WO2020066618A1 - ケーブル接続構造、ゴムユニット、およびケーブル接続構造の製造方法 - Google Patents

ケーブル接続構造、ゴムユニット、およびケーブル接続構造の製造方法 Download PDF

Info

Publication number
WO2020066618A1
WO2020066618A1 PCT/JP2019/035688 JP2019035688W WO2020066618A1 WO 2020066618 A1 WO2020066618 A1 WO 2020066618A1 JP 2019035688 W JP2019035688 W JP 2019035688W WO 2020066618 A1 WO2020066618 A1 WO 2020066618A1
Authority
WO
WIPO (PCT)
Prior art keywords
cable
resistance layer
semiconductive
layer
rubber unit
Prior art date
Application number
PCT/JP2019/035688
Other languages
English (en)
French (fr)
Inventor
章詞 三根
助川 琢也
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2020066618A1 publication Critical patent/WO2020066618A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G15/00Cable fittings
    • H02G15/02Cable terminations
    • H02G15/06Cable terminating boxes, frames or other structures
    • H02G15/064Cable terminating boxes, frames or other structures with devices for relieving electrical stress
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G15/00Cable fittings
    • H02G15/08Cable junctions

Definitions

  • the present disclosure relates to a cable connection structure, a rubber unit, and a method for manufacturing the cable connection structure.
  • This application claims priority based on Japanese Patent Application No. 2018-184453 filed on Sep. 28, 2018, and incorporates all the contents described in the Japanese application.
  • a tubular rubber unit that relaxes an electric field outside the power cable and secures insulation may be externally fitted to the tip of the exposed cable outer semiconductive layer of the power cable (for example, Patent Document 1). .
  • a power cable in which the cable conductor, the cable insulation layer and the cable outer semiconductive layer are exposed in this order in the axial direction;
  • a non-linear resistance layer provided in a cylindrical shape to constitute the hollow portion and having a resistance that changes non-linearly with respect to an electric field;
  • a semiconducting cone portion provided radially outside of the non-linear resistance layer and inclined so as to be gradually separated from the non-linear resistance layer from a first end side to a second end side in the axial direction of the non-linear resistance layer
  • An insulating layer provided so as to cover at least a part of the nonlinear resistance layer and at least a part of the semiconductive cone portion, Has,
  • a cable connection structure is provided in which the rubber unit is arranged so as not to overlap the cable external semiconductive layer.
  • a cylindrical rubber unit having a hollow portion into which a power cable in which a cable conductor, a cable insulating layer, and a cable outer semiconductive layer are axially exposed in this order is fitted,
  • a non-linear resistance layer provided in a cylindrical shape to constitute the hollow portion and having a resistance that changes non-linearly with respect to an electric field;
  • a semiconducting cone portion provided radially outside of the non-linear resistance layer and inclined so as to be gradually separated from the non-linear resistance layer from a first end side to a second end side in the axial direction of the non-linear resistance layer
  • An insulating layer provided so as to cover at least a part of the nonlinear resistance layer and at least a part of the semiconductive cone portion, Has,
  • a rubber unit is provided which is used in a state where the rubber unit does not overlap with the cable outer semiconductive layer.
  • a step of preparing a cylindrical rubber unit having a hollow portion Preparing a power cable in which the cable conductor, the cable insulation layer and the cable outer semiconductive layer are exposed in this order in the axial direction; Fitting the power cable into the hollow portion of the rubber unit;
  • a step of preparing a cylindrical rubber unit having a hollow portion Preparing a power cable in which the cable conductor, the cable insulation layer and the cable outer semiconductive layer are exposed in this order in the axial direction; Fitting the power cable into the hollow portion of the rubber unit;
  • the step of preparing the rubber unit A step of preparing a non-linear resistance layer provided in a cylindrical shape so as to constitute the hollow portion and having a resistance that changes non-linearly with respect to an electric field, A step of preparing a semiconductive cone portion and an insulating layer provided to cover at least a part of the semiconductive cone portion, separately from the nonlinear resistance layer;
  • FIG. 1 is a cross-sectional view illustrating a cable connection structure according to a first embodiment of the present disclosure. It is the sectional view to which a part of rubber unit concerning a 1st embodiment of this indication was expanded.
  • 3 is a flowchart illustrating a method for manufacturing the cable connection structure according to the first embodiment of the present disclosure. It is sectional drawing to which a part of rubber unit concerning the modification 1 of 1st Embodiment of this indication was expanded.
  • FIG. 5 is an enlarged cross-sectional view of a part of a rubber unit according to a second modification of the first embodiment of the present disclosure. It is a sectional view showing the cable connection structure concerning a 2nd embodiment of this indication. It is sectional drawing which expanded a part of cable connection structure concerning a comparative example.
  • An object of the present disclosure is to provide a technique capable of suppressing a decrease in insulation between a rubber unit and a power cable.
  • FIG. 7 is a schematic sectional view showing a cable connection structure of a comparative example.
  • the cable connection structure 9 of the comparative example includes, for example, a power cable 100 and a rubber unit 91.
  • the power cable 100 is peeled off stepwise in the axial direction, and the end of the cable outer semiconductive layer 140 of the power cable 100 is exposed.
  • the rubber unit 91 is configured as a cylindrical rubber member that is fitted onto the power cable 100, and includes, for example, a nonlinear resistance layer 922, a semiconductive cone 924, and an insulating layer 926.
  • the nonlinear resistance layer 922 is provided, for example, in a cylindrical shape so as to form the hollow portion 922a.
  • the semiconductive cone portion 924 has, for example, a substantially conical shape whose diameter is increased toward the tip end of the rubber unit 91. Further, the rear end side of the semiconductive cone portion 924 extends, for example, to the outside of the nonlinear resistance layer 922 in the axial direction, and forms a part of the hollow portion 922a.
  • the insulating layer 926 is provided so as to cover, for example, the non-linear resistance layer 922 and the semiconductive cone portion 924.
  • the rear end side of the non-linear resistance layer 922 and the rear end side of the semiconductive cone portion 924 are connected to the cable outer semiconductive layer 140. It is arranged so that it may touch.
  • the rear end side of the nonlinear resistance layer 922 and the semiconductive cone portion 924 have substantially the same potential as the cable outer semiconductive layer 140, that is, are grounded.
  • the rubber unit 91 when the rubber unit 91 is used as in the comparative example, the inventors make the rear end side of the non-linear resistance layer 922 and the rear end side of the semiconductive cone portion 924 contact the cable external semiconductive layer 140.
  • the rubber unit 91 cannot follow the step formed between the cable insulating layer 130 and the tip of the cable outer semiconductive layer 140, and the non-linear resistance layer 922 and the cable insulating layer 130 It has been found that a void V may be formed between them.
  • the void V is formed between the nonlinear resistance layer 922 and the cable insulating layer 130, near the void V, the cable insulating layer 130, the cable outer semiconductive layer 140, and the air in the void V (A triple contact point, a triple junction), and a triple point where the nonlinear resistance layer 922, the cable outer semiconductive layer 140, and the air in the void V are in contact with each other.
  • a triple point there is a possibility that an electric field is locally concentrated due to a difference in resistance between layers constituting the triple point. As a result, the insulation between the rubber unit 10 and the power cable 100 may be reduced due to the formation of the void V.
  • the cable connection structure includes: A power cable in which the cable conductor, the cable insulation layer and the cable outer semiconductive layer are exposed in this order in the axial direction; A cylindrical rubber unit having a hollow portion into which the power cable is inserted, Has, A non-linear resistance layer provided in a cylindrical shape to constitute the hollow portion and having a resistance that changes non-linearly with respect to an electric field; A semiconducting cone portion provided radially outside of the non-linear resistance layer and inclined so as to be gradually separated from the non-linear resistance layer from a first end side to a second end side in the axial direction of the non-linear resistance layer When, An insulating layer provided so as to cover at least a part of the nonlinear resistance layer and at least a part of the semiconductive cone portion, Has, The rubber unit is arranged so as not to overlap with the cable outer semiconductive layer. According to this configuration, it is possible to suppress a decrease in insulation between the rubber unit and the power cable.
  • the non-linear resistance layer forms a first end face on the first end side;
  • the insulating layer and the semiconductive cone form the same second end face on the first end side of the nonlinear resistance layer;
  • the angle formed by the first end face with respect to the imaginary circumferential surface in which the hollow portion extends outward in the axial direction of the non-linear resistance layer is And the angle formed by the second end face with respect to the virtual circumferential surface.
  • the cable connection structure according to any one of [1] to [5],
  • the semiconductive cone portion is spaced radially outward from the nonlinear resistance layer. According to this configuration, formation of a triple point where the nonlinear resistance layer, the semiconductive cone portion, and the insulating layer are in contact with each other can be suppressed.
  • a rubber unit includes: A cylindrical rubber unit having a hollow portion into which a power cable in which a cable conductor, a cable insulating layer, and a cable outer semiconductive layer are axially exposed in this order is fitted, A non-linear resistance layer provided in a cylindrical shape to constitute the hollow portion and having a resistance that changes non-linearly with respect to an electric field; A semiconducting cone portion provided radially outside of the non-linear resistance layer and inclined so as to be gradually separated from the non-linear resistance layer from a first end side to a second end side in the axial direction of the non-linear resistance layer When, An insulating layer provided so as to cover at least a part of the nonlinear resistance layer and at least a part of the semiconductive cone portion, Has, It is used in a state where it is arranged so as not to overlap with the cable outer semiconductive layer. According to this configuration, it is possible to suppress a decrease in insulation between the rubber unit and the power cable.
  • a method of manufacturing a cable connection structure A step of preparing a cylindrical rubber unit having a hollow portion, Preparing a power cable in which the cable conductor, the cable insulation layer and the cable outer semiconductive layer are exposed in this order in the axial direction; Fitting the power cable into the hollow portion of the rubber unit; Has, In the step of preparing the rubber unit, A non-linear resistance layer provided in a cylindrical shape so as to constitute the hollow portion and having a resistance that changes non-linearly with respect to an electric field, and a non-linear resistance layer provided radially outside the non-linear resistance layer, in the axial direction of the non-linear resistance layer A semiconductive cone portion inclined so as to be gradually separated from the non-linear resistance layer from the first end side to the second end side; and at least a part of the non-linear resistance layer and at least a part of the semiconductive cone portion.
  • the rubber unit Comprising an insulating layer provided to cover, the rubber unit to have, In the step of fitting the power cable, the rubber unit is disposed so as not to overlap with the cable external semiconductive layer. According to this configuration, it is possible to suppress a decrease in insulation between the rubber unit and the power cable.
  • a method of manufacturing a cable connection structure A step of preparing a cylindrical rubber unit having a hollow portion, Preparing a power cable in which the cable conductor, the cable insulation layer and the cable outer semiconductive layer are exposed in this order in the axial direction; Fitting the power cable into the hollow portion of the rubber unit; Has, The step of preparing the rubber unit, A step of preparing a non-linear resistance layer provided in a cylindrical shape so as to constitute the hollow portion and having a resistance that changes non-linearly with respect to an electric field, A step of preparing a semiconductive cone portion and an insulating layer provided to cover at least a part of the semiconductive cone portion, separately from the nonlinear resistance layer; Has, The step of fitting the power cable, Fitting the power cable into the hollow portion of the nonlinear resistance layer; A step of disposing the semiconductive cone portion on the outside in the radial direction of the nonlinear resistance layer, and disposing the insulating layer so as to cover at least a
  • FIG. 1 is a cross-sectional view illustrating a cable connection structure according to the present embodiment.
  • FIG. 2 is an enlarged sectional view of a part of the rubber unit according to the present embodiment.
  • the distal end of the semiconductive cone 240 is the distal end of the power cable 100 in the axial direction. 1 and 2, the hatching of a part of the power cable 100 is omitted.
  • the “axial direction” of the power cable 100, the non-linear resistance layer 220, or the rubber unit 10 refers to a direction along the central axis of the power cable 100, the non-linear resistance layer 220, or the rubber unit 10.
  • the axial direction of the non-linear resistance layer 220 can be rephrased as the axial direction of the rubber unit 10 or the axial direction of the hollow portion 202.
  • the “radial direction” of the power cable 100, the non-linear resistance layer 220, or the rubber unit 10 refers to a direction from the center axis of the power cable 100, the non-linear resistance layer 220, or the rubber unit 10 to the outer periphery.
  • the “circumferential direction” of the power cable 100, the non-linear resistance layer 220, or the rubber unit 10 refers to a direction along the outer circumference or the inner circumference of the power cable 100, the non-linear resistance layer 220, or the rubber unit 10.
  • an axial end of the power cable 100 is referred to as a “tip of the power cable 100”, and a side opposite to the tip of the power cable 100 and on which the power cable 100 extends is referred to as a “power cable 100”. Extension side ".
  • one end of the rubber unit 10 in the axial direction, and the end of the rubber unit 10 on the side where the power cable 100 extends is referred to as a “first end of the rubber unit 10”, 10 rear end ".
  • the other end in the axial direction of the rubber unit 10 and the end of the rubber unit 10 on the side where the tip of the power cable 100 is disposed is referred to as a “second end of the rubber unit 10”, 10 second end ".
  • one end of the nonlinear resistance layer 220 in the axial direction, and the end of the nonlinear resistance layer 220 on the extension side of the power cable 100 is referred to as a “first end FE of the nonlinear resistance layer 220”.
  • first end FE of the nonlinear resistance layer 220 the other end in the axial direction of the non-linear resistance layer 220 and the end of the non-linear resistance layer 220 on the distal end side of the power cable 100 is referred to as a “second end SE of the non-linear resistance layer 220”.
  • a cable connection structure (cable termination connection structure, air termination connection part, EB-A) 1 of the present embodiment connects a power cable 100 to an overhead transmission line (not shown) or the like. And has, for example, a power cable 100 and a rubber unit 10.
  • the power cable 100 is inserted into an insulator (not shown) with the rubber unit 10 fitted around the outer periphery of the power cable 100, and the insulator is filled with an insulating medium.
  • the insulating medium is, for example, insulating oil or insulating gas.
  • the power cable 100 is configured as a CV cable (Crosslinked polyethylene insulated PVC seated cable, also referred to as an XLPE cable). 110, a cable inner semiconductive layer (not shown), a cable insulating layer 130, a cable outer semiconductive layer 140, a cable metal jacket (cable metal shielding layer) (not shown), and a cable sheath (not shown).
  • CV cable Crosslinked polyethylene insulated PVC seated cable
  • XLPE cable XLPE cable
  • the power cable 100 is peeled off stepwise in the axial direction from the tip (stepped off). That is, the cable conductor 110, the cable insulating layer 130, and the cable outer semiconductive layer 140 are exposed in this order in the axial direction from the distal end side of the power cable 100.
  • the power cable 100 to be connected in the present embodiment is configured as, for example, a DC power cable.
  • the configuration of the power cable 100 is not limited to the above configuration.
  • the rubber unit 10 is configured as, for example, a cylindrical rubber member having a hollow portion 202 into which the power cable 100 is fitted. By covering the outer periphery of the exposed cable external semiconductive layer 140 with the rubber unit 10, the electric field around the distal end of the cable external semiconductive layer 140 can be reduced.
  • the rubber unit 10 includes, for example, a non-linear resistance layer (FGM layer: Field Grading).
  • FGM layer Field Grading
  • Material layer 220 semiconducting cone portion (semiconducting portion, stress cone portion) 240, and insulating layer 260.
  • the nonlinear resistance layer 220 has, for example, a resistance that changes nonlinearly with respect to an electric field.
  • the nonlinear resistance layer 220 is made of, for example, a nonlinear resistance resin composition including a base resin and varistor particles.
  • the base resin contains, for example, at least one of a thermoplastic resin and rubber.
  • examples of the rubber constituting the base resin include ethylene-propylene-diene rubber (EPDM) and silicone rubber.
  • the varistor particles are made of, for example, an inorganic material having a characteristic that the resistance decreases nonlinearly as the electric field intensity increases.
  • the varistor particles have, for example, a crystal part and a grain boundary part.
  • the varistor particles act as an insulator because the grain boundary shows a high resistance when an electric field less than the critical electric field strength is applied.
  • the varistor particles function as a conductor by passing a current through a grain boundary between a pair of adjacent crystal parts.
  • the crystal part of the varistor particles contains, for example, at least one of zinc oxide, silicon carbide, strontium titanate, and barium titanate.
  • the grain boundary part of the varistor particles is made of, for example, an oxide containing at least one of bismuth, antimony, manganese, cobalt and nickel.
  • the nonlinear resistance layer 220 is provided, for example, in a cylindrical shape so as to form the hollow portion 202.
  • the non-linear resistance layer 220 is configured to cover, for example, the outer periphery of the exposed cable insulating layer 130 of the power cable 100 when the power cable 100 is fitted into the hollow portion 202.
  • the inner diameter of the hollow portion 202 formed by the nonlinear resistance layer 220 is slightly smaller than the outer diameter of the power cable 100, for example.
  • the power cable 100 is elastically fitted into the hollow portion 202, and the power cable 100 is airtightly adhered to the inner peripheral surface of the nonlinear resistance layer 220.
  • the first end FE side of the non-linear resistance layer 220 is connected to the cable outer semiconductive layer 140 via the conductive paint 320 as described later, and thus is grounded. You.
  • the second end SE side of the nonlinear resistance layer 220 has substantially the same potential as the cable conductor 110 of the power cable 100, that is, has a high potential.
  • the cable insulation layer 130 of the power cable 100 and the insulation of the rubber unit 10 are provided on the second end side (the end side of the power cable 100) of the rubber unit 10.
  • a triple point where the layer 260 contacts the insulating medium filled in the insulator tube is formed.
  • the insulation medium has different resistances for the respective resistances of the cable insulation layer 130 and the insulation layer 260.
  • an electric field may be locally concentrated at the triple point due to a difference in resistance between the layers constituting the triple point.
  • the non-linear resistance layer 220 constitutes the hollow portion 202 and is disposed so as to cover the cable insulating layer 130, so that when the power cable 100 is in the steady state, At the two ends, at a portion where the cable insulating layer 130 of the power cable 100, the insulating layer 260 of the rubber unit 10, and the insulating medium filled in the insulator tube are close to each other, when the electric field concentration occurs, the nonlinear resistance The resistance of the layer 220 can be reduced. Thereby, when the cross section along the axial direction of the rubber unit 10 is viewed, the equipotential lines are evenly distributed in the nonlinear resistance layer 220 from the second end side to the first end side of the rubber unit 10. (Dispersed). As a result, electric field concentration on the second end side of the rubber unit 10 can be reduced, and electrical risk such as dielectric breakdown can be reduced.
  • the semiconductive cone 240 has, for example, semiconductivity.
  • the semiconductive cone 240 is made of, for example, semiconductive rubber.
  • the semiconductive rubber is, for example, a composition comprising ethylene propylene rubber or silicone rubber and carbon black.
  • the semiconductive cone portion 240 is provided, for example, on the radially outer side of the nonlinear resistance layer 220 and has a substantially conical shape (horn shape).
  • the semiconductive cone portion 240 is inclined, for example, so as to be gradually separated from the nonlinear resistance layer 220 from the first end FE side to the second end SE side of the nonlinear resistance layer 220. That is, the semiconductive cone portion 240 forms a so-called stress cone.
  • the semiconductive cone portion 240 has, for example, a linear portion 244, an inclined surface 242, and a rising point RP. I have.
  • the linear portion 244 extends linearly from the first end FE to the second end SE of the nonlinear resistance layer 220, for example.
  • the inclined surface 242 is inclined, for example, so as to gradually separate from the non-linear resistance layer 220 from the linear portion 244 toward the second end SE of the non-linear resistance layer 220.
  • the inclined surface 242 of the semiconductive cone 240 gradually increases in diameter from the first end FE side of the nonlinear resistance layer 220 toward the second end SE side.
  • the rising point RP is, for example, a boundary point between the linear portion 244 and the inclined surface 242.
  • the rising point RP may be considered as a point at which the inclined surface 242 starts to separate from the nonlinear resistance layer 220 in the radial direction.
  • the inclined surface 242 is in contact with the linear portion 244 at the rising point RP.
  • the inclined surface 242 rises smoothly from the rising point RP, for example. That is, when the cross section along the axial direction of the nonlinear resistance layer 220 is viewed, the inclination angle of the inclined surface 242 of the semiconductive cone portion 240 with respect to the axial direction of the nonlinear resistance layer 220 is, for example, from the rising point RP to the nonlinear resistance layer. It monotonically increases toward the second end SE side of 220. Thereby, the equipotential lines formed between the inclined surface 242 of the semiconductive cone portion 240 and the non-linear resistance layer 220 can be formed gently along the smooth inclined surface 242 and evenly distributed. As a result, local electric field concentration can be suppressed between the inclined surface 242 of the semiconductive cone 240 and the nonlinear resistance layer 220.
  • the straight portion 244 of) the semiconductive cone portion 240 is separated radially outward from the nonlinear resistance layer 220, for example. Accordingly, it is possible to suppress formation of a triple point where the nonlinear resistance layer 220, the insulating layer 260, and the semiconductive cone portion 240 are in contact. Further, since the semiconductive cone portion 240 is separated from the nonlinear resistance layer 220, a part of the insulating layer 260 is located between the semiconductive cone portion 240 and the nonlinear resistance layer 220 in an insulating layer forming step S126 described later. Can be easily interposed.
  • each of the semiconducting cone portion 240 and the nonlinear resistance layer 220 is connected to the cable external semiconductive layer 140 via a predetermined conductive paint 320, for example. Since the semiconductive cone portion 240 and the nonlinear resistance layer 220 are electrically connected to the cable external semiconductive layer 140, the first end FE of the nonlinear resistance layer 220 and the semiconductive cone portion 240 are connected to the cable external semiconductive layer 140. And the potential is substantially the same, that is, grounded.
  • a metal mesh tape (not shown) may be further applied on the conductive paint 320 from the semiconductive cone portion 240 to the cable outer semiconductive layer 140. Thereby, the connection resistance can be reduced.
  • the insulating layer 260 has a higher insulating property than, for example, the semiconductive cone portion 240 and the like.
  • the insulating layer 260 is made of, for example, insulating rubber.
  • the insulating rubber is, for example, ethylene propylene rubber or silicone rubber.
  • the insulating layer 260 is provided so as to cover at least a part of the nonlinear resistance layer 220 and at least a part of the semiconductive cone part 240. Part of the insulating layer 260 is provided, for example, so as to enter between the nonlinear resistance layer 220 and the semiconductive cone 240. Thus, no void in which the insulating layer 260 is missing is formed between the nonlinear resistance layer 220 and the semiconductive cone portion 240.
  • the insulating layer 260 is gradually reduced in diameter as it approaches the second end SE of the nonlinear resistance layer 220, for example.
  • the insulating layer 260 of the rubber unit 10 at the triple point where the cable insulating layer 130 of the power cable 100, the insulating layer 260 of the rubber unit 10, and the insulating medium filled in the insulator tube are in contact.
  • a non-linear resistance layer 220 is provided.
  • the electric field at the triple point can be further reduced.
  • the non-linear resistance layer 220, the semiconductive cone portion 240, and the insulating layer 260 are molded, for example, so as to be integrally coupled. Thereby, the work at the site where the cable connection structure 1 is manufactured (constructed) can be facilitated. Further, it is possible to suppress the formation of voids between the layers and the incorporation of impurities between the layers at the site. Note that the nonlinear resistance layer 220, the semiconductive cone portion 240, and the insulating layer 260 may be separated.
  • the rubber unit 10 is arranged so as not to overlap with, for example, the cable outer semiconductive layer 140. That is, the first end FE of the non-linear resistance layer 220 is, for example, coincident with the tip of the cable outer semiconductive layer 140 or separated from the tip of the cable outer semiconductive layer 140 toward the tip of the power cable 100 in the axial direction. ing. Thereby, formation of a void between the rubber unit 10 and the power cable 100 can be suppressed. As a result, a decrease in insulation between the rubber unit 10 and the power cable 100 can be suppressed.
  • the separation distance between the first end of the rubber unit 10 in the axial direction of the nonlinear resistance layer 220 and the tip of the cable external semiconductive layer 140 is, for example, 0 mm or more and 50 mm or less, preferably It is 0 mm or more and 30 mm or less. If the separation distance is less than 0 mm, that is, if the first end of the rubber unit 10 is disposed at a position farther from the tip of the power cable 100 than the tip of the cable external semiconductive layer 140, the rubber unit 10 A step formed between the cable insulating layer 130 and the tip of the cable outer semiconductive layer 140 cannot be followed, and a void may be formed between the nonlinear resistance layer 220 and the cable insulating layer 130. There is.
  • the rubber unit 10 is prevented from riding on a step formed between the cable insulating layer 130 and the tip of the cable outer semiconductive layer 140, and the nonlinear resistance layer 220 Formation of voids between the cable and the cable insulating layer 130 can be suppressed.
  • the separation distance is more than 50 mm, the connection distance at which the semiconductive cone portion 240 is connected to the cable external semiconductive layer 140 via the conductive paint 320 becomes excessively long. For this reason, the total size of the conductive paint 320 and the rubber unit 10 becomes too large.
  • the separation distance is set by setting the separation distance to exactly 0 mm, that is, by matching the first end of the rubber unit 10 with the end of the cable external semiconductive layer 140. Can be directly electrically connected to the non-linear resistance layer 220 and the cable external semiconductive layer 140 while suppressing the formation of voids.
  • a portion radially stacked from the nonlinear resistance layer 220 to the semiconductive cone portion 240 forms the same end face 290 on the first end FE side of the nonlinear resistance layer 220, for example.
  • the end surface 290 can be easily formed (processed).
  • the conductive paint 320 can be easily applied on the end surface 290.
  • the angle ⁇ formed by the end surface 290 with respect to a virtual circumferential surface in which the hollow portion 202 extends outward in the axial direction of the nonlinear resistance layer 220 is, for example, 90 ° or more and less than 180 °, preferably 135 ° or more and 170 °. It is as follows.
  • the angle ⁇ is an angle outside (atmosphere side) of the rubber unit 10.
  • the conductive paint 320 is applied from the semiconductive cone portion 240 to the cable outer semiconductive layer 140. This makes it difficult for the conductive paint 320 to flow down from the warped end surface 290.
  • the conductive paint 320 can be easily applied from the semiconductive cone portion 240 to the cable outer semiconductive layer 140, and the conductive paint 320 flows down from the end face 290. Can be suppressed.
  • the method for manufacturing a cable connection structure includes, for example, a rubber unit preparing step (rubber unit manufacturing step) S120, a power cable preparing step S140, a fitting step S160, and an insulator pipe inserting step S180. I have.
  • a cylindrical rubber unit 10 having a hollow portion 202 is prepared.
  • the rubber unit 10 is configured to include the non-linear resistance layer 220, the semiconductive cone 240, and the insulating layer 260.
  • the rubber unit preparing step S120 includes, for example, a nonlinear resistance layer forming step S122, a semiconductive cone portion forming step S124, and an insulating layer forming step S126.
  • Non-linear resistance layer forming step By mixing a predetermined base resin and varistor particles, a non-linear resistance resin composition is formed. After forming the non-linear resistance resin composition, the non-linear resistance layer 220 is formed by injecting the non-linear resistance resin composition into the mold using a mold having a predetermined core. As a result, the non-linear resistance layer 220 having a resistance that changes non-linearly with respect to the electric field is formed in a cylindrical shape so as to form the hollow portion 202.
  • a semiconductive cone portion 240 is formed by injecting a semiconductive resin composition into a mold using a mold having a predetermined substantially conical void. At this time, in the semiconductive cone portion 240, a straight portion 244 extending linearly from one end side (rear end side, reduced diameter side) in the axial direction toward the other end side (front end side, increased diameter side); And an inclined surface 242 that is inclined so as to increase in diameter from the straight portion 244 toward the other end in the axial direction.
  • the non-linear resistance layer 220 and the semiconductive cone 240 are formed, the non-linear resistance layer 220 is arranged so as to cover the outer periphery of the core using a mold having a core constituting the hollow part 202. After the non-linear resistance layer 220 is arranged, the semiconductive cone 240 is arranged outside the non-linear resistance layer 220 in the radial direction.
  • the semiconductive cone portion 240 is arranged so as to have the linear portion 244, the inclined surface 242, and the rising point RP when the cross section along the axial direction of the nonlinear resistance layer 220 is viewed. That is, the linear portion 244 extends linearly from the first end FE of the nonlinear resistance layer 220 toward the second end SE. Further, the inclined surface 242 is inclined so as to be gradually separated from the nonlinear resistance layer 220 from the straight portion 244 toward the second end SE of the nonlinear resistance layer 220. Further, the rising point RP is formed as a boundary point between the linear portion 244 and the inclined surface 242.
  • an insulating sheet made of an insulating resin composition is interposed between the nonlinear resistance layer 220 and the semiconductive cone 240.
  • the linear portion 244 of the semiconductive cone portion 240 can be separated radially outward from the nonlinear resistance layer 220.
  • the insulating sheet becomes a part of the insulating layer 260 at the time of crosslinking.
  • the non-linear resistance layer 220, the insulating sheet and the semiconductive cone portion 240 are arranged in the mold, at least a part of the non-linear resistance layer 220 and the semiconductive cone portion 240 are injected by injecting the insulating resin composition into the mold. Is formed so as to cover at least a part of.
  • the insulating sheet may not be used.
  • the insulating resin composition may be injected in a state where the linear portion 244 of the semiconductive cone portion 240 is separated from the nonlinear resistance layer 220 in a radially outward direction. Thereby, the insulating resin composition can easily enter between the semiconductive cone portion 240 and the nonlinear resistance layer 220.
  • the insulating layer 260 is formed so that the completed rubber unit 10 is arranged without overlapping the semiconducting layer 140 outside the cable. Specifically, the insulating layer 260 is formed in a predetermined shape designed based on a position where the completed rubber unit 10 does not overlap the cable outer semiconductive layer 140.
  • the insulating resin composition forming the insulating layer 260, the non-linear resistance layer 220, the semiconductive cone portion 240, and the insulating layer 260 are integrally cross-linked (cured) by heating at a predetermined temperature.
  • a portion laminated in the radial direction from the nonlinear resistance layer 220 to the semiconductive cone portion 240 (that is, in this embodiment, the nonlinear resistance layer 220, a part of the insulating layer 260, and the semiconductive cone portion 240) Cutting is performed in a predetermined direction with respect to the axial direction of the nonlinear resistance layer 220 on the first end FE side of the nonlinear resistance layer 220.
  • the same end surface 290 can be formed on the first end FE side of the nonlinear resistance layer 220 in the portion laminated in the radial direction from the nonlinear resistance layer 220 to the semiconductive cone portion 240.
  • the angle ⁇ formed by the end face 290 with respect to the virtual circumferential surface in which the hollow portion 202 extends outward in the axial direction of the nonlinear resistance layer 220 is, for example, 90 ° or more and less than 180 °, preferably The angle is set to 135 ° or more and 170 ° or less.
  • the rubber unit 10 of the present embodiment is manufactured.
  • the rubber unit 10 of the present embodiment is prepared in a state where it can be installed on site.
  • the power cable 100 is fitted into the hollow portion 202 of the rubber unit 10.
  • oil for example, silicon oil
  • a tool for example, lever block (registered trademark)
  • the rubber unit 10 is arranged so as not to overlap with the cable external semiconductive layer 140 while visually checking the first end of the rubber unit 10 and the tip of the cable external semiconductive layer 140. Further, at this time, the separation distance between the first end of the rubber unit 10 in the axial direction of the nonlinear resistance layer 220 and the tip of the cable external semiconductive layer 140 is, for example, 0 mm or more and 50 mm or less, preferably, 0 mm or more and 30 mm or less.
  • a predetermined conductive paint 320 is applied from the semiconductive cone portion 240 and the end surface 290 of the nonlinear resistance layer 220 to the cable external semiconductive layer 140.
  • the first end FE side of each of the semiconductive cone portion 240 and the nonlinear resistance layer 220 is connected to the cable external semiconductive layer 140 via, for example, the conductive paint 320.
  • a metal mesh tape is further applied on the conductive paint 320 from the semiconductive cone portion 240 to the cable outer semiconductive layer 140.
  • the insulator After fixing the power cable 100 to the insulator, the insulator is filled with a predetermined insulating medium.
  • the cable connection structure 1 of the present embodiment is manufactured.
  • the rubber unit 10 is arranged so as not to overlap the cable external semiconductive layer 140. That is, the rubber unit 10 is disposed in a portion having no step formed between the exposed cable insulating layer 130 and the exposed cable outer semiconductive layer 140. Thereby, the rubber unit 10 can be fitted in an air-tight manner along the outer peripheral surface of the cable insulating layer 130, and the formation of voids between the rubber unit 10 and the power cable 100 can be suppressed. As a result, a decrease in insulation between the rubber unit 10 and the power cable 100 due to the formation of voids can be suppressed.
  • the rear end side of the nonlinear resistance layer 922 and the rear end side of the semiconductive cone portion 924 need to be arranged so as to be in contact with the cable external semiconductive layer 140.
  • the rear end of the nonlinear resistance layer 922 cannot be visually confirmed from outside the rubber unit 10.
  • the tip of the cable external semiconductive layer 140 cannot be visually confirmed from outside the rubber unit 10. For this reason, in the comparative example, it is difficult to adjust the rubber unit 10 to a predetermined position.
  • the tip of the cable external semiconductive layer 140 may be hidden by the rubber unit 10. Absent.
  • the rubber unit 10 can be accurately and easily adjusted to a predetermined position while visually confirming the first end of the rubber unit 10 and the tip of the cable external semiconductive layer 140.
  • the yield of the cable connection structure 1 can be improved.
  • the semiconductive cone portion 240 is connected to the cable outer semiconductive layer 140 via a predetermined conductive paint 320.
  • a predetermined conductive paint 320 By using the conductive paint 320, it is possible to improve the adhesion between the semiconductive cone portion 240 and the cable external semiconductive layer 140. Thereby, it is possible to suppress the formation of voids between the conductive paint 320 and the semiconductive cone portion 240 and between the conductive paint 320 and the cable outer semiconductive layer 140.
  • the semiconductive cone portion 240 can be easily and electrically connected to the cable outer semiconductive layer 140. Thereby, work on site can be simplified, and manufacturing costs can be reduced.
  • the angle ⁇ formed by the end face 290 with respect to the virtual circumferential surface in which the hollow portion 202 extends outward in the axial direction of the rubber unit 10 is 90 ° or more.
  • the angle ⁇ at which the end surface 290 is inclined is 135 ° or more.
  • electric stress caused by the shape of the end surface 290 can be reduced.
  • the angle ⁇ of the end surface 290 is less than 135 ° (90 ° or more), that is, if the end surface 290 is steeply inclined, the inclined shape of the end surface 290 may cause electrical stress. There is. Therefore, electric field concentration may occur at the first end FE of the nonlinear resistance layer 220.
  • the electric field near the end face 290 is formed gently, and the shape of the end face 290 is changed. Electrical stress caused by the above can be reduced. Accordingly, electric field concentration at the first end FE of the nonlinear resistance layer 220 can be suppressed.
  • the semiconductive cone portion 240 is spaced radially outward from the nonlinear resistance layer 220. Accordingly, it is possible to suppress formation of a triple point where the nonlinear resistance layer 220, the semiconductive cone portion 240, and the insulating layer 260 are in contact.
  • the semiconductive cone portion 240 when the semiconductive cone portion 240 is in contact with the nonlinear resistance layer 220, a triple point where the nonlinear resistance layer 220, the semiconductive cone portion 240, and the insulating layer 260 are in contact is formed near the contact portion.
  • the insulating layer 260 having a relatively high resistance is sandwiched between the nonlinear resistance layer 220 having a relatively low resistance and the semiconductive cone portion 240. For this reason, the electric field may be locally concentrated at the triple point due to the difference in resistance between the layers constituting the triple point.
  • the semiconductive cone portion 240 is spaced radially outward from the non-linear resistance layer 220, the contact between the non-linear resistance layer 220, the semiconductive cone portion 240, and the insulating layer 260 is reduced. The formation of the point of importance can be suppressed. Thereby, electric field concentration between the semiconductive cone portion 240 and the nonlinear resistance layer 220 can be suppressed.
  • the void of the insulating layer 260 missing between the semiconducting cone portion 240 and the nonlinear resistance layer 220 can be removed. Formation can be suppressed stably. Thereby, insulation between the semiconductive cone portion 240 and the nonlinear resistance layer 220 can be reliably ensured.
  • FIG. 4 is an enlarged cross-sectional view of a part of the rubber unit according to the first modification of the embodiment.
  • the non-linear resistance layer 220 has, for example, a first end face 222 on the first end FE side.
  • the angle formed by the first end face 222 with respect to the virtual circumferential surface in which the hollow portion 202 extends outward in the axial direction of the rubber unit 10 is defined as “ ⁇ 1”.
  • the insulating layer 260 and the semiconductive cone portion 240 form, for example, a second end surface 292 on the first end FE side of the nonlinear resistance layer 220.
  • the angle formed by the second end surface 292 with respect to the virtual circumferential surface in which the hollow portion 202 extends outward in the axial direction of the rubber unit 10 is defined as “ ⁇ 2”.
  • the angle ⁇ 1 at which the first end surface 222 rises is larger than the angle ⁇ 2 at which the second end surface 292 rises, for example.
  • the electric field is adjusted at each of the rising point RP at which the inclined surface 242 of the semiconductive cone 240 starts to separate from the nonlinear resistance layer 220 and the end FE of the nonlinear resistance layer 220 on the rear end side of the rubber unit 10. can do.
  • the angle ⁇ 1 formed by the first end face 222 is, for example, not less than the angle ⁇ 2 + 5 ° and not more than the angle ⁇ 2 + 20 °. If the angle ⁇ 1 formed by the first end face 222 is less than the angle ⁇ 2 + 5 °, the effect of uniformly suppressing electric field concentration due to the angle ⁇ 2 being larger than the angle ⁇ 1 may not be sufficiently obtained. On the other hand, when the angle ⁇ 1 formed by the first end face 222 is equal to or larger than the angle ⁇ 2 + 5 °, the effect of uniformly suppressing the electric field concentration due to the angle ⁇ 2 being larger than the angle ⁇ 1 can be sufficiently obtained.
  • the angle ⁇ 1 formed by the first end face 222 exceeds the angle ⁇ 2 + 20 °, it becomes difficult to form the first end face 222 on the nonlinear resistance layer 220.
  • the angle ⁇ 1 formed by the first end face 222 is equal to or smaller than the angle ⁇ 2 + 20 °, the first end face 222 can be stably formed on the nonlinear resistance layer 220.
  • the rubber unit 10 is externally fitted to the power cable 100, and a 1103 kV reverse polarity lightning impulse superimposed on a 525 kV DC voltage is applied to the power cable 100.
  • the larger of the electric field strength at the rising point RP at which the semiconductive cone portion 240 starts to separate from the nonlinear resistance layer 220 and the electric field strength at the first end FE of the nonlinear resistance layer 220 is increased by 1.2 times.
  • the determination value can be, for example, 30 kV / mm or less.
  • the lower end of the first end surface 222 on the hollow portion 202 side is exposed from, for example, the second end surface 292.
  • the lower end of the first end surface 222 on the hollow portion 202 side coincides with, for example, the lower end of the second end surface 292 on the hollow portion 202 side.
  • the non-linear resistance layer forming step S122 of the rubber unit preparation step S120 for example, after the non-linear resistance layer 220 is molded, the non-linear resistance layer 220 is cut in a predetermined direction with respect to the axial direction on the first end FE side. By doing so, the first end face 222 is formed.
  • the insulating layer forming step S126 after integrally molding the non-linear resistance layer 220, the insulating layer 260 and the semiconductive cone 240, the insulating layer 260 and the semiconductive cone 240 are connected to the first end FE side of the non-linear resistance layer 220.
  • the same second end face 292 is formed on one end side of the insulating layer 260 and the semiconductive cone portion 240.
  • the second end face 292 is formed such that the angle ⁇ 1 formed by the first end face 222 is larger than the angle ⁇ 2 formed by the second end face 292.
  • the second end surface 292 is formed such that the angle ⁇ 1 formed by the first end surface 222 is, for example, not less than the angle ⁇ 2 + 5 ° and not more than the angle ⁇ 2 + 20 °.
  • the angle ⁇ 1 formed by the first end face 222 is larger than the angle ⁇ 2 formed by the second end face 292. This makes it possible to stably reduce the electrical stress caused by the respective shapes of the first end face 222 and the second end face 292. As a result, the electric field concentration can be further suppressed at the rising point RP where the semiconductive cone portion 240 starts to separate from the nonlinear resistance layer 220 or at the first end FE of the nonlinear resistance layer 220.
  • FIG. 5 is an enlarged cross-sectional view of a part of a rubber unit according to Modification 2 of the present embodiment. As shown in FIG. 5, the semiconductive cone portion 240 may be in contact with the nonlinear resistance layer 220 on the first end FE side of the nonlinear resistance layer 220, for example.
  • the method of manufacturing the cable connection structure of Modification 3 includes, for example, a rubber unit preparing step S120, a power cable preparing step S140, a fitting step S160, and an insulator pipe inserting step S180.
  • nonlinear resistance layer forming step S122 and the semiconductive cone portion forming step S124 are performed in the same manner as in the above-described embodiment.
  • the insulating sheet and the semiconducting cone portion 240 are arranged outside the metal core having the outer diameter equal to the outer diameter of the nonlinear resistance layer 220.
  • the insulating layer 260 is formed so as to cover at least a part of the semiconductive cone 240.
  • the semiconductive cone portion 240 and the insulating layer 260 are cross-linked with each other, but the non-linear resistance layer 220 is not cross-linked with the semiconductive cone portion 240 and the insulating layer 260.
  • the fitting step S160 of the present modified example includes, for example, a nonlinear resistance layer disposing step S162 and a semiconductive cone portion and insulating layer disposing step S164.
  • the power cable 100 is fitted into the hollow portion 202 of the nonlinear resistance layer 220.
  • the semiconductive cone 240 is arranged radially outside the nonlinear resistance layer 220, and the insulating layer 260 is arranged so as to cover at least a part of the nonlinear resistance layer 220.
  • the semiconductive cone portion 240 is configured to have the linear portion 244, the inclined surface 242, and the rising point RP when the cross section along the axial direction of the nonlinear resistance layer 220 is viewed. As a result, a part of the insulating layer 260 enters a state between the nonlinear resistance layer 220 and the semiconductive cone 240.
  • the rubber unit 10 is arranged so as not to overlap with the cable outer semiconductive layer 140.
  • the rubber unit 10 of the present embodiment can also be manufactured by a method as in Modification 3. Rather than integrating three members (non-linear resistance layer 220, semiconductive cone portion 240, and insulating layer 260) using the same mold as in the above-described embodiment, two members (semiconductive cone portion) are used as in this method. 240 and the insulating layer 260) can improve the yield. That is, in the method, the manufacturability of the rubber unit 10 can be improved.
  • FIG. 6 is a cross-sectional view illustrating the cable connection structure according to the present embodiment.
  • connection target of the cable connection structure is different from the first embodiment.
  • the connection target of the cable connection structure is different from the first embodiment.
  • an end of the rubber unit 12, which will be described later, in the axial direction, and an end of the rubber unit 12 on the extension side of the first power cable 100a is referred to as a "first end of the rubber unit 12.”
  • the other end of the rubber unit 12 in the axial direction, and the end of the rubber unit 12 on the extension side of the second power cable 100b is referred to as “the second end of the rubber unit 12”.
  • the cable connection structure 2 of the present embodiment is configured to connect a pair of power cables 100 in a straight line by abutting each other with their axes aligned.
  • the cable connection structure 2 of the present embodiment has a pair of power cables 100 and a rubber unit 12.
  • One of the pair of power cables 100 is referred to as a “first power cable 100a”, and the other is referred to as a “second power cable 100b”.
  • Each of the first power cable 100a and the second power cable 100b is peeled off stepwise in the axial direction from the tip.
  • the respective cable conductors 110 of the first power cable 100a and the second power cable 100b are compression-connected by a compression sleeve 180, for example.
  • the rubber unit 12 includes, for example, an inner semiconductive layer 210, a nonlinear resistance layer 220, a semiconductive cone 240, an insulating layer 260, and an outer semiconductive layer 280.
  • the internal semiconductive layer 210 has, for example, semiconductivity. Specifically, the internal semiconductive layer 210 is made of, for example, the same semiconductive rubber as the semiconductive cone 240. The internal semiconductive layer 210 is provided in a cylindrical shape so as to constitute, for example, a central portion of the hollow portion 202 in the axial direction. The internal semiconductive layer 210 has substantially the same potential as the cable conductor 110, that is, has a high potential.
  • the non-linear resistance layer 220 is provided in a cylindrical shape so as to constitute, for example, another portion in the axial direction of the hollow portion 202 other than the internal semiconductive layer 210. Further, the nonlinear resistance layer 220 is provided so as to cover the internal semiconductive layer 210. The nonlinear resistance layer 220 has, for example, the same cylindrical surface as the inner semiconductive layer 210. The non-linear resistance layer 220 extends so as to cover from the cable insulation layer 130 of the first power cable 100a to the cable insulation layer 130 of the second power cable 100b when the pair of power cables 100 is inserted into the hollow portion 202. Are there.
  • the first end FE side and the second end SE side of the non-linear resistance layer 220 are respectively connected to the outside of the first power cable 100a as described later.
  • the semiconductive layer 140 and the cable outer semiconductive layer 140 of the second power cable 100b are connected via the conductive paint 320, and are therefore grounded.
  • the portion of the nonlinear resistance layer 220 that is in contact with the internal semiconductive layer 210 has a high potential, similarly to the internal semiconductive layer 210.
  • the resistance at the electric field concentration point is reduced by the non-linear resistance, so that the non-linear resistance layer 220 is directed to the first end FE side and the second end SE side of the non-linear resistance layer 220, respectively.
  • the equipotential lines can be evenly distributed.
  • a pair of semiconducting cone portions 240 are provided, for example, on both axial sides of the rubber unit 12 with the internal semiconductive layer 210 interposed therebetween.
  • the first power cable 100a side is referred to as a "first semiconductive cone portion 240a”
  • the second power cable 100b side is referred to as a "second semiconductive cone portion 240b”.
  • each of the first semiconductive cone portion 240a and the second semiconductive cone portion 240b is formed in a substantially conical shape, and the enlarged side faces each other.
  • the first semiconductive cone portion 240a has, for example, a linear portion 244, an inclined surface 242, and a rising point RP when viewing a cross section along the axial direction of the nonlinear resistance layer 220. doing.
  • the linear portion 244 of the first semiconductive cone portion 240a linearly extends, for example, from the first end FE of the nonlinear resistance layer 220 toward the second end SE.
  • the inclined surface 242 of the first semiconductive cone portion 240a is inclined so as to be gradually separated from the nonlinear resistance layer 220 from the straight portion 244 toward the second end SE of the nonlinear resistance layer 220, for example.
  • the rising point RP of the first semiconductive cone portion 240a is, for example, a boundary point between the straight portion 244 and the inclined surface 242.
  • the first end FE side of each of the first semiconductive cone portion 240a and the non-linear resistance layer 220 is connected to the cable external semiconductive layer 140 via a predetermined conductive paint 320, for example, and is grounded.
  • the second semiconductive cone 240b is configured symmetrically to the first semiconductive cone 240a with the internal semiconductive layer 210 interposed therebetween, for example.
  • the insulating layer 260 is provided so as to cover at least a part of the non-linear resistance layer 220 and at least a part of each of the pair of semiconductive cones 240.
  • the insulating layer 260 is provided, for example, so as to enter between the nonlinear resistance layer 220 and the first semiconductive cone 240a and between the nonlinear resistance layer 220 and the second semiconductive cone 240b.
  • the outer semiconductive layer 280 is provided so as to cover the insulating layer 260.
  • the outer semiconductive layer 280 is in contact with the first semiconductive cone 240a and the second semiconductive cone 240b. Accordingly, the outer semiconductive layer 280 is grounded together with the first semiconductive cone 240a and the second semiconductive cone 240b.
  • the inner semiconductive layer 210, the non-linear resistance layer 220, the pair of semiconductive cone portions 240, the insulating layer 260, and the outer semiconductive layer 280 are molded, for example, so as to be integrally coupled.
  • the rubber unit 10 is disposed so as not to overlap the cable outer semiconductive layer 140 of the first power cable 100a and the cable outer semiconductive layer 140 of the second power cable 100b. . That is, the first end FE of the non-linear resistance layer 220 matches, for example, the tip of the cable outer semiconductive layer 140 of the first power cable 100a, or the tip of the cable outer semiconductive layer 140 of the first power cable 100a. From the first power cable 100a in the axial direction.
  • the second end SE of the non-linear resistance layer 220 is, for example, coincident with the tip of the cable outer semiconductive layer 140 of the second power cable 100b, or the second end SE of the cable outer semiconductive layer 140 of the second power cable 100b.
  • the second power cable 100b is away from the distal end in the axial distal end side.
  • the second end of the rubber unit 10 in the axial direction is, for example, symmetrically arranged with the first end of the rubber unit 10 in the axial direction with respect to the center of the rubber unit 10 in the axial direction.
  • a portion radially stacked from the nonlinear resistance layer 220 to the first semiconductive cone portion 240a (that is, in this embodiment, the nonlinear resistance layer 220, a part of the insulating layer 260, and the first semiconductive cone portion 240a)
  • the same end face 290 is formed on the first end FE side of the nonlinear resistance layer 220.
  • the angle ⁇ formed by the end surface 290 with respect to the virtual circumferential surface in which the hollow portion 202 extends outward in the axial direction of the rubber unit 10 is, for example, 90 ° or more and less than 180 °, preferably 135 ° or more and 170 ° or less. It is.
  • the portion laminated in the radial direction from the nonlinear resistance layer 220 to the second semiconductive cone portion 240b forms, for example, the same end face on the second end SE side of the nonlinear resistance layer 220. That is, an end face is formed on the second end side of the rubber unit 10 in the axial direction, for example, symmetrically with the first end side in the axial direction of the rubber unit 10 across the center in the axial direction of the rubber unit 10. .
  • the nonlinear resistance layer 220 extends so as to cover from the cable outer semiconductive layer 140 of the first power cable 100a to the cable outer semiconductive layer 140 of the second power cable 100b.
  • the equipotential lines can be evenly distributed in the nonlinear resistance layer 220 without depending on the resistance of the cable insulating layer 130 in each of the two power cables 100. Thereby, it is possible to suppress the electric field from being concentrated on one power cable 100 side.
  • the non-linear resistance resin composition forming the non-linear resistance layer 220 includes the inorganic material having the non-linear resistance has been described, but the non-linear resistance resin composition has the non-linear resistance. It may be made of the organic materials shown.
  • the semiconductive cone portion 240 is connected to the cable outer semiconductive layer 140 via the predetermined conductive paint 320 .
  • the member may be connected to the cable outer semiconductive layer 140.
  • a conductive tape or the like can be given as another conductive member.
  • the end face 290 is formed by cutting the portion laminated in the radial direction from the nonlinear resistance layer 220 to the semiconductive cone portion 240 in the insulating layer forming step S126 has been described. May form the end surface 290.
  • the first end face 222 and the second end face 292 may be formed by molding, and also in the second embodiment, the end face 290 may be formed by molding.
  • the semiconductive cone portion 240 and the external semiconductive layer 280 are illustrated as being separate bodies, but the semiconductive cone portion 240 is formed as a part of the external semiconductive layer 280. It may be integrated with the conductive layer 280.
  • the first end of the nonlinear resistance layer is coincident with the tip of the cable outer semiconductive layer, or is separated from the tip of the cable outer semiconductive layer toward the tip end in the axial direction of the power cable.
  • the non-linear resistance layer forms a first end face on the first end side;
  • the insulating layer and the semiconductive cone form the same second end face on the first end side of the nonlinear resistance layer;
  • the angle formed by the first end face with respect to the imaginary circumferential surface in which the hollow portion extends outward in the axial direction of the non-linear resistance layer is The cable connection structure according to attachment 1 or 2, wherein the angle formed by the second end surface with respect to the virtual circumferential surface is larger.
  • the semiconductive cone portion has a rising point that is a boundary point between the contact portion and the inclined surface when viewing a cross section along the axial direction of the nonlinear resistance layer, When looking at a cross section along the axial direction of the nonlinear resistance layer, the inclination angle of the inclined surface of the semiconductive cone portion with respect to the axial direction of the nonlinear resistance layer is the same as the inclination angle of the nonlinear resistance layer from the rising point. 12.
  • a cylindrical rubber unit having a hollow portion into which a power cable in which a cable conductor, a cable insulating layer, and a cable outer semiconductive layer are axially exposed in this order is fitted,
  • a non-linear resistance layer provided in a cylindrical shape to constitute the hollow portion and having a resistance that changes non-linearly with respect to an electric field;
  • a semiconducting cone portion provided radially outside of the non-linear resistance layer and inclined so as to be gradually separated from the non-linear resistance layer from a first end side to a second end side in the axial direction of the non-linear resistance layer
  • An insulating layer provided so as to cover at least a part of the nonlinear resistance layer and at least a part of the semiconductive cone portion, Has, A rubber unit used in a state where it is arranged so as not to overlap with the cable external semiconductive layer.

Landscapes

  • Cable Accessories (AREA)

Abstract

ケーブル導体、ケーブル絶縁層およびケーブル外部半導電層が軸方向にこの順で露出した電力ケーブルと、電力ケーブルが嵌入される中空部を有する筒状のゴムユニットと、を有し、中空部を構成するよう筒状に設けられ、電界に対して非線形に変化する抵抗を有する非線形抵抗層と、非線形抵抗層の径方向の外側に設けられ、非線形抵抗層の軸方向の第1端側から第2端側に向けて非線形抵抗層から徐々に離間するように傾斜する半導電コーン部と、非線形抵抗層の少なくとも一部および半導電コーン部の少なくとも一部を覆うように設けられる絶縁層と、を有し、ゴムユニットは、ケーブル外部半導電層と重ならないように配置されている。

Description

ケーブル接続構造、ゴムユニット、およびケーブル接続構造の製造方法
 本開示は、ケーブル接続構造、ゴムユニット、およびケーブル接続構造の製造方法に関する。
 本出願は、2018年9月28日出願の日本国出願「特願2018-184453」に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
 電力ケーブルと架空送電線等とを接続したり、一対の電力ケーブルを接続したりするケーブル接続構造では、電力ケーブルが軸方向に段階的に剥がされ、電力ケーブルのケーブル外部半導電層が露出される。電力ケーブルのうち露出したケーブル外部半導電層の先端には、電力ケーブルの外側における電界を緩和し絶縁性を確保する筒状のゴムユニットが外嵌されることがある(例えば、特許文献1)。
特開2013-212045号公報
 本開示の一態様によれば、
 ケーブル導体、ケーブル絶縁層およびケーブル外部半導電層が軸方向にこの順で露出した電力ケーブルと、
 前記電力ケーブルが嵌入される中空部を有する筒状のゴムユニットと、
 を有し、
 前記中空部を構成するよう筒状に設けられ、電界に対して非線形に変化する抵抗を有する非線形抵抗層と、
 前記非線形抵抗層の径方向の外側に設けられ、前記非線形抵抗層の軸方向の第1端側から第2端側に向けて前記非線形抵抗層から徐々に離間するように傾斜する半導電コーン部と、
 前記非線形抵抗層の少なくとも一部および前記半導電コーン部の少なくとも一部を覆うように設けられる絶縁層と、
 を有し、
 前記ゴムユニットは、前記ケーブル外部半導電層と重ならないように配置されている
ケーブル接続構造が提供される。
 本開示の他の態様によれば、
 ケーブル導体、ケーブル絶縁層およびケーブル外部半導電層が軸方向にこの順で露出した電力ケーブルが嵌入される中空部を有する筒状のゴムユニットであって、
 前記中空部を構成するよう筒状に設けられ、電界に対して非線形に変化する抵抗を有する非線形抵抗層と、
 前記非線形抵抗層の径方向の外側に設けられ、前記非線形抵抗層の軸方向の第1端側から第2端側に向けて前記非線形抵抗層から徐々に離間するように傾斜する半導電コーン部と、
 前記非線形抵抗層の少なくとも一部および前記半導電コーン部の少なくとも一部を覆うように設けられる絶縁層と、
 を有し、
 前記ケーブル外部半導電層と重ならないように配置された状態で使用される
ゴムユニットが提供される。
 本開示の更に他の態様によれば、
 中空部を有する筒状のゴムユニットを準備する工程と、
 ケーブル導体、ケーブル絶縁層およびケーブル外部半導電層が軸方向にこの順で露出した電力ケーブルを準備する工程と、
 前記ゴムユニットの前記中空部内に前記電力ケーブルを嵌入させる工程と、
 を有し、
 前記ゴムユニットを準備する工程では、
 前記中空部を構成するよう筒状に設けられ、電界に対して非線形に変化する抵抗を有する非線形抵抗層と、前記非線形抵抗層の径方向の外側に設けられ、前記非線形抵抗層の軸方向の第1端側から第2端側に向けて前記非線形抵抗層から徐々に離間するように傾斜する半導電コーン部と、前記非線形抵抗層の少なくとも一部および前記半導電コーン部の少なくとも一部を覆うように設けられる絶縁層と、有するよう、前記ゴムユニットを構成し、
 前記電力ケーブルを嵌入させる工程では、
 前記ゴムユニットを、前記ケーブル外部半導電層と重ならないように配置する
ケーブル接続構造の製造方法が提供される。
 本開示の更に他の態様によれば、
 中空部を有する筒状のゴムユニットを準備する工程と、
 ケーブル導体、ケーブル絶縁層およびケーブル外部半導電層が軸方向にこの順で露出した電力ケーブルを準備する工程と、
 前記ゴムユニットの前記中空部内に前記電力ケーブルを嵌入させる工程と、
 を有し、
 前記ゴムユニットを準備する工程は、
 前記中空部を構成するよう筒状に設けられ、電界に対して非線形に変化する抵抗を有する非線形抵抗層を準備する工程と、
 半導電コーン部と、前記半導電コーン部の少なくとも一部を覆うように設けられる絶縁層と、を前記非線形抵抗層とは別に準備する工程と、
 を有し、
 前記電力ケーブルを嵌入させる工程は、
 前記非線形抵抗層の前記中空部内に前記電力ケーブルを嵌入させる工程と、
 前記非線形抵抗層の径方向の外側に前記半導電コーン部を配置するとともに、前記非線形抵抗層の少なくとも一部を覆うように前記絶縁層を配置する工程と、
 を有し、
 前記電力ケーブルを嵌入させる工程では、
 前記ゴムユニットを、前記ケーブル外部半導電層と重ならないように配置する
ケーブル接続構造の製造方法が提供される。
本開示の第1実施形態に係るケーブル接続構造を示す断面図である。 本開示の第1実施形態に係るゴムユニットの一部を拡大した断面図である。 本開示の第1実施形態に係るケーブル接続構造の製造方法を示すフローチャートである。 本開示の第1実施形態の変形例1に係るゴムユニットの一部を拡大した断面図である。 本開示の第1実施形態の変形例2に係るゴムユニットの一部を拡大した断面図である。 本開示の第2実施形態に係るケーブル接続構造を示す断面図である。 比較例に係るケーブル接続構造の一部を拡大した断面図である。
[本開示が解決しようとする課題]
 本開示の目的は、ゴムユニットと電力ケーブルとの間における絶縁性の低下を抑制することができる技術を提供することである。
[本開示の効果]
 本開示によれば、ゴムユニットと電力ケーブルとの間における絶縁性の低下を抑制することができる。
[本開示の実施形態の説明]
<発明者の得た知見>
 まず、発明者等が得た知見について説明する。
 図7は、比較例のケーブル接続構造を示す模式的断面図である。図7に示すように、比較例のケーブル接続構造9は、例えば、電力ケーブル100と、ゴムユニット91と、を有している。
 電力ケーブル100は軸方向に段階的に剥がされており、電力ケーブル100のケーブル外部半導電層140の先端は露出している。
 ゴムユニット91は、電力ケーブル100に外嵌される筒状のゴム部材として構成され、例えば、非線形抵抗層922と、半導電コーン部924と、絶縁層926と、を有している。非線形抵抗層922は、例えば、中空部922aを構成するよう筒状に設けられている。半導電コーン部924は、例えば、ゴムユニット91の先端側に拡径した略円錐状に構成されている。また、半導電コーン部924の後端側は、例えば、非線形抵抗層922の軸方向の外側まで延在し、中空部922aの一部を構成している。絶縁層926は、例えば、非線形抵抗層922および半導電コーン部924を覆うように設けられている。
 比較例では、ゴムユニット91の中空部922a内に電力ケーブル100が嵌入されるときに、非線形抵抗層922の後端側および半導電コーン部924の後端側は、ケーブル外部半導電層140に接するように配置される。これにより、非線形抵抗層922の後端側および半導電コーン部924は、ケーブル外部半導電層140とほぼ同電位となり、すなわち、接地される。
 ここで、発明者等は、比較例のようなゴムユニット91を用いた場合に、非線形抵抗層922の後端側および半導電コーン部924の後端側をケーブル外部半導電層140に接するように配置する際に、ゴムユニット91が、ケーブル絶縁層130とケーブル外部半導電層140の先端との間に形成される段差に追従することができず、非線形抵抗層922とケーブル絶縁層130との間にボイドVが形成されてしまう可能性があることを見出した。
 上述のように、非線形抵抗層922とケーブル絶縁層130との間にボイドVが形成されると、当該ボイドV付近では、ケーブル絶縁層130とケーブル外部半導電層140とボイドV内の空気とが接する三重点(三重接触点、トリプルジャンクション)や、非線形抵抗層922とケーブル外部半導電層140とボイドV内の空気とが接する三重点などが形成される。このような三重点では、三重点を構成する各層の抵抗の差に起因して、局所的に電界が集中する可能性がある。その結果、ボイドVの形成に起因して、ゴムユニット10と電力ケーブル100との間の絶縁性が低下するおそれがある。
 本開示は、発明者等が見出した上記知見に基づくものである。
<本開示の実施態様>
 次に、本開示の実施態様を列記して説明する。
[1]本開示の一態様に係るケーブル接続構造は、
 ケーブル導体、ケーブル絶縁層およびケーブル外部半導電層が軸方向にこの順で露出した電力ケーブルと、
 前記電力ケーブルが嵌入される中空部を有する筒状のゴムユニットと、
 を有し、
 前記中空部を構成するよう筒状に設けられ、電界に対して非線形に変化する抵抗を有する非線形抵抗層と、
 前記非線形抵抗層の径方向の外側に設けられ、前記非線形抵抗層の軸方向の第1端側から第2端側に向けて前記非線形抵抗層から徐々に離間するように傾斜する半導電コーン部と、
 前記非線形抵抗層の少なくとも一部および前記半導電コーン部の少なくとも一部を覆うように設けられる絶縁層と、
 を有し、
 前記ゴムユニットは、前記ケーブル外部半導電層と重ならないように配置されている。
 この構成によれば、ゴムユニットと電力ケーブルとの間における絶縁性の低下を抑制することができる。
[2]上記[1]に記載のケーブル接続構造において、
 前記非線形抵抗層から前記半導電コーン部まで径方向に積層された部分は、前記非線形抵抗層の前記第1端側で同一の端面を形成し、
 前記非線形抵抗層の軸方向に沿った断面を見たときに、前記中空部を前記非線形抵抗層の軸方向の外側に延在させた仮想円周面に対して前記端面がなす角度は、90°以上である。
 この構成によれば、半導電コーン部からケーブル外部半導電層に亘って導電塗料を容易塗布することができる。
[3]上記[2]に記載のケーブル接続構造において、
 前記非線形抵抗層の軸方向に沿った断面を見たときに、前記仮想円周面から前記端面がなす角度は、135°以上である。
 この構成によれば、端面の形状に起因した電気的ストレスを緩和することができる。
[4]上記[1]に記載のケーブル接続構造において、
 前記非線形抵抗層は、前記第1端側で第1端面を形成し、
 前記絶縁層および前記半導電コーン部は、前記非線形抵抗層の前記第1端側で同一の第2端面を形成し、
 前記非線形抵抗層の軸方向に沿った断面を見たときに、前記中空部を前記非線形抵抗層の軸方向の外側に延在させた仮想円周面に対して前記第1端面がなす角度は、前記仮想円周面に対して前記第2端面がなす角度よりも大きい。
 この構成によれば、第1端面および第2端面のそれぞれの形状に起因した電気的ストレスを安定的に緩和することができる。
[5]上記[1]~[4]のいずれか1つに記載のケーブル接続構造において、
 前記半導電コーン部は、所定の導電塗料を介して前記ケーブル外部半導電層に接続される。
 この構成によれば、密着性を向上させることができる。
[6]上記[1]~[5]のいずれか1つに記載のケーブル接続構造において、
 前記半導電コーン部は、前記非線形抵抗層から径方向の外側に離間している。
 この構成によれば、非線形抵抗層と半導電コーン部と絶縁層とが接する三重点が形成されることを抑制することができる。
[7]本開示の他の態様に係るゴムユニットは、
 ケーブル導体、ケーブル絶縁層およびケーブル外部半導電層が軸方向にこの順で露出した電力ケーブルが嵌入される中空部を有する筒状のゴムユニットであって、
 前記中空部を構成するよう筒状に設けられ、電界に対して非線形に変化する抵抗を有する非線形抵抗層と、
 前記非線形抵抗層の径方向の外側に設けられ、前記非線形抵抗層の軸方向の第1端側から第2端側に向けて前記非線形抵抗層から徐々に離間するように傾斜する半導電コーン部と、
 前記非線形抵抗層の少なくとも一部および前記半導電コーン部の少なくとも一部を覆うように設けられる絶縁層と、
 を有し、
 前記ケーブル外部半導電層と重ならないように配置された状態で使用される。
 この構成によれば、ゴムユニットと電力ケーブルとの間における絶縁性の低下を抑制することができる。
[8]本開示の更に他の態様に係るケーブル接続構造の製造方法は、
 中空部を有する筒状のゴムユニットを準備する工程と、
 ケーブル導体、ケーブル絶縁層およびケーブル外部半導電層が軸方向にこの順で露出した電力ケーブルを準備する工程と、
 前記ゴムユニットの前記中空部内に前記電力ケーブルを嵌入させる工程と、
 を有し、
 前記ゴムユニットを準備する工程では、
 前記中空部を構成するよう筒状に設けられ、電界に対して非線形に変化する抵抗を有する非線形抵抗層と、前記非線形抵抗層の径方向の外側に設けられ、前記非線形抵抗層の軸方向の第1端側から第2端側に向けて前記非線形抵抗層から徐々に離間するように傾斜する半導電コーン部と、前記非線形抵抗層の少なくとも一部および前記半導電コーン部の少なくとも一部を覆うように設けられる絶縁層と、有するよう、前記ゴムユニットを構成し、
 前記電力ケーブルを嵌入させる工程では、
 前記ゴムユニットを、前記ケーブル外部半導電層と重ならないように配置する。
 この構成によれば、ゴムユニットと電力ケーブルとの間における絶縁性の低下を抑制することができる。
[9]本開示の更に他の態様に係るケーブル接続構造の製造方法は、
 中空部を有する筒状のゴムユニットを準備する工程と、
 ケーブル導体、ケーブル絶縁層およびケーブル外部半導電層が軸方向にこの順で露出した電力ケーブルを準備する工程と、
 前記ゴムユニットの前記中空部内に前記電力ケーブルを嵌入させる工程と、
 を有し、
 前記ゴムユニットを準備する工程は、
 前記中空部を構成するよう筒状に設けられ、電界に対して非線形に変化する抵抗を有する非線形抵抗層を準備する工程と、
 半導電コーン部と、前記半導電コーン部の少なくとも一部を覆うように設けられる絶縁層と、を前記非線形抵抗層とは別に準備する工程と、
 を有し、
 前記電力ケーブルを嵌入させる工程は、
 前記非線形抵抗層の前記中空部内に前記電力ケーブルを嵌入させる工程と、
 前記非線形抵抗層の径方向の外側に前記半導電コーン部を配置するとともに、前記非線形抵抗層の少なくとも一部を覆うように前記絶縁層を配置する工程と、
 を有し、
 前記電力ケーブルを嵌入させる工程では、
 前記ゴムユニットを、前記ケーブル外部半導電層と重ならないように配置する。
 この構成によれば、ゴムユニットと電力ケーブルとの間における絶縁性の低下を抑制することができる。
[本開示の実施形態の詳細]
 次に、本開示の一実施形態を、以下に図面を参照しつつ説明する。なお、本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
<本開示の第1実施形態>
(1)ケーブル接続構造およびゴムユニット
 本開示の第1実施形態に係るケーブル接続構造およびゴムユニットについて、図1および図2を用いて説明する。図1は、本実施形態に係るケーブル接続構造を示す断面図である。図2は、本実施形態に係るゴムユニットの一部を拡大した断面図である。なお、図1および図2において、半導電コーン部240の先端側が電力ケーブル100の軸方向の先端側である。また、図1および図2において、電力ケーブル100の一部のハッチングを省略している。
 以下において、電力ケーブル100、非線形抵抗層220またはゴムユニット10の「軸方向」とは、電力ケーブル100、非線形抵抗層220またはゴムユニット10の中心軸に沿った方向のことをいい、「沿層方向」「長手方向」と言い換えることができる。なお、非線形抵抗層220の軸方向とは、ゴムユニット10の軸方向、または中空部202の軸方向と言い換えることもできる。また、電力ケーブル100、非線形抵抗層220またはゴムユニット10の「径方向」とは、電力ケーブル100、非線形抵抗層220またはゴムユニット10の中心軸から外周に向かう方向のことをいい、場合によっては「厚さ方向」「短手方向」と言い換えることができる。また、電力ケーブル100、非線形抵抗層220またはゴムユニット10の「周方向」とは、電力ケーブル100、非線形抵抗層220またはゴムユニット10の、外周または内周に沿った方向のことをいう。
 また、以下において、電力ケーブル100の軸方向の端部を「電力ケーブル100の先端」といい、電力ケーブル100の先端と反対側であって、電力ケーブル100が延在する側を「電力ケーブル100の延在側」という。
 また、本実施形態において、ゴムユニット10の軸方向の一端であって、ゴムユニット10のうち電力ケーブル100の延在側の端部を「ゴムユニット10の第1端」といい、「ゴムユニット10の後端」と言い換えてもよい。一方で、ゴムユニット10の軸方向の他端であって、ゴムユニット10のうち電力ケーブル100の先端が配置される側の端部を「ゴムユニット10の第2端」といい、「ゴムユニット10の第2端」と言い換えてもよい。
 また、本実施形態において、非線形抵抗層220の軸方向の一端であって、非線形抵抗層220のうち電力ケーブル100の延在側の端部を「非線形抵抗層220の第1端FE」という。一方で、非線形抵抗層220の軸方向の他端であって、非線形抵抗層220のうち電力ケーブル100の先端側の端部を「非線形抵抗層220の第2端SE」という。
 図1に示すように、本実施形態のケーブル接続構造(ケーブル終端接続構造、気中終端接続部、EB-A)1は、電力ケーブル100と架空送電線(不図示)等とを接続するよう構成され、例えば、電力ケーブル100と、ゴムユニット10と、を有している。ケーブル接続構造1では、例えば、電力ケーブル100の外周にゴムユニット10が外嵌された状態で、碍管(不図示)内に電力ケーブル100が挿入され、碍管内に絶縁媒体が充填される。なお、絶縁媒体は、例えば、絶縁油または絶縁ガスである。
(1-1)電力ケーブル
 図1に示すように、電力ケーブル100は、CVケーブル(Crosslinked polyethylene insulated PVC sheathed cable、XLPEケーブルともいう)として構成され、例えば、中心軸から外周に向けて、ケーブル導体110、ケーブル内部半導電層(不図示)、ケーブル絶縁層130、ケーブル外部半導電層140、ケーブル金属被(ケーブル金属遮蔽層)(不図示)、およびケーブルシース(不図示)を有している。
 電力ケーブル100は、先端から軸方向に段階的に剥がされている(段剥ぎされている)。すなわち、ケーブル導体110、ケーブル絶縁層130およびケーブル外部半導電層140は、電力ケーブル100の先端側から軸方向にこの順で露出している。
 なお、本実施形態で接続対象となる電力ケーブル100は、例えば、直流電力ケーブルとして構成されている。なお、電力ケーブル100の構成は、上述の構成に限定されるものではない。
(1-2)ゴムユニット
 ゴムユニット10は、例えば、電力ケーブル100が嵌入される中空部202を有する筒状のゴム部材として構成されている。露出したケーブル外部半導電層140の外周をゴムユニット10によって覆うことで、当該ケーブル外部半導電層140の先端周辺の電界を緩和することができる。
 ゴムユニット10は、例えば、非線形抵抗層(FGM層:Field Grading
 Material Layer)220と、半導電コーン部(半導電部、ストレスコーン部)240と、絶縁層260と、を有している。
(非線形抵抗層)
 非線形抵抗層220は、例えば、電界に対して非線形に変化する抵抗を有している。具体的には、非線形抵抗層220は、例えば、ベース樹脂と、バリスタ粒子と、を含む非線形抵抗性樹脂組成物により構成されている。
 ベース樹脂は、例えば、熱可塑性樹脂およびゴムのうち少なくともいずれかを含んでいる。ベース樹脂を構成するゴムとしては、例えば、エチレン-プロピレン-ジエンゴム(EPDM)、シリコーンゴムなどが挙げられる。
 バリスタ粒子は、例えば、電界強度が大きくなるにつれて、抵抗が非線形に低下する特性を示す無機材料からなっている。具体的には、バリスタ粒子は、例えば、結晶部と、粒界部、とを有している。バリスタ粒子は、臨界電界強度以下の電界が印加されたときに粒界部が高抵抗を示すことで、絶縁体として作用する。一方で、バリスタ粒子は、臨界電界強度超の電界が印加されたときに、隣接する一対の結晶部間の粒界部を貫通して電流が流れることで、導電体として作用する。
 バリスタ粒子の結晶部は、例えば、酸化亜鉛、炭化ケイ素、チタン酸ストロンチウムおよびチタン酸バリウムのうち少なくともいずれか1つを含んでいる。バリスタ粒子の粒界部は、例えば、ビスマス、アンチモン、マンガン、コバルトおよびニッケルのうち少なくともいずれか1つを含む酸化物からなっている。
 非線形抵抗層220は、例えば、中空部202を構成するよう筒状に設けられている。
非線形抵抗層220は、例えば、中空部202内に電力ケーブル100が嵌入されたときに、電力ケーブル100のうち露出したケーブル絶縁層130の外周を覆うように構成されている。
 非線形抵抗層220が構成する中空部202の内径は、例えば、電力ケーブル100の外径よりも若干小さい。これにより、中空部202内に電力ケーブル100が弾性的に嵌合し、非線形抵抗層220の内周面に電力ケーブル100が気密に密着するようになっている。
 中空部202内に電力ケーブル100が嵌入されたときには、非線形抵抗層220の第1端FE側は、後述のように導電塗料320を介してケーブル外部半導電層140に接続されるため、接地される。一方で、非線形抵抗層220の第2端SE側は、電力ケーブル100のケーブル導体110とほぼ同電位となり、すなわち、高電位となる。
 ここで、例えば、非線形抵抗層220が設けられていない場合では、ゴムユニット10の第2端側(電力ケーブル100の先端側)において、電力ケーブル100のケーブル絶縁層130と、ゴムユニット10の絶縁層260と、碍管内に充填される絶縁媒体と、が接する三重点が形成される。このような三重点では、ケーブル絶縁層130と絶縁層260とのそれぞれの抵抗に対して、絶縁媒体は異なる抵抗を有している。このため、電力ケーブル100が定常状態であるときに、三重点を構成する各層の抵抗の差に起因して、当該三重点では局所的に電界が集中する可能性がある。
 これに対し、本実施形態では、非線形抵抗層220が中空部202を構成しケーブル絶縁層130を覆うように配置されることで、電力ケーブル100が定常状態であるときに、ゴムユニット10の第2端側で、電力ケーブル100のケーブル絶縁層130と、ゴムユニット10の絶縁層260と、碍管内に充填される絶縁媒体と、が接近する部分において、電界集中が生じたときに、非線形抵抗層220の抵抗を低減させることができる。これにより、ゴムユニット10の軸方向に沿った断面を見たときに、非線形抵抗層220内において、ゴムユニット10の第2端側から第1端側に向けて、等電位線を均等に分布(分散)させることができる。その結果、ゴムユニット10の第2端側での電界集中を緩和させ、絶縁破壊などの電気的リスクを低減させることができる。
(半導電コーン部)
 半導電コーン部240は、例えば、半導電性を有している。具体的には、半導電コーン部240は、例えば、半導電性ゴムからなっている。半導電性ゴムは、例えば、エチレンプロピレンゴムまたはシリコーンゴムと、カーボンブラックと、からなる組成物である。
 半導電コーン部240は、例えば、非線形抵抗層220の径方向の外側に設けられ、略円錐状(ラッパ状)に構成されている。半導電コーン部240は、例えば、非線形抵抗層220の第1端FE側から第2端SE側に向けて非線形抵抗層220から徐々に離間するように傾斜している。すなわち、半導電コーン部240は、いわゆるストレスコーンを形成している。
 具体的には、半導電コーン部240は、非線形抵抗層220の軸方向に沿った断面を見たときに、例えば、直線部244と、傾斜面242と、立ち上がり点RPと、を有している。
 直線部244は、例えば、非線形抵抗層220の第1端FEから第2端SE側に向けて直線状に延在している。
 傾斜面242は、例えば、直線部244から非線形抵抗層220の第2端SE側に向けて非線形抵抗層220から徐々に離間するように傾斜している。言い換えれば、半導電コーン部240の傾斜面242は、非線形抵抗層220の第1端FE側から第2端SE側に向けて徐々に拡径している。これにより、ゴムユニット10の軸方向に沿った断面を見たときに、半導電コーン部240の傾斜面242に沿って等電位線を形成することができ、等電位線を均等に分布させることができる。
 また、立ち上がり点RPは、例えば、直線部244と傾斜面242との間の境界点である。立ち上がり点RPは、傾斜面242が非線形抵抗層220から径方向に離間し始める点と考えてもよい。傾斜面242は、立ち上がり点RPで直線部244に接している。
 本実施形態では、傾斜面242は、例えば、立ち上がり点RPから滑らかに立ち上がっている。すなわち、非線形抵抗層220の軸方向に沿った断面を見たときに、非線形抵抗層220の軸方向に対する半導電コーン部240の傾斜面242の傾斜角は、例えば、立ち上がり点RPから非線形抵抗層220の第2端SE側に向けて単調増加している。これにより、半導電コーン部240の傾斜面242と非線形抵抗層220との間に形成される等電位線を、滑らかな傾斜面242に沿って緩やかに形成し、均等に分布させることができる。その結果、半導電コーン部240の傾斜面242と非線形抵抗層220との間において、局所的な電界集中を抑制することができる。
 本実施形態では、半導電コーン部240(の直線部244)は、例えば、非線形抵抗層220から径方向の外側に離間している。これにより、非線形抵抗層220と絶縁層260と半導電コーン部240とが接する三重点が形成されることを抑制することができる。また、半導電コーン部240が非線形抵抗層220から離間していることで、後述の絶縁層形成工程S126において、半導電コーン部240と非線形抵抗層220との間に、絶縁層260の一部を容易に介在させることができる。
 半導電コーン部240および非線形抵抗層220のそれぞれのうちの第1端FE側は、例えば、所定の導電塗料320を介してケーブル外部半導電層140に接続される。半導電コーン部240および非線形抵抗層220がケーブル外部半導電層140に電気的に接続されることで、非線形抵抗層220の第1端FEおよび半導電コーン部240は、ケーブル外部半導電層140とほぼ同電位となり、すなわち、接地される。
 なお、導電塗料320の上には、半導電コーン部240からケーブル外部半導電層140に亘って、金属メッシュテープ(不図示)がさらに貼り付けられていてもよい。これにより、接続抵抗を低下させることができる。
(絶縁層)
 絶縁層260は、例えば、半導電コーン部240等よりも高い絶縁性を有している。具体的には、絶縁層260は、例えば、絶縁性ゴムからなっている。絶縁性ゴムは、例えば、エチレンプロピレンゴムまたはシリコーンゴムである。
 絶縁層260は、非線形抵抗層220の少なくとも一部および半導電コーン部240の少なくとも一部を覆うように設けられている。絶縁層260の一部は、例えば、非線形抵抗層220と半導電コーン部240との間に入り込むように設けられている。これにより、非線形抵抗層220と半導電コーン部240との間には、絶縁層260が欠落したボイドが形成されていない。
 また、絶縁層260は、例えば、非線形抵抗層220の第2端SEに近づくにつれて徐々に縮径している。上述のように、ゴムユニット10の第2端側において、電力ケーブル100のケーブル絶縁層130と、ゴムユニット10の絶縁層260と、碍管内に充填される絶縁媒体と、が接する三重点での電界を緩和するために、非線形抵抗層220が設けられている。この点に加え、ゴムユニット10の絶縁層260の先端が徐々に縮径していることで、上記三重点での電界をさらに緩和することができる。
 以上の非線形抵抗層220、半導電コーン部240および絶縁層260は、例えば、一体的に結合するようモールド成形されている。これにより、ケーブル接続構造1を製造(構築)する現場における作業を容易にすることができる。また、現場において、各層間でのボイドの形成や各層間への不純物の混入を抑制することができる。なお、非線形抵抗層220、半導電コーン部240および絶縁層260は、分離されていてもよい。
(2)ゴムユニットの軸方向の第1端側に関する構成
 次に、図2を用い、ゴムユニット10の軸方向の第1端側に関する構成について説明する。
 図2に示すように、本実施形態では、ゴムユニット10は、例えば、ケーブル外部半導電層140と重ならないように配置されている。すなわち、非線形抵抗層220の第1端FEは、例えば、ケーブル外部半導電層140の先端と一致するか、或いは、ケーブル外部半導電層140の先端から電力ケーブル100の軸方向の先端側に離れている。これにより、ゴムユニット10と電力ケーブル100との間におけるボイドの形成を抑制することができる。その結果、ゴムユニット10と電力ケーブル100との間における絶縁性の低下を抑制することができる。
 本実施形態では、非線形抵抗層220の軸方向にゴムユニット10の軸方向の第1端とケーブル外部半導電層140の先端とが離間した離間距離は、例えば、0mm以上50mm以下、好ましくは、0mm以上30mm以下である。離間距離が0mm未満であると、すなわち、ゴムユニット10の第1端がケーブル外部半導電層140の先端よりも電力ケーブル100の先端から離れた位置に配置されていると、ゴムユニット10が、ケーブル絶縁層130とケーブル外部半導電層140の先端との間に形成される段差に追従することができず、非線形抵抗層220とケーブル絶縁層130との間にボイドが形成されてしまう可能性がある。これに対し、離間距離を0mm以上とすることで、ゴムユニット10がケーブル絶縁層130とケーブル外部半導電層140の先端との間に形成される段差に乗り上げることを抑制し、非線形抵抗層220とケーブル絶縁層130との間におけるボイドの形成を抑制することができる。一方で、離間距離が50mm超であると、半導電コーン部240が導電塗料320を介してケーブル外部半導電層140に接続される接続距離が過剰に長くなる。このため、導電塗料320とゴムユニット10との合計のサイズが大きくなりすぎる。これに対し、離間距離を50mm以下とすることで、半導電コーン部240が導電塗料320を介してケーブル外部半導電層140に接続される接続距離が長くなることを抑制することができる。これにより、導電塗料320とゴムユニット10との合計のサイズが過大となることを抑制することができる。さらに、離間距離を30mm以下とすることで、導電塗料320とゴムユニット10との合計のサイズを小さくすることができる。より好ましくは、離間距離をちょうど0mmとすることで、すなわち、ゴムユニット10の第1端をケーブル外部半導電層140の先端と一致させることで、非線形抵抗層220とケーブル絶縁層130との間におけるボイドの形成を抑制しつつ、非線形抵抗層220とケーブル外部半導電層140とを直接に電気的に接続することができる。
 また、本実施形態では、非線形抵抗層220から半導電コーン部240まで径方向に積層された部分(すなわち、本実施形態では、非線形抵抗層220、絶縁層260の一部、および半導電コーン部240)は、例えば、非線形抵抗層220の第1端FE側で同一の端面290を形成している。これにより、端面290を容易に形成(加工)することができる。また、同一の端面290を形成していることで、端面290上に導電塗料320を容易に塗布することができる。
 中空部202を非線形抵抗層220の軸方向の外側に延在させた仮想円周面に対して端面290がなす角度θは、例えば、90°以上180°未満、好ましくは、135°以上170°以下である。なお、角度θは、ゴムユニット10の外側(大気側)の角度である。
 角度θが90°未満であると、すなわち、端面290が電力ケーブル100の外周面に対して反り返っていると、半導電コーン部240からケーブル外部半導電層140に亘って導電塗料320を塗布することが困難となり、反り返った端面290から導電塗料320が流れ落ちてしまう可能性がある。これに対し、角度θを90°以上とすることで、半導電コーン部240からケーブル外部半導電層140に亘って導電塗料320を容易塗布することができ、端面290から導電塗料320が流れ落ちることを抑制することができる。
 ただし、角度θが90°以上135°未満であると、端面290の形状に起因した電気的ストレスが強くなる可能性がある。これに対し、角度θを135°以上とすることで、端面290の形状に起因した電気的ストレスを緩和することができる。
 一方で、角度θが170°超であると、ゴムユニット10の軸方向の長さが過剰に長くなる。これに対し、角度θを170°以下とすることで、ゴムユニット10の軸方向の長さが過剰に長くなることを抑制することができる。
(3)ゴムユニットの製造方法およびケーブル接続構造の製造方法(ケーブル接続方法)
 次に、本実施形態に係るゴムユニットの製造方法およびケーブル接続構造の製造方法について説明する。以下、ステップを「S」と略している。
 本実施形態のケーブル接続構造の製造方法は、例えば、ゴムユニット準備工程(ゴムユニット製造工程)S120と、電力ケーブル準備工程S140と、嵌入工程S160と、碍管内挿入工程S180と、を有している。
(S120:ゴムユニット準備工程)
 まず、中空部202を有する筒状のゴムユニット10を準備する。このとき、非線形抵抗層220、半導電コーン部240および絶縁層260を有するよう、ゴムユニット10を構成する。
 具体的には、ゴムユニット準備工程S120は、例えば、非線形抵抗層形成工程S122と、半導電コーン部形成工程S124と、絶縁層形成工程S126と、を有している。
(S122:非線形抵抗層形成工程)
 所定のベース樹脂とバリスタ粒子とを混合することにより、非線形抵抗性樹脂組成物を形成する。非線形抵抗性樹脂組成物を形成したら、所定の芯金を有する金型を用い、該金型内に非線形抵抗性樹脂組成物を注入することにより、非線形抵抗層220を形成する。
これにより、電界に対して非線形に変化する抵抗を有する非線形抵抗層220が、中空部202を構成するように筒状に形成される。
(S124:半導電コーン部形成工程)
 所定の略円錐状の空隙を有する金型を用い、該金型内に半導電性樹脂組成物を注入することにより、半導電コーン部240を形成する。このとき、半導電コーン部240において、軸方向の一端側(後端側、縮径側)から他端側(先端側、拡径側)に向けて直線状に延在する直線部244と、直線部244から軸方向の他端側に向けて拡径するように傾斜する傾斜面242と、を形成する。
(S126:絶縁層形成工程)
 非線形抵抗層220および半導電コーン部240を形成したら、中空部202を構成する芯金を有する金型を用い、芯金の外周を覆うように非線形抵抗層220を配置する。非線形抵抗層220を配置したら、非線形抵抗層220の径方向の外側に半導電コーン部240を配置する。
 このとき、非線形抵抗層220の軸方向に沿った断面を見たときに、直線部244と傾斜面242と立ち上がり点RPとを有するように、半導電コーン部240を配置する。すなわち、直線部244を、非線形抵抗層220の第1端FEから第2端SE側に向けて直線状に延在させる。また、傾斜面242を、直線部244から非線形抵抗層220の第2端SE側に向けて非線形抵抗層220から徐々に離間するように傾斜させる。また、立ち上がり点RPを、直線部244と傾斜面242との間の境界点として形成する。
 このとき、非線形抵抗層220と半導電コーン部240との間に、絶縁性樹脂組成物からなる絶縁シートを介在させる。これにより、半導電コーン部240の直線部244を非線形抵抗層220から径方向の外側に離間させることができる。なお、絶縁シートは、架橋時に絶縁層260の一部となる。
 金型内に非線形抵抗層220、絶縁シートおよび半導電コーン部240を配置したら、金型内に絶縁性樹脂組成物を注入することにより、非線形抵抗層220の少なくとも一部および半導電コーン部240の少なくとも一部を覆うように、絶縁層260を形成する。
 なお、このとき、絶縁シートを用いなくてもよい。具体的には、半導電コーン部240の直線部244を非線形抵抗層220から径方向の外側に離間させた状態で、絶縁性樹脂組成物を注入してもよい。これにより、半導電コーン部240と非線形抵抗層220との間に、絶縁性樹脂組成物を容易に入り込ませることができる。
 また、このとき、完成後のゴムユニット10がケーブル外部半導電層140と重ならずに配置されるように、絶縁層260を形成する。具体的には、完成後のゴムユニット10がケーブル外部半導電層140と重ならない位置を基準として設計された所定の形状で絶縁層260を形成する。
 絶縁層260を構成する絶縁性樹脂組成物を注入したら、所定の温度で加熱することで、非線形抵抗層220、半導電コーン部240および絶縁層260を一体として架橋(硬化)させる。
 架橋が完了したら、金型から成形体を取り出し、成形体から不要部分を除去する。
 このとき、非線形抵抗層220から半導電コーン部240まで径方向に積層された部分(すなわち、本実施形態では、非線形抵抗層220、絶縁層260の一部、および半導電コーン部240)を、非線形抵抗層220の第1端FE側で非線形抵抗層220の軸方向に対して所定の方向に切削する。これにより、非線形抵抗層220から半導電コーン部240まで径方向に積層された部分のうち非線形抵抗層220の第1端FE側に、同一の端面290を形成することができる。また、このとき、中空部202を非線形抵抗層220の軸方向の外側に延在させた仮想円周面に対して端面290がなす角度θを、例えば、90°以上180°未満、好ましくは、135°以上170°以下とする。
 以上により、本実施形態のゴムユニット10が製造される。このようにして、本実施形態のゴムユニット10が現場施工可能な状態で準備される。
(S140:電力ケーブル準備工程)
 一方で、電力ケーブル100を、先端から軸方向に段階的に剥がすことにより、ケーブル導体110、ケーブル絶縁層130およびケーブル外部半導電層140を、電力ケーブル100の先端側から軸方向にこの順で露出させる。
(S160:嵌入工程)
 ゴムユニット10および電力ケーブル100を準備したら、ゴムユニット10の中空部202内に電力ケーブル100を嵌入させる。具体的には、電力ケーブル100のケーブル絶縁層130およびケーブル外部半導電層140の上に、オイル(例えばシリコンオイル)を塗布する。オイルを塗布したら、治具および工具(例えばレバーブロック(登録商標))を用い、機械力によって、ゴムユニット10の中空部202内に電力ケーブル100を嵌入させる。
 このとき、ゴムユニット10の第1端とケーブル外部半導電層140の先端とを目視で確認しながら、ゴムユニット10を、ケーブル外部半導電層140と重ならないように配置する。また、このとき、非線形抵抗層220の軸方向にゴムユニット10の軸方向の第1端とケーブル外部半導電層140の先端とが離間した離間距離を、例えば、0mm以上50mm以下、好ましくは、0mm以上30mm以下とする。
 ゴムユニット10の中空部202内に電力ケーブル100を嵌入させたら、半導電コーン部240および非線形抵抗層220の端面290からケーブル外部半導電層140に亘って所定の導電塗料320を塗布することで、半導電コーン部240および非線形抵抗層220のそれぞれのうちの第1端FE側を、例えば、導電塗料320を介してケーブル外部半導電層140に接続する。なお、必要に応じて、導電塗料320の上に、半導電コーン部240からケーブル外部半導電層140に亘って、金属メッシュテープをさらに貼り付ける。
(S180:碍管内挿入工程)
 ゴムユニット10の中空部202内に電力ケーブル100を嵌入させたら、ゴムユニット10が外嵌された状態の電力ケーブル100を所定の碍管内に挿入する。電力ケーブル100を碍管内に挿入したら、ケーブル導体110の先端を碍管の上部に固定し、電力ケーブル100の延在側を所定のフランジによって碍管の下部に固定する。
 電力ケーブル100を碍管に固定したら、碍管内に所定の絶縁媒体を充填する。
 以上により、本実施形態のケーブル接続構造1が製造される。
(4)本実施形態に係る効果
 本実施形態によれば、以下に示す1つ又は複数の効果を奏する。
(a)本実施形態では、ゴムユニット10は、ケーブル外部半導電層140と重ならないように配置される。すなわち、ゴムユニット10は、露出したケーブル絶縁層130と露出したケーブル外部半導電層140との間に形成される段差がない部分に配置される。これにより、ゴムユニット10をケーブル絶縁層130の外周面に沿って気密に外嵌させることができ、ゴムユニット10と電力ケーブル100との間におけるボイドの形成を抑制することができる。その結果、ボイドの形成に起因したゴムユニット10と電力ケーブル100との間における絶縁性の低下を抑制することができる。
(b)嵌入工程S160において、ゴムユニット10をケーブル外部半導電層140と重ならないように配置することで、ゴムユニット10の位置調整を容易に行うことができる。
 ここで、上述の比較例では、嵌入工程において、非線形抵抗層922の後端側および半導電コーン部924の後端側を、ケーブル外部半導電層140に接するように配置する必要がある。このとき、非線形抵抗層922の後端は、ゴムユニット10の外側から目視で確認することができない。また、電力ケーブル100の外周にゴムユニット10が被せられると、ケーブル外部半導電層140の先端も、ゴムユニット10の外側から目視で確認することができない。このため、比較例では、ゴムユニット10を所定の位置に調整することが困難である。
 これに対し、本実施形態では、嵌入工程S160において、ゴムユニット10をケーブル外部半導電層140と重ならないように配置することで、ケーブル外部半導電層140の先端がゴムユニット10によって隠れることがない。これにより、ゴムユニット10の第1端とケーブル外部半導電層140の先端とを目視で確認しながら、ゴムユニット10を所定の位置に精度良く且つ容易に調整することができる。その結果、ケーブル接続構造1の歩留りを向上させることができる。
(c)半導電コーン部240は、所定の導電塗料320を介してケーブル外部半導電層140に接続される。導電塗料320を用いることで、半導電コーン部240とケーブル外部半導電層140とに対する密着性を向上させることができる。これにより、導電塗料320と半導電コーン部240との間や、導電塗料320とケーブル外部半導電層140との間にボイドが形成されることを抑制することができる。
 また、導電塗料320を用いることで、半導電コーン部240をケーブル外部半導電層140に容易に電気的に接続することができる。これにより、現場での作業を簡略化することができ、製造コストを低減することができる。
(d)非線形抵抗層220から半導電コーン部240まで径方向に積層された部分は、非線形抵抗層220の第1端FE側で同一の端面290を形成している。これにより、端面290を容易に形成(加工)することができる。また、同一の端面290を形成していることで、端面290上に導電塗料320を容易に塗布することができる。
(e)中空部202をゴムユニット10の軸方向の外側に延在させた仮想円周面に対して端面290がなす角度θは、90°以上である。これにより、半導電コーン部240からケーブル外部半導電層140に亘って導電塗料320を容易塗布することができ、端面290から導電塗料320が流れ落ちることを抑制することができる。
(f)さらに、端面290が傾斜した角度θは、135°以上である。これにより、端面290の形状に起因した電気的ストレスを緩和することができる。
 ここで、端面290の角度θが(90°以上)135°未満であると、すなわち、端面290が急峻に傾斜していると、端面290の傾斜形状が電気的なストレスを生じさせてしまう可能性がある。このため、非線形抵抗層220の第1端FEにおいて、電界集中が生じてしまう可能性がある。
 これに対し、本実施形態では、端面290の角度θを135°以上とすることで、すなわち、端面290を緩やかに傾斜させることで、端面290付近の電界を緩やかに形成し、端面290の形状に起因した電気的ストレスを緩和することができる。これにより、非線形抵抗層220の第1端FEにおいて、電界集中を抑制することができる。
 具体的には、本実施形態では、ゴムユニット10が電力ケーブル100に外嵌され、525kVの直流電圧に対して重畳させた1103kVの逆極性雷インパルスを電力ケーブル100に印加したときに、半導電コーン部240が非線形抵抗層220から離間し始める立ち上がり点RPでの電界強度と、非線形抵抗層220の第1端FEでの電界強度とのうち大きい方を1.2倍した判定値を、例えば、30kV/mm以下とすることができる。
(g)半導電コーン部240は、非線形抵抗層220から径方向の外側に離間している。これにより、非線形抵抗層220と半導電コーン部240と絶縁層260とが接する三重点が形成されることを抑制することができる。
 ここで、半導電コーン部240が非線形抵抗層220に接していると、当該接触部付近において、非線形抵抗層220と半導電コーン部240と絶縁層260とが接する三重点が形成される。このような三重点では、比較的抵抗が低い非線形抵抗層220と半導電コーン部240とによって、比較的抵抗が高い絶縁層260が挟まれる。このため、三重点を構成する各層の抵抗の差に起因して、当該三重点では局所的に電界が集中する可能性がある。
 これに対し、本実施形態では、半導電コーン部240が非線形抵抗層220から径方向の外側に離間していることで、非線形抵抗層220と半導電コーン部240と絶縁層260とが接する三重点の形成を抑制することができる。これにより、半導電コーン部240と非線形抵抗層220との間における電界集中を抑制することができる。
(h)半導電コーン部240は、非線形抵抗層220から径方向の外側に離間していることで、半導電コーン部240と非線形抵抗層220との間には、所定のクリアランスが確保されている。当該クリアランスを確保することで、絶縁層形成工程S126において、半導電コーン部240と非線形抵抗層220との間に、絶縁層260の一部を容易に介在させることができる。その結果、ゴムユニット10の製造を容易且つ安定的に行うことができる。
 半導電コーン部240と非線形抵抗層220との間に絶縁層260の一部を容易に介在させることで、半導電コーン部240と非線形抵抗層220との間で絶縁層260が欠落したボイドの形成を安定的に抑制することができる。これにより、半導電コーン部240と非線形抵抗層220との間の絶縁性を確実に確保することができる。
(5)本実施形態の変形例
 上述の第1実施形態は、必要に応じて、以下に示す変形例のように変更することができる。以下、上述の実施形態と異なる要素についてのみ説明し、上述の実施形態で説明した要素と実質的に同一の要素には、同一の符号を付してその説明を省略する。
(5-1)変形例1
 本実施形態の変形例1では、ゴムユニット10の後端側の構成が上述の実施形態と異なる。
 図4は、本実施形態の変形例1に係るゴムユニットの一部を拡大した断面図である。
 図4に示すように、変形例1のゴムユニット10では、非線形抵抗層220は、例えば、第1端FE側で第1端面222を形成している。中空部202をゴムユニット10の軸方向の外側に延在させた仮想円周面に対して第1端面222がなす角度を「θ1」とする。
 一方、絶縁層260および半導電コーン部240は、例えば、非線形抵抗層220の第1端FE側で第2端面292を形成している。中空部202をゴムユニット10の軸方向の外側に延在させた仮想円周面に対して第2端面292がなす角度を「θ2」とする。
 ここで、第1端面222が立ち上がる角度θ1は、例えば、第2端面292が立ち上がる角度θ2よりも大きい。これにより、半導電コーン部240の傾斜面242が非線形抵抗層220から離間し始める立ち上がり点RP、および、ゴムユニット10の後端側の非線形抵抗層220の端部FEのそれぞれにおいて、電界を調整することができる。
 具体的には、第1端面222がなす角度θ1は、例えば、角度θ2+5°以上角度θ2+20°以下である。第1端面222がなす角度θ1が角度θ2+5°未満であると、角度θ2を角度θ1よりも大きくしたことによる電界集中の均等抑制効果が充分に得られない可能性がある。これに対し、第1端面222がなす角度θ1を角度θ2+5°以上とすることで、角度θ2を角度θ1よりも大きくしたことによる電界集中の均等抑制効果を充分に得ることができる。一方で、第1端面222がなす角度θ1が角度θ2+20°超であると、非線形抵抗層220に第1端面222を形成することが困難となる。これに対し、第1端面222がなす角度θ1を角度θ2+20°以下とすることで、非線形抵抗層220に第1端面222を安定的に形成することができる。
 角度θ1および角度θ2を上述の範囲内とすることで、ゴムユニット10が電力ケーブル100に外嵌され、525kVの直流電圧に対して重畳させた1103kVの逆極性雷インパルスを電力ケーブル100に印加したときに、半導電コーン部240が非線形抵抗層220から離間し始める立ち上がり点RPでの電界強度と、非線形抵抗層220の第1端FEでの電界強度とのうち大きい方を1.2倍した判定値を、例えば、30kV/mm以下とすることができる。
 また、第1端面222の中空部202側の下端は、例えば、第2端面292から露出している。好ましくは、第1端面222の中空部202側の下端は、例えば、第2端面292の中空部202側の下端と一致している。これにより、非線形抵抗層220の第1端FEに導電塗料320を接触させることができる。その結果、非線形抵抗層220の第1端FEを接地させることができる。
 ゴムユニット準備工程S120のうち、非線形抵抗層形成工程S122では、例えば、非線形抵抗層220をモールド成形した後に、非線形抵抗層220を、第1端FE側で軸方向に対して所定の方向に切削することで、第1端面222を形成する。
 絶縁層形成工程S126では、非線形抵抗層220、絶縁層260および半導電コーン部240を一体としてモールド成形した後に、絶縁層260および半導電コーン部240を、非線形抵抗層220の第1端FE側で非線形抵抗層220の軸方向に対して所定の方向に切削することで、絶縁層260および半導電コーン部240の一端側に同一の第2端面292を形成する。
 このとき、第1端面222がなす角度θ1が、第2端面292がなす角度θ2よりも大きくなるように、第2端面292を形成する。具体的には、第1端面222がなす角度θ1が、例えば、角度θ2+5°以上角度θ2+20°以下となるように、第2端面292を形成する。
(効果)
 第1端面222がなす角度θ1は、第2端面292がなす角度θ2よりも大きい。これにより、第1端面222および第2端面292のそれぞれの形状に起因した電気的ストレスを安定的に緩和することができる。その結果、半導電コーン部240が非線形抵抗層220から離間し始める立ち上がり点RP、または、非線形抵抗層220の第1端FEにおいて、電界集中をさらに抑制することができる。
(5-2)変形例2
 図5は、本実施形態の変形例2に係るゴムユニットの一部を拡大した断面図である。
 図5に示すように、半導電コーン部240は、例えば、非線形抵抗層220の第1端FE側で、非線形抵抗層220に接していてもよい。
(効果)
 半導電コーン部240が非線形抵抗層220に接していても、ゴムユニット10は、ケーブル外部半導電層140と重ならないように配置されていることで、上述の実施形態と同様の効果を得ることができる。
(5-3)変形例3
 上述の実施形態では、ゴムユニット準備工程S120において、非線形抵抗層220、半導電コーン部240および絶縁層260を一体として有するゴムユニット10を準備する方法について説明したが、この場合に限られない。以下の変形例3ように、非線形抵抗層220と、半導電コーン部240および絶縁層260とを別に準備する方法も考えられる。
 変形例3のケーブル接続構造の製造方法は、例えば、ゴムユニット準備工程S120と、電力ケーブル準備工程S140と、嵌入工程S160と、碍管内挿入工程S180と、を有している。
(S120:ゴムユニット準備工程)
 本変形例では、半導電コーン部240と絶縁層260とを非線形抵抗層220とは別に準備する。
 具体的には、非線形抵抗層形成工程S122および半導電コーン部形成工程S124を上述の実施形態と同様に行う。
 絶縁層形成工程S126では、非線形抵抗層220の外径と等しい外径を有する芯金の外側に、絶縁シートおよび半導電コーン部240を配置する。この状態で、半導電コーン部240の少なくとも一部を覆うように絶縁層260を形成する。
 半導電コーン部240と絶縁層260とは互いに架橋させるが、非線形抵抗層220と半導電コーン部240および絶縁層260とは架橋させない。
(S160:嵌入工程)
 本変形例の嵌入工程S160は、例えば、非線形抵抗層配置工程S162と、半導電コーン部および絶縁層配置工程S164と、を有している。
(S162:非線形抵抗層配置工程)
 非線形抵抗層220の中空部202内に電力ケーブル100を嵌入させる。
(S164:半導電コーン部および絶縁層配置工程)
 次に、非線形抵抗層220の径方向の外側に半導電コーン部240を配置するとともに、非線形抵抗層220の少なくとも一部を覆うように絶縁層260を配置する。
 このとき、非線形抵抗層220の軸方向に沿った断面を見たときに、直線部244と傾斜面242と立ち上がり点RPとを有するよう、半導電コーン部240を構成する。これにより、絶縁層260の一部を、非線形抵抗層220と半導電コーン部240との間に入り込んだ状態とする。
 また、このとき、ゴムユニット10を、ケーブル外部半導電層140と重ならないように配置する。
 嵌入工程S160以降の工程は、上述の実施形態と同様である。
(効果)
 変形例3のような方法によっても、本実施形態のゴムユニット10を製造することができる。上述の実施形態のように同じ金型で3つの部材(非線形抵抗層220、半導電コーン部240および絶縁層260)を一体化させるよりは、当該方法のように2つの部材(半導電コーン部240および絶縁層260)を一体化するほうが、歩留りを向上させることができる。すなわち、当該方法では、ゴムユニット10の製造性を向上させることが可能となる。
<本開示の第2実施形態>
 次に、図6を用い、本開示の第2実施形態について説明する。図6は、本実施形態に係るケーブル接続構造を示す断面図である。
 本実施形態では、ケーブル接続構造の接続対象が第1実施形態と異なる。以下、第1実施形態の変形例と同様に、第1実施形態と異なる要素についてのみ説明する。
 なお、本実施形態において、後述のゴムユニット12の軸方向の一端であって、ゴムユニット12のうち第1電力ケーブル100aの延在側の端部を「ゴムユニット12の第1端」という。一方で、ゴムユニット12の軸方向の他端であって、ゴムユニット12のうち第2電力ケーブル100bの延在側の端部を「ゴムユニット12の第2端」という。
(1)ケーブル接続構造およびゴムユニット
 図6に示すように、本実施形態のケーブル接続構造2は、一対の電力ケーブル100を、互いに軸を一致させつつ突き合わせて直線状に接続するよう構成され、例えば、一対の電力ケーブル100と、ゴムユニット12と、を有している。一対の電力ケーブル100のうち、一方を「第1電力ケーブル100a」とし、他方を「第2電力ケーブル100b」とする。
 第1電力ケーブル100aおよび第2電力ケーブル100bのそれぞれは、先端から軸方向に段階的に剥がされている。第1電力ケーブル100aおよび第2電力ケーブル100bのそれぞれのケーブル導体110は、例えば、圧縮スリーブ180により圧縮接続されている。
 ゴムユニット12は、例えば、内部半導電層210と、非線形抵抗層220と、半導電コーン部240と、絶縁層260と、外部半導電層280と、を有している。
 内部半導電層210は、例えば、半導電性を有している。具体的には、内部半導電層210は、例えば、半導電コーン部240と同様の半導電性ゴムからなっている。内部半導電層210は、例えば、中空部202の軸方向の中央部を構成するよう筒状に設けられている。なお、内部半導電層210は、ケーブル導体110とほぼ同電位となり、すなわち、高電位となる。
 非線形抵抗層220は、例えば、内部半導電層210以外の中空部202の軸方向の他部を構成するよう筒状に設けられている。また、非線形抵抗層220は、内部半導電層210を覆うように設けられている。非線形抵抗層220は、例えば、内部半導電層210と同一の円筒面を構成している。非線形抵抗層220は、中空部202内に一対の電力ケーブル100が嵌入されたときに、第1電力ケーブル100aのケーブル絶縁層130から第2電力ケーブル100bのケーブル絶縁層130までを覆うように延在している。
 中空部202内に一対の電力ケーブル100が嵌入されたときには、非線形抵抗層220のうち第1端FE側および第2端SE側は、それぞれ、後述するように、第1電力ケーブル100aのケーブル外部半導電層140および第2電力ケーブル100bのケーブル外部半導電層140に対して、導電塗料320を介して接続されるため、接地される。一方で、非線形抵抗層220のうち内部半導電層210と接する部分は、内部半導電層210と同様に、高電位となる。非線形抵抗層220内では、その非線形抵抗性により電界集中箇所の抵抗を低減することで、内部半導電層210側から非線形抵抗層220の第1端FE側および第2端SE側のそれぞれに向けて、等電位線を均等に分布させることができる。
 半導電コーン部240は、例えば、内部半導電層210を挟んでゴムユニット12の軸方向の両側に一対設けられている。一対の半導電コーン部240のうち、第1電力ケーブル100a側を「第1半導電コーン部240a」とし、第2電力ケーブル100b側を「第2半導電コーン部240b」とする。
 第1半導電コーン部240aおよび第2半導電コーン部240bのそれぞれは、略円錐状に構成され、拡径側を対向させている。
 具体的には、第1半導電コーン部240aは、非線形抵抗層220の軸方向に沿った断面を見たときに、例えば、直線部244と、傾斜面242と、立ち上がり点RPと、を有している。第1半導電コーン部240aの直線部244は、例えば、非線形抵抗層220の第1端FEから第2端SE側に向けて直線状に延在している。また、第1半導電コーン部240aの傾斜面242は、例えば、直線部244から非線形抵抗層220の第2端SE側に向けて非線形抵抗層220から徐々に離間するように傾斜している。また、第1半導電コーン部240aの立ち上がり点RPは、例えば、直線部244と傾斜面242との間の境界点である。
 第1半導電コーン部240aおよび非線形抵抗層220のそれぞれの第1端FE側は、例えば、所定の導電塗料320を介してケーブル外部半導電層140に接続され、接地されている。
 一方で、第2半導電コーン部240bは、例えば、内部半導電層210を挟んで第1半導電コーン部240aと対称に構成されている。
 絶縁層260は、非線形抵抗層220の少なくとも一部、および一対の半導電コーン部240のそれぞれの少なくとも一部を覆うように設けられている。絶縁層260は、例えば、非線形抵抗層220と第1半導電コーン部240aとの間や、非線形抵抗層220と第2半導電コーン部240bとの間に入り込むように設けられている。
 外部半導電層280は、絶縁層260を覆うように設けられている。外部半導電層280は、第1半導電コーン部240aおよび第2半導電コーン部240bに接している。これにより、外部半導電層280は、第1半導電コーン部240aおよび第2半導電コーン部240bとともに接地される。
 以上の内部半導電層210、非線形抵抗層220、一対の半導電コーン部240、絶縁層260および外部半導電層280は、例えば、一体的に結合するようモールド成形されている。
 ここで、本実施形態においても、ゴムユニット10は、例えば、第1電力ケーブル100aのケーブル外部半導電層140および第2電力ケーブル100bのケーブル外部半導電層140と重ならないように配置されている。すなわち、非線形抵抗層220の第1端FEは、例えば、第1電力ケーブル100aのケーブル外部半導電層140の先端と一致するか、或いは、第1電力ケーブル100aのケーブル外部半導電層140の先端から第1電力ケーブル100aの軸方向の先端側に離れている。一方で、非線形抵抗層220の第2端SEは、例えば、第2電力ケーブル100bのケーブル外部半導電層140の先端と一致するか、或いは、第2電力ケーブル100bのケーブル外部半導電層140の先端から第2電力ケーブル100bの軸方向の先端側に離れている。また、ゴムユニット10の軸方向の第2端は、例えば、ゴムユニット10の軸方向の中央を挟んでゴムユニット10の軸方向の第1端と対称に配置されている。
 非線形抵抗層220から第1半導電コーン部240aまで径方向に積層された部分(すなわち、本実施形態では、非線形抵抗層220、絶縁層260の一部、および第1半導電コーン部240a)は、例えば、非線形抵抗層220の第1端FE側で同一の端面290を形成している。中空部202をゴムユニット10の軸方向の外側に延在させた仮想円周面に対して端面290がなす角度θは、例えば、90°以上180°未満、好ましくは、135°以上170°以下である。非線形抵抗層220から第2半導電コーン部240bまで径方向に積層された部分は、例えば、非線形抵抗層220の第2端SE側で同一の端面を形成している。つまり、ゴムユニット10の軸方向の第2端側においても、例えば、ゴムユニット10の軸方向の中央を挟んでゴムユニット10の軸方向の第1端側と対称に、端面が形成されている。
(2)効果
(a)本実施形態によれば、一対の電力ケーブル100を、互いに軸を一致させつつ突き合わせて直線状に接続するケーブル接続構造2であっても、第1実施形態と同様の効果を得ることができる。
(b)本実施形態によれば、ゴムユニット12が、中空部202を構成する非線形抵抗層220を有していることで、一方の電力ケーブル100側に電界が偏って集中することを抑制することができる。
 ここで、例えば、第1電力ケーブル100aおよび第2電力ケーブル100bが互いに異なる仕様で構成されている場合には、それぞれのケーブル絶縁層130の抵抗が異なるため、一方の電力ケーブル100側に電界が偏って集中する可能性がある。
 これに対し、本実施形態では、非線形抵抗層220が第1電力ケーブル100aのケーブル外部半導電層140から第2電力ケーブル100bのケーブル外部半導電層140までを覆うように延在していることで、双方の電力ケーブル100のそれぞれにおけるケーブル絶縁層130の抵抗に依存することなく、非線形抵抗層220内に等電位線を均等に分布させることができる。これにより、一方の電力ケーブル100側に電界が偏って集中することを抑制することができる。
 直流電力が伝送される長距離線路では、多種の電力ケーブル100が混在している場合が多いため、本実施形態のケーブル接続構造2は、特に有効である。
<本開示の他の実施形態>
 以上、本開示の実施形態について具体的に説明したが、本開示は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
 上述の実施形態では、非線形抵抗層220を構成する非線形抵抗性樹脂組成物が当該非線形抵抗性を示す無機材料を含んでいる場合について説明したが、非線形抵抗性樹脂組成物は、非線形抵抗性を示す有機材料からなっていてもよい。
 上述の実施形態では、半導電コーン部240が所定の導電塗料320を介してケーブル外部半導電層140に接続される場合について説明したが、半導電コーン部240は、導電塗料以外の他の導電部材によりケーブル外部半導電層140に接続されていてもよい。
他の導電部材としては、例えば、導電テープなどが挙げられる。
 上述の実施形態では、製造方法の一例を説明したが、製造方法における各工程の順番は、可能な限り入れ替えても良い。
 上述の実施形態では、絶縁層形成工程S126において、非線形抵抗層220から半導電コーン部240まで径方向に積層された部分を切削することで、端面290を形成する場合について説明したが、モールド成形により端面290を形成してもよい。変形例1においても、モールド成形により第1端面222や第2端面292を形成してもよく、第2実施形態においても、モールド成形により端面290を形成してもよい。
 上述の第1実施形態について変形例の構成が適用可能であることを説明したが、第2実施形態についても、第1実施形態の変形例の構成を適用してもよい。
 上述の第2実施形態では、半導電コーン部240と外部半導電層280とが別体であるように図示したが、半導電コーン部240は、外部半導電層280の一部として該外部半導電層280と一体となっていてもよい。
<本開示の好ましい態様>
 以下、本開示の好ましい態様を付記する。
(付記1)
 ケーブル導体、ケーブル絶縁層およびケーブル外部半導電層が軸方向にこの順で露出した電力ケーブルと、
 前記電力ケーブルが嵌入される中空部を有する筒状のゴムユニットと、
 を有し、
 前記中空部を構成するよう筒状に設けられ、電界に対して非線形に変化する抵抗を有する非線形抵抗層と、
 前記非線形抵抗層の径方向の外側に設けられ、前記非線形抵抗層の軸方向の第1端側から第2端側に向けて前記非線形抵抗層から徐々に離間するように傾斜する半導電コーン部と、
 前記非線形抵抗層の少なくとも一部および前記半導電コーン部の少なくとも一部を覆うように設けられる絶縁層と、
 を有し、
 前記ゴムユニットは、前記ケーブル外部半導電層と重ならないように配置されている
ケーブル接続構造。
(付記2)
 前記非線形抵抗層の前記第1端は、前記ケーブル外部半導電層の先端と一致するか、或いは、前記ケーブル外部半導電層の先端から前記電力ケーブルの軸方向の先端側に離れている
付記1に記載のケーブル接続構造。
(付記3)
 前記非線形抵抗層から前記半導電コーン部まで径方向に積層された部分は、前記非線形抵抗層の前記第1端側で同一の端面を形成し、
 前記非線形抵抗層の軸方向に沿った断面を見たときに、前記中空部を前記非線形抵抗層の軸方向の外側に延在させた仮想円周面に対して前記端面がなす角度は、90°以上である
付記1又は付記2に記載のケーブル接続構造。
(付記4)
 前記非線形抵抗層の軸方向に沿った断面を見たときに、前記仮想円周面から前記端面がなす角度は、135°以上である
付記3に記載のケーブル接続構造。
(付記5)
 前記非線形抵抗層は、前記第1端側で第1端面を形成し、
 前記絶縁層および前記半導電コーン部は、前記非線形抵抗層の前記第1端側で同一の第2端面を形成し、
 前記非線形抵抗層の軸方向に沿った断面を見たときに、前記中空部を前記非線形抵抗層の軸方向の外側に延在させた仮想円周面に対して前記第1端面がなす角度は、前記仮想円周面に対して前記第2端面がなす角度よりも大きい
付記1又は付記2に記載のケーブル接続構造。
(付記6)
 前記第1端面の前記中空部側の下端は、前記第2端面から露出している
付記5に記載のケーブル接続構造。
(付記7)
 前記仮想円周面に対して前記第2端面がなす角度は、135°以上である
付記5又は付記6に記載のケーブル接続構造。
(付記8)
 前記ゴムユニットを前記電力ケーブルに外嵌し、525kVの直流電圧に対して重畳させた1103kVの逆極性雷インパルスを前記電力ケーブルに印加したときに、前記半導電コーン部が前記非線形抵抗層から離間し始める立ち上がり点での電界強度と、前記非線形抵抗層の前記第1端部での電界強度とのうち大きい方を1.2倍した判定値は、30kV/mm以下である
付記4又は付記7に記載のケーブル接続構造。
(付記9)
 前記半導電コーン部は、所定の導電塗料を介して前記ケーブル外部半導電層に接続される
付記1から付記8のいずれか1つに記載のケーブル接続構造。
(付記10)
 前記半導電コーン部は、前記非線形抵抗層から径方向の外側に離間している
付記1から付記9のいずれか1つに記載のケーブル接続構造。
(付記11)
 前記半導電コーン部は、前記非線形抵抗層の軸方向に沿った断面を見たときに、
 前記非線形抵抗層の前記第1端から前記第2端側に向けて直線状に延在する直線部と、
 前記直線部から前記非線形抵抗層の軸方向の第2端側に向けて前記非線形抵抗層から徐々に離間するように傾斜する傾斜面と、
 を有し、
 前記直線部は、前記非線形抵抗層から径方向の外側に離間している
付記1から付記10のいずれか1つに記載のケーブル接続構造。
(付記12)
 前記半導電コーン部は、前記非線形抵抗層の軸方向に沿った断面を見たときに、前記接触部と前記傾斜面との間の境界点である立ち上がり点を有し、
 前記非線形抵抗層の軸方向に沿った断面を見たときに、前記非線形抵抗層の軸方向に対する前記半導電コーン部の前記傾斜面の傾斜角は、前記立ち上がり点から前記非線形抵抗層の前記第2端側に向けて単調増加している
付記11に記載のケーブル接続構造。
(付記13)
 ケーブル導体、ケーブル絶縁層およびケーブル外部半導電層が軸方向にこの順で露出した電力ケーブルが嵌入される中空部を有する筒状のゴムユニットであって、
 前記中空部を構成するよう筒状に設けられ、電界に対して非線形に変化する抵抗を有する非線形抵抗層と、
 前記非線形抵抗層の径方向の外側に設けられ、前記非線形抵抗層の軸方向の第1端側から第2端側に向けて前記非線形抵抗層から徐々に離間するように傾斜する半導電コーン部と、
 前記非線形抵抗層の少なくとも一部および前記半導電コーン部の少なくとも一部を覆うように設けられる絶縁層と、
 を有し、
 前記ケーブル外部半導電層と重ならないように配置された状態で使用される
ゴムユニット。
(付記14)
 中空部を有する筒状のゴムユニットを準備する工程と、
 ケーブル導体、ケーブル絶縁層およびケーブル外部半導電層が軸方向にこの順で露出した電力ケーブルを準備する工程と、
 前記ゴムユニットの前記中空部内に前記電力ケーブルを嵌入させる工程と、
 を有し、
 前記ゴムユニットを準備する工程では、
 前記中空部を構成するよう筒状に設けられ、電界に対して非線形に変化する抵抗を有する非線形抵抗層と、前記非線形抵抗層の径方向の外側に設けられ、前記非線形抵抗層の軸方向の第1端側から第2端側に向けて前記非線形抵抗層から徐々に離間するように傾斜する半導電コーン部と、前記非線形抵抗層の少なくとも一部および前記半導電コーン部の少なくとも一部を覆うように設けられる絶縁層と、有するよう、前記ゴムユニットを構成し、
 前記電力ケーブルを嵌入させる工程では、
 前記ゴムユニットを、前記ケーブル外部半導電層と重ならないように配置する
ケーブル接続構造の製造方法。
(付記15)
 中空部を有する筒状のゴムユニットを準備する工程と、
 ケーブル導体、ケーブル絶縁層およびケーブル外部半導電層が軸方向にこの順で露出した電力ケーブルを準備する工程と、
 前記ゴムユニットの前記中空部内に前記電力ケーブルを嵌入させる工程と、
 を有し、
 前記ゴムユニットを準備する工程は、
 前記中空部を構成するよう筒状に設けられ、電界に対して非線形に変化する抵抗を有する非線形抵抗層を準備する工程と、
 半導電コーン部と、前記半導電コーン部の少なくとも一部を覆うように設けられる絶縁層と、を前記非線形抵抗層とは別に準備する工程と、
 を有し、
 前記電力ケーブルを嵌入させる工程は、
 前記非線形抵抗層の前記中空部内に前記電力ケーブルを嵌入させる工程と、
 前記非線形抵抗層の径方向の外側に前記半導電コーン部を配置するとともに、前記非線形抵抗層の少なくとも一部を覆うように前記絶縁層を配置する工程と、
 を有し、
 前記電力ケーブルを嵌入させる工程では、
 前記ゴムユニットを、前記ケーブル外部半導電層と重ならないように配置する
ケーブル接続構造の製造方法。
1,2,9 ケーブル接続構造
10,12,91 ゴムユニット
100 電力ケーブル
100a 第1電力ケーブル
100b 第2電力ケーブル
110 ケーブル導体
130 ケーブル絶縁層
140 ケーブル外部半導電層
180 圧縮スリーブ
202 中空部
210 内部半導電層
220 非線形抵抗層
222 第1端面
240 半導電コーン部
240a 第1半導電コーン部
240b 第2半導電コーン部
242 傾斜面
244 直線部
260 絶縁層
280 外部半導電層
290 端面
292 第2端面
320 導電塗料
922 非線形抵抗層
922a 中空部
924 半導電コーン部
926 絶縁層
RP 立ち上がり点
FE 第1端
SE 第2端

Claims (9)

  1.  ケーブル導体、ケーブル絶縁層およびケーブル外部半導電層が軸方向にこの順で露出した電力ケーブルと、
     前記電力ケーブルが嵌入される中空部を有する筒状のゴムユニットと、
     を有し、
     前記中空部を構成するよう筒状に設けられ、電界に対して非線形に変化する抵抗を有する非線形抵抗層と、
     前記非線形抵抗層の径方向の外側に設けられ、前記非線形抵抗層の軸方向の第1端側から第2端側に向けて前記非線形抵抗層から徐々に離間するように傾斜する半導電コーン部と、
     前記非線形抵抗層の少なくとも一部および前記半導電コーン部の少なくとも一部を覆うように設けられる絶縁層と、
     を有し、
     前記ゴムユニットは、前記ケーブル外部半導電層と重ならないように配置されている
    ケーブル接続構造。
  2.  前記非線形抵抗層から前記半導電コーン部まで径方向に積層された部分は、前記非線形抵抗層の前記第1端側で同一の端面を形成し、
     前記非線形抵抗層の軸方向に沿った断面を見たときに、前記中空部を前記非線形抵抗層の軸方向の外側に延在させた仮想円周面に対して前記端面がなす角度は、90°以上である
    請求項1に記載のケーブル接続構造。
  3.  前記非線形抵抗層の軸方向に沿った断面を見たときに、前記仮想円周面から前記端面がなす角度は、135°以上である
    請求項2に記載のケーブル接続構造。
  4.  前記非線形抵抗層は、前記第1端側で第1端面を形成し、
     前記絶縁層および前記半導電コーン部は、前記非線形抵抗層の前記第1端側で同一の第2端面を形成し、
     前記非線形抵抗層の軸方向に沿った断面を見たときに、前記中空部を前記非線形抵抗層の軸方向の外側に延在させた仮想円周面に対して前記第1端面がなす角度は、前記仮想円周面に対して前記第2端面がなす角度よりも大きい
    請求項1に記載のケーブル接続構造。
  5.  前記半導電コーン部は、所定の導電塗料を介して前記ケーブル外部半導電層に接続される
    請求項1から請求項4のいずれか1項に記載のケーブル接続構造。
  6.  前記半導電コーン部は、前記非線形抵抗層から径方向の外側に離間している
    請求項1から請求項5のいずれか1項に記載のケーブル接続構造。
  7.  ケーブル導体、ケーブル絶縁層およびケーブル外部半導電層が軸方向にこの順で露出した電力ケーブルが嵌入される中空部を有する筒状のゴムユニットであって、
     前記中空部を構成するよう筒状に設けられ、電界に対して非線形に変化する抵抗を有する非線形抵抗層と、
     前記非線形抵抗層の径方向の外側に設けられ、前記非線形抵抗層の軸方向の第1端側から第2端側に向けて前記非線形抵抗層から徐々に離間するように傾斜する半導電コーン部と、
     前記非線形抵抗層の少なくとも一部および前記半導電コーン部の少なくとも一部を覆うように設けられる絶縁層と、
     を有し、
     前記ケーブル外部半導電層と重ならないように配置された状態で使用される
    ゴムユニット。
  8.  中空部を有する筒状のゴムユニットを準備する工程と、
     ケーブル導体、ケーブル絶縁層およびケーブル外部半導電層が軸方向にこの順で露出した電力ケーブルを準備する工程と、
     前記ゴムユニットの前記中空部内に前記電力ケーブルを嵌入させる工程と、
     を有し、
     前記ゴムユニットを準備する工程では、
     前記中空部を構成するよう筒状に設けられ、電界に対して非線形に変化する抵抗を有する非線形抵抗層と、前記非線形抵抗層の径方向の外側に設けられ、前記非線形抵抗層の軸方向の第1端側から第2端側に向けて前記非線形抵抗層から徐々に離間するように傾斜する半導電コーン部と、前記非線形抵抗層の少なくとも一部および前記半導電コーン部の少なくとも一部を覆うように設けられる絶縁層と、有するよう、前記ゴムユニットを構成し、
     前記電力ケーブルを嵌入させる工程では、
     前記ゴムユニットを、前記ケーブル外部半導電層と重ならないように配置する
    ケーブル接続構造の製造方法。
  9.  中空部を有する筒状のゴムユニットを準備する工程と、
     ケーブル導体、ケーブル絶縁層およびケーブル外部半導電層が軸方向にこの順で露出した電力ケーブルを準備する工程と、
     前記ゴムユニットの前記中空部内に前記電力ケーブルを嵌入させる工程と、
     を有し、
     前記ゴムユニットを準備する工程は、
     前記中空部を構成するよう筒状に設けられ、電界に対して非線形に変化する抵抗を有する非線形抵抗層を準備する工程と、
     半導電コーン部と、前記半導電コーン部の少なくとも一部を覆うように設けられる絶縁層と、を前記非線形抵抗層とは別に準備する工程と、
     を有し、
     前記電力ケーブルを嵌入させる工程は、
     前記非線形抵抗層の前記中空部内に前記電力ケーブルを嵌入させる工程と、
     前記非線形抵抗層の径方向の外側に前記半導電コーン部を配置するとともに、前記非線形抵抗層の少なくとも一部を覆うように前記絶縁層を配置する工程と、
     を有し、
     前記電力ケーブルを嵌入させる工程では、
     前記ゴムユニットを、前記ケーブル外部半導電層と重ならないように配置する
    ケーブル接続構造の製造方法。
PCT/JP2019/035688 2018-09-28 2019-09-11 ケーブル接続構造、ゴムユニット、およびケーブル接続構造の製造方法 WO2020066618A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-184453 2018-09-28
JP2018184453A JP2021193855A (ja) 2018-09-28 2018-09-28 ゴムユニット、ケーブル接続構造、ゴムユニットの製造方法およびケーブル接続構造の製造方法

Publications (1)

Publication Number Publication Date
WO2020066618A1 true WO2020066618A1 (ja) 2020-04-02

Family

ID=69952678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/035688 WO2020066618A1 (ja) 2018-09-28 2019-09-11 ケーブル接続構造、ゴムユニット、およびケーブル接続構造の製造方法

Country Status (2)

Country Link
JP (1) JP2021193855A (ja)
WO (1) WO2020066618A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS528195U (ja) * 1975-07-03 1977-01-20
JP2013212045A (ja) * 2012-03-14 2013-10-10 Nexans 電界平坦化材料
JP2017529815A (ja) * 2014-08-22 2017-10-05 アーベーベー シュヴァイツ アクツィエンゲゼルシャフト 大電力ケーブル用電界制御デバイス、および電界制御デバイスの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS528195U (ja) * 1975-07-03 1977-01-20
JP2013212045A (ja) * 2012-03-14 2013-10-10 Nexans 電界平坦化材料
JP2017529815A (ja) * 2014-08-22 2017-10-05 アーベーベー シュヴァイツ アクツィエンゲゼルシャフト 大電力ケーブル用電界制御デバイス、および電界制御デバイスの製造方法

Also Published As

Publication number Publication date
JP2021193855A (ja) 2021-12-23

Similar Documents

Publication Publication Date Title
EP0079118B1 (en) Electrical cable joint structure and method of manufacture
CN101902024B (zh) 用于hvdc缆线的具有阻性场分级材料的柔性接头及其与hvdc缆线连接的方法
AU618871B2 (en) Element of a device for realizing a joint of electric cables, joint for electric cables obtained thereby, and covering of the connection between the conductors of electric cables for said joint
US4390745A (en) Enclosures for electrical apparatus, cable and enclosure combinations, and kits and methods for their construction
SE531409C2 (sv) Fältstyrande material
JP6196001B1 (ja) 大電力ケーブル用電界制御デバイス、および電界制御デバイスの製造方法
AU2009200542A1 (en) Apparatus for a Junction Point Between Two Electrical High-Voltage Cables
EP2963654B1 (en) Field grading layer
EP2752448A1 (en) Field grading layer
EP0088450B1 (en) Insulating joint for rubber or plastic insulated power cable
US20080041605A1 (en) Electrical power cable adaptor and method of use
US20140287175A1 (en) Products for stress control in electrical power cables
WO2020066618A1 (ja) ケーブル接続構造、ゴムユニット、およびケーブル接続構造の製造方法
EP3516749B1 (en) Joint for high voltage direct current cables
WO2020066617A1 (ja) ケーブル接続構造、ゴムユニット、およびケーブル接続構造の製造方法
EP3446385B1 (en) Multiple stress control device for cable accessories and methods and systems including same
WO1994005064A1 (en) Electric power cable jointing
CN109802351B (zh) 全干式电缆终端和电缆组件及其制造、组装或改进方法
CN110870152B (zh) 热收缩部件及组装热收缩部件的方法
JP6823983B2 (ja) ケーブル接続部
JP2022187103A (ja) 電力ケーブルの終端構造、筒ユニット、及び筒部品
US20220064428A1 (en) Non-ohmic composition, cable connection unit, and method for producing cable connection unit
WO2020148950A1 (ja) 非オーム性組成物、ケーブル接続用ユニット、およびケーブル接続用ユニットの製造方法
JP2016144223A (ja) 絶縁筒、ケーブル終端接続構造および気中終端接続部

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19864150

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19864150

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP