell)において、複数のランダムアクセスプリアンブルが定義されてもよい。ランダムアクセスプリアンブルは、ランダムアクセスプリアンブルのインデックスに少なくとも基づき特定されてもよい。ランダムアクセスプリアンブルの異なるインデックスに対応する異なるランダムアクセスプリアンブルは、物理ルートシーケンスインデックスuとサイクリックシフトの異なる組み合わせに対応してもよい。物理ルートシーケンスインデックスu、および、サイクリックシフトは、システム情報に含まれる情報に少なくとも基づいて与えられてもよい。物理ルートシーケンスインデックスuは、ランダムアクセスプリアンブルに含まれる系列を識別するインデックスであってもよい。ランダムアクセスプリアンブルは、物理ルートシーケンスインデックスuに少なくとも基づき特定されてもよい。
 図1において、上りリンクの無線通信では、以下の上りリンク物理シグナルが用いられる。上りリンク物理シグナルは、上位層から出力された情報を送信するために使用されなくてもよいが、物理層によって使用される。
・UL DMRS(UpLink Demodulation Reference Signal)
・SRS(Sounding Reference Signal)
・UL PTRS(UpLink Phase Tracking Reference Signal)
 UL DMRSは、PUSCH、および/または、PUCCHの送信に関連する。UL DMRSは、PUSCHまたはPUCCHと多重される。基地局装置3は、PUSCHまたはPUCCHの伝搬路補正を行なうためにUL DMRSを使用してよい。以下、PUSCHと、該PUSCHに関連するUL DMRSを共に送信することを、単に、PUSCHを送信する、と称する。以下、PUCCHと該PUCCHに関連するUL DMRSを共に送信することを、単に、PUCCHを送信する、と称する。PUSCHに関連するUL DMRSは、PUSCH用UL DMRSとも称される。PUCCHに関連するUL DMRSは、PUCCH用UL DMRSとも称される。
 SRSは、PUSCHまたはPUCCHの送信に関連しなくてもよい。基地局装置3は、チャネル状態の測定のためにSRSを用いてもよい。SRSは、上りリンクスロットにおけるサブフレームの最後、または、最後から所定数のOFDMシンボルにおいて送信されてもよい。
 UL PTRSは、位相トラッキングのために少なくとも用いられる参照信号であってもよい。UL PTRSは、1または複数のUL DMRSに用いられるアンテナポートを少なくとも含むUL DMRSグループに関連してもよい。UL PTRSとUL DMRSグループが関連することは、UL PTRSのアンテナポートとUL DMRSグループに含まれるアンテナポートの一部または全部が少なくともQCLであることであってもよい。UL DMRSグループは、UL DMRSグループに含まれるUL DMRSにおいて最も小さいインデックスのアンテナポートに少なくとも基づき識別されてもよい。UL PTRSは、1つのコードワードがマップされる1または複数のアンテナポートにおいて、最もインデックスの小さいアンテナポートにマップされてもよい。UL PTRSは、1つのコードワードが第1のレイヤ及び第2のレイヤに少なくともマップされる場合に、該第1のレイヤにマップされてもよい。UL PTRSは、該第2のレイヤにマップされなくてもよい。UL PTRSがマップされるアンテナポートのインデックスは、下りリンク制御情報に少なくとも基づき与えられてもよい。
 図1において、基地局装置3から端末装置1への下りリンクの無線通信では、以下の下りリンク物理チャネルが用いられる。下りリンク物理チャネルは、上位層から出力された情報を送信するために、物理層によって使用される。
・PBCH(Physical Broadcast Channel)
・PDCCH(Physical Downlink Control Channel)
・PDSCH(Physical Downlink Shared Channel)
 PBCHは、MIB、および/または、PBCHペイロードを送信するために少なくとも用いられる。PBCHペイロードは、SSBの送信タイミング(SSB occasion)に関するインデックスを示す情報を少なくとも含んでもよい。PBCHペイロードは、SSBの識別子(インデックス)に関連する情報を含んでもよい。PBCHは、所定の送信間隔に基づき送信されてもよい。PBCHは、80ミリ秒(ms)の間隔で送信されてもよい。PBCHは、160msの間隔で送信されてもよい。PBCHに含まれる情報の中身は、80ms毎に更新されてもよい。PBCHに含まれる情報の一部または全部は、160ms毎に更新されてもよい。PBCHは、288サブキャリアにより構成されてもよい。PBCHは、2、3、または、4つのOFDMシンボルを含んで構成されてもよい。MIBは、SSBの識別子(インデックス)に関連する情報を含んでもよい。MIBは、PBCHが送信されるスロットの番号、サブフレームの番号、および/または、無線フレームの番号の少なくとも一部を指示する情報を含んでもよい。
 PDCCHは、下りリンク制御情報(DCI)の送信のために少なくとも用いられる。PDCCHは、DCIを少なくとも含んで送信されてもよい。PDCCHはDCIを含んで送信されてもよい。DCIは、DCIフォーマットとも称されてもよい。DCIは、下りリンクグラントまたは上りリンクグラントのいずれかを少なくとも示してもよい。PDSCHのスケジューリングのために用いられるDCIフォーマットは、下りリンクDCIフォーマットとも称されてもよい。PUSCHのスケジューリングのために用いられるDCIフォーマットは、上りリンクDCIフォーマットとも称されてもよい。下りリンクグラントは、下りリンクアサインメントまたは下りリンク割り当てとも称されてもよい。上りリンクDCIフォーマットは、DCIフォーマット0_0およびDCIフォーマット0_1の一方または両方を少なくとも含む。
 DCIフォーマット0_0は、1Aから1Fの一部または全部を少なくとも含んで構成されてもよい。
1A)DCIフォーマット特定フィールド(Identifier for DCI formats field)
1B)周波数領域リソース割り当てフィールド(Frequency domain resource assignment field)
1C)時間領域リソース割り当てフィールド(Time domain resource assignment field)
1D)周波数ホッピングフラグフィールド(Frequency hopping flag field)
1E)MCSフィールド(MCS field: Modulation and Coding Scheme field)
1F)第1のCSIリスエストフィールド(First CSI request field)
 DCIフォーマット特定フィールドは、該DCIフォーマット特定フィールドを含むDCIフォーマットが1または複数のDCIフォーマットのいずれに対応するかを示すために少なくとも用いられてもよい。該1または複数のDCIフォーマットは、DCIフォーマット1_0、DCIフォーマット1_1、DCIフォーマット0_0、および/または、DCIフォーマット0_1の一部または全部に少なくとも基づき与えられてもよい。
 周波数領域リソース割り当てフィールドは、該周波数領域リソース割り当てフィールドを含むDCIフォーマットによりスケジューリングされるPUSCHのための周波数リソースの割り当てを示すために少なくとも用いられてもよい。
 時間領域リソース割り当てフィールドは、該時間領域リソース割り当てフィールドを含むDCIフォーマットによりスケジューリングされるPUSCHのための時間リソースの割り当てを示すために少なくとも用いられてもよい。
 周波数ホッピングフラグフィールドは、該周波数ホッピングフラグフィールドを含むDCIフォーマットによりスケジューリングされるPUSCHに対して周波数ホッピングが適用されるか否かを示すために少なくとも用いられてもよい。
 MCSフィールドは、該MCSフィールドを含むDCIフォーマットによりスケジューリングされるPUSCHのための変調方式、および/または、ターゲット符号化率の一部または全部を示すために少なくとも用いられてもよい。該ターゲット符号化率は、該PUSCHのTBのためのターゲット符号化率であってもよい。該TBのサイズ(TBS)は、該ターゲット符号化率に少なくとも基づき与えられてもよい。
 第1のCSIリクエストフィールドは、CSIの報告を指示するために少なくとも用いられる。第1のCSIリクエストフィールドのサイズは、所定の値であってもよい。第1のCSIリクエストフィールドのサイズは、0であってもよいし、1であってもよいし、2であってもよいし、3であってもよい。第1のCSIリクエストフィールドのサイズは、端末装置1に設定されるCSI設定の数に応じて決定されてもよい。
 DCIフォーマット0_1は、2Aから2Gの一部または全部を少なくとも含んで構成される。
2A)DCIフォーマット特定フィールド
2B)周波数領域リソース割り当てフィールド
2C)時間領域リソース割り当てフィールド
2D)周波数ホッピングフラグフィールド
2E)MCSフィールド
2F)第2のCSIリクエストフィールド(Second CSI request field)
2G)BWPフィールド(BWP field)
 BWPフィールドは、DCIフォーマット0_1によりスケジューリングされるPUSCHがマップされる上りリンクBWPを指示するために用いられてもよい。
 第2のCSIリクエストフィールドは、CSIの報告を指示するために少なくとも用いられる。第2のCSIリクエストフィールドのサイズは、上位層のパラメータReportTriggerSizeに少なくとも基づき与えられてもよい。
 下りリンクDCIフォーマットは、DCIフォーマット1_0、および、DCIフォーマット1_1の一方または両方を少なくとも含む。
 DCIフォーマット1_0は、3Aから3Hの一部または全部を少なくとも含んで構成されてもよい。
3A)DCIフォーマット特定フィールド(Identifier for DCI formats field)
3B)周波数領域リソース割り当てフィールド(Frequency domain resource assignment field)
3C)時間領域リソース割り当てフィールド(Time domain resource assignment field)
3D)周波数ホッピングフラグフィールド(Frequency hopping flag field)
3E)MCSフィールド(MCS field: Modulation and Coding Scheme field)
3F)第1のCSIリスエストフィールド(First CSI request field)
3G)PDSCHからHARQフィードバックへのタイミング指示フィールド(PDSCH to HARQ feedback timing indicator field)
3H)PUCCHリソース指示フィールド(PUCCH resource indicator field)
 PDSCHからHARQフィードバックへのタイミング指示フィールドは、タイミングK1を示すフィールドであってもよい。PDSCHの最後のOFDMシンボルが含まれるスロットのインデックスがスロットnである場合、該PDSCHに含まれるトランスポートブロックに対応するHARQ-ACKを少なくとも含むPUCCHまたはPUSCHが含まれるスロットのインデックスはn+K1であってもよい。PDSCHの最後のOFDMシンボルが含まれるスロットのインデックスがスロットnである場合、該PDSCHに含まれるトランスポートブロックに対応するHARQ-ACKを少なくとも含むPUCCHの先頭のOFDMシンボルまたはPUSCHの先頭のOFDMシンボルが含まれるスロットのインデックスはn+K1であってもよい。
 PUCCHリソース指示フィールドは、PUCCHリソースセットに含まれる1または複数のPUCCHリソースのインデックスを示すフィールドであってもよい。
 DCIフォーマット1_1は、4Aから4Jの一部または全部を少なくとも含んで構成されてもよい。
4A)DCIフォーマット特定フィールド(Identifier for DCI formats field)
4B)周波数領域リソース割り当てフィールド(Frequency domain resource assignment field)
4C)時間領域リソース割り当てフィールド(Time domain resource assignment field)
4D)周波数ホッピングフラグフィールド(Frequency hopping flag field)
4E)MCSフィールド(MCS field: Modulation and Coding Scheme field)
4F)第1のCSIリスエストフィールド(First CSI request field)
4G)PDSCHからHARQフィードバックへのタイミング指示フィールド(PDSCH to HARQ feedback timing indicator field)
4H)PUCCHリソース指示フィールド(PUCCH resource indicator field)
4J)BWPフィールド(BWP field)
 BWPフィールドは、DCIフォーマット1_1によりスケジューリングされるPDSCHがマップされる下りリンクBWPを指示するために用いられてもよい。
 DCIフォーマット2は、PUSCH、または、PUCCHの送信電力制御のために用いられるパラメータを含んでもよい。
 本実施形態の種々の態様において、特別な記載のない限り、リソースブロック(RB)の数は周波数領域におけるリソースブロックの数を示す。また、リソースブロックのインデックスは、低い周波数領域にマップされるリソースブロックから高い周波数領域にマップされるリソースブロックに昇順で付される。また、リソースブロックは、共通リソースブロック、および、物理リソースブロックの総称である。
 1つの物理チャネルは、1つのサービングセルにマップされてもよい。1つの物理チャネルは、1つのサービングセルに含まれる1つのキャリアに設定される1つのCBPにマップされてもよい。
 端末装置1は、1または複数の制御リソースセット(CORESET)が与えられる。端末装置1は、1または複数のCORESETにおいてPDCCHを監視する。
 CORESETは、1または複数のPDCCHがマップされうる時間周波数領域を示してもよい。CORESETは、端末装置1がPDCCHを監視する領域であってもよい。CORESETは、連続的なリソース(Localized resource)により構成されてもよい。CORESETは、非連続的なリソース(distributed resource)により構成されてもよい。
 周波数領域において、CORESETのマッピングの単位はリソースブロックであってもよい。例えば、周波数領域において、CORESETのマッピングの単位は6リソースブロックであってもよい。時間領域において、CORESETのマッピングの単位はOFDMシンボルであってもよい。例えば、時間領域において、CORESETのマッピングの単位は1つのOFDMシンボルであってもよい。
 CORESETの周波数領域は、上位層の信号、および/または、DCIに少なくとも基づき与えられてもよい。
 CORESETの時間領域は、上位層の信号、および/または、DCIに少なくとも基づき与えられてもよい。
 あるCORESETは、共通CORESET(Common CORESET)であってもよい。共通CORESETは、複数の端末装置1に対して共通に設定されるCORESETであってもよい。共通CORESETは、MIB、SIB、共通RRCシグナリング、および、セルIDの一部または全部に少なくとも基づき与えられてもよい。例えば、SIBのスケジューリングのために用いられるPDCCHをモニタすることが設定されるCORESETの時間リソース、および/または、周波数リソースは、MIBに少なくとも基づき与えられてもよい。
 あるCORESETは、専用CORESET(Dedicated CORESET)であってもよい。専用CORESETは、端末装置1のために専用に用いられるように設定されるCORESETであってもよい。専用CORESETは、専用RRCシグナリングに少なくとも基づき与えられてもよい。
 端末装置1によって監視されるPDCCHの候補のセットは、探索領域の観点から定義されてもよい。つまり、端末装置1によって監視されるPDCCH候補のセットは、探索領域によって与えられてもよい。
 探索領域は、1または複数の集約レベル(Aggregation level)のPDCCH候補を1または複数含んで構成されてもよい。PDCCH候補の集約レベルは、該PDCCHを構成するCCEの個数を示してもよい。
 端末装置1は、DRX(Discontinuous reception)が設定されないスロットにおいて少なくとも1または複数の探索領域を監視してもよい。DRXは、上位層のパラメータに少なくとも基づき与えられてもよい。端末装置1は、DRXが設定されないスロットにおいて少なくとも1または複数の探索領域セット(Search space set)を監視してもよい。
 探索領域セットは、1または複数の探索領域を少なくとも含んで構成されてもよい。探索領域セットのタイプは、タイプ0PDCCH共通探索領域(common search space)、タイプ0aPDCCH共通探索領域、タイプ1PDCCH共通探索領域、タイプ2PDCCH共通探索領域、タイプ3PDCCH共通探索領域、および/または、UE個別PDCCH探索領域のいずれかであってもよい。
 タイプ0PDCCH共通探索領域、タイプ0aPDCCH共通探索領域、タイプ1PDCCH共通探索領域、タイプ2PDCCH共通探索領域、および、タイプ3PDCCH共通探索領域は、CSS(Common Search Space)とも称されてもよい。UE個別PDCCH探索領域は、USS(UE specific Search Space)とも称されてもよい。
 探索領域セットのそれぞれは、1つの制御リソースセットに関連してもよい。探索領域セットのそれぞれは、1つの制御リソースセットに少なくとも含まれてもよい。探索領域セットのそれぞれに対して、該探索領域セットに関連する制御リソースセットのインデックスが与えられてもよい。
 タイプ0PDCCH共通探索領域は、SI-RNTI(System Information-Radio Network Temporary Identifier)によってスクランブルされたCRC(Cyclic Redundancy Check)系列を伴うDCIフォーマットのために少なくとも用いられてもよい。タイプ0PDCCH共通探索領域の設定は、上位層パラメータPDCCH-ConfigSIB1のLSB(Least Significant Bits)の4ビットに少なくとも基づき与えられてもよい。上位層パラメータPDCCH-ConfigSIB1は、MIBに含まれてもよい。タイプ0PDCCH共通探索領域の設定は、上位層のパラメータSearchSpaceZeroに少なくとも基づき与えられてもよい。上位層のパラメータSearchSpaceZeroのビットの解釈は、上位層パラメータPDCCH-ConfigSIB1のLSBの4ビットの解釈と同様であってもよい。タイプ0PDCCH共通探索領域の設定は、上位層のパラメータSearchSpaceSIB1に少なくとも基づき与えられてもよい。上位層のパラメータSearchSpaceSIB1は、上位層のパラメータPDCCH-ConfigCommonに含まれてもよい。タイプ0PDCCH共通探索領域で検出されるPDCCHは、SIB1を含んで送信されるPDSCHのスケジューリングのために少なくとも用いられてもよい。SIB1は、SIBの一種である。SIB1は、SIB1以外のSIBのスケジューリング情報を含んでもよい。端末装置1は、EUTRAにおいて上位層のパラメータPDCCH-ConfigCommonを受信してもよい。端末装置1は、MCGにおいて上位層のパラメータPDCCH-ConfigCommonを受信してもよい。
 タイプ0aPDCCH共通探索領域は、SI-RNTI(System Information-Radio Network Temporary Identifier)によってスクランブルされたCRC(Cyclic Redundancy Check)系列を伴うDCIフォーマットのために少なくとも用いられてもよい。タイプ0aPDCCH共通探索領域の設定は、上位層パラメータSearchSpaceOtherSystemInformationに少なくとも基づき与えられてもよい。上位層パラメータSearchSpaceOtherSystemInformationは、SIB1に含まれてもよい。上位層のパラメータSearchSpaceOtherSystemInformationは、上位層のパラメータPDCCH-ConfigCommonに含まれてもよい。タイプ0PDCCH共通探索領域で検出されるPDCCHは、SIB1以外のSIBを含んで送信されるPDSCHのスケジューリングのために少なくとも用いられてもよい。
 タイプ1PDCCH共通探索領域は、RA-RNTI(Random Access-Radio Network Temporary Identifier)によってスクランブルされたCRC系列、および/または、TC-RNTI(Temporary Common-Radio Network Temporary Identifier)によってスクランブルされたCRC系列を伴うDCIフォーマットのために少なくとも用いられてもよい。RA-RNTIは、端末装置1によって送信されるランダムアクセスプリアンブルの時間/周波数リソースに少なくとも基づき与えられてもよい。TC-RNTIは、RA-RNTIによってスクランブルされたCRC系列を伴うDCIフォーマットによりスケジューリングされるPDSCH(ランダムアクセスメッセージ2、メッセージ2(Msg2)、または、ランダムアクセスレスポンス(RAR)とも称される)により与えられてもよい。タイプ1PDCCH共通探索領域は、上位層のパラメータra-SearchSpaceに少なくとも基づき与えられてもよい。上位層のパラメータra-SearchSpaceは、SIB1に含まれてもよい。上位層のパラメータra-SearchSpaceは、上位層のパラメータPDCCH-ConfigCommonに含まれてもよい。
 タイプ2PDCCH共通探索領域は、P-RNTI(Paging- Radio Network Temporary Identifier)によってスクランブルされたCRC系列を伴うDCIフォーマットのために用いられてもよい。P-RNTIは、SIBの変更を通知する情報を含むDCIフォーマットの送信のために少なくとも用いられてもよい。タイプ2PDCCH共通探索領域は、上位層のパラメータPagingSearchSpaceに少なくとも基づき与えられてもよい。上位層のパラメータPagingSearchSpaceは、SIB1に含まれてもよい。上位層のパラメータPagingSearchSpaceは、上位層のパラメータPDCCH-ConfigCommonに含まれてもよい。
 タイプ3PDCCH共通探索領域は、C-RNTI(Cell-Radio Network Temporary Identifier)によってスクランブルされたCRC系列を伴うDCIフォーマットのために用いられてもよい。C-RNTIは、TC-RNTIによってスクランブルされたCRC系列を伴うDCIフォーマットによりスケジューリングされるPDSCH(ランダムアクセスメッセージ4、メッセージ4(Msg4)、または、コンテンションレゾリューションとも称されてもよい)に少なくとも基づき与えられてもよい。タイプ3PDCCH共通探索領域は、上位層のパラメータSearchSpaceTypeがcommonにセットされている場合に与えられる探索領域セットであってもよい。
 UE個別PDCCH探索領域は、C-RNTIによってスクランブルされたCRC系列を伴うDCIフォーマットのために少なくとも用いられてもよい。
 端末装置1にC-RNTIが与えられた場合、タイプ0PDCCH共通探索領域、タイプ0aPDCCH共通探索領域、タイプ1PDCCH共通探索領域、および/または、タイプ2PDCCH共通探索領域は、C-RNTIでスクランブルされたCRC系列を伴うDCIフォーマットのために少なくとも用いられてもよい。
 端末装置1にC-RNTIが与えられた場合、上位層パラメータPDCCH-ConfigSIB1、上位層のパラメータSearchSpaceZero、上位層のパラメータSearchSpaceSIB1、上位層のパラメータSearchSpaceOtherSystemInformation、上位層のパラメータra-SearchSpace、または、上位層パラメータPagingSearchSpaceのいずれかに少なくとも基づき与えられる探索領域セットは、C-RNTIでスクランブルされたCRC系列を伴うDCIフォーマットのために少なくとも用いられてもよい。
 共通CORESETは、CSSおよびUSSの一方または両方を少なくとも含んでもよい。専用CORESETは、CSSおよびUSSの一方または両方を少なくとも含んでもよい。
 探索領域の物理リソースは制御チャネルの構成単位(CCE: Control Channel Element)により構成される。CCEは6つのリソース要素グループ(REG: Resource Element Group)により構成される。REGは1つのPRB(Physical Resource Block)の1つのOFDMシンボルにより構成されてもよい。つまり、REGは12個のリソースエレメント(RE: Resource Element)を含んで構成されてもよい。PRBは、単にリソースブロック(RB)とも称されてもよい。
 PDSCHは、TBを送信するために少なくとも用いられる。また、PDSCHは、ランダムアクセスメッセージ2(RAR、Msg2)を送信するために少なくとも用いられてもよい。また、PDSCHは、初期アクセスのために用いられるパラメータを含むシステム情報を送信するために少なくとも用いられてもよい。
 図1において、下りリンクの無線通信では、以下の下りリンク物理シグナルが用いられる。下りリンク物理シグナルは、上位層から出力された情報を送信するために使用されなくてもよいが、物理層によって使用される。
・同期信号(Synchronization signal)
・DL DMRS(DownLink DeModulation Reference Signal)
・CSI-RS(Channel State Information-Reference Signal)
・DL PTRS(DownLink Phase Tracking Reference Signal)
・TRS(Tracking Reference Signal)
 同期信号は、端末装置1が下りリンクの周波数領域、および/または、時間領域の同期をとるために用いられる。なお、同期信号は、PSS(Primary Synchronization Signal)、および、SSS(Secondary Synchronization Signal)を含む。
 SSB(SS/PBCHブロック)は、PSS、SSS、および、PBCHの一部または全部を少なくとも含んで構成される。SSブロックに含まれるPSS、SSS、および、PBCHの一部または全部のそれぞれのアンテナポートは同一であってもよい。SSBに含まれるPSS、SSS、およびPBCHの一部または全部は、連続するOFDMシンボルにマップされてもよい。SSBに含まれるPSS、SSS、および、PBCHの一部または全部のそれぞれのCP設定は同一であってもよい。SSBに含まれるPSS、SSS、および、PBCHの一部または全部のそれぞれに対するSCS設定μは同じ値が適用されてもよい。
 DL DMRSは、PBCH、PDCCH、および/または、PDSCHの送信に関連する。DL DMRSは、PBCH、PDCCH、および/または、PDSCHに多重される。端末装置1は、PBCH、PDCCH、または、PDSCHの伝搬路補正を行なうために該PBCH、該PDCCH、または、該PDSCHと対応するDL DMRSを使用してよい。以下、PBCHと、該PBCHと関連するDL DMRSが共に送信されることは、PBCHが送信されると称されてもよい。また、PDCCHと、該PDCCHと関連するDL DMRSが共に送信されることは、単にPDCCHが送信されると称されてもよい。また、PDSCHと、該PDSCHと関連するDL DMRSが共に送信されることは、単にPDSCHが送信されると称されてもよい。PBCHと関連するDL DMRSは、PBCH用DL DMRSとも称されてもよい。PDSCHと関連するDL DMRSは、PDSCH用DL DMRSとも称されてもよい。PDCCHと関連するDL DMRSは、PDCCHと関連するDL DMRSとも称されてもよい。
 DL DMRSは、端末装置1に個別に設定される参照信号であってもよい。DL DMRSの系列は、端末装置1に個別に設定されるパラメータに少なくとも基づいて与えられてもよい。DL DMRSの系列は、UE固有の値(例えば、C-RNTI等)に少なくとも基づき与えられてもよい。DL DMRSは、PDCCH、および/または、PDSCHのために個別に送信されてもよい。
 CSI-RSは、CSIを算出するために少なくとも用いられる信号であってもよい。また、CSI-RSは、RSRP(Reference Signal Received Power)やRSRQ(Reference Signal Received Quality)を測定するために用いられてもよい。端末装置1によって想定されるCSI-RSのパターンは、少なくとも上位層のパラメータにより与えられてもよい。
 PTRSは、位相雑音の補償のために少なくとも用いられる信号であってもよい。端末装置1によって想定されるPTRSのパターンは、上位層のパラメータ、および/または、DCIに少なくとも基づき与えられてもよい。
 DL PTRSは、1または複数のDL DMRSに用いられるアンテナポートを少なくとも含むDL DMRSグループに関連してもよい。DL PTRSとDL DMRSグループが関連することは、DL PTRSのアンテナポートとDL DMRSグループに含まれるアンテナポートの一部または全部が少なくともQCLであることであってもよい。DL DMRSグループは、DL DMRSグループに含まれるDL DMRSにおいて最も小さいインデックスのアンテナポートに少なくとも基づき識別されてもよい。
 TRSは、時間、および/または、周波数の同期のために少なくとも用いられる信号であってもよい。端末装置によって想定されるTRSのパターンは、上位層のパラメータ、および/または、DCIに少なくとも基づき与えられてもよい。
 下りリンク物理チャネルおよび下りリンク物理シグナルは、下りリンク信号とも称されてもよい。上りリンク物理チャネルおよび上りリンク物理シグナルは、上りリンク信号とも称されてもよい。下りリンク信号および上りリンク信号を総称して、物理信号または信号とも称してもよい。下りリンク信号および上りリンク信号はまとめて信号とも称されてもよい。下りリンク物理チャネルおよび上りリンク物理チャネルを総称して、物理チャネルと称してもよい。下りリンク物理シグナルおよび上りリンク物理シグナルを総称して、物理シグナルと称してもよい。
 BCH(Broadcast CHannel)、UL-SCH(Uplink-Shared CHannel)およびDL-SCH(Downlink-Shared CHannel)は、トランスポートチャネルである。媒体アクセス制御(MAC)層で用いられるチャネルはトランスポートチャネルと称されてもよい。MAC層で用いられるトランスポートチャネルの単位は、TBまたはMAC PDUとも称されてもよい。MAC層においてTB毎にHARQの制御が行なわれる。TBは、MAC層が物理層に渡す(deliver)データの単位である。物理層において、TBはコードワードにマップされ、コードワード毎に変調処理が行なわれる。
 基地局装置3と端末装置1は、上位層(higher layer)において上位層の信号をやり取り(送受信)する。例えば、基地局装置3と端末装置1は、無線リソース制御(RRC)層において、RRCシグナリング(RRCメッセージ、RRC情報、RRC情報要素)を送受信してもよい。また、基地局装置3と端末装置1は、MAC層において、MAC CE(Control Element)を送受信してもよい。ここで、RRCシグナリング、および/または、MAC CEを、上位層の信号(higher layer signaling)とも称する。
 PUSCHおよびPDSCHは、RRCシグナリング、および/または、MAC CEを送信するために少なくとも用いられてよい。ここで、基地局装置3よりPDSCHで送信されるRRCシグナリングは、サービングセル内における複数の端末装置1に対して共通のシグナリングであってもよい。サービングセル内における複数の端末装置1に対して共通のシグナリングは、共通RRCシグナリングとも称されてもよい。基地局装置3からPDSCHで送信されるRRCシグナリングは、ある端末装置1に対して専用のシグナリング(dedicated signalingまたはUE specific signalingとも称されてもよい)であってもよい。端末装置1に対して専用のシグナリングは、専用RRCシグナリングとも称されてもよい。サービングセルにおいて固有な上位層のパラメータは、サービングセル内における複数の端末装置1に対して共通のシグナリング、または、ある端末装置1に対して専用のシグナリングを用いて送信されてもよい。UE固有な上位層のパラメータは、ある端末装置1に対して専用のシグナリングを用いて送信されてもよい。
 BCCH(Broadcast Control CHannel)、CCCH(Common Control CHannel)、および、DCCH(Dedicated Control CHannel)は、ロジカルチャネルである。例えば、BCCHは、MIBを送信するために用いられる上位層のチャネルである。また、CCCH(Common Control CHannel)は、複数の端末装置1において共通な情報を送信するために用いられる上位層のチャネルである。ここで、CCCHは、例えば、RRCコネクトされていない端末装置1のために用いられてもよい。また、DCCH(Dedicated Control CHannel)は、端末装置1に専用の制御情報(dedicated control information)を送信するために少なくとも用いられる上位層のチャネルである。ここで、DCCHは、例えば、RRCコネクトされている端末装置1のために用いられてもよい。
 ロジカルチャネルにおけるBCCHは、トランスポートチャネルにおいてBCH、DL-SCH、または、UL-SCHにマップされてもよい。ロジカルチャネルにおけるCCCHは、トランスポートチャネルにおいてDL-SCHまたはUL-SCHにマップされてもよい。ロジカルチャネルにおけるDCCHは、トランスポートチャネルにおいてDL-SCHまたはUL-SCHにマップされてもよい。
 トランスポートチャネルにおけるUL-SCHは、物理チャネルにおいてPUSCHにマップされてもよい。トランスポートチャネルにおけるDL-SCHは、物理チャネルにおいてPDSCHにマップされてもよい。トランスポートチャネルにおけるBCHは、物理チャネルにおいてPBCHにマップされてもよい。
 以下、本実施形態の一態様に係る端末装置1の構成例を説明する。
 図5は、本実施形態の一態様に係る端末装置1の構成を示す概略ブロック図である。図示するように、端末装置1は、無線送受信部10、および、上位層処理部14を含んで構成される。無線送受信部10は、アンテナ部11、RF(Radio Frequency)部12、および、ベースバンド部13の一部または全部を少なくとも含んで構成される。上位層処理部14は、媒体アクセス制御層処理部15、および、無線リソース制御層処理部16の一部または全部を少なくとも含んで構成される。無線送受信部10を送信部、受信部、物理層処理部、および/または、下位層処理部とも称してもよい。
 上位層処理部14は、ユーザーの操作等により生成された上りリンクデータ(TB、UL-SCH)を、無線送受信部10に出力する。上位層処理部14は、MAC層、パケットデータ統合プロトコル(PDCP)層、無線リンク制御(RLC)層、RRC層の処理を行なう。
 上位層処理部14が備える媒体アクセス制御層処理部15は、MAC層の処理を行なう。
 上位層処理部14が備える無線リソース制御層処理部16は、RRC層の処理を行なう。無線リソース制御層処理部16は、自装置の各種設定情報/パラメータの管理をする。無線リソース制御層処理部16は、基地局装置3から受信した上位層の信号に基づいて各種設定情報/パラメータをセットする。すなわち、無線リソース制御層処理部16は、基地局装置3から受信した各種設定情報/パラメータを示す情報に基づいて各種設定情報/パラメータをセットする。該パラメータは上位層のパラメータ、および/または、情報要素であってもよい。
 無線送受信部10は、変調、復調、符号化、復号化などの物理層の処理を行なう。無線送受信部10は、受信した物理信号を、分離、復調、復号し、復号した情報を上位層処理部14に出力する。これらの処理を受信処理と称してもよい。無線送受信部10は、データを変調、符号化、ベースバンド信号生成(時間連続信号への変換)することによって物理信号(上りリンク信号)を生成し、基地局装置3に送信する。これらの処理を送信処理と称してもよい。
 RF部12は、アンテナ部11を介して受信した信号を、直交復調によりベースバンド信号に変換し(ダウンコンバート)、不要な周波数成分を除去する。RF部12は、処理をしたアナログ信号をベースバンド部に出力する。
 ベースバンド部13は、RF部12から入力されたアナログ信号をディジタル信号に変換する。ベースバンド部13は、変換したディジタル信号からCPに相当する部分を除去し、CPを除去した信号に対して高速フーリエ変換(FFT)を行ない、周波数領域の信号を抽出する。
 ベースバンド部13は、データを逆高速フーリエ変換(IFFT)して、OFDMシンボルを生成し、生成されたOFDMシンボルにCPを付加し、ベースバンドのディジタル信号を生成し、ベースバンドのディジタル信号をアナログ信号に変換する。ベースバンド部13は、変換したアナログ信号をRF部12に出力する。
 RF部12は、ローパスフィルタを用いてベースバンド部13から入力されたアナログ信号から余分な周波数成分を除去し、アナログ信号を搬送波周波数にアップコンバートし、アンテナ部11を介して送信する。また、RF部12は、電力を増幅する。また、RF部12は送信電力を制御する機能を備えてもよい。RF部12を送信電力制御部とも称する。
 以下、本実施形態の一態様に係る基地局装置3の構成例を説明する。
 図6は、本実施形態の一態様に係る基地局装置3の構成を示す概略ブロック図である。図示するように、基地局装置3は、無線送受信部30、および、上位層処理部34を含んで構成される。無線送受信部30は、アンテナ部31、RF部32、および、ベースバンド部33を含んで構成される。上位層処理部34は、媒体アクセス制御層処理部35、および、無線リソース制御層処理部36を含んで構成される。無線送受信部30を送信部、受信部、または、物理層処理部とも称する。
 上位層処理部34は、MAC層、PDCP層、RLC層、RRC層の処理を行なう。
 上位層処理部34が備える媒体アクセス制御層処理部35は、MAC層の処理を行う。
 上位層処理部34が備える無線リソース制御層処理部36は、RRC層の処理を行う。無線リソース制御層処理部36は、PDSCHに配置される下りリンクデータ(TB、DL-SCH)、システム情報、RRCメッセージ、MAC CEなどを生成し、または上位ノードから取得し、無線送受信部30に出力する。また、無線リソース制御層処理部36は、端末装置1各々の各種設定情報/パラメータの管理をする。無線リソース制御層処理部36は、上位層の信号を介して端末装置1各々に対して各種設定情報/パラメータをセットしてもよい。すなわち、無線リソース制御層処理部36は、各種設定情報/パラメータを示す情報を送信/報知する。
 無線送受信部30の基本的な機能は、無線送受信部10と同様であるため説明を省略する。無線送受信部30において生成された物理信号を端末装置1に送信する(つまり、送信処理を行なう)。また、無線送受信部30は、受信した物理信号の受信処理を行なう。
 媒体アクセス制御層処理部15および/または35は、MACエンティティと称されてもよい。
 端末装置1が備える符号10から符号16が付された部のそれぞれは、回路として構成されてもよい。基地局装置3が備える符号30から符号36が付された部のそれぞれは、回路として構成されてもよい。端末装置1が備える符号10から符号16が付された部の一部または全部は、メモリと該メモリに接続されるプロセッサとして構成されてもよい。基地局装置3が備える符号30から符号36が付された部の一部または全部は、メモリと該メモリに接続されるプロセッサとして構成されてもよい。本実施形態に係る種々の態様(動作、処理)は、端末装置1および/または基地局装置3に含まれるメモリおよび該メモリに接続されるプロセッサにおいて実現されて(行なわれて)もよい。
 図7は、本実施形態の一態様に係るランダムアクセスプロシージャの一例を示す図である。図7(a)は、コンテンションに基づくRA(Contention based Random Access (CBRA))の一例である。図7(b)は、コンテンションフリーのRA(Contention free RA (CFRA), non-contention based RA (NCBRA))の一例である。
 ランダムアクセスプロシージャは、RRCアイドルからの初期アクセス、RRCコネクション(再)確立、ビーム障害の回復、ハンドオーバ、下りリンクデータアライバル、上りリンクデータアライバル、ポジショニング、TA(Timing Advance, Timing Alignment)のために行なわれる。CBRAは、全ての場合に行なわれてもよいが、CFRAは、ハンドオーバ、下りリンクデータアライバル、ポジショニング、TAのために行なわれる。
 CBRAは、端末装置1が主体で行なうため、複数の端末装置1が同時にランダムアクセスプロシージャを行なうことによる衝突が生じる。一方で、CFRAは、基地局装置3が接続している端末装置1に指示することによって、複数の端末装置1間で衝突が生じないようにランダムアクセスプロシージャを行なわせることができる。
 図7(a)のCBRAプロシージャについて説明する。
 S7001は、端末装置1がターゲットセルにPRACHを介して初期アクセスのための応答を要求するステップである。S7001において、端末装置1によりPRACHを介して送信されるメッセージをMsg1と称してもよい。Msg1は、上位層のパラメータによって設定されたランダムアクセスプリアンブルであってもよい。
 S7001の処理を行なう前に、端末装置1は、SSBを受信して時間周波数同期、フレーム同期、および/または、システム情報の取得(セルに関連する1または複数の上位層パラメータの取得/設定)を行なってもよい。
 S7002は、基地局装置3が端末装置1に対してMsg1への応答を行なうステップである。該応答に用いられるメッセージをMsg2と称してもよい。Msg2は、PDSCHを介して送信されてもよい。Msg2を含むPDSCHは、タイプ1PDCCHCSSにマップされたPDCCHによってスケジュールされてもよい。つまり、端末装置1は、Msg1を送信後、Msg2を含むPDSCHのスケジューリングに対して用いられるPDCCHを監視してもよい。該PDCCHに含まれるCRC(Cyclic Redundancy Check)ビットは、RA-RNTI(Random Access - Radio Network Temporary Identifier(Identity))によってスクランブルされてもよい。Msg2には、Msg3を含むPUSCHのスケジューリングに対して用いられるための上りリンクグラント(RARグラント)が含まれてもよい。RARグラントには、TC-RNTI(Temporary Cell - RNTI)が少なくとも含まれてもよい。RARグラントには、Msg3を含むPUSCHの送信電力に用いられる電力制御調整値に対する補正値を示すTPC(Transmission Power Control)コマンドが含まれてもよい。
 S7003は、端末装置1がターゲットセル(ターゲットとなる基地局装置3)に対して、少なくともRRCコネクションやRRCコネクション再確立のリクエストや端末装置1のC-RNTIを送信するステップである。例えば、端末装置1が送信するメッセージは、Msg3と称されてもよい。Msg3は、端末装置1を識別するためのID(Identifier, Identity)を含んでもよい。該IDは、上位層で管理されるIDであってもよい。該IDは、S-TMSI(SAE Temporary Mobile Subscriber Identity)であってもよい。該IDは、ロジカルチャネルのCCCHにマップされてもよい。
 S7004は、基地局装置3が端末装置1に対して、衝突解決メッセージ(Msg4)を送信するステップである。端末装置1は、Msg3を送信後、Msg4を含むPDSCHのスケジューリングに対して用いられるPDCCHを監視してもよい。Msg4には、衝突解決ID(UE衝突解決ID)が含まれてもよい。衝突解決IDは、複数の端末装置1が同じ無線リソースを用いて信号を送信する衝突を解決するために用いられてもよい。
 S7004において、端末装置1が受信したMsg4に含まれる衝突解決IDが該端末装置1を識別するためのIDと同じ値である場合には、該端末装置1は、衝突解決が成功裏に完了したとみなし、C-RNTIフィールドにTC-RNTIの値をセットしてもよい。C-RNTIフィールドにTC-RNTIの値がセットされた端末装置1は、RRCコネクションが完了したとみなしてもよい。なお、RRCコネクションが完了した端末装置1は、基地局装置3にRRCコネクションが完了したことを通知するために、Msg4をスケジュールしたPDCCHに含まれるPUCCHリソースインディケータによって示されるPUCCH(PUCCHリソース)にAck(Msg5)をセット(マップ)して送信してもよい。このAckは、Msg4をスケジュールしたPDCCHに含まれるHARQプロセスID(HARQプロセス番号)に対応してもよい。
 なお、Msg4のスケジューリングに対して用いられるPDCCHを監視するためのCORESETは、Msg2のスケジューリングに対して用いられるPDCCHを監視するCORESETと同じであってもよいし、異なってもよいし、個別に設定されてもよい。
 キャリアアグリゲーションまたはDC(Dual Connectivity)が設定される場合、S7001、S7002、S7003は、SpCellで行なわれ、S7004はクロスキャリアスケジューリングによって指示されたセル(SpCellまたはSCell)で行なわれてもよい。
 図7(b)のCFRAプロシージャについて説明する。
 S7100は、ハンドオーバなどの目的のために、基地局装置3から端末装置1へランダムアクセスプリアンブル(Msg1)を送信するようにリクエストするステップである。S7100は、基地局装置3と端末装置1が、RRCコネクションが確立している状態で行なわれるランダムアクセスプロシージャである。基地局装置3は、専用シグナリングを介してランダムアクセスプリアンブル(Msg1)の割り当て(リソース割り当て)を行なってもよい。このような専用シグナリングに対するPDCCHをPDCCHオーダと称されてもよい。該Msg1は、CBRAで用いられるMsg1とは異なるセットを用いて割り当てられてもよい。端末装置1は、S7100において、Msg1のリソース割当を行なうためのPDCCH(PDCCHオーダ)を監視する。なお、PDCCHオーダは、DCIフォーマット1_0のCRCがC-RNTIによってスクランブルされ、且つ、上記3Bの値がすべて“1”であるDCIフォーマットのことであってもよい。
 PDCCHオーダによって開始されるランダムアクセスプロシージャに対して用いられるDCIフォーマット1_0には下記5Aから下記5Eの少なくとも1つまたは全部がフィールドとして含まれてもよい。
5A)ランダムアクセスプリアンブルインデックスフィールド
5B)UL/SULインディケータフィールド
5C)SS/PBCHインデックスフィールド
5D)PRACHマスクインデックスフィールド
5E)リザーブビット
 上記5Aは、上位層パラメータra-PreambleIndexに対応する。上記5Bは、上記5Aの値がすべて0でないとすれば、PRACHを送信するキャリアを示すために用いられ、そうでないとすればこのフィールドはリザーブされる。上記5Cは、上記5Aの値がすべて0でないとすれば、PRACHの送信タイミング(PRACH occasion)の決定に用いられるSSBのインデックスを示し、そうでないとすれば、このフィールドはリザーブされる。上記5Dは、上記5Aの値がすべて0でないとすれば、上記5Cに対応するSSBに関連するRACHの送信タイミングを示すために用いられ、そうでないとすればこのフィールドはリザーブされる。ここで、0はゼロパディングビットであってもよい。
 S7101は、Msg1のリソース割当を含むPDCCHを受信した場合の端末装置1が割り当てられたMsg1を送信するステップである。端末装置1は、Msg1を送信後、Msg2を含むPDSCHのスケジューリングに対して用いられるPDCCH(PDCCH探索領域)を監視してもよい。
 S7102は、基地局装置3が端末装置1に対してMsg1への応答を行なうステップである。基本的な処理は、S7002と同じであるため、説明を省略する。
 SpCellでCFRAが行なわれる場合、S7100、S7101、S7102はSpCellで生じてもよい。
 ランダムアクセスプロシージャのための上位層パラメータが設定されてもよい。
 ランダムアクセスプロシージャに対して下記6Aから6Iが端末装置1の変数として端末装置1のMACエンティティで用いられてもよい。
6A)PREAMBLE_INDEX
6B)PREAMBLE_TRANSMISSION_COUNTER
6C)PREAMBLE_POWER_RAMPING_COUNTER
6D)PREAMBLE_POWER_RAMPING_STEP
6E)PREAMBLE_RECEIVED_TARGET_POWER
6F)PREAMBLE_BACKOFF
6G)PCMAX
6H)SCALING_FACTOR_BI
6I)TEMPORARY_C-RNTI
 ランダムアクセスプロシージャがあるサービングセルで開始される場合(つまり、図7のS7001またはS7100において)、端末装置1のMACエンティティは、Msg3バッファをフラッシュ(flush)し、上記6Bの値を1にセットし、上記6Cの値を1にセットし、上記6Fの値を0msにセットし、上記6Hの値を1にセットし、上記6D、上記6E、上記6Gの値を、それぞれに対応する1または複数の上位層パラメータに基づいてセットし、ランダムアクセスリソース選択プロシージャを行なってもよい。
 図7のS7001またはS7101において、上記6Aの値を、選択したSSBまたはCSI-RSに対応するra-PreambleIndex、または、PDCCHまたはRRCによって明示的に示されたra-PreambleIndexの値にセットしてもよい。端末装置1は、セットされたインデックスに対応するPRACHリソース(ランダムアクセスプリアンブルのリソース)を設定し、ランダムアクセスプリアンブル送信プロシージャを行なってもよい。
 図7のS7001またはS7101において、ランダムアクセスプリアンブルに対して、上記6Bの値が1よりも大きい場合、且つ、パワーランピングカウンタを停止通知が下位層から受信されなかった場合、且つ、選択されたSSBが変更されなかった場合、端末装置1のMACエンティティは、上記6Cの値を1だけインクリメントしてもよい。また、端末装置1のMACエンティティは、上記6Eの値を、少なくとも上位層パラメータpreambleReceivedTargetPowerと上記6Cの値、上記6Dの値に基づく送信電力の値にセットし、選択したPRACH、対応するRA-RNTI、上記6A、上記6Eを用いるランダムアクセスプリアンブルを送信することを物理層に指示してもよい。なお、上位層パラメータpreambleReceivedTargetPowerは、ランダムアクセスプリアンブルの送信電力の初期値に相当する。
 ランダムアクセスプリアンブルが送信されると、測定ギャップの可能な発生に係らず、端末装置1のMACエンティティは、S7101において、ランダムアクセスプリアンブル送信の終わりから最初のPDCCHの受信タイミング(first PDCCH occasion)で上位層パラメータBeamFailureRecoveryConfigに設定されたra-ResponseWindowをスタートする。端末装置1のMACエンティティは、ra-ResponseWindowがランニングしている間、C-RNTIによって識別されたビーム障害回復リクエストへの応答に対して、SpCellのPDCCHを監視してもよい。
 また、同様に、端末装置1のMACエンティティは、S7001において、ランダムアクセスプリアンブル送信の終わりから最初のPDCCHの受信タイミングで上位層パラメータRACH-ConfigCommonに設定されたra-ResponseWindowをスタートする。端末装置1のMACエンティティは、ra-ResponseWindowがランニングしている間、RA-RNTIによって識別されたRARに対して、SpCellのPDCCHを監視してもよい。
 S7001からS7002、または、S7101からS7102において、端末装置1のMACエンティティは、ra-ResponseWindowが満了し、且つ、対応するMsg2が受信されないとすれば、上記6Bの値を1だけインクリメントしてもよい。インクリメントした6Bの値が上位層パラメータpreambleTransMax+1であるとすれば、ランダムアクセス問題を上位層(RRC層)へ示す。
 S7003において、端末装置1のMACエンティティは、Msg3が送信されると、Msg3送信の終わりの最初のシンボルにおいて、上位層パラメータra-ContentionResolutionTimerをスタートまたはリスタートし、ra-ContentionResolutionTimerがランニングしている間、PDCCHを監視してもよい。
 S7003からS7004において、端末装置1のMACエンティティは、ra-ContentionResolutionTimerが満了すると、上記6Iの値を廃棄(破棄)し、衝突解決が成功しなかったとみなす。衝突解決が成功しなかったとみなした場合、端末装置1のMACエンティティは、Msg3バッファのMAC PDUの送信に対して用いられたHARQバッファをフラッシュし、上記6Bの値を1だけインクリメントしてもよい。インクリメントした6Bの値が上位層パラメータpreambleTransMax+1であるとすれば、ランダムアクセス問題を上位層(RRC層)へ示す。ランダムアクセスプロシージャが完了しないとすれば、0から上記6Fの間でランダムバックオフタイムを選択し、バックオフタイムだけランダムアクセスプリアンブルの送信を遅延し、ランダムアクセスリソース選択プロシージャを行なってもよい。なお、上位層パラメータpreambleTransMaxの値は、上記6Bの最大値であってもよい。
 ランダムアクセスプロシージャの完了に基づいて、端末装置1のMACエンティティは、ビーム障害回復リクエストに対するCFRAリソースを除くCFRAリソースを廃棄し、Msg3のMAC PDUの送信に対して用いられたHARQバッファをフラッシュする。
 図8は本実施形態の一態様に係るチャネルアクセスプロシージャの一例を示す図である。端末装置1または基地局装置3は、NR-Uセル送信が行なわれるキャリア(つまり、NR-Uキャリア)またはBWP(キャリアのBWP)において、所定の期間、アイドル(クリア、フリー、通信が行なわれていない、物理信号が送信されていない(物理信号の電力(エネルギー)が検出されない))であれば、該キャリアまたはBWPで物理信号を送信してもよい。つまり、端末装置1または基地局装置3は、NR-Uセルにおいて通信を行なう場合、所定の期間、該NR-Uセルがアイドルであることを確認するためのCCA(Clear Channel Assessment)またはチャネル測定を行なう。所定の期間は、遅延期間TとカウンタNとCCAスロット期間Tslから決定されてもよい。なお、CCAを行なった際に、アイドルではないことをビジーと称してもよい。なお、CCAは、端末装置1の無線送受信部10および/または基地局装置3の無線送受信部30で行なわれてもよい。なお、チャネルアクセスプロシージャは、あるチャネルにおいて、端末装置1または基地局装置3が物理信号を送信する前に、所定の期間、CCAを行なうことを含んでもよい。
 所定の期間は、自装置以外の信号を検出した後の遅延期間においてアイドルであることを最初にセンシングしたチャネルにおいて、カウンタNが0になった期間である。端末装置1または基地局装置3は、カウンタNの値が0になった後に、信号を送信することができる。なお、CCAスロット期間において、ビジーであると判断した場合には、カウンタNのデクリメントを延期してもよい。カウンタNの初期値Nintはチャネルアクセス優先クラスの値および対応するCW(Contention Window)の値(CWS: CW size)に基づいて決定されてもよい。例えば、Nintの値は、0からCWの値の間の中から一様分布されたランダム関数に基づいて決定されてもよい。
 端末装置1または基地局装置3は、NR-Uセル送信が行なわれるキャリアまたはBWP(キャリアのBWP)において、物理信号を送信する場合、カウンタNの値をNintにセットする。
 端末装置1または基地局装置3は、Nの値が0よりも大きい場合、1つのCCAスロット期間においてクリアであると判定すれば、Nの値をN-1にセットする。つまり、端末装置1または基地局装置3は、1つのCCAスロット期間においてクリアであると判定すれば、カウンタNの値を1つだけデクリメントしてもよい。
 デクリメントしたNの値が0になった場合、端末装置1または基地局装置3は、CCAスロット期間におけるCCAを停止してもよい。もしそうでないとすれば、つまり、Nの値が0よりも大きい場合には、端末装置1または基地局装置3は、Nの値が0になるまで、CCAスロット期間のCCAを継続して行なってもよい。
 端末装置1または基地局装置3は、追加されたCCAスロット期間において、CCAを行ない、アイドルであると判定し、且つ、Nの値が0であるとすれば、物理信号を送信することができる。
 端末装置1または基地局装置3は、追加された遅延期間において、ビジーであると判定するか、追加された遅延期間のすべてのスロットにおいて、アイドルであると判定するまで、CCAを行なってもよい。追加された遅延期間において、アイドルであると判定し、且つ、Nの値が0であるとすれば、端末装置1または基地局装置3は、物理信号を送信することができる。端末装置1または基地局装置3は、追加された遅延期間において、ビジーであると判定すれば、CCAを継続して行なってもよい。
 図9は、本実施形態の一態様に係るチャネルアクセス優先クラス(CAPC)およびCW調整プロシージャの一例を示す図である。
 CAPCの値pは、遅延期間Tに含まれるCCAスロット期間Tslの数mと、CWの最小値と最大値、最大チャネル専有時間、許容されるCWの値(CWS)を示すために用いられる。CAPCの値pは、物理信号の優先度に応じて設定されてもよい。CAPCの値pは、DCIフォーマットに含まれて示されてもよい。
 端末装置1は、カウンタNの値にNinitをセットする前に、Ninitの値を決定するためのCWの値を調整してもよい。なお、端末装置1は、ランダムアクセスプロシージャが成功裏に完了した場合には、ランダムアクセスプロシージャに対して、更新されたCWの値を維持してもよい。また、端末装置1は、ランダムアクセスプロシージャが成功裏に完了した場合には、ランダムアクセスプロシージャに対して、更新されたCWの値をCWminにセットしてもよい。ここで本実施形態において、CWminは、例えば、図9に示すCW#0、つまり、CAPCの値pに対応するCWの初期値であってもよい。ここで、更新されたCWの値をCWminにセットするとは、所定の条件を満たした場合に更新されるCWの値をCWminに更新することであってもよい。また、更新されたCWの値をCWminにセットするとは、CWの値をCWminにセットし直すことであってもよい。
 端末装置1は、Msg1送信前に行なうCCAに対応するカウンタNの値にNinitをセットする前に、Ninitの値を決定するためのCWの値を調整してもよい。なお、端末装置1は、Msg2の受信に成功したとみなした場合、および/または、Msg4の受信に成功したとみなした場合には、更新されたCWの値を維持してもよい。また、端末装置1は、Msg2の受信に成功したとみなした場合、および/または、Msg4の受信に成功したとみなした場合には、更新されたCWの値をCWminにセットしてもよい。
 ここで、CWの値を調整するとは、CWの値が所定の条件を満たした場合に、CWminからCWmaxに達するまで1段階ずつ増えていくことであってもよい。CWmaxに達すると、また、CWminから1段階ずつ増えていく。つまり、CWの値を調整するとは、CWの値を更新することであってもよい。CWの値を更新するとは、CWの値を1段階大きい値にすることであってもよい。例えば、CW#3からCW#4にすることであってもよいし、CW#n-1からCW#nにすることであってもよい。また、端末装置1および/または基地局装置3は、CWの値を調整する度に、0から、更新されたCWの値の間で一様分布したランダム関数に基づいてNinitの値を決定してもよい。
 Msg1の送信に適用されるチャネルアクセス優先クラス(CAPC)の値pは、システム情報に基づいて決定されてもよいし、上位層パラメータに基づいて決定されてもよいし、SSBと関連付けられてもよい。例えば、Msg1に対応するCAPCの値pがPである場合、Ninitの値は、0からCW#0の間を一様分布したランダム関数に基づいて決定される。
 端末装置1は、例えば、図7のS7002、S7004、S7102において、Msg2またはMsg4の受信に失敗する(成功しない)とみなすと、上記6Bの値を1だけインクリメントする。その後、端末装置1がMsg1を送信する場合、Ninitの値に用いられるCWの値をCW#0からCW#1に更新する。端末装置1は、上記6Bの値に応じて、Ninitの値に用いられるCWの値を調整(更新)してもよい。CAPCの値Pに対応するCWの総数が上位層パラメータpreambleTransMaxよりも少ないとすれば、上記6Bの値が上位層パラメータpreambleTransMax+1になる前に、CWの値がCWmin(つまり、CW#0)に戻って、CWの値を更新し直してもよい。なお、CWの値は、mod(上記6Bの値、CWの総数(例えば、CW#0からCW#W-1のW個))によって得られる値に対応してもよい。ここで、mod(A,B)は、AをB(除数)で割った余りを出力する関数であってもよい。例えば、上記6Bの値が10で、CWの総数が7の場合、CWの値はCW#3であってもよい。
 図7のS7002およびS7003において、基地局装置3がMsg2を送信した後に、所定の時間が経過し、または、タイマが満了し、基地局装置3がMsg2に対応するMsg3の受信に失敗した(成功しない)とみなした場合には、基地局装置3は、Msg2の送信または再送信を行なう前、且つ、Msg2に対するCCAに対応するカウンタNの値にNinitをセットする前に、Ninitの値を決定するためのCWの値を調整してもよい。なお、基地局装置3がMsg2に対応するMsg3の受信に成功したとみなした場合には、更新されたCWの値を調整しなくてもよい。つまり、基地局装置3は、更新されたCWの値を維持してもよい。また、基地局装置3がMsg2に対応するMsg3の受信に成功したとみなした場合には、更新されたCWの値をCWminにセットしてもよい。
 図7のS7004において、基地局装置3がMsg4を送信した後に、Msg4に対応するAck(Msg5)の受信に失敗する(成功しない)とみなした場合、には、基地局装置3は、Msg4の送信または再送信を行なう前、且つ、Msg4に対するCCAに対応するカウンタNの値にNinitをセットする前に、Ninitの値を決定するためのCWの値を調整してもよい。所定の期間において、Msg4を複数の端末装置1に送信する場合には、Msg5の受信の成功率に基づいて、基地局装置3は、CWの値を調整するかどうか決定してもよい。つまり、Msg5の受信の成功率が所定の閾値を超える場合には、基地局装置3は、更新されたCWの値を調整しなくて(維持して)もよい。また、Msg5の受信の成功率が所定の閾値を超える場合には、基地局装置3は、CWの値をCWminにセットしてもよい。
 また、端末装置1は、Msg2の受信に失敗する(成功しない)とみなした場合には、ra-ResponseWindowの長さ(値)を1段階長い値に設定してもよい。また、端末装置1は、Msg4の受信に失敗するとみなすと、ra-ContentionResolutionTimerの長さ(値)を1段階長い値に設定してもよい。端末装置1は、ra-ResponseWindowの長さ、および/または、ra-ContentionResolutionTimerの長さを、上位層パラメータに基づく値、および、CWの値およびCCAスロット期間に基づいて決定してもよい。例えば、上位層パラメータに基づく値が10スロット(例えば、10ms)、CAPCの値pが4であり、CWの値が63である場合、ra-ResponseWindowの長さ、および/または、ra-ContentionResolutionTimerの長さは、10ms+63×9μs+T(例えば、25μs)から得られてもよい。なお、上位層パラメータに基づく値は、ra-ResponseWindowとra-ContentionResolutionTimerのそれぞれに対して設定されてもよい。なお、端末装置1は、Msg2の受信に成功したとみなした場合には、ra-ResponseWindowの長さ(値)を維持してもよい。同様に、端末装置1は、Msg4の受信に成功したとみなした場合には、ra-ContentionResolutionTimerの長さ(値)を維持してもよい。また、端末装置1は、Msg2の受信に成功したとみなした場合には、ra-ResponseWindowの長さ(値)を上位層パラメータとして設定された値(つまり、初期値)にセットして(戻して)もよい。同様に、端末装置1は、Msg4の受信に成功したとみなした場合には、ra-ContentionResolutionTimerの長さ(値)を上位層パラメータとして設定された値(つまり、初期値)にセットして(戻して)もよい。
 図7のS7004において、基地局装置3がMsg4を送信した後に、S7001において受信したMsg1を再度受信した場合には、基地局装置3は、再送信されたMsg1に対応するMsg2の送信を行なう前、且つ、Msg2に対するCCAに対応するカウンタNの値にNinitをセットする前に、Ninitの値を決定するためのCWの値を調整してもよい。なお、基地局装置3がMsg4を送信した後に、Msg4に対するAck(Msg5)を受信した場合、つまり、ランダムアクセスプロシージャが成功裏に完了した場合には、基地局装置3は、更新されたCWの値を維持してもよい。また、ランダムアクセスプロシージャが成功裏に完了した場合には、基地局装置3は、更新されたCWの値をCWminにセットしてもよい。
 図7のS7101において、所定の時間が経過し、または、タイマが満了し、基地局装置3がPDCCHオーダに対応するMsg1の受信に失敗する(成功しない)とみなした場合には、基地局装置3は、PDCCHオーダの送信または再送信を行なう前、且つ、PDCCHオーダに対するCCAに対応するカウンタNの値にNinitをセットする前に、Ninitの値を決定するためのCWの値を調整してもよい。なお、基地局装置3がPDCCHオーダに対応するMsg1の受信に成功したとみなした場合には、基地局装置3は、更新されたCWの値を維持してもよい。また、基地局装置3がPDCCHオーダに対応するMsg1の受信に成功したとみなした場合には、基地局装置3は、更新されたCWの値をCWminにセットしてもよい。
 図7のS7101において、所定の時間が経過し、または、タイマが満了し、基地局装置3がPDCCHオーダに対応するMsg1の受信に失敗する(成功しない)とみなした場合には、Ninitの値を決定するためのCWの値を調整するかどうかは、所定の期間において、複数の端末装置1に対して送信したPDCCHオーダに対応するMsg1の受信に対して所定の割合で失敗した(成功しなかった)とみなした場合に基づいてもよい。例えば、端末装置Aから端末装置Eに対して、所定の第1の期間において、PDCCHオーダを送信した場合、端末装置Aから端末装置Eのそれぞれから対応するMsg1を受信したとすれば、PDCCHオーダの送信に成功したとみなし、基地局装置3はCWの値を調整しなくてもよい。また、端末装置Aから端末装置Eに対して、所定の第1の期間において、PDCCHオーダを送信した場合、端末装置Aと端末装置Eからは、対応するMsg1を受信し、それ以外の端末装置に対するMsg1の受信に成功しなかったとみなした(例えば、Msg1の受信の成功率が40%)場合には、PDCCHオーダの送信に成功しなかったとみなし、基地局装置3はPDCCHオーダに対するCWの値を調整してもよい。なお、Msg1の受信の成功率が所定の閾値を超える場合には、基地局装置3は、PDCCHオーダの送信に成功したとみなし、更新されたCWの値を維持してもよい。また、Msg1の受信の成功率が所定の閾値を超える場合には、基地局装置3は、更新されたCWの値をCWminにセットしてもよい。
 CAPCの値pは、PUSCH、PUCCH、PRACHのそれぞれに対して個別に設定されてもよい。また、CAPCの値pは、PUSCH、PUCCH、PRACHに対してセル固有の上位層パラメータとして共通の値が設定されてもよい。また、CAPCの値pは、PUSCH、PUCCH、PRACHのそれぞれに対して個別の上位層パラメータとして設定されてもよい。また、PUSCHに対するCAPCの値pは、PUSCHのスケジューリングに対して用いられるDCIフォーマットに含まれて示されてもよい。また、PUCCHに対するCAPCの値pは、PUCCHリソースインディケータを含むDCIフォーマットに含まれて示されてもよい。また、PRACHに対するCAPCの値pは、PDCCHオーダのためのDCIフォーマットに含まれて示されてもよい。また、PRACHに対するCAPCの値pは、ランダムアクセスプロシージャの種類に応じて決定されてもよい。例えば、CBRAに対するCAPCの値pは、システム情報および/または上位層パラメータに基づいて決定されてもよい。また、CFRAに対するCAPCの値pは、上位層パラメータ、または、PDCCHオーダのためのDCIフォーマットに基づいて決定されてもよい。CFRAにおいて、CAPCの値pを上位層パラメータに基づくか、DCIフォーマットのフィールドに基づくか、はシステム情報および/または上位層パラメータの設定に基づいて決定されてもよい。
 CAPCの値pは、PUSCH、PUCCHに対しては、送信する情報と関連付けて決定されてもよい。例えば、PUSCHまたはPUCCHにおいてUCIを含んで送信する場合、UCIに含まれる情報の種類(HARQ-ACK、SR、CSIなど)や組み合わせに応じて、個別にCAPCの値pは設定されてもよい。
 本実施形態では、CAPCの値pについて記載しているが、CWの値やTmcotについても同様に設定されてもよい。
 以下、本実施形態の一態様に係る種々の装置の態様を説明する。
 (1)上記の目的を達成するために、本発明の態様は、以下のような手段を講じた。すなわち、本発明の第1の態様は、端末装置であって、ランダムアクセスプロシージャにおいて、ランダムアクセスプリアンブルを送信し、対応するランダムアクセスレスポンス(RAR)を監視する無線送受信部と、前記RARの受信に成功しなかったとみなした場合に、前記ランダムアクセスプリアンブルの送信回数をカウントするためのプリアンブル送信カウンタの値をインクリメントするMAC(Medium Access Control)層処理部と、を備え、前記無線送受信部は、NR-U(New Radio - Unlicensed)キャリアにおいて、前記ランダムアクセスプリアンブルを送信する前のCCA(Clear Channel Assessment)を行ない、前記CCAのための測定期間を決定するために用いられる初期値NinitをカウンタNにセットし、前記Ninitは、前記Nに前記Ninitがセットされる前に、少なくとも前記ランダムアクセスプリアンブルに対して設定されるCW(Contention Window)の値(CW size)に基づいて決定され、前記CWの値は、前記プリアンブル送信カウンタの値がインクリメントされた場合に更新される。
 (2)また、本発明の第2の態様は、第1の態様の端末装置であって、前記ランダムアクセスプロシージャにおいて、前記RARの受信に成功し、前記RARに対応するPUSCH(Msg3)を送信し、前記Msg3に対応する衝突解決メッセージ(Msg4)を監視し、前記NR-Uキャリアにおいて、前記Msg4の受信に成功しなかったとみなした場合に、前記プリアンブル送信カウンタの値をインクリメントし、前記CWの値を更新する。
 (3)また、本発明の第3の態様は、端末装置に用いられる方法であって、ランダムアクセスプロシージャにおいて、ランダムアクセスプリアンブルを送信し、対応するランダムアクセスレスポンス(RAR)を監視し、前記RARの受信に成功しなかったとみなした場合に、前記ランダムアクセスプリアンブルの送信回数をカウントするためのプリアンブル送信カウンタの値をインクリメントし、NR-U(New Radio - Unlicensed)キャリアにおいて、前記ランダムアクセスプリアンブルを送信する前のCCA(Clear Channel Assessment)を行ない、前記CCAのための測定期間を決定するために用いられる初期値NinitをカウンタNにセットし、前記Ninitは、前記Nに前記Ninitがセットされる前に、少なくとも前記ランダムアクセスプリアンブルに対して設定されるCW(Contention Window)の値(CW size)に基づいて決定され、前記CWの値は、前記プリアンブル送信カウンタの値がインクリメントされた場合に更新される。
 (4)また、本発明の第4の態様は、第3の態様の方法であって、前記ランダムアクセスプロシージャにおいて、前記RARの受信に成功し、前記RARに対応するPUSCH(Msg3)を送信し、前記Msg3に対応する衝突解決メッセージ(Msg4)を監視し、前記NR-Uキャリアにおいて、前記Msg4の受信に成功しなかったとみなした場合に、前記プリアンブル送信カウンタの値をインクリメントし、前記CWの値を更新する。
 (5)また、本発明の第5の態様は、基地局装置であって、ランダムアクセスプリアンブルのリソース割り当てを行なうためのPDCCH(Physical Downlink Control Channel)オーダを送信し、前記PDCCHオーダを送信した後に、前記PDCCHオーダに対応するランダムアクセスプリアンブルを監視する無線送受信部を備え、前記無線送受信部は、NR-U(New Radio - Unlicensed)キャリアにおいて、前記PDCCHオーダを送信する前に、CCA(Clear Channel Assessment)を行ない、前記CCAのための測定期間を決定するために用いられる初期値NinitをカウンタNの値としてセットし、前記Ninitは、前記Nに前記Ninitがセットされる前に、少なくとも前記PDCCHオーダに対して設定されるCW(Contention Window)の値(CW size)に基づいて決定され、前記CWの値は、前記ランダムアクセスプリアンブルの受信に成功しなかったとみなした場合に、更新される。
 (6)また、本発明の第6の態様は、基地局装置であって、ランダムアクセスプロシージャにおいて、ランダムアクセスプリアンブルを受信し、対応するランダムアクセスレスポンス(RAR)を送信し、前記RARを送信した後、前記RARに対応するPUSCH(Msg3)を監視する無線送受信部を備え、前記無線送受信部は、NR-U(New Radio - Unlicensed)キャリアにおいて、前記RARを送信する前に、CCA(Clear Channel Assessment)を行ない、前記CCAのための測定期間を決定するために用いられる初期値NinitをカウンタNの値としてセットし、前記Ninitは、前記Nに前記Ninitがセットされる前に、少なくとも前記RARに対して設定されるCW(Contention Window)の値(CW size)に基づいて決定され、前記CWの値は、前記Msg3の受信に成功しなかったとみなした場合に、更新される。
 (7)また、本発明の第7の態様は、基地局装置に用いられる方法であって、ランダムアクセスプリアンブルのリソース割り当てを行なうためのPDCCH(Physical Downlink Control Channel)オーダを送信し、前記PDCCHオーダを送信した後に、前記PDCCHオーダに対応するランダムアクセスプリアンブルを監視し、NR-U(New Radio - Unlicensed)キャリアにおいて、前記PDCCHオーダを送信する前に、CCA(Clear Channel Assessment)を行ない、前記CCAのための測定期間を決定するために用いられる初期値NinitをカウンタNの値としてセットし、前記Ninitは、前記Nに前記Ninitがセットされる前に、少なくとも前記PDCCHオーダに対して設定されるCW(Contention Window)の値(CW size)に基づいて決定され、前記CWの値は、前記ランダムアクセスプリアンブルの受信に成功しなかったとみなした場合に、更新される。
 (8)また、本発明の第8の態様は、基地局装置に用いられる方法であって、ランダムアクセスプロシージャにおいて、ランダムアクセスプリアンブルを受信し、対応するランダムアクセスレスポンス(RAR)を送信し、前記RARを送信した後、前記RARに対応するPUSCH(Msg3)を監視し、NR-U(New Radio - Unlicensed)キャリアにおいて、前記RARを送信する前に、CCA(Clear Channel Assessment)を行ない、前記CCAのための測定期間を決定するために用いられる初期値NinitをカウンタNの値としてセットし、前記Ninitは、前記Nに前記Ninitがセットされる前に、少なくとも前記RARに対して設定されるCW(Contention Window)の値(CW size)に基づいて決定され、前記CWの値は、前記Msg3の受信に成功しなかったとみなした場合に、更新される。
 本発明に関わる基地局装置3、および、端末装置1で動作するプログラムは、本発明に関わる上記実施形態の機能を実現するように、CPU(Central Processing Unit)等を制御するプログラム(コンピュータを機能させるプログラム)であっても良い。そして、これら装置で取り扱われる情報は、その処理時に一時的にRAM(Random Access Memory)に蓄積され、その後、Flash ROM(Read Only Memory)などの各種ROMやHDD(Hard Disk Drive)に格納され、必要に応じてCPUによって読み出し、修正・書き込みが行われる。
 尚、上述した実施形態における端末装置1、基地局装置3の一部、をコンピュータで実現するようにしてもよい。その場合、この制御機能を実現するためのプログラムをコンピュータが読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。
 尚、ここでいう「コンピュータシステム」とは、端末装置1、又は基地局装置3に内蔵されたコンピュータシステムであって、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。
 さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよい、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよい。
 また、上述した実施形態における基地局装置3は、複数の装置から構成される集合体(装置グループ)として実現することもできる。装置グループを構成する装置の各々は、上述した実施形態に関わる基地局装置3の各機能または各機能ブロックの一部、または、全部を備えてもよい。装置グループとして、基地局装置3の一通りの各機能または各機能ブロックを有していればよい。また、上述した実施形態に関わる端末装置1は、集合体としての基地局装置と通信することも可能である。
 また、上述した実施形態における基地局装置3は、EUTRAN(Evolved Universal Terrestrial Radio Access Network)および/またはNG-RAN(NextGen RAN,NR RAN)であってもよい。また、上述した実施形態における基地局装置3は、eNodeBおよび/またはgNBに対する上位ノードの機能の一部または全部を有してもよい。
 また、上述した実施形態における端末装置1、基地局装置3の一部、又は全部を典型的には集積回路であるLSIとして実現してもよいし、チップセットとして実現してもよい。端末装置1、基地局装置3の各機能ブロックは個別にチップ化してもよいし、一部、又は全部を集積してチップ化してもよい。また、集積回路化の手法はLSIに限らず専用回路、又は汎用プロセッサで実現しても良い。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能である。
 また、上述した実施形態では、通信装置の一例として端末装置を記載したが、本願発明は、これに限定されるものではなく、屋内外に設置される据え置き型、または非可動型の電子機器、たとえば、AV機器、キッチン機器、掃除・洗濯機器、空調機器、オフィス機器、自動販売機、その他生活機器などの端末装置もしくは通信装置にも適用出来る。
 以上、この発明の実施形態に関して図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。また、本発明は、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、上記各実施形態に記載された要素であり、同様の効果を奏する要素同士を置換した構成も含まれる。

Claims (4)

  1.  ランダムアクセスプリアンブルのリソース割り当てを行なうためのPDCCH(Physical Downlink Control Channel)オーダを送信し、
     前記PDCCHオーダを送信した後に、前記PDCCHオーダに対応するランダムアクセスプリアンブルを監視する無線送受信部を備え、
     前記無線送受信部は、
     NR-U(New Radio - Unlicensed)キャリアにおいて、前記PDCCHオーダを送信する前に、CCA(Clear Channel Assessment)を行ない、
     前記CCAのための測定期間を決定するために用いられる初期値NinitをカウンタNの値としてセットし、
     前記Ninitは、前記Nに前記Ninitがセットされる前に、少なくとも前記PDCCHオーダに対して設定されるCW(Contention Window)の値(CW size)に基づいて決定され、
     前記CWの値は、前記ランダムアクセスプリアンブルの受信に成功しなかったとみなした場合に、更新される
     基地局装置。
  2.  ランダムアクセスプロシージャにおいて、ランダムアクセスプリアンブルを受信し、対応するランダムアクセスレスポンス(RAR)を送信し、
     前記RARを送信した後、前記RARに対応するPUSCH(Msg3)を監視する無線送受信部を備え、
     前記無線送受信部は、
     NR-U(New Radio - Unlicensed)キャリアにおいて、前記RARを送信する前に、CCA(Clear Channel Assessment)を行ない、
     前記CCAのための測定期間を決定するために用いられる初期値NinitをカウンタNの値としてセットし、
     前記Ninitは、前記Nに前記Ninitがセットされる前に、少なくとも前記RARに対して設定されるCW(Contention Window)の値(CW size)に基づいて決定され、
     前記CWの値は、前記Msg3の受信に成功しなかったとみなした場合に、更新される
     基地局装置。
  3.  ランダムアクセスプリアンブルのリソース割り当てを行なうためのPDCCH(Physical Downlink Control Channel)オーダを送信し、
     前記PDCCHオーダを送信した後に、前記PDCCHオーダに対応するランダムアクセスプリアンブルを監視し、
     NR-U(New Radio - Unlicensed)キャリアにおいて、前記PDCCHオーダを送信する前に、CCA(Clear Channel Assessment)を行ない、
     前記CCAのための測定期間を決定するために用いられる初期値NinitをカウンタNの値としてセットし、
     前記Ninitは、前記Nに前記Ninitがセットされる前に、少なくとも前記PDCCHオーダに対して設定されるCW(Contention Window)の値(CW size)に基づいて決定され、
     前記CWの値は、前記ランダムアクセスプリアンブルの受信に成功しなかったとみなした場合に、更新される
     方法。
  4.  ランダムアクセスプロシージャにおいて、ランダムアクセスプリアンブルを受信し、対応するランダムアクセスレスポンス(RAR)を送信し、
     前記RARを送信した後、前記RARに対応するPUSCH(Msg3)を監視し、
     NR-U(New Radio - Unlicensed)キャリアにおいて、前記RARを送信する前に、CCA(Clear Channel Assessment)を行ない、
     前記CCAのための測定期間を決定するために用いられる初期値NinitをカウンタNの値としてセットし、
     前記Ninitは、前記Nに前記Ninitがセットされる前に、少なくとも前記RARに対して設定されるCW(Contention Window)の値(CW size)に基づいて決定され、
     前記CWの値は、前記Msg3の受信に成功しなかったとみなした場合に、更新される
     方法。
PCT/JP2019/029485 2018-08-10 2019-07-26 基地局装置、および、方法 WO2020031758A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-151354 2018-08-10
JP2018151354A JP2020028002A (ja) 2018-08-10 2018-08-10 基地局装置、および、方法

Publications (1)

Publication Number Publication Date
WO2020031758A1 true WO2020031758A1 (ja) 2020-02-13

Family

ID=69415211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029485 WO2020031758A1 (ja) 2018-08-10 2019-07-26 基地局装置、および、方法

Country Status (2)

Country Link
JP (1) JP2020028002A (ja)
WO (1) WO2020031758A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113453351A (zh) * 2020-03-27 2021-09-28 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023112887A1 (ja) * 2021-12-13 2023-06-22 シャープ株式会社 端末装置、基地局装置、および、通信方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022820A1 (ja) * 2015-08-05 2017-02-09 株式会社Nttドコモ 無線基地局、ユーザ端末及び無線通信方法
WO2017110961A1 (ja) * 2015-12-25 2017-06-29 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022820A1 (ja) * 2015-08-05 2017-02-09 株式会社Nttドコモ 無線基地局、ユーザ端末及び無線通信方法
WO2017110961A1 (ja) * 2015-12-25 2017-06-29 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
3GPP: "3RD GENERATION PARTNERSHIP PROJECT; ''Technical Specification Group Radio Access Network ''; Physical layer procedures for shared spectrum channel access (Release 15)", 3GPP TS 37.213 V15.0.0, June 2018 (2018-06-01), XP051454105 *
HUAWEI ET AL.: "Correction to RA on SCell for TA alignment in TS 38.300", 3GPP TSG RAN WG2 #101BIS R2-1805819, 16 April 2018 (2018-04-16), XP051416182 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113453351A (zh) * 2020-03-27 2021-09-28 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113453351B (zh) * 2020-03-27 2022-07-01 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Also Published As

Publication number Publication date
JP2020028002A (ja) 2020-02-20

Similar Documents

Publication Publication Date Title
JP7207951B2 (ja) 端末装置、および、方法
US12069744B2 (en) Base station apparatus, terminal apparatus, and method for a random access procedure in wireless communication
US20220132564A1 (en) Terminal apparatus and method
US20210360666A1 (en) Terminal device, and method
JP2020053851A (ja) 端末装置、基地局装置、および、通信方法
JP2023078485A (ja) 端末装置、および、通信方法
US20230068855A1 (en) Terminal apparatus, base station apparatus, and communication method
WO2020031758A1 (ja) 基地局装置、および、方法
WO2020031757A1 (ja) 端末装置、および、方法
WO2020218408A1 (ja) 端末装置、基地局装置、および、方法
JP2021158478A (ja) 端末装置、基地局装置、および、通信方法
WO2022239482A1 (ja) 端末装置、基地局装置、および、通信方法
WO2022181597A1 (ja) 端末装置、基地局装置、および、通信方法
JP2020025182A (ja) 端末装置、基地局装置、および、通信方法
WO2020066758A1 (ja) 端末装置、および、方法
WO2021029319A1 (ja) 端末装置、および、方法
WO2021066135A1 (ja) 端末装置、および、方法
WO2020145306A1 (ja) 端末装置、基地局装置、および、通信方法
WO2020090367A1 (ja) 端末装置、基地局装置、および、通信方法
JP2020120284A (ja) 端末装置、基地局装置、および、通信方法
WO2023100751A1 (ja) 端末装置、基地局装置、および、通信方法
WO2020170913A1 (ja) 端末装置、基地局装置、および、通信方法
WO2020137735A1 (ja) 基地局装置、および、通信方法
WO2020066855A1 (ja) 端末装置、基地局装置、および、通信方法
JP2023068296A (ja) 端末装置、および、基地局装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19847118

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19847118

Country of ref document: EP

Kind code of ref document: A1