WO2020066751A1 - 成膜方法および成膜装置 - Google Patents

成膜方法および成膜装置 Download PDF

Info

Publication number
WO2020066751A1
WO2020066751A1 PCT/JP2019/036392 JP2019036392W WO2020066751A1 WO 2020066751 A1 WO2020066751 A1 WO 2020066751A1 JP 2019036392 W JP2019036392 W JP 2019036392W WO 2020066751 A1 WO2020066751 A1 WO 2020066751A1
Authority
WO
WIPO (PCT)
Prior art keywords
film forming
flow rate
gas
film
set value
Prior art date
Application number
PCT/JP2019/036392
Other languages
English (en)
French (fr)
Inventor
浩之 生田
博一 上田
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2020066751A1 publication Critical patent/WO2020066751A1/ja

Links

Images

Definitions

  • the present disclosure relates to a film forming method and a film forming apparatus.
  • Patent Document 1 discloses a technique in which a TiCl 4 gas is introduced in a state where a substrate to be processed is placed in a chamber, and then plasma is generated in the chamber to form a Ti film on the substrate to be processed. ing.
  • the present disclosure provides a technology capable of suppressing the occurrence of nonuniformity in the thickness direction of a film to be formed.
  • the film formation method is a film formation method for forming a film on a substrate, and includes a first step and a second step.
  • the first step when the supply of the film forming material gas containing the film forming material to the processing vessel in which the substrate is arranged and the plasma is generated is started, the film forming material gas is supplied to the first flow rate set value. To increase the flow rate of the film forming raw material gas.
  • the second step after the first step, the film forming raw material gas is flown at a second flow rate set value lower than the first flow rate set value, and the flow rate of the film forming raw material gas is stabilized.
  • FIG. 1 is a cross-sectional view illustrating an example of a schematic configuration of a film forming apparatus according to an embodiment.
  • FIG. 2A is a diagram schematically illustrating an example of an ideal change in gas flow rate.
  • FIG. 2B is a diagram schematically illustrating an example of a change in the actual gas flow rate.
  • FIG. 2C is a diagram schematically illustrating an example of a change in a gas flow rate according to the embodiment.
  • FIG. 3 is a diagram showing a simplified supply route of the film forming source gas.
  • FIG. 4 is a diagram illustrating an example of a gas flow of the film forming method according to the embodiment.
  • FIG. 5 is a diagram illustrating an example of a change in film quality of a formed film.
  • FIG. 6 is a diagram illustrating an example of a change in film quality of a formed film.
  • FIG. 7 is a diagram illustrating an example of a gas flow of a film forming method according to another embodiment.
  • a film is formed on a substrate such as a semiconductor wafer by a film forming apparatus.
  • the film forming apparatus arranges a substrate in a processing container having a predetermined degree of vacuum, supplies a film forming material gas containing a film forming material from above the substrate, generates plasma, and forms a film on the substrate.
  • a film forming material gas containing a film forming material from above the substrate
  • plasma plasma
  • Non-uniformity in the thickness direction of the film may occur in the thickness and the film quality.
  • the concentration is typically a number density.
  • FIG. 1 is a cross-sectional view illustrating an example of a schematic configuration of a film forming apparatus according to an embodiment.
  • the film forming apparatus 12 is an apparatus that forms a film by plasma CVD (Chemical Vapor Deposition).
  • the film forming apparatus 12 includes, for example, a processing container 14 formed of aluminum or an aluminum alloy into a cylindrical shape.
  • the processing container 14 is grounded.
  • a cooling jacket 110 for flowing a cooling medium is provided on a side wall or a ceiling wall of the processing container 14.
  • the processing vessel 14 is provided with a shower head section 18 on the inner ceiling, and various necessary gases can be introduced from the shower head section 18 into the processing space S in the processing vessel 14.
  • the shower head unit 18 is entirely made of a conductor such as nickel, Hastelloy (trade name), aluminum, or a material obtained by combining these materials, and also serves as an upper electrode of a parallel plate electrode.
  • the outer peripheral side and the upper side of the shower head section 18 are entirely covered with a filling member 20 made of an insulating material such as quartz or alumina (Al 2 O 3 ).
  • the shower head section 18 is attached and fixed to the processing container 14 side via the filling member 20 in an insulated state.
  • the shower head section 18 has a gas chamber 19 provided therein, and gas can be individually introduced from the gas chamber 19 into the processing space S.
  • the shower head 18 has a large number of gas ejection ports 16 formed on a gas ejection surface 18A on the lower surface. Each gas ejection port 16 penetrates into a gas chamber 19 and ejects gas in the gas chamber 19.
  • the shower head 18 is provided on its upper surface with a gas inlet 22 communicating with the gas chamber 19.
  • the gas inlet 22 is connected to a gas supply mechanism 24 via a gas pipe 23.
  • the gas supply mechanism 24 has gas supply lines connected to gas supply sources of various gases used for film formation. Each gas supply line is appropriately branched in accordance with a film forming process, and provided with a control device for controlling a gas flow rate, such as a valve such as an open / close valve or a flow rate controller such as a mass flow controller.
  • the gas supply mechanism 24 can control the flow rates of various gases by controlling control devices such as open / close valves and flow controllers provided in each gas supply line.
  • the gas supply mechanism 24 supplies various gases used for film formation to the gas inlet 22 via the gas pipe 23.
  • the gas supplied to the gas pipe 23 is ejected from the gas ejection port 16.
  • FIG. 1 illustrates a case where the shower head unit 18 is provided with one gas inlet 22 and one gas pipe 23, the present invention is not limited to this.
  • a plurality of gas inlets 22 and gas pipes 23 may be provided in the shower head unit 18.
  • the film forming apparatus 12 may be provided with the gas inlet 22 and the gas pipe 23 used for supplying the gas to the shower head unit 18 separately for each gas according to the film forming process.
  • the lower surface 20A of the filling member 20 is at the same horizontal level as the gas ejection surface 18A of the lower surface of the shower head section 18. This suppresses various gases introduced into the processing container 14 from generating turbulent flow in the processing space S and from non-uniform distribution of plasma in the processing space S.
  • a seal member 38 made of, for example, an O-ring is interposed at each joint between the shower head 18, the filling member 20, and the wall of the processing container 14 so as to maintain airtightness in the processing container 14. It has become.
  • the high frequency power supply 42 is connected to the shower head 18 via a matching circuit 44.
  • the high frequency power supply 42 applies a high frequency voltage of a predetermined frequency (for example, 13.56 MHz) to the shower head unit 18 when generating the plasma.
  • the frequency of the high-frequency voltage used for generating plasma is not limited to 13.56 MHz, and another frequency such as 450 kHz may be used.
  • As a frequency of the high-frequency voltage used for generating plasma a frequency in a range of 300 kHz to 27 MHz can be used.
  • the film forming apparatus 12 may be provided with a plurality of high-frequency power supplies 42 and generate plasma by applying high-frequency voltages having a plurality of different frequencies to the shower head unit 18.
  • a loading / unloading port 46 for loading / unloading the semiconductor wafer W is formed in a side wall of the processing container 14.
  • the carry-in / out port 46 is provided with a gate valve 48 and can be opened and closed by the gate valve 48.
  • a load lock chamber, a transfer chamber, and the like are connected to the gate valve 48 to transfer the semiconductor wafer W without exposing the semiconductor wafer W to the atmosphere.
  • the center of the bottom of the processing container 14 is formed in a concave shape downward.
  • An exhaust port 50 is formed on the concave side surface of the processing container 14.
  • the exhaust port 50 is provided with a vacuum exhaust system 52 so that the inside of the processing container 14 can be evacuated.
  • the vacuum exhaust system 52 has an exhaust passage 54 connected to the exhaust port 50.
  • the exhaust passage 54 is provided with a pressure adjusting valve 56 for adjusting the pressure in the processing chamber 14 and a vacuum pump 58.
  • a mounting table 62 supported from the bottom via a column 60 is provided in the processing container 14 for mounting the semiconductor wafer W.
  • the mounting table 62 also serves as a lower electrode.
  • a ring-shaped focus ring 64 is provided on the upper peripheral portion of the mounting table 62 so as to surround the periphery of the semiconductor wafer W.
  • the film forming apparatus 12 can generate plasma by applying a high-frequency voltage to the upper electrode in the processing space S between the mounting table 62 as the lower electrode and the shower head section 18 as the upper electrode. ing.
  • the mounting table 62 is made of, for example, aluminum nitride (AlN), which is a ceramic material.
  • AlN aluminum nitride
  • heaters 66 made of a resistor such as molybdenum or tungsten wire are embedded in a predetermined pattern.
  • a heater power supply 68 is connected to the heater 66 via a wiring 70.
  • the film forming apparatus 12 can control the temperature of the semiconductor wafer W to a predetermined temperature by supplying electric power to the heater 66 as needed.
  • a molybdenum wire or the like is meshed (meshed) in an in-plane direction over substantially the entire area in order to exert the function of the lower electrode. Embedded.
  • the electrode body 72 is grounded via a wiring 74. Note that a high-frequency voltage may be applied to the electrode body 72 as a bias voltage.
  • the mounting table 62 is formed with three pin holes 76 penetrating vertically. In FIG. 1, only two pin holes 76 are shown.
  • a push-up pin 80 made of, for example, quartz is inserted through each pin hole 76 in a loosely fitted state.
  • the lower end of each of the push-up pins 80 is supported by an arc-shaped connecting ring 78.
  • the connection ring 78 is supported on the upper end of the retractable rod 82.
  • the lowering rod 82 is connected to the actuator 84 at the lower end through the bottom of the container, and is movable vertically by the actuator 84.
  • An extendable bellows 86 is interposed at the penetrating portion of the retractable rod 82 with respect to the bottom of the container, so that the retractable rod 82 can be moved up and down while maintaining the airtightness in the processing container 14. .
  • the control unit 106 is, for example, a computer, and includes a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), an auxiliary storage device, and the like.
  • the CPU operates based on a program stored in the ROM or the auxiliary storage device or a process condition of film formation, and controls the operation of the entire apparatus.
  • the control unit 106 starts and stops the supply of each gas, controls the flow rate of each gas, controls the temperature of the mounting table 62 on which the semiconductor wafer W is mounted, raises and lowers the temperature, controls the pressure in the processing chamber 14, and generates plasma.
  • the storage medium 108 includes, for example, a flexible disk, a CD (Compact @ Disc), a CD-ROM, a hard disk, a flash memory, a DVD, or the like.
  • the control section 106 may be provided inside the film forming apparatus 12 or may be provided outside. When the control unit 106 is provided outside, the control unit 106 can control the film forming apparatus 12 by a wired or wireless communication means.
  • the film forming apparatus 12 closes the processing container 14 by closing the gate valve 48, and increases the power supplied to the heater 66 to increase the temperature of the mounting table 62 in the preheated state to the process temperature. Heat up and maintain.
  • the film forming apparatus 12 evacuates the processing chamber 14 from the exhaust port 50 by the vacuum exhaust system 52 to maintain the processing chamber 14 at a predetermined process pressure. Further, the film forming apparatus 12 supplies a processing gas including a film forming material gas from the gas supply mechanism 24 to the shower head unit 18, and supplies a processing gas including the film forming material gas from the shower head unit 18 to the processing space in the processing chamber 14. Introduce to S. The film forming apparatus 12 drives the high-frequency power supply 42 to apply a high-frequency voltage of a predetermined frequency between the shower head 18 as the upper electrode and the mounting table 62 as the lower electrode. As a result, plasma is generated in the processing space S, and a film is formed on the surface of the semiconductor wafer W by the plasma.
  • FIG. 2A is a diagram schematically illustrating an example of an ideal change in gas flow rate.
  • FIG. 2A shows a change in the set value of the flow rate of the film forming source gas in the gas supply mechanism 24 and an ideal change in the flow rate of the film forming source gas.
  • the set value of the flow rate controller for the film forming source gas is changed to the flow rate under the film forming conditions, it is ideal that the flow rate of the film forming source gas changes similarly to the change of the set value.
  • a pipe through which gas flows such as the gas pipe 23 from the gas supply mechanism 24 to the shower head 18, is several tens of centimeters to several meters.
  • an orifice or a nozzle is provided in the gas inlet 22 so that the gas inlet 22 has a small hole in order to improve the uniformity of the gas flow rate.
  • the time required for the flow rate of the gas supplied into the processing container 14 to stabilize becomes long.
  • FIG. 2B is a diagram schematically illustrating an example of a change in the actual gas flow rate.
  • FIG. 2B shows a change in the set value of the flow rate of the film forming source gas in the gas supply mechanism 24 and an actual change in the flow rate of the film forming source gas.
  • the set value of the flow rate controller of the film forming source gas is changed to the flow rate of the film forming condition, the flow rate of the film forming source gas gradually increases to the set value flow rate, and the change of the flow rate of the film forming source gas is changed
  • the period t1 until stabilization may take several seconds to several tens of seconds.
  • non-uniformity may occur in the film thickness, film quality, and the like of the film to be formed.
  • the influence of non-uniformity of the film formed during the period in which the supply of the film forming material gas is started increases.
  • FIG. 2C is a diagram schematically illustrating an example of a change in a gas flow rate according to the embodiment.
  • FIG. 2C schematically illustrates an example of a change in the set value of the flow rate of the film forming source gas in the gas supply mechanism 24 and an actual change in the flow rate of the film forming source gas.
  • the film forming apparatus 12 flows the film forming raw material gas at a first flow rate set value to increase the flow rate of the film forming raw material gas.
  • the control unit 106 of the film forming apparatus 12 sets the flow rate of the film forming source gas as a first flow rate set value during the first period in which the supply of the film forming source gas is started. Is raised temporarily.
  • the film forming apparatus 12 flows the film forming material gas at the second flow rate set value lower than the first flow rate set value, and stabilizes the flow rate of the film forming material gas.
  • the control unit 106 of the film forming apparatus 12 uses the set value of the flow rate of the film forming source gas as a second flow rate set value to stabilize the flow rate of the film forming source gas. Accordingly, the film forming apparatus 12 can shorten the period t1 until the change in the flow rate of the film forming raw material gas becomes stable, thereby suppressing the occurrence of non-uniformity in the film to be formed.
  • the first period is a period required for the flow rate in the flow rate controller or the valve to react to the change of the set value.
  • the first period is, for example, a period from the start of the supply of the film forming source gas to the lapse of 3 to 5 seconds.
  • the second flow rate set value is, for example, a flow rate of a film forming raw material gas under a film forming condition capable of forming a film stably with target characteristics.
  • the first flow rate set value is, for example, a value larger than the flow rate of the film forming raw material gas under the film forming conditions under which the film can be stably formed with the target characteristics.
  • the first flow rate set value is a predetermined value based on a flow rate that can fill the volume of the supply path of the film forming source gas from the most downstream control device for controlling the flow rate of the film forming source gas to the processing container in the first period. Specify a value within the range.
  • FIG. 3 is a diagram showing a simplified supply route of the film forming source gas.
  • FIG. 3 shows a simplified supply path of the film forming source gas from the gas supply mechanism 24 to the processing container 14.
  • the gas supply mechanism 24 is connected to the shower head 18 of the processing container 14 by a pipe 120 including the above-described gas pipe 23.
  • the gas supply mechanism 24 is provided with valves 121 and 122 such as an open / close valve and a flow controller 123 such as a mass flow controller as control devices for controlling the flow rate of the film forming raw material gas flowing through the pipe 120.
  • a portion of the pipe 120 from the valve 121, which is the most downstream control device of the gas supply mechanism 24, to the processing container 14 is a pipe 120 ⁇ / b> A.
  • the volume inside the pipe 120A is V [cc]
  • the pressure inside the pipe 120A is P [Pa].
  • the gas flow rate during film formation is Qg [sccm]
  • the pumping speed of the vacuum pump 58 attached to the processing container 14 is Qv [sccm].
  • at least the time shown by the following equation (1) is required to fill the pipe 120A with the film forming source gas.
  • the pressure P in the pipe 120A and the pumping speed Qv of the vacuum pump 58 may be obtained by actual measurement or simulation using the film forming apparatus 12, or may be obtained as a calculated value from the design conditions of the film forming apparatus 12. .
  • the first flow rate set value is a value within a predetermined range based on any gas flow rate Qg in which the time of Expression (1) is within the first period.
  • the first flow rate set value is a value within a predetermined range of ⁇ 10% based on the gas flow rate Qg.
  • FIG. 4 is a diagram illustrating an example of a gas flow of the film forming method according to the embodiment.
  • the film forming apparatus 12 supplies an NH 3 gas, an Ar gas, and a He gas.
  • the control unit 106, NH 3 gas provided in the gas supply mechanism 24, Ar gas, as a flow setting of deposition conditions the set value of each flow rate controller for controlling the flow rate of the He gas, NH 3 gas , Ar gas and He gas are supplied to the shower head unit 18.
  • the film forming apparatus 12 After the flow rates of the NH 3 gas, the Ar gas, and the He gas are stabilized, the film forming apparatus 12 generates plasma in the processing chamber 14.
  • the control unit 106 controls the high-frequency power supply 42 to start applying a high-frequency voltage (RF) from the high-frequency power supply 42 to the shower head unit 18 to generate plasma in the processing chamber 14.
  • RF high-frequency voltage
  • the film forming apparatus 12 supplies a SiH 4 gas, which is a film forming material gas, to the processing container 14 in which the plasma has been generated.
  • a SiH 4 gas which is a film forming material gas
  • the film forming apparatus 12 flows the SiH 4 gas at the first flow rate set value to increase the flow rate of the SiH 4 gas.
  • the control unit 106 of the film forming apparatus 12 sets the flow rate of the SiH 4 gas as a first flow rate set value of the flow rate controller of the SiH 4 gas during the first period in which the supply of the SiH 4 gas is started. Raise temporarily.
  • the film forming apparatus 12 flows the SiH 4 gas at a second flow rate set value lower than the first flow rate set value, and stabilizes the flow rate of the SiH 4 gas.
  • the control unit 106 of the deposition apparatus 12 the set value of the flow rate controller of the SiH 4 gas as a second flow rate setpoint, to stabilize the flow rate of the SiH 4 gas.
  • the SiH 4 gas supplied into the processing chamber 14 reacts by plasma to form a film on the semiconductor wafer W.
  • the flow rate of the SiH 4 gas can be quickly stabilized, it is possible to suppress the occurrence of unevenness in the thickness direction of the film formed on the semiconductor wafer W.
  • FIG. 5 and FIG. 6 are diagrams illustrating an example of a change in film quality of a formed film.
  • FIGS. 5 and 6 show changes in the refractive index (RI) as the film quality.
  • the refractive index is normalized by different values, and the scales on the vertical axis are different.
  • FIG. 5 as a comparative example, as shown in FIG. 2B, the refractive index with respect to the thickness of the film when the film is formed by setting a constant set value to the flow rate controller for controlling the flow rate of the film forming material gas. Is shown.
  • the flow rate of the film forming raw material gas gradually rises to a set value.
  • FIGS. 5 and 6 show changes in the refractive index with respect to the thickness of the films of Examples 1 to 3 formed using the film forming method of the present embodiment as shown in FIG. 2C. .
  • the first period is set to 3 seconds.
  • the predetermined range based on the gas flow rate Qg is set to be 4 to 5 times.
  • the first flow rate setting value is set to be five times the second flow rate setting value.
  • the first flow rate set value is set to 4.6 times the second flow rate set value.
  • the first flow rate set value is four times the second flow rate set value.
  • the film formation is performed with the set value of the flow rate of the film formation material gas increased five times for 3 seconds after the supply of the film formation material gas is started.
  • the film formation is performed with the set value of the flow rate of the film formation material gas being 4.6 times for 3 seconds after the supply of the film formation material gas is started.
  • the film formation is performed with the set value of the flow rate of the film formation material gas quadrupled for 3 seconds after the supply of the film formation material gas is started.
  • the period t1 until the flow rate becomes stable is short.
  • the range of the film thickness in which the refractive index changes greatly is smaller than in the comparative example.
  • the change in the refractive index can be suppressed in the range of the film thickness of 200 A or more.
  • the film forming methods of Examples 1 to 3 can reduce the range of the film thickness where the refractive index changes greatly.
  • the refractive index of 200 A or less is large. It is considered that the reason for this is that the flow rate of the film forming material gas for 3 seconds after the supply of the film forming material gas was started was large.
  • the film forming method of the present embodiment can optimize the time until the film quality stabilizes by adjusting the set value of the flow rate of the film forming source gas in the first period. For example, when the set value of the flow rate of the film forming material gas is set to 4.6 times for 3 seconds after the supply of the film forming material gas is started as in Example 2, the change in the film quality can be minimized.
  • the film forming method according to the present embodiment is a film forming method for forming a film on the semiconductor wafer W, and includes the first step and the second step.
  • the first step when the supply of the film forming material gas containing the film forming material is started to the processing chamber 14 in which the semiconductor wafer W is arranged and the plasma is generated, the film forming material gas is changed to the first state. By flowing at a flow rate set value, the flow rate of the film forming source gas is increased.
  • the film forming raw material gas is flown at a second flow rate set value lower than the first flow rate set value, and the flow rate of the film forming raw material gas is stabilized.
  • the film forming method according to the present embodiment can suppress the occurrence of unevenness in the thickness direction of the film to be formed.
  • a plurality of gases including a film forming material gas are supplied to the processing container 14.
  • the first step and the second step are performed only on a film forming source gas among a plurality of gases.
  • the film thickness of the film to be formed is increased. The occurrence of non-uniformity in direction can be suppressed.
  • the film forming material gas in the first step, is caused to flow at the first flow rate set value during the first period when the supply of the film forming material gas is started. Increase the gas flow.
  • the film forming method according to the present embodiment can promptly increase the flow rate of the film forming raw material gas when the supply of the film forming raw material gas is started.
  • the first period is set to 3 to 5 seconds.
  • the film forming method according to the present embodiment can suppress the generation of non-uniformity in the film thickness direction in the film formed by supplying the film forming material gas excessively long.
  • the silicon nitride film is formed using the SiH 4 gas, the NH 3 gas, the Ar gas, and the He gas has been described as an example, but the present invention is not limited to this. Any film may be formed.
  • the flow rate of the film forming source gas is temporarily increased to thereby increase the flow rate of the film forming source gas at an early stage.
  • the present invention is not limited to this case. It may be used to stabilize the flow rate of the plasma generating gas at an early stage.
  • the flow of the plasma generation gas is increased by flowing the plasma generation gas at a flow rate set value larger than the flow rate set value at the time of plasma generation.
  • the plasma generation gas may be caused to flow at the flow rate set value at the time of plasma generation to stabilize the flow rate of the plasma generation gas to generate plasma.
  • the control unit 106 By flowing at a set value, the flow rates of NH 3 gas, Ar gas, and He gas are increased. Then, the control unit 106, NH 3 gas, by flowing Ar gas, He gas at a flow rate setting of the deposition condition, NH 3 gas, Ar gas, to stabilize the flow rate of the He gas.
  • the film forming apparatus 12 since the NH 3 gas, Ar gas, the flow rate of the He gas is stabilized at an early stage, SiH 4 to advance the start of supply of gas is applied or film-forming raw material gas of the high-frequency voltage (RF) And increase productivity.

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

成膜方法は、基板に成膜する成膜方法であって、第1の工程と、第2の工程を有する。第1の工程は、基板が配置され、プラズマが生成された処理容器に対して成膜原料を含んだ成膜原料ガスの供給を開始する際に、成膜原料ガスを第1の流量設定値で流して、成膜原料ガスの流量を上昇させる。第2の工程は、第1の工程の後、第1の流量設定値よりも低い第2の流量設定値で成膜原料ガスを流して、成膜原料ガスの流量を安定させる。

Description

成膜方法および成膜装置
 本開示は、成膜方法および成膜装置に関するものである。
 特許文献1には、チャンバ内に被処理基板が配置された状態でTiClガスを導入した後、チャンバ内にプラズマを生成して、被処理基板上にTi膜を成膜する技術が開示されている。
特開2010-111888号公報
 本開示は、成膜される膜に膜の厚さ方向の不均一が発生することを抑制できる技術を提供する。
 本開示の一態様による成膜方法は、基板に成膜する成膜方法であって、第1の工程と、第2の工程を有する。第1の工程は、基板が配置され、プラズマが生成された処理容器に対して成膜原料を含んだ成膜原料ガスの供給を開始する際に、成膜原料ガスを第1の流量設定値で流して、成膜原料ガスの流量を上昇させる。第2の工程は、第1の工程の後、第1の流量設定値よりも低い第2の流量設定値で成膜原料ガスを流して、成膜原料ガスの流量を安定させる。
 本開示によれば、成膜される膜に膜の厚さ方向の不均一が発生することを抑制できる。
図1は、実施形態に係る成膜装置の概略構成の一例を示す断面図である。 図2Aは、理想的なガス流量の変化の一例を概略的に示した図である。 図2Bは、実際のガス流量の変化の一例を概略的に示した図である。 図2Cは、実施形態に係るガス流量の変化の一例を概略的に示した図である。 図3は、成膜原料ガスの供給経路を簡略化して示した図である。 図4は、実施形態に係る成膜方法のガスフローの一例を示した図である。 図5は、成膜された膜の膜質の変化の一例を示す図である。 図6は、成膜された膜の膜質の変化の一例を示す図である。 図7は、他の実施形態に係る成膜方法のガスフローの一例を示した図である。
 以下、図面を参照して本願の開示する成膜方法および成膜装置の実施形態について詳細に説明する。なお、本実施形態により、開示する成膜方法および成膜装置が限定されるものではない。
 ところで、半導体集積回路の製造では、半導体ウエハ等の基板に対して、成膜装置により、成膜が行われる。成膜装置は、所定の真空度とした処理容器内に基板を配置し、基板の上部から成膜原料を含んだ成膜原料ガスを供給してプラズマを生成し、基板に成膜を行う。しかし、成膜装置は、成膜原料ガスの供給を開始してから成膜原料ガスの濃度分布が均一に安定するまで数秒から数十秒かかることがあり、その間に成膜される膜の膜厚や膜質などに膜の厚さ方向の不均一が発生する場合がある。特に、薄膜を成膜する場合、成膜原料ガスの供給を開始した期間に成膜される膜の不均一の影響が大きくなる。なお、濃度とは、代表的には数密度(Number density)である。数密度は、単位体積あたりの対象物(原子、分子等)の個数を表す物理量である。体積V中の対象物の全数をNとすると、数密度nは、下記の式で表される。
 n=N/V
 そこで、成膜される膜に膜の厚さ方向の不均一が発生することを抑制することが期待されている。
[成膜装置の構成]
 実施形態に係る成膜装置12の構成について説明する。図1は、実施形態に係る成膜装置の概略構成の一例を示す断面図である。成膜装置12は、プラズマCVD(Chemical Vapor Deposition)により成膜を行う装置である。成膜装置12は、例えば、アルミニウム、或いは、アルミニウム合金により円筒体状に成形された処理容器14を有している。処理容器14は、接地されている。また、処理容器14の側壁や天井壁には、冷却するための冷媒を流す冷却ジャケット110が設けられている。
 処理容器14は、内部の天井部にシャワーヘッド部18が設けられ、シャワーヘッド部18から必要な各種のガスを処理容器14内の処理空間Sへ導入が可能とされている。
 シャワーヘッド部18は、例えば、ニッケルやハステロイ(商品名)、アルミニウム、或いはこれらの材料の組み合わせた材料など、導電体により全体が構成されており、平行平板電極の上部電極を兼ねている。シャワーヘッド部18の外周側や上方側は、例えば、石英やアルミナ(Al)等の絶縁物よりなる充填部材20により全体が覆われている。シャワーヘッド部18は、充填部材20を介して処理容器14側に絶縁状態で取り付け固定されている。
 シャワーヘッド部18は、内部にガス室19が設けられ、ガス室19から処理空間Sへ個別にガスの導入が可能とされている。例えば、シャワーヘッド部18は、下面のガス噴射面18Aに多数のガス噴出口16を形成されている。各ガス噴出口16は、ガス室19へと貫通しており、ガス室19内のガスを噴出する。
 シャワーヘッド部18は、上面に、ガス室19に連通するガス導入口22が設けられている。ガス導入口22は、ガス配管23を介してガス供給機構24に接続されている。
 ガス供給機構24は、成膜に用いる各種のガスのガス供給源にそれぞれ接続されたガス供給ラインを有している。各ガス供給ラインは、成膜のプロセスに対応して適宜分岐し、開閉バルブなどのバルブや、マスフローコントローラなどの流量制御器など、ガスの流量を制御する制御機器が設けられている。ガス供給機構24は、各ガス供給ラインに設けられた開閉バルブや流量制御器などの制御機器を制御することにより、各種のガスの流量の制御が可能とされている。
 ガス供給機構24は、ガス配管23を介して、ガス導入口22に、成膜に用いる各種のガスをそれぞれ供給する。ガス配管23に供給されたガスは、ガス噴出口16から噴出される。なお、図1では、シャワーヘッド部18にガス導入口22およびガス配管23を1つ設けた場合を図示しているが、これに限定されるものではない。ガス導入口22およびガス配管23は、シャワーヘッド部18に複数設けられてもよい。例えば、成膜装置12は、成膜のプロセスに応じて、ガスごとに、シャワーヘッド部18にガスの供給に使用するガス導入口22およびガス配管23を分けて設けてもよい。
 充填部材20の下面20Aは、シャワーヘッド部18の下面のガス噴射面18Aと同一水平レベルにされている。これにより、処理容器14内へ導入された各種のガスが処理空間S内で乱流を生じたり、プラズマが処理空間S内で不均一に分布したりすることが抑制される。
 シャワーヘッド部18と充填部材20と処理容器14の壁部の各接合部には、例えば、Oリング等よりなるシール部材38がそれぞれ介在されており、処理容器14内の気密性を維持するようになっている。
 また、シャワーヘッド部18には、マッチング回路44を介して高周波電源42が接続されている。高周波電源42は、プラズマを生成する際、所定周波数(例えば13.56MHz)の高周波電圧をシャワーヘッド部18に印加する。プラズマの生成に用いる高周波電圧の周波数は、13.56MHzに限定されず、他の周波数、例えば、450kHz等を用いてもよい。プラズマの生成に用いる高周波電圧の周波数としては、300kHz~27MHzの範囲内の周波数を用いることができる。成膜装置12は、高周波電源42を複数設け、シャワーヘッド部18に異なる複数の周波数の高周波電圧を印加してプラズマを生成してもよい。
 処理容器14の側壁には、半導体ウエハWを搬出入するための搬出入口46が形成されている。搬出入口46は、ゲートバルブ48が設けられ、ゲートバルブ48により開閉可能とされている。ゲートバルブ48には、半導体ウエハWを大気に晒すことなく搬送するために図示しないロードロック室やトランスファチャンバ等が接続される。
 処理容器14の底部の中央は、下方へ凹部状に成形されている。処理容器14の凹部状の側面には、排気口50が形成されている。排気口50には、真空排気系52が設けられ、処理容器14内を真空排気が可能とされている。例えば、真空排気系52は、排気口50に接続される排気通路54を有している。排気通路54には、処理容器14内の圧力を調整する圧力調整弁56および真空ポンプ58がそれぞれ設けられている。そして、処理容器14内には、半導体ウエハWを載置するため、底部より支柱60を介して支持された載置台62が設けられている。
 載置台62は、下部電極を兼ねている。載置台62の上部周縁部には、半導体ウエハWの周囲を囲むように、リング状のフォーカスリング64が設けられている。成膜装置12は、下部電極である載置台62と上部電極であるシャワーヘッド部18との間の処理空間Sに上部電極へ高周波電圧を印加することにより、プラズマを発生させることが可能とされている。
 載置台62は、例えば、全体がセラミックス材である窒化アルミニウム(AlN)により構成されている。載置台62は、例えば、モリブデンやタングステン線等の抵抗体よりなる加熱ヒータ66が所定のパターン形状に配列して内部に埋め込まれている。加熱ヒータ66には、ヒータ電源68が配線70を介して接続されている。成膜装置12は、必要に応じて加熱ヒータ66に電力を供給することで、半導体ウエハWを所定の温度に温度制御が可能とされている。また、載置台62の内部には、下部電極の機能を発揮させるために、例えば、モリブデン線等をメッシュ状(網状)に網み込んでなる電極本体72が面内方向に略全域に亘って埋め込まれている。電極本体72は、配線74を介して接地されている。なお、電極本体72にバイアス電圧として高周波電圧を印加してもよい。
 載置台62には、上下方向に貫通した3本のピン孔76が形成されている。なお、図1中ではピン孔76を2本のみ図示している。各ピン孔76には、例えば、石英製の押し上げピン80が遊嵌状態でそれぞれ挿通されている。押し上げピン80は、円弧状の連結リング78にそれぞれ下端が支持されている。連結リング78は、出没ロッド82の上端に支持されている。出没ロッド82は、容器底部を貫通してアクチュエータ84に下端が接続され、アクチュエータ84によって上下方向に移動可能とされている。出没ロッド82の容器底部に対する貫通部には、伸縮可能になされたベローズ86が介設されており、処理容器14内の気密性を維持しつつ出没ロッド82を昇降させることが可能とされている。
 上記のように構成された成膜装置12は、制御部106によって、その動作が統括的に制御される。制御部106は、例えばコンピュータであり、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、補助記憶装置等を備える。CPUは、ROM又は補助記憶装置に格納されたプログラムや、成膜のプロセス条件に基づいて動作し、装置全体の動作を制御する。例えば、制御部106は、各ガスの供給の開始、停止、各ガスの流量制御、半導体ウエハWを載置する載置台62の昇降温などの温度制御、処理容器14内の圧力制御、プラズマ発生用の高周波電力の供給および供給の停止等を制御する。なお、制御に必要なコンピュータに読み取り可能なプログラムは、記憶媒体108に記憶されていてもよい。記憶媒体108は、例えばフレキシブルディスク、CD(Compact Disc)、CD-ROM、ハードディスク、フラッシュメモリ或いはDVD等よりなる。また、制御部106は、成膜装置12の内部に設けられていてもよく、外部に設けられていてもよい。制御部106が外部に設けられている場合、制御部106は、有線又は無線等の通信手段によって、成膜装置12を制御することができる。
 次に、成膜装置12を用いて行われる成膜の流れを簡単に説明する。成膜装置12は、処理容器14の側壁に設けたゲートバルブ48を開状態とする。成膜装置12には、図示しないロードロック室等から搬出入口46を介して、図示しないロボットアームにより、未処理の半導体ウエハWが処理容器14内へ搬入される。成膜装置12は、押し上げピン80を上昇させてロボットアームから半導体ウエハWを受け取る。ロボットアームの退出後、成膜装置12は、押し上げピン80を降下させることによって、載置台62上に半導体ウエハWを載置する。
 次に、成膜装置12は、ゲートバルブ48を閉状態として処理容器14内を密閉状態とし、加熱ヒータ66への投入電力を増して予熱状態になされている載置台62の温度をプロセス温度まで昇温して維持する。
 そして、成膜装置12は、真空排気系52により排気口50から処理容器14内を真空引きして処理容器14内を所定のプロセス圧力に維持する。また、成膜装置12は、ガス供給機構24から成膜原料ガス含む処理ガスをシャワーヘッド部18へ供給して、シャワーヘッド部18から成膜原料ガス含む処理ガスを処理容器14内の処理空間Sへ導入する。また、成膜装置12は、高周波電源42を駆動することにより、上部電極であるシャワーヘッド部18と下部電極である載置台62との間に、所定周波数の高周波電圧を印加する。これにより、処理空間Sにプラズマが生成され、プラズマによって半導体ウエハWの表面に成膜が行われる。
 ところで、成膜装置12では、成膜される膜の高い均一性を得るため、処理容器14に対して成膜原料ガスを均一で安定な濃度分布で供給することが重要である。このため、成膜装置12では、成膜原料ガスの供給を開始した場合、処理容器14に供給される成膜原料ガスが成膜条件の流量に速やかに立ち上がることが好ましい。図2Aは、理想的なガス流量の変化の一例を概略的に示した図である。図2Aには、ガス供給機構24での成膜原料ガスの流量の設定値の変化と、成膜原料ガスの流量の理想的な変化が示されている。例えば、成膜原料ガスの流量制御器の設定値を成膜条件の流量に変えた場合、設定値の変化と同様に成膜原料ガスの流量が変化することが理想である。
 しかし、成膜装置12では、ガス供給機構24からシャワーヘッド部18へのガス配管23など、ガスが流れる配管が数十センチメートルから数メートルある。また、成膜装置12では、ガス流量の均一性を高めるために、ガス導入口22にオリフィスやノズルが設けられてガス導入口22が細穴になっている。この場合、ガス導入口22が小さなコンダクタンスとなっていることから、処理容器14内に供給されるガスの流量が安定するまでの時間が長くなる。この結果、成膜装置12では、成膜原料ガスの供給を開始してから、成膜原料ガスの流量の変化が安定するまで数秒から数十秒かかることがある。図2Bは、実際のガス流量の変化の一例を概略的に示した図である。図2Bには、ガス供給機構24での成膜原料ガスの流量の設定値の変化と、成膜原料ガスの流量の実際の変化が示されている。例えば、成膜原料ガスの流量制御器の設定値を成膜条件の流量に変えた場合、成膜原料ガスの流量が設定値の流量までゆるやかに上昇し、成膜原料ガスの流量の変化が安定するまでの期間t1が数秒から数十秒かかることがある。これにより、成膜装置12では、成膜される膜の膜厚や膜質などに不均一が発生する場合がある。特に、薄膜を成膜する場合、成膜原料ガスの供給を開始した期間に成膜される膜の不均一の影響が大きくなる。
 そこで、実施形態に係る成膜装置12では、成膜原料ガスの供給を開始する際に、成膜原料ガスの流量を一時的にパルス状に上昇させて供給する。図2Cは、実施形態に係るガス流量の変化の一例を概略的に示した図である。図2Cには、ガス供給機構24での成膜原料ガスの流量の設定値の変化と、成膜原料ガスの流量の実際の変化の一例が概略的に示されている。成膜装置12は、処理容器14に対して成膜原料ガスの供給を開始する際に、成膜原料ガスを第1の流量設定値で流して、成膜原料ガスの流量を上昇させる。例えば、成膜装置12の制御部106は、成膜原料ガスの供給を開始する第1の期間、成膜原料ガスの流量の設定値を第1の流量設定値として、成膜原料ガスの流量を一時的に上昇させる。
 次に、成膜装置12は、第1の流量設定値よりも低い第2の流量設定値で成膜原料ガスを流して、成膜原料ガスの流量を安定させる。例えば、成膜装置12の制御部106は、成膜原料ガスの流量の設定値を第2の流量設定値として、成膜原料ガスの流量を安定させる。これにより、成膜装置12は、成膜原料ガスの流量の変化が安定するまでの期間t1を短くできるため、成膜される膜に不均一が発生することを抑制できる。
 第1の期間は、設定値を変更に対して流量制御器やバルブなどでの流量が反応するに要する期間である。第1の期間は、例えば、成膜原料ガスの供給を開始してから3~5秒経過するまでの期間とする。
 第2の流量設定値は、例えば、目標とする特性で安定して膜が成膜できる成膜条件とされた成膜原料ガスの流量とする。第1の流量設定値は、例えば、目標とする特性で安定して膜が成膜できる成膜条件とされた成膜原料ガスの流量よりも大きい値とする。第1の流量設定値は、成膜原料ガスの流量を制御する最も下流側の制御機器から処理容器への成膜原料ガスの供給経路の体積を第1の期間で満たせる流量を基準とした所定範囲内の値に定める。図3は、成膜原料ガスの供給経路を簡略化して示した図である。図3には、ガス供給機構24から処理容器14への成膜原料ガスの供給経路が簡略化して示されている。ガス供給機構24は、処理容器14のシャワーヘッド部18に上述のガス配管23を含んだ配管120で接続されている。ガス供給機構24には、配管120に流れる成膜原料ガスの流量を制御する制御機器として、開閉バルブなどのバルブ121、122や、マスフローコントローラなどの流量制御器123が設けられている。図3では、配管120のうち、ガス供給機構24の最も下流の制御機器であるバルブ121から処理容器14までの部分を配管120Aとしている。例えば、配管120Aの配管内の体積をV[cc]とし、配管120Aの管内の圧力をP[Pa]とする。また、成膜時のガス流量をQg[sccm]とし、処理容器14に取り付けられた真空ポンプ58の排気速度をQv[sccm]とする。この場合、配管120Aの配管を成膜原料ガスで埋めるためには少なくとも以下の式(1)に示す時間が必要となる。
Figure JPOXMLDOC01-appb-M000001
 配管120Aの管内の圧力Pおよび真空ポンプ58の排気速度Qvは、成膜装置12を用いた実測やシミュレーションで求めてもよく、成膜装置12の設計上の条件から計算値として求めてもよい。
 第1の流量設定値は、式(1)の時間が第1の期間内となる何れかのガス流量Qgを基準とした所定範囲内の値とする。例えば、第1の流量設定値は、ガス流量Qgを基準とした±10%の所定範囲内の値とする。
 次に、成膜の具体的な一例を用いて、実施形態に係る成膜方法の制御の流れの一例を説明する。以下では、SiHガス、NHガス、Arガス、Heガスを用いて窒化シリコン膜を成膜する場合を例に説明する。図4は、実施形態に係る成膜方法のガスフローの一例を示した図である。
 成膜装置12は、窒化シリコン膜を成膜する際、NHガス、Arガス、Heガスを供給する。例えば、制御部106は、ガス供給機構24に設けられたNHガス、Arガス、Heガスのそれぞれ流量を制御する流量制御器の設定値を成膜条件の流量の設定値として、NHガス、Arガス、Heガスをシャワーヘッド部18へ供給する。
 成膜装置12は、NHガス、Arガス、Heガスの流量が安定した後、処理容器14内にプラズマを生成する。例えば、制御部106は、高周波電源42を制御して高周波電源42からシャワーヘッド部18への高周波電圧(RF)の印加を開始して、処理容器14内にプラズマを生成する。
 成膜装置12は、プラズマが生成された処理容器14に対して、成膜原料ガスであるSiHガスを供給する。成膜装置12は、処理容器14に対してSiHガスの供給を開始する際に、SiHガスを第1の流量設定値で流して、SiHガスの流量を上昇させる。例えば、成膜装置12の制御部106は、SiHガスの供給を開始する第1の期間、SiHガスの流量制御器の設定値を第1の流量設定値として、SiHガスの流量を一時的に上昇させる。
 次に、成膜装置12は、第1の流量設定値よりも低い第2の流量設定値でSiHガスを流して、SiHガスの流量を安定させる。例えば、成膜装置12の制御部106は、SiHガスの流量制御器の設定値を第2の流量設定値として、SiHガスの流量を安定させる。
 処理容器14内に供給されたSiHガスは、プラズマによって反応して半導体ウエハWに成膜される。実施形態に係る成膜方法は、SiHガスの流量を速やかに安定させることができるため、半導体ウエハWに成膜される膜に膜の厚さ方向の不均一が発生することを抑制できる。
 ここで、成膜される膜の膜質の変化の一例を説明する。図5および図6は、成膜された膜の膜質の変化の一例を示す図である。図5および図6では、膜質として屈折率(RI)の変化が示されている。なお、図5と図6では、それぞれ異なる値で屈折率を正規化しており、縦軸のスケールが異なるものとされている。
 図5には、比較例として、図2Bに示したように、成膜原料ガスの流量を制御する流量制御器に一定の設定値を設定して成膜した場合の膜の厚さに対する屈折率の変化が示されている。比較例の成膜方法では、図2Bに示したように、成膜原料ガスの流量が設定値の流量までゆるやかに上昇している。
 また、図5および図6には、図2Cに示したように本実施形態の成膜方法を用いて成膜した実施例1~3の膜の厚さに対する屈折率の変化が示されている。実施例1~3の成膜方法では、第1の期間を3秒としている。また、実施例1~3の成膜方法では、ガス流量Qgを基準とした所定範囲が4~5倍の範囲とされている。実施例1は、第1の流量設定値を第2の流量設定値の5倍としている。実施例2は、第1の流量設定値を第2の流量設定値の4.6倍としている。実施例3は、第1の流量設定値を第2の流量設定値の4倍としている。すなわち、実施例1では、成膜原料ガスの供給を開始してから3秒間、成膜原料ガスの流量の設定値を5倍にして成膜を行っている。実施例2では、成膜原料ガスの供給を開始してから3秒間、成膜原料ガスの流量の設定値を4.6倍にして成膜を行っている。実施例3では、成膜原料ガスの供給を開始してから3秒間、成膜原料ガスの流量の設定値を4倍にして成膜を行っている。
 流量が安定していない場合、膜の厚さ方向に膜の成分の不均一が生じる。比較例の成膜方法は、図2Bに示したように、流量が安定するまでの期間t1が長い。このため、図5に示すように、比較例では、膜厚の広い範囲で屈折率が大きく変化している。
 一方、実施例1~3の成膜方法は、図2Bに示したように、流量が安定するまでの期間t1が短い。このため、図5および図6に示すように、実施例1~3は、比較例に比べて、屈折率が大きく変化する膜厚の範囲を小さくなっている。例えば、実施例1は、200A以上の膜厚の範囲で屈折率の変化を抑制できている。
 このように、実施例1~3の成膜方法は、屈折率が大きく変化する膜厚の範囲を小さくすることができる。なお、実施例1は、200A以下の屈折率が大きい。この理由は、成膜原料ガスの供給を開始してから3秒間の成膜原料ガスの流量が多かったためと考えられる。本実施形態の成膜方法は、第1の期間の成膜原料ガスの流量の設定値を調整することで膜質安定までの時間を最適にすることができる。例えば、実施例2のように、成膜原料ガスの供給を開始してから3秒間、成膜原料ガスの流量の設定値を4.6倍とした場合が、もっとも膜質の変化を小さくできる。
 このように、本実施形態に係る成膜方法は、半導体ウエハWに成膜する成膜方法であって、第1の工程と、第2の工程を有する。第1の工程は、半導体ウエハWが配置され、プラズマが生成された処理容器14に対して成膜原料を含んだ成膜原料ガスの供給を開始する際に、成膜原料ガスを第1の流量設定値で流して、成膜原料ガスの流量を上昇させる。第2の工程は、第1の工程の後、第1の流量設定値よりも低い第2の流量設定値で成膜原料ガスを流して、成膜原料ガスの流量を安定させる。これにより、本実施形態に係る成膜方法は、成膜される膜に膜の厚さ方向の不均一が発生することを抑制できる。
 また、本実施形態に係る成膜方法は、半導体ウエハWへの成膜において、成膜原料ガスを含んだ複数のガスが処理容器14に供給される。本実施形態に係る成膜方法は、複数のガスのうち、成膜原料ガスのみに第1の工程および第2の工程を実施する。このように本実施形態に係る成膜方法では、複数のガスのうち、成膜原料ガスのみに第1の工程および第2の工程を実施することで、成膜される膜に膜の厚さ方向の不均一が発生することを抑制できる。
 また、本実施形態に係る成膜方法は、第1の工程において、成膜原料ガスの供給を開始する第1の期間、成膜原料ガスを第1の流量設定値で流して、成膜原料ガスの流量を上昇させる。これにより、本実施形態に係る成膜方法は、成膜原料ガスの供給を開始する際に、成膜原料ガスの流量をすみやかに上昇させることができる。
 また、本実施形態に係る成膜方法は、第1の期間を、3~5秒とする。これにより、本実施形態に係る成膜方法は、成膜原料ガスが過剰に長く供給されて成膜される膜に膜の厚さ方向の不均一が発生することを抑制できる。
 また、本実施形態に係る成膜方法は、第1の流量設定値を、成膜原料ガスの流量を制御する最も下流側の制御機器から処理容器14への成膜原料ガスの供給経路の体積を第1の期間で満たせる流量を基準とした所定範囲内の値とする。これにより、本実施形態に係る成膜方法は、第1の期間に成膜される膜の膜厚を最小限にし、膜の厚さ方向の不均一が発生することを抑制できる。
 以上、実施形態について説明してきたが、今回開示された実施形態は、全ての点で例示であって制限的なものではないと考えられるべきである。実に、上記した実施形態は、多様な形態で具現され得る。また、上記の実施形態は、請求の範囲およびその趣旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。
 また、実施形態では、SiHガス、NHガス、Arガス、Heガスを用いて窒化シリコン膜を成膜する場合を例に説明したが、これに限定されるものではない。成膜する膜は、何れであってもよい。
 また、実施形態では、プラズマが生成された処理容器14に対して成膜原料ガスの供給を開始する際に、成膜原料ガスの流量を一時的に上昇させて成膜原料ガスの流量を早期に安定させる場合を例に説明したが、これに限定されるものではない。プラズマ生成用ガスの流量を早期に安定させるために用いてもよい。例えば、処理容器14に対してプラズマ生成用ガスの供給を開始する際に、プラズマ生成用ガスをプラズマ生成時の流量設定値よりも大きい流量設定値で流して、プラズマ生成用ガスの流量を上昇させた後、プラズマ生成用ガスをプラズマ生成時の流量設定値で流して、プラズマ生成用ガスの流量を安定させてプラズマを生成してもよい。図7は、他の実施形態に係る成膜方法のガスフローの一例を示した図である。成膜装置12は、処理容器14に対してプラズマ生成用ガスとしてNHガス、Arガス、Heガスを開始する際に、NHガス、Arガス、Heガスの流量を一時的に上昇させてNHガス、Arガス、Heガスの流量を早期に安定させる。例えば、制御部106は、ガス供給機構24に設けられたNHガス、Arガス、Heガスのそれぞれ流量を制御する流量制御器の設定値を、成膜条件の流量の設定値よりも大きい流量設定値で流して、NHガス、Arガス、Heガスの流量を上昇させる。そして、制御部106は、NHガス、Arガス、Heガスを成膜条件の流量の設定値で流して、NHガス、Arガス、Heガスの流量を安定させる。これにより、成膜装置12は、NHガス、Arガス、Heガスの流量が早期に安定するため、高周波電圧(RF)の印加や成膜原料ガスであるSiHガスの供給開始を早めることができ、生産性が向上する。
 また、実施形態では、基板を半導体ウエハとした場合を例に説明したが、これに限定されるものではない。基板は、シリコンであっても、GaAs、SiC、GaNなどの化合物半導体でもあってもよい。また、基板は、液晶表示装置等のFPD(フラットパネルディスプレイ)に用いるガラス基板や、セラミック基板等でもあってもよい。
 また、実施形態では、成膜装置12を、高周波電圧を印加してプラズマを生成する容量結合型のプラズマ装置とした場合を例に説明したが、これに限定されるものではない。成膜装置12は、マイクロ波発振器を有し、マイクロ波発振器で発生させた所定周波数のマイクロ波を処理容器14内に照射してプラズマを生成するプラズマ装置であってもよい。マイクロ波の周波数は、300MHz~10GHzの範囲を用いることができる。例えば、プラズマを生成に使用するマイクロ波の代表的な周波数としては、例えば、860MHz、915MHz、2.45GHzなどが挙げられる。また、本実施形態に係る成膜方法は、プラズマCVDやALDなどでの成膜で成膜原料ガスの供給を開始する際に使用してもよい。
12 成膜装置
14 処理容器
18 シャワーヘッド部
23 ガス配管
24 ガス供給機構
31 載置台
106 制御部
108 記憶媒体
120 配管
W 半導体ウエハ

Claims (7)

  1.  基板に成膜する成膜方法であって、
     前記基板が配置され、プラズマが生成された処理容器に対して成膜原料を含んだ成膜原料ガスの供給を開始する際に、前記成膜原料ガスを第1の流量設定値で流して、前記成膜原料ガスの流量を上昇させる第1の工程と、
     前記第1の工程の後、前記第1の流量設定値よりも低い第2の流量設定値で前記成膜原料ガスを流して、前記成膜原料ガスの流量を安定させる第2の工程と、
     を有することを特徴とする成膜方法。
  2.  前記処理容器は、前記基板への成膜において、前記成膜原料ガスを含んだ複数のガスが供給され、
     前記複数のガスのうち、前記成膜原料ガスのみに前記第1の工程および前記第2の工程が実施される
     ことを特徴とする請求項1に記載の成膜方法。
  3.  前記第1の工程は、成膜原料ガスの供給を開始する第1の期間、前記成膜原料ガスを第1の流量設定値で流して、前記成膜原料ガスの流量を上昇させる
     ことを特徴とする請求項1または2に記載の成膜方法。
  4.  前記第1の期間は、3~5秒とする
     ことを特徴とする請求項3に記載の成膜方法。
  5.  前記第1の流量設定値は、前記成膜原料ガスの流量を制御する最も下流側の制御機器から前記処理容器への成膜原料ガスの供給経路の体積を前記第1の期間で満たせる流量を基準とした所定範囲内の値とする
     ことを特徴とする請求項3または4に記載の成膜方法。
  6.  前記処理容器に対してプラズマ生成用ガスの供給を開始する際に、前記プラズマ生成用ガスをプラズマ生成時の流量設定値よりも大きい流量設定値で流して、前記プラズマ生成用ガスの流量を上昇させた後、前記プラズマ生成用ガスを前記プラズマ生成時の流量設定値で流して、前記プラズマ生成用ガスの流量を安定させてプラズマを生成する工程をさらに有し
     前記プラズマを生成する工程の後、前記第1の工程および前記第2の工程を実施する
     ことを特徴とする請求項1~5の何れか1つに記載の成膜方法。
  7.  成膜の際に、基板が配置され、プラズマが生成される処理容器と
     前記処理容器に対して成膜原料を含んだ成膜原料ガスの供給を開始する際に、前記成膜原料ガスを第1の流量設定値で流して、前記成膜原料ガスの流量を上昇させた後、前記第1の流量設定値よりも低い第2の流量設定値で前記成膜原料ガスを流して、前記成膜原料ガスの流量を安定させる制御を行う制御部と、
     を有することを特徴とする成膜装置。
PCT/JP2019/036392 2018-09-25 2019-09-17 成膜方法および成膜装置 WO2020066751A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-178476 2018-09-25
JP2018178476A JP2020053455A (ja) 2018-09-25 2018-09-25 成膜方法および成膜装置

Publications (1)

Publication Number Publication Date
WO2020066751A1 true WO2020066751A1 (ja) 2020-04-02

Family

ID=69952111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/036392 WO2020066751A1 (ja) 2018-09-25 2019-09-17 成膜方法および成膜装置

Country Status (2)

Country Link
JP (1) JP2020053455A (ja)
WO (1) WO2020066751A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022002246A (ja) * 2020-06-19 2022-01-06 東京エレクトロン株式会社 成膜方法およびプラズマ処理装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000200780A (ja) * 1998-06-01 2000-07-18 Tadahiro Omi 半導体又は液晶製造用装置並びに液体材料ガスの気化方法
JP2002203795A (ja) * 2000-12-28 2002-07-19 Tadahiro Omi プラズマ反応炉システムの運転制御方法及び装置
JP2007035929A (ja) * 2005-07-27 2007-02-08 Sumitomo Precision Prod Co Ltd エッチング方法及びエッチング装置
JP2008118120A (ja) * 2006-10-13 2008-05-22 Omron Corp プラズマ反応炉処理システムを用いた電子装置の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000200780A (ja) * 1998-06-01 2000-07-18 Tadahiro Omi 半導体又は液晶製造用装置並びに液体材料ガスの気化方法
JP2002203795A (ja) * 2000-12-28 2002-07-19 Tadahiro Omi プラズマ反応炉システムの運転制御方法及び装置
JP2007035929A (ja) * 2005-07-27 2007-02-08 Sumitomo Precision Prod Co Ltd エッチング方法及びエッチング装置
JP2008118120A (ja) * 2006-10-13 2008-05-22 Omron Corp プラズマ反応炉処理システムを用いた電子装置の製造方法

Also Published As

Publication number Publication date
JP2020053455A (ja) 2020-04-02

Similar Documents

Publication Publication Date Title
KR101846846B1 (ko) 기판 처리 장치, 반도체 장치의 제조 방법 및 기록 매체
US7815740B2 (en) Substrate mounting table, substrate processing apparatus and substrate processing method
JP2018098239A (ja) 載置台及びプラズマ処理装置
KR101624605B1 (ko) 기판 처리 장치 및 반도체 장치의 제조 방법
KR101622666B1 (ko) 기판 처리 장치, 챔버 덮개 구조, 기판의 생산 방법을 기억한 프로그램 및 기판의 생산 방법
JP5439771B2 (ja) 成膜装置
KR101991574B1 (ko) 성막 장치, 및 그것에 이용하는 가스 토출 부재
US9963784B2 (en) Film forming method and film forming apparatus
KR20100110822A (ko) 열처리 장치 및 그 제어 방법
JP5800957B1 (ja) 基板処理装置、半導体装置の製造方法、プログラムおよび記録媒体
KR20150077318A (ko) 기판 처리 장치 및 반도체 장치의 제조 방법
US20190078207A1 (en) Gas supply apparatus and film forming apparatus
KR20190037130A (ko) 반도체 장치의 제조 방법, 기판 처리 장치, 기록매체
WO2020066751A1 (ja) 成膜方法および成膜装置
US6924231B2 (en) Single wafer processing method and system for processing semiconductor
US20190385843A1 (en) Method of forming metal film and film forming apparatus
JP6907406B2 (ja) 気化器、基板処理装置及び半導体装置の製造方法
JP2017208401A (ja) プラズマ処理装置およびプラズマ処理方法
US11658008B2 (en) Film forming apparatus and film forming method
US20230377876A1 (en) Recess filling method and substrate processing apparatus
US20220108913A1 (en) Substrate processing method and substrate processing apparatus
WO2020213506A1 (ja) 基板処理装置、基板処理システム及び基板処理方法
US20240047194A1 (en) Substrate processing method and substrate processing apparatus
US20220037124A1 (en) Plasma processing apparatus and plasma processing method
WO2017056149A1 (ja) 基板処理装置、半導体装置の製造方法およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19867247

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19867247

Country of ref document: EP

Kind code of ref document: A1