WO2020066831A1 - Polarizing plate composite and image display device - Google Patents

Polarizing plate composite and image display device Download PDF

Info

Publication number
WO2020066831A1
WO2020066831A1 PCT/JP2019/036742 JP2019036742W WO2020066831A1 WO 2020066831 A1 WO2020066831 A1 WO 2020066831A1 JP 2019036742 W JP2019036742 W JP 2019036742W WO 2020066831 A1 WO2020066831 A1 WO 2020066831A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
wavelength
polarizing plate
refractive index
adhesive
Prior art date
Application number
PCT/JP2019/036742
Other languages
French (fr)
Japanese (ja)
Inventor
政大 藤田
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN201980063726.0A priority Critical patent/CN112771421A/en
Priority to KR1020217011592A priority patent/KR20210064282A/en
Publication of WO2020066831A1 publication Critical patent/WO2020066831A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/50OLEDs integrated with light modulating elements, e.g. with electrochromic elements, photochromic elements or liquid crystal elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays

Definitions

  • the present invention relates to a polarizing plate composite and an image display device having the polarizing plate composite.
  • an optical laminate having antireflection performance is arranged on the viewing side of an image display panel to suppress a decrease in visibility due to reflection of extraneous light.
  • a circularly polarizing plate composed of a linear polarizing plate and a retardation layer is known.
  • extraneous light directed to the image display panel is converted into linearly polarized light by a linearly polarizing plate, and then converted into circularly polarized light by a phase difference layer.
  • the external light converted to circularly polarized light is reflected on the surface of the image display panel, but the direction of rotation of the polarization plane is reversed at the time of this reflection, and is converted to linearly polarized light by the retardation layer.
  • Light is shielded by the plate. As a result, emission to the outside is significantly suppressed.
  • Patent Document 1 discloses that, in a polarizing plate with a retardation layer having a plurality of retardation layers, the difference in average refractive index between the plurality of retardation layers is adjusted so that reflected light can be reduced. It is described that unevenness can be suppressed and visibility can be improved.
  • the object of the present invention is to provide a novel polarizing plate composite in which the occurrence of interference unevenness is suppressed, and an image display device including the composite polarizing plate.
  • the present invention provides a polarizing plate composite and an image display device described below.
  • a linear polarizing plate, a ⁇ wavelength layer, a first adhesive layer obtained by curing an active energy ray-curable adhesive, and a ⁇ wavelength layer are provided in this order,
  • the angle between the fast axis of the 1 / wavelength layer and the transmission axis of the linear polarizer is 10 ° or more and 20 ° or less,
  • the polarizing plate composite wherein the absolute value of the difference between the refractive index of the first adhesive layer at a wavelength of 589 nm and the refractive index of the ⁇ wavelength layer in the fast axis direction at a wavelength of 589 nm is less than 0.05. .
  • the quarter wavelength layer has an in-plane average refractive index, which is an average value of a refractive index in a fast axis direction and a refractive index in a slow axis direction at a wavelength of 589 nm, of less than 1.58.
  • [4] In-plane which is the average value of the refractive index of the first adhesive layer at a wavelength of 589 nm and the refractive index of the 1 / wavelength layer at a wavelength of 589 nm in the fast axis direction and the slow axis direction.
  • [6] The polarizing plate composite according to any one of [1] to [5], wherein the ⁇ wavelength layer includes a retardation developing layer that is a liquid crystal layer.
  • An image display device comprising: an image display panel; and the polarizing plate composite according to any one of [1] to [8] disposed on the viewing side of the image display panel.
  • the image display device according to [9] wherein the polarizing plate composite is arranged in a direction in which the linear polarizing plate is located on a viewing side.
  • FIG. 1 is a schematic cross-sectional view schematically showing one example of a polarizing plate composite of the present invention.
  • FIG. 3 is a schematic cross-sectional view schematically illustrating an example of a retardation layer including a liquid crystal layer as a retardation expression layer.
  • (A) to (D) are schematic cross-sectional views schematically showing an example of each production step in the method for producing a polarizing plate composite of the present invention.
  • (A), (B) is schematic sectional drawing which shows typically another example of each manufacturing process in the manufacturing method of the polarizing plate composite of this invention.
  • FIG. 1 is a schematic cross-sectional view schematically showing one example of the polarizing plate composite of the present invention.
  • the polarizing plate composite 10 has a linear polarizing plate 13, a second adhesive layer 22, a ⁇ wavelength layer 11, a first adhesive layer 21, and a ⁇ wavelength layer 12 sequentially laminated.
  • the angle between the fast axis of the half-wavelength layer 11 and the transmission axis of the linear polarizing plate 13 is 10 ° or more and 20 ° or less, preferably 12 ° or more and 18 ° or less, More preferably, it is about 15 °.
  • the angle between the fast axis of the quarter wavelength layer 12 and the transmission axis of the linear polarizing plate 13 is preferably 70 ° or more and 80 ° or less, more preferably 72 ° or more and 78 ° or less. And more preferably about 75 °.
  • the angle between the slow axis of the 1 / wavelength layer 11 and the slow axis of the ⁇ wavelength layer 12 is preferably 55 ° or more and 65 ° or less, more preferably 57 ° or less. It is not less than 63 ° and not more than 63 °, more preferably about 60 °.
  • a polarizing plate composite that can be suitably used as a circular polarizing plate can be formed, but by satisfying the above relationship, the wavelength of the first adhesive layer at 589 nm is satisfied. Even when the refractive index is less than 1.55, the interference unevenness can be effectively suppressed.
  • the thickness of the polarizing plate composite 10 is preferably 30 ⁇ m to 50 ⁇ m, more preferably 30 ⁇ m to 200 ⁇ m, and still more preferably 30 ⁇ m to 150 ⁇ m, from the viewpoint of thinning.
  • the refractive index of the first adhesive layer 21 at a wavelength of 589 nm is referred to as “refractive index n21”.
  • the first adhesive layer 21 has no phase difference and can be regarded as having the same value regardless of the refractive index in any direction. Therefore, the “refractive index n21” may be a refractive index in any direction.
  • the refractive index at the wavelength of 589 nm in the slow axis direction is “refractive index n11 x ”
  • the refractive index in the fast axis direction is “refractive index n11 y ”
  • the refractive index in the thickness direction is “refraction”.
  • Ratio n11 z , the average value of n11 x and n11 y is “in-plane average refractive index n11 x, y ”
  • the average value of n11 x , n11 y, and n11 z is “three-dimensional average refractive index n11 x, y”. , Z ”.
  • the in-plane average refractive index n11 x, y and the three-dimensional average refractive index n11 x, y, z are values calculated by the following equations (1) and (2), respectively.
  • n11 x, y (n11 x + n11 y ) / 2
  • n11 x, y, z ( n11 x + n11 y + n11 z) / 3
  • the refractive index at the wavelength of 589 nm in the slow axis direction is “refractive index n12 x ”
  • the refractive index in the fast axis direction is “refractive index n12 y ”
  • the refractive index in the thickness direction is “refraction”.
  • Ratio n12 z ” the average value of n12 x and n12 y is“ in-plane average refractive index n12 x, y ”, and the average value of n12 x , n12 y and n12 z is“ three-dimensional average refractive index n12 x, y ”. , Z ”.
  • the in-plane average refractive index n12 x, y and the three-dimensional average refractive index n12 x, y, z are values calculated by the following equations (3) and (4), respectively.
  • n12 x, y (n12 x + n12 y ) / 2
  • n12 x, y, z (n12 x + n12 y + n12 z ) / 3 (4)
  • the first adhesive layer 21 is formed by curing an active energy ray-curable adhesive.
  • the thickness of the first adhesive layer 21 is preferably from 0.1 ⁇ m to 50 ⁇ m, and more preferably from 0.1 ⁇ m to 5 ⁇ m.
  • the refractive index n21 of the wavelength 589nm of the first adhesive layer 21, the absolute value calculated by 1/2 which is the difference between the refractive index n11 y of the fast axis direction at a wavelength 589nm wavelength layer 11 (5)
  • X1: X1
  • (5) Is less than 0.05, preferably 0.04 or less.
  • the composition of the active energy ray-curable adhesive used for forming the first adhesive layer 21 is adjusted. Or by adjusting the liquid crystal material used to form the half-wavelength layer 11.
  • Absolute value calculated by equation (6) which is the difference between the refractive index n21 of the first adhesive layer 21 at a wavelength of 589 nm and the in-plane average refractive index n12 x, y of the quarter wavelength layer 12 at a wavelength of 589 nm.
  • X2: X2
  • (6) Is preferably less than 0.05, more preferably 0.04 or less.
  • the composition of the active energy ray-curable adhesive used for forming the first adhesive layer 21 is adjusted. Or by adjusting the liquid crystal material used to form the quarter wavelength layer 11.
  • the first adhesive layer 21 has a refractive index n21 at a wavelength of 589 nm, for example, less than 1.55. In the present invention, even when the refractive index n21 of the first adhesive layer 21 is as small as less than 1.55, interference unevenness can be suppressed.
  • Active energy ray-curable adhesives are those that cure when irradiated with active energy rays.
  • a cationically polymerizable active energy ray-curable adhesive containing an epoxy compound and a cationic polymerization initiator a radically polymerizable active energy ray-curable adhesive containing an acrylic curing component and a radical polymerization initiator, an epoxy compound
  • An active energy ray-curable adhesive containing both a cationically polymerizable curing component and a radically polymerizable curing component such as an acrylic compound, in which a cationic polymerization initiator and a radical polymerization initiator are blended.
  • an electron beam-curable adhesive cured by irradiating an active energy ray-curable adhesive containing no initiator with an electron beam. Since radical polymerization tends to cause large curing shrinkage, a cationically polymerizable active energy ray-curable adhesive containing an epoxy compound and a cationic polymerization initiator is preferable.
  • a cationically polymerizable epoxy compound that is itself liquid at room temperature has appropriate fluidity even without the presence of a solvent, and gives an appropriate cured adhesive strength.
  • the active energy ray-curable adhesive containing the polymerization initiator can eliminate the drying equipment which is usually required in the step of bonding the ⁇ wavelength layer and the ⁇ wavelength layer. Further, by irradiating an appropriate active energy dose, the curing speed can be accelerated, and the production speed can be improved.
  • Epoxy compounds used in such adhesives include, for example, glycidyl ethers of aromatic compounds or chain compounds having a hydroxyl group, glycidyl aminations of compounds having an amino group, and chain compounds having a CC double bond. Glycidyloxy group or epoxyethyl group bonded directly or via alkylene to a saturated carbocycle, or an alicyclic epoxy compound having an epoxy group bonded directly to a saturated carbocycle. it can. Each of these epoxy compounds may be used alone, or a plurality of different types may be used in combination. Of these, alicyclic epoxy compounds are preferably used because of their excellent cationic polymerizability.
  • the glycidyl etherified product of an aromatic compound or a chain compound having a hydroxyl group can be produced, for example, by a method in which epichlorohydrin is addition-condensed to the hydroxyl group of the aromatic compound or the chain compound under basic conditions.
  • a glycidyl etherified product of an aromatic compound or a chain compound having a hydroxyl group includes diglycidyl ether of bisphenols, polyaromatic ring type epoxy resin, diglycidyl ether of alkylene glycol or polyalkylene glycol, and the like. .
  • Examples of the diglycidyl ether of bisphenols include glycidyl ether of bisphenol A and its oligomer, glycidyl ether of bisphenol F and its oligomer, 3,3 ', 5,5'-tetramethyl-4,4'- Glycidyl ether products of biphenol and oligomers thereof are exemplified.
  • polyaromatic ring type epoxy resin for example, glycidyl etherified phenol novolak resin, glycidyl etherified cresol novolak resin, glycidyl etherified phenol aralkyl resin, glycidyl etherified naphthol aralkyl resin, glycidyl ether phenol dicyclopentadiene resin And the like.
  • glycidyl etherified trisphenols and oligomers thereof also belong to the polyaromatic ring type epoxy resin.
  • Examples of the diglycidyl ether of alkylene glycol or polyalkylene glycol include glycidyl ether of ethylene glycol, glycidyl ether of diethylene glycol, glycidyl ether of 1,4-butanediol, and glycidyl ether of 1,6-hexanediol. No.
  • a glycidyl aminated compound of a compound having an amino group can be produced, for example, by a method of adding and condensing epichlorohydrin to the amino group of the compound under basic conditions.
  • the compound having an amino group may have a hydroxyl group at the same time.
  • Such glycidyl aminated compounds having an amino group include glycidyl aminated 1,3-phenylenediamine and oligomers thereof, glycidyl aminated 1,4-phenylenediamine and oligomers thereof, 3-aminophenol Glycidyl aminated and glycidyl etherified products and oligomers thereof, and glycidyl aminated and glycidyl etherified products of 4-aminophenol and oligomers thereof.
  • the epoxidized product of a chain compound having a CC double bond can be produced by a method of epoxidizing the CC double bond of the chain compound with a peroxide under basic conditions.
  • the chain compound having a CC double bond includes butadiene, polybutadiene, isoprene, pentadiene, hexadiene and the like.
  • Terpenes having a double bond can also be used as an epoxidation raw material, and examples of acyclic monoterpenes include linalool.
  • the peroxide used for epoxidation can be, for example, hydrogen peroxide, peracetic acid, tert-butyl hydroperoxide, and the like.
  • An alicyclic epoxy compound in which a glycidyloxy group or an epoxyethyl group is bonded to a saturated carbon ring directly or via an alkylene is an aromatic ring of an aromatic compound having a hydroxyl group represented by the aforementioned bisphenols.
  • Examples include glycidyl ether of a hydrogenated polyhydroxy compound obtained by hydrogenation, glycidyl ether of a cycloalkane compound having a hydroxyl group, and epoxidized compound of a cycloalkane compound having a vinyl group.
  • epoxy compounds described above can be easily obtained as commercial products.
  • "jER” series sold by Mitsubishi Chemical Corporation and DIC Corporation are sold under trade names.
  • Examples include “Denacol (registered trademark)", “Dow Epoxy” sold by Dow Chemical Company, and "Tepic (registered trademark)” sold by Nissan Chemical Industries, Ltd.
  • an alicyclic epoxy compound in which an epoxy group is directly bonded to a saturated carbocyclic ring is, for example, a compound in which a CC double bond of a non-aromatic cyclic compound having a CC double bond in the ring is substituted with a basic compound. It can be produced by a method of epoxidation using a peroxide under conditions.
  • non-aromatic cyclic compound having a CC double bond in the ring for example, a compound having a cyclopentene ring, a compound having a cyclohexene ring, a cyclopentene ring or a cyclohexene ring having at least two more carbon atoms bonded thereto And polycyclic compounds forming an additional ring.
  • the non-aromatic cyclic compound having a CC double bond in the ring may have another CC double bond outside the ring.
  • non-aromatic cyclic compound having a CC double bond in the ring examples include cyclohexene, 4-vinylcyclohexene, and the monocyclic monoterpenes limonene and ⁇ -pinene.
  • the alicyclic epoxy compound in which an epoxy group is directly bonded to a saturated carbocyclic ring has an alicyclic structure having an epoxy group directly bonded to a ring as described above, and is bonded to a molecule via an appropriate linking group. At least two compounds may be formed.
  • the linking group here includes, for example, an ester bond, an ether bond, an alkylene bond and the like.
  • alicyclic epoxy compound in which an epoxy group is directly bonded to a saturated carbon ring include the following. 3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate, 1,2-epoxy-4-vinylcyclohexane, 1,2-epoxy-4-epoxyethylcyclohexane, 1,2-epoxy-1-methyl-4- (1-methylepoxyethyl) cyclohexane, 3,4-epoxycyclohexylmethyl (meth) acrylate, An adduct of 2,2-bis (hydroxymethyl) -1-butanol with 4-epoxyethyl-1,2-epoxycyclohexane, Ethylene bis (3,4-epoxycyclohexanecarboxylate), Oxydiethylene bis (3,4-epoxycyclohexanecarboxylate), 1,4-cyclohexanedimethyl bis (3,4-e
  • the alicyclic epoxy compound in which an epoxy group is directly bonded to the saturated carbon ring described above can also be easily obtained as a commercial product.
  • each of the alicyclic epoxy compounds is sold under the trade name of Daicel Corporation. "Celoxide (registered trademark)” and “Cyclomer (registered trademark)", “Cyracure @ UVR” series sold by Dow Chemical Company, and the like.
  • the curable adhesive containing an epoxy compound may further contain an active energy ray-curable compound other than the epoxy compound.
  • the active energy ray-curable compound other than the epoxy compound include an oxetane compound and an acrylic compound. Among them, it is preferable to use an oxetane compound in combination, since there is a possibility that the curing rate can be accelerated in the cationic polymerization.
  • the oxetane compound is a compound having a four-membered ring ether in the molecule, and examples thereof include the following. 1,4-bis [(3-ethyloxetane-3-yl) methoxymethyl] benzene, 3-ethyl-3- (2-ethylhexyloxymethyl) oxetane, Bis (3-ethyl-3-oxetanylmethyl) ether, 3-ethyl-3- (phenoxymethyl) oxetane, 3-ethyl-3- (cyclohexyloxymethyl) oxetane, Phenol novolak oxetane, Xylylenebisoxetane, 1,3-bis [(3-ethyloxetane-3-yl) methoxy] benzene and the like.
  • Oxetane compounds can also be easily obtained as commercial products.
  • “ETERNACOLL (registered trademark)” series and the like are available.
  • the curable compound including the epoxy compound and the oxetane compound is preferably not diluted with an organic solvent or the like in order to make the adhesive containing these compounds solvent-free. Further, other components constituting the adhesive, even a small component including a cationic polymerization initiator and a sensitizer described below, than those dissolved in an organic solvent, the organic solvent is removed and dried. It is preferable to use a powder or liquid of the compound alone.
  • a cationic polymerization initiator is a compound that generates a cationic species upon irradiation with an active energy ray, for example, ultraviolet rays. Any material can be used as long as it gives the adhesive strength and curing speed required for the compounded adhesive, for example, aromatic diazonium salts; onium salts such as aromatic iodonium salts and aromatic sulfonium salts; iron-arene complexes And the like. Each of these cationic polymerization initiators may be used alone, or a plurality of different types may be used in combination.
  • aromatic diazonium salt examples include the following. Benzenediazonium hexafluoroantimonate, Benzenediazonium hexafluorophosphate, Benzenediazonium hexafluoroborate and the like.
  • aromatic iodonium salt examples include the following. Diphenyliodonium tetrakis (pentafluorophenyl) borate, Diphenyliodonium hexafluorophosphate, Diphenyliodonium hexafluoroantimonate, Bis (4-nonylphenyl) iodonium hexafluorophosphate and the like.
  • aromatic sulfonium salt examples include the following. Triphenylsulfonium hexafluorophosphate, Triphenylsulfonium hexafluoroantimonate, Triphenylsulfonium tetrakis (pentafluorophenyl) borate, Diphenyl (4-phenylthiophenyl) sulfonium hexafluoroantimonate, 4,4'-bis (diphenylsulfonio) diphenyl sulfide bishexafluorophosphate, 4,4'-bis [di ( ⁇ -hydroxyethoxyphenyl) sulfonio] diphenyl sulfide bishexafluoroantimonate, 4,4'-bis [di ( ⁇ -hydroxyethoxyphenyl) sulfonio] diphenyl sulfide bishexafluoroantimonate, 4,4'-bis [di ( ⁇ -
  • iron-arene complex examples include the following. Xylene-cyclopentadienyliron (II) hexafluoroantimonate, Cumene-cyclopentadienyliron (II) hexafluorophosphate, xylene-cyclopentadienyliron (II) tris (trifluoromethylsulfonyl) methanide and the like.
  • the aromatic sulfonium salt has an ultraviolet absorbing property even in a wavelength region of 300 nm or more, so it is excellent in curability and can provide an adhesive layer having good mechanical strength and adhesive strength. Therefore, it is preferably used.
  • cationic polymerization initiators can also be easily obtained.
  • the cationic polymerization initiator is usually blended in a ratio of 0.5 to 20 parts by mass, preferably 1 to 15 parts by mass, based on 100 parts by mass of the active energy ray-curable adhesive. Parts by weight. If the amount is too small, curing will be insufficient, and the mechanical strength and adhesive strength of the adhesive layer may be reduced. On the other hand, if the amount is too large, the amount of ionic substances in the adhesive layer increases, so that the hygroscopicity of the adhesive layer increases, and the durability of the obtained polarizing plate may decrease.
  • an active energy ray-curable adhesive in an electron beam-curable type it is not particularly necessary to include a photopolymerization initiator in the composition, but when using an ultraviolet-curable type, a photoradical generator is used. Is preferred.
  • the photo radical generator include a hydrogen abstraction type photo radical generator and a cleavage type photo radical generator.
  • Examples of the hydrogen abstraction type photoradical generator include 1-methylnaphthalene, 2-methylnaphthalene, 1-fluoronaphthalene, 1-chloronaphthalene, 2-chloronaphthalene, 1-bromonaphthalene, 2-bromonaphthalene, and 1-iodonaphthalene.
  • the cleavage type photoradical generator is a type of photoradical generator in which the compound is cleaved by irradiation with an active energy ray to generate a radical
  • specific examples thereof include arylalkyl such as benzoin ether derivatives and acetophenone derivatives. Examples include, but are not limited to, ketones, oxime ketones, acylphosphine oxides, S-phenyl thiobenzoates, titanocenes, and derivatives thereof having a high molecular weight.
  • cleavage type photoradical generators include 1- (4-dodecylbenzoyl) -1-hydroxy-1-methylethane, 1- (4-isopropylbenzoyl) -1-hydroxy-1-methylethane, 1-benzoyl -1-hydroxy-1-methylethane, 1- [4- (2-hydroxyethoxy) -benzoyl] -1-hydroxy-1-methylethane, 1- [4- (acryloyloxyethoxy) -benzoyl] -1-hydroxy- 1-methylethane, diphenyl ketone, phenyl-1-hydroxy-cyclohexyl ketone, benzyldimethyl ketal, bis (cyclopentadienyl) -bis (2,6-difluoro-3-pyryl-phenyl) titanium, ( ⁇ 6-isopropylbenzene) -( ⁇ 5-cyclopentadienyl) -iron (II) hexaf Fluoro
  • the photoradical generator contained in the electron beam-curable type that is, each of the hydrogen abstraction type and the cleavage type photoradical generators can be used alone.
  • a plurality of photo-radical generators may be used in combination, but more preferable in terms of stability of the photo-radical generator alone and curability are at least one combination of a cleavage type photo-radical generator.
  • acylphosphine oxides are preferable, and more specifically, trimethylbenzoyldiphenylphosphine oxide (trade name "DAROCURE @ TPO"; Ciba Japan Co., Ltd.), bis (2,6-dimethoxy-) Benzoyl)-(2,4,4-trimethyl-pentyl) -phosphine oxide (trade name “CGI @ 403”; Ciba Japan KK) or bis (2,4,6-trimethylbenzoyl) -2,4- Dipentoxyphenyl phosphine oxide (trade name “Irgacure 819”; Ciba Japan K.K.) is preferred.
  • the active energy ray-curable adhesive may contain a sensitizer as needed.
  • a sensitizer By using a sensitizer, the reactivity is improved, and the mechanical strength and the adhesive strength of the adhesive layer can be further improved.
  • the sensitizer those described above can be appropriately applied.
  • the compounding amount is preferably in the range of 0.1 to 20 parts by mass based on 100 parts by mass of the total amount of the active energy ray-curable adhesive.
  • additives can be added to the active energy ray-curable adhesive within a range that does not impair the effect.
  • additives that can be blended include an ion trapping agent, an antioxidant, a chain transfer agent, a tackifier, a thermoplastic resin, a filler, a flow regulator, a plasticizer, and an antifoaming agent.
  • the active energy ray-curable adhesive are usually used in the state of being dissolved in a solvent.
  • the adhesive layer is obtained by applying the active energy ray-curable adhesive to the application surface and drying it.
  • Components that do not dissolve in the solvent may be in a state of being dispersed in the system.
  • the active energy ray-curable adhesive is applied to the bonding surface of the ⁇ wavelength layer 11 with the ⁇ wavelength layer 12, the bonding surface of the ⁇ wavelength layer 12 with the ⁇ wavelength layer 11, or both. Is done. Corona treatment, plasma treatment, flame treatment, and the like are performed on the bonding surface of the 1 / wavelength layer 11 with the 4 wavelength layer 12 and the bonding surface of the ⁇ wavelength layer 12 with the ⁇ wavelength layer 11 in advance. Alternatively, a primer layer or the like may be formed. The thickness of the primer layer is usually about 0.001 to 5 ⁇ m, preferably 0.01 ⁇ m or more, more preferably 4 ⁇ m or less, and further preferably 3 ⁇ m or less. If the primer layer is too thick, the appearance of the composite retardation plate 5 tends to be poor.
  • the viscosity of the active energy ray-curable adhesive is not particularly limited as long as it can be applied by various methods, but the viscosity at 25 ° C. is preferably in the range of 10 to 1,000 mPa ⁇ sec. , And more preferably in the range of 20 to 500 mPa ⁇ sec. If the viscosity is too low, it tends to be difficult to form a layer with a desired thickness. On the other hand, if the viscosity is too large, it tends to be difficult to flow, and it is difficult to obtain a uniform coating film without unevenness.
  • the viscosity referred to here is a value measured at 10 rpm after adjusting the temperature of the adhesive to 25 ° C. using an E-type viscometer.
  • the active energy ray-curable adhesive can be used in an electron beam-curable or ultraviolet-curable mode.
  • an active energy ray is defined as an energy ray that can decompose a compound that generates an active species to generate an active species. Examples of such active energy rays include visible light, ultraviolet light, infrared light, X-rays, ⁇ -rays, ⁇ -rays, ⁇ -rays, and electron beams.
  • the electron beam irradiation condition of the electron beam has an acceleration voltage of preferably 5 kV to 300 kV, more preferably 10 kV to 250 kV. If the accelerating voltage is less than 5 kV, the electron beam may not reach the adhesive and curing may be insufficient. If the accelerating voltage exceeds 300 kV, the penetrating power through the sample is too strong and the electron beam rebounds, and the transparent protective film and The polarizer may be damaged.
  • the irradiation dose is 5 to 100 kGy, more preferably 10 to 75 kGy.
  • the adhesive will be insufficiently cured, and if it exceeds 100 kGy, the retardation layer will be damaged, and the mechanical strength will decrease and yellowing will occur, so that desired optical characteristics cannot be obtained.
  • Electron beam irradiation is usually performed in an inert gas, but may be performed in the air or under a condition in which oxygen is slightly introduced, if necessary.
  • oxygen inhibition is intentionally caused on the surface of the retardation layer to which the electron beam first strikes, and damage to the retardation layer can be prevented, and only the adhesive is efficiently irradiated with the electron beam. be able to.
  • the light irradiation intensity of the active energy ray-curable adhesive is determined depending on the composition of the adhesive and is not particularly limited, but is preferably from 10 to 1,000 mW / cm 2 .
  • the reaction time becomes too long, and when it exceeds 1,000 mW / cm 2 , heat radiated from a light source and heat generated during polymerization of the composition are generated. , May cause yellowing of the constituent materials of the adhesive.
  • the irradiation intensity is preferably an intensity in a wavelength region effective for activating the cationic photopolymerization initiator, more preferably an intensity in a wavelength region of 400 nm or less, and still more preferably a wavelength region of 280 to 320 nm.
  • the integrated light quantity is preferably 10 mJ / cm 2 or more, more preferably set to be 100 ⁇ 1,000mJ / cm 2.
  • the wavelength region (UVA (320 to 390 nm) or UVB (280 to 320 nm) or the like) in which the integrated light amount is required differs depending on the type of the film of the retardation layer and the type of the adhesive used.
  • the light source used for polymerizing and curing the adhesive by irradiation with active energy rays in the present invention is not particularly limited.
  • a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, a xenon lamp, a halogen lamp, a carbon lamp examples include an arc lamp, a tungsten lamp, a gallium lamp, an excimer laser, an LED light source that emits light in a wavelength range of 380 to 440 nm, a chemical lamp, a black light lamp, a microwave-excited mercury lamp, and a metal halide lamp. From the viewpoint of energy stability and simplicity of the device, an ultraviolet light source having a light emission distribution at a wavelength of 400 nm or less is preferable.
  • the ⁇ wavelength layer 11 and the ⁇ wavelength layer 12 may be composed of only the retardation expression layer as long as they include at least one retardation expression layer, or may be formed together with the retardation expression layer. Other layers may be included. Examples of other layers include a base material layer, an alignment film layer, and a protective layer. The other layers do not affect the value of the retardation. Further, in the present specification, the refractive index of the phase difference layer means the refractive index of the phase difference expression layer regardless of the presence or absence of another layer.
  • the retardation expression layer examples include a layer formed by using a liquid crystal compound (hereinafter, referred to as a “liquid crystal layer”) or a stretched film.
  • the phase difference expression layer is preferably a liquid crystal layer from the viewpoint of reducing the thickness of the polarizing plate composite.
  • the retardation developing layer which is a liquid crystal layer, is easier to make thinner than the retardation developing layer, which is a stretched film.
  • the thickness of the retardation expression layer is preferably 0.5 ⁇ m to 10 ⁇ m, and more preferably 0.5 ⁇ m to 5 ⁇ m.
  • the total thickness is 0.5 ⁇ m.
  • the thickness is preferably from 300 ⁇ m to 300 ⁇ m, more preferably from 0.5 ⁇ m to 150 ⁇ m.
  • the optical properties of the retardation layer can be adjusted by the alignment state of the liquid crystal compound constituting the retardation expression layer or the stretching method of the stretched film constituting the retardation expression layer.
  • Re (550) which is an in-plane retardation value at a wavelength of 550 nm, preferably satisfies 210 nm ⁇ Re (550) ⁇ 300 nm. More preferably, 220 nm ⁇ Re (550) ⁇ 290 nm is satisfied.
  • the half-wavelength layer 11 preferably has a refractive index (n11 y ) in the fast axis direction at a wavelength of 589 nm of less than 1.60, and more preferably 1.59 or less.
  • the quarter wavelength layer 12 preferably has an average value of the refractive index (n12 x, y ) at a wavelength of 589 nm of less than 1.58, more preferably 1.57 or less.
  • FIG. 2 is a schematic cross-sectional view schematically illustrating an example of a retardation layer including a retardation expression layer that is a liquid crystal layer and another layer.
  • the retardation layer 30 includes a base layer 31, an alignment layer 32, and a retardation expression layer 33 serving as a liquid crystal layer, which are stacked in this order.
  • the retardation layer is not limited to the retardation layer 30 shown in FIG. 2 as long as the retardation layer includes the retardation expression layer 33 of the liquid crystal layer.
  • the base layer 31 and the alignment layer 32 may be separated from the retardation layer 30 and may be constituted only of the liquid crystal layer.
  • the retardation layer preferably has a configuration in which the base material layer 31 is peeled off, and more preferably has a configuration including only the retardation expression layer 33 of the liquid crystal layer.
  • the base layer 31 has a function as a support layer that supports the alignment layer 32 formed on the base layer 31 and the phase difference expression layer 33 of the liquid crystal layer.
  • the base layer 31 is preferably a film formed of a resin material.
  • the resin material for example, a resin material having excellent transparency, mechanical strength, thermal stability, stretchability, and the like is used.
  • polyolefin resins such as polyethylene and polypropylene; cyclic polyolefin resins such as norbornene polymers; polyester resins such as polyethylene terephthalate and polyethylene naphthalate; (meth) acrylic acid, polymethyl (meth) acrylate and the like (Meth) acrylic acid resin; cellulose ester resin such as triacetyl cellulose, diacetyl cellulose and cellulose acetate propionate; vinyl alcohol resin such as polyvinyl alcohol and polyvinyl acetate; polycarbonate resin; polystyrene resin; Arylate resin; polysulfone resin; polyether sulfone resin; polyamide resin; polyimide resin; polyether ketone resin; polyphenylene sulfide resin; Ren'okishido resins, and mixtures thereof, may be mentioned copolymer and the like.
  • a cyclic polyolefin-based resin a polyester-based resin, a cellulose ester-based resin, and a (meth) acrylic acid-based resin, or a mixture thereof.
  • the “(meth) acrylic acid” means “at least one of acrylic acid and methacrylic acid”.
  • the base material layer 31 may be a single layer obtained by mixing one or two or more of the above resins, or may have a multilayer structure of two or more layers. When it has a multilayer structure, the resin forming each layer may be the same or different.
  • any additive may be added to the resin material forming the resin film.
  • the additive include an ultraviolet absorber, an antioxidant, a lubricant, a plasticizer, a release agent, a coloring inhibitor, a flame retardant, a nucleating agent, an antistatic agent, a pigment, and a coloring agent.
  • the thickness of the base material layer 31 is not particularly limited, it is generally preferably 5 to 200 ⁇ m, more preferably 10 to 200 ⁇ m, and more preferably 10 to 150 ⁇ m from the viewpoint of workability such as strength and handleability. It is more preferred that there be.
  • At least the surface of the base layer 31 on which the alignment layer 32 is formed may be subjected to corona treatment, plasma treatment, flame treatment, or the like, A primer layer or the like may be formed.
  • the separation can be facilitated by adjusting the adhesion at the separation interface.
  • the alignment layer 32 has an alignment regulating force for causing the liquid crystal compound included in the phase difference expression layer 33 of the liquid crystal layer formed on the alignment layer 32 to perform liquid crystal alignment in a desired direction.
  • the alignment layer 32 include an alignment polymer layer formed of an alignment polymer, a photo alignment polymer layer formed of a photo alignment polymer, and a grub alignment layer having a concavo-convex pattern or a plurality of groves (grooves) on the layer surface. be able to.
  • the thickness of the alignment layer 32 is usually 0.01 to 10 ⁇ m, preferably 0.01 to 5 ⁇ m.
  • the oriented polymer layer can be formed by applying a composition in which the oriented polymer is dissolved in a solvent to the base layer 31 to remove the solvent, and performing a rubbing treatment as needed.
  • the alignment regulating force can be arbitrarily adjusted depending on the surface state of the alignment polymer and the rubbing conditions in the alignment polymer layer formed of the alignment polymer.
  • the photo-alignable polymer layer can be formed by applying a composition containing a polymer or monomer having a photoreactive group and a solvent to the base layer 31 and irradiating polarized light.
  • the alignment regulating force can be arbitrarily adjusted depending on, for example, the polarized light irradiation conditions for the photo-alignable polymer.
  • the grub alignment layer is, for example, exposed through a mask for exposure having a pattern-shaped slit on the surface of the photosensitive polyimide film, a method of forming a concavo-convex pattern by performing development, etc., the plate-shaped master having grooves on the surface, active A method of forming an uncured layer of the energy ray-curable resin, transferring this layer to the base layer 31 and curing, forming an uncured layer of the active energy ray-curable resin on the base layer 31,
  • the layer can be formed by, for example, pressing a roll-shaped master having irregularities on the layer to form the irregularities and curing the layer.
  • the phase difference expression layer 33 which is a liquid crystal layer gives a predetermined phase difference to light, and examples thereof include a phase difference expression layer for a 1 / wavelength layer and a phase difference expression layer for a ⁇ wavelength layer. be able to.
  • the retardation layer 33 which is a liquid crystal layer, can be formed using a known liquid crystal compound.
  • the type of the liquid crystal compound is not particularly limited, and a rod-shaped liquid crystal compound, a disc-shaped liquid crystal compound, and a mixture thereof can be used.
  • the liquid crystal compound may be a polymer liquid crystal compound, a polymerizable liquid crystal compound, or a mixture thereof. Examples of the liquid crystal compound include, for example, JP-A-11-513019, JP-A-2005-289980, JP-A-2007-108732, JP-A-2010-244038, JP-A-2010-31223, and JP-A-2010-31223.
  • a composition containing the polymerizable liquid crystal compound is applied on the alignment layer 32 to form a coating film, and the coating film is cured, whereby the retardation developing layer 33 is formed.
  • the thickness of the retardation layer 33 is preferably 0.5 ⁇ m to 10 ⁇ m, and more preferably 0.5 ⁇ m to 5 ⁇ m.
  • the composition containing the polymerizable liquid crystal compound may contain, in addition to the liquid crystal compound, a polymerization initiator, a polymerizable monomer, a surfactant, a solvent, an adhesion improver, a plasticizer, an alignment agent, and the like.
  • a known method such as a die coating method may be used.
  • a method for curing the composition containing the polymerizable liquid crystal compound a known method such as irradiation with active energy rays (for example, ultraviolet rays) can be used.
  • a stretched film is usually obtained by stretching a substrate.
  • a roll in which the base material is wound on a roll is prepared, and the base material is continuously unwound from the winding body and unwound.
  • the substrate is transferred to a heating furnace.
  • the set temperature of the heating furnace is in the range of around the glass transition temperature of the substrate (° C.) to [glass transition temperature + 100] (° C.), preferably around the glass transition temperature (° C.) to [glass transition temperature + 50] (° C.). Range.
  • the uniaxial or biaxial thermal stretching process is performed by adjusting the transport direction and tension and tilting at an arbitrary angle.
  • the stretching ratio is usually 1.1 to 6 times, preferably 1.1 to 3.5 times.
  • the method of stretching in the oblique direction is not particularly limited as long as the orientation axis can be continuously inclined at a desired angle, and a known stretching method can be employed. Examples of such a stretching method include the methods described in JP-A-50-83482 and JP-A-2-113920.
  • the thickness after stretching is determined by the thickness before stretching and the stretching ratio.
  • the substrate is usually a transparent substrate.
  • the transparent substrate means a substrate having transparency capable of transmitting light, in particular, visible light, and transparency refers to a property of having a transmittance of 80% or more to a light beam having a wavelength of 380 to 780 nm.
  • a specific example of the transparent substrate is a light-transmitting resin substrate.
  • the resin constituting the light-transmitting resin substrate examples include polyolefins such as polyethylene and polypropylene; cyclic olefin resins such as norbornene-based polymers; polyvinyl alcohol; polyethylene terephthalate; polymethacrylic acid esters; Cellulose esters such as diacetylcellulose and cellulose acetate propionate; polyethylene naphthalate; polycarbonate; polysulfone; polyethersulfone; polyetherketone; polyphenylene sulfide and polyphenylene oxide. From the viewpoint of availability and transparency, polyethylene terephthalate, polymethacrylate, cellulose ester, cyclic olefin-based resin or polycarbonate is preferred.
  • Cellulose esters are those in which some or all of the hydroxyl groups contained in cellulose are esterified, and can be easily obtained from the market. Further, a cellulose ester base material can be easily obtained from the market. Examples of commercially available cellulose ester base materials include “Fujitac (registered trademark) film” (Fujifilm Corporation); “KC8UX2M”, “KC8UY” and “KC4UY” (Konica Minolta Opto Co., Ltd.) and the like. .
  • polymethacrylate and polyacrylate may be collectively referred to as a (meth) acrylic resin.
  • a (meth) acrylic resin Is readily available from the market.
  • Examples of the (meth) acrylic resin include a homopolymer of an alkyl methacrylate or an alkyl acrylate, and a copolymer of an alkyl methacrylate and an alkyl acrylate.
  • Specific examples of the alkyl methacrylate include methyl methacrylate, ethyl methacrylate, and propyl methacrylate
  • specific examples of the alkyl acrylate include methyl acrylate, ethyl acrylate, and propyl acrylate.
  • the (meth) acrylic resin those commercially available as general-purpose (meth) acrylic resins can be used. What is called an impact-resistant (meth) acrylic resin may be used as the (meth) acrylic resin.
  • the rubber particles are preferably acrylic.
  • the acrylic rubber particles have rubber elasticity obtained by polymerizing an acrylic monomer mainly containing an alkyl acrylate such as butyl acrylate or 2-ethylhexyl acrylate in the presence of a polyfunctional monomer. Particles.
  • the acrylic rubber particles may be such that the particles having rubber elasticity are formed in a single layer, or may be a multilayer structure having at least one rubber elastic layer.
  • Acrylic rubber particles having a multilayer structure include particles having the above rubber elasticity as a nucleus, the periphery of which is covered with a hard alkyl methacrylate polymer, and a hard alkyl methacrylate polymer. A core and its surroundings covered with an acrylic polymer having rubber elasticity as described above.Also, the periphery of the hard cores is covered with a rubber elastic acrylic polymer, and further around the hard alkyl methacrylate. And those covered with a polymer.
  • the average diameter of the rubber particles formed by the elastic layer is usually in the range of about 50 to 400 nm.
  • the content of the rubber particles in the (meth) acrylic resin is usually about 5 to 50 parts by mass per 100 parts by mass of the (meth) acrylic resin. Since the (meth) acrylic resin and the acrylic rubber particles are commercially available in a state of mixing them, commercially available products can be used. Examples of commercially available (meth) acrylic resins containing acrylic rubber particles include "HT55X” and "Technoloy @ S001” sold by Sumitomo Chemical Co., Ltd. "Technoroy @ S001" is sold in film form.
  • Cyclic olefin resin can be easily obtained from the market.
  • Commercially available cyclic olefin-based resins include “Topas” (registered trademark) [Ticona (Germany)], “ARTON” (registered trademark) [JSR Corporation], “ZEONOR” (registered trademark) [Japan] Zeon Corporation], “ZEONEX” (registered trademark) [Zeon Corporation] and “Apel” (registered trademark) [Mitsui Chemicals].
  • Such a cyclic olefin-based resin can be used as a substrate by forming a film by known means such as a solvent casting method and a melt extrusion method.
  • cyclic olefin-based resin substrate can be used.
  • Commercially available cyclic olefin resin base materials include "ESCINA” (registered trademark) [Sekisui Chemical Co., Ltd.], “SCA40” (registered trademark) [Sekisui Chemical Co., Ltd.], and “ZEONOA FILM” (registered trademark). ) [OPTES CORPORATION] and "ARTON FILM” (registered trademark) [JSR Corporation].
  • the cyclic olefin-based resin is a copolymer of a cyclic olefin and a chain olefin or an aromatic compound having a vinyl group
  • the content of the structural unit derived from the cyclic olefin is defined as the total structural units of the copolymer. On the other hand, it is usually 50 mol% or less, preferably 15 to 50 mol%.
  • the chain olefin include ethylene and propylene
  • examples of the aromatic compound having a vinyl group include styrene, ⁇ -methylstyrene, and alkyl-substituted styrene.
  • the cyclic olefin-based resin is a ternary copolymer of a cyclic olefin, a chain olefin, and an aromatic compound having a vinyl group
  • the content ratio of the structural unit derived from the chain olefin is the same as that of the copolymer.
  • the content of the structural unit derived from the aromatic compound having a vinyl group is usually 5 to 80 mol% with respect to all the structural units. It is.
  • Such a terpolymer has the advantage that, in its production, the amount of expensive cyclic olefins can be relatively reduced.
  • the linear polarizing plate 13 may be a film having a polarizing function of obtaining linearly polarized light from transmitted light.
  • the film include a stretched film on which a dye having absorption anisotropy is adsorbed, a film including a film coated with a dye having absorption anisotropy as a polarizer, and the like.
  • the dye having absorption anisotropy include dichroic dyes.
  • Examples of the film to which a dye having absorption anisotropy is applied, which is used as a polarizer, include a stretched film on which a dye having absorption anisotropy is adsorbed, a composition containing a dichroic dye having liquid crystallinity, and Examples include a film having a liquid phase layer obtained by applying a composition containing a colorant and a polymerizable liquid crystal.
  • Linear polarizing plate with stretched film as polarizer A linear polarizing plate including, as a polarizer, a stretched film on which a dye having absorption anisotropy is adsorbed will be described.
  • a stretched film on which a dye having absorption anisotropy is adsorbed, which is a polarizer, is usually formed by uniaxially stretching a polyvinyl alcohol-based resin film, and dyeing the polyvinyl alcohol-based resin film with a dichroic dye.
  • a polarizer may be used as it is as a linear polarizer, or a polarizer obtained by attaching a transparent protective film to at least one surface of the polarizer may be used as a linear polarizer.
  • the thickness of the polarizer obtained by subjecting the polyvinyl alcohol-based resin film to uniaxial stretching, dyeing with a dichroic dye, boric acid treatment, washing with water and drying is preferably 5 to 40 ⁇ m.
  • the material of the protective film to be bonded to one or both surfaces of the polarizer is not particularly limited, for example, cyclic polyolefin resin film, triacetyl cellulose, cellulose acetate based resin such as diacetyl cellulose Films known in the art, such as resin films, polyester resin films made of resins such as polyethylene terephthalate, polyethylene naphthalate, and polybutylene terephthalate, polycarbonate resin films, (meth) acrylic resin films, and polypropylene resin films. Can be mentioned.
  • the thickness of the protective film is usually 300 ⁇ m or less, preferably 200 ⁇ m or less, more preferably 50 ⁇ m or less, and usually 5 ⁇ m or more and preferably 20 ⁇ m or more from the viewpoint of thinning. .
  • the protective film on the viewing side may have a phase difference or may not have a phase difference.
  • the protective film on the side laminated on the half-wavelength layer 11 preferably has a retardation of 10 nm or less.
  • Linear polarizing plate provided with a film having a liquid crystal layer as a polarizer
  • a linear polarizing plate including a film having a liquid crystal layer as a polarizer will be described. Used as a polarizer, as a film coated with a dye having absorption anisotropy, a composition containing a dichroic dye having liquid crystallinity, or a composition containing a dichroic dye and a liquid crystal compound And the resulting film.
  • the film may be used alone as a linear polarizing plate, or may be used as a linear polarizing plate in a configuration having a protective film on one or both sides thereof.
  • Examples of the protective film include the same as the linear polarizing plate including the above-described stretched film as a polarizer.
  • Thin films coated with a dye having absorption anisotropy are preferred to be thin, but if too thin, strength tends to decrease and processability tends to be poor.
  • the thickness of the film is usually 20 ⁇ m or less, preferably 5 ⁇ m or less, more preferably 0.5 ⁇ m or more and 3 ⁇ m or less.
  • the film coated with the dye having absorption anisotropy include the films described in JP-A-2012-33249.
  • the dye having the absorption anisotropy may be directly applied to the half-wavelength layer 11 to form a polarizing plate composite. In this case, there is no need to provide the second adhesive layer 22.
  • the second adhesive layer 22 can be composed of, for example, an adhesive, a water-based adhesive, an active energy ray-curable adhesive, and a combination thereof.
  • the term "second adhesive layer” includes not only an adhesive layer made of an adhesive but also an adhesive layer made of an adhesive.
  • the description of the first adhesive layer 21 applies to the active energy ray-curable adhesive forming the second adhesive layer 22.
  • the first adhesive layer 21 and the second adhesive layer 22 are formed from the same active energy ray-curable adhesive.
  • it may be formed from a different active energy ray-curable adhesive.
  • the refractive index n22 of the second adhesive layer 22 at a wavelength of 589 nm is preferably less than 1.55.
  • the polarizing plate composite may have layers other than those described above. For example, it may have a retardation layer for optical compensation, and may have a third adhesive layer other than the first adhesive layer 21 and the second adhesive layer 22.
  • the third adhesive layer is, for example, an adhesive layer provided on the surface of the 4 wavelength layer 12 on the side opposite to the first adhesive layer 21, and is used for bonding the polarizing plate composite to the image display panel. Can be used.
  • FIGS. 3A to 3D are schematic cross-sectional views schematically showing one example of the method for producing a polarizing plate composite of the present invention.
  • the composite retardation plate 40 is obtained by laminating the retardation expression layer 123, the second alignment layer 122, and the ⁇ wavelength layer 12 including the first base material layer 121 via the first adhesive layer 21. As shown in FIG.
  • the composite retardation plate 40 includes a first base material layer 111, a first alignment layer 112, a first retardation expression layer 113, a first adhesive layer 21, and a second retardation layer.
  • This is a laminate in which the expression layer 123, the second alignment layer 122, and the second base layer 121 are laminated in this order.
  • the linear polarizing plate 13 is laminated on the half-wavelength layer 11 side via the second adhesive layer 22 to obtain the polarizing plate composite 10.
  • the ⁇ wavelength layer 11 and the ⁇ wavelength layer 12 may be arranged such that the phase difference expression layers 113 and 123 are located inside or outside, but FIG. As shown in (C) and (D), it is preferable that the phase difference expression layers 113 and 123 are arranged so as to be located inside and in contact with the first adhesive layer 21.
  • the bonding surface of the ⁇ wavelength layer 11 or the bonding surface of the ⁇ wavelength layer 12, or both As a method of bonding the ⁇ wavelength layer 11 and the ⁇ wavelength layer 12, the bonding surface of the ⁇ wavelength layer 11 or the bonding surface of the ⁇ wavelength layer 12, or both, The active energy ray-curable adhesive constituting the first adhesive layer 21 is applied, and the other bonding surface is laminated thereon. Then, the active layer is activated from the ⁇ wavelength layer 11 or the ⁇ wavelength layer 12 side.
  • a method of curing the adhesive by irradiating with energy rays may be used.
  • Various coating methods such as a doctor blade, a wire bar, a die coater, a comma coater, and a gravure coater can be used for coating the adhesive forming the first adhesive layer 21.
  • Either or both of the bonding surface of the ⁇ wavelength layer 11 and the bonding surface of the 4 wavelength layer 12 may be subjected to a corona treatment, a plasma treatment, or a primer layer.
  • the composite retardation plate 40 may be a laminate as shown in FIG. 3C or a laminate in which at least one of the first base layer 111 and the second base layer 121 is peeled off. You may. Further, a stacked body in which the first base material layer 111 and the first alignment layer 112 are separated from the stacked body illustrated in FIG. 3C may be used, or a second stacked body may be formed from the stacked body illustrated in FIG. It may be a laminate in which the material layer 121 and the second alignment layer 122 are separated. 4A and 4B show specific examples.
  • FIGS. 4A and 4B are schematic cross-sectional views schematically showing another example of a method for manufacturing a polarizing plate composite from the composite retardation plate 40 shown in FIG. 3C.
  • the first base layer 111 and the first alignment layer 112, the second base layer 121, and the second alignment layer 122 are formed from the composite retardation plate 40 shown in FIG. By peeling off, a composite retardation plate 40 'was obtained.
  • the second adhesive layer 22 was interposed on the half-wavelength layer 11 (first retardation expression layer 113) side.
  • the polarizing plate composite 10 is obtained by stacking the linear polarizing plates 13.
  • the polarizing plate composite which is a circular polarizing plate, can be used in various image display devices as an optical laminate that is disposed on the viewing side of the image display panel and imparts antireflection performance.
  • An image display device is a device having an image display panel, and includes a light emitting element or a light emitting device as a light emitting source. Examples of the image display device include a liquid crystal display device, an organic electroluminescence (EL) display device, an inorganic electroluminescence (EL) display device, a touch panel display device, an electron emission display device (for example, a field emission display (FED), a surface field emission display).
  • EL organic electroluminescence
  • EL inorganic electroluminescence
  • FED field emission display
  • the liquid crystal display device examples include a transmission type liquid crystal display device, a transflective type liquid crystal display device, a reflection type liquid crystal display device, a direct-view type liquid crystal display device, and a projection type liquid crystal display device.
  • the optical laminate which is a circularly polarizing plate, may include an image display panel having a bent portion, and may be a three-dimensional image display device that displays a three-dimensional image. It can be effectively used for a luminescence (EL) display device.
  • EL luminescence
  • A-1 3 ', 4'-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate (trade name: CEL2021P, manufactured by Daicel Corporation)
  • A-2 Bisphenol F type epoxy resin (trade name: EXA-830CRP, manufactured by DIC Corporation)
  • A-3 Fluorene type epoxy resin (trade name: OGSOL EG-200, manufactured by Osaka Gas Chemical Co., Ltd.)
  • A-4 DCPDM type epoxy resin (trade name: EP-4088S, manufactured by ADEKA Corporation)
  • A-5 Neopentyl glycol diglycidyl ether (trade name: EX-211L, manufactured by Nagase ChemteX Corporation)
  • A-6 Biphenyl type epoxy resin (trade name: EX-142, manufactured by Nagase ChemteX Corporation)
  • A-7 2-ethylhexyl glycidyl ether (trade name: EX-121, manufactured by Nagase Chem
  • (Initiator) B Cationic polymerization initiator (trade name: CPI-100P, manufactured by San Apro Co., Ltd., 50% by mass solution)
  • the adhesive prepared above was coated on one side of a stretched norbornene-based resin film [“Zeonor Film” manufactured by Nippon Zeon Co., Ltd.] using a bar coater [manufactured by Daiichi Rika Co., Ltd.].
  • a cured product was obtained by irradiating ultraviolet rays with an integrated light amount of 600 mJ / cm 2 (UV-B) using [Fusion UV Systems Co., Ltd.].
  • the film thickness of the obtained cured product was about 30 ⁇ m.
  • the norbornene-based resin film is peeled from the obtained cured product, and the refractive index (589 nm) of the cured product layer is measured at 25 ° C. using a multi-wavelength Abbe refractometer (“DR-M2” manufactured by Atago Co., Ltd.). did. Table 1 shows the results.
  • the polyvinyl alcohol film having undergone the iodine dyeing step was immersed in an aqueous solution of potassium iodide / boric acid / water having a mass ratio of 12/5/100 at 56.5 ° C. to perform boric acid treatment (boric acid treatment step). ).
  • the polyvinyl alcohol film having undergone the boric acid treatment step was washed with pure water at 8 ° C., and then dried at 65 ° C. to obtain a polarizer in which iodine was adsorbed and oriented in polyvinyl alcohol.
  • stretching was performed in the iodine dyeing step and the boric acid treatment step.
  • the total stretching ratio in such stretching was 5.3 times, and the thickness of the obtained polarizer was 27 ⁇ m.
  • a saponified triacetyl cellulose film (trade name: KC4UYTAC, manufactured by Konica Minolta, thickness: 40 ⁇ m) was bonded to both sides of the obtained polarizer with a nip roll via an aqueous adhesive.
  • the obtained bonded product was dried at 60 ° C. for 2 minutes while keeping the tension of 430 N / m to obtain a polarizing plate having a triacetyl cellulose film as a protective film on both sides.
  • the above-mentioned water-based adhesive is obtained by adding 100 parts of water, 3 parts of a carboxyl group-modified polyvinyl alcohol (Kuraray Povar KL318, manufactured by Kuraray), and a water-soluble polyamide epoxy resin (Sumilez Resin 650, manufactured by Sumika Chemtex, solid content concentration). It was prepared by adding 1.5 parts of a (30% aqueous solution).
  • the ⁇ / 2 alignment treatment was performed by applying a coating liquid for an alignment film on a transparent resin substrate and drying. Next, a coating liquid containing a discotic liquid crystal compound is applied to the alignment surface, and the alignment of the liquid crystal compound is fixed by heating and UV irradiation, whereby a 2 ⁇ m thick retardation expression layer is formed on the transparent resin substrate.
  • the obtained half-wave layer has a refractive index n11 y in the fast axis direction at a wavelength of 589 nm of 1.50, a refractive index n11 x in the slow axis direction of 1.62, and a refractive index n11 in the thickness direction. z was 1.62.
  • the three-dimensional average refractive index n11 x, y, z calculated from the three refractive indices n11 x , n11 y , and n11 z is 1.58, and the in-plane average refractive index calculated from the two in-plane refractive indices n11 x , n11 y.
  • the ratio was n11 x and y was 1.56.
  • a ⁇ / 4 alignment treatment was performed by applying a coating liquid for an alignment film on a transparent resin substrate and drying it.
  • a 1 ⁇ m thick retardation expression layer is formed on the transparent resin substrate by applying a coating liquid containing a polymerizable nematic liquid crystal monomer in a rod shape on the alignment surface and solidifying the coating liquid while maintaining the refractive index anisotropy.
  • the three-dimensional average refractive index n12 x, y, z calculated from the three refractive indices n12 x , n12 y , and n12 z is 1.53, and the surface calculated from the two in-plane refractive indices n12 x , n12 y.
  • the inner average refractive index n12 x, y was 1.55.
  • Corona treatment was applied to the obtained retardation developing layer of the ⁇ wavelength layer and the retardation developing layer of the ⁇ wavelength layer.
  • the adhesive A shown in Table 1 was applied to the corona-treated quarter-wave retardation layer, and the corona-treated half-wave layer was adjusted so that the retardation-developing layer side faces the half-wave layer.
  • the two-wavelength layer was laminated and bonded with a laminator to obtain a laminate. At this time, they were bonded so that the angle between the slow axis of the ⁇ wavelength layer and the slow axis of the ⁇ wavelength layer was 60 °.
  • An ultraviolet ray was irradiated from the quarter-wave layer of the laminate using an ultraviolet ray irradiator (manufactured by Fusion UV Systems Co., Ltd.) with an integrated light amount of 400 mJ / cm 2 (UV-B), and the adhesive was cured.
  • a composite retardation plate having a laminated structure of “/ 4 wavelength layer” / first adhesive layer / “1/2 wavelength layer” was obtained.
  • the thickness of the first adhesive layer was 1.5 ⁇ m.
  • the alignment film and the transparent resin substrate of the ⁇ wavelength layer of the obtained composite retardation plate are peeled off, and the above-mentioned polarizing plate and the ⁇ wavelength layer's retardation expression layer are bonded together using an acrylic adhesive. did.
  • the thickness of the acrylic pressure-sensitive adhesive (the thickness of the second adhesive layer) was 5 ⁇ m, and the angle between the transmission axis of the polarizing plate and the fast axis of the 1 / wavelength layer (“axis angle” in Table 1). ) was 15 °.
  • the alignment film and the transparent resin substrate on the 1 / wavelength layer side are peeled off, and a laminate of polarizing plate / second adhesive layer / “1 / wavelength layer” / first adhesive layer / “1 / wavelength layer” is formed.
  • a polarizing plate composite having a structure was obtained.
  • Example 2 A polarizing plate composite was produced in the same manner as in Example 1, except that the adhesive B was used as the adhesive for forming the first adhesive layer.
  • Example 3 A polarizing plate composite was produced in the same manner as in Example 1, except that the adhesive C was used as an adhesive for forming the first adhesive layer.
  • Example 4 A polarizing plate composite was produced in the same manner as in Example 1, except that the adhesive D was used as an adhesive for forming the first adhesive layer.
  • Example 1 A polarizing plate composite was produced in the same manner as in Example 1, except that the adhesive E was used as an adhesive for forming the first adhesive layer.
  • Example 2 A polarizing plate composite was produced in the same manner as in Example 1 except that the adhesive F was used as an adhesive for forming the first adhesive.
  • Polarization was performed in the same manner as in Example 1 except that the polarizing plate was bonded so that the angle formed by the transmission axis of the polarizing plate and the fast axis of the half-wave layer (referred to as “axial angle” in Table 1) was 105 °.
  • a plate composite was prepared.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Polarising Elements (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

A polarizing plate composite comprising, in order: a linear polarizing plate; a 1/2 wavelength layer; a first adhesive layer comprising an active energy ray curable adhesive that has been cured; and a 1/4 wavelength layer. The angle formed between the fast axis of the 1/2 wavelength layer and the transmission axis of the linear polarizing plate is 10–20°. The absolute value for the difference between the refractive index of the first adhesive layer at a wavelength of 589 nm and the refractive index in the fast axis direction of the 1/2 wavelength layer at a wavelength of 589 nm is less than 0.05.

Description

偏光板複合体、及び画像表示装置Polarizing plate composite and image display device
 本発明は、偏光板複合体、及び当該偏光板複合体を有する画像表示装置に関する。 The present invention relates to a polarizing plate composite and an image display device having the polarizing plate composite.
 従来、画像表示装置において、画像表示パネルの視認側に反射防止性能を有する光学積層体を配置して、外来光の反射による視認性の低下を抑制する方法が採用されている。 Conventionally, in an image display device, a method has been adopted in which an optical laminate having antireflection performance is arranged on the viewing side of an image display panel to suppress a decrease in visibility due to reflection of extraneous light.
 反射防止性能を有する光学積層体として、直線偏光板及び位相差層により構成される円偏光板が知られている。円偏光板では、画像表示パネルに向かう外来光を直線偏光板により直線偏光に変換し、続く位相差層により円偏光に変換する。円偏光に変換された外来光は、画像表示パネルの表面で反射されるものの、この反射の際に偏光面の回転方向が逆転し、位相差層により直線偏光に変換された後、続く直線偏光板により遮光される。その結果、外部への出射が著しく抑制される。 円 As an optical laminate having antireflection performance, a circularly polarizing plate composed of a linear polarizing plate and a retardation layer is known. In the circularly polarizing plate, extraneous light directed to the image display panel is converted into linearly polarized light by a linearly polarizing plate, and then converted into circularly polarized light by a phase difference layer. The external light converted to circularly polarized light is reflected on the surface of the image display panel, but the direction of rotation of the polarization plane is reversed at the time of this reflection, and is converted to linearly polarized light by the retardation layer. Light is shielded by the plate. As a result, emission to the outside is significantly suppressed.
 特開2018-17996号公報(特許文献1)には、複数の位相差層を有する位相差層付偏光板において、複数の位相差層の平均屈折率の差を調整することにより、反射光のムラを抑制し視認性を改善し得ることが記載されている。 Japanese Patent Application Laid-Open No. 2018-17996 (Patent Document 1) discloses that, in a polarizing plate with a retardation layer having a plurality of retardation layers, the difference in average refractive index between the plurality of retardation layers is adjusted so that reflected light can be reduced. It is described that unevenness can be suppressed and visibility can be improved.
特開2018-17996号公報JP 2018-17996 A
 本発明は、干渉ムラの発生が抑制された新規な偏光板複合体、及び当該複合偏光板を備える画像表示装置を提供することを目的とする。 The object of the present invention is to provide a novel polarizing plate composite in which the occurrence of interference unevenness is suppressed, and an image display device including the composite polarizing plate.
 本発明は、以下に示す偏光板複合体、及び画像表示装置を提供する。
 〔1〕 直線偏光板と、1/2波長層と、活性エネルギー線硬化型接着剤を硬化させてなる第1接着層と、1/4波長層とをこの順に備え、
 前記1/2波長層の進相軸と、前記直線偏光板の透過軸とのなす角度が10°以上20°以下であり、
 前記第1接着層の波長589nmでの屈折率と、前記1/2波長層の波長589nmでの進相軸方向の屈折率との差の絶対値が0.05未満である、偏光板複合体。
 〔2〕 前記第1接着層は、波長589nmでの屈折率が1.55未満である、〔1〕に記載の偏光板複合体。
 〔3〕 前記1/4波長層は、波長589nmでの進相軸方向の屈折率と遅相軸方向の屈折率の平均値である面内平均屈折率が1.58未満である、〔1〕又は〔2〕に記載の偏光板複合体。
 〔4〕 前記第1接着層の波長589nmでの屈折率と、前記1/4波長層の波長589nmでの進相軸方向の屈折率と遅相軸方向の屈折率の平均値である面内平均屈折率との差の絶対値が0.05未満である、〔1〕~〔3〕のいずれか1項に記載の偏光板複合体。
 〔5〕 円偏光板である、〔1〕~〔4〕のいずれか1項に記載の偏光板複合体。
 〔6〕 前記1/2波長層は、液晶層である位相差発現層を含む、〔1〕~〔5〕のいずれか1項に記載の偏光板複合体。
 〔7〕 前記1/4波長層は、液晶層である位相差発現層を含む、〔1〕~〔6〕のいずれか1項に記載の偏光板複合体。
 〔8〕 前記第1接着層は、厚みが5μm以下である、〔1〕~〔7〕のいずれか1項に記載の偏光板複合体。
 〔9〕 画像表示パネルと、前記画像表示パネルの視認側に配置された〔1〕~〔8〕のいずれか1項に記載の偏光板複合体とを含む、画像表示装置。
 〔10〕 前記偏光板複合体は、前記直線偏光板が視認側に位置する向きで配置されている、〔9〕に記載の画像表示装置。
 〔11〕 有機エレクトロルミネッセンス表示装置である、〔9〕又は〔10〕に記載の画像表示装置。
The present invention provides a polarizing plate composite and an image display device described below.
[1] A linear polarizing plate, a 波長 wavelength layer, a first adhesive layer obtained by curing an active energy ray-curable adhesive, and a 波長 wavelength layer are provided in this order,
The angle between the fast axis of the 1 / wavelength layer and the transmission axis of the linear polarizer is 10 ° or more and 20 ° or less,
The polarizing plate composite, wherein the absolute value of the difference between the refractive index of the first adhesive layer at a wavelength of 589 nm and the refractive index of the 波長 wavelength layer in the fast axis direction at a wavelength of 589 nm is less than 0.05. .
[2] The polarizing plate composite according to [1], wherein the first adhesive layer has a refractive index at a wavelength of 589 nm of less than 1.55.
[3] The quarter wavelength layer has an in-plane average refractive index, which is an average value of a refractive index in a fast axis direction and a refractive index in a slow axis direction at a wavelength of 589 nm, of less than 1.58. ] Or the polarizing plate composite according to [2].
[4] In-plane which is the average value of the refractive index of the first adhesive layer at a wavelength of 589 nm and the refractive index of the 1 / wavelength layer at a wavelength of 589 nm in the fast axis direction and the slow axis direction. The polarizing plate composite according to any one of [1] to [3], wherein the absolute value of the difference from the average refractive index is less than 0.05.
[5] The polarizing plate composite according to any one of [1] to [4], which is a circular polarizing plate.
[6] The polarizing plate composite according to any one of [1] to [5], wherein the 波長 wavelength layer includes a retardation developing layer that is a liquid crystal layer.
[7] The polarizing plate composite according to any one of [1] to [6], wherein the 波長 wavelength layer includes a retardation developing layer that is a liquid crystal layer.
[8] The polarizing plate composite according to any one of [1] to [7], wherein the first adhesive layer has a thickness of 5 μm or less.
[9] An image display device comprising: an image display panel; and the polarizing plate composite according to any one of [1] to [8] disposed on the viewing side of the image display panel.
[10] The image display device according to [9], wherein the polarizing plate composite is arranged in a direction in which the linear polarizing plate is located on a viewing side.
[11] The image display device according to [9] or [10], which is an organic electroluminescence display device.
 本発明の偏光板複合体によれば、干渉ムラを抑制することができる。 According to the polarizing plate composite of the present invention, interference unevenness can be suppressed.
本発明の偏光板複合体の一例を模式的に示す概略断面図である。FIG. 1 is a schematic cross-sectional view schematically showing one example of a polarizing plate composite of the present invention. 液晶層を位相差発現層として備える位相差層の一例を模式的に示す概略断面図である。FIG. 3 is a schematic cross-sectional view schematically illustrating an example of a retardation layer including a liquid crystal layer as a retardation expression layer. (A)~(D)は、本発明の偏光板複合体の製造方法における各製造工程の一例を模式的に示す概略断面図である。(A) to (D) are schematic cross-sectional views schematically showing an example of each production step in the method for producing a polarizing plate composite of the present invention. (A),(B)は、本発明の偏光板複合体の製造方法における各製造工程の他の例を模式的に示す概略断面図である。(A), (B) is schematic sectional drawing which shows typically another example of each manufacturing process in the manufacturing method of the polarizing plate composite of this invention.
 以下、図面を参照しながら本発明の偏光板複合体及び画像表示装置について説明する。 Hereinafter, the polarizing plate composite and the image display device of the present invention will be described with reference to the drawings.
 [複合位相差板]
 図1は、本発明の偏光板複合体の一例を模式的に示す概略断面図である。図1に示すように、偏光板複合体10は、直線偏光板13、第2接着層22、1/2波長層11、第1接着層21、1/4波長層12が順に積層されている。偏光板複合体10において、1/2波長層11の進相軸と直線偏光板13の透過軸とのなす角度が10°以上20°以下であり、好ましくは12°以上18°以下であり、さらに好ましくは約15°である。偏光板複合体10において、1/4波長層12の進相軸と直線偏光板13の透過軸とのなす角度が好ましくは70°以上80°以下であり、より好ましくは72°以上78°以下であり、さらに好ましくは約75°である。偏光板複合体10において、1/2波長層11の遅相軸と、1/4波長層12の遅相軸とのなす角度は、好ましくは55°以上65°以下であり、より好ましくは57°以上63°以下であり、さらに好ましくは約60°である。このような角度をなすように積層されていることにより、偏光板複合体10は、円偏光板として好適に用いることができる。
[Composite retarder]
FIG. 1 is a schematic cross-sectional view schematically showing one example of the polarizing plate composite of the present invention. As shown in FIG. 1, the polarizing plate composite 10 has a linear polarizing plate 13, a second adhesive layer 22, a 波長 wavelength layer 11, a first adhesive layer 21, and a 波長 wavelength layer 12 sequentially laminated. . In the polarizing plate composite 10, the angle between the fast axis of the half-wavelength layer 11 and the transmission axis of the linear polarizing plate 13 is 10 ° or more and 20 ° or less, preferably 12 ° or more and 18 ° or less, More preferably, it is about 15 °. In the polarizing plate composite 10, the angle between the fast axis of the quarter wavelength layer 12 and the transmission axis of the linear polarizing plate 13 is preferably 70 ° or more and 80 ° or less, more preferably 72 ° or more and 78 ° or less. And more preferably about 75 °. In the polarizing plate composite 10, the angle between the slow axis of the 1 / wavelength layer 11 and the slow axis of the 波長 wavelength layer 12 is preferably 55 ° or more and 65 ° or less, more preferably 57 ° or less. It is not less than 63 ° and not more than 63 °, more preferably about 60 °. By being laminated so as to form such an angle, the polarizing plate composite 10 can be suitably used as a circularly polarizing plate.
 上記角度以外の角度の関係であっても、円偏光板として好適に用いることができる偏光板複合体を構成することができるものの、上記の関係を満たすことにより、第1接着層の波長589nmでの屈折率が1.55未満の場合であっても、干渉ムラを効果的に抑制することができる。 Even with a relationship of an angle other than the above angle, a polarizing plate composite that can be suitably used as a circular polarizing plate can be formed, but by satisfying the above relationship, the wavelength of the first adhesive layer at 589 nm is satisfied. Even when the refractive index is less than 1.55, the interference unevenness can be effectively suppressed.
 偏光板複合体10の厚みは、薄型化の観点から、30μm~50μmであることが好ましく、30μm~200μmであることがより好ましく、30μm~150μmであることがさらに好ましい。 The thickness of the polarizing plate composite 10 is preferably 30 μm to 50 μm, more preferably 30 μm to 200 μm, and still more preferably 30 μm to 150 μm, from the viewpoint of thinning.
 第1接着層21について、波長589nmでの屈折率を「屈折率n21」とする。第1接着層21は、位相差を有さず、どの方向の屈折率であっても同じ値とみなすことができる。したがって、「屈折率n21」は、どの方向の屈折率であってもよい。 に つ い て The refractive index of the first adhesive layer 21 at a wavelength of 589 nm is referred to as “refractive index n21”. The first adhesive layer 21 has no phase difference and can be regarded as having the same value regardless of the refractive index in any direction. Therefore, the “refractive index n21” may be a refractive index in any direction.
 1/2波長層11について、波長589nmでの遅相軸方向の屈折率を「屈折率n11」、進相軸方向の屈折率を「屈折率n11」、厚み方向の屈折率を「屈折率n11」、n11とn11との平均値を「面内平均屈折率n11x,y」、n11とn11とn11との平均値を「3次元平均屈折率n11x,y,z」とする。面内平均屈折率n11x,y及び3次元平均屈折率n11x,y,zは、それぞれ以下の式(1)、式(2)で算出される値とする。
 n11x,y=(n11+n11)/2    (1)
 n11x,y,z=(n11+n11+n11)/3     (2)
Regarding the 1 / wavelength layer 11, the refractive index at the wavelength of 589 nm in the slow axis direction is “refractive index n11 x ”, the refractive index in the fast axis direction is “refractive index n11 y ”, and the refractive index in the thickness direction is “refraction”. Ratio n11 z , the average value of n11 x and n11 y is “in-plane average refractive index n11 x, y ”, and the average value of n11 x , n11 y, and n11 z is “three-dimensional average refractive index n11 x, y”. , Z ”. The in-plane average refractive index n11 x, y and the three-dimensional average refractive index n11 x, y, z are values calculated by the following equations (1) and (2), respectively.
n11 x, y = (n11 x + n11 y ) / 2 (1)
n11 x, y, z = ( n11 x + n11 y + n11 z) / 3 (2)
 1/4波長層12について、波長589nmでの遅相軸方向の屈折率を「屈折率n12」、進相軸方向の屈折率を「屈折率n12」、厚み方向の屈折率を「屈折率n12」、n12とn12との平均値を「面内平均屈折率n12x,y」、n12とn12とn12との平均値を「3次元平均屈折率n12x,y,z」とする。面内平均屈折率n12x,y及び3次元平均屈折率n12x,y,zは、それぞれ以下の式(3)、式(4)で算出される値とする。
 n12x,y=(n12+n12)/2     (3)
 n12x,y,z=(n12+n12+n12)/3     (4)
Regarding the 層 wavelength layer 12, the refractive index at the wavelength of 589 nm in the slow axis direction is “refractive index n12 x ”, the refractive index in the fast axis direction is “refractive index n12 y ”, and the refractive index in the thickness direction is “refraction”. Ratio n12 z ”, the average value of n12 x and n12 y is“ in-plane average refractive index n12 x, y ”, and the average value of n12 x , n12 y and n12 z is“ three-dimensional average refractive index n12 x, y ”. , Z ”. The in-plane average refractive index n12 x, y and the three-dimensional average refractive index n12 x, y, z are values calculated by the following equations (3) and (4), respectively.
n12 x, y = (n12 x + n12 y ) / 2 (3)
n12 x, y, z = (n12 x + n12 y + n12 z ) / 3 (4)
 <第1接着層>
 第1接着層21は、活性エネルギー線硬化型接着剤を硬化させてなる。第1接着層21の厚みは、0.1μm~50μmであることが好ましく、0.1μm~5μmであることがさらに好ましい。
<First adhesive layer>
The first adhesive layer 21 is formed by curing an active energy ray-curable adhesive. The thickness of the first adhesive layer 21 is preferably from 0.1 μm to 50 μm, and more preferably from 0.1 μm to 5 μm.
 第1接着層21の波長589nmでの屈折率n21と、1/2波長層11の波長589nmでの進相軸方向の屈折率n11との差である式(5)で算出される絶対値X1:
 X1=|n11-n21|   (5)
は0.05未満であり、好ましくは0.04以下である。第1接着層21と1/2波長層11が、屈折率について上記関係を満たすことにより、干渉ムラを抑制することができる。第1接着層21と1/2波長層11が、屈折率について上記関係を満たすようにするためには、例えば、第1接着層21の形成に用いる活性エネルギー線硬化型接着剤の組成を調整することにより、または1/2波長層11の形成に用いる液晶材料を調整することにより実現することができる。
The refractive index n21 of the wavelength 589nm of the first adhesive layer 21, the absolute value calculated by 1/2 which is the difference between the refractive index n11 y of the fast axis direction at a wavelength 589nm wavelength layer 11 (5) X1:
X1 = | n11 y -n21 | (5)
Is less than 0.05, preferably 0.04 or less. When the first adhesive layer 21 and the half-wavelength layer 11 satisfy the above relationship with respect to the refractive index, interference unevenness can be suppressed. In order for the first adhesive layer 21 and the half-wavelength layer 11 to satisfy the above-mentioned relationship with respect to the refractive index, for example, the composition of the active energy ray-curable adhesive used for forming the first adhesive layer 21 is adjusted. Or by adjusting the liquid crystal material used to form the half-wavelength layer 11.
 第1接着層21の波長589nmでの屈折率n21と、1/4波長層12の波長589nmでの面内平均屈折率n12x,yとの差である式(6)で算出される絶対値X2:
 X2=|n12x,y-n21|   (6)
は好ましくは0.05未満であり、より好ましくは0.04以下である。第1接着層21と1/4波長層12が、屈折率について上記関係を満たすことにより、干渉ムラを抑制することができる。第1接着層21と1/4波長層12が、屈折率について上記関係を満たすようにするためには、例えば、第1接着層21の形成に用いる活性エネルギー線硬化型接着剤の組成を調整することにより、または1/4波長層11の形成に用いる液晶材料を調整することにより実現することができる。
Absolute value calculated by equation (6), which is the difference between the refractive index n21 of the first adhesive layer 21 at a wavelength of 589 nm and the in-plane average refractive index n12 x, y of the quarter wavelength layer 12 at a wavelength of 589 nm. X2:
X2 = | n12 x, y -n21 | (6)
Is preferably less than 0.05, more preferably 0.04 or less. When the first adhesive layer 21 and the 波長 wavelength layer 12 satisfy the above-mentioned relationship in refractive index, interference unevenness can be suppressed. In order for the first adhesive layer 21 and the 波長 wavelength layer 12 to satisfy the above-mentioned relationship with respect to the refractive index, for example, the composition of the active energy ray-curable adhesive used for forming the first adhesive layer 21 is adjusted. Or by adjusting the liquid crystal material used to form the quarter wavelength layer 11.
 第1接着層21は、波長589nmでの屈折率n21は、例えば1.55未満である。
本発明においては、第1接着層21の屈折率n21が1.55未満と小さい場合であっても、干渉ムラを抑制することができる。
The first adhesive layer 21 has a refractive index n21 at a wavelength of 589 nm, for example, less than 1.55.
In the present invention, even when the refractive index n21 of the first adhesive layer 21 is as small as less than 1.55, interference unevenness can be suppressed.
 活性エネルギー線硬化型接着剤は、活性エネルギー線の照射を受けて硬化するものであある。例えば、エポキシ化合物とカチオン重合開始剤を含有するカチオン重合性の活性エネルギー線硬化型接着剤、アクリル系硬化成分とラジカル重合開始剤を含有するラジカル重合性の活性エネルギー線硬化型接着剤、エポキシ化合物のようなカチオン重合性の硬化成分及びアクリル系化合物のようなラジカル重合性の硬化成分の両者を含有し、そこにカチオン重合開始剤及びラジカル重合開始剤を配合した活性エネルギー線硬化型接着剤、及び開始剤を含まない活性エネルギー線硬化型接着剤に電子ビームを照射することで硬化させる電子線硬化型接着剤等が挙げられる。ラジカル重合は硬化収縮が大きい傾向にあるため、エポキシ化合物とカチオン重合開始剤を含有するカチオン重合性の活性エネルギー線硬化型接着剤が好ましい。 Active energy ray-curable adhesives are those that cure when irradiated with active energy rays. For example, a cationically polymerizable active energy ray-curable adhesive containing an epoxy compound and a cationic polymerization initiator, a radically polymerizable active energy ray-curable adhesive containing an acrylic curing component and a radical polymerization initiator, an epoxy compound An active energy ray-curable adhesive containing both a cationically polymerizable curing component and a radically polymerizable curing component such as an acrylic compound, in which a cationic polymerization initiator and a radical polymerization initiator are blended. And an electron beam-curable adhesive cured by irradiating an active energy ray-curable adhesive containing no initiator with an electron beam. Since radical polymerization tends to cause large curing shrinkage, a cationically polymerizable active energy ray-curable adhesive containing an epoxy compound and a cationic polymerization initiator is preferable.
  カチオン重合可能なエポキシ化合物であって、それ自身が室温において液体であり、溶剤を存在させなくても適度な流動性を有し、適切な硬化接着強度を与えるものを選択し、それに適したカチオン重合開始剤を配合した活性エネルギー線硬化型接着剤は、1/2波長層と1/4波長層とを接着する工程で通常必要となる乾燥設備を省くことができる。また、適切な活性エネルギー線量を照射することで硬化速度を促進させ、生産速度を向上させることもできる。 Select a cationically polymerizable epoxy compound that is itself liquid at room temperature, has appropriate fluidity even without the presence of a solvent, and gives an appropriate cured adhesive strength. The active energy ray-curable adhesive containing the polymerization initiator can eliminate the drying equipment which is usually required in the step of bonding the 波長 wavelength layer and the 波長 wavelength layer. Further, by irradiating an appropriate active energy dose, the curing speed can be accelerated, and the production speed can be improved.
 このような接着剤に用いられるエポキシ化合物は、例えば、水酸基を有する芳香族化合物又は鎖状化合物のグリシジルエーテル化物、アミノ基を有する化合物のグリシジルアミノ化物、C-C二重結合を有する鎖状化合物のエポキシ化物、飽和炭素環に直接若しくはアルキレンを介してグリシジルオキシ基若しくはエポキシエチル基が結合しているか、又は飽和炭素環に直接エポキシ基が結合している脂環式エポキシ化合物などであることができる。これらのエポキシ化合物は、それぞれ単独で用いてもよいし、異なる複数種を併用してもよい。なかでも脂環式エポキシ化合物は、カチオン重合性に優れることから、好ましく用いられる。 Epoxy compounds used in such adhesives include, for example, glycidyl ethers of aromatic compounds or chain compounds having a hydroxyl group, glycidyl aminations of compounds having an amino group, and chain compounds having a CC double bond. Glycidyloxy group or epoxyethyl group bonded directly or via alkylene to a saturated carbocycle, or an alicyclic epoxy compound having an epoxy group bonded directly to a saturated carbocycle. it can. Each of these epoxy compounds may be used alone, or a plurality of different types may be used in combination. Of these, alicyclic epoxy compounds are preferably used because of their excellent cationic polymerizability.
 水酸基を有する芳香族化合物又は鎖状化合物のグリシジルエーテル化物は、例えば、これら芳香族化合物又は鎖状化合物の水酸基にエピクロロヒドリンを塩基性条件下で付加縮合させる方法によって製造できる。このような、水酸基を有する芳香族化合物又は鎖状化合物のグリシジルエーテル化物には、ビスフェノール類のジグリシジルエーテル、多芳香環型エポキシ樹脂、アルキレングリコール又はポリアルキレングリコールのジグリシジルエーテルなどが包含される。 The glycidyl etherified product of an aromatic compound or a chain compound having a hydroxyl group can be produced, for example, by a method in which epichlorohydrin is addition-condensed to the hydroxyl group of the aromatic compound or the chain compound under basic conditions. Such a glycidyl etherified product of an aromatic compound or a chain compound having a hydroxyl group includes diglycidyl ether of bisphenols, polyaromatic ring type epoxy resin, diglycidyl ether of alkylene glycol or polyalkylene glycol, and the like. .
 ビスフェノール類のジグリシジルエーテルとして、例えば、ビスフェノールAのグリシジルエーテル化物及びそのオリゴマー体、ビスフェノールFのグリシジルエーテル化物及びそのオリゴマー体、3,3′,5,5′-テトラメチル-4,4′-ビフェノールのグリシジルエーテル化物及びそのオリゴマー体などが挙げられる。 Examples of the diglycidyl ether of bisphenols include glycidyl ether of bisphenol A and its oligomer, glycidyl ether of bisphenol F and its oligomer, 3,3 ', 5,5'-tetramethyl-4,4'- Glycidyl ether products of biphenol and oligomers thereof are exemplified.
 多芳香環型エポキシ樹脂として、例えば、フェノールノボラック樹脂のグリシジルエーテル化物、クレゾールノボラック樹脂のグリシジルエーテル化物、フェノールアラルキル樹脂のグリシジルエーテル化物、ナフトールアラルキル樹脂のグリシジルエーテル化物、フェノールジシクロペンタジエン樹脂のグリシジルエーテル化物などが挙げられる。さらに、トリスフェノール類のグリシジルエーテル化物及びそのオリゴマー体なども多芳香環型エポキシ樹脂に属する。 As the polyaromatic ring type epoxy resin, for example, glycidyl etherified phenol novolak resin, glycidyl etherified cresol novolak resin, glycidyl etherified phenol aralkyl resin, glycidyl etherified naphthol aralkyl resin, glycidyl ether phenol dicyclopentadiene resin And the like. Furthermore, glycidyl etherified trisphenols and oligomers thereof also belong to the polyaromatic ring type epoxy resin.
 アルキレングリコール又はポリアルキレングリコールのジグリシジルエーテルとして、例えば、エチレングリコールのグリシジルエーテル化物、ジエチレングリコールのグリシジルエーテル化物、1,4-ブタンジオールのグリシジルエーテル化物、1,6-ヘキサンジオールのグリシジルエーテル化物などが挙げられる。 Examples of the diglycidyl ether of alkylene glycol or polyalkylene glycol include glycidyl ether of ethylene glycol, glycidyl ether of diethylene glycol, glycidyl ether of 1,4-butanediol, and glycidyl ether of 1,6-hexanediol. No.
 アミノ基を有する化合物のグリシジルアミノ化物は、例えば、当該化合物のアミノ基にエピクロロヒドリンを塩基性条件下で付加縮合させる方法によって製造できる。アミノ基を有する化合物は、同時に水酸基を有していてもよい。このような、アミノ基を有する化合物のグリシジルアミノ化物には、1,3-フェニレンジアミンのグリシジルアミノ化物及びそのオリゴマー体、1,4-フェニレンジアミンのグリシジルアミノ化物及びそのオリゴマー体、3-アミノフェノールのグリシジルアミノ化及びグリジシジルエーテル化物並びにそのオリゴマー体、4-アミノフェノールのグリシジルアミノ化及びグリジシジルエーテル化物並びにそのオリゴマー体などが包含される。 A glycidyl aminated compound of a compound having an amino group can be produced, for example, by a method of adding and condensing epichlorohydrin to the amino group of the compound under basic conditions. The compound having an amino group may have a hydroxyl group at the same time. Such glycidyl aminated compounds having an amino group include glycidyl aminated 1,3-phenylenediamine and oligomers thereof, glycidyl aminated 1,4-phenylenediamine and oligomers thereof, 3-aminophenol Glycidyl aminated and glycidyl etherified products and oligomers thereof, and glycidyl aminated and glycidyl etherified products of 4-aminophenol and oligomers thereof.
 C-C二重結合を有する鎖状化合物のエポキシ化物は、その鎖状化合物のC-C二重結合を、塩基性条件下で過酸化物を用いてエポキシ化する方法によって製造できる。C-C二重結合を有する鎖状化合物には、ブタジエン、ポリブタジエン、イソプレン、ペンタジエン、ヘキサジエンなどが包含される。また、二重結合を有するテルペン類もエポキシ化原料として用いることができ、非環式モノテルペンとして、リナロールなどがある。エポキシ化に用いられる過酸化物は、例えば、過酸化水素、過酢酸、tert-ブチルヒドロペルオキシドなどであることができる。 The epoxidized product of a chain compound having a CC double bond can be produced by a method of epoxidizing the CC double bond of the chain compound with a peroxide under basic conditions. The chain compound having a CC double bond includes butadiene, polybutadiene, isoprene, pentadiene, hexadiene and the like. Terpenes having a double bond can also be used as an epoxidation raw material, and examples of acyclic monoterpenes include linalool. The peroxide used for epoxidation can be, for example, hydrogen peroxide, peracetic acid, tert-butyl hydroperoxide, and the like.
 飽和炭素環に直接若しくはアルキレンを介してグリシジルオキシ基又はエポキシエチル基が結合している脂環式エポキシ化合物は、先に掲げたビスフェノール類を代表例とする水酸基を有する芳香族化合物の芳香環を水素化して得られる水素化ポリヒドロキシ化合物のグリシジルエーテル化物、水酸基を有するシクロアルカン化合物のグリシジルエーテル化物、ビニル基を有するシクロアルカン化合物のエポキシ化物などであることができる。 An alicyclic epoxy compound in which a glycidyloxy group or an epoxyethyl group is bonded to a saturated carbon ring directly or via an alkylene is an aromatic ring of an aromatic compound having a hydroxyl group represented by the aforementioned bisphenols. Examples include glycidyl ether of a hydrogenated polyhydroxy compound obtained by hydrogenation, glycidyl ether of a cycloalkane compound having a hydroxyl group, and epoxidized compound of a cycloalkane compound having a vinyl group.
 以上説明したエポキシ化合物は、市販品を容易に入手することが可能であり、例えばそれぞれ商品名で、三菱ケミカル(株)から販売されている“jER”シリーズ、DIC(株)から販売されている“エピクロン”、東都化成(株)から販売されている“エポトート(登録商標)”、(株)ADEKAから販売されている“アデカレジン(登録商標)”、ナガセケムテックス(株)から販売されている“デナコール(登録商標)”、ダウケミカル社から販売されている“ダウエポキシ”、日産化学工業(株)から販売されている“テピック(登録商標)”などが挙げられる。 The epoxy compounds described above can be easily obtained as commercial products. For example, "jER" series sold by Mitsubishi Chemical Corporation and DIC Corporation are sold under trade names. "Epiclon", "Epototo (registered trademark)" sold by Toto Kasei Co., Ltd., "ADEKARESIN (registered trademark)" sold by ADEKA CORPORATION, sold by Nagase ChemteX Corporation Examples include "Denacol (registered trademark)", "Dow Epoxy" sold by Dow Chemical Company, and "Tepic (registered trademark)" sold by Nissan Chemical Industries, Ltd.
 一方、飽和炭素環に直接エポキシ基が結合している脂環式エポキシ化合物は、例えば、C-C二重結合を環内に有する非芳香族環状化合物のC-C二重結合を、塩基性条件下で過酸化物を用いてエポキシ化する方法によって製造できる。C-C二重結合を環内に有する非芳香族環状化合物としては、例えば、シクロペンテン環を有する化合物、シクロヘキセン環を有する化合物、シクロペンテン環又はシクロヘキセン環にさらに少なくとも2個の炭素原子が結合して追加の環を形成している多環式化合物などが挙げられる。C-C二重結合を環内に有する非芳香族環状化合物は、環外に別のC-C二重結合を有していてもよい。C-C二重結合を環内に有する非芳香族環状化合物の例を挙げると、シクロヘキセン、4-ビニルシクロヘキセン、単環式モノテルペンであるリモネン及びα-ピネンなどがある。 On the other hand, an alicyclic epoxy compound in which an epoxy group is directly bonded to a saturated carbocyclic ring is, for example, a compound in which a CC double bond of a non-aromatic cyclic compound having a CC double bond in the ring is substituted with a basic compound. It can be produced by a method of epoxidation using a peroxide under conditions. As the non-aromatic cyclic compound having a CC double bond in the ring, for example, a compound having a cyclopentene ring, a compound having a cyclohexene ring, a cyclopentene ring or a cyclohexene ring having at least two more carbon atoms bonded thereto And polycyclic compounds forming an additional ring. The non-aromatic cyclic compound having a CC double bond in the ring may have another CC double bond outside the ring. Examples of the non-aromatic cyclic compound having a CC double bond in the ring include cyclohexene, 4-vinylcyclohexene, and the monocyclic monoterpenes limonene and α-pinene.
 飽和炭素環に直接エポキシ基が結合している脂環式エポキシ化合物は、上で述べたような環に直接結合したエポキシ基を有する脂環式構造が、適当な連結基を介して分子内に少なくとも2個形成された化合物であってもよい。ここでいう連結基には、例えば、エステル結合、エーテル結合、アルキレン結合などが包含される。 The alicyclic epoxy compound in which an epoxy group is directly bonded to a saturated carbocyclic ring has an alicyclic structure having an epoxy group directly bonded to a ring as described above, and is bonded to a molecule via an appropriate linking group. At least two compounds may be formed. The linking group here includes, for example, an ester bond, an ether bond, an alkylene bond and the like.
 飽和炭素環に直接エポキシ基が結合している脂環式エポキシ化合物の具体的な例を挙げると、次のようなものがある。
  3,4-エポキシシクロヘキシルメチル  3,4-エポキシシクロヘキサンカルボキシレート、
  1,2-エポキシ-4-ビニルシクロヘキサン、
  1,2-エポキシ-4-エポキシエチルシクロヘキサン、
  1,2-エポキシ-1-メチル-4-(1-メチルエポキシエチル)シクロヘキサン、  3,4-エポキシシクロヘキシルメチル  (メタ)アクリレート、
  2,2-ビス(ヒドロキシメチル)-1-ブタノールと4-エポキシエチル-1,2-エポキシシクロヘキサンとの付加物、
  エチレン  ビス(3,4-エポキシシクロヘキサンカルボキシレート)、
  オキシジエチレン  ビス(3,4-エポキシシクロヘキサンカルボキシレート)、
  1,4-シクロヘキサンジメチル  ビス(3,4-エポキシシクロヘキサンカルボキシレート)、
  3-(3,4-エポキシシクロヘキシルメトキシカルボニル)プロピル  3,4-エポキシシクロヘキサンカルボキシレートなど。
Specific examples of the alicyclic epoxy compound in which an epoxy group is directly bonded to a saturated carbon ring include the following.
3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate,
1,2-epoxy-4-vinylcyclohexane,
1,2-epoxy-4-epoxyethylcyclohexane,
1,2-epoxy-1-methyl-4- (1-methylepoxyethyl) cyclohexane, 3,4-epoxycyclohexylmethyl (meth) acrylate,
An adduct of 2,2-bis (hydroxymethyl) -1-butanol with 4-epoxyethyl-1,2-epoxycyclohexane,
Ethylene bis (3,4-epoxycyclohexanecarboxylate),
Oxydiethylene bis (3,4-epoxycyclohexanecarboxylate),
1,4-cyclohexanedimethyl bis (3,4-epoxycyclohexanecarboxylate),
3- (3,4-epoxycyclohexylmethoxycarbonyl) propyl 3,4-epoxycyclohexanecarboxylate and the like.
 以上説明した飽和炭素環に直接エポキシ基が結合している脂環式エポキシ化合物も、市販品を容易に入手することが可能であり、例えば、それぞれ商品名で、(株)ダイセルから販売されている“セロキサイド(登録商標)”シリーズ及び“サイクロマー(登録商標)”、ダウケミカル社から販売されている“サイラキュア UVR”シリーズなどが挙げられる。 The alicyclic epoxy compound in which an epoxy group is directly bonded to the saturated carbon ring described above can also be easily obtained as a commercial product. For example, each of the alicyclic epoxy compounds is sold under the trade name of Daicel Corporation. "Celoxide (registered trademark)" and "Cyclomer (registered trademark)", "Cyracure @ UVR" series sold by Dow Chemical Company, and the like.
 エポキシ化合物を含有する硬化性接着剤は、さらにエポキシ化合物以外の活性エネルギー線硬化性化合物を含有してもよい。エポキシ化合物以外の活性エネルギー線硬化性化合物としては、例えば、オキセタン化合物やアクリル化合物などが挙げられる。なかでも、カチオン重合において硬化速度を促進できる可能性があることから、オキセタン化合物を併用することが好ましい。 硬化 The curable adhesive containing an epoxy compound may further contain an active energy ray-curable compound other than the epoxy compound. Examples of the active energy ray-curable compound other than the epoxy compound include an oxetane compound and an acrylic compound. Among them, it is preferable to use an oxetane compound in combination, since there is a possibility that the curing rate can be accelerated in the cationic polymerization.
 オキセタン化合物は、分子内に4員環エーテルを有する化合物であり、例えば、次のようなものを挙げることができる。
  1,4-ビス〔(3-エチルオキセタン-3-イル)メトキシメチル〕ベンゼン、
  3-エチル-3-(2-エチルヘキシルオキシメチル)オキセタン、
  ビス(3-エチル-3-オキセタニルメチル)エーテル、
  3-エチル-3-(フェノキシメチル)オキセタン、
  3-エチル-3-(シクロヘキシルオキシメチル)オキセタン、
  フェノールノボラックオキセタン、
 キシリレンビスオキセタン、
  1,3-ビス〔(3-エチルオキセタン-3-イル)メトキシ〕ベンゼンなど。
The oxetane compound is a compound having a four-membered ring ether in the molecule, and examples thereof include the following.
1,4-bis [(3-ethyloxetane-3-yl) methoxymethyl] benzene,
3-ethyl-3- (2-ethylhexyloxymethyl) oxetane,
Bis (3-ethyl-3-oxetanylmethyl) ether,
3-ethyl-3- (phenoxymethyl) oxetane,
3-ethyl-3- (cyclohexyloxymethyl) oxetane,
Phenol novolak oxetane,
Xylylenebisoxetane,
1,3-bis [(3-ethyloxetane-3-yl) methoxy] benzene and the like.
 オキセタン化合物も、市販品を容易に入手することが可能であり、例えば、それぞれ商品名で、東亞合成(株)から販売されている“アロンオキセタン(登録商標)”シリーズ、宇部興産(株)から販売されている“ETERNACOLL(登録商標)”シリーズなどが挙げられる。 Oxetane compounds can also be easily obtained as commercial products. For example, “Alon Oxetane (registered trademark)” series sold by Toagosei Co., Ltd., and Ube Industries, Ltd. "ETERNACOLL (registered trademark)" series and the like are available.
 エポキシ化合物やオキセタン化合物を包含する硬化性化合物は、これらが配合された接着剤を無溶剤とするために、有機溶剤などで希釈されていないものを用いることが好ましい。また、接着剤を構成する他の成分であって、後述するカチオン重合開始剤や増感剤を包含する少量成分も、有機溶剤に溶解されたものよりも、有機溶剤が除去・乾燥されたその化合物単独の粉体又は液体を用いることが好ましい。 (4) The curable compound including the epoxy compound and the oxetane compound is preferably not diluted with an organic solvent or the like in order to make the adhesive containing these compounds solvent-free. Further, other components constituting the adhesive, even a small component including a cationic polymerization initiator and a sensitizer described below, than those dissolved in an organic solvent, the organic solvent is removed and dried. It is preferable to use a powder or liquid of the compound alone.
 カチオン重合開始剤は、活性エネルギー線、例えば紫外線の照射を受けてカチオン種を発生する化合物である。それが配合された接着剤に求められる接着強度及び硬化速度を与えるものであればよいが、例えば、芳香族ジアゾニウム塩;芳香族ヨードニウム塩や芳香族スルホニウム塩のようなオニウム塩;鉄-アレーン錯体などが挙げられる。これらのカチオン重合開始剤は、それぞれ単独で用いてもよいし、異なる複数種を併用してもよい。 A cationic polymerization initiator is a compound that generates a cationic species upon irradiation with an active energy ray, for example, ultraviolet rays. Any material can be used as long as it gives the adhesive strength and curing speed required for the compounded adhesive, for example, aromatic diazonium salts; onium salts such as aromatic iodonium salts and aromatic sulfonium salts; iron-arene complexes And the like. Each of these cationic polymerization initiators may be used alone, or a plurality of different types may be used in combination.
 芳香族ジアゾニウム塩としては、例えば、次のようなものが挙げられる。
  ベンゼンジアゾニウム  ヘキサフルオロアンチモネート、
  ベンゼンジアゾニウム  ヘキサフルオロホスフェート、
  ベンゼンジアゾニウム  ヘキサフルオロボレートなど。
Examples of the aromatic diazonium salt include the following.
Benzenediazonium hexafluoroantimonate,
Benzenediazonium hexafluorophosphate,
Benzenediazonium hexafluoroborate and the like.
 芳香族ヨードニウム塩としては、例えば、次のようなものが挙げられる。
  ジフェニルヨードニウム  テトラキス(ペンタフルオロフェニル)ボレート、
  ジフェニルヨードニウム  ヘキサフルオロホスフェート、
  ジフェニルヨードニウム  ヘキサフルオロアンチモネート、
  ビス(4-ノニルフェニル)ヨードニウム  ヘキサフルオロホスフェートなど。
Examples of the aromatic iodonium salt include the following.
Diphenyliodonium tetrakis (pentafluorophenyl) borate,
Diphenyliodonium hexafluorophosphate,
Diphenyliodonium hexafluoroantimonate,
Bis (4-nonylphenyl) iodonium hexafluorophosphate and the like.
 芳香族スルホニウム塩としては、例えば、次のようなものが挙げられる。
  トリフェニルスルホニウム  ヘキサフルオロホスフェート、
  トリフェニルスルホニウム  ヘキサフルオロアンチモネート、
  トリフェニルスルホニウム  テトラキス(ペンタフルオロフェニル)ボレート、
  ジフェニル(4-フェニルチオフェニル)スルホニウム  ヘキサフルオロアンチモネート、
  4,4′-ビス(ジフェニルスルホニオ)ジフェニルスルフィド  ビスヘキサフルオロホスフェート、
  4,4′-ビス〔ジ(β-ヒドロキシエトキシフェニル)スルホニオ〕ジフェニルスルフィド  ビスヘキサフルオロアンチモネート、
  4,4′-ビス〔ジ(β-ヒドロキシエトキシフェニル)スルホニオ〕ジフェニルスルフィド  ビスヘキサフルオロホスフェート、
  7-〔ジ(p-トルイル)スルホニオ〕-2-イソプロピルチオキサントン  ヘキサフルオロアンチモネート、
  7-〔ジ(p-トルイル)スルホニオ〕-2-イソプロピルチオキサントン  テトラキス(ペンタフルオロフェニル)ボレート、
  4-フェニルカルボニル-4′-ジフェニルスルホニオジフェニルスルフィド  ヘキサフルオロホスフェート、
  4-(p-tert-ブチルフェニルカルボニル)-4′-ジフェニルスルホニオジフェニルスルフィド  ヘキサフルオロアンチモネート、
  4-(p-tert-ブチルフェニルカルボニル)-4′-ジ(p-トルイル)スルホニオ-ジフェニルスルフィド  テトラキス(ペンタフルオロフェニル)ボレートなど。
Examples of the aromatic sulfonium salt include the following.
Triphenylsulfonium hexafluorophosphate,
Triphenylsulfonium hexafluoroantimonate,
Triphenylsulfonium tetrakis (pentafluorophenyl) borate,
Diphenyl (4-phenylthiophenyl) sulfonium hexafluoroantimonate,
4,4'-bis (diphenylsulfonio) diphenyl sulfide bishexafluorophosphate,
4,4'-bis [di (β-hydroxyethoxyphenyl) sulfonio] diphenyl sulfide bishexafluoroantimonate,
4,4'-bis [di (β-hydroxyethoxyphenyl) sulfonio] diphenyl sulfide bishexafluorophosphate,
7- [di (p-toluyl) sulfonio] -2-isopropylthioxanthone hexafluoroantimonate,
7- [di (p-toluyl) sulfonio] -2-isopropylthioxanthone tetrakis (pentafluorophenyl) borate,
4-phenylcarbonyl-4'-diphenylsulfoniodiphenylsulfide hexafluorophosphate,
4- (p-tert-butylphenylcarbonyl) -4'-diphenylsulfoniodiphenylsulfide hexafluoroantimonate,
4- (p-tert-butylphenylcarbonyl) -4'-di (p-toluyl) sulfonio-diphenylsulfide tetrakis (pentafluorophenyl) borate and the like.
 鉄-アレーン錯体としては、例えば、次のようなものが挙げられる。
  キシレン-シクロペンタジエニル鉄(II)  ヘキサフルオロアンチモネート、
  クメン-シクロペンタジエニル鉄(II)  ヘキサフルオロホスフェート、  キシレン-シクロペンタジエニル鉄(II)  トリス(トリフルオロメチルスルホニル)メタナイドなど。
Examples of the iron-arene complex include the following.
Xylene-cyclopentadienyliron (II) hexafluoroantimonate,
Cumene-cyclopentadienyliron (II) hexafluorophosphate, xylene-cyclopentadienyliron (II) tris (trifluoromethylsulfonyl) methanide and the like.
 カチオン重合開始剤のなかでも、芳香族スルホニウム塩は、300nm以上の波長領域でも紫外線吸収特性を有することから、硬化性に優れ、良好な機械強度や接着強度を有する接着剤層を与えることができるため、好ましく用いられる。 Among the cationic polymerization initiators, the aromatic sulfonium salt has an ultraviolet absorbing property even in a wavelength region of 300 nm or more, so it is excellent in curability and can provide an adhesive layer having good mechanical strength and adhesive strength. Therefore, it is preferably used.
 カチオン重合開始剤も、市販品を容易に入手することが可能であり、例えば、それぞれ商品名で、日本化薬(株)から販売されている“カヤラッド(登録商標)”シリーズ、ダウケミカル社から販売されている“サイラキュア UVI”シリーズ、サンアプロ(株)から販売されている光酸発生剤“CPI”シリーズ、みどり化学(株)から販売されている光酸発生剤“TAZ”、“BBI”及び“DTS”、(株)ADEKAから販売されている“アデカオプトマー”シリーズ、ローディア社から販売されている“RHODORSIL(登録商標)” などが挙げられる。 Commercially available cationic polymerization initiators can also be easily obtained. For example, “Kayarad (registered trademark)” series sold by Nippon Kayaku Co., Ltd., and Dow Chemical Co., Ltd. "Siracure @ UVI" series sold, San-Apro Co., Ltd. photoacid generator "CPI" series, Midori Chemical Co., Ltd. photoacid generators "TAZ", "BBI" and "DTS", "ADEKA OPTOMER" series sold by ADEKA Corporation, "RHODORSIL (registered trademark)" sold by Rhodia, and the like.
 活性エネルギー線硬化型接着剤において、カチオン重合開始剤は、活性エネルギー線硬化型接着剤の総量100質量部に対して、通常0.5~20質量部の割合で配合され、好ましくは1~15質量部である。その量があまり少ないと、硬化が不十分になり、接着剤層の機械強度や接着強度を低下させることがある。また、その量が多すぎると、接着剤層中のイオン性物質が増加することで接着剤層の吸湿性が高くなり、得られる偏光板の耐久性能を低下させることがある。 In the active energy ray-curable adhesive, the cationic polymerization initiator is usually blended in a ratio of 0.5 to 20 parts by mass, preferably 1 to 15 parts by mass, based on 100 parts by mass of the active energy ray-curable adhesive. Parts by weight. If the amount is too small, curing will be insufficient, and the mechanical strength and adhesive strength of the adhesive layer may be reduced. On the other hand, if the amount is too large, the amount of ionic substances in the adhesive layer increases, so that the hygroscopicity of the adhesive layer increases, and the durability of the obtained polarizing plate may decrease.
 活性エネルギー線硬化型接着剤を電子線硬化型で用いる場合、組成物中に光重合開始剤を含有させることは特に必要ではないが、紫外線硬化型で用いる場合には、光ラジカル発生剤を用いることが好ましい。光ラジカル発生剤としては、水素引き抜き型光ラジカル発生剤と開裂型光ラジカル発生剤とが挙げられる。 When using an active energy ray-curable adhesive in an electron beam-curable type, it is not particularly necessary to include a photopolymerization initiator in the composition, but when using an ultraviolet-curable type, a photoradical generator is used. Is preferred. Examples of the photo radical generator include a hydrogen abstraction type photo radical generator and a cleavage type photo radical generator.
 水素引き抜き型光ラジカル発生剤としては、例えば1-メチルナフタレン、2-メチルナフタレン、1-フルオロナフタレン、1-クロロナフタレン、2-クロロナフタレン、1-ブロモナフタレン、2-ブロモナフタレン、1-ヨードナフタレン、2-ヨードナフタレン、1-ナフトール、2-ナフトール、1-メトキシナフタレン、2-メトキシナフタレン、1,4-ジシアノナフタレンなどのナフタレン誘導体、アントラセン、1,2-ベンズアントラセン、9,10-ジクロロアントラセン、9,10-ジブロモアントラセン、9,10-ジフェニルアントラセン、9-シアノアントラセン、9,10-ジシアノアントラセン、2,6,9,10-テトラシアノアントラセンなどのアントラセン誘導体、ピレン誘導体、カルバゾール、9-メチルカルバゾール、9-フェニルカルバゾール、9-プロペ-2-イニル-9H-カルバゾール、9-プロピル-9H-カルバゾール、9-ビニルカルバゾール、9H-カルバゾール-9-エタノール、9-メチル-3-ニトロ-9H-カルバゾール、9-メチル-3,6-ジニトロ-9H-カルバゾール、9-オクタノイルカルバゾール、9-カルバゾールメタノール、9-カルバゾールプロピオン酸、9-カルバゾールプロピオニトリル、9-エチル-3,6-ジニトロ-9H-カルバゾール、9-エチル-3-ニトロカルバゾール、9-エチルカルバゾール、9-イソプロピルカルバゾール、9-(エトキシカルボニルメチル)カルバゾール、9-(モルホリノメチル)カルバゾール、9-アセチルカルバゾール、9-アリルカルバゾール、9-ベンジル-9H-カルバゾール、9-カルバゾール酢酸、9-(2-ニトロフェニル)カルバゾール、9-(4-メトキシフェニル)カルバゾール、9-(1-エトキシ-2-メチル-プロピル)-9H-カルバゾール、3-ニトロカルバゾール、4-ヒドロキシカルバゾール、3,6-ジニトロ-9H-カルバゾール、3,6-ジフェニル-9H-カルバゾール、2-ヒドロキシカルバゾール、3,6-ジアセチル-9-エチルカルバゾールなどのカルバゾール誘導体、ベンゾフェノン、4-フェニルベンゾフェノン、4,4’-ビス(ジメトキシ)ベンゾフェノン、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、2-ベンゾイル安息香酸メチルエステル、2-メチルベンゾフェノン、3-メチルベンゾフェノン、4-メチルベンゾフェノン、3,3’-ジメチル-4-メトキシベンゾフェノン、2,4,6-トリメチルベンゾフェノンなどのベンゾフェノン誘導体、芳香族カルボニル化合物、[4-(4-メチルフェニルチオ)フェニル]-フェニルメタノン、キサントン、チオキサントン、2-クロロチオキサントン、4-クロロチオキサントン、2-イソプロピルチオキサントン、4-イソプロピルチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、1-クロロ-4-プロポキシチオキサントンなどのチオキサントン誘導体やクマリン誘導体などが挙げられる。 Examples of the hydrogen abstraction type photoradical generator include 1-methylnaphthalene, 2-methylnaphthalene, 1-fluoronaphthalene, 1-chloronaphthalene, 2-chloronaphthalene, 1-bromonaphthalene, 2-bromonaphthalene, and 1-iodonaphthalene. , 2-iodonaphthalene, 1-naphthol, 2-naphthol, 1-methoxynaphthalene, 2-methoxynaphthalene, naphthalene derivatives such as 1,4-dicyanonaphthalene, anthracene, 1,2-benzanthracene, 9,10-dichloroanthracene , 9,10-dibromoanthracene, 9,10-diphenylanthracene, 9-cyanoanthracene, 9,10-dicyanoanthracene, 2,6,9,10-tetracyanoanthracene and other anthracene derivatives, pyrene derivatives, carbazones , 9-methylcarbazole, 9-phenylcarbazole, 9-prop-2-ynyl-9H-carbazole, 9-propyl-9H-carbazole, 9-vinylcarbazole, 9H-carbazole-9-ethanol, 9-methyl-3- Nitro-9H-carbazole, 9-methyl-3,6-dinitro-9H-carbazole, 9-octanoylcarbazole, 9-carbazolemethanol, 9-carbazolepropionic acid, 9-carbazolepropionitrile, 9-ethyl-3, 6-dinitro-9H-carbazole, 9-ethyl-3-nitrocarbazole, 9-ethylcarbazole, 9-isopropylcarbazole, 9- (ethoxycarbonylmethyl) carbazole, 9- (morpholinomethyl) carbazole, 9-acetylcarbazole, 9 -Ant Carbazole, 9-benzyl-9H-carbazole, 9-carbazoleacetic acid, 9- (2-nitrophenyl) carbazole, 9- (4-methoxyphenyl) carbazole, 9- (1-ethoxy-2-methyl-propyl) -9H -Carbazole, 3-nitrocarbazole, 4-hydroxycarbazole, 3,6-dinitro-9H-carbazole, 3,6-diphenyl-9H-carbazole, 2-hydroxycarbazole, 3,6-diacetyl-9-ethylcarbazole and the like Carbazole derivatives, benzophenone, 4-phenylbenzophenone, 4,4'-bis (dimethoxy) benzophenone, 4,4'-bis (dimethylamino) benzophenone, 4,4'-bis (diethylamino) benzophenone, methyl 2-benzoylbenzoate Ester, 2 Benzophenone derivatives such as -methylbenzophenone, 3-methylbenzophenone, 4-methylbenzophenone, 3,3'-dimethyl-4-methoxybenzophenone, 2,4,6-trimethylbenzophenone, aromatic carbonyl compounds, [4- (4- Methylphenylthio) phenyl] -phenylmethanone, xanthone, thioxanthone, 2-chlorothioxanthone, 4-chlorothioxanthone, 2-isopropylthioxanthone, 4-isopropylthioxanthone, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, And thioxanthone derivatives such as -chloro-4-propoxythioxanthone and coumarin derivatives.
 開裂型光ラジカル発生剤は、活性エネルギー線を照射することにより当該化合物が開裂してラジカルを発生するタイプの光ラジカル発生剤であり、その具体例として、ベンゾインエーテル誘導体、アセトフェノン誘導体などのアリールアルキルケトン類、オキシムケトン類、アシルホスフィンオキシド類、チオ安息香酸S-フェニル類、チタノセン類、およびそれらを高分子量化した誘導体が挙げられるがこれに限定されるものではない。市販されている開裂型光ラジカル発生剤としては、1-(4-ドデシルベンゾイル)-1-ヒドロキシ-1-メチルエタン、1-(4-イソプロピルベンゾイル)-1-ヒドロキシ-1-メチルエタン、1-ベンゾイル-1-ヒドロキシ-1-メチルエタン、1-[4-(2-ヒドロキシエトキシ)-ベンゾイル]-1-ヒドロキシ-1-メチルエタン、1-[4-(アクリロイルオキシエトキシ)-ベンゾイル]-1-ヒドロキシ-1-メチルエタン、ジフェニルケトン、フェニル-1-ヒドロキシ-シクロヘキシルケトン、ベンジルジメチルケタール、ビス(シクロペンタジエニル)-ビス(2,6-ジフルオロ-3-ピリル-フェニル)チタン、(η6-イソプロピルベンゼン)-(η5-シクロペンタジエニル)-鉄(II)ヘキサフルオロホスフェート、トリメチルベンゾイルジフェニルホスフィンオキシド、ビス(2,6-ジメトキシ-ベンゾイル)-(2,4,4-トリメチル-ペンチル)-ホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)-2,4-ジペントキシフェニルホスフィンオキシドまたはビス(2,4,6-トリメチルベンゾイル)フェニル-ホスフィンオキシド、(4-モルホリノベンゾイル)-1-ベンジル-1-ジメチルアミノプロパン、4-(メチルチオベンゾイル)-1-メチル-1-モルホリノエタンなどが挙げられるがこれに限定されるものではない。 The cleavage type photoradical generator is a type of photoradical generator in which the compound is cleaved by irradiation with an active energy ray to generate a radical, and specific examples thereof include arylalkyl such as benzoin ether derivatives and acetophenone derivatives. Examples include, but are not limited to, ketones, oxime ketones, acylphosphine oxides, S-phenyl thiobenzoates, titanocenes, and derivatives thereof having a high molecular weight. Commercially available cleavage type photoradical generators include 1- (4-dodecylbenzoyl) -1-hydroxy-1-methylethane, 1- (4-isopropylbenzoyl) -1-hydroxy-1-methylethane, 1-benzoyl -1-hydroxy-1-methylethane, 1- [4- (2-hydroxyethoxy) -benzoyl] -1-hydroxy-1-methylethane, 1- [4- (acryloyloxyethoxy) -benzoyl] -1-hydroxy- 1-methylethane, diphenyl ketone, phenyl-1-hydroxy-cyclohexyl ketone, benzyldimethyl ketal, bis (cyclopentadienyl) -bis (2,6-difluoro-3-pyryl-phenyl) titanium, (η6-isopropylbenzene) -(Η5-cyclopentadienyl) -iron (II) hexaf Fluorophosphate, trimethylbenzoyldiphenylphosphine oxide, bis (2,6-dimethoxy-benzoyl)-(2,4,4-trimethyl-pentyl) -phosphine oxide, bis (2,4,6-trimethylbenzoyl) -2, 4-dipentoxyphenylphosphine oxide or bis (2,4,6-trimethylbenzoyl) phenyl-phosphine oxide, (4-morpholinobenzoyl) -1-benzyl-1-dimethylaminopropane, 4- (methylthiobenzoyl) -1 -Methyl-1-morpholinoethane and the like, but are not limited thereto.
 本発明で使用される活性エネルギー硬化型接着剤の中で、電子線硬化型に含まれる光ラジカル発生剤、すなわち水素引き抜き型または開裂型光ラジカル発生剤は、いずれもそれぞれ単独で用いることができる他、複数を組み合わせて用いても良いが、光ラジカル発生剤単体の安定性や、硬化性の面でより好ましいものは開裂型光ラジカル発生剤の1種以上の組み合わせである。開裂型光ラジカル発生剤の中でもアシルホスフィンオキシド類が好ましく、より具体的には、トリメチルベンゾイルジフェニルホスフィンオキシド(商品名「DAROCURE  TPO」;チバ・ジャパン(株))、ビス(2,6-ジメトキシ-ベンゾイル)-(2,4,4-トリメチル-ペンチル)-ホスフィンオキシド(商品名「CGI  403」;チバ・ジャパン(株))、またはビス(2,4,6-トリメチルベンゾイル)-2,4-ジペントキシフェニルホスフィンオキシド(商品名「Irgacure819」;チバ・ジャパン(株))が好ましい。 Among the active energy-curable adhesives used in the present invention, the photoradical generator contained in the electron beam-curable type, that is, each of the hydrogen abstraction type and the cleavage type photoradical generators can be used alone. In addition, a plurality of photo-radical generators may be used in combination, but more preferable in terms of stability of the photo-radical generator alone and curability are at least one combination of a cleavage type photo-radical generator. Among the cleavage-type photoradical generators, acylphosphine oxides are preferable, and more specifically, trimethylbenzoyldiphenylphosphine oxide (trade name "DAROCURE @ TPO"; Ciba Japan Co., Ltd.), bis (2,6-dimethoxy-) Benzoyl)-(2,4,4-trimethyl-pentyl) -phosphine oxide (trade name “CGI @ 403”; Ciba Japan KK) or bis (2,4,6-trimethylbenzoyl) -2,4- Dipentoxyphenyl phosphine oxide (trade name “Irgacure 819”; Ciba Japan K.K.) is preferred.
 活性エネルギー線硬化型接着剤は、必要に応じて増感剤を含有することができる。増感剤を使用することにより、反応性が向上し、接着層の機械強度や接着強度をさらに向上させることができる。増感剤としては、前述したものを適宜適用できる。 (4) The active energy ray-curable adhesive may contain a sensitizer as needed. By using a sensitizer, the reactivity is improved, and the mechanical strength and the adhesive strength of the adhesive layer can be further improved. As the sensitizer, those described above can be appropriately applied.
 増感剤を配合する場合、その配合量は、活性エネルギー線硬化型接着剤の総量100質量部に対し、0.1~20質量部の範囲とすることが好ましい。 (4) When a sensitizer is compounded, the compounding amount is preferably in the range of 0.1 to 20 parts by mass based on 100 parts by mass of the total amount of the active energy ray-curable adhesive.
 活性エネルギー線硬化型接着剤には、その効果を損なわない範囲で各種の添加剤を配合することができる。配合しうる添加剤として、例えば、イオントラップ剤、酸化防止剤、連鎖移動剤、粘着付与剤、熱可塑性樹脂、充填剤、流動調整剤、可塑剤、消泡剤などが挙げられる。 Various additives can be added to the active energy ray-curable adhesive within a range that does not impair the effect. Examples of additives that can be blended include an ion trapping agent, an antioxidant, a chain transfer agent, a tackifier, a thermoplastic resin, a filler, a flow regulator, a plasticizer, and an antifoaming agent.
 活性エネルギー線硬化型接着剤を構成するこれらの各成分は、通常、溶剤に溶かした状態で使用される。活性エネルギー線硬化型接着剤が溶剤を含む場合、活性エネルギー線硬化型接着剤を塗布面に塗布し、乾燥させることで、接着層が得られる。溶剤に溶解しない成分は、系中に分散した状態であればよい。 These components constituting the active energy ray-curable adhesive are usually used in the state of being dissolved in a solvent. When the active energy ray-curable adhesive contains a solvent, the adhesive layer is obtained by applying the active energy ray-curable adhesive to the application surface and drying it. Components that do not dissolve in the solvent may be in a state of being dispersed in the system.
 活性エネルギー線硬化型接着剤は、1/2波長層11の1/4波長層12との接着面、1/4波長層12の1/2波長層11との接着面、又はその両方に塗布される。1/2波長層11の1/4波長層12との接着面及び1/4波長層12の1/2波長層11との接着面に、予めコロナ処理、プラズマ処理、火炎処理等を行ってもよく、プライマー層等を形成してもよい。プライマー層の厚さは、通常0.001~5μm程度であり、好ましくは0.01μm以上、また好ましくは4μm以下、さらに好ましくは3μm以下である。
プライマー層が厚すぎると、複合位相差板5の外観不良となりやすい。
The active energy ray-curable adhesive is applied to the bonding surface of the 波長 wavelength layer 11 with the 波長 wavelength layer 12, the bonding surface of the 波長 wavelength layer 12 with the 波長 wavelength layer 11, or both. Is done. Corona treatment, plasma treatment, flame treatment, and the like are performed on the bonding surface of the 1 / wavelength layer 11 with the 4 wavelength layer 12 and the bonding surface of the 波長 wavelength layer 12 with the 波長 wavelength layer 11 in advance. Alternatively, a primer layer or the like may be formed. The thickness of the primer layer is usually about 0.001 to 5 μm, preferably 0.01 μm or more, more preferably 4 μm or less, and further preferably 3 μm or less.
If the primer layer is too thick, the appearance of the composite retardation plate 5 tends to be poor.
 活性エネルギー線硬化型接着剤の粘度としては、種々方法で塗工できる粘度を有するものであればよいが、その温度25℃における粘度は、10~1,000mPa・secの範囲にあることが好ましく、20~500mPa・secの範囲にあることがより好ましい。その粘度があまり小さいと、所望の厚みでの層形成がしにくくなる傾向にある。一方、その粘度があまり大きいと、流動しにくくなって、ムラのない均質な塗膜が得られにくくなる傾向にある。ここでいう粘度は、E型粘度計を用いてその接着剤を25℃に調温した後、10rpmで測定される値である。 The viscosity of the active energy ray-curable adhesive is not particularly limited as long as it can be applied by various methods, but the viscosity at 25 ° C. is preferably in the range of 10 to 1,000 mPa · sec. , And more preferably in the range of 20 to 500 mPa · sec. If the viscosity is too low, it tends to be difficult to form a layer with a desired thickness. On the other hand, if the viscosity is too large, it tends to be difficult to flow, and it is difficult to obtain a uniform coating film without unevenness. The viscosity referred to here is a value measured at 10 rpm after adjusting the temperature of the adhesive to 25 ° C. using an E-type viscometer.
  上記活性エネルギー線硬化型接着剤は、電子線硬化型、紫外線硬化型の態様で用いることができる。本明細書において、活性エネルギー線とは、活性種を発生する化合物を分解して活性種を発生させることのできるエネルギー線と定義される。このような活性エネルギー線としては、可視光、紫外線、赤外線、X線、α線、β線、γ線及び電子線等が挙げられる。 The active energy ray-curable adhesive can be used in an electron beam-curable or ultraviolet-curable mode. In the present specification, an active energy ray is defined as an energy ray that can decompose a compound that generates an active species to generate an active species. Examples of such active energy rays include visible light, ultraviolet light, infrared light, X-rays, α-rays, β-rays, γ-rays, and electron beams.
 電子線硬化型において、電子線の照射条件は、上記活性エネルギー線硬化型接着剤を硬化しうる条件であれば、任意の適切な条件を採用できる。例えば、電子線照射は、加速電圧が好ましくは5kV~300kVであり、さらに好ましくは10kV~250kVである。加速電圧が5kV未満の場合、電子線が接着剤まで届かず硬化不足となるおそれがあり、加速電圧が300kVを超えると、試料を通る浸透力が強すぎて電子線が跳ね返り、透明保護フィルムや偏光子に損傷を与えるおそれがある。照射線量としては、5~100kGy、さらに好ましくは10~75kGyである。照射線量が5kGy未満の場合は、接着剤が硬化不足となり、100kGyを超えると、位相差層に損傷を与え、機械的強度の低下や黄変を生じ、所望の光学特性を得ることができない。 In the electron beam curing type, any appropriate condition can be adopted as the irradiation condition of the electron beam as long as the active energy beam curing type adhesive can be cured. For example, the electron beam irradiation has an acceleration voltage of preferably 5 kV to 300 kV, more preferably 10 kV to 250 kV. If the accelerating voltage is less than 5 kV, the electron beam may not reach the adhesive and curing may be insufficient. If the accelerating voltage exceeds 300 kV, the penetrating power through the sample is too strong and the electron beam rebounds, and the transparent protective film and The polarizer may be damaged. The irradiation dose is 5 to 100 kGy, more preferably 10 to 75 kGy. If the irradiation dose is less than 5 kGy, the adhesive will be insufficiently cured, and if it exceeds 100 kGy, the retardation layer will be damaged, and the mechanical strength will decrease and yellowing will occur, so that desired optical characteristics cannot be obtained.
 電子線照射は、通常、不活性ガス中で照射を行うが、必要であれば大気中や酸素を少し導入した条件で行ってもよい。酸素を適宜導入することによって、最初に電子線があたる位相差層表面にあえて酸素阻害を生じさせ、位相差層へのダメージを防ぐことができ、接着剤にのみ効率的に電子線を照射させることができる。 Electron beam irradiation is usually performed in an inert gas, but may be performed in the air or under a condition in which oxygen is slightly introduced, if necessary. By appropriately introducing oxygen, oxygen inhibition is intentionally caused on the surface of the retardation layer to which the electron beam first strikes, and damage to the retardation layer can be prevented, and only the adhesive is efficiently irradiated with the electron beam. be able to.
 紫外線硬化型において、活性エネルギー線硬化型接着剤の光照射強度は、接着剤の組成ごとに決定されるものであって特に限定されないが、10~1,000mW/cm2であることが好ましい。樹脂組成物への光照射強度が10mW/cm2未満であると、反応時間が長くなりすぎ、1,000mW/cm2を超えると、光源から輻射される熱および組成物の重合時の発熱により、接着剤の構成材料の黄変を生じる可能性がある。なお、照射強度は、好ましくは光カチオン重合開始剤の活性化に有効な波長領域における強度であり、より好ましくは波長400nm以下の波長領域における強度であり、さらに好ましくは波長280~320nmの波長領域における強度である。このような光照射強度で1回あるいは複数回照射して、その積算光量を、好ましくは10mJ/cm2以上、さらに好ましくは100~1,000mJ/cm2となるように設定する。上記接着剤への積算光量が10mJ/cm2未満であると、重合開始剤由来の活性種の発生が十分でなく、接着剤の硬化が不十分となる。一方でその積算光量が1,000mJ/cm2を超えると、照射時間が非常に長くなり、生産性向上には不利なものとなる。この際、使用する位相差層のフィルムの種類や接着剤種の組み合わせなどによって、どの波長領域(UVA(320~390nm)やUVB(280~320nm)など)での積算光量が必要かは異なる。 In the ultraviolet curing type, the light irradiation intensity of the active energy ray-curable adhesive is determined depending on the composition of the adhesive and is not particularly limited, but is preferably from 10 to 1,000 mW / cm 2 . When the light irradiation intensity on the resin composition is less than 10 mW / cm 2 , the reaction time becomes too long, and when it exceeds 1,000 mW / cm 2 , heat radiated from a light source and heat generated during polymerization of the composition are generated. , May cause yellowing of the constituent materials of the adhesive. The irradiation intensity is preferably an intensity in a wavelength region effective for activating the cationic photopolymerization initiator, more preferably an intensity in a wavelength region of 400 nm or less, and still more preferably a wavelength region of 280 to 320 nm. Is the strength at Such once with light intensity or by irradiation a plurality of times, the integrated light quantity is preferably 10 mJ / cm 2 or more, more preferably set to be 100 ~ 1,000mJ / cm 2. When the integrated light amount to the adhesive is less than 10 mJ / cm 2 , the generation of active species derived from the polymerization initiator is not sufficient, and the curing of the adhesive is insufficient. On the other hand, if the integrated light amount exceeds 1,000 mJ / cm 2 , the irradiation time becomes extremely long, which is disadvantageous for improving the productivity. At this time, the wavelength region (UVA (320 to 390 nm) or UVB (280 to 320 nm) or the like) in which the integrated light amount is required differs depending on the type of the film of the retardation layer and the type of the adhesive used.
 本発明における活性エネルギー線の照射により接着剤の重合硬化を行うために用いる光源は、特に限定されないが、例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、キセノンランプ、ハロゲンランプ、カーボンアーク灯、タングステンランプ、ガリウムランプ、エキシマレーザー、波長範囲380~440nmを発光するLED光源、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、メタルハライドランプが挙げられる。エネルギーの安定性や装置の簡便さという観点から、波長400nm以下に発光分布を有する紫外光源であることが好ましい。 The light source used for polymerizing and curing the adhesive by irradiation with active energy rays in the present invention is not particularly limited.For example, a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, a xenon lamp, a halogen lamp, a carbon lamp Examples include an arc lamp, a tungsten lamp, a gallium lamp, an excimer laser, an LED light source that emits light in a wavelength range of 380 to 440 nm, a chemical lamp, a black light lamp, a microwave-excited mercury lamp, and a metal halide lamp. From the viewpoint of energy stability and simplicity of the device, an ultraviolet light source having a light emission distribution at a wavelength of 400 nm or less is preferable.
 <1/2波長層・1/4波長層>
 1/2波長層11及び1/4波長層12は、位相差発現層を少なとも一つ含むものであれば、位相差発現層のみからなるものであってもよいし、位相差発現層とともに他の層を含むものであってもよい。他の層としては、例えば、基材層、配向膜層、保護層等が挙げられる。なお、他の層は位相差の値には影響を及ぼさない。また、他の層の有無にかかわらず、本明細書において、位相差層の屈折率は位相差発現層の屈折率を意味する。
<1/2 wavelength layer, 1/4 wavelength layer>
The 波長 wavelength layer 11 and the 波長 wavelength layer 12 may be composed of only the retardation expression layer as long as they include at least one retardation expression layer, or may be formed together with the retardation expression layer. Other layers may be included. Examples of other layers include a base material layer, an alignment film layer, and a protective layer. The other layers do not affect the value of the retardation. Further, in the present specification, the refractive index of the phase difference layer means the refractive index of the phase difference expression layer regardless of the presence or absence of another layer.
 位相差発現層としては、液晶化合物を用いることにより形成される層(以下、「液晶層」という)、又は延伸フィルムが挙げられる。位相差発現層は、偏光板複合体の薄型化の観点から、液晶層であることが好ましい。液晶層である位相差発現層の方が、延伸フィルムである位相差発現層よりも、一般的に薄膜化が容易である。位相差発現層は、厚さが0.5μm~10μmであることが好ましく、0.5μm~5μmであることがより好ましい。なお、1/2波長層11及び1/4波長層12が、位相差発現層以外の他の層(基材層、配向膜層、保護層等)を含む場合、全体の厚みが0.5μm~300μmであることが好ましく、0.5μm~150μmであることがより好ましい。 Examples of the retardation expression layer include a layer formed by using a liquid crystal compound (hereinafter, referred to as a “liquid crystal layer”) or a stretched film. The phase difference expression layer is preferably a liquid crystal layer from the viewpoint of reducing the thickness of the polarizing plate composite. In general, the retardation developing layer, which is a liquid crystal layer, is easier to make thinner than the retardation developing layer, which is a stretched film. The thickness of the retardation expression layer is preferably 0.5 μm to 10 μm, and more preferably 0.5 μm to 5 μm. When the 波長 wavelength layer 11 and the 波長 wavelength layer 12 include layers other than the retardation expression layer (base layer, alignment layer, protective layer, etc.), the total thickness is 0.5 μm. The thickness is preferably from 300 μm to 300 μm, more preferably from 0.5 μm to 150 μm.
 位相差層の光学特性は、位相差発現層を構成する液晶化合物の配向状態、又は位相差発現層を構成する延伸フィルムの延伸方法により調節することができる。 光学 The optical properties of the retardation layer can be adjusted by the alignment state of the liquid crystal compound constituting the retardation expression layer or the stretching method of the stretched film constituting the retardation expression layer.
 (1/2波長層)
 1/2波長層11は、入射光の電界振動方向(偏光面)にπ(=λ/2)の位相差を与えるものであり、直線偏光の向き(偏光方位)を変える機能を有している。また、円偏光の光を入射させると、円偏光の回転方向を反対回りにすることができる。
(1/2 wavelength layer)
The 波長 wavelength layer 11 gives a phase difference of π (= λ / 2) to the electric field oscillation direction (polarization plane) of the incident light, and has a function of changing the direction (polarization direction) of linearly polarized light. I have. When circularly polarized light is incident, the direction of rotation of the circularly polarized light can be reversed.
 1/2波長層11は、特定の波長λnmにおける面内レターデーション値であるRe(λ)がRe(λ)=λ/2を満足する層である。可視光域の何れの波長においてRe(λ)=λ/2を達成されていてもよいが、なかでも波長550nmにおいて達成されることが好ましい。波長550nmにおける面内レターデーション値であるRe(550)は、210nm≦Re(550)≦300nmを満足することが好ましい。また、220nm≦Re(550)≦290nmを満足することがより好ましい。 The wavelength layer 11 is a layer in which the in-plane retardation value Re (λ) at a specific wavelength λ nm satisfies Re (λ) = λ / 2. Although Re (λ) = λ / 2 may be achieved at any wavelength in the visible light range, it is particularly preferable to achieve Re (λ) at a wavelength of 550 nm. Re (550), which is an in-plane retardation value at a wavelength of 550 nm, preferably satisfies 210 nm ≦ Re (550) ≦ 300 nm. More preferably, 220 nm ≦ Re (550) ≦ 290 nm is satisfied.
 1/2波長層11は、波長589nmでの進相軸方向の屈折率(n11)が好ましくは1.60未満であり、より好ましくは1.59以下である。 The half-wavelength layer 11 preferably has a refractive index (n11 y ) in the fast axis direction at a wavelength of 589 nm of less than 1.60, and more preferably 1.59 or less.
 (1/4波長層)
 1/4波長層12は、入射光の電界振動方向(偏光面)にπ/2(=λ/4)の位相差を与えるものであり、ある特定の波長の直線偏光を円偏光に(又は円偏光を直線偏光に)変換する機能を有している。
(1/4 wavelength layer)
The 波長 wavelength layer 12 gives a phase difference of π / 2 (= λ / 4) to the electric field oscillation direction (polarization plane) of the incident light, and converts linearly polarized light of a specific wavelength into circularly polarized light (or It has the function of converting circularly polarized light to linearly polarized light.
 1/4波長層12は、特定の波長λnmにおける面内レターデーション値であるRe(λ)がRe(λ)=λ/4を満足する層であり、可視光域の何れかの波長において達成されていてもよいが、波長550nmで達成されることが好ましい。波長550nmにおける面内レターデーション値であるRe(550)が、100nm≦Re(550)≦160nmを満足することが好ましい。また、110nm≦Re(550)≦150nmを満足することがより好ましい。 The quarter-wave layer 12 is a layer in which the in-plane retardation value Re (λ) at a specific wavelength λ nm satisfies Re (λ) = λ / 4, and is achieved at any wavelength in the visible light region. However, it is preferably achieved at a wavelength of 550 nm. It is preferable that the in-plane retardation value Re (550) at a wavelength of 550 nm satisfies 100 nm ≦ Re (550) ≦ 160 nm. Further, it is more preferable to satisfy 110 nm ≦ Re (550) ≦ 150 nm.
 1/4波長層12は、波長589nmでの屈折率の平均値(n12x、y)が好ましくは1.58未満であり、より好ましくは1.57以下である。 The quarter wavelength layer 12 preferably has an average value of the refractive index (n12 x, y ) at a wavelength of 589 nm of less than 1.58, more preferably 1.57 or less.
 (液晶層から形成される位相差発現層)
 位相差層の位相差発現層が液晶層である場合について説明する。位相差層は、1/2波長層であってもよく、1/4波長層であってもよい。図2は、液晶層である位相差発現層と他の層とを含む位相差層の一例を模式的に示す概略断面図である。図2に示すように、位相差層30は、基材層31、配向層32、液晶層である位相差発現層33がこの順に積層されてなる。位相差層は、液晶層の位相差発現層33を含む構成であれば図2に示す位相差層30に限定されることはなく、位相差層30から基材層31が剥離されて配向層32と位相差発現層33のみからなる構成であってもよく、位相差層30から基材層31と配向層32が剥離されて液晶層の位相差発現層33のみからなる構成であってもよい。薄膜化の観点から、位相差層は、基材層31が剥離されている構成であることが好ましく、液晶層の位相差発現層33のみからなる構成がさらに好ましい。基材層31は、基材層31上に形成される配向層32、及び液晶層の位相差発現層33を支持する支持層として機能を有する。基材層31は、樹脂材料で形成されたフィルムであることが好ましい。
(Retardation layer formed from liquid crystal layer)
The case where the retardation expression layer of the retardation layer is a liquid crystal layer will be described. The retardation layer may be a 波長 wavelength layer or a 波長 wavelength layer. FIG. 2 is a schematic cross-sectional view schematically illustrating an example of a retardation layer including a retardation expression layer that is a liquid crystal layer and another layer. As shown in FIG. 2, the retardation layer 30 includes a base layer 31, an alignment layer 32, and a retardation expression layer 33 serving as a liquid crystal layer, which are stacked in this order. The retardation layer is not limited to the retardation layer 30 shown in FIG. 2 as long as the retardation layer includes the retardation expression layer 33 of the liquid crystal layer. Alternatively, the base layer 31 and the alignment layer 32 may be separated from the retardation layer 30 and may be constituted only of the liquid crystal layer. Good. From the viewpoint of thinning, the retardation layer preferably has a configuration in which the base material layer 31 is peeled off, and more preferably has a configuration including only the retardation expression layer 33 of the liquid crystal layer. The base layer 31 has a function as a support layer that supports the alignment layer 32 formed on the base layer 31 and the phase difference expression layer 33 of the liquid crystal layer. The base layer 31 is preferably a film formed of a resin material.
 樹脂材料としては、例えば、透明性、機械的強度、熱安定性、延伸性等に優れる樹脂材料が用いられる。具体的には、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂;ノルボルネン系ポリマー等の環状ポリオレフィン系樹脂;ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂;(メタ)アクリル酸、ポリ(メタ)アクリル酸メチル等の(メタ)アクリル酸系樹脂;トリアセチルセルロース、ジアセチルセルロース及びセルロースアセテートプロピオネート等のセルロースエステル系樹脂;ポリビニルアルコール及びポリ酢酸ビニル等のビニルアルコール系樹脂;ポリカーボネート系樹脂;ポリスチレン系樹脂;ポリアリレート系樹脂;ポリスルホン系樹脂;ポリエーテルスルホン系樹脂;ポリアミド系樹脂;ポリイミド系樹脂;ポリエーテルケトン系樹脂;ポリフェニレンスルフィド系樹脂;ポリフェニレンオキシド系樹脂、及びこれらの混合物、共重合物等を挙げることができる。これらの樹脂のうち、環状ポリオレフィン系樹脂、ポリエステル系樹脂、セルロースエステル系樹脂及び(メタ)アクリル酸系樹脂のいずれか又はこれらの混合物を用いることが好ましい。なお、上記「(メタ)アクリル酸」とは、「アクリル酸及びメタクリル酸の少なくとも1種」を意味する。 As the resin material, for example, a resin material having excellent transparency, mechanical strength, thermal stability, stretchability, and the like is used. Specifically, polyolefin resins such as polyethylene and polypropylene; cyclic polyolefin resins such as norbornene polymers; polyester resins such as polyethylene terephthalate and polyethylene naphthalate; (meth) acrylic acid, polymethyl (meth) acrylate and the like (Meth) acrylic acid resin; cellulose ester resin such as triacetyl cellulose, diacetyl cellulose and cellulose acetate propionate; vinyl alcohol resin such as polyvinyl alcohol and polyvinyl acetate; polycarbonate resin; polystyrene resin; Arylate resin; polysulfone resin; polyether sulfone resin; polyamide resin; polyimide resin; polyether ketone resin; polyphenylene sulfide resin; Ren'okishido resins, and mixtures thereof, may be mentioned copolymer and the like. Among these resins, it is preferable to use any of a cyclic polyolefin-based resin, a polyester-based resin, a cellulose ester-based resin, and a (meth) acrylic acid-based resin, or a mixture thereof. The “(meth) acrylic acid” means “at least one of acrylic acid and methacrylic acid”.
 基材層31は、上記の樹脂1種類又は2種以上を混合した単層であってもよく、2層以上の多層構造を有していてもよい。多層構造を有する場合、各層をなす樹脂は同じであってもよく異なっていてもよい。 The base material layer 31 may be a single layer obtained by mixing one or two or more of the above resins, or may have a multilayer structure of two or more layers. When it has a multilayer structure, the resin forming each layer may be the same or different.
 樹脂フィルムをなす樹脂材料には、任意の添加剤が添加されていてもよい。添加剤としては、例えば、紫外線吸収剤、酸化防止剤、滑剤、可塑剤、離型剤、着色防止剤、難燃剤、核剤、帯電防止剤、顔料、及び着色剤等が挙げられる。 任意 Any additive may be added to the resin material forming the resin film. Examples of the additive include an ultraviolet absorber, an antioxidant, a lubricant, a plasticizer, a release agent, a coloring inhibitor, a flame retardant, a nucleating agent, an antistatic agent, a pigment, and a coloring agent.
 基材層31の厚さは、特に限定されないが、一般には強度や取扱い性等の作業性の点から5~200μmであることが好ましく、10~200μmであることがより好ましく、10~150μmであることがさらに好ましい。 Although the thickness of the base material layer 31 is not particularly limited, it is generally preferably 5 to 200 μm, more preferably 10 to 200 μm, and more preferably 10 to 150 μm from the viewpoint of workability such as strength and handleability. It is more preferred that there be.
 基材層31と配向層32との密着性を向上させるために、少なくとも基材層31の配向層32が形成される側の表面にコロナ処理、プラズマ処理、火炎処理等を行ってもよく、プライマー層等を形成してもよい。なお、基材層31、又は基材層31及び配向層32を剥離して位相差層とする場合には、剥離界面での密着力を調整することによって剥離を容易とすることができる。 In order to improve the adhesion between the base layer 31 and the alignment layer 32, at least the surface of the base layer 31 on which the alignment layer 32 is formed may be subjected to corona treatment, plasma treatment, flame treatment, or the like, A primer layer or the like may be formed. When the base layer 31 or the base layer 31 and the alignment layer 32 are separated to form a retardation layer, the separation can be facilitated by adjusting the adhesion at the separation interface.
 配向層32は、これらの配向層32上に形成される液晶層の位相差発現層33に含まれる液晶化合物を所望の方向に液晶配向させる、配向規制力を有する。配向層32としては、配向性ポリマーで形成された配向性ポリマー層、光配向ポリマーで形成された光配向性ポリマー層、層表面に凹凸パターンや複数のグルブ(溝)を有するグルブ配向層を挙げることができる。配向層32の厚みは、通常0.01~10μmであり、0.01~5μmであることが好ましい。 The alignment layer 32 has an alignment regulating force for causing the liquid crystal compound included in the phase difference expression layer 33 of the liquid crystal layer formed on the alignment layer 32 to perform liquid crystal alignment in a desired direction. Examples of the alignment layer 32 include an alignment polymer layer formed of an alignment polymer, a photo alignment polymer layer formed of a photo alignment polymer, and a grub alignment layer having a concavo-convex pattern or a plurality of groves (grooves) on the layer surface. be able to. The thickness of the alignment layer 32 is usually 0.01 to 10 μm, preferably 0.01 to 5 μm.
 配向性ポリマー層は、配向性ポリマーを溶剤に溶解した組成物を基材層31に塗布して溶剤を除去し、必要に応じてラビング処理をして形成することができる。この場合、配向規制力は、配向性ポリマーで形成された配向性ポリマー層では、配向性ポリマーの表面状態やラビング条件によって任意に調整することが可能である。 The oriented polymer layer can be formed by applying a composition in which the oriented polymer is dissolved in a solvent to the base layer 31 to remove the solvent, and performing a rubbing treatment as needed. In this case, the alignment regulating force can be arbitrarily adjusted depending on the surface state of the alignment polymer and the rubbing conditions in the alignment polymer layer formed of the alignment polymer.
 光配向性ポリマー層は、光反応性基を有するポリマー又はモノマーと溶剤とを含む組成物を基材層31に塗布し、偏光を照射することによって形成することができる。この場合、配向規制力は、光配向性ポリマー層では、光配向性ポリマーに対する偏光照射条件等によって任意に調整することが可能である。 The photo-alignable polymer layer can be formed by applying a composition containing a polymer or monomer having a photoreactive group and a solvent to the base layer 31 and irradiating polarized light. In this case, in the photo-alignable polymer layer, the alignment regulating force can be arbitrarily adjusted depending on, for example, the polarized light irradiation conditions for the photo-alignable polymer.
 グルブ配向層は、例えば感光性ポリイミド膜表面にパターン形状のスリットを有する露光用マスクを介して露光、現像等を行って凹凸パターンを形成する方法、表面に溝を有する板状の原盤に、活性エネルギー線硬化性樹脂の未硬化の層を形成し、この層を基材層31に転写して硬化する方法、基材層31に活性エネルギー線硬化性樹脂の未硬化の層を形成し、この層に、凹凸を有するロール状の原盤を押し当てる等により凹凸を形成して硬化させる方法等によって形成することができる。 The grub alignment layer is, for example, exposed through a mask for exposure having a pattern-shaped slit on the surface of the photosensitive polyimide film, a method of forming a concavo-convex pattern by performing development, etc., the plate-shaped master having grooves on the surface, active A method of forming an uncured layer of the energy ray-curable resin, transferring this layer to the base layer 31 and curing, forming an uncured layer of the active energy ray-curable resin on the base layer 31, The layer can be formed by, for example, pressing a roll-shaped master having irregularities on the layer to form the irregularities and curing the layer.
 液晶層である位相差発現層33は、光に所定の位相差を与えるものであり、例えば、1/2波長層用の位相差発現層、1/4波長層用の位相差発現層を挙げることができる。 The phase difference expression layer 33 which is a liquid crystal layer gives a predetermined phase difference to light, and examples thereof include a phase difference expression layer for a 1 / wavelength layer and a phase difference expression layer for a 波長 wavelength layer. be able to.
 液晶層である位相差発現層33は、公知の液晶化合物を用いて形成することができる。
液晶化合物の種類は特に限定されず、棒状液晶化合物、円盤状液晶化合物、及びこれらの混合物を用いることができる。また、液晶化合物は、高分子液晶化合物であってもよく、重合性液晶化合物であってもよく、これらの混合物であってもよい。液晶化合物としては、例えば、特表平11-513019号公報、特開2005-289980号公報、特開2007-108732号公報、特開2010-244038号公報、特開2010-31223号公報、特開2010-270108号公報、特開2011-6360号公報、特開2011-207765号公報、特開2016-81035号公報、国際公開第2017/043438号及び特表2011-207765号公報に記載の液晶化合物が挙げられる。
The retardation layer 33, which is a liquid crystal layer, can be formed using a known liquid crystal compound.
The type of the liquid crystal compound is not particularly limited, and a rod-shaped liquid crystal compound, a disc-shaped liquid crystal compound, and a mixture thereof can be used. The liquid crystal compound may be a polymer liquid crystal compound, a polymerizable liquid crystal compound, or a mixture thereof. Examples of the liquid crystal compound include, for example, JP-A-11-513019, JP-A-2005-289980, JP-A-2007-108732, JP-A-2010-244038, JP-A-2010-31223, and JP-A-2010-31223. Liquid crystal compounds described in JP-A-2010-270108, JP-A-2011-6360, JP-A-2011-207765, JP-A-2016-81035, WO2017 / 043438 and JP-T-2011-207765. Is mentioned.
 例えば、重合性液晶化合物を用いる場合には、重合性液晶化合物を含む組成物を、配向層32上に塗布して塗膜を形成し、この塗膜を硬化させることによって、位相差発現層33を形成することができる。位相差発現層33の厚みは、0.5μm~10μmであることが好ましく、0.5~5μmであることがさらに好ましい。
 重合性液晶化合物を含む組成物は、液晶化合物以外に、重合開始剤、重合性モノマー、界面活性剤、溶剤、密着改良剤、可塑剤、配向剤等が含まれていてもよい。重合性液晶化合物を含む組成物の塗布方法としては、ダイコーティング法等の公知の方法が挙げられる。重合性液晶化合物を含む組成物の硬化方法としては、活性エネルギー線(例えば紫外線)を照射する等の公知の方法が挙げられる。
For example, when a polymerizable liquid crystal compound is used, a composition containing the polymerizable liquid crystal compound is applied on the alignment layer 32 to form a coating film, and the coating film is cured, whereby the retardation developing layer 33 is formed. Can be formed. The thickness of the retardation layer 33 is preferably 0.5 μm to 10 μm, and more preferably 0.5 μm to 5 μm.
The composition containing the polymerizable liquid crystal compound may contain, in addition to the liquid crystal compound, a polymerization initiator, a polymerizable monomer, a surfactant, a solvent, an adhesion improver, a plasticizer, an alignment agent, and the like. As a method of applying the composition containing the polymerizable liquid crystal compound, a known method such as a die coating method may be used. As a method for curing the composition containing the polymerizable liquid crystal compound, a known method such as irradiation with active energy rays (for example, ultraviolet rays) can be used.
 (延伸フィルムを位相差発現層として備える位相差層)
 位相差発現層が延伸フィルムである場合について説明する。延伸フィルムは通常、基材を延伸することで得られる。基材を延伸する方法としては、例えば、基材がロールに巻き取られているロール(巻き取り体)を準備し、かかる巻き取り体から、基材を連続的に巻き出し、巻き出された基材を加熱炉へと搬送する。加熱炉の設定温度は、基材のガラス転移温度近傍(℃)~[ガラス転移温度+100](℃)の範囲、好ましくは、ガラス転移温度近傍(℃)~[ガラス転移温度+50](℃)の範囲とする。当該加熱炉においては、基材の進行方向へ、又は進行方向と直交する方向へ延伸する際に、搬送方向や張力を調整し任意の角度に傾斜をつけて一軸又は二軸の熱延伸処理を行う。延伸の倍率は、通常1.1~6倍であり、好ましくは1.1~3.5倍である。
(Retardation layer provided with stretched film as retardation expression layer)
The case where the retardation developing layer is a stretched film will be described. A stretched film is usually obtained by stretching a substrate. As a method of stretching the base material, for example, a roll (winding body) in which the base material is wound on a roll is prepared, and the base material is continuously unwound from the winding body and unwound. The substrate is transferred to a heating furnace. The set temperature of the heating furnace is in the range of around the glass transition temperature of the substrate (° C.) to [glass transition temperature + 100] (° C.), preferably around the glass transition temperature (° C.) to [glass transition temperature + 50] (° C.). Range. In the heating furnace, when stretching in the direction of travel of the substrate, or in a direction perpendicular to the direction of travel, the uniaxial or biaxial thermal stretching process is performed by adjusting the transport direction and tension and tilting at an arbitrary angle. Do. The stretching ratio is usually 1.1 to 6 times, preferably 1.1 to 3.5 times.
 また、斜め方向に延伸する方法としては、連続的に配向軸を所望の角度に傾斜させることができるものであれば、特に限定されず、公知の延伸方法が採用できる。このような延伸方法は例えば、特開昭50-83482号公報や特開平2-113920号公報に記載された方法を挙げることができる。延伸することでフィルムに位相差性を付与する場合、延伸後の厚みは、延伸前の厚みや延伸倍率によって決定される。 The method of stretching in the oblique direction is not particularly limited as long as the orientation axis can be continuously inclined at a desired angle, and a known stretching method can be employed. Examples of such a stretching method include the methods described in JP-A-50-83482 and JP-A-2-113920. When retardation is imparted to a film by stretching, the thickness after stretching is determined by the thickness before stretching and the stretching ratio.
 前記基材は通常透明基材である。透明基材とは、光、特に可視光を透過し得る透明性を有する基材を意味し、透明性とは、波長380~780nmにわたる光線に対しての透過率が80%以上となる特性をいう。具体的な透明基材としては、透光性樹脂基材が挙げられる。透光性樹脂基材を構成する樹脂としては、ポリエチレン、ポリプロピレンなどのポリオレフィン;ノルボルネン系ポリマーなどの環状オレフィン系樹脂;ポリビニルアルコール;ポリエチレンテレフタレート;ポリメタクリル酸エステル;ポリアクリル酸エステル;トリアセチルセルロース、ジアセチルセルロース、セルロースアセテートプロピオネートなどのセルロースエステル;ポリエチレンナフタレート;ポリカーボネート;ポリスルホン;ポリエーテルスルホン;ポリエーテルケトン;ポリフェニレンスルフィドおよびポリフェニレンオキシドが挙げられる。入手のしやすさや透明性の観点から、ポリエチレンテレフタレート、ポリメタクリル酸エステル、セルロースエステル、環状オレフィン系樹脂またはポリカーボネートが好ましい。 The substrate is usually a transparent substrate. The transparent substrate means a substrate having transparency capable of transmitting light, in particular, visible light, and transparency refers to a property of having a transmittance of 80% or more to a light beam having a wavelength of 380 to 780 nm. Say. A specific example of the transparent substrate is a light-transmitting resin substrate. Examples of the resin constituting the light-transmitting resin substrate include polyolefins such as polyethylene and polypropylene; cyclic olefin resins such as norbornene-based polymers; polyvinyl alcohol; polyethylene terephthalate; polymethacrylic acid esters; Cellulose esters such as diacetylcellulose and cellulose acetate propionate; polyethylene naphthalate; polycarbonate; polysulfone; polyethersulfone; polyetherketone; polyphenylene sulfide and polyphenylene oxide. From the viewpoint of availability and transparency, polyethylene terephthalate, polymethacrylate, cellulose ester, cyclic olefin-based resin or polycarbonate is preferred.
 セルロースエステルは、セルロースに含まれる水酸基の一部または全部が、エステル化されたものであり、市場から容易に入手することができる。また、セルロースエステル基材も市場から容易に入手することができる。市販のセルロースエステル基材としては、例えば、“フジタック(登録商標)フィルム”(富士フイルム(株));“KC8UX2M”、“KC8UY”及び“KC4UY”(コニカミノルタオプト(株))などが挙げられる。 Cellulose esters are those in which some or all of the hydroxyl groups contained in cellulose are esterified, and can be easily obtained from the market. Further, a cellulose ester base material can be easily obtained from the market. Examples of commercially available cellulose ester base materials include “Fujitac (registered trademark) film” (Fujifilm Corporation); “KC8UX2M”, “KC8UY” and “KC4UY” (Konica Minolta Opto Co., Ltd.) and the like. .
 ポリメタクリル酸エステル及びポリアクリル酸エステル(以下、ポリメタクリル酸エステル及びポリアクリル酸エステルをまとめて(メタ)アクリル系樹脂ということがある。
)は、市場から容易に入手できる。
Polymethacrylate and polyacrylate (hereinafter, polymethacrylate and polyacrylate may be collectively referred to as a (meth) acrylic resin.
) Is readily available from the market.
 (メタ)アクリル系樹脂としては、例えば、メタクリル酸アルキルエステル又はアクリル酸アルキルエステルの単独重合体や、メタクリル酸アルキルエステルとアクリル酸アルキルエステルとの共重合体などが挙げられる。メタクリル酸アルキルエステルとして具体的には、メチルメタクリレート、エチルメタクリレート、プロピルメタクリレートなどが、またアクリル酸アルキルエステルとして具体的には、メチルアクリレート、エチルアクリレート、プロピルアクリレートなどがそれぞれ挙げられる。かかる(メタ)アクリル系樹脂には、汎用の(メタ)アクリル系樹脂として市販されているものが使用できる。(メタ)アクリル系樹脂として、耐衝撃(メタ)アクリル樹脂と呼ばれるものを使用してもよい。 Examples of the (meth) acrylic resin include a homopolymer of an alkyl methacrylate or an alkyl acrylate, and a copolymer of an alkyl methacrylate and an alkyl acrylate. Specific examples of the alkyl methacrylate include methyl methacrylate, ethyl methacrylate, and propyl methacrylate, and specific examples of the alkyl acrylate include methyl acrylate, ethyl acrylate, and propyl acrylate. As the (meth) acrylic resin, those commercially available as general-purpose (meth) acrylic resins can be used. What is called an impact-resistant (meth) acrylic resin may be used as the (meth) acrylic resin.
 さらなる機械的強度向上のために、(メタ)アクリル系樹脂にゴム粒子を含有させることも好ましい。ゴム粒子は、アクリル系のものが好ましい。ここで、アクリル系ゴム粒子とは、ブチルアクリレートや2-エチルヘキシルアクリレートのようなアクリル酸アルキルエステルを主成分とするアクリル系モノマーを、多官能モノマーの存在下に重合させて得られるゴム弾性を有する粒子である。アクリル系ゴム粒子は、このようなゴム弾性を有する粒子が単層で形成されたものであってもよいし、ゴム弾性層を少なくとも一層有する多層構造体であってもよい。多層構造のアクリル系ゴム粒子としては、上記のようなゴム弾性を有する粒子を核とし、その周りを硬質のメタクリル酸アルキルエステル系重合体で覆ったもの、硬質のメタクリル酸アルキルエステル系重合体を核とし、その周りを上記のようなゴム弾性を有するアクリル系重合体で覆ったもの、また硬質の核の周りをゴム弾性のアクリル系重合体で覆い、さらにその周りを硬質のメタクリル酸アルキルエステル系重合体で覆ったものなどが挙げられる。弾性層で形成されるゴム粒子は、その平均直径が通常50~400nm程度の範囲にある。 の た め In order to further improve the mechanical strength, it is also preferable to include rubber particles in the (meth) acrylic resin. The rubber particles are preferably acrylic. Here, the acrylic rubber particles have rubber elasticity obtained by polymerizing an acrylic monomer mainly containing an alkyl acrylate such as butyl acrylate or 2-ethylhexyl acrylate in the presence of a polyfunctional monomer. Particles. The acrylic rubber particles may be such that the particles having rubber elasticity are formed in a single layer, or may be a multilayer structure having at least one rubber elastic layer. Acrylic rubber particles having a multilayer structure include particles having the above rubber elasticity as a nucleus, the periphery of which is covered with a hard alkyl methacrylate polymer, and a hard alkyl methacrylate polymer. A core and its surroundings covered with an acrylic polymer having rubber elasticity as described above.Also, the periphery of the hard cores is covered with a rubber elastic acrylic polymer, and further around the hard alkyl methacrylate. And those covered with a polymer. The average diameter of the rubber particles formed by the elastic layer is usually in the range of about 50 to 400 nm.
 (メタ)アクリル系樹脂におけるゴム粒子の含有量は、(メタ)アクリル系樹脂100質量部あたり、通常5~50質量部程度である。(メタ)アクリル系樹脂及びアクリル系ゴム粒子は、それらを混合した状態で市販されているので、その市販品を用いることができる。アクリル系ゴム粒子が配合された(メタ)アクリル系樹脂の市販品の例として、住友化学(株)から販売されている“HT55X”や“テクノロイ S001”などが挙げられる。“テクノロイ S001”は、フィルムの形で販売されている。 ゴ ム The content of the rubber particles in the (meth) acrylic resin is usually about 5 to 50 parts by mass per 100 parts by mass of the (meth) acrylic resin. Since the (meth) acrylic resin and the acrylic rubber particles are commercially available in a state of mixing them, commercially available products can be used. Examples of commercially available (meth) acrylic resins containing acrylic rubber particles include "HT55X" and "Technoloy @ S001" sold by Sumitomo Chemical Co., Ltd. "Technoroy @ S001" is sold in film form.
 環状オレフィン系樹脂は、市場から容易に入手できる。市販の環状オレフィン系樹脂としては、“Topas”(登録商標)[Ticona社(独)]、“アートン”(登録商標)[JSR(株)]、“ゼオノア(ZEONOR)”(登録商標)[日本ゼオン(株)]、“ゼオネックス(ZEONEX)”(登録商標)[日本ゼオン(株)]および“アペル”(登録商標)[三井化学(株)]が挙げられる。このような環状オレフィン系樹脂を、例えば、溶剤キャスト法、溶融押出法などの公知の手段により製膜して、基材とすることができる。また、市販されている環状オレフィン系樹脂基材を用いることもできる。市販の環状オレフィン系樹脂基材としては、“エスシーナ”(登録商標)[積水化学工業(株)]、“SCA40”(登録商標)[積水化学工業(株)]、“ゼオノアフィルム”(登録商標)[オプテス(株)]および“アートンフィルム”(登録商標)[JSR(株)]が挙げられる。 Cyclic olefin resin can be easily obtained from the market. Commercially available cyclic olefin-based resins include “Topas” (registered trademark) [Ticona (Germany)], “ARTON” (registered trademark) [JSR Corporation], “ZEONOR” (registered trademark) [Japan] Zeon Corporation], “ZEONEX” (registered trademark) [Zeon Corporation] and “Apel” (registered trademark) [Mitsui Chemicals]. Such a cyclic olefin-based resin can be used as a substrate by forming a film by known means such as a solvent casting method and a melt extrusion method. Alternatively, a commercially available cyclic olefin-based resin substrate can be used. Commercially available cyclic olefin resin base materials include "ESCINA" (registered trademark) [Sekisui Chemical Co., Ltd.], "SCA40" (registered trademark) [Sekisui Chemical Co., Ltd.], and "ZEONOA FILM" (registered trademark). ) [OPTES CORPORATION] and "ARTON FILM" (registered trademark) [JSR Corporation].
 環状オレフィン系樹脂が、環状オレフィンと、鎖状オレフィンやビニル基を有する芳香族化合物との共重合体である場合、環状オレフィンに由来する構造単位の含有割合は、共重合体の全構造単位に対して、通常50モル%以下、好ましくは15~50モル%の範囲である。鎖状オレフィンとしては、エチレンおよびプロピレンが挙げられ、ビニル基を有する芳香族化合物としては、スチレン、α-メチルスチレンおよびアルキル置換スチレンが挙げられる。環状オレフィン系樹脂が、環状オレフィンと、鎖状オレフィンと、ビニル基を有する芳香族化合物との三元共重合体である場合、鎖状オレフィンに由来する構造単位の含有割合は、共重合体の全構造単位に対して、通常5~80モル%であり、ビニル基を有する芳香族化合物に由来する構造単位の含有割合は、共重合体の全構造単位に対して、通常5~80モル%である。このような三元共重合体は、その製造において、高価な環状オレフィンの使用量を比較的少なくすることができるという利点がある。 When the cyclic olefin-based resin is a copolymer of a cyclic olefin and a chain olefin or an aromatic compound having a vinyl group, the content of the structural unit derived from the cyclic olefin is defined as the total structural units of the copolymer. On the other hand, it is usually 50 mol% or less, preferably 15 to 50 mol%. Examples of the chain olefin include ethylene and propylene, and examples of the aromatic compound having a vinyl group include styrene, α-methylstyrene, and alkyl-substituted styrene. When the cyclic olefin-based resin is a ternary copolymer of a cyclic olefin, a chain olefin, and an aromatic compound having a vinyl group, the content ratio of the structural unit derived from the chain olefin is the same as that of the copolymer. The content of the structural unit derived from the aromatic compound having a vinyl group is usually 5 to 80 mol% with respect to all the structural units. It is. Such a terpolymer has the advantage that, in its production, the amount of expensive cyclic olefins can be relatively reduced.
 <直線偏光板>
 直線偏光板13は、透過光より直線偏光を得る偏光機能を有するフィルムであればよい。当該フィルムとしては、吸収異方性を有する色素を吸着させた延伸フィルム、又は吸収異方性を有する色素を塗布したフィルムを偏光子として含むフィルム等が挙げられる。吸収異方性を有する色素としては、例えば、二色性色素が挙げられる。偏光子として用いられる、吸収異方性を有する色素を塗布したフィルムとしては、吸収異方性を有する色素を吸着させた延伸フィルム、あるいは、液晶性を有する二色性色素を含む組成物又は二色性色素と重合性液晶とを含む組成物を塗布して得られる液相層を有するフィルム等が挙げられる。
<Linear polarizing plate>
The linear polarizing plate 13 may be a film having a polarizing function of obtaining linearly polarized light from transmitted light. Examples of the film include a stretched film on which a dye having absorption anisotropy is adsorbed, a film including a film coated with a dye having absorption anisotropy as a polarizer, and the like. Examples of the dye having absorption anisotropy include dichroic dyes. Examples of the film to which a dye having absorption anisotropy is applied, which is used as a polarizer, include a stretched film on which a dye having absorption anisotropy is adsorbed, a composition containing a dichroic dye having liquid crystallinity, and Examples include a film having a liquid phase layer obtained by applying a composition containing a colorant and a polymerizable liquid crystal.
 (延伸フィルムを偏光子として備える直線偏光板)
 吸収異方性を有する色素を吸着させた延伸フィルムを偏光子として備える直線偏光板について説明する。偏光子である、吸収異方性を有する色素を吸着させた延伸フィルムは、通常、ポリビニルアルコール系樹脂フィルムを一軸延伸する工程、ポリビニルアルコール系樹脂フィルムを二色性色素で染色することにより、その二色性色素を吸着させる工程、及び二色性色素が吸着されたポリビニルアルコール系樹脂フィルムをホウ酸水溶液で処理する工程を有する、及びホウ酸水溶液による処理後に水洗する工程を経て製造される。かかる偏光子をそのまま直線偏光板として用いてもよく、またはかかる偏光子の少なくとも一方の面に透明保護フィルムを貼合したものを直線偏光板として用いてもよい。
(Linear polarizing plate with stretched film as polarizer)
A linear polarizing plate including, as a polarizer, a stretched film on which a dye having absorption anisotropy is adsorbed will be described. A stretched film on which a dye having absorption anisotropy is adsorbed, which is a polarizer, is usually formed by uniaxially stretching a polyvinyl alcohol-based resin film, and dyeing the polyvinyl alcohol-based resin film with a dichroic dye. It is manufactured through a step of adsorbing the dichroic dye, a step of treating the polyvinyl alcohol-based resin film to which the dichroic dye is adsorbed with a boric acid aqueous solution, and a step of washing with water after the treatment with the boric acid aqueous solution. Such a polarizer may be used as it is as a linear polarizer, or a polarizer obtained by attaching a transparent protective film to at least one surface of the polarizer may be used as a linear polarizer.
 こうしてポリビニルアルコール系樹脂フィルムに、一軸延伸、二色性色素による染色、ホウ酸処理、水洗及び乾燥をして得られる偏光子の厚みは好ましくは5~40μmである。 偏光 Thus, the thickness of the polarizer obtained by subjecting the polyvinyl alcohol-based resin film to uniaxial stretching, dyeing with a dichroic dye, boric acid treatment, washing with water and drying is preferably 5 to 40 μm.
 偏光子の片面又は両面に貼合される保護フィルムの材質としては、特に限定されるものではないが、例えば、環状ポリオレフィン系樹脂フィルム、トリアセチルセルロース、ジアセチルセルロースのような樹脂からなる酢酸セルロース系樹脂フィルム、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレートのような樹脂からなるポリエステル系樹脂フィルム、ポリカーボネート系樹脂フィルム、(メタ)アクリル系樹脂フィルム、ポリプロピレン系樹脂フィルムなど、当分野において公知のフィルムを挙げることができる。保護フィルムの厚みは、薄型化の観点から、通常300μm以下であり、200μm以下であることが好ましく、50μm以下であることがより好ましく、また、通常5μm以上であり、20μm以上であることが好ましい。また、視認側の保護フィルムは位相差を有していてもよいし、位相差を有していなくてもよい。一方、1/2波長層11側に積層される側の保護フィルムは、その位相差が10nm以下であることが好ましい。 The material of the protective film to be bonded to one or both surfaces of the polarizer is not particularly limited, for example, cyclic polyolefin resin film, triacetyl cellulose, cellulose acetate based resin such as diacetyl cellulose Films known in the art, such as resin films, polyester resin films made of resins such as polyethylene terephthalate, polyethylene naphthalate, and polybutylene terephthalate, polycarbonate resin films, (meth) acrylic resin films, and polypropylene resin films. Can be mentioned. The thickness of the protective film is usually 300 μm or less, preferably 200 μm or less, more preferably 50 μm or less, and usually 5 μm or more and preferably 20 μm or more from the viewpoint of thinning. . Further, the protective film on the viewing side may have a phase difference or may not have a phase difference. On the other hand, the protective film on the side laminated on the half-wavelength layer 11 preferably has a retardation of 10 nm or less.
 (液晶層を有するフィルムを偏光子として備える直線偏光板)
 液晶層を有するフィルムを偏光子として備える直線偏光板について説明する。偏光子として用いられる、吸収異方性を有する色素を塗布したフィルムとしては、液晶性を有する二色性色素を含む組成物、又は二色性色素と液晶化合物とを含む組成物を塗布して得られるフィルム等が挙げられる。当該フィルムは、単独で直線偏光板として用いてもよく、その片面又は両面に保護フィルムを有する構成で直線偏光板として用いてもよい。当該保護フィルムとしては、上記した延伸フィルムを偏光子として備える直線偏光板と同一のものが挙げられる。
(Linear polarizing plate provided with a film having a liquid crystal layer as a polarizer)
A linear polarizing plate including a film having a liquid crystal layer as a polarizer will be described. Used as a polarizer, as a film coated with a dye having absorption anisotropy, a composition containing a dichroic dye having liquid crystallinity, or a composition containing a dichroic dye and a liquid crystal compound And the resulting film. The film may be used alone as a linear polarizing plate, or may be used as a linear polarizing plate in a configuration having a protective film on one or both sides thereof. Examples of the protective film include the same as the linear polarizing plate including the above-described stretched film as a polarizer.
 吸収異方性を有する色素を塗布したフィルムは薄い方が好ましいが、薄すぎると強度が低下し、加工性に劣る傾向がある。当該フィルムの厚さは、通常20μm以下であり、好ましくは5μm以下であり、より好ましくは0.5μm以上3μm以下である。 フ ィ ル ム Thin films coated with a dye having absorption anisotropy are preferred to be thin, but if too thin, strength tends to decrease and processability tends to be poor. The thickness of the film is usually 20 μm or less, preferably 5 μm or less, more preferably 0.5 μm or more and 3 μm or less.
 前記吸収異方性を有する色素を塗布したフィルムとしては、具体的には、特開2012-33249号公報等に記載のフィルムが挙げられる。 フ ィ ル ム Specific examples of the film coated with the dye having absorption anisotropy include the films described in JP-A-2012-33249.
 前記吸収異方性を有する色素を、1/2波長層11に直接塗布して、偏光板複合体を構成してもよい。この場合、第2接着層22を設ける必要がない。 The dye having the absorption anisotropy may be directly applied to the half-wavelength layer 11 to form a polarizing plate composite. In this case, there is no need to provide the second adhesive layer 22.
 <第2接着層>
 第2接着層22は、例えば、粘着剤、水系接着剤、活性エネルギー線硬化型接着剤及びこれらの組み合わせから構成することができる。本明細書において、「第2接着層」との用語は、接着剤から構成される接着層のみでなく、粘着剤から構成される粘着層をも含むものとする。
<Second adhesive layer>
The second adhesive layer 22 can be composed of, for example, an adhesive, a water-based adhesive, an active energy ray-curable adhesive, and a combination thereof. In the present specification, the term "second adhesive layer" includes not only an adhesive layer made of an adhesive but also an adhesive layer made of an adhesive.
 第2接着層22をなす活性エネルギー線硬化型接着剤については、上記第1接着層21での説明が適用される。第1接着層21及び第2接着層22が活性エネルギー線硬化型接着剤から形成される場合、第1接着層21と第2接着層22とは同じ活性エネルギー線硬化型接着剤から形成されてもよいし、異なる活性エネルギー線硬化型接着剤から形成されてもよい。第2接着層22における波長589nmでの屈折率n22は、1.55未満であることが好ましい。 活性 The description of the first adhesive layer 21 applies to the active energy ray-curable adhesive forming the second adhesive layer 22. When the first adhesive layer 21 and the second adhesive layer 22 are formed from an active energy ray-curable adhesive, the first adhesive layer 21 and the second adhesive layer 22 are formed from the same active energy ray-curable adhesive. Alternatively, it may be formed from a different active energy ray-curable adhesive. The refractive index n22 of the second adhesive layer 22 at a wavelength of 589 nm is preferably less than 1.55.
 <その他の層>
 偏光板複合体は、上記した以外の層を有していてもよい。例えば、光学補償用の位相差層を有していてもよく、第1接着層21及び第2接着層22以外の第3接着層を有していてもよい。第3接着層は、例えば、1/4波長層12の第1接着層21とは反対側の表面に設けられている粘着剤層であり、偏光板複合体を画像表示パネルに貼合させるために用いることができる。
<Other layers>
The polarizing plate composite may have layers other than those described above. For example, it may have a retardation layer for optical compensation, and may have a third adhesive layer other than the first adhesive layer 21 and the second adhesive layer 22. The third adhesive layer is, for example, an adhesive layer provided on the surface of the 4 wavelength layer 12 on the side opposite to the first adhesive layer 21, and is used for bonding the polarizing plate composite to the image display panel. Can be used.
 [偏光板複合体の製造方法]
 図3(A)~(D)は、本発明の偏光板複合体の製造方法の一例を模式的に示す概略断面図である。図3(A)に示すような第1位相差発現層113、第1配向層112及び第1基材層111を含む1/2波長層11と、図3(B)に示すような第2位相差発現層123、第2配向層122及び第1基材層121を含む1/4波長層12とを第1接着層21を介して積層させて複合位相差板40を得る。複合位相差板40は、例えば、図3(C)に示すように、第1基材層111、第1配向層112、第1位相差発現層113、第1接着層21、第2位相差発現層123、第2配向層122、第2基材層121の順に積層された積層体である。その後、図3(D)に示すように、1/2波長層11側に、第2接着層22を介して直線偏光板13を積層させて偏光板複合体10を得る。
[Production method of polarizing plate composite]
FIGS. 3A to 3D are schematic cross-sectional views schematically showing one example of the method for producing a polarizing plate composite of the present invention. The half-wavelength layer 11 including the first retardation expression layer 113, the first alignment layer 112, and the first base layer 111 as illustrated in FIG. 3A, and the second wavelength layer 11 as illustrated in FIG. The composite retardation plate 40 is obtained by laminating the retardation expression layer 123, the second alignment layer 122, and the 波長 wavelength layer 12 including the first base material layer 121 via the first adhesive layer 21. As shown in FIG. 3C, for example, the composite retardation plate 40 includes a first base material layer 111, a first alignment layer 112, a first retardation expression layer 113, a first adhesive layer 21, and a second retardation layer. This is a laminate in which the expression layer 123, the second alignment layer 122, and the second base layer 121 are laminated in this order. After that, as shown in FIG. 3D, the linear polarizing plate 13 is laminated on the half-wavelength layer 11 side via the second adhesive layer 22 to obtain the polarizing plate composite 10.
 1/2波長層11と1/4波長層12は、位相差発現層113,123が内側に位置するように配置されても、外側に位置するように配置されてもよいが、図3(C),(D)に示すように、互いの位相差発現層113,123が、内側に位置し第1接着層21と接触するように配置されていることが好ましい。 The 波長 wavelength layer 11 and the 波長 wavelength layer 12 may be arranged such that the phase difference expression layers 113 and 123 are located inside or outside, but FIG. As shown in (C) and (D), it is preferable that the phase difference expression layers 113 and 123 are arranged so as to be located inside and in contact with the first adhesive layer 21.
 1/2波長層11と1/4波長層12とを接着させる方法としては、1/2波長層11の貼合面又は1/4波長層12の貼合面のいずれか又はその両方に、第1接着層21を構成する活性エネルギー線硬化型接着剤を塗工し、これにもう一方の貼合面を積層し、その後、1/2波長層11又は1/4波長層12側から活性エネルギー線を照射して接着剤を硬化させる方法が挙げられる。第1接着層21を構成する接着剤の塗工には、例えば、ドクターブレード、ワイヤーバー、ダイコーター、カンマコーター、グラビアコーターなど、種々の塗工方式が利用できる。 As a method of bonding the 波長 wavelength layer 11 and the 波長 wavelength layer 12, the bonding surface of the 波長 wavelength layer 11 or the bonding surface of the 波長 wavelength layer 12, or both, The active energy ray-curable adhesive constituting the first adhesive layer 21 is applied, and the other bonding surface is laminated thereon. Then, the active layer is activated from the 波長 wavelength layer 11 or the 波長 wavelength layer 12 side. A method of curing the adhesive by irradiating with energy rays may be used. Various coating methods such as a doctor blade, a wire bar, a die coater, a comma coater, and a gravure coater can be used for coating the adhesive forming the first adhesive layer 21.
 1/2波長層11の貼合面又は1/4波長層12の貼合面のいずれか又はその両方に、コロナ処理、プラズマ処理等を行ってもよいし、プライマー層を形成してもよい。 Either or both of the bonding surface of the 波長 wavelength layer 11 and the bonding surface of the 4 wavelength layer 12 may be subjected to a corona treatment, a plasma treatment, or a primer layer. .
 複合位相差板40は、図3(C)に示すような積層体であってもよいし、第1基材層111及び第2基材層121の少なくとも一方の層を剥離した積層体であってもよい。また、図3(C)に示す積層体から第1基材層111及び第1配向層112が剥離された積層体であってもよいし、図3(C)に示す積層体から第2基材層121及び第2配向層122が剥離された積層体であってもよい。図4(A),(B)に具体例を示す。 The composite retardation plate 40 may be a laminate as shown in FIG. 3C or a laminate in which at least one of the first base layer 111 and the second base layer 121 is peeled off. You may. Further, a stacked body in which the first base material layer 111 and the first alignment layer 112 are separated from the stacked body illustrated in FIG. 3C may be used, or a second stacked body may be formed from the stacked body illustrated in FIG. It may be a laminate in which the material layer 121 and the second alignment layer 122 are separated. 4A and 4B show specific examples.
 図4(A),(B)は、図3(C)に示す複合位相差板40から、偏光板複合体の製造方法の他の例を模式的に示す概略断面図である。図4(A)に示すように、図3(C)に示す複合位相差板40から、第1基材層111及び第1配向層112、第2基材層121及び第2配向層122を剥離して複合位相差板40’を得て、その後、図4(B)に示すように、1/2波長層11(第1位相差発現層113)側に、第2接着層22を介して直線偏光板13を積層させて偏光板複合体10を得る。 FIGS. 4A and 4B are schematic cross-sectional views schematically showing another example of a method for manufacturing a polarizing plate composite from the composite retardation plate 40 shown in FIG. 3C. As shown in FIG. 4A, the first base layer 111 and the first alignment layer 112, the second base layer 121, and the second alignment layer 122 are formed from the composite retardation plate 40 shown in FIG. By peeling off, a composite retardation plate 40 'was obtained. Thereafter, as shown in FIG. 4B, the second adhesive layer 22 was interposed on the half-wavelength layer 11 (first retardation expression layer 113) side. The polarizing plate composite 10 is obtained by stacking the linear polarizing plates 13.
 [偏光板複合体の用途]
 円偏光板である偏光板複合体は、画像表示パネルの視認側に配置されて反射防止性能を付与する光学積層体として、さまざまな画像表示装置に用いることができる。画像表示装置とは、画像表示パネルを有する装置であり、発光源として発光素子または発光装置を含む。画像表示装置としては、液晶表示装置、有機エレクトロルミネッセンス(EL)表示装置、無機エレクトロルミネッセンス(EL)表示装置、タッチパネル表示装置、電子放出表示装置(例えば電場放出表示装置(FED)、表面電界放出表示装置(SED))、電子ペーパー(電子インクや電気泳動素子を用いた表示装置、プラズマ表示装置、投射型表示装置(例えばグレーティングライトバルブ(GLV)表示装置、デジタルマイクロミラーデバイス(DMD)を有する表示装置)および圧電セラミックディスプレイなどが挙げられる。液晶表示装置は、透過型液晶表示装置、半透過型液晶表示装置、反射型液晶表示装置、直視型液晶表示装置および投写型液晶表示装置などのいずれをも含む。これらの画像表示装置は、2次元画像を表示する画像表示装置であってもよいし、3次元画像を表示する立体画像表示装置であってもよい。特に円偏光板である光学積層体は、屈曲部を有する画像表示パネルを備え得る有機エレクトロルミネッセンス(EL)表示装置に有効に用いることができる。
[Use of polarizing plate composite]
The polarizing plate composite, which is a circular polarizing plate, can be used in various image display devices as an optical laminate that is disposed on the viewing side of the image display panel and imparts antireflection performance. An image display device is a device having an image display panel, and includes a light emitting element or a light emitting device as a light emitting source. Examples of the image display device include a liquid crystal display device, an organic electroluminescence (EL) display device, an inorganic electroluminescence (EL) display device, a touch panel display device, an electron emission display device (for example, a field emission display (FED), a surface field emission display). Device (SED)), electronic paper (display device using electronic ink or electrophoretic element, plasma display device, projection display device (for example, display having grating light valve (GLV) display device, digital micromirror device (DMD)) Devices) and piezoelectric ceramic displays, etc. Examples of the liquid crystal display device include a transmission type liquid crystal display device, a transflective type liquid crystal display device, a reflection type liquid crystal display device, a direct-view type liquid crystal display device, and a projection type liquid crystal display device. These image display devices display two-dimensional images. In particular, the optical laminate, which is a circularly polarizing plate, may include an image display panel having a bent portion, and may be a three-dimensional image display device that displays a three-dimensional image. It can be effectively used for a luminescence (EL) display device.
 以下、実施例及び比較例を示して本発明をさらに具体的に説明するが、本発明はこれらの例によって限定されるものではない。以下、使用量、含有量を表す部及び%は、特に断りのない限り質量基準である。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples. Hereinafter, parts and percentages representing the amounts used and contents are based on mass unless otherwise specified.
 [活性エネルギー線硬化型接着剤の調整]
 以下に示す各成分を、表1に示す配合割合(単位は質量部)で混合した後、脱泡して、接着剤A~Fを調整した。なお、カチオン重合開始剤(B)は、50質量%プロピレンカーボネート溶液として配合し、表1はその固形分量で示した。
[Adjustment of active energy ray-curable adhesive]
The components shown below were mixed at the mixing ratio (unit: parts by mass) shown in Table 1, and then defoamed to prepare adhesives A to F. The cationic polymerization initiator (B) was blended as a 50% by mass propylene carbonate solution, and Table 1 shows the solid content.
 (エポキシ化合物)
 A-1:3',4'-エポキシシクロヘキシルメチル 3,4-エポキシシクロヘキサンカルボキシレート(商品名:CEL2021P、(株)ダイセル製)
 A-2:ビスフェノールF型エポキシ樹脂(商品名:EXA-830CRP、DIC(株)製)
 A-3:フルオレン型エポキシ樹脂(商品名:OGSOL EG-200、大阪ガスケミカル(株)製)
 A-4:DCPDM型エポキシ樹脂(商品名:EP-4088S、(株)ADEKA製)
 A-5:ネオペンチルグリコールジグリシジルエーテル(商品名:EX-211L、ナガセケムテックス(株)製)
 A-6:ビフェニル型エポキシ樹脂(商品名:EX-142、ナガセケムテックス(株)製)
 A-7:2-エチルヘキシルグリシジルエーテル(商品名:EX-121、ナガセケムテックス(株)製)
(Epoxy compound)
A-1: 3 ', 4'-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate (trade name: CEL2021P, manufactured by Daicel Corporation)
A-2: Bisphenol F type epoxy resin (trade name: EXA-830CRP, manufactured by DIC Corporation)
A-3: Fluorene type epoxy resin (trade name: OGSOL EG-200, manufactured by Osaka Gas Chemical Co., Ltd.)
A-4: DCPDM type epoxy resin (trade name: EP-4088S, manufactured by ADEKA Corporation)
A-5: Neopentyl glycol diglycidyl ether (trade name: EX-211L, manufactured by Nagase ChemteX Corporation)
A-6: Biphenyl type epoxy resin (trade name: EX-142, manufactured by Nagase ChemteX Corporation)
A-7: 2-ethylhexyl glycidyl ether (trade name: EX-121, manufactured by Nagase ChemteX Corporation)
 (開始剤)
 B:カチオン重合開始剤(商品名:CPI-100P、サンアプロ(株)製、50質量%溶液)
(Initiator)
B: Cationic polymerization initiator (trade name: CPI-100P, manufactured by San Apro Co., Ltd., 50% by mass solution)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (屈折率測定方法)
 上記で調製した接着剤を、延伸ノルボルネン系樹脂フィルム〔日本ゼオン(株)製 “ゼオノアフィルム”〕の片面に、バーコーター〔第一理化(株)製〕を用いて塗工し、紫外線照射装置〔フュージョンUVシステムズ(株)製〕で積算光量600mJ/cm2 (UV-B)で紫外線を照射し硬化物を得た。得られた硬化物の膜厚は約30μmであった。
得られた硬化物からノルボルネン系樹脂フィルムを剥離し、硬化物層の屈折率(589nm)を25℃環境下で多波長アッベ屈折計〔(株)アタゴ製“DR-M2”〕を用いて測定した。結果を表1に示す。
(Refractive index measurement method)
The adhesive prepared above was coated on one side of a stretched norbornene-based resin film [“Zeonor Film” manufactured by Nippon Zeon Co., Ltd.] using a bar coater [manufactured by Daiichi Rika Co., Ltd.]. A cured product was obtained by irradiating ultraviolet rays with an integrated light amount of 600 mJ / cm 2 (UV-B) using [Fusion UV Systems Co., Ltd.]. The film thickness of the obtained cured product was about 30 μm.
The norbornene-based resin film is peeled from the obtained cured product, and the refractive index (589 nm) of the cured product layer is measured at 25 ° C. using a multi-wavelength Abbe refractometer (“DR-M2” manufactured by Atago Co., Ltd.). did. Table 1 shows the results.
 [偏光板の製造]
 平均重合度約2,400、ケン化度99.9モル%以上で厚さ75μmのポリビニルアルコールフィルムを、30℃の純水に浸漬した後、ヨウ素/ヨウ化カリウム/水の質量比が0.02/2/100の水溶液に30℃で浸漬してヨウ素染色を行った(ヨウ素染色工程)。ヨウ素染色工程を経たポリビニルアルコールフィルムを、ヨウ化カリウム/ホウ酸/水の質量比が12/5/100の水溶液に、56.5℃で浸漬してホウ酸処理を行った(ホウ酸処理工程)。
[Manufacture of polarizing plate]
After dipping a polyvinyl alcohol film having an average degree of polymerization of about 2,400 and a saponification degree of 99.9 mol% or more and a thickness of 75 μm in pure water at 30 ° C., the mass ratio of iodine / potassium iodide / water is 0.1%. It was immersed in an aqueous solution of 02/2/100 at 30 ° C. to perform iodine dyeing (iodine dyeing step). The polyvinyl alcohol film having undergone the iodine dyeing step was immersed in an aqueous solution of potassium iodide / boric acid / water having a mass ratio of 12/5/100 at 56.5 ° C. to perform boric acid treatment (boric acid treatment step). ).
ホウ酸処理工程を経たポリビニルアルコールフィルムを8℃の純水で洗浄した後、65℃で乾燥して、ポリビニルアルコールにヨウ素が吸着配向している偏光子を得た。この際、ヨウ素染色工程とホウ酸処理工程において延伸を行った。かかる延伸におけるトータル延伸倍率は5.3倍で、得られた偏光子の厚みは27μmであった。 The polyvinyl alcohol film having undergone the boric acid treatment step was washed with pure water at 8 ° C., and then dried at 65 ° C. to obtain a polarizer in which iodine was adsorbed and oriented in polyvinyl alcohol. At this time, stretching was performed in the iodine dyeing step and the boric acid treatment step. The total stretching ratio in such stretching was 5.3 times, and the thickness of the obtained polarizer was 27 μm.
得られた偏光子に両面に、ケン化処理されたトリアセチルセルロースフィルム(商品名:KC4UYTAC、コニカミノルタ製、厚さ40μm)を水系接着剤を介してニップロールで貼り合せた。得られた貼合物の張力を430N/mに保ちながら、60℃で2分間乾燥して、両面に保護フィルムとしてトリアセチルセルロースフィルムを有する偏光板を得た。なお、上述の水系接着剤は、水100部に、カルボキシル基変性ポリビニルアルコール(クラレポバールKL318、クラレ製)3部と、水溶性ポリアミドエポキシ樹脂(スミレーズレジン650、住化ケムテックス製、固形分濃度30%の水溶液)1.5部を添加して調製した。 A saponified triacetyl cellulose film (trade name: KC4UYTAC, manufactured by Konica Minolta, thickness: 40 μm) was bonded to both sides of the obtained polarizer with a nip roll via an aqueous adhesive. The obtained bonded product was dried at 60 ° C. for 2 minutes while keeping the tension of 430 N / m to obtain a polarizing plate having a triacetyl cellulose film as a protective film on both sides. The above-mentioned water-based adhesive is obtained by adding 100 parts of water, 3 parts of a carboxyl group-modified polyvinyl alcohol (Kuraray Povar KL318, manufactured by Kuraray), and a water-soluble polyamide epoxy resin (Sumilez Resin 650, manufactured by Sumika Chemtex, solid content concentration). It was prepared by adding 1.5 parts of a (30% aqueous solution).
 [1/2波長層の製造]
 透明樹脂基材に配向膜塗布液を塗布し乾燥することにより、λ/2配向処理をした。次いで、配向面に、ディスコチック液晶性化合物を含む塗布液を塗布し、加熱およびUV照射をして液晶化合物の配向を固定化することにより、透明樹脂基材上に厚み2μmの位相差発現層を有する1/2波長層を作製した。得られた1/2波長層の波長589nmにおける進相軸方向の屈折率n11は1.50であり、遅相軸方向の屈折率n11は1.62であり、厚み方向の屈折率n11は1.62であった。3つの屈折率n11、n11、n11より算出した3次元平均屈折率n11x、y、zは1.58、面内の2つの屈折率n11、n11より算出した面内平均屈折率はn11x、yは1.56であった。
[Production of 1/2 Wavelength Layer]
The λ / 2 alignment treatment was performed by applying a coating liquid for an alignment film on a transparent resin substrate and drying. Next, a coating liquid containing a discotic liquid crystal compound is applied to the alignment surface, and the alignment of the liquid crystal compound is fixed by heating and UV irradiation, whereby a 2 μm thick retardation expression layer is formed on the transparent resin substrate. Was prepared. The obtained half-wave layer has a refractive index n11 y in the fast axis direction at a wavelength of 589 nm of 1.50, a refractive index n11 x in the slow axis direction of 1.62, and a refractive index n11 in the thickness direction. z was 1.62. The three-dimensional average refractive index n11 x, y, z calculated from the three refractive indices n11 x , n11 y , and n11 z is 1.58, and the in-plane average refractive index calculated from the two in-plane refractive indices n11 x , n11 y. The ratio was n11 x and y was 1.56.
 [1/4波長層の製造]
 透明樹脂基材に配向膜塗布液を塗布し乾燥することにより、λ/4配向処理をした。次いで、配向面に、棒状で重合性のネマチック液晶モノマーを含む塗布液を塗布し、屈折率異方性を保持した状態で固化することにより、透明樹脂基材上に厚み1μmの位相差発現層を有する1/4波長層を作製した。得られた1/4波長層の波長589nmにおける進相軸方向の屈折率n12は1.49であり、遅相軸方向の屈折率n12は1.60であり、厚み方向の屈折率n12は1.49であった。3つの屈折率n12、n12、n12より算出した3次元平均屈折率n12x、y、zは、1.53であり、面内の2つの屈折率n12、n12より算出した面内平均屈折率n12x、yは、1.55であった。
[Manufacture of 1/4 wavelength layer]
A λ / 4 alignment treatment was performed by applying a coating liquid for an alignment film on a transparent resin substrate and drying it. Next, a 1 μm thick retardation expression layer is formed on the transparent resin substrate by applying a coating liquid containing a polymerizable nematic liquid crystal monomer in a rod shape on the alignment surface and solidifying the coating liquid while maintaining the refractive index anisotropy. A quarter wavelength layer having the following formula: Refractive index n12 y of the fast axis direction at a wavelength of 589nm obtained 1/4 wavelength layer is 1.49, the refractive index n12 x in the slow axis direction is 1.60, the thickness direction refractive index n12 z was 1.49. The three-dimensional average refractive index n12 x, y, z calculated from the three refractive indices n12 x , n12 y , and n12 z is 1.53, and the surface calculated from the two in-plane refractive indices n12 x , n12 y. The inner average refractive index n12 x, y was 1.55.
 <実施例1>
 得られた1/4波長層の位相差発現層及び1/2波長層の位相差発現層にコロナ処理を施した。コロナ処理を施した1/4波長層の位相差発現層に、表1の接着剤Aを塗工し、コロナ処理を施した1/2波長層の位相差発現層側が対向するように1/2波長層を積層させてラミネーターで貼合し、積層体を得た。このとき1/2波長層の遅相軸と、1/4波長層の遅相軸とがなす角度が60°となるよう貼合した。
 積層体の1/4波長層から、紫外線照射装置〔フュージョンUVシステムズ(株)製〕を用い、積算光量400mJ/cm2 (UV-B)で紫外線を照射し、接着剤を硬化させ、「1/4波長層」/第1接着層/「1/2波長層」の積層構造を有する複合位相差板を得た。なお、第1接着層の厚みは1.5μmであった。
 得られた複合位相差板の1/2波長層の配向膜及び透明樹脂基材を剥離し、上記偏光板と1/2波長層の位相差発現層とをアクリル系粘着剤を用いて貼合した。なお、アクリル系粘着剤の膜厚(第2接着層の膜厚)は5μmであり、偏光板の透過軸と1/2波長層の進相軸とがなす角度(表1において「軸角度」とする)が15°であった。
 次いで、1/4波長層側の配向膜及び透明樹脂基材を剥離し、偏光板/第2接着層/「1/2波長層」/第1接着層/「1/4波長層」の積層構造を有する偏光板複合体を得た。
<Example 1>
Corona treatment was applied to the obtained retardation developing layer of the 波長 wavelength layer and the retardation developing layer of the 波長 wavelength layer. The adhesive A shown in Table 1 was applied to the corona-treated quarter-wave retardation layer, and the corona-treated half-wave layer was adjusted so that the retardation-developing layer side faces the half-wave layer. The two-wavelength layer was laminated and bonded with a laminator to obtain a laminate. At this time, they were bonded so that the angle between the slow axis of the 波長 wavelength layer and the slow axis of the 波長 wavelength layer was 60 °.
An ultraviolet ray was irradiated from the quarter-wave layer of the laminate using an ultraviolet ray irradiator (manufactured by Fusion UV Systems Co., Ltd.) with an integrated light amount of 400 mJ / cm 2 (UV-B), and the adhesive was cured. A composite retardation plate having a laminated structure of “/ 4 wavelength layer” / first adhesive layer / “1/2 wavelength layer” was obtained. The thickness of the first adhesive layer was 1.5 μm.
The alignment film and the transparent resin substrate of the 波長 wavelength layer of the obtained composite retardation plate are peeled off, and the above-mentioned polarizing plate and the 差 wavelength layer's retardation expression layer are bonded together using an acrylic adhesive. did. The thickness of the acrylic pressure-sensitive adhesive (the thickness of the second adhesive layer) was 5 μm, and the angle between the transmission axis of the polarizing plate and the fast axis of the 1 / wavelength layer (“axis angle” in Table 1). ) Was 15 °.
Next, the alignment film and the transparent resin substrate on the 1 / wavelength layer side are peeled off, and a laminate of polarizing plate / second adhesive layer / “1 / wavelength layer” / first adhesive layer / “1 / wavelength layer” is formed. A polarizing plate composite having a structure was obtained.
 <実施例2>
 第1接着層を形成する接着剤として接着剤Bを用いたこと以外は実施例1と同様にして偏光板複合体を作製した。
<Example 2>
A polarizing plate composite was produced in the same manner as in Example 1, except that the adhesive B was used as the adhesive for forming the first adhesive layer.
 <実施例3>
 第1接着層を形成する接着剤として接着剤Cを用いたこと以外は実施例1と同様にして偏光板複合体を作製した。
<Example 3>
A polarizing plate composite was produced in the same manner as in Example 1, except that the adhesive C was used as an adhesive for forming the first adhesive layer.
 <実施例4>
 第1接着層を形成する接着剤として接着剤Dを用いたこと以外は実施例1と同様にして偏光板複合体を作製した。
<Example 4>
A polarizing plate composite was produced in the same manner as in Example 1, except that the adhesive D was used as an adhesive for forming the first adhesive layer.
 <比較例1>
 第1接着層を形成する接着剤として接着剤Eを用いたこと以外は実施例1と同様にして偏光板複合体を作製した。
<Comparative Example 1>
A polarizing plate composite was produced in the same manner as in Example 1, except that the adhesive E was used as an adhesive for forming the first adhesive layer.
 <比較例2>
 第1接着剤を形成する接着剤として接着剤Fを用いたこと以外は実施例1と同様にして偏光板複合体を作製した。
<Comparative Example 2>
A polarizing plate composite was produced in the same manner as in Example 1 except that the adhesive F was used as an adhesive for forming the first adhesive.
 <比較例3>
 偏光板の透過軸と1/2波長層の進相軸とがなす角度(表1において「軸角度」とする)が105°となるよう貼合したこと以外は実施例1と同様にして偏光板複合体を作製した。
<Comparative Example 3>
Polarization was performed in the same manner as in Example 1 except that the polarizing plate was bonded so that the angle formed by the transmission axis of the polarizing plate and the fast axis of the half-wave layer (referred to as “axial angle” in Table 1) was 105 °. A plate composite was prepared.
 [評価方法]
 (干渉ムラ評価方法)
実施例および比較例の偏光板複合体を、アクリル系粘着剤(膜厚25μm)を介してアルミ反射板に貼りつけ、3波長形蛍光灯下で目視観察し、以下の基準に基づいて評価した。
評価結果を表2に示す。
  A:干渉ムラが視認されない
  B:干渉ムラがわずかに視認される
  C:干渉ムラが視認される
[Evaluation methods]
(Interference unevenness evaluation method)
The polarizing plate composites of Examples and Comparative Examples were attached to an aluminum reflecting plate via an acrylic pressure-sensitive adhesive (25 μm in thickness), visually observed under a three-wavelength fluorescent lamp, and evaluated based on the following criteria. .
Table 2 shows the evaluation results.
A: interference unevenness is not visually recognized B: interference unevenness is slightly recognized C: interference unevenness is visually recognized
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 10 偏光板複合体、11 1/2波長層、12 1/4波長層、13 直線偏光板、21 第1接着層、22 第2接着層、30 位相差板、31 基材層、32 配向層、33 位相差発現層、40 複合位相差板、111 第1基材層、112 第1配向層、113 第1位相差発現層、121 第2基材層、122 第2配向層、123 第2位相差発現層。 10 ° polarizing plate composite, 11 half-wave layer, 12 波長 quarter-wave layer, 13 linear polarizing plate, 21 first adhesive layer, 22 second adhesive layer, 30 retardation plate, 31 base layer, 32 orientation layer , 33 ° retardation developing layer, 40 ° composite retardation plate, 111 ° first base layer, 112 ° first alignment layer, 113 ° first phase difference developing layer, 121 ° second base layer, 122 ° second alignment layer, 123 ° second Retardation expression layer.

Claims (11)

  1.  直線偏光板と、1/2波長層と、活性エネルギー線硬化型接着剤を硬化させてなる第1接着層と、1/4波長層とをこの順に備え、
     前記1/2波長層の進相軸と、前記直線偏光板の透過軸とのなす角度が10°以上20°以下であり、
     前記第1接着層の波長589nmでの屈折率と、前記1/2波長層の波長589nmでの進相軸方向の屈折率との差の絶対値が0.05未満である、偏光板複合体。
    A linear polarizing plate, a 波長 wavelength layer, a first adhesive layer obtained by curing an active energy ray-curable adhesive, and a 波長 wavelength layer, in this order,
    The angle between the fast axis of the 1 / wavelength layer and the transmission axis of the linear polarizer is 10 ° or more and 20 ° or less,
    The polarizing plate composite, wherein the absolute value of the difference between the refractive index of the first adhesive layer at a wavelength of 589 nm and the refractive index of the 波長 wavelength layer in the fast axis direction at a wavelength of 589 nm is less than 0.05. .
  2.  前記第1接着層は、波長589nmでの屈折率が1.55未満である、請求項1に記載の偏光板複合体。 偏光 The polarizing plate composite according to claim 1, wherein the first adhesive layer has a refractive index at a wavelength of 589 nm of less than 1.55.
  3.  前記1/4波長層は、波長589nmでの進相軸方向の屈折率と遅相軸方向の屈折率の平均値である面内平均屈折率が1.58未満である、請求項1又は2に記載の偏光板複合体。 The 1/4 wavelength layer has an in-plane average refractive index of less than 1.58, which is an average value of a refractive index in a fast axis direction and a refractive index in a slow axis direction at a wavelength of 589 nm. 3. The polarizing plate composite according to item 1.
  4.  前記第1接着層の波長589nmでの屈折率と、前記1/4波長層の波長589nmでの進相軸方向の屈折率と遅相軸方向の屈折率の平均値である面内平均屈折率との差の絶対値が0.05未満である、請求項1~3のいずれか1項に記載の偏光板複合体。 The in-plane average refractive index, which is the average value of the refractive index of the first adhesive layer at a wavelength of 589 nm and the refractive index of the quarter wavelength layer at a wavelength of 589 nm in the fast axis direction and the slow axis direction. The polarizing plate composite according to any one of claims 1 to 3, wherein the absolute value of the difference from the polarizing plate is less than 0.05.
  5.  円偏光板である、請求項1~4のいずれか1項に記載の偏光板複合体。 The polarizing plate composite according to any one of claims 1 to 4, which is a circular polarizing plate.
  6.  前記1/2波長層は、液晶層である位相差発現層を含む、請求項1~5のいずれか1項に記載の偏光板複合体。 (6) The polarizing plate composite according to any one of (1) to (5) above, wherein the half-wavelength layer includes a retardation developing layer that is a liquid crystal layer.
  7.  前記1/4波長層は、液晶層である位相差発現層を含む、請求項1~6のいずれか1項に記載の偏光板複合体。 The polarizing plate composite according to any one of claims 1 to 6, wherein the 波長 wavelength layer includes a retardation developing layer that is a liquid crystal layer.
  8.  前記第1接着層は、厚みが5μm以下である、請求項1~7のいずれか1項に記載の偏光板複合体。 偏光 The polarizing plate composite according to any one of claims 1 to 7, wherein the first adhesive layer has a thickness of 5 μm or less.
  9.  画像表示パネルと、前記画像表示パネルの視認側に配置された請求項1~8のいずれか1項に記載の偏光板複合体とを含む、画像表示装置。 画像 An image display device comprising: an image display panel; and the polarizing plate composite according to claim 1 disposed on a viewing side of the image display panel.
  10.  前記偏光板複合体は、前記直線偏光板が視認側に位置する向きで配置されている、請求項9に記載の画像表示装置。 The image display device according to claim 9, wherein the polarizing plate composite is arranged in a direction in which the linear polarizing plate is located on the viewing side.
  11.  有機エレクトロルミネッセンス表示装置である、請求項9又は10に記載の画像表示装置。 The image display device according to claim 9 or 10, wherein the image display device is an organic electroluminescence display device.
PCT/JP2019/036742 2018-09-28 2019-09-19 Polarizing plate composite and image display device WO2020066831A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980063726.0A CN112771421A (en) 2018-09-28 2019-09-19 Polarizing plate composite and image display device
KR1020217011592A KR20210064282A (en) 2018-09-28 2019-09-19 Polarizer composite and image display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018184577A JP2020052365A (en) 2018-09-28 2018-09-28 Polarizing plate composite and image display device
JP2018-184577 2018-09-28

Publications (1)

Publication Number Publication Date
WO2020066831A1 true WO2020066831A1 (en) 2020-04-02

Family

ID=69950086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/036742 WO2020066831A1 (en) 2018-09-28 2019-09-19 Polarizing plate composite and image display device

Country Status (5)

Country Link
JP (1) JP2020052365A (en)
KR (1) KR20210064282A (en)
CN (1) CN112771421A (en)
TW (1) TWI828762B (en)
WO (1) WO2020066831A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7059409B1 (en) 2021-01-15 2022-04-25 住友化学株式会社 Light absorption anisotropic plate
JP2024018584A (en) 2022-07-29 2024-02-08 住友化学株式会社 Optical laminate and method of manufacturing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11149015A (en) * 1997-11-14 1999-06-02 Nitto Denko Corp Laminated wavelength plate, circularly polarized light plate and liquid crystal display device
JP2014170223A (en) * 2013-02-07 2014-09-18 Nitto Denko Corp Optical laminate having polarizing film
WO2014196638A1 (en) * 2013-06-06 2014-12-11 富士フイルム株式会社 Optical sheet member and image display device using same
JP2015163937A (en) * 2013-08-09 2015-09-10 住友化学株式会社 optical film
WO2016158300A1 (en) * 2015-03-31 2016-10-06 富士フイルム株式会社 Circular polarizing plate and bendable display device
JP2018017996A (en) * 2016-07-29 2018-02-01 日東電工株式会社 Polarizing plate with retardation layer and organic EL display device
WO2018135186A1 (en) * 2017-01-18 2018-07-26 日東電工株式会社 Polarizing plate with optical compensation layer and organic el panel using same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003195036A (en) * 2001-12-25 2003-07-09 Fuji Photo Film Co Ltd Polarizing plate, method for manufacturing the same and liquid crystal display device
JP2003307622A (en) * 2002-04-18 2003-10-31 Dainippon Printing Co Ltd Polarizing element
EP1498751A4 (en) * 2002-04-23 2007-08-01 Nitto Denko Corp Polarizer, polarization light source and image displayunit using them
CN107027324B (en) * 2014-07-10 2019-08-02 住友化学株式会社 Polarization plates
JP2017015766A (en) * 2015-06-26 2017-01-19 富士フイルム株式会社 Image display device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11149015A (en) * 1997-11-14 1999-06-02 Nitto Denko Corp Laminated wavelength plate, circularly polarized light plate and liquid crystal display device
JP2014170223A (en) * 2013-02-07 2014-09-18 Nitto Denko Corp Optical laminate having polarizing film
WO2014196638A1 (en) * 2013-06-06 2014-12-11 富士フイルム株式会社 Optical sheet member and image display device using same
JP2015163937A (en) * 2013-08-09 2015-09-10 住友化学株式会社 optical film
WO2016158300A1 (en) * 2015-03-31 2016-10-06 富士フイルム株式会社 Circular polarizing plate and bendable display device
JP2018017996A (en) * 2016-07-29 2018-02-01 日東電工株式会社 Polarizing plate with retardation layer and organic EL display device
WO2018135186A1 (en) * 2017-01-18 2018-07-26 日東電工株式会社 Polarizing plate with optical compensation layer and organic el panel using same

Also Published As

Publication number Publication date
TWI828762B (en) 2024-01-11
JP2020052365A (en) 2020-04-02
CN112771421A (en) 2021-05-07
KR20210064282A (en) 2021-06-02
TW202036046A (en) 2020-10-01

Similar Documents

Publication Publication Date Title
JP7348719B2 (en) Composite retardation plate, optical laminate, and image display device
JP6786640B2 (en) Optical film
JP7055099B2 (en) Phase difference film
JP6481570B2 (en) Optical film
KR102278272B1 (en) Elliptical polarizing plate
JP5822006B2 (en) Optical film
CN109765651B (en) Composite retardation plate, optical laminate, and image display device
JP2016040603A (en) Optical film
JP2023033285A (en) Liquid crystal cured film, optical film including liquid crystal cured film, and display device
JP7373303B2 (en) Optical laminates, polarizing plate composites, and image display devices
WO2020066830A1 (en) Optical laminate, polarizing plate composite, and image display device
WO2020066831A1 (en) Polarizing plate composite and image display device
JP7150779B2 (en) Polarizing plate composite and image display device
WO2021132234A1 (en) Multilayer body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19867638

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217011592

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19867638

Country of ref document: EP

Kind code of ref document: A1