WO2020066589A1 - ウエハ載置台の製法 - Google Patents

ウエハ載置台の製法 Download PDF

Info

Publication number
WO2020066589A1
WO2020066589A1 PCT/JP2019/035481 JP2019035481W WO2020066589A1 WO 2020066589 A1 WO2020066589 A1 WO 2020066589A1 JP 2019035481 W JP2019035481 W JP 2019035481W WO 2020066589 A1 WO2020066589 A1 WO 2020066589A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
mesh
metal mesh
wafer mounting
mounting table
Prior art date
Application number
PCT/JP2019/035481
Other languages
English (en)
French (fr)
Inventor
和宏 ▲のぼり▼
拓二 木村
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to KR1020207026605A priority Critical patent/KR102391757B1/ko
Priority to CN201980006370.7A priority patent/CN111466018B/zh
Priority to JP2020503344A priority patent/JP6676835B1/ja
Publication of WO2020066589A1 publication Critical patent/WO2020066589A1/ja
Priority to US17/019,745 priority patent/US11685077B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B23/00Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects
    • B28B23/02Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects wherein the elements are reinforcing members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/002Producing shaped prefabricated articles from the material assembled from preformed elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/14Producing shaped prefabricated articles from the material by simple casting, the material being neither forcibly fed nor positively compacted
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/24Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
    • B28B11/243Setting, e.g. drying, dehydrating or firing ceramic articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/02Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein a ram exerts pressure on the material in a moulding space; Ram heads of special form
    • B28B3/025Hot pressing, e.g. of ceramic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68757Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a coating or a hardness or a material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • H01J37/32724Temperature

Definitions

  • the present invention relates to a method for manufacturing a wafer mounting table.
  • a metal mesh (electrode) is built in a ceramic plate.
  • a metal mesh is placed on the surface of a molded body of ceramic raw material, and granules of the ceramic raw material are filled thereon, followed by press molding.
  • the present invention has been made to solve such a problem, and has as its main object to prevent displacement of a metal mesh and to prevent interface separation between a metal mesh and a sintered body.
  • the method of manufacturing the wafer mounting table of the present invention includes: (A) A ceramic slurry containing a ceramic powder and a gelling agent is filled in a mesh portion of a metal mesh, the gelling agent is chemically reacted to gel the ceramic slurry, and then degreased and calcined. Producing a ceramic-filled mesh; (B) forming a laminate by sandwiching the ceramic-filled mesh between a first ceramic calcined body and a second ceramic calcined body obtained by mold casting and then calcining; (C) a step of producing a wafer mounting table by subjecting the laminate to hot press firing; Is included.
  • the displacement of the metal mesh can be prevented, and the interface separation between the metal mesh and the sintered body can be prevented.
  • the laminate has a ceramic-filled mesh interposed between the first and second ceramic calcined bodies.
  • the first and second ceramics obtained by calcining after mold casting are formed. Since the calcined body has a uniform density, the displacement of the mesh can be prevented. Further, since the ceramic calcined body is filled in the mesh portion of the metal mesh before the hot press firing in the step (c), no void remains in the mesh portion of the metal mesh during the hot press firing. Therefore, it is possible to prevent peeling from occurring at the interface between the metal mesh and the sintered body after hot press firing.
  • mold cast molding refers to preparing a mold (lower mold and upper mold) having a molding space of the same shape as the final product, injecting ceramic slurry into the molding space and solidifying the mold. Opening means a method of obtaining a ceramic molded body having the same shape as the final product.
  • the ceramic slurry is applied to the molding die in a state where the metal mesh is placed in a molding die and an upper die and a lower die are brought into close contact with the metal mesh.
  • the ceramic slurry may be filled in the mesh portion of the metal mesh by pouring. In this case, the thickness variation of the ceramic-filled mesh can be suppressed.
  • the ceramic slurry when pouring the ceramic slurry into the mold, the ceramic slurry may be poured after the inside of the mold is made to be lower than the atmospheric pressure. This can prevent air bubbles from getting into the ceramic slurry.
  • the ceramic slurry in the method of manufacturing a wafer mounting table of the present invention, in the step (a), the ceramic slurry may be filled in a mesh portion of the metal mesh by dipping the metal mesh into a container containing the ceramic slurry. . Also in this case, the ceramic slurry can be filled in the mesh portion of the metal mesh.
  • FIG. 5 is a manufacturing process diagram of the wafer mounting table 10.
  • FIG. 3 is a perspective view showing a part of the metal mesh 22.
  • FIG. 2 is a plan view of a molding die 60. AA sectional drawing of FIG. The perspective view of the container 70.
  • FIG. 7 is a manufacturing process diagram of the wafer mounting table 110.
  • FIG. 7 is a manufacturing process diagram of a reference example of the wafer mounting table 10.
  • FIG. 1 is a manufacturing process diagram of the wafer mounting table 10
  • FIG. 2 is a perspective view showing a part of the metal mesh 22
  • FIG. 3 is a plan view of a molding die 60
  • FIG. 1 is a manufacturing process diagram of the wafer mounting table 10
  • FIG. 2 is a perspective view showing a part of the metal mesh 22
  • FIG. 3 is a plan view of a molding die 60
  • the manufacturing method of the wafer mounting table 10 of the present embodiment is as follows.
  • a ceramic slurry containing a ceramic powder and a gelling agent is filled in a mesh portion 22a of a metal mesh 22, and the gelling agent is chemically After the ceramic slurry is gelled by reacting, a step of preparing a ceramic-filled mesh 20 by degreasing and calcining (see FIG. 1A), and (b) a first ceramic calcined body 31 and a second A step of forming the laminate 40 by sandwiching the ceramic-filled mesh 20 between the ceramic pre-fired body 32 (see FIG. 1B) and (c) a hot-press firing of the laminate 40 to form a wafer mounting table. 10 (see FIG. 1C).
  • Step (a) In the step (a), a ceramic slurry containing a ceramic powder and a gelling agent is used.
  • the ceramic slurry usually contains a solvent and a dispersant in addition to the ceramic powder and the gelling agent.
  • the material of the ceramic powder may be an oxide ceramic or a non-oxide ceramic.
  • alumina, yttria, aluminum nitride, silicon nitride, silicon carbide, samaria, magnesia, magnesium fluoride, ytterbium oxide, and the like can be given. These materials may be used alone or in a combination of two or more.
  • the average particle size of the ceramic powder is not particularly limited as long as a uniform ceramic rally can be adjusted and produced, but is preferably 0.4 to 0.6 ⁇ m, more preferably 0.45 to 0.55 ⁇ m.
  • the gelling agent may be, for example, one containing an isocyanate, a polyol, and a catalyst, or one containing an isocyanate, water, and a catalyst.
  • the isocyanate is not particularly limited as long as it is a substance having an isocyanate group as a functional group, and examples thereof include tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), and modified products thereof.
  • TDI tolylene diisocyanate
  • MDI diphenylmethane diisocyanate
  • a reactive functional group other than the isocyanate group may be contained, and further, a large number of reactive functional groups may be contained like polyisocyanate.
  • the polyols are not particularly limited as long as they have two or more hydroxyl groups capable of reacting with an isocyanate group.
  • the catalyst is not particularly limited as long as it promotes a urethane reaction between isocyanates and polyols, and examples thereof include triethylenediamine, hexanediamine, and 6-dimethylamino-1-hexanol.
  • the solvent (also referred to as a dispersion medium) is not particularly limited as long as it dissolves a dispersant and a gelling agent.
  • examples thereof include a hydrocarbon solvent (toluene, xylene, solvent naphtha, etc.) and an ether solvent (ethylene Glycol monoethyl ether, butyl carbitol, butyl carbitol acetate, etc.), alcoholic solvents (isopropanol, 1-butanol, ethanol, 2-ethylhexanol, terpineol, ethylene glycol, glycerin, etc.), ketone solvents (acetone, methyl ethyl ketone, etc.) ), Ester solvents (such as butyl acetate, dimethyl glutarate, and triacetin), and polybasic acid solvents (such as glutaric acid).
  • a solvent having two or more ester bonds such as a polybasic acid ester
  • the dispersant is not particularly limited as long as it can uniformly disperse the ceramic powder in the solvent.
  • polycarboxylic acid copolymers, polycarboxylates, sorbitan fatty acid esters, polyglycerin fatty acid esters, phosphate ester copolymers, sulfonate copolymers, and polyurethane polyester copolymers having tertiary amines Polymers it is preferable to use a polycarboxylic acid copolymer, a polycarboxylate, or the like.
  • the ceramic slurry is prepared by first adding a solvent and a dispersing agent to a ceramic powder at a predetermined ratio and mixing them over a predetermined time to prepare a slurry precursor. It is preferable to add and mix and vacuum degas.
  • the mixing method for preparing the slurry precursor or the slurry is not particularly limited, and for example, a ball mill, self-revolving stirring, vibration stirring, propeller stirring, or the like can be used.
  • a ceramic rally obtained by adding a gelling agent to a slurry precursor it is preferable that the slurry be rapidly poured into a molding die or a container because a chemical reaction (urethane reaction) of the gelling agent starts to progress with time.
  • the ceramic slurry is filled in the mesh portion 22a of the circular metal mesh 22 shown in FIG. 2, and the gelling agent is chemically reacted to gel the ceramic slurry.
  • the material of the metal mesh 22 is not particularly limited, and examples thereof include a high melting point metal such as tungsten, molybdenum, and titanium.
  • the wire diameter and mesh size of the metal mesh 22 are not particularly limited, but the wire diameter is preferably 0.05 mm or more and 0.8 mm or less, and the mesh size per inch is 10 or more and 80 or less. Is preferred.
  • the ceramic slurry is gelled by a chemical reaction of a gelling agent contained in the slurry.
  • the chemical reaction of the gelling agent is a reaction in which an isocyanate and a polyol (or water) undergo a urethane reaction to form a urethane resin (polyurethane).
  • the ceramic slurry is gelled by the reaction of the gelling agent, and the urethane resin functions as an organic binder.
  • the ceramic slurry filled in the mesh portion 22a of the metal mesh 22 is gelated, and then dried, degreased, and calcined to produce the ceramic filled mesh 20. Drying is performed to evaporate the solvent contained in the gel.
  • the drying temperature and the drying time may be appropriately set according to the solvent used. However, the drying temperature is set with care so that cracks do not occur in the object to be dried.
  • the atmosphere may be any of an air atmosphere, an inert atmosphere, and a vacuum atmosphere. The dimensions shrink by several percent in the linear direction due to drying.
  • Degreasing is performed to decompose and remove organic substances such as dispersants and catalysts. The degreasing temperature may be appropriately set according to the type of the organic substance included.
  • the atmosphere may be any of an air atmosphere, an inert atmosphere, and a vacuum atmosphere.
  • the calcination is performed to increase strength and facilitate handling.
  • the calcining temperature may be appropriately set according to the type of the ceramic powder contained.
  • the atmosphere may be any of an air atmosphere, an inert atmosphere, and a vacuum atmosphere. The size shrinks by several percent in the line direction due to calcination.
  • the metal mesh 22 is put into the molding die 60, and the upper die 61 and the lower die 62 are brought into close contact with the metal mesh 22, and the slurry is injected from the slurry injection port 63.
  • the ceramic slurry may be filled into the mesh portion 22 a of the metal mesh 22 by injecting the ceramic slurry into the mold 60. In this case, the thickness variation of the ceramic filling mesh 20 can be suppressed.
  • the slurry injection port 63 of the molding die 60 is arranged obliquely so as to be lower than the slurry discharge port 64. Thereby, the bubbles in the ceramic slurry are easily discharged from the slurry discharge port 64. Further, when injecting the ceramic slurry into the molding die 60, the inside of the molding die 60 is made lower than the atmospheric pressure by a vacuum pump, and then the ceramic slurry is injected. This can prevent air bubbles from getting into the ceramic slurry.
  • the ceramic slurry is placed in a flat container 70 having an opening at the top, and the metal mesh 22 is dipped therein. May be filled.
  • the metal mesh 22 after filling may be lifted by the lifting tool 72 and taken out of the container 70.
  • the ceramic slurry can be filled in the mesh portion 22a of the metal mesh 22.
  • the entire thickness may not be uniform. Therefore, the method described with reference to FIGS. 3 and 4 in which such inconvenience hardly occurs is more preferable.
  • the laminated body 40 is produced by sandwiching the ceramic filling mesh 20 between the disc-shaped first ceramic calcined body 31 and the disc-shaped second ceramic calcined body 32 (FIG. 1 (b)).
  • the first and second ceramic calcined bodies 31 and 32 are produced by, for example, drying, degreasing, and calcining a molded body produced by mold casting using the above-described ceramic slurry. Thereby, the displacement of the ceramic filling mesh 20 can be prevented.
  • the first ceramic calcined body 31, the second ceramic calcined body 32, and the ceramic filling mesh 20 are aligned as necessary.
  • the wafer mounting table 10 is manufactured by firing the laminate 40 by hot pressing.
  • the hot press firing is not particularly limited, but at a maximum temperature (firing temperature), for example, the pressing pressure is preferably 30 to 300 kgf / cm 2, and more preferably 50 to 250 kgf / cm 2 .
  • the maximum temperature may be appropriately set depending on the type and particle size of the ceramic powder, but is preferably set in the range of 1000 to 2000 ° C.
  • the atmosphere may be appropriately selected from an air atmosphere, an inert atmosphere (for example, a nitrogen atmosphere), and a vacuum atmosphere according to the type of the ceramic powder. It shrinks about 50% in the thickness direction by hot press firing.
  • the wafer mounting table 10 is a disc-shaped ceramic plate 12 having a circular electrode 14 (metal mesh 22) built therein, and the upper surface is a wafer mounting surface 12a.
  • the ceramic plate 12 is obtained by sintering the first and second ceramic calcined bodies 31 and 32 and the ceramic calcined body included in the ceramic filling mesh 20 in a united manner.
  • the electrode 14 of the wafer mounting table 10 can be used as an electrostatic electrode. In this case, when a DC voltage is applied to the electrode 14, the wafer is fixed to the wafer mounting surface 12a by electrostatic attraction force, and when the DC voltage is released, the wafer mounting table 10 The adsorption fixation to the is released.
  • electrode 14 can be used as an RF electrode.
  • an upper electrode parallel to the wafer mounting surface 12a is arranged above the wafer mounting surface 12a on which the wafer is mounted, and high-frequency power is supplied from the RF power source to the electrode 14 in the presence of the process gas.
  • plasma is generated between the parallel plate electrodes composed of the upper electrode and the electrode 14, and the plasma can be used to perform CVD film formation or etching using the plasma.
  • the electrode 14 can be used as an electrode that also serves as an electrostatic electrode and an RF electrode.
  • the laminated body 40 has the ceramic-filled mesh 20 sandwiched between the first and second ceramic calcined bodies 31 and 32, and there is no powder or granules around the ceramic-filled mesh 20. , The displacement of the mesh 20 can be prevented. Further, since the mesh portion 22a of the metal mesh 22 is filled with the ceramic calcined body before hot press firing in the step (c), voids may remain in the mesh portion 22a of the metal mesh 22 during hot press firing. Absent. Therefore, it is possible to prevent separation at the interface between the electrode 14 and the ceramic plate 12 after the hot press firing.
  • the ceramic slurry is poured into the molding die 60 from the slurry inlet 63 in a state where the metal mesh 22 is put in the molding die 60 and the upper die 61 and the lower die 62 are brought into close contact with the metal mesh 22.
  • the ceramic slurry may be injected after the inside of the mold 60 is made lower than the atmospheric pressure. This can prevent air bubbles from getting into the ceramic slurry.
  • the ceramic slurry can be filled in the mesh portion 22a of the metal mesh 22 by dipping the metal mesh 22 into a container 70 containing the ceramic slurry.
  • the wafer mounting table 10 is manufactured, but the wafer mounting table 110 illustrated in FIG. 6 may be manufactured. That is, first, the ceramic-filled mesh 20 is manufactured in the same manner as in the above-described embodiment (see FIG. 6A). Next, the ceramic-filled mesh 20 is interposed between the first ceramic calcined body 31 and the second ceramic calcined body 32, and the third ceramic calcined body 36 having the heater electrode 38 built therein is laminated. The body 50 is manufactured (see FIG. 6B). The heater electrode 38 is a coil wire wired over the entire surface of the third ceramic calcined body 36 in a one-stroke manner.
  • the entire surface of the third ceramic calcined body 36 may be divided into a plurality of zones, and a heater electrode may be provided for each zone.
  • the laminate 50 is subjected to hot press baking to produce a wafer mounting table 110 (see FIG. 6C) .
  • the wafer mounting table 110 has a circular electrode 114 (metal mesh 22), a heater electrode 38, and the like.
  • the ceramic plate 112 includes first to third ceramic calcined bodies 31, 32, and 36 and a ceramic filling mesh 20.
  • the ceramic calcined body contained therein is sintered together.
  • the heater electrode 38 generates heat and heats the wafer, and the electrode 114 can be used as an electrostatic electrode or an RF electrode as in the case of the electrode 14 described above. It can also can also be combined both.
  • a hollow ceramic shaft may be attached to the back surface of the wafer mounting table 10.
  • a hollow ceramic shaft may be attached to the back surface of the wafer mounting table 110.
  • the following method may be adopted. That is, a wafer mounting table for producing a laminated body by sandwiching a metal mesh between the first ceramic calcined body and the second ceramic calcined body, and hot-pressing the laminated body to produce a wafer mounting table.
  • the second ceramic calcined body has a projection corresponding to each mesh portion of the metal mesh on a surface in contact with the metal mesh, and each of the projections of the second ceramic calcined body is formed when a laminated body is manufactured. You may make it fit in each mesh part of a metal mesh. Specifically, as shown in FIG.
  • a disk-shaped first ceramic calcined body 31, a circular metal mesh 22, and a disk-shaped second ceramic calcined body 33 are prepared (FIG. 7). (A)). On the upper surface of the second ceramic calcined body 33, a conical projection 33a that enters each mesh portion 22a of the metal mesh 22 is provided. Next, the laminated body 42 is produced by sandwiching the metal mesh 22 between the first ceramic calcined body 31 and the second ceramic calcined body 33 (see FIG. 7B). When producing the laminate 42, each projection 33a of the second ceramic calcined body 33 is fitted into each mesh portion 22a of the metal mesh 22. Next, the wafer mounting table 10 is manufactured by hot-pressing the stacked body 42 (see FIG. 7C).
  • the wafer mounting table 10 is a disc-shaped ceramic plate 12 having a built-in circular electrode 14 (metal mesh 22). Even in this case, the displacement of the metal mesh 22 can be prevented, and the interface separation between the metal mesh 22 and the ceramic plate 12 can be prevented.
  • Example 1 Preparation of first and second ceramic calcined bodies First, 100 parts by mass of aluminum nitride powder (purity: 99.7%), 5 parts by mass of yttrium oxide, and 2 parts by mass of dispersant (polycarboxylic acid-based copolymer) And 30 parts by mass of a dispersion medium (polybasic acid ester) using a ball mill (Trommel) for 14 hours to obtain a ceramic rally precursor. To this ceramic rally precursor, 4.5 parts by mass of isocyanate (4,4'-diphenylmethane diisocyanate), 0.1 part by mass of water, and 0.4 part by mass of catalyst (6-dimethylamino-1-hexanol) were added.
  • isocyanate 4,4'-diphenylmethane diisocyanate
  • the ceramic slurry is poured into a mold having a disk-shaped internal space (a mold for producing first and second ceramic calcined bodies), and an organic binder (urethane resin) is removed by a chemical reaction between isocyanate and water. After the formation, the cured compact is removed from the mold. The molded body was dried at 100 ° C. for 10 hours, and degreasing and calcination were performed in a hydrogen atmosphere at a maximum temperature of 1300 ° C. to obtain first and second calcined ceramic bodies.
  • a mold for producing first and second ceramic calcined bodies a mold for producing first and second ceramic calcined bodies
  • an organic binder urethane resin
  • a ceramic-filled mesh was produced using the above-described mold 60 (see FIGS. 3 and 4).
  • the ceramic slurry is prepared as described in 1. above. The same one was used.
  • the injection of the ceramic slurry into the mold 60 was performed in a vacuum.
  • the conditions for drying, degreasing, and calcining are as described in 1. above. The same conditions were used.
  • Production of Laminate A laminate was produced by sandwiching a ceramic-filled mesh between the first ceramic calcined body and the second ceramic calcined body.
  • 4. Preparation of Wafer Mounting Table A wafer mounting table was prepared by subjecting the laminated body to hot press baking in nitrogen gas at 250 kgf / cm 2 and 1860 ° C. for 6 hours. 5. Evaluation When the obtained wafer mounting table was checked for peeling at the interface between the metal mesh and the ceramic plate, no peeling was observed. Also, no displacement of the metal mesh was observed.
  • Example 2 A wafer mounting table was manufactured in the same manner as in Example 1 except that the ceramic-filled mesh was manufactured using the above-described container 70 (see FIG. 5). More specifically, a metal mesh was set in the container 70, and 1 of Example 1 was used. Was poured into the container 70 in a vacuum, and when the slurry viscosity reached 7,500 cP, the vacuum was released, and the metal mesh was pulled up and left in the air. The conditions of drying, degreasing, and calcining were the same as those in Example 1. The same conditions were used. When the obtained wafer mounting table was checked for separation at the interface between the metal mesh and the ceramic plate, no separation was observed. Also, no displacement of the metal mesh was observed.
  • a wafer mounting table was manufactured by the method shown in FIGS. 7A to 7C.
  • the first and second calcined ceramic bodies 31 and 33 are the same as those of the first embodiment.
  • a molded body was produced using the ceramic slurry prepared in the above, and the molded body was used in Example 1.
  • the drying, degreasing, and calcination were performed under the conditions shown in (1).
  • the hot press firing was performed as described in 3. The same conditions were used.
  • Example 1 A wafer mounting table was produced in the same manner as in Example 1, except that a metal mesh was used as it was instead of the ceramic-filled mesh. When the obtained wafer mounting table was checked for separation at the interface between the metal mesh and the ceramic plate, separation was observed. No displacement of the metal mesh was observed.
  • the present invention can be used to manufacture a wafer mounting table used for, for example, forming a film on a wafer or etching a wafer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

本実施形態のウエハ載置台の製法は、(a)セラミック粉末とゲル化剤とを含むセラミックスラリーを金属メッシュ22の網目部分22aに充填し、ゲル化剤を化学反応させてセラミックスラリーをゲル化させた後、脱脂、仮焼することによりセラミック充填メッシュ20を作製する工程と、(b)モールドキャスト成形したあと仮焼して得られた第1セラミック仮焼体31と第2セラミック仮焼体32との間にセラミック充填メッシュ20を挟み込むことにより積層体40を作製する工程と、(c)積層体40をホットプレス焼成することによりウエハ載置台10を作製する工程と、を含む。

Description

ウエハ載置台の製法
 本発明は、ウエハ載置台の製法に関する。
 ウエハ載置台としては、セラミックプレートに金属メッシュ(電極)を内蔵したものが知られている。こうしたウエハ載置台の製法としては、特許文献1に記載されているように、セラミック原料の成形体の表面上に金属メッシュを設置し、その上にセラミック原料の顆粒を充填したあとプレス成形して積層体とし、その積層体をホットプレス焼成する方法が知られている。
特開平11-228244号公報
 しかしながら、上述した製法では、顆粒をプレス成形する際に顆粒が充填密度の高いところから低いところへ移動するため、金属メッシュの位置ずれが起きやすいという問題があった。この位置ずれを防止するために、公知技術ではないが、本発明者らはモールドキャスト成形したあと仮焼して得られた2つのセラミック仮焼体の間に金属メッシュを挟み込んで焼成する製法を検討した。実際にこの製法によってウエハ載置台を製造したところ、金属メッシュの位置ずれは防止できたが、金属メッシュと焼結体との界面が剥離するという問題が新たに生じた。
 本発明はこのような課題を解決するためになされたものであり、金属メッシュの位置ずれを防止すると共に金属メッシュと焼結体との界面剥離を防止することを主目的とする。
 本発明のウエハ載置台の製法は、
(a)セラミック粉末とゲル化剤とを含むセラミックスラリーを金属メッシュの網目部分に充填し、前記ゲル化剤を化学反応させて前記セラミックスラリーをゲル化させた後、脱脂、仮焼することによりセラミック充填メッシュを作製する工程と、
(b)モールドキャスト成形したあと仮焼して得られた第1セラミック仮焼体と第2セラミック仮焼体との間に前記セラミック充填メッシュを挟み込むことにより積層体を作製する工程と、
(c)前記積層体をホットプレス焼成することによりウエハ載置台を作製する工程と、
 を含むものである。
 このウエハ載置台の製法によれば、金属メッシュの位置ずれを防止すると共に金属メッシュと焼結体との界面剥離を防止することができる。具体的には、積層体は、第1及び第2セラミック仮焼体の間にセラミック充填メッシュを挟み込んだものであり、モールドキャスト成形したあと仮焼して得られた第1及び第2のセラミック仮焼体は密度が均一のため、そのメッシュの位置ずれを防止することができる。また、工程(c)でホットプレス焼成する前に金属メッシュの網目部分にはセラミック仮焼体が充填されているため、ホットプレス焼成時に金属メッシュの網目部分に空隙が残ることがない。したがって、ホットプレス焼成後に金属メッシュと焼結体との界面に剥離が発生するのを防止することができる。
 なお、モールドキャスト成形とは、最終製品と同形状の成形用空間を有する金型(下型及び上型)を用意し、その成形用空間にセラミックスラリーを注入して固化させたあと金型を開くことにより、最終製品と同形状のセラミック成形体を得る方法をいう。
 本発明のウエハ載置台の製法において、前記工程(a)では、前記金属メッシュを成形型に入れて上型と下型とを前記金属メッシュに密着させた状態で前記成形型に前記セラミックスラリーを注入することにより、前記セラミックスラリーを前記金属メッシュの網目部分に充填してもよい。こうすれば、セラミック充填メッシュの厚みバラツキを抑制することができる。
 その場合、前記工程(a)で、 前記成形型に前記セラミックスラリーを注入するにあたっては、前記成形型内を大気圧よりも低くなるようにしたあと前記セラミックスラリーを注入してもよい。こうすれば、セラミックスラリーへの気泡の巻き込みを防止することができる。
 本発明のウエハ載置台の製法において、前記工程(a)では、前記セラミックスラリーの入った容器に前記金属メッシュをディッピングすることにより、前記セラミックスラリーを前記金属メッシュの網目部分に充填してもよい。このようにしても、セラミックスラリーを前記金属メッシュの網目部分に充填することができる。
ウエハ載置台10の製造工程図。 金属メッシュ22の一部を示す斜視図。 成形型60の平面図。 図3のA-A断面図。 容器70の斜視図。 ウエハ載置台110の製造工程図。 ウエハ載置台10の参考例の製造工程図。
 本発明の好適な実施形態を、図面を参照しながら以下に説明する。図1はウエハ載置台10の製造工程図、図2は金属メッシュ22の一部を示す斜視図、図3は成形型60の平面図、図4は図3のA-A断面図、図5は容器70の斜視図である。
 本実施形態のウエハ載置台10の製法は、図1に示すように、(a)セラミック粉末とゲル化剤とを含むセラミックスラリーを金属メッシュ22の網目部分22aに充填し、ゲル化剤を化学反応させてセラミックスラリーをゲル化させた後、脱脂、仮焼することによりセラミック充填メッシュ20を作製する工程(図1(a)参照)と、(b)第1セラミック仮焼体31と第2セラミック仮焼体32との間にセラミック充填メッシュ20を挟み込むことにより積層体40を作製する工程(図1(b)参照)と、(c)積層体40をホットプレス焼成することによりウエハ載置台10を作製する工程(図1(c)参照)と、を含むものである。
・工程(a)
 工程(a)では、セラミック粉末とゲル化剤とを含むセラミックスラリーを用いる。セラミックスラリーは、通常、セラミック粉末やゲル化剤のほかに溶媒や分散剤を含んでいる。
 セラミック粉末の材料としては、酸化物系セラミックでもよいし、非酸化物系セラミックでもよい。例えば、アルミナ、イットリア、窒化アルミニウム、窒化ケイ素、炭化ケイ素、サマリア、マグネシア、フッ化マグネシウム、酸化イッテルビウム等が挙げられる。これらの材料は、1種類単独で使用してもよいし、2種以上を組み合わせて使用してもよい。セラミック粉末の平均粒径は、均一なセラミックラリーを調整・作製可能であれば、特に限定されないが、0.4~0.6μmが好ましく、0.45~0.55μmがより好ましい。
 ゲル化剤としては、例えば、イソシアネート類、ポリオール類及び触媒を含むものとしてもよいし、イソシアネート類、水及び触媒を含むものとしてもよい。このうち、イソシアネート類としては、イソシアネート基を官能基として有する物質であれば特に限定されないが、例えば、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)又はこれらの変性体等が挙げられる。なお、分子内おいて、イソシアネート基以外の反応性官能基が含有されていてもよく、更には、ポリイソシアネートのように、反応官能基が多数含有されていてもよい。ポリオール類としては、イソシアネート基と反応し得る水酸基を2以上有する物質であれば特に限定されないが、例えば、エチレングリコール(EG)、ポリエチレングリコール(PEG)、プロピレングリコール(PG)、ポリプロピレングリコール(PPG)、ポリテトラメチレングリコール(PTMG)、ポリヘキサメチレングリコール(PHMG)、ポリビニルアルコール(PVA)等が挙げられる。触媒としては、イソシアネート類とポリオール類とのウレタン反応を促進させる物質であれば特に限定されないが、例えば、トリエチレンジアミン、ヘキサンジアミン、6-ジメチルアミノ-1-ヘキサノール等が挙げられる。
 溶媒(分散媒ともいう)としては、分散剤及びゲル化剤を溶解するものであれば、特に限定されないが、例えば、炭化水素系溶媒(トルエン、キシレン、ソルベントナフサ等)、エーテル系溶媒(エチレングリコールモノエチルエーテル、ブチルカルビトール、ブチルカルビトールアセテート等)、アルコール系溶媒(イソプロパノール、1-ブタノール、エタノール、2-エチルヘキサノール、テルピネオール、エチレングリコール、グリセリン等)、ケトン系溶媒(アセトン、メチルエチルケトン等)、エステル系溶媒(酢酸ブチル、グルタル酸ジメチル、トリアセチン等)、多塩基酸系溶媒(グルタル酸等)が挙げられる。特に、多塩基酸エステル(例えば、グルタル酸ジメチル等)、多価アルコールの酸エステル(例えば、トリアセチン等)等の、2以上のエステル結合を有する溶媒を使用することが好ましい。
 分散剤としては、セラミック粉体を溶媒中に均一に分散するものであれば、特に限定されない。例えば、ポリカルボン酸系共重合体、ポリカルボン酸塩、ソルビタン脂肪酸エステル、ポリグリセリン脂肪酸エステル、リン酸エステル塩系共重合体、スルホン酸塩系共重合体、3級アミンを有するポリウレタンポリエステル系共重合体等が挙げられる。特に、ポリカルボン酸系共重合体、ポリカルボン酸塩等を使用することが好ましい。この分散剤を添加することで、成形前のスラリーを、低粘度とし、且つ高い流動性を有するものとすることができる。
 セラミックスラリーは、まず、セラミック粉末に溶媒及び分散剤を所定の割合で添加し、所定時間に亘ってこれらを混合することによりスラリー前駆体を調製し、その後、このスラリー前駆体に、ゲル化剤を添加して混合・真空脱泡して調製するのが好ましい。スラリー前駆体やスラリーを調製するときの混合方法は、特に限定されるものではなく、例えばボールミル、自公転式撹拌、振動式撹拌、プロペラ式撹拌等を使用可能である。なお、スラリー前駆体にゲル化剤を添加したセラミックラリーは、時間経過に伴いゲル化剤の化学反応(ウレタン反応)が進行し始めるため、速やかに成形型や容器などに流し込むのが好ましい。
 工程(a)では、セラミックスラリーを図2に示す円形の金属メッシュ22の網目部分22aに充填し、ゲル化剤を化学反応させてセラミックスラリーをゲル化させる。金属メッシュ22の材料としては、特に限定するものではないが、例えばタングステン、モリブデン、チタン等の高融点金属が挙げられる。金属メッシュ22の線径やメッシュサイズは、特に限定するものではないが、線径が0.05mm以上0.8mm以下であることが好ましく、1インチ当たりのメッシュサイズが10以上80以下であることが好ましい。セラミックスラリーは、スラリーに含まれるゲル化剤が化学反応することによりゲル化する。ゲル化剤の化学反応とは、イソシアネート類とポリオール類(又は水)とがウレタン反応を起こしてウレタン樹脂(ポリウレタン)になる反応である。ゲル化剤の反応によりセラミックスラリーがゲル化し、ウレタン樹脂は有機バインダーとして機能する。
 工程(a)では、金属メッシュ22の網目部分22aに充填したセラミックスラリーをゲル化させた後、乾燥、脱脂、仮焼することによりセラミック充填メッシュ20を作製する。乾燥は、ゲルに含まれる溶媒を蒸発させるために行う。乾燥温度や乾燥時間は、使用する溶媒に応じて適宜設定すればよい。但し、乾燥温度は、乾燥対象物にクラックが入らないように注意して設定する。また、雰囲気は大気雰囲気、不活性雰囲気、真空雰囲気のいずれであってもよい。乾燥により寸法は線方向に数%程度収縮する。脱脂は、分散剤や触媒などの有機物を分解・除去するために行う。脱脂温度は、含まれる有機物の種類に応じて適宜設定すればよい。また、雰囲気は大気雰囲気、不活性雰囲気、真空雰囲気のいずれであってもよい。仮焼は、強度を高くしハンドリングしやすくするために行う。仮焼温度は、含まれるセラミック粉末の種類に応じて適宜設定すればよい。また、雰囲気は大気雰囲気、不活性雰囲気、真空雰囲気のいずれであってもよい。仮焼により寸法は線方向に数%程度収縮する。
 工程(a)では、図3及び図4に示すように、金属メッシュ22を成形型60内に入れて上型61と下型62とを金属メッシュ22に密着させた状態でスラリー注入口63から成形型60内にセラミックスラリーを注入することにより、セラミックスラリーを金属メッシュ22の網目部分22aに充填してもよい。こうすれば、セラミック充填メッシュ20の厚みバラツキを抑制することができる。ここで、成形型60のスラリー注入口63は、図4に示すように、スラリー排出口64よりも低くなるように斜めに配置されている。これにより、セラミックスラリー中の気泡がスラリー排出口64から排出されやすくなる。また、成形型60内にセラミックスラリーを注入するにあたっては、成形型60内を真空ポンプで大気圧よりも低くなるようにしたあとセラミックスラリーを注入する。こうすれば、セラミックスラリーへの気泡の巻き込みを防止することができる。
 工程(a)では、図5に示すように、上部に開口を有する扁平な容器70内にセラミックスラリーを入れ、そこに金属メッシュ22をディッピングすることにより、セラミックスラリーを金属メッシュ22の網目部分22aに充填してもよい。充填後の金属メッシュ22は吊上具72で吊り上げて容器70から取り出せばよい。この方法によっても、セラミックスラリーを金属メッシュ22の網目部分22aに充填することができる。但し、この方法では、全体の厚さが均一にならないことがある。そのため、このような不具合が生じにくい図3及び図4を用いて説明した方法の方が好ましい。
・工程(b)
 工程(b)では、円板状の第1セラミック仮焼体31と同じく円板状の第2セラミック仮焼体32との間にセラミック充填メッシュ20を挟み込むことにより積層体40を作製する(図1(b)参照)。第1及び第2セラミック仮焼体31,32は、例えば上述したセラミックスラリーを用いてモールドキャスト成形で作製した成形体を乾燥、脱脂、仮焼することにより作製する。これにより、セラミック充填メッシュ20の位置ずれを防止することができる。積層体40を作製する際には、必要に応じて、第1セラミック仮焼体31と第2セラミック仮焼体32とセラミック充填メッシュ20との位置合わせを行う。
・工程(c)
 工程(c)では、積層体40をホットプレス焼成することによりウエハ載置台10を作製する。ホットプレス焼成では、特に限定するものではないが、例えば最高温度(焼成温度)において、プレス圧力を30~300kgf/cm2とすることが好ましく、50~250kgf/cm2とすることがより好ましい。また、最高温度は、セラミック粉末の種類、粒径などにより適宜設定すればよいが、1000~2000℃の範囲に設定することが好ましい。雰囲気は、大気雰囲気、不活性雰囲気(例えば窒素雰囲気)、真空雰囲気の中から、セラミック粉末の種類に応じて適宜選択すればよい。ホットプレス焼成により厚み方向に50%程度収縮する。
 ウエハ載置台10は、円形の電極14(金属メッシュ22)を内蔵した円板状のセラミックプレート12であり、上面がウエハ載置面12aになる。セラミックプレート12は、第1及び第2セラミック仮焼体31,32とセラミック充填メッシュ20に含まれるセラミック仮焼体とが渾然一体となって焼結したものである。ウエハ載置台10の電極14は、静電電極として用いることができる。その場合、ウエハ載置台10は、電極14に直流電圧が印加されるとウエハは静電吸着力によりウエハ載置面12aに吸着固定され、直流電圧の印加を解除するとウエハのウエハ載置面12aへの吸着固定が解除される。あるいは、電極14は、RF電極として用いることもできる。その場合、ウエハを載置したウエハ載置面12aの上方にウエハ載置面12aと平行となる上方電極を配置し、プロセスガス存在下、電極14にRF電源から高周波電力を供給する。こうすることにより、上部電極と電極14とからなる平行平板電極間にプラズマが発生し、そのプラズマを利用してウエハにCVD成膜を施したりエッチングを施したりすることができる。あるいは、電極14を、静電電極とRF電極を兼用する電極として用いることもできる。
 以上詳述したウエハ載置台10の製法によれば、セラミックプレート12内の電極14(金属メッシュ22)の位置ずれを防止すると共に電極14とセラミックプレート12との界面剥離を防止することができる。具体的には、積層体40は、第1及び第2セラミック仮焼体31,32の間にセラミック充填メッシュ20を挟み込んだものであり、セラミック充填メッシュ20の周囲に粉末や顆粒が存在しないため、そのメッシュ20の位置ずれを防止することができる。また、工程(c)でホットプレス焼成する前に金属メッシュ22の網目部分22aにはセラミック仮焼体が充填されているため、ホットプレス焼成時に金属メッシュ22の網目部分22aに空隙が残ることがない。したがって、ホットプレス焼成後に電極14とセラミックプレート12との界面に剥離が発生するのを防止することができる。
 また、工程(a)で、金属メッシュ22を成形型60内に入れて上型61と下型62とを金属メッシュ22に密着させた状態でスラリー注入口63から成形型60内にセラミックスラリーを注入することにより、セラミックスラリーを金属メッシュ22の網目部分22aに充填した場合、セラミック充填メッシュ20の厚みバラツキを抑制することができる。その場合、成形型60内を大気圧よりも低くなるようにしたあとセラミックスラリーを注入してもよい。こうすれば、セラミックスラリーへの気泡の巻き込みを防止することができる。
 更に、工程(a)では、セラミックスラリーの入った容器70に金属メッシュ22をディッピングすることにより、セラミックスラリーを金属メッシュ22の網目部分22aに充填することもできる。
 なお、本発明は上述した各実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。
 例えば、上述した実施形態では、ウエハ載置台10を製造したが、図6に示すウエハ載置台110を製造してもよい。すなわち、まず、上述した実施形態と同様にしてセラミック充填メッシュ20を作製する(図6(a)参照)。次に、第1セラミック仮焼体31と第2セラミック仮焼体32との間にセラミック充填メッシュ20を挟み込むと共に、ヒータ電極38を内蔵した第3セラミック仮焼体36を積層することにより、積層体50を作製する(図6(b)参照)。ヒータ電極38は、一筆書きの要領で第3セラミック仮焼体36の全面にわたって配線されたコイル線である。なお、第3セラミック仮焼体36の全面を複数のゾーンに分け、ゾーンごとにヒータ電極を設けてもよい。次に、積層体50をホットプレス焼成することによりウエハ載置台110を作製する(図6((c)参照)。ウエハ載置台110は、円形の電極114(金属メッシュ22)とヒータ電極38とを内蔵した円板状のセラミックプレート112であり、上面がウエハ載置面112aとなっている。セラミックプレート112は、第1~第3セラミック仮焼体31,32,36とセラミック充填メッシュ20に含まれるセラミック仮焼体とが渾然一体となって焼結したものである。ウエハ載置台110は、ウエハ載置面112aにウエハを載置した状態で、ヒータ電極38に電力が供給されるとヒータ電極38は発熱してウエハを加熱する。電極114は、上述した電極14と同様、静電電極として用いることもできるし、RF電極として用いることもできるし、両方を兼用させることもできる。
 上述した実施形態において、ウエハ載置台10の裏面に中空のセラミックシャフトを取り付けてもよい。ウエハ載置台110の裏面に中空のセラミックシャフトを取り付けてもよい。
 本発明のウエハ載置台の製法の代わりに、以下の製法を採用してもよい。すなわち、第1セラミック仮焼体と第2セラミック仮焼体との間に金属メッシュを挟み込むことにより積層体を作製し、その積層体をホットプレス焼成することによりウエハ載置台を作製するウエハ載置台の製法において、第2セラミック仮焼体は金属メッシュと接触する面にその金属メッシュの各網目部分に対応する突起を有し、積層体を作製する際に第2セラミック仮焼体の各突起が金属メッシュの各網目部分に嵌まり込むようにしてもよい。具体的には、図7に示すように、まず、円板状の第1セラミック仮焼体31と円形の金属メッシュ22と円板状の第2セラミック仮焼体33とを準備する(図7(a)参照)。第2セラミック仮焼体33の上面には、金属メッシュ22の各網目部分22aに入り込む円錐状の突起33aが設けられている。次に、第1セラミック仮焼体31と第2セラミック仮焼体33との間に金属メッシュ22を挟み込むことにより積層体42を作製する(図7(b)参照)。積層体42を作製する際、第2セラミック仮焼体33の各突起33aが金属メッシュ22の各網目部分22aに嵌まり込むようにする。次に、積層体42をホットプレス焼成することによりウエハ載置台10を作製する(図7(c)参照)。ウエハ載置台10は、円形の電極14(金属メッシュ22)を内蔵した円板状のセラミックプレート12である。このようにしても、金属メッシュ22の位置ずれを防止すると共に金属メッシュ22とセラミックプレート12との界面剥離を防止することができる。
 以下に、本発明の実施例について説明する。なお、以下の実施例は本発明を何ら限定するものではない。
[実施例1]
1.第1及び第2セラミック仮焼体の作製
まず、窒化アルミニウム粉末(純度99.7%)100質量部と、酸化イットリウム5質量部と、分散剤(ポリカルボン酸系共重合体)2質量部と、分散媒(多塩基酸エステル)30質量部とを、ボールミル(トロンメル)を用いて14時間混合することにより、セラミックラリー前駆体を得た。このセラミックラリー前駆体に対して、イソシアネート(4,4’-ジフェニルメタンジイソシアネート)4.5質量部、水0.1質量部、触媒(6-ジメチルアミノ-1-ヘキサノール)0.4質量部を加えて混合することにより、セラミックラリーを得た。このセラミックスラリーを円板形状の内部空間を有する成形型(第1及び第2セラミック仮焼体を作製するための成形型)に流し込み、イソシアネートと水との化学反応により有機バインダ(ウレタン樹脂)を生成させたあと、成形型から硬化した成形体を取り出す。その成形体を100℃で10時間乾燥し、脱脂及び仮焼を水素雰囲気下、最高温度1300℃で行い、第1及び第2セラミック仮焼体を得た。
2.セラミック充填メッシュの作製
 セラミック充填メッシュを、上述した成形型60(図3及び図4参照)を用いて作製した。セラミックスラリーは上記1.と同じものを用いた。セラミックスラリーの成形型60への注入は真空中で行った。また、乾燥、脱脂、仮焼の条件は上記1.と同じ条件を用いた。
3.積層体の作製
 第1セラミック仮焼体と第2セラミック仮焼体との間にセラミック充填メッシュを挟み込むことにより積層体を作製した。
4.ウエハ載置台の作製
 積層体を、窒素ガス中、プレス圧力250kgf/cm2、1860℃で6時間、ホットプレス焼成することによりウエハ載置台を作製した。
5.評価
 得られたウエハ載置台について、金属メッシュとセラミックプレートとの界面に剥離が発生しているか否かをチェックしたところ、剥離は見られなかった。また、金属メッシュの位置ずれも見られなかった。
[実施例2]
 セラミック充填メッシュを、上述した容器70(図5参照)を用いて作製した以外は、実施例1と同様にしてウエハ載置台を作製した。具体的には、容器70に金属メッシュをセットし、実施例1の1.で調製したセラミックスラリーを真空中で容器70内に注入し、スラリー粘度が7500cPになったところで真空を解除し、金属メッシュを引き上げて空気中で放置した。乾燥、脱脂、仮焼の条件は実施例1の1.と同じ条件を用いた。得られたウエハ載置台について、金属メッシュとセラミックプレートとの界面に剥離が発生しているか否かをチェックしたところ、剥離は見られなかった。また、金属メッシュの位置ずれも見られなかった。
[参考例1]
 図7(a)~(c)に示した方法でウエハ載置台を作製した。第1及び第2セラミック仮焼体31,33は、実施例1の1.で調製したセラミックスラリーを用いて成形体を作製し、その成形体を実施例1の1.に示した条件で乾燥、脱脂、仮焼を行った。ホットプレス焼成は実施例1の4.と同じ条件で行った。得られたウエハ載置台について、金属メッシュとセラミックプレートとの界面に剥離が発生しているか否かをチェックしたところ、剥離は見られなかった。また、金属メッシュの位置ずれも見られなかった。
[比較例1]
 セラミック充填メッシュの代わりに金属メッシュをそのまま用いた以外は、実施例1と同様にしてウエハ載置台を作製した。得られたウエハ載置台について、金属メッシュとセラミックプレートとの界面に剥離が発生しているか否かをチェックしたところ、剥離が見られた。金属メッシュの位置ずれは見られなかった。
  本出願は、2018年9月27日に出願された日本国特許出願第2018-181174号を優先権主張の基礎としており、引用によりその内容の全てが本明細書に含まれる。
 本発明は、例えばウエハに成膜したりウエハをエッチングしたりする際に用いられるウエハ載置台を製造するのに利用可能である。
10 ウエハ載置台、12 セラミックプレート、12a ウエハ載置面、14 電極、20 セラミック充填メッシュ、22 金属メッシュ、22a 網目部分、31 第1セラミック仮焼体、32,33 第2セラミック仮焼体、33a 突起、36 第3セラミック仮焼体、38 ヒータ電極、40,42,50 積層体、60 成形型、61 上型、62 下型、63 スラリー注入口、64 スラリー排出口、70 容器、72 吊上具、110 ウエハ載置台、112 セラミックプレート、112a ウエハ載置面、114 電極。

Claims (4)

  1. (a)セラミック粉末とゲル化剤とを含むセラミックスラリーを金属メッシュの網目部分に充填し、前記ゲル化剤を化学反応させて前記セラミックスラリーをゲル化させた後、脱脂、仮焼することによりセラミック充填メッシュを作製する工程と、
    (b)モールドキャスト成形したあと仮焼して得られた第1セラミック仮焼体と第2セラミック仮焼体との間に前記セラミック充填メッシュを挟み込むことにより積層体を作製する工程と、
    (c)前記積層体をホットプレス焼成することによりウエハ載置台を作製する工程と、
     を含むウエハ載置台の製法。
  2.  前記工程(a)では、前記金属メッシュを成形型に入れて上型と下型とを前記金属メッシュに密着させた状態で前記成形型に前記セラミックスラリーを注入することにより、前記セラミックスラリーを前記金属メッシュの網目部分に充填する、
     請求項1に記載のウエハ載置台の製法。
  3.  前記工程(a)で、 前記成形型に前記セラミックスラリーを注入するにあたっては、前記成形型内を大気圧よりも低くなるようにしたあと前記セラミックスラリーを注入する、
     請求項2に記載のウエハ載置台の製法。
  4.  前記工程(a)では、前記セラミックスラリーの入った容器に前記金属メッシュをディッピングすることにより、前記セラミックスラリーを前記金属メッシュの網目部分に充填する、
     請求項1に記載のウエハ載置台の製法。
PCT/JP2019/035481 2018-09-27 2019-09-10 ウエハ載置台の製法 WO2020066589A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020207026605A KR102391757B1 (ko) 2018-09-27 2019-09-10 웨이퍼 배치대의 제법
CN201980006370.7A CN111466018B (zh) 2018-09-27 2019-09-10 晶片载置台的制法
JP2020503344A JP6676835B1 (ja) 2018-09-27 2019-09-10 ウエハ載置台の製法
US17/019,745 US11685077B2 (en) 2018-09-27 2020-09-14 Method of manufacturing wafer mounting table

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018181174 2018-09-27
JP2018-181174 2018-09-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/019,745 Continuation US11685077B2 (en) 2018-09-27 2020-09-14 Method of manufacturing wafer mounting table

Publications (1)

Publication Number Publication Date
WO2020066589A1 true WO2020066589A1 (ja) 2020-04-02

Family

ID=69952076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/035481 WO2020066589A1 (ja) 2018-09-27 2019-09-10 ウエハ載置台の製法

Country Status (5)

Country Link
US (1) US11685077B2 (ja)
JP (1) JP6676835B1 (ja)
KR (1) KR102391757B1 (ja)
CN (1) CN111466018B (ja)
WO (1) WO2020066589A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07273164A (ja) * 1994-03-29 1995-10-20 Ngk Insulators Ltd 電極埋設品及びその製造方法
JP2012209499A (ja) * 2011-03-30 2012-10-25 Ngk Insulators Ltd 静電チャックの製法及び静電チャック

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5800618A (en) 1992-11-12 1998-09-01 Ngk Insulators, Ltd. Plasma-generating electrode device, an electrode-embedded article, and a method of manufacturing thereof
JP3243214B2 (ja) 1998-02-12 2002-01-07 日本碍子株式会社 金属部材内蔵窒化アルミニウム部材及びその製造方法
US6280584B1 (en) * 1998-07-29 2001-08-28 Applied Materials, Inc. Compliant bond structure for joining ceramic to metal
JP3903751B2 (ja) * 2001-07-27 2007-04-11 松下電器産業株式会社 シリコン系基板のプラズマ処理装置
WO2010047321A1 (ja) * 2008-10-21 2010-04-29 国立大学法人名古屋工業大学 セラミックス電極材およびその製造方法
EP2374589B1 (en) * 2009-01-06 2014-02-12 NGK Insulators, Ltd. Moulding die and method for producing a moulding using said moulding die
JP5972630B2 (ja) * 2011-03-30 2016-08-17 日本碍子株式会社 静電チャックの製法
JP6373212B2 (ja) * 2015-03-26 2018-08-15 日本碍子株式会社 アルミナ焼結体の製法及びアルミナ焼結体

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07273164A (ja) * 1994-03-29 1995-10-20 Ngk Insulators Ltd 電極埋設品及びその製造方法
JP2012209499A (ja) * 2011-03-30 2012-10-25 Ngk Insulators Ltd 静電チャックの製法及び静電チャック

Also Published As

Publication number Publication date
KR102391757B1 (ko) 2022-04-28
CN111466018A (zh) 2020-07-28
US20200406499A1 (en) 2020-12-31
CN111466018B (zh) 2023-08-25
JPWO2020066589A1 (ja) 2021-01-07
US11685077B2 (en) 2023-06-27
JP6676835B1 (ja) 2020-04-08
KR20200121343A (ko) 2020-10-23

Similar Documents

Publication Publication Date Title
KR101982446B1 (ko) 정전 척의 제법 및 정전 척
US9650302B2 (en) Method for producing electrostatic chuck and electrostatic chuck
TWI687391B (zh) 氧化鋁燒結體的製法及氧化鋁燒結體
US20200258769A1 (en) Semiconductor manufacturing device member, method for manufacturing the same, and forming die
JP5819895B2 (ja) 静電チャック
JP6676835B1 (ja) ウエハ載置台の製法
TWI745899B (zh) 半導體製造裝置用構件、其製法及成形模具

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020503344

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19866111

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207026605

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19866111

Country of ref document: EP

Kind code of ref document: A1