WO2020066540A1 - Photosensitive resin composition, dry film, cured product, and electronic component - Google Patents

Photosensitive resin composition, dry film, cured product, and electronic component Download PDF

Info

Publication number
WO2020066540A1
WO2020066540A1 PCT/JP2019/035085 JP2019035085W WO2020066540A1 WO 2020066540 A1 WO2020066540 A1 WO 2020066540A1 JP 2019035085 W JP2019035085 W JP 2019035085W WO 2020066540 A1 WO2020066540 A1 WO 2020066540A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
resin composition
photosensitive resin
epoxy compound
group
Prior art date
Application number
PCT/JP2019/035085
Other languages
French (fr)
Japanese (ja)
Inventor
脩平 ▲高▼嶋
ヨンジョン イム
真歩 秋元
智美 福島
Original Assignee
太陽ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018186055A external-priority patent/JP2020056847A/en
Priority claimed from JP2018186054A external-priority patent/JP7195102B2/en
Priority claimed from JP2018186053A external-priority patent/JP7312536B2/en
Priority claimed from JP2018186052A external-priority patent/JP7191622B2/en
Application filed by 太陽ホールディングス株式会社 filed Critical 太陽ホールディングス株式会社
Priority to KR1020217007572A priority Critical patent/KR20210066808A/en
Priority to CN201980054959.4A priority patent/CN112585536A/en
Publication of WO2020066540A1 publication Critical patent/WO2020066540A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/22Polybenzoxazoles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/023Macromolecular quinonediazides; Macromolecular additives, e.g. binders
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings

Definitions

  • the present invention relates to a photosensitive resin composition, a dry film, a cured product, and an electronic component.
  • a resin composition containing a polybenzoxazole precursor (hereinafter, also referred to as “PBO precursor”) as a main component has been used.
  • PBO precursor a polybenzoxazole precursor
  • the PBO precursor is heated at a high temperature (> 350 ° C.) to undergo a cyclization reaction to form a benzoxazole ring, which results in a rigid structure and an increase in packing density between molecules.
  • a cured film having excellent mechanical properties such as chemical resistance, thermal properties and flexibility can be obtained.
  • a so-called molding-first type fan-out wafer-level package method in which a chip is sealed with a sealant and then rewiring is formed. Therefore, as an insulating material for rewiring used in such a method, a material that can be cured at a low temperature of about 220 ° C. is required from the viewpoint of heat resistance of a sealing material containing an epoxy resin as a main component.
  • the resin composition containing the PBO precursor does not sufficiently advance the cyclization of the PBO precursor, and has various properties such as chemical resistance, thermal properties, and mechanical properties such as flexibility. There was a problem that it would decrease.
  • the cross-linking structure formed in the cured product improves physical properties such as chemical resistance even at the time of low-temperature curing, but there is a trade-off problem that flexibility is reduced.
  • the first main object of the present invention is excellent in the developability of the exposed portion, even when cured at a low temperature of about 220 ° C., it is possible to obtain an insulating film excellent in chemical resistance and flexibility
  • An object of the present invention is to provide a photosensitive resin composition suitable for use as an insulating film for rewiring.
  • Another first object of the present invention is to provide a dry film having a resin layer obtained from the composition, a cured product of the composition or the resin layer of the dry film, and an electronic component having the cured product. It is in.
  • a cross-linking reaction makes it possible to form a self-supporting cured film (free-standing film) free of cracks even at the time of low-temperature curing, but the epoxy compound of the phenolic hydroxyl group of the PBO precursor and the epoxy group compound In the formation of a crosslinked structure by the reaction of a group, a hydroxyl group is generated in the crosslinked structure, and there is a trade-off problem that the dielectric properties are deteriorated. There is also room for improvement in chemical resistance and thermal properties.
  • a second main object of the present invention is to form an insulating film which is capable of forming a self-supporting film even when cured at a low temperature of about 220 ° C. and has excellent chemical resistance, thermal properties and dielectric properties. It is an object of the present invention to provide a photosensitive resin composition suitable for use in an insulating film for redistribution, which is obtained. Further, another object of the present invention is to provide a dry film having a resin layer obtained from the composition, a cured product of the composition or the resin layer of the dry film, and an electronic component having the cured product. It is in.
  • a third main object of the present invention is to provide a low-CTE insulating film having excellent chemical resistance and excellent flexibility even when curing is performed at a low temperature of about 220 ° C.
  • An object of the present invention is to provide a photosensitive resin composition suitable for use as an insulating film for wiring.
  • Another object of the present invention is to provide a dry film having a resin layer obtained from the composition, a cured product of the composition or the resin layer of the dry film, and an electronic component having the cured product. It is in.
  • the present inventors have conducted intensive studies to achieve the above object.
  • the above-mentioned problem can be solved by using a bifunctional or more functional epoxy compound as a cross-linking agent and combining it with a plasticizer having a self-polymerizable group. And completed the present invention.
  • the photosensitive resin composition of the first aspect of the present invention comprises (A) a polybenzoxazole precursor, (B) a photosensitizer, (C) a bifunctional or higher functional epoxy compound, and (D) a plasticizer. It is characterized by including.
  • the (D) plasticizer is preferably a plasticizer having a self-polymerizable group (D1), and the plasticizer (D) has a self-polymerizable group. More preferably, the plasticizer is a bifunctional (meth) acrylic compound.
  • the (D) plasticizer is preferably (D2) a plasticizer having no self-polymerizable group, and the (D) self-polymerizable group Is more preferably at least one of a sulfonamide compound, a phthalate compound, and a maleate compound.
  • the photosensitive resin composition of the first aspect of the present invention contains (D1) a plasticizer having a self-polymerizable group and (D2) a plasticizer not having a self-polymerizable group.
  • the photosensitive resin composition according to the first aspect of the present invention preferably further contains (E) a thermal acid generator.
  • the thermal acid generator (E) is preferably a sulfonic acid ester compound.
  • the (C) bifunctional or higher functional epoxy compound has a naphthalene structure.
  • the photosensitive resin composition of the first aspect of the present invention preferably further contains a crosslinking agent having a triazine ring structure.
  • the dry film according to the first aspect of the present invention has a resin layer obtained by applying and drying the photosensitive resin composition on a film.
  • the cured product of the first aspect of the present invention is obtained by curing the photosensitive resin composition or the resin layer of the dry film.
  • An electronic component according to a first aspect of the present invention includes the cured product.
  • a photosensitive resin composition containing a PBO precursor can solve the above-mentioned problems by using a bifunctional or more epoxy compound as a cross-linking agent and combining it with a thermal acid generator in combination.
  • the invention has been completed.
  • the photosensitive resin composition of the second embodiment of the present invention comprises (A) a polybenzoxazole precursor, (B) a photosensitizer, (C) a bifunctional or higher epoxy compound, and (D) a thermal acid generator. It is characterized by containing an agent.
  • the thermal acid generator (D) is preferably a sulfonic acid ester compound.
  • the (C) bifunctional or higher functional epoxy compound has a naphthalene structure.
  • a dry film according to a second aspect of the present invention is characterized by having a resin layer obtained by applying and drying the photosensitive resin composition on a film.
  • the cured product according to the second aspect of the present invention is obtained by curing the photosensitive resin composition or the resin layer of the dry film.
  • An electronic component according to a second aspect of the present invention includes the cured product.
  • the present inventors have diligently studied to realize the above object. As a result, they have found that the photosensitive resin composition containing a PBO precursor can solve the above-mentioned problem by including a bifunctional or more functional epoxy compound having a naphthalene skeleton as a crosslinking agent, thereby completing the present invention.
  • a bifunctional or more functional epoxy compound having a naphthalene skeleton as a crosslinking agent
  • the photosensitive resin composition of the third aspect of the present invention contains (A) a polybenzoxazole precursor, (B) a photosensitizer, and (C) a bifunctional or more functional epoxy compound having a naphthalene skeleton. It is characterized by the following.
  • the photosensitive resin composition according to the third aspect of the present invention preferably further contains a crosslinking agent having a triazine ring structure.
  • a dry film according to a third aspect of the present invention is characterized by having a resin layer obtained by applying and drying the photosensitive resin composition on a film.
  • the cured product according to the third aspect of the present invention is obtained by curing the photosensitive resin composition or the resin layer of the dry film.
  • An electronic component according to a third aspect of the present invention includes the cured product.
  • a cured film having excellent chemical resistance and flexibility can be obtained even when curing is performed at a low temperature of about 220 ° C.
  • a photosensitive resin composition suitable for use as an insulating film for wiring can be provided.
  • a dry film having a resin layer obtained from the composition, a cured product of the composition or the resin layer of the dry film, and an electronic component having the cured product can be provided.
  • a self-supporting film can be formed, and a cured film having excellent chemical resistance, thermal properties, and dielectric properties can be obtained.
  • a photosensitive resin composition suitable for use in the obtained insulating film for rewiring can be provided.
  • a dry film having a resin layer obtained from the composition, a cured product of the composition or the resin layer of the dry film, and an electronic component having the cured product can be provided.
  • a low CTE cured film having excellent chemical resistance and excellent flexibility can be obtained.
  • a dry film having a resin layer obtained from the composition, a cured product of the composition or the resin layer of the dry film, and an electronic component having the cured product can be provided.
  • the photosensitive resin compositions according to the first, second and third aspects of the present invention contain (A) a polybenzoxazole precursor.
  • A) The method for synthesizing the polybenzoxazole precursor is not particularly limited, and may be a known method. For example, it can be obtained by reacting a dihydroxydiamine as an amine component with a dicarboxylic acid component such as dicarboxylic acid dichloride, dicarboxylic acid, or dicarboxylic acid ester as an acid component.
  • the polybenzoxazole precursor is preferably a polyhydroxyamide, and more preferably a polyhydroxyamide having a repeating structure represented by the following general formula (1).
  • X represents a tetravalent organic group
  • Y represents a divalent organic group
  • n is an integer of 2 or more, preferably 10 to 200, and more preferably 20 to 70.
  • dihydroxydiamine having the above repeating structure examples include 3,3′-diamino-4,4′-dihydroxybiphenyl, 4,4′-diamino-3,3′-dihydroxybiphenyl, and bis (3-amino-4-hydroxy Phenyl) propane, bis (4-amino-3-hydroxyphenyl) propane, bis (3-amino-4-hydroxyphenyl) sulfone, bis (4-amino-3-hydroxyphenyl) sulfone, 2,2-bis (3 -Amino-4-hydroxyphenyl) -1,1,1,3,3,3-hexafluoropropane, 2,2-bis (4-amino-3-hydroxyphenyl) -1,1,1,3,3 , 3-hexafluoropropane and the like. Among them, 2,2-bis (3-amino-4-hydroxyphenyl) -1,1,1,3,3,3-hexafluoropropane is preferred.
  • dicarboxylic acid component having the above repeating structure examples include isophthalic acid, terephthalic acid, 5-tert-butylisophthalic acid, 5-bromoisophthalic acid, 5-fluoroisophthalic acid, 5-chloroisophthalic acid, and 2,6-naphthalenedicarboxylic acid 4,4'-dicarboxybiphenyl, 4,4'-dicarboxydiphenyl ether, 4,4'-dicarboxytetraphenylsilane, bis (4-carboxyphenyl) sulfone, 2,2-bis (p-carboxyphenyl) Dicarboxylic acid having an aromatic ring such as propane, 2,2-bis (4-carboxyphenyl) -1,1,1,3,3,3-hexafluoropropane, oxalic acid, malonic acid, succinic acid, 1,2 -Cyclobutanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid
  • the tetravalent organic group represented by X may be an aliphatic group or an aromatic group, but is preferably an aromatic group, and two hydroxy groups and two amino groups are located at ortho positions. More preferably, it is located on an aromatic ring.
  • the tetravalent aromatic group preferably has 6 to 30 carbon atoms, more preferably 6 to 24 carbon atoms. Specific examples of the tetravalent aromatic group include, but are not limited to, the following groups.A known aromatic group that can be included in the polybenzoxazole precursor is selected according to the application. do it.
  • the tetravalent aromatic group is preferably a group shown below among the above aromatic groups.
  • the divalent organic group represented by Y may be either an aliphatic group or an aromatic group, but is preferably an aromatic group. More preferably, it is bonded to The divalent aromatic group preferably has 6 to 30 carbon atoms, and more preferably 6 to 24 carbon atoms. Specific examples of the divalent aromatic group include the following groups, but are not limited thereto, and any known aromatic group contained in the polybenzoxazole precursor may be selected according to the application. I just need.
  • A is a single bond, —CH 2 —, —O—, —CO—, —S—, —SO 2 —, —NHCO—, —C (CF 3 ) 2 —, —C (CH 3 ) 2 - represents a divalent radical selected from the group consisting of).
  • the divalent organic group is preferably a group shown below among the aromatic groups.
  • the polybenzoxazole precursor may contain two or more kinds of the above-mentioned polyhydroxyamide repeating structures. Further, (A) the polybenzoxazole precursor may include a structure other than the above-described polyhydroxyamide repeating structure, and may include, for example, a polyamic acid repeating structure or a benzoxazole structure.
  • the number average molecular weight (Mn) of the polybenzoxazole precursor is preferably from 1,000 to 100,000, and more preferably from 5,000 to 50,000.
  • the number average molecular weight is a value measured by gel permeation chromatography (GPC) and converted into standard polystyrene.
  • the weight average molecular weight (Mw) of the polybenzoxazole precursor (A) is preferably from 5,000 to 200,000, more preferably from 10,000 to 100,000.
  • the weight average molecular weight is a value measured by GPC and converted into standard polystyrene.
  • Mw / Mn is preferably from 1 to 5, more preferably from 1 to 3.
  • polybenzoxazole precursor (A) one type may be used alone, or two or more types may be used in combination.
  • the photosensitive resin compositions of the first, second and third aspects of the present invention contain (B) a photosensitive agent.
  • the photosensitive agent is not particularly limited, and a photoacid generator or a photobase generator can be used.
  • the photoacid generator is a compound that generates an acid by irradiation with light such as ultraviolet light or visible light, and the photobase generator changes the molecular structure or cleaves the molecule by the same light irradiation. A compound that produces more than one basic substance.
  • a photoacid generator can be suitably used as the photosensitive agent (B).
  • the photoacid generator examples include naphthoquinonediazide compounds, diarylsulfonium salts, triarylsulfonium salts, dialkylphenacylsulfonium salts, diaryliodonium salts, aryldiazonium salts, aromatic tetracarboxylic acid esters, aromatic sulfonic acid esters, and nitrobenzyl esters And aromatic N-oxyimide sulfonate, aromatic sulfamide, benzoquinonediazosulfonic acid ester and the like.
  • the photoacid generator is preferably a dissolution inhibitor. Among them, a naphthoquinonediazide compound is preferred.
  • the naphthoquinonediazide compound include, for example, a naphthoquinonediazide adduct of tris (4-hydroxyphenyl) -1-ethyl-4-isopropylbenzene (for example, TS533, TS567, TS583, and TS593 manufactured by Sanbo Chemical Laboratory Co., Ltd.).
  • a naphthoquinonediazide adduct of tris (4-hydroxyphenyl) -1-ethyl-4-isopropylbenzene for example, TS533, TS567, TS583, and TS593 manufactured by Sanbo Chemical Laboratory Co., Ltd.
  • Naphthoquinonediazide adducts of tetrahydroxybenzophenone eg, BS550, BS570, BS599 manufactured by Sanbo Chemical Laboratory
  • 4- ⁇ 4- [1,1-bis (4-hydroxyphenyl) ethyl] - ⁇ And naphthoquinonediazide adduct of ⁇ -dimethylbenzyl ⁇ phenol for example, TKF-428 and TKF-528 manufactured by Sanbo Chemical Laboratory Co., Ltd.
  • the photobase generator may be an ionic photobase generator or a non-ionic photobase generator, but the ionic photobase generator has higher sensitivity of the composition and is suitable for forming a pattern film. It is preferable because it becomes advantageous.
  • the basic substance include a secondary amine and a tertiary amine.
  • Examples of the ionic photobase generator include salts of a carboxylic acid containing an aromatic component with a tertiary amine, and ionic PBGs WPBG-082, WPBG-167, WPBG-168, and WPBG- manufactured by Wako Pure Chemical Industries, Ltd. 266, WPBG-300 or the like can be used.
  • nonionic photobase generators examples include ⁇ -aminoacetophenone compounds, oxime ester compounds, N-formylated aromatic amino groups, N-acylated aromatic amino groups, nitrobenzyl carbamate groups, and alkoxyoxybenzyl.
  • Compounds having a substituent such as a carbamate group are exemplified.
  • WPBG-018 (trade name: 9-anthrylmethyl @ N, N'-diethylcarbamate) and WPBG-027 (trade name: (E) -1- [3- (2) manufactured by Wako Pure Chemical Industries, Ltd.] -Hydroxyphenyl) -2-propenoyl] piperidine
  • WPBG-140 (trade name: 1- (anthraquinon-2-yl) ethyl @ imidazole carboxylate)
  • WPBG-165 and the like can also be used.
  • the amount of the photosensitive agent (B) is preferably 3 to 30 parts by mass based on 100 parts by mass of the nonvolatile component of the polybenzoxazole precursor (A).
  • the photosensitive resin compositions of the first and second aspects of the present invention contain (C) a bifunctional or higher functional epoxy compound as a crosslinking agent.
  • (C) The bifunctional or higher epoxy compound thermally reacts with the hydroxyl group of the polybenzoxazole precursor to form a crosslinked structure.
  • the photosensitive resin composition according to the third aspect of the present invention comprises, as the (C) difunctional or more epoxy compound, (c) a difunctional or more epoxy compound having a naphthalene skeleton (hereinafter simply referred to as “(c) a naphthalene type epoxy compound”). (Also referred to as "compound").
  • the naphthalene-type epoxy compound thermally reacts with the hydroxyl group of the polybenzoxazole precursor to form a crosslinked structure, thereby not only improving the chemical resistance of the cured product, but also surprisingly, And contribute to lower CTE.
  • the number of functional groups of the bifunctional or higher epoxy compound is preferably 2 to 4.
  • Bifunctional or higher functional epoxy compounds include epoxidized vegetable oil; bisphenol A type epoxy compound; hydroquinone type epoxy compound; bisphenol type epoxy compound; thioether type epoxy compound; brominated epoxy compound; novolak type epoxy compound; Epoxy compound; bisphenol F type epoxy compound; hydrogenated bisphenol A type epoxy compound; glycidylamine type epoxy compound; hydantoin type epoxy compound; alicyclic epoxy compound; trihydroxyphenylmethane type epoxy compound; bixylenol type or biphenol type epoxy compound Or a mixture thereof; bisphenol S type epoxy compound; bisphenol A novolak type epoxy compound; tetraphenylolethane type epoxy compound.
  • (c) a difunctional or higher functional epoxy compound having a naphthalene skeleton is preferable. Not only can an insulating film excellent in flexibility and chemical resistance be obtained, but also CTE can be reduced in a trade-off relationship with flexibility, and warpage and cracking of the insulating film can be suppressed. Further, bisphenol A type epoxy compounds can also be suitably used from the viewpoint of flexibility.
  • the bifunctional or higher functional epoxy compound having a naphthalene skeleton is not particularly limited as long as it has a naphthalene skeleton and has two or more epoxy groups.
  • Examples of commercially available products include HP-4032D, HP-4700, HP-4770, HP-5000, HP-6000, HP-4710 manufactured by DIC, and NC-7000L and NC-7300L manufactured by Nippon Kayaku Co., Ltd.
  • the bifunctional or more functional epoxy compound having a naphthalene skeleton may or may not have a flexible chain in the structure, but the curing of the photosensitive resin composition of the present invention without having a flexible chain. Since the flexibility of the product can be improved, for example, the epoxy group does not need to have a linear structure having 5 to 10 atoms, and more preferably 3 to 5 atoms, between the epoxy groups.
  • the epoxy equivalent of the bifunctional or higher epoxy compound is preferably 100 to 500 g / eq, more preferably 100 to 300 g / eq.
  • the compounding amount of the (C) bifunctional or higher epoxy compound is preferably 0.1 to 50 parts by mass, more preferably 0.1 to 30 parts by mass, per 100 parts by mass of the nonvolatile component of the polybenzoxazole precursor (A). Department.
  • the compounding amount of the (c) naphthalene type epoxy compound is preferably 0.1 to 100 parts by mass of the nonvolatile component of the (A) polybenzoxazole precursor. It is 50 parts by mass, more preferably 0.1 to 30 parts by mass. By setting the content in such a range, it is possible to maintain an appropriate crosslinking density for the (A) polybenzoxazole precursor.
  • the photosensitive resin compositions of the first, second and third aspects of the present invention may contain a crosslinking agent other than (C) a bifunctional or higher epoxy compound.
  • the other crosslinking agent is preferably a compound that reacts with the phenolic hydroxyl group of the polybenzoxazole precursor to form a crosslinked structure, in addition to the above epoxy compound.
  • the functional group that reacts with the phenolic hydroxyl group of the polybenzoxazole precursor includes a cyclic ether group such as an epoxy group, a cyclic thioether group such as an episulfide group, and an alkylene group having 1 to 12 carbon atoms such as a methylol group.
  • An alcoholic hydroxyl group to which a group is bonded is exemplified.
  • crosslinking agent having a triazine ring structure is preferable, and in the present invention, the elongation of the cured product can be further improved.
  • the crosslinking agent having a triazine ring structure is not particularly limited, but is preferably a crosslinking agent represented by the following general formula (2).
  • R 21A , R 22A , R 23A , R 24A , R 25A and R 26A are each independently preferably an alkylene group having 1 to 3 carbon atoms.
  • R 21B , R 22B , R 23B , R 24B , R 25B and R 26B are each independently preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • each of R 21A , R 22A , R 23A , R 24A , R 25A and R 26A is more preferably a methylene group. More preferably, R 21B , R 22B , R 23B , R 24B , R 25B and R 26B are each independently a methyl group or a hydrogen atom.
  • crosslinking agents may be used alone or in combination of two or more.
  • the amount of the other crosslinking agent is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the nonvolatile component of (A) the polybenzoxazole precursor so that the developability is not impaired by the crosslinking. Further, the amount is more preferably 0.1 to 20 parts by mass.
  • the photosensitive resin composition of the first aspect of the present invention contains (D) a plasticizer.
  • the photosensitive resin composition according to the third aspect of the present invention preferably contains (D) a plasticizer.
  • the plasticizer (D) is not particularly limited as long as it is a compound that improves plasticity, and (D1) a plasticizer having a self-polymerizable group and (D2) a plasticizer having no self-polymerizable group. Is also good.
  • the self-polymerizable group include a (meth) acryloyl group, a vinyl group, and an allyl group.
  • (meth) acryloyl group is a general term for an acryloyl group, a methacryloyl group, and a mixture thereof, and the same applies to other similar expressions.
  • (D) a plasticizer by blending (D) a plasticizer, (A) a cyclization reaction of the polybenzoxazole precursor is promoted, and a low-temperature curability is further improved, and a cured product having excellent chemical resistance is obtained. be able to.
  • the cyclization rate of (A) the polybenzoxazole precursor is low, and when a crosslinking agent is added, the curability at a low temperature can be improved.
  • the plasticizing action of the plasticizer that is, the aggregation action between polymer molecular chains is reduced, and the mobility and flexibility between the molecular chains are improved. It is considered that the thermal molecular motion of the polybenzoxazole precursor was improved, and the cyclization reaction was promoted. Further, in the present invention, by blending a plasticizer, a cured product having more excellent flexibility can be obtained.
  • the development resistance of the unexposed area is excellent by blending a bifunctional or higher epoxy compound (C)
  • the developability of the exposed area is improved by blending a plasticizer, and a better pattern is obtained by photolithography. Formation is possible.
  • the plasticizer one type may be used alone, or two or more types may be used in combination.
  • the plasticizer is preferably a plasticizer that does not undergo a cross-linking reaction with other components in the composition. Further, (P) the plasticizer preferably does not have a function of generating thermal acid. Further, when the plasticizer (D) has a self-polymerizable group, the flexibility of the cured product can be further improved.
  • the plasticizer does not have a self-polymerizable group, the chemical resistance of the cured product can be further improved. It is preferable that (D1) a plasticizer having a self-polymerizable group and (D2) a plasticizer having no self-polymerizable group are used in combination as the plasticizer, and the curing is more excellent in flexibility and chemical resistance. You can get things.
  • the blending amount of the (D) plasticizer is 1 to 50 parts by mass with respect to (A) 100 parts by mass of the nonvolatile component of the polybenzoxazole precursor. And more preferably 3 to 40 parts by mass.
  • the photosensitive resin composition of the second aspect of the present invention can also contain (D) a plasticizer.
  • the plasticizer having a self-polymerizable group is preferably a bifunctional (meth) acrylic compound.
  • the bifunctional (meth) acrylic compound is preferably a compound that does not form a crosslinked structure with other components in the composition. Further, the bifunctional (meth) acrylic compound is preferably a compound that forms a linear structure by self-polymerization.
  • the bifunctional (meth) acrylic compound is not particularly limited as long as it has two (meth) acryloyl groups. Specific examples thereof include 1,4-butanediol diacrylate and 1,6-hexanediol diacrylate. Diacrylates of diols such as 1,9-nonanediol diacrylate, 1,10-decanediol diacrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, triethylene glycol diacrylate, tetraethylene glycol diacrylate, polyethylene glycol diacrylate , Dipropylene glycol diacrylate, tripropylene glycol diacrylate, polypropylene glycol diacrylate, neopentyl glycol diacrylate, neopentyl glyco Diacrylate of diol obtained by adding at least one of ethylene oxide and propylene oxide to diene, diacrylate of glycol such as caprolactone-modified neopentyl glycol diacrylate hydroxyp
  • bifunctional (meth) acrylic compounds di (meth) acrylate or bifunctional polyester (meth) acrylate of an alkylene oxide adduct of diol (such as ethylene oxide or propylene oxide) is preferable, and bifunctional polyester (meth) acrylate is preferable.
  • Acrylates are more preferred.
  • the di (meth) acrylate of the alkylene oxide adduct of the diol specifically, one obtained by modifying the diol with an alkylene oxide and then adding a (meth) acrylate to the terminal is preferable, and one having an aromatic ring in the diol is more preferable.
  • bisphenol A @ EO (ethylene oxide) adduct diacrylate, bisphenol A @ PO (propylene oxide) adduct diacrylate and the like can be mentioned.
  • the specific structure of the di (meth) acrylate of the diol alkylene oxide adduct is shown below, but is not limited thereto.
  • n 2 or more, preferably 2 to 40, and more preferably 3.5 to 25.
  • M-6200, M-6250, and M-6500 are preferable.
  • the compounding amount of the plasticizer having a self-polymerizable group is preferably 3 to 40 parts by mass with respect to 100 parts by mass of the non-volatile component of the polybenzoxazole precursor. Can be demonstrated.
  • plasticizer having no self-polymerizable group examples include sulfonamide compounds such as N-butylbenzenesulfonamide and N-ethyl-p-toluenesulfonamide, dimethyl phthalate, diethyl phthalate and diphthalate ( Phthalate compounds such as 2-ethylhexyl), maleate compounds such as di (2-ethylhexyl) maleate, trimellitate esters such as tris (2-ethylhexyl) trimellitate, and fats such as dimethyl adipate and dibutyl adipate Phosphoric acid esters such as aromatic dibasic acid esters, trimethyl phosphate, and tris (butoxyethyl) phosphate; (C 6 H 5 O) 2 P (O) OC 6 H 4 C (CH 3 ) 2 C 6 H 4 OP (O ) (OC 6 H) (C 6 H 5 O) 2 P (O) OC 6 H 4 C (CH 3
  • the sulfonamide compound is preferably a benzenesulfonamide compound represented by the following general formula (3).
  • R 31 is an organic group, a nitro group, a halogen atom, a sulfo group, a sulfonyl group, an amino group, or an amide group;
  • R 32 is a hydrogen atom or an organic group; An integer of from 5 to 5.
  • n is 2 or more, R 31 may be the same or different.
  • the maleic ester compound is preferably a compound represented by the following general formula (4).
  • R 41 and R 42 are each independently a hydrogen atom, an organic group, a nitro group, a halogen atom, a sulfo group, a sulfonyl group, an amino group or an amide group, and R 41 and R 42 are And R 43 may be a hydrogen atom or an organic group, and R 44 may be a hydrogen atom or an organic group.
  • the organic group is a group containing a carbon atom.
  • examples of the organic group include an alkyl group having 1 to 12 carbon atoms, which may be linear or branched.
  • the compounding amount of the plasticizer having no self-polymerizable group is preferably 1 to 50 parts by mass, and more preferably 10 to 50 parts by mass with respect to 100 parts by mass of the nonvolatile component of the polybenzoxazole precursor. Is more preferable. When the amount is 1 part by mass or more, a plasticizing effect is easily exhibited, and when the amount is 50 parts by mass or less, the characteristics of the obtained cured film are not impaired.
  • the photosensitive resin composition of the second embodiment of the present invention contains (E) a thermal acid generator. Further, the photosensitive resin compositions of the first and third aspects of the present invention preferably contain (E) a thermal acid generator.
  • (A) the phenolic hydroxyl group of the polybenzoxazole precursor and (C) the epoxy group of the difunctional or higher functional epoxy compound are considered to react to form a crosslinked structure.
  • a dielectric property is deteriorated due to the generation of a hydroxyl group in the crosslinked structure, there is room for improvement as an insulating material.
  • the thermal acid generator when the thermal acid generator is blended in the present invention, the cyclization reaction at a low temperature is promoted by acting as a catalyst for the cyclization reaction of the polybenzoxazole precursor (A). Dielectric properties are improved by reducing the number of hydroxyl groups in the crosslinked structure, and a cured product having more excellent chemical resistance and heat resistance can be obtained by promoting the cyclization reaction.
  • One kind of the thermal acid generator may be used alone, or two or more kinds may be used in combination.
  • the thermal acid generator is not particularly limited as long as the acid is generated by heat.
  • the generated acid include sulfonic acid, carboxylic acid, acetic acid, hydrochloric acid, nitric acid, bromic acid, and iodic acid, and a strong acid is preferable from the viewpoint of cyclization efficiency, and benzenesulfonic acid and p-toluene are preferable.
  • Sulfonic acids such as arylsulfonic acids such as sulfonic acid, perfluoroalkylsulfonic acids such as trifluoromethanesulfonic acid, nonafluorobutanesulfonic acid and camphorsulfonic acid, and alkylsulfonic acids such as methanesulfonic acid, ethanesulfonic acid and butanesulfonic acid. Is preferred.
  • These acids are added to the photosensitive resin composition as a thermal acid generator, for example, a salt as an onium salt or a compound latentified by a covalent bond such as imidosulfonate.
  • thermal acid generator examples include sulfonic acid ester compounds, sulfonimide compounds, sulfonium salts, 2-sulfobenzoic anhydride, p-toluenesulfonic anhydride, benzothiazolium salts, ammonium salts, Examples include phosphonium salts and sulfonates. Among these, a sulfonic acid ester compound and a sulfonic acid salt are preferable.
  • the thermal acid generator is preferably a compound that generates a strong acid (having an acid dissociation constant pKa in water of 0 or less) by heat.
  • sulfonic acid ester compound examples include ethyl methanesulfonate, methyl methanesulfonate, 2-methoxyethyl methanesulfonate, 2-isopropoxyethyl methanesulfonate, cyclohexyl 4-methylbenzenesulfonate, (1R, 2S, 5R)- 5-methyl-2- (propan-2-yl) cyclohexyl 4-methylbenzenesulfonic acid, phenyl p-toluenesulfonate, ethyl p-toluenesulfonate, methyl p-toluenesulfonate, 2-phenyl p-toluenesulfonate Ethyl, n-propyl p-toluenesulfonate, n-butyl p-toluenesulfonate, t-butyl p-
  • sulfonic acid ester compound a compound represented by the following general formula (5) is preferable.
  • R 51 represents a hydrogen atom or an alkyl group
  • R 52 represents a hydrogen atom or an organic group.
  • the alkyl group which R 51 can have may be straight-chain or branched. Further, the number of carbon atoms is preferably 1 to 10, more preferably 1 to 6.
  • the organic group which R 52 can take may be linear or branched, and may have a cyclic structure.
  • the number of carbon atoms is preferably from 1 to 16, more preferably from 1 to 11.
  • a compound represented by the following general formula (6) is preferable.
  • R 61 represents a hydrogen atom or an alkyl group
  • R 62 and R 63 each independently represent a hydrogen atom or an organic group.
  • R 62 and R 63 are bonded to form a ring. May be.
  • the alkyl group which R 61 can take may be straight-chain or branched. Further, the number of carbon atoms is preferably from 1 to 10, more preferably from 1 to 6.
  • the organic group that can be taken by R 62 and R 63 may be linear or branched.
  • examples of the organic group include an alkyl group having 1 to 12 carbon atoms, which may be linear or branched.
  • thermal acid generators a thermal acid generator that generates an acid at 120 to 220 ° C. is preferable.
  • a thermal acid generator that generates an acid at a temperature of 120 ° C. or higher the reaction hardly proceeds during prebaking, and a development residue hardly occurs.
  • a thermal acid generator that generates an acid at 150 to 220 ° C. is preferable. The generation of acid can be confirmed by the temperature at which the weight is reduced by TG-DTA.
  • the compounding amount of (E) the thermal acid generator is preferably 0.1 to 30 parts by mass, and more preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the nonvolatile component of the polybenzoxazole precursor (A). More preferably, the content is more preferably 1 to 3 parts by mass.
  • the photosensitive resin composition of the present invention includes, within a range not impairing the effects of the present invention, a known sensitizer for further improving the photosensitivity, and a silane coupling agent for improving the adhesion to the substrate. Can also be blended. Further, in order to impart processing characteristics and various functions to the photosensitive resin composition of the present invention, various other organic or inorganic low-molecular or high-molecular compounds may be blended. For example, a surfactant, a leveling agent, fine particles, and the like can be used. The fine particles include organic fine particles such as polystyrene and polytetrafluoroethylene, and inorganic fine particles such as silica, carbon, and layered silicate. Further, various colorants, fibers and the like may be blended in the photosensitive resin composition of the present invention.
  • the solvent used in the photosensitive resin composition of the present invention is not particularly limited as long as it dissolves the above-mentioned components contained in the photosensitive resin composition of the present invention and other additives.
  • Examples include N, N'-dimethylformamide, N-methylpyrrolidone, N-ethyl-2-pyrrolidone, N, N'-dimethylacetamide, diethylene glycol dimethyl ether, cyclopentanone, ⁇ -butyrolactone, ⁇ -acetyl- ⁇ - Examples include butyrolactone, tetramethylurea, 1,3-dimethyl-2-imidazolinone, N-cyclohexyl-2-pyrrolidone, dimethylsulfoxide, hexamethylphosphoramide, pyridine, ⁇ -butyrolactone, and diethylene glycol monomethyl ether.
  • the amount of the solvent to be used can be appropriately determined according to the coating film thickness and the viscosity. For example, it can be used in an amount of 50 to 9000 parts by mass based on 100 parts by mass of the polybenzoxazole precursor (A).
  • the photosensitive resin composition of the present invention is preferably of a positive type.
  • the dry film of the present invention has a resin layer obtained by applying the photosensitive resin composition of the present invention to a film (for example, a support (carrier) film) and then drying. This resin layer is used after being laminated so as to be in contact with the base material.
  • a film for example, a support (carrier) film
  • the dry film of the present invention is formed by uniformly applying the photosensitive resin composition of the present invention to the film by an appropriate method such as a blade coater, a lip coater, a comma coater, a film coater, and the like, and drying to form the above-described resin layer.
  • an appropriate method such as a blade coater, a lip coater, a comma coater, a film coater, and the like, and drying to form the above-described resin layer.
  • it can be manufactured by laminating a film (a so-called protective (cover) film) thereon.
  • the same film material may be used for the protective film and the support film, or different films may be used.
  • the film material of the support film and the protective film any of those known as materials used for dry films can be used.
  • a thermoplastic film such as a polyester film such as polyethylene terephthalate having a thickness of 2 to 150 ⁇ m is used.
  • a polyethylene film, a polypropylene film, or the like can be used, but a film having lower adhesive strength to the resin layer than the supporting film is preferable.
  • the thickness of the resin layer on the dry film of the present invention is preferably 100 ⁇ m or less, more preferably 5 to 50 ⁇ m.
  • the cured product of the present invention is obtained by curing the photosensitive resin composition of the present invention in a predetermined step.
  • the pattern film as the cured product may be manufactured by a known and commonly used manufacturing method. For example, in the case of (B) a positive photosensitive resin composition containing a photoacid generator as a photosensitive agent, the following steps are performed. To manufacture.
  • a coating film is obtained by applying and drying a photosensitive resin composition on a substrate, or by transferring a resin layer from a dry film onto a substrate.
  • a method of applying the photosensitive resin composition on the substrate a method conventionally used for applying the photosensitive resin composition, for example, a spin coater, a bar coater, a blade coater, a curtain coater, a screen printing machine, and the like , A spray coating method using a spray coater, and an ink jet method.
  • methods for drying the coating film methods such as air drying, heating drying using an oven or a hot plate, and vacuum drying are used.
  • the drying of the coating film is performed under such conditions that the cyclization of the polybenzoxazole precursor in the photosensitive resin composition does not occur.
  • natural drying, air drying, or heat drying can be performed at 70 to 140 ° C. for 1 to 30 minutes.
  • drying is performed on a hot plate for 1 to 20 minutes. Vacuum drying is also possible. In this case, the drying can be performed at room temperature for 20 minutes to 1 hour.
  • the substrate on which the coating film of the photosensitive resin composition is formed is not particularly limited, and can be widely applied to semiconductor substrates such as silicon wafers, wiring substrates, various resins, metals, and the like.
  • step 2 the coating film is exposed through a photomask having a pattern or directly.
  • An exposure light having a wavelength capable of activating a photoacid generator (B) as a photosensitive agent is used.
  • the exposure light preferably has a maximum wavelength in the range of 350 to 440 nm.
  • the photosensitivity can be adjusted by appropriately adding a sensitizer.
  • a contact aligner, a mirror projection, a stepper, a laser direct exposure device, or the like can be used as the exposure device.
  • step 3 the coating film is treated with a developer. This makes it possible to form a pattern film of the photosensitive resin composition of the present invention by removing the exposed portions in the coating film.
  • any method can be selected from conventionally known methods for developing a photoresist, for example, a rotary spray method, a paddle method, an immersion method involving ultrasonic treatment, and the like.
  • the developer include inorganic alkalis such as sodium hydroxide, sodium carbonate, sodium silicate, and aqueous ammonia; organic amines such as ethylamine, diethylamine, triethylamine, and triethanolamine; tetramethylammonium hydroxide; and tetrabutylammonium hydroxide. And aqueous solutions of quaternary ammonium salts.
  • a water-soluble organic solvent such as methanol, ethanol, or isopropyl alcohol or a surfactant may be added to these.
  • a rinsing liquid distilled water, methanol, ethanol, isopropyl alcohol and the like can be used alone or in combination. Further, the above-mentioned solvent may be used as a developer.
  • the pattern film is heated to obtain a cured coating film (cured product).
  • the polybenzoxazole precursor is cyclized to obtain polybenzoxazole.
  • the heating temperature is appropriately set so that the pattern film of the photosensitive resin composition can be cured. For example, heating is performed at 150 ° C. or higher and lower than 350 ° C. for about 5 to 120 minutes in an inert gas. A more preferable range of the heating temperature is 180 to 250 ° C.
  • the photosensitive resin composition of the second aspect of the present invention comprises:
  • the third photosensitive resin composition of the present invention contains (c) a naphthalene-type epoxy compound because C) contains a bifunctional or higher functional epoxy compound and (E) a thermal acid generator, so that cyclization is promoted.
  • the heating temperature can be set to less than 250 ° C., and further, to 220 ° C. or less.
  • the heating is performed by using, for example, a hot plate, an oven, and a temperature rising oven in which a temperature program can be set.
  • As the atmosphere (gas) at this time air may be used, or an inert gas such as nitrogen or argon may be used.
  • the use of the photosensitive resin composition of the present invention is not particularly limited.
  • it is suitable as a coating material, a printing ink, or an adhesive, or a display device, a semiconductor device, an electronic component, an optical component, or a building material.
  • a material for forming a display device a color filter, a film for a flexible display, a resist material, an alignment film, or the like can be used as a layer forming material or an image forming material.
  • a material for forming a semiconductor device a resist material, a layer forming material such as a buffer coat film, or the like can be used.
  • a sealing material or a layer forming material can be used for a printed wiring board, an interlayer insulating film, a wiring coating film, or the like.
  • a material for forming an optical component a hologram, an optical waveguide, an optical circuit, an optical circuit component, an antireflection film, or the like can be used as an optical material or a layer forming material.
  • a building material it can be used for a paint, a coating agent and the like.
  • the photosensitive resin composition of the present invention is mainly used as a pattern forming material, and the pattern film formed thereby functions as a component that imparts heat resistance and insulation as a permanent film made of, for example, polybenzoxazole.
  • surface protection films for semiconductor devices, display devices and light emitting devices, interlayer insulation films, insulation films for rewiring, protection films for flip-chip devices, protection films for devices having a bump structure, interlayer insulation for multilayer circuits It can be suitably used as a film, an insulating material for passive components, a protective film for a printed wiring board such as a solder resist or a coverlay film, and a liquid crystal alignment film.
  • the photosensitive resin composition of the present invention is suitable as a material for forming a layer to be laminated, for example, an interlayer insulating film or an insulating film for rewiring, since the cured product has excellent chemical resistance.
  • the temperature of the reaction system was returned to room temperature, and the mixture was stirred for 6 hours. Thereafter, 1.8 g (0.1 mol) of pure water was added, and the mixture was further reacted at 40 ° C. for 1 hour. After the completion of the reaction, the reaction solution was dropped into 2000 g of pure water. The precipitate was collected by filtration, washed, and dried under vacuum to obtain an alkali-soluble polyhydroxyamide (A1) which is a polybenzoxazole precursor having a repeating structure shown below. The weight average molecular weight was 32,000, the number average molecular weight was 12,500, and the PDI was 2.56.
  • A1 alkali-soluble polyhydroxyamide
  • the varnish prepared above was spin-coated on a silicon wafer and heated at 110 ° C. for 3 minutes to form a coating film having a thickness of 40 ⁇ m. Thereafter, the coating film was heated in an inert gas oven under a nitrogen atmosphere at 120 ° C. for 10 minutes, and then heated at 4 ° C./min. And heated at 220 ° C. for 60 minutes to obtain a cured film. Next, using a PCT apparatus (HAST SYSTEM TPC-412MD manufactured by Espec Corporation), the cured film was peeled off at 121 ° C. and 100% RH for 60 minutes, and the film properties such as elongation at break were examined.
  • a PCT apparatus HAST SYSTEM TPC-412MD manufactured by Espec Corporation
  • the elongation at break was obtained from a tensile test using EZ-SX manufactured by Shimadzu Corporation. The distance between the grippers was 30 mm, the tensile speed was 3 mm / min, the measurement was performed five times, and the maximum value was taken as the elongation at break.
  • the elongation was evaluated according to the following criteria. A +: 30% or more A: 20% or more and less than 30% B: 10% or more and less than 20% C: less than 10%
  • the varnish prepared above was applied on a silicon substrate subjected to copper sputtering using a spin coater. It was dried on a hot plate at 100 ° C. for 3 minutes to obtain a dried film of the photosensitive resin composition having a thickness of 10 ⁇ m. Using a high-pressure mercury lamp, the obtained dried film was irradiated with i-line of 800 mJ / cm 2 through a mask in which a pattern was cut. After exposure, the resist film was developed with a 2.38% aqueous solution of tetramethylammonium hydroxide (TMAH) and rinsed with water to obtain a positive pattern.
  • TMAH tetramethylammonium hydroxide
  • the remaining film ratio (%) was calculated from the remaining film thickness of the unexposed portion when the remaining film of the exposed portion became 0, and evaluated according to the following criteria.
  • the dry film thickness (nm) / the time (sec) when the remaining film in the exposed portion became 0 was calculated. It was calculated as the dissolution rate of the exposed part.
  • ⁇ (D) plasticizer> (D1-1) Aronix M-6250 (bifunctional polyester acrylate, manufactured by Toagosei Co., Ltd.) (D1-2)) NK ester BPE-900 (bifunctional methacrylate, manufactured by Shin-Nakamura Chemical Co., Ltd.) (D2-1) N-butylbenzenesulfonamide (manufactured by Daihachi Chemical)
  • the photosensitive resin composition of the first embodiment of the present invention has excellent developability in the exposed area, and has a chemical resistance even when cured at a low temperature of about 220 ° C. It can be seen that a cured film having excellent properties and flexibility can be obtained.
  • the resulting varnish was applied on a wafer using a spin coater MS-A150 manufactured by Mikasa Corporation. After drying at 120 ° C. for 10 minutes on a hot plate, the mixture was heated at 150 ° C. for 30 minutes and then at the curing temperature shown in Table 2 for 1 hour to obtain a cured product (heating rate: 4 ° C./min). Thereafter, the wafer was exposed to 121 ° C./100% RH for 1 hour using a pressure cooker test (PCT) apparatus, and peeled from the silicon wafer.
  • PCT pressure cooker test
  • the cured film thus obtained was subjected to IR measurement using FT-IR Spectrum Two (manufactured by PerkinElmer), and the cyclization rate of the benzoxazole ring was determined from the obtained chart by the following formula. Each composition was calculated assuming that one cured at 320 ° C. for 1 hour was a cyclization ratio of 100%.
  • A: around 1050 cm -1 ; CO derived from an oxazole ring B: around 1595 cm -1 ; C C of a wholly aromatic ring ⁇ reference peak
  • the varnish prepared above was spin-coated on a silicon wafer and heated at 110 ° C. for 3 minutes to form a coating film having a thickness of 40 ⁇ m. Thereafter, the coating film was heated in an inert gas oven under a nitrogen atmosphere at 120 ° C. for 10 minutes, and then heated at 4 ° C./min. And heated at 220 ° C. for 60 minutes to obtain a cured film. Next, using a PCT apparatus (HAST SYSTEM TPC-412MD manufactured by Espec Corporation), the cured film was peeled off at 121 ° C. and 100% RH for 60 minutes, and the film properties such as elongation at break were examined.
  • a PCT apparatus HAST SYSTEM TPC-412MD manufactured by Espec Corporation
  • the elongation at break was obtained from a tensile test using EZ-SX manufactured by Shimadzu Corporation. The distance between the grippers was 30 mm, the tensile speed was 3 mm / min, the measurement was performed five times, and the maximum value was taken as the elongation at break.
  • the elongation was evaluated according to the following criteria. A +: 30% or more A: 20% or more and less than 30% B: 10% or more and less than 20% C: less than 10%
  • the varnish prepared above was applied on a silicon substrate subjected to copper sputtering using a spin coater. It was dried on a hot plate at 100 ° C. for 3 minutes to obtain a dried film of the photosensitive resin composition having a thickness of 10 ⁇ m. Using a high-pressure mercury lamp, the obtained dried film was irradiated with i-line of 800 mJ / cm 2 through a mask in which a pattern was cut. After exposure, the resist film was developed with a 2.38% aqueous solution of tetramethylammonium hydroxide (TMAH) and rinsed with water to obtain a positive pattern.
  • TMAH tetramethylammonium hydroxide
  • the remaining film ratio (%) was calculated from the remaining film thickness of the unexposed portion when the remaining film of the exposed portion became 0, and evaluated according to the following criteria.
  • the dry film thickness (nm) / the time (sec) when the remaining film in the exposed portion became 0 was calculated. It was calculated as the dissolution rate of the exposed part.
  • D2-1 N-butylbenzenesulfonamide (manufactured by Daihachi Chemical)
  • D2-3) di (2-ethylhexyl) phthalate (manufactured by TCI)
  • D2-4 di (2-ethylhexyl) maleate (manufactured by TCI)
  • D1-1) Aronix M-6250 (bifunctional polyester acrylate, manufactured by Toagosei Co., Ltd.)
  • the photosensitive resin composition of the first embodiment of the present invention has excellent developability of the exposed portion, and has a chemical resistance even when cured at a low temperature of about 220 ° C. It can be seen that a cured film having excellent properties and flexibility can be obtained.
  • ⁇ Second embodiment> (Preparation of positive photosensitive resin composition)
  • the photoacid generator (B1), the epoxy compound (C1 to C3), and each component were blended at the ratio shown in Table 4 below with respect to 100 parts by mass of the polybenzoxazole precursor (A1) synthesized above.
  • ⁇ -butyrolactone was added so that the content of the polymer was 30% by mass to prepare a varnish.
  • each epoxy compound was blended so that the ratio of the epoxy group to the phenolic OH of the polybenzoxazole precursor (A1) was 5: 1.
  • the varnish prepared above was spin-coated on a silicon wafer and heated at 110 ° C. for 3 minutes to form a coating film having a thickness of 40 ⁇ m. Thereafter, the coating film was heated in an inert gas oven under a nitrogen atmosphere at 120 ° C. for 10 minutes, and then heated at 4 ° C./min. And heated at 220 ° C. for 60 minutes to obtain a cured film. Next, using a PCT device (HAST SYSTEM TPC-412MD manufactured by Espec Corporation), the cured film was peeled off at 121 ° C. and 100% RH for 60 minutes. Were not obtained, and were broken.
  • a PCT device HAST SYSTEM TPC-412MD manufactured by Espec Corporation
  • the dielectric loss tangent Df which is a dielectric property, was measured according to the following method.
  • the varnish prepared above was spin-coated on a silicon wafer and heated at 110 ° C. for 3 minutes to form a coating film having a thickness of 40 ⁇ m. Thereafter, the coating film was heated in an inert gas oven under a nitrogen atmosphere at 120 ° C. for 10 minutes, and then heated at 4 ° C./min. And heated at 220 ° C. for 60 minutes to obtain a cured film.
  • the cured film was peeled off using a PCT apparatus (HAST SYSTEM TPC-412MD manufactured by Espec Corporation) under the conditions of 121 ° C., 100% RH and 60 minutes to obtain a free-standing film.
  • the obtained cured film was used as a test piece and measured by a SPDR (Split Post Dielectric Resonator) resonator method.
  • a SPDR Split Post Dielectric Resonator
  • a vector type network analyzer E5071C and SPDR resonator manufactured by Keysight Technology GK, and a calculation program used by QWED were used.
  • the conditions were a frequency of 10 GHz and a measurement temperature of 25 ° C.
  • Evaluation of dielectric loss tangent A: less than 0.01 B: 0.01 or more and less than 0.015 C: 0.015 or more
  • TG-DTA measurement was performed on a sample of 5 to 10 mg of a sample obtained by cutting the self-standing film obtained by heating at 220 ° C. for 60 minutes obtained in the above (measurement of dielectric constant and dielectric loss tangent) into 1 to 2 mm square under a nitrogen atmosphere (30). 580 ° C.), and the temperature at which the weight change was 5% was measured.
  • the cured film was cut into 20 mm ⁇ 5 mm with a stainless steel blade (blade thickness 0.25 mm) and measured with a dynamic viscoelasticity measuring device (G2 RSA, manufactured by TA Instruments). The measurement was performed in the temperature rising process from room temperature to 350 ° C., and was performed at a temperature rising rate of 5 ° C./min, a load of 0.5 N, a frequency of 1 Hz, and a distance between grips of 10 mm.
  • the peak top of tan ⁇ was defined as Tg.
  • the varnish prepared above was applied on a silicon substrate subjected to copper sputtering using a spin coater. It was dried on a hot plate at 100 ° C. for 3 minutes to obtain a dried film of the photosensitive resin composition having a thickness of 10 ⁇ m. Using a high-pressure mercury lamp, the obtained dried film was irradiated with i-line of 800 mJ / cm 2 through a mask in which a pattern was cut. After exposure, the resist film was developed with a 2.38% aqueous solution of tetramethylammonium hydroxide (TMAH) and rinsed with water to obtain a positive pattern.
  • TMAH tetramethylammonium hydroxide
  • the remaining film ratio (%) was calculated from the remaining film thickness of the unexposed portion when the remaining film of the exposed portion became 0, and evaluated according to the following criteria. A: 90% or more and B: less than 90% Further, the dry film thickness (nm) / the time (sec) when the residual film of the exposed portion became 0 was calculated as the dissolution rate of the exposed portion.
  • the photosensitive resin composition of the second embodiment of the present invention can form a self-supporting film even when cured at a low temperature of about 220 ° C. It can be seen that a cured film having excellent chemical properties, thermal properties and dielectric properties can be obtained.
  • ⁇ Third embodiment> Preparation of positive photosensitive resin composition
  • the photoacid generator (B1), the epoxy compound (C2 to C4), and each component were blended at the ratio shown in Table 5 below with respect to 100 parts by mass of the polybenzoxazole precursor (A1) synthesized above. After that, ⁇ -butyrolactone was added so that the content of the polymer was 30% by mass to prepare a varnish.
  • a varnish was applied to the wafer using a spin coater MS-A150 manufactured by Mikasa Corporation. After drying on a hot plate at 120 ° C. for 10 minutes, curing was carried out by heating at 150 ° C. for 30 minutes and then at 220 ° C. for 1 hour (heating rate: 4 ° C./min) to obtain a cured film for a physical property test. Thereafter, the wafer was exposed to 121 ° C./100% RH for 1 hour using a pressure cooker test (PCT) apparatus, and peeled from the silicon wafer.
  • PCT pressure cooker test
  • CTE linear thermal expansion coefficient
  • a wafer with a cured film having a thickness of 10 to 12 ⁇ m is cut into a square of 2 cm, immersed in GBL ( ⁇ -butyrolactone), washed with water, dried, and observed with an optical microscope to determine the film loss of the cured film before and after immersion. The evaluation was based on the evaluation criteria.
  • Film loss is 5% or more
  • the photosensitive resin composition of the third aspect of the present invention has excellent chemical resistance and excellent flexibility even when cured at a low temperature of about 220 ° C. It can be seen that a cured film having a low CTE having properties can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials For Photolithography (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

Provided is a photosensitive resin composition or the like from which a cured film, a light-exposed portion of which has good developability and which has excellent chemical resistance and flexibility even when cured at a low-temperature around 220°C, can be obtained, the photosensitive resin composition being preferably used for an insulating film for rewiring. The photosensitive resin composition or the like is characterized by including a polybenzoxazole precursor (A), a photosensitizer (B), a bifunctional or higher functional epoxy compound (C), and a plasticizer (D).

Description

感光性樹脂組成物、ドライフィルム、硬化物、および電子部品Photosensitive resin composition, dry film, cured product, and electronic component
 本発明は、感光性樹脂組成物、ドライフィルム、硬化物、および電子部品に関する。 << The present invention relates to a photosensitive resin composition, a dry film, a cured product, and an electronic component.
 従来、半導体素子における再配線用の絶縁材料として、ポリベンゾオキサゾール前駆体(以下、「PBO前駆体」とも称する)を主成分とする樹脂組成物が用いられている。このPBO前駆体は、高温(>350℃)で加熱してベンゾオキサゾール環へと環化反応させることで剛直な構造となり、また分子間でのパッキング密度も上昇することから、このPBO前駆体を含む樹脂組成物によれば、耐薬品性、熱特性および柔軟性などの機械特性に優れた硬化膜が得られる。 Conventionally, as an insulating material for rewiring in a semiconductor element, a resin composition containing a polybenzoxazole precursor (hereinafter, also referred to as “PBO precursor”) as a main component has been used. The PBO precursor is heated at a high temperature (> 350 ° C.) to undergo a cyclization reaction to form a benzoxazole ring, which results in a rigid structure and an increase in packing density between molecules. According to the contained resin composition, a cured film having excellent mechanical properties such as chemical resistance, thermal properties and flexibility can be obtained.
 一方で近年、チップを封止剤で封止した後、再配線を形成する、いわゆるモールディングファースト型ファンアウトウエハレベルパッケージ工法が登場している。そのため、かかる工法に用いられる再配線用の絶縁材料としては、エポキシ樹脂を主成分とする封止材の耐熱性の観点から、220℃程度の低温で硬化可能な材料が求められている。 On the other hand, in recent years, a so-called molding-first type fan-out wafer-level package method has been developed, in which a chip is sealed with a sealant and then rewiring is formed. Therefore, as an insulating material for rewiring used in such a method, a material that can be cured at a low temperature of about 220 ° C. is required from the viewpoint of heat resistance of a sealing material containing an epoxy resin as a main component.
 しかしながら、このような低い温度では、PBO前駆体を含む樹脂組成物は、PBO前駆体の環化が十分に進行せず、耐薬品性や熱特性、柔軟性などの機械特性といった種々の特性が低下してしまうという問題があった。 However, at such a low temperature, the resin composition containing the PBO precursor does not sufficiently advance the cyclization of the PBO precursor, and has various properties such as chemical resistance, thermal properties, and mechanical properties such as flexibility. There was a problem that it would decrease.
 また、このような低い温度では、PBO前駆体の環化が十分に進行しないことで硬化膜に割れが生じ易くなるという問題もあった。 {Circle around (5)} At such a low temperature, the cyclization of the PBO precursor did not proceed sufficiently, and there was also a problem that the cured film was liable to crack.
 これに対し従来、これらの問題を解決すべく、PBO前駆体を含む樹脂組成物にエポキシ化合物などの架橋剤を加えるアプローチが種々提案されている(例えば、特許文献1)。 に 対 し On the other hand, in order to solve these problems, various approaches for adding a crosslinking agent such as an epoxy compound to a resin composition containing a PBO precursor have been proposed (for example, Patent Document 1).
特開2014-111718号公報JP 2014-111718 A
 しかしながら、架橋剤を配合すると、硬化物に形成される架橋構造によって、低温硬化時でも耐薬品性等の物性は向上するが、柔軟性が低下してしまうという二律背反の問題があった。 However, when a cross-linking agent is blended, the cross-linking structure formed in the cured product improves physical properties such as chemical resistance even at the time of low-temperature curing, but there is a trade-off problem that flexibility is reduced.
 また、架橋剤としてエポキシ化合物を配合すると、未露光部の耐現像性が向上するものの、良好なパターン形成のためには露光部の現像性に改良の余地があった。 配合 Although the addition of an epoxy compound as a cross-linking agent improves the development resistance of the unexposed area, there is room for improvement in the developability of the exposed area in order to form a good pattern.
 そこで本発明の第一の主たる目的は、露光部の現像性に優れ、220℃程度の低温で硬化を行った場合であっても、耐薬品性及び柔軟性に優れた絶縁膜が得られる、再配線用の絶縁膜に用いて好適な感光性樹脂組成物を提供することにある。
 また、本発明の第一の他の目的は、該組成物から得られる樹脂層を有するドライフィルム、該組成物または該ドライフィルムの樹脂層の硬化物、該硬化物を有する電子部品を提供することにある。
Therefore, the first main object of the present invention is excellent in the developability of the exposed portion, even when cured at a low temperature of about 220 ° C., it is possible to obtain an insulating film excellent in chemical resistance and flexibility, An object of the present invention is to provide a photosensitive resin composition suitable for use as an insulating film for rewiring.
Another first object of the present invention is to provide a dry film having a resin layer obtained from the composition, a cured product of the composition or the resin layer of the dry film, and an electronic component having the cured product. It is in.
 また、エポキシ化合物を架橋剤として配合すると、架橋反応によって低温硬化時でも割れの無い自立した硬化膜(自立膜)の形成が可能となるものの、PBO前駆体のフェノール性水酸基とエポキシ基化合物のエポキシ基の反応による架橋構造の形成では、架橋構造に水酸基が生じるため誘電特性が悪化するという二律背反の問題があった。また、耐薬品性や熱特性にも改善の余地があった。 When an epoxy compound is blended as a cross-linking agent, a cross-linking reaction makes it possible to form a self-supporting cured film (free-standing film) free of cracks even at the time of low-temperature curing, but the epoxy compound of the phenolic hydroxyl group of the PBO precursor and the epoxy group compound In the formation of a crosslinked structure by the reaction of a group, a hydroxyl group is generated in the crosslinked structure, and there is a trade-off problem that the dielectric properties are deteriorated. There is also room for improvement in chemical resistance and thermal properties.
 そこで本発明の第二の主たる目的は、220℃程度の低温で硬化を行った場合であっても、自立膜の形成が可能であり、耐薬品性、熱特性および誘電特性に優れた絶縁膜が得られる、再配線用の絶縁膜に用いて好適な感光性樹脂組成物を提供することにある。
 また、本発明の第二の他の目的は、該組成物から得られる樹脂層を有するドライフィルム、該組成物または該ドライフィルムの樹脂層の硬化物、該硬化物を有する電子部品を提供することにある。
Therefore, a second main object of the present invention is to form an insulating film which is capable of forming a self-supporting film even when cured at a low temperature of about 220 ° C. and has excellent chemical resistance, thermal properties and dielectric properties. It is an object of the present invention to provide a photosensitive resin composition suitable for use in an insulating film for redistribution, which is obtained.
Further, another object of the present invention is to provide a dry film having a resin layer obtained from the composition, a cured product of the composition or the resin layer of the dry film, and an electronic component having the cured product. It is in.
 また、特許文献1に記載された技術によれば、確かに、特定の構造を有するエポキシ化合物を架橋剤として樹脂組成物に配合することで、かかる樹脂組成物は、低温硬化時でも優れた耐薬品性の硬化物が得られる。
 しかしながら、この特許文献1に記載されたような樹脂組成物を用いた絶縁膜を備えるウエハでは、反りの発生や、絶縁膜へのクラックの発生を招くといった問題が依然として残っていた。かかる問題について、発明者らが鋭意検討したところ、特許文献1に記載された化合物を架橋剤として用いると、絶縁膜のCTE(線熱膨張係数)の上昇を招き、その結果、ウエハと絶縁膜とのCTEの差から反りが発生し、さらには、この反りによる応力が絶縁膜に加わることで、絶縁膜にクラックが発生するということに発明者らは気付いた。
According to the technique described in Patent Document 1, it is true that an epoxy compound having a specific structure is blended into a resin composition as a cross-linking agent, so that such a resin composition has excellent resistance even at low temperature curing. A chemically cured product is obtained.
However, in a wafer provided with an insulating film using a resin composition as described in Patent Document 1, there still remain problems such as warpage and cracks in the insulating film. The inventors of the present invention have conducted intensive studies on such a problem. As a result, when the compound described in Patent Document 1 is used as a cross-linking agent, the CTE (linear thermal expansion coefficient) of the insulating film is increased. The inventors have noticed that warpage occurs due to the difference in CTE from the above and that the stress due to this warp is applied to the insulating film, thereby causing cracks in the insulating film.
 また発明者らは、再配線用の低温硬化絶縁膜に柔軟性などの機械特性を付与すると、却ってCTEの上昇や耐薬品性の低下を招くという二律背反の問題があることに着目した。すなわち、再配線用の絶縁膜に適した樹脂組成物としては、低CTE化と柔軟性とを両立することが重要であることがわかった。 Also, the inventors have noticed that there is a trade-off problem that imparting mechanical properties such as flexibility to the low-temperature cured insulating film for rewiring leads to an increase in CTE and a decrease in chemical resistance. That is, it was found that it is important for the resin composition suitable for the insulating film for rewiring to achieve both low CTE and flexibility.
 そこで本発明の第三の主たる目的は、220℃程度の低温で硬化を行った場合であっても、耐薬品性に優れ、かつ優れた柔軟性を有する低CTEの絶縁膜が得られる、再配線用の絶縁膜に用いて好適な感光性樹脂組成物を提供することにある。
 また、本発明の第三の他の目的は、該組成物から得られる樹脂層を有するドライフィルム、該組成物または該ドライフィルムの樹脂層の硬化物、該硬化物を有する電子部品を提供することにある。
Therefore, a third main object of the present invention is to provide a low-CTE insulating film having excellent chemical resistance and excellent flexibility even when curing is performed at a low temperature of about 220 ° C. An object of the present invention is to provide a photosensitive resin composition suitable for use as an insulating film for wiring.
Another object of the present invention is to provide a dry film having a resin layer obtained from the composition, a cured product of the composition or the resin layer of the dry film, and an electronic component having the cured product. It is in.
 本発明者らは、上記目的の実現に向け鋭意検討した。その結果、PBO前駆体を含む感光性樹脂組成物において、架橋剤として2官能以上のエポキシ化合物を用い、自己重合性基を有する可塑剤を組み合わせて配合することにより、上記課題を解決しうることを見出し、本発明を完成するに至った。 The present inventors have conducted intensive studies to achieve the above object. As a result, in the photosensitive resin composition containing the PBO precursor, the above-mentioned problem can be solved by using a bifunctional or more functional epoxy compound as a cross-linking agent and combining it with a plasticizer having a self-polymerizable group. And completed the present invention.
 すなわち、本発明の第一の態様の感光性樹脂組成物は、(A)ポリベンゾオキサゾール前駆体、(B)感光剤、(C)2官能以上のエポキシ化合物、および、(D)可塑剤を含むことを特徴とするものである。 That is, the photosensitive resin composition of the first aspect of the present invention comprises (A) a polybenzoxazole precursor, (B) a photosensitizer, (C) a bifunctional or higher functional epoxy compound, and (D) a plasticizer. It is characterized by including.
 本発明の第一の態様の感光性樹脂組成物は、前記(D)可塑剤が、(D1)自己重合性基を有する可塑剤であることが好ましく、前記(D)自己重合性基を有する可塑剤が、2官能(メタ)アクリル化合物であることがより好ましい。 In the photosensitive resin composition according to the first aspect of the present invention, the (D) plasticizer is preferably a plasticizer having a self-polymerizable group (D1), and the plasticizer (D) has a self-polymerizable group. More preferably, the plasticizer is a bifunctional (meth) acrylic compound.
 本発明の第一の態様の感光性樹脂組成物は、前記(D)可塑剤が、(D2)自己重合性基を有さない可塑剤であることが好ましく、前記(D)自己重合性基を有さない可塑剤が、スルホンアミド化合物、フタル酸エステル化合物、および、マレイン酸エステル化合物の少なくとも何れか一種であることがより好ましい。 In the photosensitive resin composition according to the first aspect of the present invention, the (D) plasticizer is preferably (D2) a plasticizer having no self-polymerizable group, and the (D) self-polymerizable group Is more preferably at least one of a sulfonamide compound, a phthalate compound, and a maleate compound.
 本発明の第一の態様の感光性樹脂組成物は、前記(D1)自己重合性基を有する可塑剤と前記(D2)自己重合性基を有さない可塑剤を含むことがより好ましい。 よ り It is more preferable that the photosensitive resin composition of the first aspect of the present invention contains (D1) a plasticizer having a self-polymerizable group and (D2) a plasticizer not having a self-polymerizable group.
 本発明の第一の態様の感光性樹脂組成物は、さらに、(E)熱酸発生剤を含むことが好ましい。 感光 The photosensitive resin composition according to the first aspect of the present invention preferably further contains (E) a thermal acid generator.
 本発明の第一の態様の感光性樹脂組成物は、前記(E)熱酸発生剤が、スルホン酸エステル化合物であることが好ましい。 、 In the photosensitive resin composition according to the first aspect of the present invention, the thermal acid generator (E) is preferably a sulfonic acid ester compound.
 本発明の第一の態様の感光性樹脂組成物は、前記(C)2官能以上のエポキシ化合物が、ナフタレン構造を有することが好ましい。 は In the photosensitive resin composition according to the first aspect of the present invention, it is preferable that the (C) bifunctional or higher functional epoxy compound has a naphthalene structure.
 本発明の第一の態様の感光性樹脂組成物は、さらに、トリアジン環構造を有する架橋剤を含むことが好ましい。 感光 The photosensitive resin composition of the first aspect of the present invention preferably further contains a crosslinking agent having a triazine ring structure.
 本発明の第一の態様のドライフィルムは、フィルム上に、前記感光性樹脂組成物を塗布、乾燥して得られる樹脂層を有することを特徴とするものである。 ド ラ イ The dry film according to the first aspect of the present invention has a resin layer obtained by applying and drying the photosensitive resin composition on a film.
 本発明の第一の態様の硬化物は、前記感光性樹脂組成物または前記ドライフィルムの樹脂層を硬化して得られることを特徴とするものである。 硬化 The cured product of the first aspect of the present invention is obtained by curing the photosensitive resin composition or the resin layer of the dry film.
 本発明の第一の態様の電子部品は、前記硬化物を有することを特徴とするものである。 電子 An electronic component according to a first aspect of the present invention includes the cured product.
 また、本発明者らは、上記目的の実現に向け鋭意検討した。その結果、PBO前駆体を含む感光性樹脂組成物において、架橋剤として2官能以上のエポキシ化合物を用い、熱酸発生剤を組み合わせて配合することにより、上記課題を解決しうることを見出し、本発明を完成するに至った。 Further, the present inventors have diligently studied to realize the above object. As a result, the present inventors have found that a photosensitive resin composition containing a PBO precursor can solve the above-mentioned problems by using a bifunctional or more epoxy compound as a cross-linking agent and combining it with a thermal acid generator in combination. The invention has been completed.
 すなわち、本発明の第二の態様の感光性樹脂組成物は、(A)ポリベンゾオキサゾール前駆体、(B)感光剤、(C)2官能以上のエポキシ化合物、および、(D)熱酸発生剤を含むことを特徴とするものである。 That is, the photosensitive resin composition of the second embodiment of the present invention comprises (A) a polybenzoxazole precursor, (B) a photosensitizer, (C) a bifunctional or higher epoxy compound, and (D) a thermal acid generator. It is characterized by containing an agent.
 本発明の第二の態様の感光性樹脂組成物は、前記(D)熱酸発生剤が、スルホン酸エステル化合物であることが好ましい。 は In the photosensitive resin composition according to the second aspect of the present invention, the thermal acid generator (D) is preferably a sulfonic acid ester compound.
 本発明の第二の態様の感光性樹脂組成物は、前記(C)2官能以上のエポキシ化合物が、ナフタレン構造を有することが好ましい。 は In the photosensitive resin composition according to the second aspect of the present invention, it is preferable that the (C) bifunctional or higher functional epoxy compound has a naphthalene structure.
 本発明の第二の態様のドライフィルムは、フィルム上に、前記感光性樹脂組成物を塗布、乾燥して得られる樹脂層を有することを特徴とするものである。 ド ラ イ A dry film according to a second aspect of the present invention is characterized by having a resin layer obtained by applying and drying the photosensitive resin composition on a film.
 本発明の第二の態様の硬化物は、前記感光性樹脂組成物または前記ドライフィルムの樹脂層を硬化して得られることを特徴とするものである。 The cured product according to the second aspect of the present invention is obtained by curing the photosensitive resin composition or the resin layer of the dry film.
 本発明の第二の態様の電子部品は、前記硬化物を有することを特徴とするものである。 電子 An electronic component according to a second aspect of the present invention includes the cured product.
 また、本発明者らは、上記目的の実現に向け鋭意検討した。その結果、PBO前駆体を含む感光性樹脂組成物において、架橋剤としてナフタレン骨格を有する2官能以上のエポキシ化合物を含むことにより、上記課題を解決しうることを見出し、本発明を完成するに至った。 Further, the present inventors have diligently studied to realize the above object. As a result, they have found that the photosensitive resin composition containing a PBO precursor can solve the above-mentioned problem by including a bifunctional or more functional epoxy compound having a naphthalene skeleton as a crosslinking agent, thereby completing the present invention. Was.
 すなわち、本発明の第三の態様の感光性樹脂組成物は、(A)ポリベンゾオキサゾール前駆体、(B)感光剤、および、(C)ナフタレン骨格を有する2官能以上のエポキシ化合物を含むことを特徴とするものである。 That is, the photosensitive resin composition of the third aspect of the present invention contains (A) a polybenzoxazole precursor, (B) a photosensitizer, and (C) a bifunctional or more functional epoxy compound having a naphthalene skeleton. It is characterized by the following.
 本発明の第三の態様の感光性樹脂組成物は、さらに、トリアジン環構造を有する架橋剤を含むことが好ましい。 感光 The photosensitive resin composition according to the third aspect of the present invention preferably further contains a crosslinking agent having a triazine ring structure.
 本発明の第三の態様のドライフィルムは、フィルム上に、前記感光性樹脂組成物を塗布、乾燥して得られる樹脂層を有することを特徴とするものである。 ド ラ イ A dry film according to a third aspect of the present invention is characterized by having a resin layer obtained by applying and drying the photosensitive resin composition on a film.
 本発明の第三の態様の硬化物は、前記感光性樹脂組成物または前記ドライフィルムの樹脂層を硬化して得られることを特徴とするものである。 The cured product according to the third aspect of the present invention is obtained by curing the photosensitive resin composition or the resin layer of the dry film.
 本発明の第三の態様の電子部品は、前記硬化物を有することを特徴とするものである。 電子 An electronic component according to a third aspect of the present invention includes the cured product.
 第一に、本発明によれば、露光部の現像性に優れ、220℃程度の低温で硬化を行った場合であっても、耐薬品性及び柔軟性に優れた硬化膜が得られる、再配線用の絶縁膜に用いて好適な感光性樹脂組成物を提供することができる。また、本発明によれば、該組成物から得られる樹脂層を有するドライフィルム、該組成物または該ドライフィルムの樹脂層の硬化物、該硬化物を有する電子部品を提供することができる。 First, according to the present invention, a cured film having excellent chemical resistance and flexibility can be obtained even when curing is performed at a low temperature of about 220 ° C. A photosensitive resin composition suitable for use as an insulating film for wiring can be provided. Further, according to the present invention, a dry film having a resin layer obtained from the composition, a cured product of the composition or the resin layer of the dry film, and an electronic component having the cured product can be provided.
 第二に、本発明によれば、220℃程度の低温で硬化を行った場合であっても、自立膜の形成が可能であり、耐薬品性、熱特性および誘電特性に優れた硬化膜が得られる、再配線用の絶縁膜に用いて好適な感光性樹脂組成物を提供することができる。また、本発明によれば、該組成物から得られる樹脂層を有するドライフィルム、該組成物または該ドライフィルムの樹脂層の硬化物、該硬化物を有する電子部品を提供することができる。 Second, according to the present invention, even when curing is performed at a low temperature of about 220 ° C., a self-supporting film can be formed, and a cured film having excellent chemical resistance, thermal properties, and dielectric properties can be obtained. A photosensitive resin composition suitable for use in the obtained insulating film for rewiring can be provided. Further, according to the present invention, a dry film having a resin layer obtained from the composition, a cured product of the composition or the resin layer of the dry film, and an electronic component having the cured product can be provided.
 第三に、本発明によれば、220℃程度の低温で硬化を行った場合であっても、耐薬品性に優れ、かつ優れた柔軟性を有する低CTEの硬化膜が得られる、再配線用の絶縁膜に用いて好適な感光性樹脂組成物を提供することができる。また、本発明によれば、該組成物から得られる樹脂層を有するドライフィルム、該組成物または該ドライフィルムの樹脂層の硬化物、該硬化物を有する電子部品を提供することができる。 Thirdly, according to the present invention, even when curing is performed at a low temperature of about 220 ° C., a low CTE cured film having excellent chemical resistance and excellent flexibility can be obtained. A photosensitive resin composition suitable for use in an insulating film for use. Further, according to the present invention, a dry film having a resin layer obtained from the composition, a cured product of the composition or the resin layer of the dry film, and an electronic component having the cured product can be provided.
 以下、本発明の感光性樹脂組成物が含有する成分について詳述する。 Hereinafter, the components contained in the photosensitive resin composition of the present invention will be described in detail.
[(A)ポリベンゾオキサゾール前駆体]
 本発明の第一、第二および第三の態様の感光性樹脂組成物は、(A)ポリベンゾオキサゾール前駆体を含む。(A)ポリベンゾオキサゾール前駆体の合成方法は特に限定されず、公知の方法で合成すればよい。例えば、アミン成分としてジヒドロキシジアミン類と、酸成分としてジカルボン酸ジクロリド、ジカルボン酸、ジカルボン酸エステル等のジカルボン酸成分とを反応させて得ることができる。
[(A) Polybenzoxazole precursor]
The photosensitive resin compositions according to the first, second and third aspects of the present invention contain (A) a polybenzoxazole precursor. (A) The method for synthesizing the polybenzoxazole precursor is not particularly limited, and may be a known method. For example, it can be obtained by reacting a dihydroxydiamine as an amine component with a dicarboxylic acid component such as dicarboxylic acid dichloride, dicarboxylic acid, or dicarboxylic acid ester as an acid component.
 (A)ポリベンゾオキサゾール前駆体は、ポリヒドロキシアミドであることが好ましく、下記一般式(1)の繰り返し構造を有するポリヒドロキシアミドであることが好ましい。
Figure JPOXMLDOC01-appb-I000001
(式中、Xは4価の有機基を示し、Yは2価の有機基を示す。nは2以上の整数であり、好ましくは10~200、より好ましくは20~70である。)
(A) The polybenzoxazole precursor is preferably a polyhydroxyamide, and more preferably a polyhydroxyamide having a repeating structure represented by the following general formula (1).
Figure JPOXMLDOC01-appb-I000001
(In the formula, X represents a tetravalent organic group, Y represents a divalent organic group, and n is an integer of 2 or more, preferably 10 to 200, and more preferably 20 to 70.)
 (A)ポリベンゾオキサゾール前駆体を上記の合成方法で合成する場合、上記一般式(1)中、Xは、上記ジヒドロキシジアミン類の残基であり、Yは、上記ジカルボン酸成分の残基である。 (A) When synthesizing the polybenzoxazole precursor by the above synthesis method, in the above general formula (1), X is a residue of the above dihydroxydiamine, and Y is a residue of the above dicarboxylic acid component. is there.
 上記の繰り返し構造のジヒドロキシジアミン類としては、3,3’-ジアミノ-4,4’-ジヒドロキシビフェニル、4,4’-ジアミノ-3,3’-ジヒドロキシビフェニル、ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、ビス(4-アミノ-3-ヒドロキシフェニル)プロパン、ビス(3-アミノ-4-ヒドロキシフェニル)スルホン、ビス(4-アミノ-3-ヒドロキシフェニル)スルホン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス(4-アミノ-3-ヒドロキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン等が挙げられる。中でも、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパンが好ましい。 Examples of the dihydroxydiamine having the above repeating structure include 3,3′-diamino-4,4′-dihydroxybiphenyl, 4,4′-diamino-3,3′-dihydroxybiphenyl, and bis (3-amino-4-hydroxy Phenyl) propane, bis (4-amino-3-hydroxyphenyl) propane, bis (3-amino-4-hydroxyphenyl) sulfone, bis (4-amino-3-hydroxyphenyl) sulfone, 2,2-bis (3 -Amino-4-hydroxyphenyl) -1,1,1,3,3,3-hexafluoropropane, 2,2-bis (4-amino-3-hydroxyphenyl) -1,1,1,3,3 , 3-hexafluoropropane and the like. Among them, 2,2-bis (3-amino-4-hydroxyphenyl) -1,1,1,3,3,3-hexafluoropropane is preferred.
 上記の繰り返し構造のジカルボン酸成分としては、イソフタル酸、テレフタル酸、5-tert-ブチルイソフタル酸、5-ブロモイソフタル酸、5-フルオロイソフタル酸、5-クロロイソフタル酸、2,6-ナフタレンジカルボン酸、4,4’-ジカルボキシビフェニル、4,4’-ジカルボキシジフェニルエーテル、4,4’-ジカルボキシテトラフェニルシラン、ビス(4-カルボキシフェニル)スルホン、2,2-ビス(p-カルボキシフェニル)プロパン、2,2-ビス(4-カルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン等の芳香環を有するジカルボン酸、シュウ酸、マロン酸、コハク酸、1,2-シクロブタンジカルボン酸、1,4-シクロヘキサンジカルボン酸、1,3-シクロペンタンジカルボン酸等の脂肪族系ジカルボン酸が挙げられる。中でも、4,4’-ジカルボキシジフェニルエーテルが好ましい。 Examples of the dicarboxylic acid component having the above repeating structure include isophthalic acid, terephthalic acid, 5-tert-butylisophthalic acid, 5-bromoisophthalic acid, 5-fluoroisophthalic acid, 5-chloroisophthalic acid, and 2,6-naphthalenedicarboxylic acid 4,4'-dicarboxybiphenyl, 4,4'-dicarboxydiphenyl ether, 4,4'-dicarboxytetraphenylsilane, bis (4-carboxyphenyl) sulfone, 2,2-bis (p-carboxyphenyl) Dicarboxylic acid having an aromatic ring such as propane, 2,2-bis (4-carboxyphenyl) -1,1,1,3,3,3-hexafluoropropane, oxalic acid, malonic acid, succinic acid, 1,2 -Cyclobutanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 1,3-cyclopentanedi Aliphatic dicarboxylic acids such as carboxylic acid. Among them, 4,4'-dicarboxydiphenyl ether is preferred.
 上記一般式(1)中、Xが示す4価の有機基は脂肪族基でも芳香族基でもよいが、芳香族基であることが好ましく、2つのヒドロキシ基と2つのアミノ基がオルト位に芳香環上に位置することがより好ましい。上記4価の芳香族基の炭素原子数は、6~30であることが好ましく、6~24であることがより好ましい。上記4価の芳香族基の具体例としては以下に示す基が挙げられるが、これらに限定されるものではなく、ポリベンゾオキサゾール前駆体に含まれうる公知の芳香族基を用途に応じて選択すればよい。 In the above general formula (1), the tetravalent organic group represented by X may be an aliphatic group or an aromatic group, but is preferably an aromatic group, and two hydroxy groups and two amino groups are located at ortho positions. More preferably, it is located on an aromatic ring. The tetravalent aromatic group preferably has 6 to 30 carbon atoms, more preferably 6 to 24 carbon atoms. Specific examples of the tetravalent aromatic group include, but are not limited to, the following groups.A known aromatic group that can be included in the polybenzoxazole precursor is selected according to the application. do it.
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-I000002
 上記4価の芳香族基は、上記芳香族基の中でも以下に示す基であることが好ましい。
Figure JPOXMLDOC01-appb-I000003
The tetravalent aromatic group is preferably a group shown below among the above aromatic groups.
Figure JPOXMLDOC01-appb-I000003
 上記一般式(1)中、Yが示す2価の有機基は脂肪族基でも芳香族基でもよいが、芳香族基であることが好ましく、芳香環上で上記一般式(1)中のカルボニルと結合していることがより好ましい。上記2価の芳香族基の炭素原子数は、6~30であることが好ましく、6~24であることがより好ましい。上記2価の芳香族基の具体例としては以下に示す基が挙げられるが、これらに限定されるものではなく、ポリベンゾオキサゾール前駆体に含まれる公知の芳香族基を用途に応じて選択すればよい。 In the general formula (1), the divalent organic group represented by Y may be either an aliphatic group or an aromatic group, but is preferably an aromatic group. More preferably, it is bonded to The divalent aromatic group preferably has 6 to 30 carbon atoms, and more preferably 6 to 24 carbon atoms. Specific examples of the divalent aromatic group include the following groups, but are not limited thereto, and any known aromatic group contained in the polybenzoxazole precursor may be selected according to the application. I just need.
Figure JPOXMLDOC01-appb-I000004
(式中、Aは単結合、-CH-、-O-、-CO-、-S-、-SO-、-NHCO-、-C(CF-、-C(CH-からなる群から選択される2価の基を表す。)
Figure JPOXMLDOC01-appb-I000004
(Wherein, A is a single bond, —CH 2 —, —O—, —CO—, —S—, —SO 2 —, —NHCO—, —C (CF 3 ) 2 —, —C (CH 3 ) 2 - represents a divalent radical selected from the group consisting of).
 上記2価の有機基は、上記芳香族基の中でも以下に示す基であることが好ましい。
Figure JPOXMLDOC01-appb-I000005
The divalent organic group is preferably a group shown below among the aromatic groups.
Figure JPOXMLDOC01-appb-I000005
 (A)ポリベンゾオキサゾール前駆体は、上記のポリヒドロキシアミドの繰り返し構造を2種以上含んでいてもよい。また、(A)ポリベンゾオキサゾール前駆体は、上記のポリヒドロキシアミドの繰り返し構造以外の構造を含んでいてもよく、例えば、ポリアミド酸の繰り返し構造やベンゾオキサゾール構造を含んでいてもよい。 (A) The polybenzoxazole precursor may contain two or more kinds of the above-mentioned polyhydroxyamide repeating structures. Further, (A) the polybenzoxazole precursor may include a structure other than the above-described polyhydroxyamide repeating structure, and may include, for example, a polyamic acid repeating structure or a benzoxazole structure.
 (A)ポリベンゾオキサゾール前駆体の数平均分子量(Mn)は、1,000~100,000であることが好ましく、5,000~50,000であることがより好ましい。ここで数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)で測定し、標準ポリスチレンで換算した数値である。また、(A)ポリベンゾオキサゾール前駆体の重量平均分子量(Mw)は5,000~200,000であることが好ましく、10,000~100,000であることがより好ましい。ここで重量平均分子量は、GPCで測定し、標準ポリスチレンで換算した数値である。Mw/Mnは1~5であることが好ましく、1~3であることがより好ましい。 (A) The number average molecular weight (Mn) of the polybenzoxazole precursor is preferably from 1,000 to 100,000, and more preferably from 5,000 to 50,000. Here, the number average molecular weight is a value measured by gel permeation chromatography (GPC) and converted into standard polystyrene. Further, the weight average molecular weight (Mw) of the polybenzoxazole precursor (A) is preferably from 5,000 to 200,000, more preferably from 10,000 to 100,000. Here, the weight average molecular weight is a value measured by GPC and converted into standard polystyrene. Mw / Mn is preferably from 1 to 5, more preferably from 1 to 3.
 (A)ポリベンゾオキサゾール前駆体は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 As the polybenzoxazole precursor (A), one type may be used alone, or two or more types may be used in combination.
[(B)感光剤]
 本発明の第一、第二および第三の態様の感光性樹脂組成物は、(B)感光剤を含む。(B)感光剤としては、特に制限はなく、光酸発生剤や光塩基発生剤を用いることができる。光酸発生剤は、紫外線や可視光等の光照射により酸を発生する化合物であり、光塩基発生剤は、同様の光照射により分子構造が変化するか、または、分子が開裂することにより1種以上の塩基性物質を生成する化合物である。本発明においては、(B)感光剤として、光酸発生剤を好適に用いることができる。
[(B) Photosensitizer]
The photosensitive resin compositions of the first, second and third aspects of the present invention contain (B) a photosensitive agent. (B) The photosensitive agent is not particularly limited, and a photoacid generator or a photobase generator can be used. The photoacid generator is a compound that generates an acid by irradiation with light such as ultraviolet light or visible light, and the photobase generator changes the molecular structure or cleaves the molecule by the same light irradiation. A compound that produces more than one basic substance. In the present invention, a photoacid generator can be suitably used as the photosensitive agent (B).
 光酸発生剤としては、ナフトキノンジアジド化合物、ジアリールスルホニウム塩、トリアリールスルホニウム塩、ジアルキルフェナシルスルホニウム塩、ジアリールヨードニウム塩、アリールジアゾニウム塩、芳香族テトラカルボン酸エステル、芳香族スルホン酸エステル、ニトロベンジルエステル、芳香族N-オキシイミドスルフォネート、芳香族スルファミド、ベンゾキノンジアゾスルホン酸エステル等を挙げることができる。光酸発生剤は、溶解阻害剤であることが好ましい。中でもナフトキノンジアジド化合物であることが好ましい。 Examples of the photoacid generator include naphthoquinonediazide compounds, diarylsulfonium salts, triarylsulfonium salts, dialkylphenacylsulfonium salts, diaryliodonium salts, aryldiazonium salts, aromatic tetracarboxylic acid esters, aromatic sulfonic acid esters, and nitrobenzyl esters And aromatic N-oxyimide sulfonate, aromatic sulfamide, benzoquinonediazosulfonic acid ester and the like. The photoacid generator is preferably a dissolution inhibitor. Among them, a naphthoquinonediazide compound is preferred.
 ナフトキノンジアジド化合物としては、具体的には例えば、トリス(4-ヒドロキシフェニル)-1-エチル-4-イソプロピルベンゼンのナフトキノンジアジド付加物(例えば、三宝化学研究所社製のTS533,TS567,TS583,TS593)や、テトラヒドロキシベンゾフェノンのナフトキノンジアジド付加物(例えば、三宝化学研究所社製のBS550,BS570,BS599)や、4-{4-[1,1-ビス(4-ヒドロキシフェニル)エチル]-α,α-ジメチルベンジル}フェノールのナフトキノンジアジド付加物(例えば、三宝化学研究所社製のTKF-428,TKF-528)等を使用することができる。 Specific examples of the naphthoquinonediazide compound include, for example, a naphthoquinonediazide adduct of tris (4-hydroxyphenyl) -1-ethyl-4-isopropylbenzene (for example, TS533, TS567, TS583, and TS593 manufactured by Sanbo Chemical Laboratory Co., Ltd.). ), Naphthoquinonediazide adducts of tetrahydroxybenzophenone (eg, BS550, BS570, BS599 manufactured by Sanbo Chemical Laboratory), and 4- {4- [1,1-bis (4-hydroxyphenyl) ethyl] -α And naphthoquinonediazide adduct of α-dimethylbenzyl} phenol (for example, TKF-428 and TKF-528 manufactured by Sanbo Chemical Laboratory Co., Ltd.) and the like.
 また、光塩基発生剤としては、イオン型光塩基発生剤でもよく、非イオン型光塩基発生剤でもよいが、イオン型光塩基発生剤の方が組成物の感度が高く、パターン膜の形成に有利になるので好ましい。塩基性物質としては、例えば、2級アミン、3級アミンが挙げられる。 The photobase generator may be an ionic photobase generator or a non-ionic photobase generator, but the ionic photobase generator has higher sensitivity of the composition and is suitable for forming a pattern film. It is preferable because it becomes advantageous. Examples of the basic substance include a secondary amine and a tertiary amine.
 イオン型の光塩基発生剤としては、例えば、芳香族成分含有カルボン酸と3級アミンとの塩や、和光純薬社製イオン型PBGのWPBG-082、WPBG-167、WPBG-168、WPBG-266、WPBG-300等を用いることができる。 Examples of the ionic photobase generator include salts of a carboxylic acid containing an aromatic component with a tertiary amine, and ionic PBGs WPBG-082, WPBG-167, WPBG-168, and WPBG- manufactured by Wako Pure Chemical Industries, Ltd. 266, WPBG-300 or the like can be used.
 非イオン型の光塩基発生剤としては、例えば、α-アミノアセトフェノン化合物、オキシムエステル化合物や、N-ホルミル化芳香族アミノ基、N-アシル化芳香族アミノ基、ニトロベンジルカーバメイト基、アルコオキシベンジルカーバメート基等の置換基を有する化合物等が挙げられる。その他の光塩基発生剤として、和光純薬社製のWPBG-018(商品名:9-anthrylmethyl N,N’-diethylcarbamate)、WPBG-027(商品名:(E)-1-[3-(2-hydroxyphenyl)-2-propenoyl]piperidine)、WPBG-140(商品名:1-(anthraquinon-2-yl)ethyl imidazolecarboxylate)、WPBG-165等を使用することもできる。 Examples of nonionic photobase generators include α-aminoacetophenone compounds, oxime ester compounds, N-formylated aromatic amino groups, N-acylated aromatic amino groups, nitrobenzyl carbamate groups, and alkoxyoxybenzyl. Compounds having a substituent such as a carbamate group are exemplified. As other photobase generators, WPBG-018 (trade name: 9-anthrylmethyl @ N, N'-diethylcarbamate) and WPBG-027 (trade name: (E) -1- [3- (2) manufactured by Wako Pure Chemical Industries, Ltd.] -Hydroxyphenyl) -2-propenoyl] piperidine), WPBG-140 (trade name: 1- (anthraquinon-2-yl) ethyl @ imidazole carboxylate), WPBG-165 and the like can also be used.
 (B)感光剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。(B)感光剤の配合量は、(A)ポリベンゾオキサゾール前駆体の不揮発成分100質量部に対し、3~30質量部であることが好ましい。 (B) As the photosensitive agent, one type may be used alone, or two or more types may be used in combination. The amount of the photosensitive agent (B) is preferably 3 to 30 parts by mass based on 100 parts by mass of the nonvolatile component of the polybenzoxazole precursor (A).
[(C)2官能以上のエポキシ化合物]
 本発明の第一および第二の態様の感光性樹脂組成物は、架橋剤として(C)2官能以上のエポキシ化合物を含有する。(C)2官能以上のエポキシ化合物は、上記ポリベンゾオキサゾール前駆体の水酸基と熱反応し、架橋構造を形成する。本発明の第三の態様の感光性樹脂組成物は、(C)2官能以上のエポキシ化合物として、(c)ナフタレン骨格を有する2官能以上のエポキシ化合物(以下、単に「(c)ナフタレン型エポキシ化合物」とも称する)を含有する。(c)ナフタレン型エポキシ化合物は、上記ポリベンゾオキサゾール前駆体の水酸基と熱反応し、架橋構造を形成することによって、硬化物の耐薬品性を向上するだけでなく、驚くべきことに、硬化物の柔軟性を向上し、また、低CTE化に寄与する。(C)2官能以上のエポキシ化合物の官能基数は、2~4であることが好ましい。
[(C) Bifunctional or higher functional epoxy compound]
The photosensitive resin compositions of the first and second aspects of the present invention contain (C) a bifunctional or higher functional epoxy compound as a crosslinking agent. (C) The bifunctional or higher epoxy compound thermally reacts with the hydroxyl group of the polybenzoxazole precursor to form a crosslinked structure. The photosensitive resin composition according to the third aspect of the present invention comprises, as the (C) difunctional or more epoxy compound, (c) a difunctional or more epoxy compound having a naphthalene skeleton (hereinafter simply referred to as “(c) a naphthalene type epoxy compound”). (Also referred to as "compound"). (C) The naphthalene-type epoxy compound thermally reacts with the hydroxyl group of the polybenzoxazole precursor to form a crosslinked structure, thereby not only improving the chemical resistance of the cured product, but also surprisingly, And contribute to lower CTE. (C) The number of functional groups of the bifunctional or higher epoxy compound is preferably 2 to 4.
 (C)2官能以上のエポキシ化合物としては、エポキシ化植物油;ビスフェノールA型エポキシ化合物;ハイドロキノン型エポキシ化合物;ビスフェノール型エポキシ化合物;チオエーテル型エポキシ化合物;ブロム化エポキシ化合物;ノボラック型エポキシ化合物;ビフェノールノボラック型エポキシ化合物;ビスフェノールF型エポキシ化合物;水添ビスフェノールA型エポキシ化合物;グリシジルアミン型エポキシ化合物;ヒダントイン型エポキシ化合物;脂環式エポキシ化合物;トリヒドロキシフェニルメタン型エポキシ化合物;ビキシレノール型もしくはビフェノール型エポキシ化合物またはそれらの混合物;ビスフェノールS型エポキシ化合物;ビスフェノールAノボラック型エポキシ化合物;テトラフェニロールエタン型エポキシ化合物;複素環式エポキシ化合物;ジグリシジルフタレート化合物;テトラグリシジルキシレノイルエタン化合物;ナフタレン骨格を有するエポキシ化合物;ジシクロペンタジエン骨格を有するエポキシ化合物;グリシジルメタアクリレート共重合系エポキシ化合物;シクロヘキシルマレイミドとグリシジルメタアクリレートの共重合エポキシ化合物;エポキシ変性のポリブタジエンゴム誘導体;CTBN変性エポキシ化合物等が挙げられるが、これらに限られるものではない。(C)2官能以上のエポキシ化合物は、1種を単独または2種以上を組み合わせて用いることができる。 (C) Bifunctional or higher functional epoxy compounds include epoxidized vegetable oil; bisphenol A type epoxy compound; hydroquinone type epoxy compound; bisphenol type epoxy compound; thioether type epoxy compound; brominated epoxy compound; novolak type epoxy compound; Epoxy compound; bisphenol F type epoxy compound; hydrogenated bisphenol A type epoxy compound; glycidylamine type epoxy compound; hydantoin type epoxy compound; alicyclic epoxy compound; trihydroxyphenylmethane type epoxy compound; bixylenol type or biphenol type epoxy compound Or a mixture thereof; bisphenol S type epoxy compound; bisphenol A novolak type epoxy compound; tetraphenylolethane type epoxy compound. Hexacyclic epoxy compound; Diglycidyl phthalate compound; Tetraglycidylxylenoylethane compound; Epoxy compound having a naphthalene skeleton; Epoxy compound having a dicyclopentadiene skeleton; Glycidyl methacrylate copolymer epoxy compound; Cyclohexylmaleimide; Glycidyl methacrylate copolymerized epoxy compounds; epoxy-modified polybutadiene rubber derivatives; CTBN-modified epoxy compounds, and the like, but are not limited thereto. (C) Bifunctional or higher functional epoxy compounds can be used alone or in combination of two or more.
 第一および第二の態様の感光性樹脂組成物においても、(C)2官能以上のエポキシ化合物のなかでも、(c)ナフタレン骨格を有する2官能以上のエポキシ化合物が好ましい。柔軟性および耐薬品性により優れた絶縁膜が得られるだけでなく、柔軟性と二律背反の関係にある低CTE化が可能となり、絶縁膜の反りやクラックの発生を抑制することができる。また、ビスフェノールA型エポキシ化合物も柔軟性の観点から好適に用いることができる。 {Circle around (2)} In the photosensitive resin compositions of the first and second embodiments, among the (C) difunctional or higher functional epoxy compounds, (c) a difunctional or higher functional epoxy compound having a naphthalene skeleton is preferable. Not only can an insulating film excellent in flexibility and chemical resistance be obtained, but also CTE can be reduced in a trade-off relationship with flexibility, and warpage and cracking of the insulating film can be suppressed. Further, bisphenol A type epoxy compounds can also be suitably used from the viewpoint of flexibility.
 (c)ナフタレン骨格を有する2官能以上のエポキシ化合物としては、ナフタレン骨格を有し、エポキシ基を2以上有する化合物であれば特に限定されず、例えば、1,2-ジグリシジルナフタレン、1,5-ジグリシジルナフタレン、1,6-ジグリシジルナフタレン、1,7-ジグリシジルナフタレン、2,7-ジグリシジルナフタレン、トリグリシジルナフタレン、及び1,2,5,6-テトラグリシジルナフタレン、ナフトールアラルキル型エポキシ樹脂、ナフタレン骨格変性クレゾールノボラック型エポキシ樹脂、メトキシナフタレン変性クレゾールノボラック型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、メトキシナフタレンジメチレン型エポキシ樹脂等の変性ナフタレン型エポキシ樹脂などが挙げられる。 (C) The bifunctional or higher functional epoxy compound having a naphthalene skeleton is not particularly limited as long as it has a naphthalene skeleton and has two or more epoxy groups. For example, 1,2-diglycidylnaphthalene, 1,5 -Diglycidyl naphthalene, 1,6-diglycidyl naphthalene, 1,7-diglycidyl naphthalene, 2,7-diglycidyl naphthalene, triglycidyl naphthalene, and 1,2,5,6-tetraglycidyl naphthalene, naphthol aralkyl epoxy Resin, modified naphthalene type epoxy resin such as naphthalene skeleton modified cresol novolak type epoxy resin, methoxy naphthalene modified cresol novolak type epoxy resin, naphthylene ether type epoxy resin, methoxy naphthalene dimethylene type epoxy resin and the like.
 市販品としては、DIC社製HP-4032D、HP-4700、HP-4770、HP-5000、HP-6000、HP-4710、日本化薬社製NC-7000L、NC-7300L等が挙げられる。 Examples of commercially available products include HP-4032D, HP-4700, HP-4770, HP-5000, HP-6000, HP-4710 manufactured by DIC, and NC-7000L and NC-7300L manufactured by Nippon Kayaku Co., Ltd.
 (c)ナフタレン骨格を有する2官能以上のエポキシ化合物は、構造に柔軟鎖を有していても、有さずともよいが、柔軟鎖を有さずとも本発明の感光性樹脂組成物の硬化物の柔軟性を向上することができることから、例えば、エポキシ基の間に原子数5~10、さらには3~5の直鎖構造を有さずともよい。 (C) The bifunctional or more functional epoxy compound having a naphthalene skeleton may or may not have a flexible chain in the structure, but the curing of the photosensitive resin composition of the present invention without having a flexible chain. Since the flexibility of the product can be improved, for example, the epoxy group does not need to have a linear structure having 5 to 10 atoms, and more preferably 3 to 5 atoms, between the epoxy groups.
 (C)2官能以上のエポキシ化合物のエポキシ当量は100~500g/eqが好ましく、100~300g/eqがより好ましい。 (C) The epoxy equivalent of the bifunctional or higher epoxy compound is preferably 100 to 500 g / eq, more preferably 100 to 300 g / eq.
 (C)2官能以上のエポキシ化合物の配合量は、(A)ポリベンゾオキサゾール前駆体の不揮発成分100質量部に対し、好ましくは0.1~50質量部、より好ましくは0.1~30質量部である。本発明の第三の態様の感光性樹脂組成物においては、(c)ナフタレン型エポキシ化合物の配合量は、(A)ポリベンゾオキサゾール前駆体の不揮発成分100質量部に対し、好ましくは0.1~50質量部、より好ましくは0.1~30質量部である。このような範囲とすることで、(A)ポリベンゾオキサゾール前駆体に対して適切な架橋密度を保つことができる。 The compounding amount of the (C) bifunctional or higher epoxy compound is preferably 0.1 to 50 parts by mass, more preferably 0.1 to 30 parts by mass, per 100 parts by mass of the nonvolatile component of the polybenzoxazole precursor (A). Department. In the photosensitive resin composition of the third embodiment of the present invention, the compounding amount of the (c) naphthalene type epoxy compound is preferably 0.1 to 100 parts by mass of the nonvolatile component of the (A) polybenzoxazole precursor. It is 50 parts by mass, more preferably 0.1 to 30 parts by mass. By setting the content in such a range, it is possible to maintain an appropriate crosslinking density for the (A) polybenzoxazole precursor.
(その他の架橋剤)
 本発明の第一、第二および第三の態様の感光性樹脂組成物は、(C)2官能以上のエポキシ化合物以外の架橋剤を含有することができる。本明細書において、その他の架橋剤は、上記のエポキシ化合物以外で、ポリベンゾオキサゾール前駆体のフェノール性水酸基と反応し、架橋構造を形成する化合物であることが好ましい。ここで、ポリベンゾオキサゾール前駆体のフェノール性水酸基と反応する官能基としては、エポキシ基などの環状エーテル基、エピスルフィド基などの環状チオエーテル基、メチロール基などの炭素数1~12のアルキレン基にヒドロキシル基が結合したアルコール性水酸基が挙げられる。
(Other crosslinking agents)
The photosensitive resin compositions of the first, second and third aspects of the present invention may contain a crosslinking agent other than (C) a bifunctional or higher epoxy compound. In the present specification, the other crosslinking agent is preferably a compound that reacts with the phenolic hydroxyl group of the polybenzoxazole precursor to form a crosslinked structure, in addition to the above epoxy compound. Here, the functional group that reacts with the phenolic hydroxyl group of the polybenzoxazole precursor includes a cyclic ether group such as an epoxy group, a cyclic thioether group such as an episulfide group, and an alkylene group having 1 to 12 carbon atoms such as a methylol group. An alcoholic hydroxyl group to which a group is bonded is exemplified.
 その他の架橋剤としては、なかでも、トリアジン環構造を有する架橋剤が好ましく、本発明においては、硬化物の伸び率をさらに向上させることができる。このトリアジン環構造を有する架橋剤としては、特に限定されないが、下記一般式(2)で表される架橋剤であることが好ましい。
Figure JPOXMLDOC01-appb-I000006
(式中、R21A、R22A、R23A、R24A、R25AおよびR26Aはそれぞれ独立に炭素数1~3のアルキレン基であることが好ましい。R21B、R22B、R23B、R24B、R25BおよびR26Bはそれぞれ独立に水素原子、または、炭素数1~3のアルキル基であることが好ましい。)
As other crosslinking agents, among others, a crosslinking agent having a triazine ring structure is preferable, and in the present invention, the elongation of the cured product can be further improved. The crosslinking agent having a triazine ring structure is not particularly limited, but is preferably a crosslinking agent represented by the following general formula (2).
Figure JPOXMLDOC01-appb-I000006
(Wherein, R 21A , R 22A , R 23A , R 24A , R 25A and R 26A are each independently preferably an alkylene group having 1 to 3 carbon atoms. R 21B , R 22B , R 23B , R 24B , R 25B and R 26B are each independently preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.)
 上記一般式(2)中、R21A、R22A、R23A、R24A、R25AおよびR26Aはそれぞれメチレン基であることがより好ましい。また、R21B、R22B、R23B、R24B、R25BおよびR26Bはそれぞれ独立にメチル基または水素原子であることがより好ましい。 In the general formula (2), each of R 21A , R 22A , R 23A , R 24A , R 25A and R 26A is more preferably a methylene group. More preferably, R 21B , R 22B , R 23B , R 24B , R 25B and R 26B are each independently a methyl group or a hydrogen atom.
 その他の架橋剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。架橋によって現像性を損なわないためにもその他の架橋剤の配合量は、(A)ポリベンゾオキサゾール前駆体の不揮発成分100質量部に対し、0.1~30質量部であることが好ましい。また、0.1~20質量部がより好ましい。 は Other crosslinking agents may be used alone or in combination of two or more. The amount of the other crosslinking agent is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the nonvolatile component of (A) the polybenzoxazole precursor so that the developability is not impaired by the crosslinking. Further, the amount is more preferably 0.1 to 20 parts by mass.
((D)可塑剤)
 本発明の第一の態様の感光性樹脂組成物は、(D)可塑剤を含有する。本発明の第三の態様の感光性樹脂組成物は、(D)可塑剤を含有することが好ましい。(D)可塑剤としては、可塑性を向上する化合物であれば特に限定されず、(D1)自己重合性基を有する可塑剤でも、(D2)自己重合性基を有さない可塑剤であってもよい。また、自己重合性基としては、(メタ)アクリロイル基、ビニル基、アリル基等が挙げられる。尚、本明細書において、(メタ)アクリロイル基とは、アクリロイル基、メタクリロイル基およびそれらの混合物を総称する用語であり、他の類似の表現についても同様である。本発明においては、(D)可塑剤を配合することによって、(A)ポリベンゾオキサゾール前駆体の環化反応が促進され、低温硬化性がより向上し、耐薬品性に優れた硬化物を得ることができる。本来、220℃程度の低温硬化では、(A)ポリベンゾオキサゾール前駆体の環化率は低く、また、架橋剤を配合すると低温硬化性を向上することができるが、環化反応が生じる官能基と架橋剤が反応するため、環化率はさらに低下し得る。詳しいメカニズムは明らかではないが、本発明においては、可塑剤の可塑作用、すなわち、ポリマー分子鎖間の凝集作用を削減し、分子鎖間の移動性、柔軟性が向上したことによって、(A)ポリベンゾオキサゾール前駆体の熱分子運動が向上し、環化反応が促進されたと考えられる。また、本発明においては、可塑剤を配合することによって、柔軟性により優れた硬化物を得ることができる。さらに、本発明においては(C)2官能以上のエポキシ化合物の配合によって未露光部の耐現像性に優れるところ、可塑剤を配合すると露光部の現像性が向上し、フォトリソグラフィによってより良好なパターン形成が可能となる。(D)可塑剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。(D)可塑剤は、組成物中の他の成分と架橋反応しない可塑剤であることが好ましい。また、(D)可塑剤は、熱酸発生の機能を有さないことが好ましい。また、(D)可塑剤が自己重合性基を有することで、硬化物の柔軟性をさらに向上することができる。(D)可塑剤が自己重合性基を有さないことで、硬化物の耐薬品性を更に向上することができる。(D)可塑剤として、(D1)自己重合性基を有する可塑剤と(D2)自己重合性基を有さない可塑剤とを併用することが好ましく、柔軟性および耐薬品性により優れた硬化物を得ることができる。本発明の第一および第三の態様の感光性樹脂組成物において、(D)可塑剤の配合量は、(A)ポリベンゾオキサゾール前駆体の不揮発成分100質量部に対し、1~50質量部であることが好ましく、3~40質量部であることがより好ましい。本発明の第二の態様の感光性樹脂組成物も、(D)可塑剤を含有することができる。
((D) plasticizer)
The photosensitive resin composition of the first aspect of the present invention contains (D) a plasticizer. The photosensitive resin composition according to the third aspect of the present invention preferably contains (D) a plasticizer. The plasticizer (D) is not particularly limited as long as it is a compound that improves plasticity, and (D1) a plasticizer having a self-polymerizable group and (D2) a plasticizer having no self-polymerizable group. Is also good. Examples of the self-polymerizable group include a (meth) acryloyl group, a vinyl group, and an allyl group. In this specification, the term “(meth) acryloyl group” is a general term for an acryloyl group, a methacryloyl group, and a mixture thereof, and the same applies to other similar expressions. In the present invention, by blending (D) a plasticizer, (A) a cyclization reaction of the polybenzoxazole precursor is promoted, and a low-temperature curability is further improved, and a cured product having excellent chemical resistance is obtained. be able to. Originally, when cured at a low temperature of about 220 ° C., the cyclization rate of (A) the polybenzoxazole precursor is low, and when a crosslinking agent is added, the curability at a low temperature can be improved. And the crosslinking agent react, the cyclization rate can be further reduced. Although the detailed mechanism is not clear, in the present invention, the plasticizing action of the plasticizer, that is, the aggregation action between polymer molecular chains is reduced, and the mobility and flexibility between the molecular chains are improved. It is considered that the thermal molecular motion of the polybenzoxazole precursor was improved, and the cyclization reaction was promoted. Further, in the present invention, by blending a plasticizer, a cured product having more excellent flexibility can be obtained. Furthermore, in the present invention, although the development resistance of the unexposed area is excellent by blending a bifunctional or higher epoxy compound (C), the developability of the exposed area is improved by blending a plasticizer, and a better pattern is obtained by photolithography. Formation is possible. (D) As the plasticizer, one type may be used alone, or two or more types may be used in combination. (D) The plasticizer is preferably a plasticizer that does not undergo a cross-linking reaction with other components in the composition. Further, (P) the plasticizer preferably does not have a function of generating thermal acid. Further, when the plasticizer (D) has a self-polymerizable group, the flexibility of the cured product can be further improved. (D) Since the plasticizer does not have a self-polymerizable group, the chemical resistance of the cured product can be further improved. It is preferable that (D1) a plasticizer having a self-polymerizable group and (D2) a plasticizer having no self-polymerizable group are used in combination as the plasticizer, and the curing is more excellent in flexibility and chemical resistance. You can get things. In the photosensitive resin compositions of the first and third aspects of the present invention, the blending amount of the (D) plasticizer is 1 to 50 parts by mass with respect to (A) 100 parts by mass of the nonvolatile component of the polybenzoxazole precursor. And more preferably 3 to 40 parts by mass. The photosensitive resin composition of the second aspect of the present invention can also contain (D) a plasticizer.
((D1)自己重合性基を有する可塑剤)
 (D1)自己重合性基を有する可塑剤としては、2官能(メタ)アクリル化合物であることが好ましい。2官能(メタ)アクリル化合物は、組成物中の他の成分と架橋構造を形成しない化合物であることが好ましい。また、2官能(メタ)アクリル化合物は、自己重合により直鎖構造を形成する化合物であることが好ましい。
((D1) a plasticizer having a self-polymerizable group)
(D1) The plasticizer having a self-polymerizable group is preferably a bifunctional (meth) acrylic compound. The bifunctional (meth) acrylic compound is preferably a compound that does not form a crosslinked structure with other components in the composition. Further, the bifunctional (meth) acrylic compound is preferably a compound that forms a linear structure by self-polymerization.
 2官能(メタ)アクリル化合物としては、(メタ)アクリロイル基を2つ有する化合物であれば特に限定されず、具体例としては、1,4-ブタンジオールジアクリレート、1,6-ヘキサンジオールジアクリレート、1,9-ノナンジオールジアクリレート、1,10-デカンジオールジアクリレートなどのジオールのジアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ポリエチレングリコールジアクリレート、ジプロピレングリコールジアクリレート、トリプロピレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、ネオペンチルグリコールジアクリレート、ネオペンチルグリコールにエチレンオキサイドおよびプロピレンオキサイドの少なくともいずれか1種を付加して得たジオールのジアクリレート、カプロラクトン変性ヒドロキシピバリン酸ネオペンチルグリコールジアクリレートなどのグリコールのジアクリレート、ビスフェノールA EO(エチレンオキサイド)付加物ジアクリレート、ビスフェノールA PO(プロピレンオキサイド)付加物ジアクリレート、ビスフェノールAジグリシジルエーテルアクリル酸付加物、トリシクロデカンジメタノールジアクリレート、トリス(2-ヒドロキシエチル)イソシアヌレートビスフェノールAにエチレンオキサイドおよびプロピレンオキサイドの少なくともいずれか1種を付加して得たジオールのジアクリレート、水添ジシクロペンタジエニルジアクリレート、シクロヘキシルジアクリレートなどの環状構造を有するジアクリレート、イソシアヌル酸エチレンオキサイド変性ジアクリレートなどのイソシアヌル酸のジアクリレート、2官能のポリエステルアクリレート、および、これらに対応するメタクリレートなどが挙げられる。 The bifunctional (meth) acrylic compound is not particularly limited as long as it has two (meth) acryloyl groups. Specific examples thereof include 1,4-butanediol diacrylate and 1,6-hexanediol diacrylate. Diacrylates of diols such as 1,9-nonanediol diacrylate, 1,10-decanediol diacrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, triethylene glycol diacrylate, tetraethylene glycol diacrylate, polyethylene glycol diacrylate , Dipropylene glycol diacrylate, tripropylene glycol diacrylate, polypropylene glycol diacrylate, neopentyl glycol diacrylate, neopentyl glyco Diacrylate of diol obtained by adding at least one of ethylene oxide and propylene oxide to diene, diacrylate of glycol such as caprolactone-modified neopentyl glycol diacrylate hydroxypivalate, bisphenol A @ EO (ethylene oxide) adduct Diacrylate, bisphenol A @ PO (propylene oxide) adduct diacrylate, bisphenol A diglycidyl ether acrylate adduct, tricyclodecane dimethanol diacrylate, tris (2-hydroxyethyl) isocyanurate bisphenol A to ethylene oxide and propylene oxide Diacrylates obtained by adding at least one of the above, hydrogenated dicyclopentadienyl diacrylate Diacrylates having a cyclic structure such as cyclohexyl diacrylate, diacrylates of isocyanuric acid, such as isocyanuric acid ethylene oxide modified diacrylate, difunctional polyester acrylate, and the like methacrylates corresponding to these.
 市販品としては、ライトアクリレート1,6HX-A、1,9ND-A、3EG-A、4EG-A(共栄社化学社製の商品名)、HDDA、1,9-NDA、DPGDA、TPGDA(ダイセル・オルネクス社製の商品名)、ビスコート#195、#230、#230D、#260、#310HP、#335HP、#700HV、#540(大阪有機化学工業社製の商品名)、アロニックスM-208、M-211B、M-215、M-220、M-225、M-240、M-270、M-6200、M-6250、M-6500(東亞合成社製の商品名)、NKエステルBPE-200、BPE-500、BPE-900(新中村化学社製の商品名)などが挙げられる。 Commercially available products include light acrylate 1,6HX-A, 1,9ND-A, 3EG-A, 4EG-A (trade name of Kyoeisha Chemical Co., Ltd.), HDDA, 1,9-NDA, DPGDA, TPGDA (Daicel® ORNEX Corp.), VISCOAT # 195, # 230, # 230D, # 260, # 310HP, # 335HP, # 700HV, # 540 (tradename of Osaka Organic Chemical Industry), Aronix M-208, M -21B, M-215, M-220, M-225, M-240, M-270, M-6200, M-6250, M-6500 (trade name, manufactured by Toagosei Co., Ltd.), NK ester BPE-200, BPE-500, BPE-900 (trade name, manufactured by Shin-Nakamura Chemical Co., Ltd.) and the like.
 2官能の(メタ)アクリル化合物の中でも、ジオールの(エチレンオキサイドやプロピレンオキサイドなどの)アルキレンオキサイド付加物のジ(メタ)アクリレートや2官能のポリエステル(メタ)アクリレートが好ましく、2官能のポリエステル(メタ)アクリレートがより好ましい。 Among the bifunctional (meth) acrylic compounds, di (meth) acrylate or bifunctional polyester (meth) acrylate of an alkylene oxide adduct of diol (such as ethylene oxide or propylene oxide) is preferable, and bifunctional polyester (meth) acrylate is preferable. ) Acrylates are more preferred.
 ジオールのアルキレンオキサイド付加物のジ(メタ)アクリレートとしては、具体的にはジオールをアルキレンオキシド変性した後に末端に(メタ)アクリレートを付加させたものが好ましく、ジオールに芳香環を有するものがさらに好ましい。例えば、ビスフェノールA EO(エチレンオキサイド)付加物ジアクリレート、ビスフェノールA PO(プロピレンオキサイド)付加物ジアクリレートなどが挙げられる。ジオールのアルキレンオキサイド付加物のジ(メタ)アクリレートの具体的な構造を下記に示すがこれに限定されるものではない。 As the di (meth) acrylate of the alkylene oxide adduct of the diol, specifically, one obtained by modifying the diol with an alkylene oxide and then adding a (meth) acrylate to the terminal is preferable, and one having an aromatic ring in the diol is more preferable. . For example, bisphenol A @ EO (ethylene oxide) adduct diacrylate, bisphenol A @ PO (propylene oxide) adduct diacrylate and the like can be mentioned. The specific structure of the di (meth) acrylate of the diol alkylene oxide adduct is shown below, but is not limited thereto.
Figure JPOXMLDOC01-appb-I000007
(式中、m+nは2以上であり、2~40であることが好ましく、3.5~25であることがより好ましい。)
Figure JPOXMLDOC01-appb-I000007
(In the formula, m + n is 2 or more, preferably 2 to 40, and more preferably 3.5 to 25.)
 2官能のポリエステル(メタ)アクリレートとしては、M-6200、M-6250、M-6500(東亞合成社製の商品名)が好ましい。 As the bifunctional polyester (meth) acrylate, M-6200, M-6250, and M-6500 (trade names, manufactured by Toagosei Co., Ltd.) are preferable.
 (D1)自己重合性基を有する可塑剤の配合量は、ポリベンゾオキサゾール前駆体の不揮発成分100質量部に対し、3~40質量部であることが好ましく、低温硬化において十分な薬品耐性をより発揮することができる。 (D1) The compounding amount of the plasticizer having a self-polymerizable group is preferably 3 to 40 parts by mass with respect to 100 parts by mass of the non-volatile component of the polybenzoxazole precursor. Can be demonstrated.
((D2)自己重合性基を有さない可塑剤)
 (D2)自己重合性基を有さない可塑剤としては、N-ブチルベンゼンスルホンアミド、N-エチル-p-トルエンスルホンアミド等のスルホンアミド化合物、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジ(2-エチルヘキシル)などのフタル酸エステル化合物、マレイン酸ジ(2-エチルヘキシル)などのマレイン酸エステル化合物、トリス(2-エチルヘキシル)トリメリテートなどのトリメリット酸エステル、アジピン酸ジメチル、アジピン酸ジブチルなどの脂肪族二塩基酸エステル、トリメチルホスフェート、トリス(ブトキシエチル)ホスフェートなどのリン酸エステル、(CO)P(O)OCC(CHOP(O)(OCで表されるような芳香族縮合リン酸エステル、クラウンエーテルなどのエーテル化合物などが挙げられる。なかでも、スルホンアミド化合物、フタル酸エステル化合物、マレイン酸エステル化合物が好ましい。
((D2) a plasticizer having no self-polymerizable group)
(D2) Examples of the plasticizer having no self-polymerizable group include sulfonamide compounds such as N-butylbenzenesulfonamide and N-ethyl-p-toluenesulfonamide, dimethyl phthalate, diethyl phthalate and diphthalate ( Phthalate compounds such as 2-ethylhexyl), maleate compounds such as di (2-ethylhexyl) maleate, trimellitate esters such as tris (2-ethylhexyl) trimellitate, and fats such as dimethyl adipate and dibutyl adipate Phosphoric acid esters such as aromatic dibasic acid esters, trimethyl phosphate, and tris (butoxyethyl) phosphate; (C 6 H 5 O) 2 P (O) OC 6 H 4 C (CH 3 ) 2 C 6 H 4 OP (O ) (OC 6 H 5) aromatic condensed phosphoric acid ester, such as represented by 2 , And the like ether compounds such as crown ethers. Among them, a sulfonamide compound, a phthalate compound and a maleate compound are preferred.
 前記スルホンアミド化合物は、下記一般式(3)で表されるベンゼンスルホンアミド化合物であることが好ましい。 The sulfonamide compound is preferably a benzenesulfonamide compound represented by the following general formula (3).
Figure JPOXMLDOC01-appb-I000008
(一般式(3)中、R31は、有機基、ニトロ基、ハロゲン原子、スルホ基、スルホニル基、アミノ基またはアミド基であり、R32は、水素原子または有機基であり、nは0~5の整数である。nが2以上の場合、R31はそれぞれ同じであっても異なっていてもよい。)
Figure JPOXMLDOC01-appb-I000008
(In the general formula (3), R 31 is an organic group, a nitro group, a halogen atom, a sulfo group, a sulfonyl group, an amino group, or an amide group; R 32 is a hydrogen atom or an organic group; An integer of from 5 to 5. When n is 2 or more, R 31 may be the same or different.
 前記マレイン酸エステル化合物は、下記一般式(4)で表される化合物であることが好ましい。 The maleic ester compound is preferably a compound represented by the following general formula (4).
Figure JPOXMLDOC01-appb-I000009
(一般式(4)中、R41およびR42は、それぞれ独立に水素原子、有機基、ニトロ基、ハロゲン原子、スルホ基、スルホニル基、アミノ基またはアミド基であり、R41とR42は、結合して環を形成してもよい。R43は水素原子または有機基であり、R44は、水素原子または有機基である。)
Figure JPOXMLDOC01-appb-I000009
(In the general formula (4), R 41 and R 42 are each independently a hydrogen atom, an organic group, a nitro group, a halogen atom, a sulfo group, a sulfonyl group, an amino group or an amide group, and R 41 and R 42 are And R 43 may be a hydrogen atom or an organic group, and R 44 may be a hydrogen atom or an organic group.)
 尚、一般式(3)および(4)、並びに後述する一般式(5)および(6)において、有機基とは、炭素原子を含む基である。有機基としては、炭素数1~12のアルキル基などが挙げられ、直鎖であっても分岐を有していてもよい。 In the general formulas (3) and (4) and the general formulas (5) and (6) described later, the organic group is a group containing a carbon atom. Examples of the organic group include an alkyl group having 1 to 12 carbon atoms, which may be linear or branched.
 (D2)自己重合性基を有さない可塑剤の配合量は、ポリベンゾオキサゾール前駆体の不揮発成分100質量部に対し、1~50質量部であることが好ましく、10~50質量部であることがさらに好ましい。配合量が1質量部以上であれば、可塑効果が表れやすく、50質量部以下であれば、得られた硬化膜の特性を損なうことがない。 (D2) The compounding amount of the plasticizer having no self-polymerizable group is preferably 1 to 50 parts by mass, and more preferably 10 to 50 parts by mass with respect to 100 parts by mass of the nonvolatile component of the polybenzoxazole precursor. Is more preferable. When the amount is 1 part by mass or more, a plasticizing effect is easily exhibited, and when the amount is 50 parts by mass or less, the characteristics of the obtained cured film are not impaired.
((E)熱酸発生剤)
 本発明の第二の態様の感光性樹脂組成物は、(E)熱酸発生剤を含有する。また、本発明の第一および第三の態様の感光性樹脂組成物は、(E)熱酸発生剤を含有することが好ましい。本発明においては、(A)ポリベンゾオキサゾール前駆体のフェノール性水酸基と(C)2官能以上のエポキシ化合物のエポキシ基が反応し、架橋構造を形成すると考えられるが、水酸基とエポキシ基の反応では、架橋構造に水酸基が生じることで誘電特性が悪化するため、絶縁材用途としては改善の余地がある。詳しいメカニズムは明らかではないが、本発明において熱酸発生剤を配合すると、(A)ポリベンゾオキサゾール前駆体の環化反応の触媒として作用することによって、低温での環化反応が促進され、上記架橋構造の水酸基の数が減少することで誘電特性が向上し、さらに、環化反応促進によって耐薬品性や耐熱性がより優れた硬化物を得ることができる。熱酸発生剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
((E) Thermal acid generator)
The photosensitive resin composition of the second embodiment of the present invention contains (E) a thermal acid generator. Further, the photosensitive resin compositions of the first and third aspects of the present invention preferably contain (E) a thermal acid generator. In the present invention, (A) the phenolic hydroxyl group of the polybenzoxazole precursor and (C) the epoxy group of the difunctional or higher functional epoxy compound are considered to react to form a crosslinked structure. In addition, since a dielectric property is deteriorated due to the generation of a hydroxyl group in the crosslinked structure, there is room for improvement as an insulating material. Although the detailed mechanism is not clear, when the thermal acid generator is blended in the present invention, the cyclization reaction at a low temperature is promoted by acting as a catalyst for the cyclization reaction of the polybenzoxazole precursor (A). Dielectric properties are improved by reducing the number of hydroxyl groups in the crosslinked structure, and a cured product having more excellent chemical resistance and heat resistance can be obtained by promoting the cyclization reaction. One kind of the thermal acid generator may be used alone, or two or more kinds may be used in combination.
 (E)熱酸発生剤は熱によって酸が発生すれば特に限定されない。また、発生する酸としては、例えば、スルホン酸、カルボン酸、酢酸、塩酸、硝酸、臭素酸、ヨウ素酸が挙げられるが、環化の効率の観点から強酸が好ましく、ベンゼンスルホン酸、p-トルエンスルホン酸などのアリールスルホン酸、トリフルオロメタンスルホン酸、ノナフルオロブタンスルホン酸、カンファースルホン酸などのパーフルオロアルキルスルホン酸、メタンスルホン酸、エタンスルホン酸、ブタンスルホン酸などのアルキルスルホン酸などのスルホン酸が好ましい。これらの酸は、熱酸発生剤として、例えば、オニウム塩としての塩や、イミドスルホナートのような共有結合によって潜在化した化合物として感光性樹脂組成物に配合される。 (E) The thermal acid generator is not particularly limited as long as the acid is generated by heat. Examples of the generated acid include sulfonic acid, carboxylic acid, acetic acid, hydrochloric acid, nitric acid, bromic acid, and iodic acid, and a strong acid is preferable from the viewpoint of cyclization efficiency, and benzenesulfonic acid and p-toluene are preferable. Sulfonic acids such as arylsulfonic acids such as sulfonic acid, perfluoroalkylsulfonic acids such as trifluoromethanesulfonic acid, nonafluorobutanesulfonic acid and camphorsulfonic acid, and alkylsulfonic acids such as methanesulfonic acid, ethanesulfonic acid and butanesulfonic acid. Is preferred. These acids are added to the photosensitive resin composition as a thermal acid generator, for example, a salt as an onium salt or a compound latentified by a covalent bond such as imidosulfonate.
 (E)熱酸発生剤の具体例としては、スルホン酸エステル化合物、スルホンイミド化合物、スルホニウム塩、2-スルホ安息香酸無水物、p-トルエンスルホン酸無水物、ベンゾチアゾリウム塩、アンモニウム塩、ホスホニウム塩、スルホン酸塩などが挙げられる。これらの中でも、スルホン酸エステル化合物、スルホン酸塩が好ましい。また、熱酸発生剤として、熱により強酸(水中の酸解離定数pKaが0以下)を発生する化合物であることが好ましい。 (E) Specific examples of the thermal acid generator include sulfonic acid ester compounds, sulfonimide compounds, sulfonium salts, 2-sulfobenzoic anhydride, p-toluenesulfonic anhydride, benzothiazolium salts, ammonium salts, Examples include phosphonium salts and sulfonates. Among these, a sulfonic acid ester compound and a sulfonic acid salt are preferable. The thermal acid generator is preferably a compound that generates a strong acid (having an acid dissociation constant pKa in water of 0 or less) by heat.
 スルホン酸エステル化合物としては、メタンスルホン酸エチル、メタンスルホン酸メチル、メタンスルホン酸2-メトキシエチル、メタンスルホン酸2-イソプロポキシエチル、4-メチルベンゼンスルホン酸シクロヘキシル、(1R,2S,5R)-5-メチル-2-(プロパン-2-イル)シクロヘキシル 4-メチルベンゼンスルホン酸、p-トルエンスルホン酸フェニル、p-トルエンスルホン酸エチル、p-トルエンスルホン酸メチル、p-トルエンスルホン酸2-フェニルエチル、p-トルエンスルホン酸n-プロピル、p-トルエンスルホン酸n-ブチル、p-トルエンスルホン酸t-ブチル、p-トルエンスルホン酸n-ヘキシル、p-トルエンスルホン酸n-ヘプチル、p-トルエンスルホン酸n-オクチル、p-トルエンスルホン酸2-メトキシエチル、p-トルエンスルホン酸プロパルギル、p-トルエンスルホン酸3-ブチニル、トリフルオロメタンスルホン酸エチル、トリフルオロメタンスルホン酸n-ブチル、パーフルオロブタンスルホン酸エチル、パーフルオロブタンスルホン酸メチル、ベンジル(4-ヒドロキシフェニル)メチルスルホニウムヘキサフルオロアンチモネート、ベンジル(4-ヒドロキシフェニル)メチルスルホニウムヘキサフルオロホスフェート、トリメチルスルホニウムメチルスルファート、トリ-p-スルホニウムトリフルオロメタンスルホネート、トリメチルスルホニウムトリフルオロメタンスルホナート、ピリジニウム-p-トルエンスルホナート、パーフルオロオクタンスルホン酸エチル、1,4-ブタンスルトン、2,4-ブタンスルトン、1,3-プロパンスルトン、フェノールレッド、ブロモクレゾールグリーン、ブロモクレゾールパープル等が挙げられる。 Examples of the sulfonic acid ester compound include ethyl methanesulfonate, methyl methanesulfonate, 2-methoxyethyl methanesulfonate, 2-isopropoxyethyl methanesulfonate, cyclohexyl 4-methylbenzenesulfonate, (1R, 2S, 5R)- 5-methyl-2- (propan-2-yl) cyclohexyl 4-methylbenzenesulfonic acid, phenyl p-toluenesulfonate, ethyl p-toluenesulfonate, methyl p-toluenesulfonate, 2-phenyl p-toluenesulfonate Ethyl, n-propyl p-toluenesulfonate, n-butyl p-toluenesulfonate, t-butyl p-toluenesulfonate, n-hexyl p-toluenesulfonate, n-heptyl p-toluenesulfonate, p-toluene N-octyl sulfonate, p-toluene 2-methoxyethyl sulfonate, propargyl p-toluenesulfonate, 3-butynyl p-toluenesulfonate, ethyl trifluoromethanesulfonate, n-butyl trifluoromethanesulfonate, ethyl perfluorobutanesulfonate, methyl perfluorobutanesulfonate Benzyl (4-hydroxyphenyl) methylsulfonium hexafluoroantimonate, benzyl (4-hydroxyphenyl) methylsulfonium hexafluorophosphate, trimethylsulfonium methylsulfate, tri-p-sulfonium trifluoromethanesulfonate, trimethylsulfonium trifluoromethanesulfonate, Pyridinium-p-toluenesulfonate, ethyl perfluorooctanesulfonate, 1,4-butanesultone 2,4-butane sultone, 1,3-propane sultone, phenol red, bromocresol green, and the like bromocresol purple, and the like.
 前記スルホン酸エステル化合物としては、下記一般式(5)で表される化合物が好ましい。 と し て As the sulfonic acid ester compound, a compound represented by the following general formula (5) is preferable.
Figure JPOXMLDOC01-appb-I000010
(一般式(5)中、R51は、水素原子またはアルキル基を表し、R52は、水素原子または有機基を表す。)
Figure JPOXMLDOC01-appb-I000010
(In the general formula (5), R 51 represents a hydrogen atom or an alkyl group, and R 52 represents a hydrogen atom or an organic group.)
 R51がとりうるアルキル基は、直鎖であっても分岐を有していてもよい。また、炭素原子数が1~10であることが好ましく、1~6であることがより好ましい。 The alkyl group which R 51 can have may be straight-chain or branched. Further, the number of carbon atoms is preferably 1 to 10, more preferably 1 to 6.
 R52がとりうる有機基は、直鎖であっても分岐を有していてもよく、環状構造を有していてもよい。炭素原子数が1~16であることが好ましく、1~11であることがより好ましい。 The organic group which R 52 can take may be linear or branched, and may have a cyclic structure. The number of carbon atoms is preferably from 1 to 16, more preferably from 1 to 11.
 前記スルホン酸塩としては、下記一般式(6)で表される化合物が好ましい。 と し て As the sulfonate, a compound represented by the following general formula (6) is preferable.
Figure JPOXMLDOC01-appb-I000011
(一般式(6)中、R61は水素原子またはアルキル基を表し、R62、R63はそれぞれ独立に水素原子または有機基を表す。R62とR63は結合して環を形成してもよい。)
Figure JPOXMLDOC01-appb-I000011
(In the general formula (6), R 61 represents a hydrogen atom or an alkyl group, and R 62 and R 63 each independently represent a hydrogen atom or an organic group. R 62 and R 63 are bonded to form a ring. May be.)
 R61がとりうるアルキル基は直鎖であっても分岐を有していてもよい。また、炭素原子数は1~10であることが好ましく、1~6であることがより好ましい。 The alkyl group which R 61 can take may be straight-chain or branched. Further, the number of carbon atoms is preferably from 1 to 10, more preferably from 1 to 6.
 R62、R63がとりうる有機基は直鎖であっても分岐を有していてもよい。 The organic group that can be taken by R 62 and R 63 may be linear or branched.
 尚、一般式(5)および(6)において、上述のとおり、有機基としては、炭素数1~12のアルキル基などが挙げられ、直鎖であっても分岐を有していてもよい。 In the general formulas (5) and (6), as described above, examples of the organic group include an alkyl group having 1 to 12 carbon atoms, which may be linear or branched.
 (E)熱酸発生剤のなかでも、120~220℃で酸を発生する熱酸発生剤が好ましい。120℃以上で酸が発生する熱酸発生剤の場合、プリベーク時に反応が進行しにくく、現像残渣が生じにくい。さらには、150~220℃で酸を発生する熱酸発生剤が好ましい。酸の発生は、TG-DTAによる重量減少温度にて確認することができる。 Among (E) thermal acid generators, a thermal acid generator that generates an acid at 120 to 220 ° C. is preferable. In the case of a thermal acid generator that generates an acid at a temperature of 120 ° C. or higher, the reaction hardly proceeds during prebaking, and a development residue hardly occurs. Further, a thermal acid generator that generates an acid at 150 to 220 ° C. is preferable. The generation of acid can be confirmed by the temperature at which the weight is reduced by TG-DTA.
 (E)熱酸発生剤の配合量は、(A)ポリベンゾオキサゾール前駆体の不揮発成分100質量部に対し、0.1~30質量部であることが好ましく、0.1~10質量部であることがより好ましく、さらに好ましくは1~3質量部である。 The compounding amount of (E) the thermal acid generator is preferably 0.1 to 30 parts by mass, and more preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the nonvolatile component of the polybenzoxazole precursor (A). More preferably, the content is more preferably 1 to 3 parts by mass.
(増感剤、密着剤、その他の成分)
 本発明の感光性樹脂組成物には、本発明の効果を損なわない範囲で、更に光感度を向上させるために公知の増感剤や、基材との接着性向上のためシランカップリング剤などの公知の密着剤などを配合することもできる。更に、本発明の感光性樹脂組成物に加工特性や各種機能性を付与するために、その他に様々な有機または無機の低分子または高分子化合物を配合してもよい。例えば、界面活性剤、レベリング剤、微粒子等を用いることができる。微粒子には、ポリスチレン、ポリテトラフルオロエチレン等の有機微粒子、シリカ、カーボン、層状珪酸塩等の無機微粒子が含まれる。また、本発明の感光性樹脂組成物に各種着色剤および繊維等を配合してもよい。
(Sensitizers, adhesives, and other components)
The photosensitive resin composition of the present invention includes, within a range not impairing the effects of the present invention, a known sensitizer for further improving the photosensitivity, and a silane coupling agent for improving the adhesion to the substrate. Can also be blended. Further, in order to impart processing characteristics and various functions to the photosensitive resin composition of the present invention, various other organic or inorganic low-molecular or high-molecular compounds may be blended. For example, a surfactant, a leveling agent, fine particles, and the like can be used. The fine particles include organic fine particles such as polystyrene and polytetrafluoroethylene, and inorganic fine particles such as silica, carbon, and layered silicate. Further, various colorants, fibers and the like may be blended in the photosensitive resin composition of the present invention.
(溶剤)
 本発明の感光性樹脂組成物に用いられる溶剤は、本発明の感光性樹脂組成物が含有する上記成分、および、他の添加剤を溶解させるものであれば特に限定されない。一例としては、N,N’-ジメチルホルムアミド、N-メチルピロリドン、N-エチル-2-ピロリドン、N,N’-ジメチルアセトアミド、ジエチレングリコールジメチルエーテル、シクロペンタノン、γ-ブチロラクトン、α-アセチル-γ-ブチロラクトン、テトラメチル尿素、1,3-ジメチル-2-イミダゾリノン、N-シクロヘキシル-2-ピロリドン、ジメチルスルホキシド、ヘキサメチルホスホルアミド、ピリジン、γ-ブチロラクトン、ジエチレングリコールモノメチルエーテルを挙げることができる。これらは単独で用いても、二種以上を混合して用いてもかまわない。使用する溶剤の量は、塗布膜厚や粘度に応じて適宜に定めることができる。例えば、(A)ポリベンゾオキサゾール前駆体100質量部に対し、50~9000質量部の範囲で用いることができる。
(solvent)
The solvent used in the photosensitive resin composition of the present invention is not particularly limited as long as it dissolves the above-mentioned components contained in the photosensitive resin composition of the present invention and other additives. Examples include N, N'-dimethylformamide, N-methylpyrrolidone, N-ethyl-2-pyrrolidone, N, N'-dimethylacetamide, diethylene glycol dimethyl ether, cyclopentanone, γ-butyrolactone, α-acetyl-γ- Examples include butyrolactone, tetramethylurea, 1,3-dimethyl-2-imidazolinone, N-cyclohexyl-2-pyrrolidone, dimethylsulfoxide, hexamethylphosphoramide, pyridine, γ-butyrolactone, and diethylene glycol monomethyl ether. These may be used alone or in combination of two or more. The amount of the solvent to be used can be appropriately determined according to the coating film thickness and the viscosity. For example, it can be used in an amount of 50 to 9000 parts by mass based on 100 parts by mass of the polybenzoxazole precursor (A).
 本発明の感光性樹脂組成物は、ポジ型であることが好ましい。 感光 The photosensitive resin composition of the present invention is preferably of a positive type.
[ドライフィルム]
 本発明のドライフィルムは、本発明の感光性樹脂組成物をフィルム(例えば支持(キャリア)フィルム)に塗布後、乾燥して得られる樹脂層を有するものである。この樹脂層を、基材に接するようにラミネートして使用される。
[Dry film]
The dry film of the present invention has a resin layer obtained by applying the photosensitive resin composition of the present invention to a film (for example, a support (carrier) film) and then drying. This resin layer is used after being laminated so as to be in contact with the base material.
 本発明のドライフィルムは、フィルムに本発明の感光性樹脂組成物をブレードコーター、リップコーター、コンマコーター、フィルムコーター等の適宜の方法により均一に塗布し、乾燥して、上記した樹脂層を形成し、好ましくはその上にフィルム(いわゆる保護(カバー)フィルム)を積層することにより、製造することができる。保護フィルムと支持フィルムは同一のフィルム材料であっても、異なるフィルムを用いてもよい。 The dry film of the present invention is formed by uniformly applying the photosensitive resin composition of the present invention to the film by an appropriate method such as a blade coater, a lip coater, a comma coater, a film coater, and the like, and drying to form the above-described resin layer. Preferably, it can be manufactured by laminating a film (a so-called protective (cover) film) thereon. The same film material may be used for the protective film and the support film, or different films may be used.
 本発明のドライフィルムにおいて、支持フィルムおよび保護フィルムのフィルム材料は、ドライフィルムに用いられるものとして公知のものをいずれも使用することができる。
 支持フィルムとしては、例えば2~150μmの厚さのポリエチレンテレフタレート等のポリエステルフィルム等の熱可塑性フィルムが用いられる。
 保護フィルムとしては、ポリエチレンフィルム、ポリプロピレンフィルム等を使用することができるが、樹脂層との接着力が、支持フィルムよりも小さいものが良い。
In the dry film of the present invention, as the film material of the support film and the protective film, any of those known as materials used for dry films can be used.
As the support film, for example, a thermoplastic film such as a polyester film such as polyethylene terephthalate having a thickness of 2 to 150 μm is used.
As the protective film, a polyethylene film, a polypropylene film, or the like can be used, but a film having lower adhesive strength to the resin layer than the supporting film is preferable.
 本発明のドライフィルム上の樹脂層の膜厚は、100μm以下が好ましく、5~50μmの範囲がより好ましい。 膜厚 The thickness of the resin layer on the dry film of the present invention is preferably 100 μm or less, more preferably 5 to 50 μm.
[硬化物]
 本発明の硬化物は、上述した本発明の感光性樹脂組成物を用い所定のステップにて硬化させたものである。その硬化物であるパターン膜は、公知慣用の製法で製造すればよく、例えば、(B)感光剤としての光酸発生剤を含有するポジ型感光性樹脂組成物の場合、次の各ステップにより製造する。
[Cured product]
The cured product of the present invention is obtained by curing the photosensitive resin composition of the present invention in a predetermined step. The pattern film as the cured product may be manufactured by a known and commonly used manufacturing method. For example, in the case of (B) a positive photosensitive resin composition containing a photoacid generator as a photosensitive agent, the following steps are performed. To manufacture.
 まず、ステップ1として、感光性樹脂組成物を基材上に塗布、乾燥することにより、あるいはドライフィルムから樹脂層を基材上に転写することにより、塗膜を得る。感光性樹脂組成物を基材上に塗布する方法としては、従来から感光性樹脂組成物の塗布に用いられていた方法、例えば、スピンコーター、バーコーター、ブレードコーター、カーテンコーター、スクリーン印刷機等で塗布する方法、スプレーコーターで噴霧塗布する方法、さらにはインクジェット法等を用いることができる。塗膜の乾燥方法としては、風乾、オーブンまたはホットプレートによる加熱乾燥、真空乾燥等の方法が用いられる。また、塗膜の乾燥は、感光性樹脂組成物中のポリベンゾオキサゾール前駆体の環化が起こらないような条件で行うことが望ましい。具体的には、自然乾燥、送風乾燥、あるいは加熱乾燥を、70~140℃で1~30分の条件で行うことができる。好ましくは、ホットプレート上で1~20分乾燥を行う。また、真空乾燥も可能であり、この場合は、室温で20分~1時間の条件で行うことができる。
 感光性樹脂組成物の塗膜が形成される基材に特に制限はなく、シリコンウエハ等の半導体基材、配線基板、各種樹脂、金属等に広く適用できる。
First, as step 1, a coating film is obtained by applying and drying a photosensitive resin composition on a substrate, or by transferring a resin layer from a dry film onto a substrate. As a method of applying the photosensitive resin composition on the substrate, a method conventionally used for applying the photosensitive resin composition, for example, a spin coater, a bar coater, a blade coater, a curtain coater, a screen printing machine, and the like , A spray coating method using a spray coater, and an ink jet method. As a method for drying the coating film, methods such as air drying, heating drying using an oven or a hot plate, and vacuum drying are used. It is desirable that the drying of the coating film is performed under such conditions that the cyclization of the polybenzoxazole precursor in the photosensitive resin composition does not occur. Specifically, natural drying, air drying, or heat drying can be performed at 70 to 140 ° C. for 1 to 30 minutes. Preferably, drying is performed on a hot plate for 1 to 20 minutes. Vacuum drying is also possible. In this case, the drying can be performed at room temperature for 20 minutes to 1 hour.
The substrate on which the coating film of the photosensitive resin composition is formed is not particularly limited, and can be widely applied to semiconductor substrates such as silicon wafers, wiring substrates, various resins, metals, and the like.
 次に、ステップ2として、上記塗膜を、パターンを有するフォトマスクを介して、あるいは直接的に、露光する。露光光線は、(B)感光剤としての光酸発生剤を活性化させることができる波長のものを用いる。具体的には、露光光線は、最大波長が350~440nmの範囲にあるものが好ましい。上述したように、増感剤を適宜に配合することにより、光感度を調製することができる。露光装置としては、コンタクトアライナー、ミラープロジェクション、ステッパー、レーザーダイレクト露光装置等を用いることができる。 Next, as step 2, the coating film is exposed through a photomask having a pattern or directly. An exposure light having a wavelength capable of activating a photoacid generator (B) as a photosensitive agent is used. Specifically, the exposure light preferably has a maximum wavelength in the range of 350 to 440 nm. As described above, the photosensitivity can be adjusted by appropriately adding a sensitizer. As the exposure device, a contact aligner, a mirror projection, a stepper, a laser direct exposure device, or the like can be used.
 次いで、ステップ3として、上記塗膜を現像液で処理する。これにより、塗膜中の露光部分を除去して、本発明の感光性樹脂組成物のパターン膜を形成することができる。 Next, as step 3, the coating film is treated with a developer. This makes it possible to form a pattern film of the photosensitive resin composition of the present invention by removing the exposed portions in the coating film.
 現像に用いる方法としては、従来知られているフォトレジストの現像方法、例えば回転スプレー法、パドル法、超音波処理を伴う浸せき法等の中から任意の方法を選択することができる。現像液としては、水酸化ナトリウム、炭酸ナトリウム、ケイ酸ナトリウム、アンモニア水等の無機アルカリ類、エチルアミン、ジエチルアミン、トリエチルアミン、トリエタノールアミン等の有機アミン類、テトラメチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド等の四級アンモニウム塩類等の水溶液を挙げることができる。また、必要に応じて、これらにメタノール、エタノール、イソプロピルアルコール等の水溶性有機溶媒や界面活性剤を適当量添加してもよい。その後、必要に応じて塗膜をリンス液により洗浄してパターン膜を得る。リンス液としては、蒸留水、メタノール、エタノール、イソプロピルアルコール等を単独または組み合わせて用いることができる。また、現像液として上記溶剤を使用してもよい。 As a method used for development, any method can be selected from conventionally known methods for developing a photoresist, for example, a rotary spray method, a paddle method, an immersion method involving ultrasonic treatment, and the like. Examples of the developer include inorganic alkalis such as sodium hydroxide, sodium carbonate, sodium silicate, and aqueous ammonia; organic amines such as ethylamine, diethylamine, triethylamine, and triethanolamine; tetramethylammonium hydroxide; and tetrabutylammonium hydroxide. And aqueous solutions of quaternary ammonium salts. If necessary, an appropriate amount of a water-soluble organic solvent such as methanol, ethanol, or isopropyl alcohol or a surfactant may be added to these. Thereafter, if necessary, the coating film is washed with a rinsing liquid to obtain a pattern film. As the rinsing liquid, distilled water, methanol, ethanol, isopropyl alcohol and the like can be used alone or in combination. Further, the above-mentioned solvent may be used as a developer.
 その後、ステップ4として、パターン膜を加熱して硬化塗膜(硬化物)を得る。この加熱により、ポリベンゾオキサゾール前駆体を環化し、ポリベンゾオキサゾールを得る。加熱温度は、感光性樹脂組成物のパターン膜を硬化可能なように適宜設定する。例えば、不活性ガス中で、150℃以上350℃未満で5~120分程度の加熱を行う。加熱温度のより好ましい範囲は、180~250℃である。本発明の第一の態様の感光性樹脂組成物は、(C)2官能以上のエポキシ化合物および(D)可塑剤を含むので、本発明の第二の態様の感光性樹脂組成物は、(C)2官能以上のエポキシ化合物および(E)熱酸発生剤を含むので、また、本発明の第三の感光性樹脂組成物は、(c)ナフタレン型エポキシ化合物を含むので、環化が促進され、250℃未満、さらには220℃以下の加熱温度とすることができる。加熱は、例えば、ホットプレート、オーブン、温度プログラムを設定できる昇温式オーブンを用いることにより行う。このときの雰囲気(気体)としては空気を用いてもよく、窒素、アルゴン等の不活性ガスを用いてもよい。 Then, as a step 4, the pattern film is heated to obtain a cured coating film (cured product). By this heating, the polybenzoxazole precursor is cyclized to obtain polybenzoxazole. The heating temperature is appropriately set so that the pattern film of the photosensitive resin composition can be cured. For example, heating is performed at 150 ° C. or higher and lower than 350 ° C. for about 5 to 120 minutes in an inert gas. A more preferable range of the heating temperature is 180 to 250 ° C. Since the photosensitive resin composition of the first aspect of the present invention contains (C) a bifunctional or more functional epoxy compound and (D) a plasticizer, the photosensitive resin composition of the second aspect of the present invention comprises: The third photosensitive resin composition of the present invention contains (c) a naphthalene-type epoxy compound because C) contains a bifunctional or higher functional epoxy compound and (E) a thermal acid generator, so that cyclization is promoted. The heating temperature can be set to less than 250 ° C., and further, to 220 ° C. or less. The heating is performed by using, for example, a hot plate, an oven, and a temperature rising oven in which a temperature program can be set. As the atmosphere (gas) at this time, air may be used, or an inert gas such as nitrogen or argon may be used.
 本発明の感光性樹脂組成物の用途は特に限定されず、例えば、塗料、印刷インキ、または接着剤、あるいは、表示装置、半導体装置、電子部品、光学部品、または建築材料の形成材料として好適に用いられる。具体的には、表示装置の形成材料としては、層形成材料や画像形成材料として、カラーフィルター、フレキシブルディスプレイ用フィルム、レジスト材料、配向膜等に用いることができる。また、半導体装置の形成材料としては、レジスト材料、バッファーコート膜のような層形成材料等に用いることができる。さらに、電子部品の形成材料としては、封止材料や層形成材料として、プリント配線板、層間絶縁膜、配線被覆膜等に用いることができる。さらにまた、光学部品の形成材料としては、光学材料や層形成材料として、ホログラム、光導波路、光回路、光回路部品、反射防止膜等に用いることができる。さらにまた、建築材料としては、塗料、コーティング剤等に用いることができる。 The use of the photosensitive resin composition of the present invention is not particularly limited. For example, it is suitable as a coating material, a printing ink, or an adhesive, or a display device, a semiconductor device, an electronic component, an optical component, or a building material. Used. Specifically, as a material for forming a display device, a color filter, a film for a flexible display, a resist material, an alignment film, or the like can be used as a layer forming material or an image forming material. In addition, as a material for forming a semiconductor device, a resist material, a layer forming material such as a buffer coat film, or the like can be used. Furthermore, as a material for forming an electronic component, a sealing material or a layer forming material can be used for a printed wiring board, an interlayer insulating film, a wiring coating film, or the like. Furthermore, as a material for forming an optical component, a hologram, an optical waveguide, an optical circuit, an optical circuit component, an antireflection film, or the like can be used as an optical material or a layer forming material. Furthermore, as a building material, it can be used for a paint, a coating agent and the like.
 本発明の感光性樹脂組成物は、主にパターン形成材料として用いられ、それによって形成されたパターン膜は、例えば、ポリベンゾオキサゾールなどからなる永久膜として耐熱性や絶縁性を付与する成分として機能することから、特に半導体装置、表示体装置および発光装置の表面保護膜、層間絶縁膜、再配線用絶縁膜、フリップチップ装置用保護膜、バンプ構造を有する装置の保護膜、多層回路の層間絶縁膜、受動部品用絶縁材料、ソルダーレジストやカバーレイ膜などのプリント配線板の保護膜、ならびに液晶配向膜等として好適に利用できる。特に、本発明の感光性樹脂組成物は、硬化物の耐薬品性に優れることから、積層される層形成材料、例えば、層間絶縁膜、再配線用絶縁膜の形成材料として好適である。 The photosensitive resin composition of the present invention is mainly used as a pattern forming material, and the pattern film formed thereby functions as a component that imparts heat resistance and insulation as a permanent film made of, for example, polybenzoxazole. In particular, surface protection films for semiconductor devices, display devices and light emitting devices, interlayer insulation films, insulation films for rewiring, protection films for flip-chip devices, protection films for devices having a bump structure, interlayer insulation for multilayer circuits It can be suitably used as a film, an insulating material for passive components, a protective film for a printed wiring board such as a solder resist or a coverlay film, and a liquid crystal alignment film. In particular, the photosensitive resin composition of the present invention is suitable as a material for forming a layer to be laminated, for example, an interlayer insulating film or an insulating film for rewiring, since the cured product has excellent chemical resistance.
 以下、本発明を、実施例を用いてより詳細に説明するが、本発明は下記実施例に限定されるものではない。なお、以下において、「部」および「%」とあるのは、特に断りのない限り、すべて質量基準である。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples. In the following, “parts” and “%” are all based on mass unless otherwise specified.
(ポリベンゾオキサゾール前駆体(A1)の合成)
 温度計、攪拌機、原料仕込口及び窒素ガス導入口を備えた四つ口セパラブルフラスコに2,2-ビス(3-アミノ-4-ヒドロキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン40.3g(0.11モル)をN-メチル-2-ピロリドン1500gに溶解した後、ジフェニルエーテル-4、4’-ジカルボン酸ジクロリド35.4g(0.12モル)を反応系の温度を0~5℃に冷却しながら滴下した。
 滴下終了後、反応系の温度を室温に戻し、そのまま6時間攪拌した。その後、純水1.8g(0.1モル)を加えて、更に40℃で1時間反応した。反応終了後、反応液を純水2000gに滴下した。沈殿物を濾集し、洗浄した後、真空乾燥を行い、以下に示す繰り返し構造を有するポリベンゾオキサゾール前駆体であるアルカリ可溶性ポリヒドロキシアミド(A1)を得た。重量平均分子量は32,000、数平均分子量は12,500、PDIは2.56であった。
(Synthesis of polybenzoxazole precursor (A1))
2,2-bis (3-amino-4-hydroxyphenyl) -1,1,1,3,3,3 was placed in a four-neck separable flask equipped with a thermometer, a stirrer, a raw material inlet and a nitrogen gas inlet. After dissolving 40.3 g (0.11 mol) of hexafluoropropane in 1500 g of N-methyl-2-pyrrolidone, 35.4 g (0.12 mol) of diphenyl ether-4,4′-dicarboxylic dichloride was added to the reaction system. The solution was added dropwise while cooling the temperature to 0 to 5 ° C.
After completion of the dropwise addition, the temperature of the reaction system was returned to room temperature, and the mixture was stirred for 6 hours. Thereafter, 1.8 g (0.1 mol) of pure water was added, and the mixture was further reacted at 40 ° C. for 1 hour. After the completion of the reaction, the reaction solution was dropped into 2000 g of pure water. The precipitate was collected by filtration, washed, and dried under vacuum to obtain an alkali-soluble polyhydroxyamide (A1) which is a polybenzoxazole precursor having a repeating structure shown below. The weight average molecular weight was 32,000, the number average molecular weight was 12,500, and the PDI was 2.56.
Figure JPOXMLDOC01-appb-I000012
Figure JPOXMLDOC01-appb-I000012
<第一実施例1>
(ポジ型感光性樹脂組成物の調製)
 上記で合成したポリベンゾオキサゾール前駆体(A1)100質量部に対して、下記表1に記載の割合で、光酸発生剤(B1)、エポキシ化合物(C1~C3)、および、各成分を配合した後、ポリマーが30質量%になるようにγ-ブチロラクトンを加えてワニスとした。尚、各エポキシ化合物は、ポリベンゾオキサゾール前駆体(A1)のフェノール性OHに対し、エポキシ基の比が5:1になるように配合した。
<First Embodiment 1>
(Preparation of positive photosensitive resin composition)
The photoacid generator (B1), the epoxy compound (C1 to C3), and each component were blended at the ratio shown in Table 1 below with respect to 100 parts by mass of the polybenzoxazole precursor (A1) synthesized above. After that, γ-butyrolactone was added so that the content of the polymer was 30% by mass to prepare a varnish. In addition, each epoxy compound was blended so that the ratio of the epoxy group to the phenolic OH of the polybenzoxazole precursor (A1) was 5: 1.
(伸び率の評価)
 上記で調製したワニスをシリコンウエハ上にスピンコートして、110℃で3分間加熱し、膜厚40μmの塗膜を形成した。その後、前記塗膜をイナートガスオーブン中、窒素雰囲気下、120℃で10分加熱した後、4℃/min.で昇温し、220℃で60分加熱して硬化膜を得た。次にPCT装置(エスペック社製HAST SYSTEM TPC-412MD)を用いて、121℃、100%RH、60分の条件下で硬化膜を剥離した後、破断伸び等の膜物性を調べた。破断伸びは島津製作所社製のEZ-SXを用いて、引張試験より求め、つかみ具間距離は30mm、引張速度は3mm/min、測定は5回行い、そのうちの最大値を破断伸びとした。以下の基準に従って、伸び率を評価した。
A+:30%以上
A :20%以上30%未満
B :10%以上20%未満
C :10%未満
(Evaluation of growth rate)
The varnish prepared above was spin-coated on a silicon wafer and heated at 110 ° C. for 3 minutes to form a coating film having a thickness of 40 μm. Thereafter, the coating film was heated in an inert gas oven under a nitrogen atmosphere at 120 ° C. for 10 minutes, and then heated at 4 ° C./min. And heated at 220 ° C. for 60 minutes to obtain a cured film. Next, using a PCT apparatus (HAST SYSTEM TPC-412MD manufactured by Espec Corporation), the cured film was peeled off at 121 ° C. and 100% RH for 60 minutes, and the film properties such as elongation at break were examined. The elongation at break was obtained from a tensile test using EZ-SX manufactured by Shimadzu Corporation. The distance between the grippers was 30 mm, the tensile speed was 3 mm / min, the measurement was performed five times, and the maximum value was taken as the elongation at break. The elongation was evaluated according to the following criteria.
A +: 30% or more A: 20% or more and less than 30% B: 10% or more and less than 20% C: less than 10%
(耐薬品性試験)
 上記で調製したワニスをシリコンウエハ上にスピンコートして、110℃で3分間加熱し、膜厚40μmの塗膜を形成した。その後、前記塗膜をイナートガスオーブン中、窒素雰囲気下、120℃で10分加熱した後、4℃/min.で昇温し、220℃で60分加熱して硬化膜を得た。得られたサンプルの上に、それぞれ、γ-ブチロラクトン(GBL)に25℃10分間浸漬し、浸漬前後で変化を評価した。
A+:0.5%未満
A :0.5%以上1.0%未満
B :1.0%以上5%未満
C :5%以上
(Chemical resistance test)
The varnish prepared above was spin-coated on a silicon wafer and heated at 110 ° C. for 3 minutes to form a coating film having a thickness of 40 μm. Thereafter, the coating film was heated in an inert gas oven under a nitrogen atmosphere at 120 ° C. for 10 minutes, and then heated at 4 ° C./min. And heated at 220 ° C. for 60 minutes to obtain a cured film. Each of the obtained samples was immersed in γ-butyrolactone (GBL) at 25 ° C. for 10 minutes, and the change before and after immersion was evaluated.
A +: less than 0.5% A: 0.5% or more and less than 1.0% B: 1.0% or more and less than 5% C: 5% or more
(未露光部残膜率と露光部溶解速度の測定)
 上記で調製したワニスを、スピンコーターを用いて銅スパッタを施したシリコン基板上に塗布した。ホットプレートで100℃3分乾燥させ、感光性樹脂組成物の厚さ10μmの乾燥膜を得た。得られた乾燥膜に高圧水銀ランプを用いパターンが刻まれたマスクを介して800mJ/cmのi線を照射した。露光後2.38%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液で現像し、水でリンスし、ポジ型パターンを得た。
 露光部の残膜が0になる時点の未露光部の残膜厚から残膜率(%)を計算し、下記の基準で評価した。
A+:95%以上
A :90%以上95%未満
B :80%以上90%未満
C :80%未満
 また、乾燥膜厚(nm)/露光部の残膜が0になった時間(sec)を露光部の溶解速度として計算した。
(Measurement of residual film ratio of unexposed area and dissolution rate of exposed area)
The varnish prepared above was applied on a silicon substrate subjected to copper sputtering using a spin coater. It was dried on a hot plate at 100 ° C. for 3 minutes to obtain a dried film of the photosensitive resin composition having a thickness of 10 μm. Using a high-pressure mercury lamp, the obtained dried film was irradiated with i-line of 800 mJ / cm 2 through a mask in which a pattern was cut. After exposure, the resist film was developed with a 2.38% aqueous solution of tetramethylammonium hydroxide (TMAH) and rinsed with water to obtain a positive pattern.
The remaining film ratio (%) was calculated from the remaining film thickness of the unexposed portion when the remaining film of the exposed portion became 0, and evaluated according to the following criteria.
A +: 95% or more A: 90% or more and less than 95% B: 80% or more and less than 90% C: less than 80% In addition, the dry film thickness (nm) / the time (sec) when the remaining film in the exposed portion became 0 was calculated. It was calculated as the dissolution rate of the exposed part.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
<(B)感光剤>
(B1)ナフトキノンジアジド化合物(三宝化学研究所社製TKF-428)
Figure JPOXMLDOC01-appb-I000014
<(B) Photosensitizer>
(B1) Naphthoquinonediazide compound (TKF-428 manufactured by Sanbo Chemical Laboratory)
Figure JPOXMLDOC01-appb-I000014
<(C)2官能以上のエポキシ化合物>
(C1)EPICLON860(DIC社製)
Figure JPOXMLDOC01-appb-I000015
(C2)HP4032D(DIC社製)
Figure JPOXMLDOC01-appb-I000016
(C3)HP4700(DIC社製)
Figure JPOXMLDOC01-appb-I000017
<(C) Bifunctional or higher epoxy compound>
(C1) EPICLON860 (manufactured by DIC)
Figure JPOXMLDOC01-appb-I000015
(C2) HP4032D (manufactured by DIC)
Figure JPOXMLDOC01-appb-I000016
(C3) HP4700 (manufactured by DIC)
Figure JPOXMLDOC01-appb-I000017
<(D)可塑剤>
(D1-1)アロニックスM-6250(2官能ポリエステルアクリレート、東亞合成社製)
(D1-2))NKエステルBPE-900(2官能メタクリレート、新中村化学社製)
(D2-1)N-ブチルベンゼンスルホンアミド(大八工業化学製)
<(D) plasticizer>
(D1-1) Aronix M-6250 (bifunctional polyester acrylate, manufactured by Toagosei Co., Ltd.)
(D1-2)) NK ester BPE-900 (bifunctional methacrylate, manufactured by Shin-Nakamura Chemical Co., Ltd.)
(D2-1) N-butylbenzenesulfonamide (manufactured by Daihachi Chemical)
<(E)熱酸発生剤>
(E1)WPAG618(富士フィルム和光純薬工業社製)
Figure JPOXMLDOC01-appb-I000018
<(E) Thermal acid generator>
(E1) WPAG618 (Fuji Film Wako Pure Chemical Industries, Ltd.)
Figure JPOXMLDOC01-appb-I000018
<トリアジン環構造を有する架橋剤>
*1:MW390(三和ケミカル社製)
Figure JPOXMLDOC01-appb-I000019
<Crosslinking agent having triazine ring structure>
* 1: MW390 (manufactured by Sanwa Chemical Co., Ltd.)
Figure JPOXMLDOC01-appb-I000019
<有機溶剤>
*2:GBL(γ-ブチロラクトン)
<Organic solvent>
* 2: GBL (γ-butyrolactone)
 上記表1中に示す結果から、本発明の第一の態様の感光性樹脂組成物は、露光部の現像性に優れ、220℃程度の低温で硬化を行った場合であっても、耐薬品性および柔軟性に優れた硬化膜が得られることが分かる。 From the results shown in Table 1 above, the photosensitive resin composition of the first embodiment of the present invention has excellent developability in the exposed area, and has a chemical resistance even when cured at a low temperature of about 220 ° C. It can be seen that a cured film having excellent properties and flexibility can be obtained.
<第1実施例2>
(環化促進の評価)
 上記で合成したポリベンゾオキサゾール前駆体(A1)100質量部に対して、感光材(B1)(三宝化学研究所社製TKF-428)10質量部、下記表2中の2官能以上のエポキシ化合物17質量部、可塑剤10質量部を配合した後、ポリマーが30質量%になるようにγ-ブチロラクトンを加えてワニスとした。尚、2官能以上のエポキシ化合物は、ポリベンゾオキサゾール前駆体(A1)の水酸基に対してエポキシ基が10:1になるように添加した。
 得られたワニスはミカサ社製スピンコーターMS-A150を用いてウエハ上に塗布した。ホットプレートで120℃10分乾燥後、150℃30分、続いて下記表2中の硬化温度で1時間加熱し、硬化物を得た(昇温速度4℃/分)。その後、プレッシャークッカー試験(PCT)装置を用いて121℃/100%RHに1時間さらし、シリコンウエハから剥離した。得られた硬化膜について(PerkinElmer社製FT-IR Spectrum Two)を用いてIR測定を行い、得られたチャートから、下記式によって、ベンゾオキサゾール環の環化率を求めた。各組成とも320℃1h硬化したものを環化率100%として計算した。
A:1050cm-1付近、オキサゾール環のC-O由来
B:1595cm-1付近、全芳香族環のC=C→基準ピーク
Figure JPOXMLDOC01-appb-I000020
<First Embodiment 2>
(Evaluation of cyclization promotion)
Based on 100 parts by mass of the polybenzoxazole precursor (A1) synthesized above, 10 parts by mass of the photosensitive material (B1) (TKF-428 manufactured by Sanpo Chemical Laboratory Co., Ltd.), and a bifunctional or higher functional epoxy compound shown in Table 2 below After mixing 17 parts by mass and 10 parts by mass of a plasticizer, γ-butyrolactone was added so that the amount of the polymer became 30% by mass to form a varnish. The bifunctional or higher epoxy compound was added so that the epoxy group was 10: 1 with respect to the hydroxyl group of the polybenzoxazole precursor (A1).
The resulting varnish was applied on a wafer using a spin coater MS-A150 manufactured by Mikasa Corporation. After drying at 120 ° C. for 10 minutes on a hot plate, the mixture was heated at 150 ° C. for 30 minutes and then at the curing temperature shown in Table 2 for 1 hour to obtain a cured product (heating rate: 4 ° C./min). Thereafter, the wafer was exposed to 121 ° C./100% RH for 1 hour using a pressure cooker test (PCT) apparatus, and peeled from the silicon wafer. The cured film thus obtained was subjected to IR measurement using FT-IR Spectrum Two (manufactured by PerkinElmer), and the cyclization rate of the benzoxazole ring was determined from the obtained chart by the following formula. Each composition was calculated assuming that one cured at 320 ° C. for 1 hour was a cyclization ratio of 100%.
A: around 1050 cm -1 ; CO derived from an oxazole ring B: around 1595 cm -1 ; C = C of a wholly aromatic ring → reference peak
Figure JPOXMLDOC01-appb-I000020
Figure JPOXMLDOC01-appb-T000021
*1:EPICLON860(DIC社製)
*2:N-ブチルベンゼンスルホンアミド(大八工業化学社製)
*3:N-エチル-p-トルエンスルホンアミド
*4:フタル酸ジ(2-エチルヘキシル)(TCI社製)
*5:マレイン酸ジ(2-エチルヘキシル)(TCI社製)
Figure JPOXMLDOC01-appb-T000021
* 1: EPICLON860 (manufactured by DIC)
* 2: N-butylbenzenesulfonamide (manufactured by Daihachi Chemical)
* 3: N-ethyl-p-toluenesulfonamide * 4: di (2-ethylhexyl) phthalate (manufactured by TCI)
* 5: Di (2-ethylhexyl) maleate (manufactured by TCI)
 PBO前駆体とエポキシ化合物が反応するため、2官能以上のエポキシ化合物を含む参考例1-3の環化率はエポキシ化合物を含まない参考例1-2より下がり38%と低い値を示した。可塑剤を添加した参考例1-4~1-7は、環化率が57~68%まで向上したことから、可塑剤の効果により、環化率が促進されたことが確認できた。 (4) Since the PBO precursor reacts with the epoxy compound, the cyclization ratio of Reference Example 1-3 containing a bifunctional or higher functional epoxy compound was 38% lower than that of Reference Example 1-2 containing no epoxy compound, showing a low value of 38%. In Reference Examples 1-4 to 1-7 to which the plasticizer was added, the cyclization rate was improved to 57 to 68%, and it was confirmed that the cyclization rate was promoted by the effect of the plasticizer.
(ポジ型感光性樹脂組成物の調製)
 上記で合成したポリベンゾオキサゾール前駆体(A1)100質量部に対して、下記表3に記載の割合で、光酸発生剤(B1)、エポキシ化合物(C1~C3)、および、各成分を配合した後、ポリマーが30質量%になるようにγ-ブチロラクトンを加えてワニスとした。尚、各エポキシ化合物は、ポリベンゾオキサゾール前駆体(A1)のフェノール性OHに対し、エポキシ基の比が5:1になるように配合した。
(Preparation of positive photosensitive resin composition)
The photoacid generator (B1), the epoxy compound (C1 to C3), and each component were blended in the ratio shown in Table 3 below with respect to 100 parts by mass of the polybenzoxazole precursor (A1) synthesized above. After that, γ-butyrolactone was added so that the content of the polymer was 30% by mass to prepare a varnish. In addition, each epoxy compound was blended so that the ratio of the epoxy group to the phenolic OH of the polybenzoxazole precursor (A1) was 5: 1.
(伸び率の評価)
 上記で調製したワニスをシリコンウエハ上にスピンコートして、110℃で3分間加熱し、膜厚40μmの塗膜を形成した。その後、前記塗膜をイナートガスオーブン中、窒素雰囲気下、120℃で10分加熱した後、4℃/min.で昇温し、220℃で60分加熱して硬化膜を得た。次にPCT装置(エスペック社製HAST SYSTEM TPC-412MD)を用いて、121℃、100%RH、60分の条件下で硬化膜を剥離した後、破断伸び等の膜物性を調べた。破断伸びは島津製作所社製のEZ-SXを用いて、引張試験より求め、つかみ具間距離は30mm、引張速度は3mm/min、測定は5回行い、そのうちの最大値を破断伸びとした。以下の基準に従って、伸び率を評価した。
A+:30%以上
A :20%以上30%未満
B :10%以上20%未満
C :10%未満
(Evaluation of growth rate)
The varnish prepared above was spin-coated on a silicon wafer and heated at 110 ° C. for 3 minutes to form a coating film having a thickness of 40 μm. Thereafter, the coating film was heated in an inert gas oven under a nitrogen atmosphere at 120 ° C. for 10 minutes, and then heated at 4 ° C./min. And heated at 220 ° C. for 60 minutes to obtain a cured film. Next, using a PCT apparatus (HAST SYSTEM TPC-412MD manufactured by Espec Corporation), the cured film was peeled off at 121 ° C. and 100% RH for 60 minutes, and the film properties such as elongation at break were examined. The elongation at break was obtained from a tensile test using EZ-SX manufactured by Shimadzu Corporation. The distance between the grippers was 30 mm, the tensile speed was 3 mm / min, the measurement was performed five times, and the maximum value was taken as the elongation at break. The elongation was evaluated according to the following criteria.
A +: 30% or more A: 20% or more and less than 30% B: 10% or more and less than 20% C: less than 10%
(耐薬品性試験)
 上記で調製したワニスをシリコンウエハ上にスピンコートして、110℃で3分間加熱し、膜厚40μmの塗膜を形成した。その後、前記塗膜をイナートガスオーブン中、窒素雰囲気下、120℃で10分加熱した後、4℃/min.で昇温し、220℃で60分加熱して硬化膜を得た。得られたサンプルの上に、それぞれ、γ-ブチロラクトン(GBL)に25℃10分間浸漬し、浸漬前後で変化を評価した。
A+:0.5%未満
A :0.5%以上1.0%未満
B :1.0%以上5%未満
C :5%以上
(Chemical resistance test)
The varnish prepared above was spin-coated on a silicon wafer and heated at 110 ° C. for 3 minutes to form a coating film having a thickness of 40 μm. Thereafter, the coating film was heated in an inert gas oven under a nitrogen atmosphere at 120 ° C. for 10 minutes, and then heated at 4 ° C./min. And heated at 220 ° C. for 60 minutes to obtain a cured film. Each of the obtained samples was immersed in γ-butyrolactone (GBL) at 25 ° C. for 10 minutes, and the change before and after immersion was evaluated.
A +: less than 0.5% A: 0.5% or more and less than 1.0% B: 1.0% or more and less than 5% C: 5% or more
(未露光部残膜率と露光部溶解速度の測定)
 上記で調製したワニスを、スピンコーターを用いて銅スパッタを施したシリコン基板上に塗布した。ホットプレートで100℃3分乾燥させ、感光性樹脂組成物の厚さ10μmの乾燥膜を得た。得られた乾燥膜に高圧水銀ランプを用いパターンが刻まれたマスクを介して800mJ/cmのi線を照射した。露光後2.38%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液で現像し、水でリンスし、ポジ型パターンを得た。
 露光部の残膜が0になる時点の未露光部の残膜厚から残膜率(%)を計算し、下記の基準で評価した。
A+:95%以上
A :90%以上95%未満
B :80%以上90%未満
C :80%未満
 また、乾燥膜厚(nm)/露光部の残膜が0になった時間(sec)を露光部の溶解速度として計算した。
(Measurement of residual film ratio of unexposed area and dissolution rate of exposed area)
The varnish prepared above was applied on a silicon substrate subjected to copper sputtering using a spin coater. It was dried on a hot plate at 100 ° C. for 3 minutes to obtain a dried film of the photosensitive resin composition having a thickness of 10 μm. Using a high-pressure mercury lamp, the obtained dried film was irradiated with i-line of 800 mJ / cm 2 through a mask in which a pattern was cut. After exposure, the resist film was developed with a 2.38% aqueous solution of tetramethylammonium hydroxide (TMAH) and rinsed with water to obtain a positive pattern.
The remaining film ratio (%) was calculated from the remaining film thickness of the unexposed portion when the remaining film of the exposed portion became 0, and evaluated according to the following criteria.
A +: 95% or more A: 90% or more and less than 95% B: 80% or more and less than 90% C: less than 80% In addition, the dry film thickness (nm) / the time (sec) when the remaining film in the exposed portion became 0 was calculated. It was calculated as the dissolution rate of the exposed part.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
<(B)感光剤>
(B1)ナフトキノンジアジド化合物(三宝化学研究所社製TKF-428)
Figure JPOXMLDOC01-appb-I000023
<(B) Photosensitizer>
(B1) Naphthoquinonediazide compound (TKF-428 manufactured by Sanbo Chemical Laboratory)
Figure JPOXMLDOC01-appb-I000023
<(C)2官能以上のエポキシ化合物>
(C1)EPICLON860(DIC社製)
Figure JPOXMLDOC01-appb-I000024
(C2)HP4032D(DIC社製)
Figure JPOXMLDOC01-appb-I000025
(C3)HP4700(DIC社製)
Figure JPOXMLDOC01-appb-I000026
<(C) Bifunctional or higher epoxy compound>
(C1) EPICLON860 (manufactured by DIC)
Figure JPOXMLDOC01-appb-I000024
(C2) HP4032D (manufactured by DIC)
Figure JPOXMLDOC01-appb-I000025
(C3) HP4700 (manufactured by DIC)
Figure JPOXMLDOC01-appb-I000026
<(D)可塑剤>
(D2-1):N-ブチルベンゼンスルホンアミド(大八工業化学製)
(D2-3):フタル酸ジ(2-エチルヘキシル)(TCI社製)
(D2-4):マレイン酸ジ(2-エチルヘキシル)(TCI社製)
(D1-1)アロニックスM-6250(2官能ポリエステルアクリレート、東亞合成社製)
<(D) plasticizer>
(D2-1): N-butylbenzenesulfonamide (manufactured by Daihachi Chemical)
(D2-3): di (2-ethylhexyl) phthalate (manufactured by TCI)
(D2-4): di (2-ethylhexyl) maleate (manufactured by TCI)
(D1-1) Aronix M-6250 (bifunctional polyester acrylate, manufactured by Toagosei Co., Ltd.)
<(E)熱酸発生剤>
(E1)WPAG618(富士フィルム和光純薬工業社製)
Figure JPOXMLDOC01-appb-I000027
<(E) Thermal acid generator>
(E1) WPAG618 (Fuji Film Wako Pure Chemical Industries, Ltd.)
Figure JPOXMLDOC01-appb-I000027
<トリアジン環構造を有する架橋剤>
*1:MW390(三和ケミカル社製)
Figure JPOXMLDOC01-appb-I000028
<Crosslinking agent having triazine ring structure>
* 1: MW390 (manufactured by Sanwa Chemical Co., Ltd.)
Figure JPOXMLDOC01-appb-I000028
<有機溶剤>
*2:GBL(γ-ブチロラクトン)
<Organic solvent>
* 2: GBL (γ-butyrolactone)
 上記表3中に示す結果から、本発明の第一の態様の感光性樹脂組成物は、露光部の現像性に優れ、220℃程度の低温で硬化を行った場合であっても、耐薬品性および柔軟性に優れた硬化膜が得られることが分かる。 From the results shown in Table 3 above, the photosensitive resin composition of the first embodiment of the present invention has excellent developability of the exposed portion, and has a chemical resistance even when cured at a low temperature of about 220 ° C. It can be seen that a cured film having excellent properties and flexibility can be obtained.
<第二実施例>
(ポジ型感光性樹脂組成物の調製)
 上記で合成したポリベンゾオキサゾール前駆体(A1)100質量部に対して、下記表4に記載の割合で、光酸発生剤(B1)、エポキシ化合物(C1~C3)、および、各成分を配合した後、ポリマーが30質量%になるようにγ-ブチロラクトンを加えてワニスとした。尚、各エポキシ化合物は、ポリベンゾオキサゾール前駆体(A1)のフェノール性OHに対し、エポキシ基の比が5:1になるように配合した。
<Second embodiment>
(Preparation of positive photosensitive resin composition)
The photoacid generator (B1), the epoxy compound (C1 to C3), and each component were blended at the ratio shown in Table 4 below with respect to 100 parts by mass of the polybenzoxazole precursor (A1) synthesized above. After that, γ-butyrolactone was added so that the content of the polymer was 30% by mass to prepare a varnish. In addition, each epoxy compound was blended so that the ratio of the epoxy group to the phenolic OH of the polybenzoxazole precursor (A1) was 5: 1.
(自立膜の評価)
 上記で調製したワニスをシリコンウェハー上にスピンコートして、110℃で3分間加熱し、膜厚40μmの塗膜を形成した。その後、前記塗膜をイナートガスオーブン中、窒素雰囲気下、120℃で10分加熱した後、4℃/min.で昇温し、220℃で60分加熱して硬化膜を得た。次にPCT装置(エスペック社製HAST SYSTEM TPC-412MD)を用いて、121℃、100%RH、60分の条件下で硬化膜を剥離した後、自立膜を得られたものを〇、自立膜が得られず割れたものを×とした。
(Evaluation of self-supporting membrane)
The varnish prepared above was spin-coated on a silicon wafer and heated at 110 ° C. for 3 minutes to form a coating film having a thickness of 40 μm. Thereafter, the coating film was heated in an inert gas oven under a nitrogen atmosphere at 120 ° C. for 10 minutes, and then heated at 4 ° C./min. And heated at 220 ° C. for 60 minutes to obtain a cured film. Next, using a PCT device (HAST SYSTEM TPC-412MD manufactured by Espec Corporation), the cured film was peeled off at 121 ° C. and 100% RH for 60 minutes. Were not obtained, and were broken.
(誘電率・誘電正接の測定)
 誘電特性である誘電正接Dfは、以下の方法に従って測定した。
 上記で調製したワニスをシリコンウェハー上にスピンコートして、110℃で3分間加熱し、膜厚40μmの塗膜を形成した。その後、前記塗膜をイナートガスオーブン中、窒素雰囲気下、120℃で10分加熱した後、4℃/min.で昇温し、220℃で60分加熱して硬化膜を得た。次にPCT装置(エスペック社製HAST SYSTEM TPC-412MD)を用いて、121℃、100%RH、60分の条件下で硬化膜を剥離し、自立膜を得た。得た硬化膜を試験片としてSPDR(Split Post Dielectric Resonator)共振器法により測定した。測定器には、キーサイトテクノロジー合同会社製のベクトル型ネットワークアナライザE5071C、SPDR共振器、計算プログラムはQWED社製のものを用いた。条件は、周波数10GHz、測定温度25℃とした。
誘電率の評価:
A:3.0未満
B:3.0以上
誘電正接の評価:
A:0.01未満
B:0.01以上0.015未満
C:0.015以上
(Measurement of dielectric constant and dielectric loss tangent)
The dielectric loss tangent Df, which is a dielectric property, was measured according to the following method.
The varnish prepared above was spin-coated on a silicon wafer and heated at 110 ° C. for 3 minutes to form a coating film having a thickness of 40 μm. Thereafter, the coating film was heated in an inert gas oven under a nitrogen atmosphere at 120 ° C. for 10 minutes, and then heated at 4 ° C./min. And heated at 220 ° C. for 60 minutes to obtain a cured film. Next, the cured film was peeled off using a PCT apparatus (HAST SYSTEM TPC-412MD manufactured by Espec Corporation) under the conditions of 121 ° C., 100% RH and 60 minutes to obtain a free-standing film. The obtained cured film was used as a test piece and measured by a SPDR (Split Post Dielectric Resonator) resonator method. As a measuring instrument, a vector type network analyzer E5071C and SPDR resonator manufactured by Keysight Technology GK, and a calculation program used by QWED were used. The conditions were a frequency of 10 GHz and a measurement temperature of 25 ° C.
Evaluation of dielectric constant:
A: less than 3.0 B: 3.0 or more Evaluation of dielectric loss tangent:
A: less than 0.01 B: 0.01 or more and less than 0.015 C: 0.015 or more
(耐薬品性試験)
 上記で調製したワニスをシリコンウェハー上にスピンコートして、110℃で3分間加熱し、膜厚40μmの塗膜を形成した。その後、前記塗膜をイナートガスオーブン中、窒素雰囲気下、120℃で10分加熱した後、4℃/min.で昇温し、220℃で60分加熱して硬化膜を得た。得られたサンプルの上に、それぞれ、γ-ブチロラクトン(GBL)に25℃10分間浸漬し、浸漬前後で変化を評価した。
A:クラックレス
B:膜減り1%未満
C:膜減り1%以上
(Chemical resistance test)
The varnish prepared above was spin-coated on a silicon wafer and heated at 110 ° C. for 3 minutes to form a coating film having a thickness of 40 μm. Thereafter, the coating film was heated in an inert gas oven under a nitrogen atmosphere at 120 ° C. for 10 minutes, and then heated at 4 ° C./min. And heated at 220 ° C. for 60 minutes to obtain a cured film. Each of the obtained samples was immersed in γ-butyrolactone (GBL) at 25 ° C. for 10 minutes, and the change before and after immersion was evaluated.
A: Crackless B: Film loss less than 1% C: Film loss 1% or more
(5%重量減少温度の測定)
 上記(誘電率、誘電正接の測定)で得た220℃60分加熱して得た自立膜を1~2mm角に切った試料5~10mgの試料を窒素雰囲気下でTG-DTA測定し(30~580℃)、重量変化が5%になる温度を測定した。
A:300℃以上
B:300℃未満
(Measurement of 5% weight loss temperature)
TG-DTA measurement was performed on a sample of 5 to 10 mg of a sample obtained by cutting the self-standing film obtained by heating at 220 ° C. for 60 minutes obtained in the above (measurement of dielectric constant and dielectric loss tangent) into 1 to 2 mm square under a nitrogen atmosphere (30). 580 ° C.), and the temperature at which the weight change was 5% was measured.
A: 300 ° C or higher B: Less than 300 ° C
(Tgの測定)
 DMA動的粘弾性測定
 上記で調製したワニスをシリコンウェハー上にスピンコートして、110℃で3分間加熱し、膜厚40μmの塗膜を形成した。その後、前記塗膜をイナートガスオーブン中、窒素雰囲気下、120℃で10分加熱した後、4℃/min.で昇温し、220℃で60分加熱して硬化膜を得た。次にPCT装置(エスペック社製HAST SYSTEM TPC-412MD)を用いて、121℃、100%RH、60分の条件下で硬化膜を剥離し、自立膜を得た。硬化膜をステンレス刃(刃厚0.25mm)で20mm×5mmに切り出し、動的粘弾性測定装置(G2 RSA、TAインスツルメント社製)で測定した。測定は室温から350℃までの昇温過程で行い、昇温速度5℃/min、荷重0.5 N、周波数1 Hz、つかみ具間距離10mmで行った。tanδのピークトップをTgとした。
A:Tgが260℃以上
B:Tgが260℃未満
(Measurement of Tg)
DMA Dynamic Viscoelasticity Measurement The varnish prepared above was spin-coated on a silicon wafer and heated at 110 ° C. for 3 minutes to form a coating film having a thickness of 40 μm. Thereafter, the coating film was heated in an inert gas oven under a nitrogen atmosphere at 120 ° C. for 10 minutes, and then heated at 4 ° C./min. And heated at 220 ° C. for 60 minutes to obtain a cured film. Next, the cured film was peeled off using a PCT apparatus (HAST SYSTEM TPC-412MD manufactured by Espec Corporation) under the conditions of 121 ° C., 100% RH and 60 minutes to obtain a free-standing film. The cured film was cut into 20 mm × 5 mm with a stainless steel blade (blade thickness 0.25 mm) and measured with a dynamic viscoelasticity measuring device (G2 RSA, manufactured by TA Instruments). The measurement was performed in the temperature rising process from room temperature to 350 ° C., and was performed at a temperature rising rate of 5 ° C./min, a load of 0.5 N, a frequency of 1 Hz, and a distance between grips of 10 mm. The peak top of tan δ was defined as Tg.
A: Tg is 260 ° C. or more B: Tg is less than 260 ° C.
(未露光部残膜率と露光部溶解速度の測定)
 上記で調製したワニスを、スピンコーターを用いて銅スパッタを施したシリコン基板上に塗布した。ホットプレートで100℃3分乾燥させ、感光性樹脂組成物の厚さ10μmの乾燥膜を得た。得られた乾燥膜に高圧水銀ランプを用いパターンが刻まれたマスクを介して800mJ/cmのi線を照射した。露光後2.38%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液で現像し、水でリンスし、ポジ型パターンを得た。
 露光部の残膜が0になる時点の未露光部の残膜厚から残膜率(%)を計算し、下記の基準で評価した。
A:90%以上
B:90%未満
 また、乾燥膜厚(nm)/露光部の残膜が0になった時間(sec)を露光部の溶解速度として計算した。
(Measurement of residual film ratio of unexposed area and dissolution rate of exposed area)
The varnish prepared above was applied on a silicon substrate subjected to copper sputtering using a spin coater. It was dried on a hot plate at 100 ° C. for 3 minutes to obtain a dried film of the photosensitive resin composition having a thickness of 10 μm. Using a high-pressure mercury lamp, the obtained dried film was irradiated with i-line of 800 mJ / cm 2 through a mask in which a pattern was cut. After exposure, the resist film was developed with a 2.38% aqueous solution of tetramethylammonium hydroxide (TMAH) and rinsed with water to obtain a positive pattern.
The remaining film ratio (%) was calculated from the remaining film thickness of the unexposed portion when the remaining film of the exposed portion became 0, and evaluated according to the following criteria.
A: 90% or more and B: less than 90% Further, the dry film thickness (nm) / the time (sec) when the residual film of the exposed portion became 0 was calculated as the dissolution rate of the exposed portion.
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
<(B)感光剤>
(B1)ナフトキノンジアジド化合物(三宝化学研究所社製TKF-428)
Figure JPOXMLDOC01-appb-I000030
<(B) Photosensitizer>
(B1) Naphthoquinonediazide compound (TKF-428 manufactured by Sanbo Chemical Laboratory)
Figure JPOXMLDOC01-appb-I000030
<(C)2官能以上のエポキシ化合物>
(C1)EPICLON860(DIC社製)
Figure JPOXMLDOC01-appb-I000031
(C2)HP4032D(DIC社製)
Figure JPOXMLDOC01-appb-I000032
(C3)HP4700(DIC社製)
Figure JPOXMLDOC01-appb-I000033
<(C) Bifunctional or higher epoxy compound>
(C1) EPICLON860 (manufactured by DIC)
Figure JPOXMLDOC01-appb-I000031
(C2) HP4032D (manufactured by DIC)
Figure JPOXMLDOC01-appb-I000032
(C3) HP4700 (manufactured by DIC)
Figure JPOXMLDOC01-appb-I000033
<(E)熱酸発生剤>
(E1)WPAG618(富士フィルム和光純薬工業社製)
Figure JPOXMLDOC01-appb-I000034
(E2)WPAG699(富士フィルム和光純薬工業社製)
Figure JPOXMLDOC01-appb-I000035
<(E) Thermal acid generator>
(E1) WPAG618 (Fuji Film Wako Pure Chemical Industries, Ltd.)
Figure JPOXMLDOC01-appb-I000034
(E2) WPAG699 (Fuji Film Wako Pure Chemical Industries, Ltd.)
Figure JPOXMLDOC01-appb-I000035
<有機溶剤>
*2:GBL(γ-ブチロラクトン)
<Organic solvent>
* 2: GBL (γ-butyrolactone)
 上記表4中に示す結果から、本発明の第二の態様の感光性樹脂組成物は、220℃程度の低温で硬化を行った場合であっても、自立膜の形成が可能であり、耐薬品性、熱特性および誘電特性に優れた硬化膜が得られることが分かる。 From the results shown in Table 4 above, the photosensitive resin composition of the second embodiment of the present invention can form a self-supporting film even when cured at a low temperature of about 220 ° C. It can be seen that a cured film having excellent chemical properties, thermal properties and dielectric properties can be obtained.
<第三実施例>
(ポジ型感光性樹脂組成物の調製)
 上記で合成したポリベンゾオキサゾール前駆体(A1)100質量部に対して、下記表5に記載の割合で、光酸発生剤(B1)、エポキシ化合物(C2~C4)、および、各成分を配合した後、ポリマーが30質量%になるようにγ-ブチロラクトンを加えてワニスとした。
<Third embodiment>
(Preparation of positive photosensitive resin composition)
The photoacid generator (B1), the epoxy compound (C2 to C4), and each component were blended at the ratio shown in Table 5 below with respect to 100 parts by mass of the polybenzoxazole precursor (A1) synthesized above. After that, γ-butyrolactone was added so that the content of the polymer was 30% by mass to prepare a varnish.
(硬化膜の作製)
 ミカサ社製スピンコーターMS-A150を用いてウエハ上にワニスを塗布した。ホットプレートで120℃10分乾燥後、150℃30分、続いて220℃1時間加熱処理して硬化を行い(昇温速度4℃/分)、物性試験用の硬化膜を得た。その後、プレッシャークッカー試験(PCT)装置を用いて121℃/100%RHに1時間さらし、シリコンウエハから剥離した。
(Preparation of cured film)
A varnish was applied to the wafer using a spin coater MS-A150 manufactured by Mikasa Corporation. After drying on a hot plate at 120 ° C. for 10 minutes, curing was carried out by heating at 150 ° C. for 30 minutes and then at 220 ° C. for 1 hour (heating rate: 4 ° C./min) to obtain a cured film for a physical property test. Thereafter, the wafer was exposed to 121 ° C./100% RH for 1 hour using a pressure cooker test (PCT) apparatus, and peeled from the silicon wafer.
(CTE)
 硬化膜の線熱膨張係数(CTE)をTAインスツルメントジャパン社製TMAQ400を用いて以下の条件で測定し、下記の評価基準で評価した。
・TMA測定条件
 試験片:15mm×3mm、チャック間距離:16mm
 Force:0.03N、窒素流量:100mL/分
 温度プログラム:30℃→350℃(10℃/分)
A:CTEが45ppm/℃未満
B:CTEが45ppm/℃以上50ppm/℃未満
C:CTEが50ppm/℃以上
(CTE)
The linear thermal expansion coefficient (CTE) of the cured film was measured using TMAQ400 manufactured by TA Instruments Japan under the following conditions, and evaluated according to the following evaluation criteria.
-TMA measurement conditions Test piece: 15 mm x 3 mm, distance between chucks: 16 mm
Force: 0.03N, nitrogen flow rate: 100mL / min Temperature program: 30 ° C → 350 ° C (10 ° C / min)
A: CTE is less than 45 ppm / ° C B: CTE is 45 ppm / ° C or more and less than 50 ppm / ° C C: CTE is 50 ppm / ° C or more
(耐薬品性)
 10~12μmの硬化膜付きのウエハを2cm四方に裁断し、GBL(γ-ブチロラクトン)に浸漬した後、水洗し、乾燥させ、浸漬前後の硬化膜の膜減りを光学顕微鏡で観察し、下記の評価基準で評価した。
A+:膜減りが1%未満
A:膜減りが1%以上3%未満
B:膜減りが3%以上5%未満
C:膜減りが5%以上
(chemical resistance)
A wafer with a cured film having a thickness of 10 to 12 μm is cut into a square of 2 cm, immersed in GBL (γ-butyrolactone), washed with water, dried, and observed with an optical microscope to determine the film loss of the cured film before and after immersion. The evaluation was based on the evaluation criteria.
A +: Film loss is less than 1% A: Film loss is 1% or more and less than 3% B: Film loss is 3% or more and less than 5% C: Film loss is 5% or more
(伸び)
 硬化膜の伸び率をshimadzu社製EZ-SXを用いて下記条件で測定した。
[引っ張り試験条件]
サンプルサイズ:50mm×5mm、つかみ具間距離:30mm
速度:3mm/min、測定回数:6回
A+:破断伸び40%以上
A:破断伸び30%以上40%未満
B:破断伸び10%以上30%未満
C:破断伸び10%未満
(Elongation)
The elongation percentage of the cured film was measured using EZ-SX manufactured by Shimadzu under the following conditions.
[Tensile test conditions]
Sample size: 50mm x 5mm, distance between grips: 30mm
Speed: 3 mm / min, number of measurements: 6 times A +: elongation at break 40% or more A: elongation at break 30% or more and less than 40% B: elongation at break 10% or more and less than 30% C: elongation at break less than 10%
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
<(B)感光剤>
(B1)ナフトキノンジアジド化合物(三宝化学研究所社製TKF-428)
Figure JPOXMLDOC01-appb-I000037
<(B) Photosensitizer>
(B1) Naphthoquinonediazide compound (TKF-428 manufactured by Sanbo Chemical Laboratory)
Figure JPOXMLDOC01-appb-I000037
<(c)ナフタレン骨格を有する2官能以上のエポキシ化合物>
(C2)HP4032D(DIC社製)
Figure JPOXMLDOC01-appb-I000038
(C3)HP4700(DIC社製)
Figure JPOXMLDOC01-appb-I000039
<(C) Bifunctional or higher functional epoxy compound having naphthalene skeleton>
(C2) HP4032D (manufactured by DIC)
Figure JPOXMLDOC01-appb-I000038
(C3) HP4700 (manufactured by DIC)
Figure JPOXMLDOC01-appb-I000039
(C4)エポキシ化合物(ナガセケムテックス社製EX-214P)
Figure JPOXMLDOC01-appb-I000040
*1:トリアジン環構造を有する架橋剤(三和ケミカル社製MW390)
Figure JPOXMLDOC01-appb-I000041
(D1-1)2官能ポリエステルアクリレート(東亜合成社製M6250)
(D2-1)N-ブチルベンゼンスルホンアミド(第八化学工業社製BM-4)
Figure JPOXMLDOC01-appb-I000042
(E1)熱酸発生剤(富士フィルム和光純薬工業社製WPAG618)
Figure JPOXMLDOC01-appb-I000043
*2:GBL(γ-ブチロラクトン)
(C4) Epoxy compound (EX-214P manufactured by Nagase ChemteX Corporation)
Figure JPOXMLDOC01-appb-I000040
* 1: Crosslinking agent having a triazine ring structure (MW390 manufactured by Sanwa Chemical Co., Ltd.)
Figure JPOXMLDOC01-appb-I000041
(D1-1) Bifunctional polyester acrylate (M6250 manufactured by Toagosei Co., Ltd.)
(D2-1) N-butylbenzenesulfonamide (BM-4 manufactured by Daihachi Chemical Industry Co., Ltd.)
Figure JPOXMLDOC01-appb-I000042
(E1) Thermal acid generator (WPAG618 manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.)
Figure JPOXMLDOC01-appb-I000043
* 2: GBL (γ-butyrolactone)
 上記表5中に示す結果から、本発明の第三の態様の感光性樹脂組成物は、220℃程度の低温で硬化を行った場合であっても、耐薬品性に優れ、かつ優れた柔軟性を有する低CTEの硬化膜が得られることが分かる。
 
From the results shown in Table 5, the photosensitive resin composition of the third aspect of the present invention has excellent chemical resistance and excellent flexibility even when cured at a low temperature of about 220 ° C. It can be seen that a cured film having a low CTE having properties can be obtained.

Claims (12)

  1.  (A)ポリベンゾオキサゾール前駆体、(B)感光剤、(C)2官能以上のエポキシ化合物、および、(D)可塑剤を含むことを特徴とする感光性樹脂組成物。 感光 A photosensitive resin composition comprising (A) a polybenzoxazole precursor, (B) a photosensitizer, (C) a bifunctional or higher epoxy compound, and (D) a plasticizer.
  2.  請求項1記載の感光性樹脂組成物をフィルムに塗布、乾燥して得られる樹脂層を有することを特徴とするドライフィルム。 A dry film having a resin layer obtained by applying and drying the photosensitive resin composition according to claim 1 on a film.
  3.  請求項1記載の感光性樹脂組成物または請求項2記載のドライフィルムの樹脂層を硬化して得られることを特徴とする硬化物。 (4) A cured product obtained by curing the photosensitive resin composition according to (1) or the resin layer of the dry film according to (2).
  4.  請求項3記載の硬化物を有することを特徴とする電子部品。 An electronic component comprising the cured product according to claim 3.
  5.  (A)ポリベンゾオキサゾール前駆体、(B)感光剤、(C)2官能以上のエポキシ化合物、および、(E)熱酸発生剤を含むことを特徴とする感光性樹脂組成物。 感光 A photosensitive resin composition comprising (A) a polybenzoxazole precursor, (B) a photosensitizer, (C) a difunctional or higher functional epoxy compound, and (E) a thermal acid generator.
  6.  請求項5記載の感光性樹脂組成物をフィルムに塗布、乾燥して得られる樹脂層を有することを特徴とするドライフィルム。 A dry film comprising a resin layer obtained by applying and drying the photosensitive resin composition according to claim 5 on a film.
  7.  請求項5記載の感光性樹脂組成物または請求項6記載のドライフィルムの樹脂層を硬化して得られることを特徴とする硬化物。 A cured product obtained by curing the photosensitive resin composition according to claim 5 or the resin layer of the dry film according to claim 6.
  8.  請求項7記載の硬化物を有することを特徴とする電子部品。 An electronic component comprising the cured product according to claim 7.
  9.  (A)ポリベンゾオキサゾール前駆体、(B)感光剤、および、(c)ナフタレン骨格を有する2官能以上のエポキシ化合物を含むことを特徴とする感光性樹脂組成物。 感光 A photosensitive resin composition comprising (A) a polybenzoxazole precursor, (B) a photosensitizer, and (c) a bifunctional or higher functional epoxy compound having a naphthalene skeleton.
  10.  フィルム上に、請求項9記載の感光性樹脂組成物を塗布、乾燥して得られる樹脂層を有することを特徴とするドライフィルム。 A dry film comprising a resin layer obtained by applying and drying the photosensitive resin composition according to claim 9 on a film.
  11.  請求項9記載の感光性樹脂組成物または請求項10記載のドライフィルムの樹脂層を硬化して得られることを特徴とする硬化物。 A cured product obtained by curing the photosensitive resin composition according to claim 9 or the resin layer of the dry film according to claim 10.
  12.  請求項11に記載の硬化物を有することを特徴とする電子部品。
     
    An electronic component comprising the cured product according to claim 11.
PCT/JP2019/035085 2018-09-28 2019-09-05 Photosensitive resin composition, dry film, cured product, and electronic component WO2020066540A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020217007572A KR20210066808A (en) 2018-09-28 2019-09-05 Photosensitive resin composition, dry film, cured product, and electronic component
CN201980054959.4A CN112585536A (en) 2018-09-28 2019-09-05 Photosensitive resin composition, dry film, cured product, and electronic component

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2018186055A JP2020056847A (en) 2018-09-28 2018-09-28 Photosensitive resin composition, dry film, cured product, and electronic component
JP2018-186053 2018-09-28
JP2018186054A JP7195102B2 (en) 2018-09-28 2018-09-28 Photosensitive resin compositions, dry films, cured products, and electronic components
JP2018-186052 2018-09-28
JP2018186053A JP7312536B2 (en) 2018-09-28 2018-09-28 Photosensitive resin compositions, dry films, cured products, and electronic components
JP2018-186055 2018-09-28
JP2018-186054 2018-09-28
JP2018186052A JP7191622B2 (en) 2018-09-28 2018-09-28 Photosensitive resin compositions, dry films, cured products, and electronic components

Publications (1)

Publication Number Publication Date
WO2020066540A1 true WO2020066540A1 (en) 2020-04-02

Family

ID=69953425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/035085 WO2020066540A1 (en) 2018-09-28 2019-09-05 Photosensitive resin composition, dry film, cured product, and electronic component

Country Status (4)

Country Link
KR (1) KR20210066808A (en)
CN (1) CN112585536A (en)
TW (1) TWI837179B (en)
WO (1) WO2020066540A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230103406A (en) * 2021-12-31 2023-07-07 주식회사 동진쎄미켐 Photosensitive resin composition, display device and forming method of pattern

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008224970A (en) * 2007-03-12 2008-09-25 Fujifilm Corp Photosensitive resin composition, method for producing cured relief pattern using the same, and semiconductor device
JP2009505157A (en) * 2005-08-17 2009-02-05 フジフィルム・エレクトロニック・マテリアルズ・ユーエスエイ・インコーポレイテッド Novel positive photosensitive polybenzoxazole precursor composition
JP2012203359A (en) * 2011-03-28 2012-10-22 Hitachi Chemical Dupont Microsystems Ltd Negative photosensitive resin composition, pattern forming method and electronic component
JP2017198977A (en) * 2016-04-14 2017-11-02 旭化成株式会社 Photosensitive resin composition and manufacturing method of cured relief pattern
JP2018097209A (en) * 2016-12-14 2018-06-21 日立化成デュポンマイクロシステムズ株式会社 Positive photosensitive resin composition, production method of cured pattern, cured product, interlayer insulating film, cover coat layer, surface protection film, and electronic component
JP2018151527A (en) * 2017-03-13 2018-09-27 日立化成デュポンマイクロシステムズ株式会社 Photosensitive resin composition

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5377020B2 (en) * 2009-03-23 2013-12-25 太陽ホールディングス株式会社 Photo-curable thermosetting resin composition, dry film and cured product thereof, and printed wiring board using them
JP5515394B2 (en) * 2009-04-30 2014-06-11 株式会社ピーアイ技術研究所 Photosensitive modified polyimide resin composition and use thereof
JP5619443B2 (en) * 2010-03-18 2014-11-05 太陽ホールディングス株式会社 Photo-curable thermosetting resin composition, dry film and cured product thereof, and printed wiring board using them
JP6225585B2 (en) 2012-10-29 2017-11-08 日立化成デュポンマイクロシステムズ株式会社 Heat resistant resin composition, method for producing patterned cured film using the resin composition, and electronic component
CN107436535B (en) * 2016-05-26 2022-06-10 太阳油墨制造株式会社 Photosensitive resin composition, dry film, cured product and printed wiring board
KR102380068B1 (en) * 2016-10-05 2022-03-31 도레이 카부시키가이샤 Resin composition, cured film, semiconductor device, and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009505157A (en) * 2005-08-17 2009-02-05 フジフィルム・エレクトロニック・マテリアルズ・ユーエスエイ・インコーポレイテッド Novel positive photosensitive polybenzoxazole precursor composition
JP2008224970A (en) * 2007-03-12 2008-09-25 Fujifilm Corp Photosensitive resin composition, method for producing cured relief pattern using the same, and semiconductor device
JP2012203359A (en) * 2011-03-28 2012-10-22 Hitachi Chemical Dupont Microsystems Ltd Negative photosensitive resin composition, pattern forming method and electronic component
JP2017198977A (en) * 2016-04-14 2017-11-02 旭化成株式会社 Photosensitive resin composition and manufacturing method of cured relief pattern
JP2018097209A (en) * 2016-12-14 2018-06-21 日立化成デュポンマイクロシステムズ株式会社 Positive photosensitive resin composition, production method of cured pattern, cured product, interlayer insulating film, cover coat layer, surface protection film, and electronic component
JP2018151527A (en) * 2017-03-13 2018-09-27 日立化成デュポンマイクロシステムズ株式会社 Photosensitive resin composition

Also Published As

Publication number Publication date
TW202024190A (en) 2020-07-01
CN112585536A (en) 2021-03-30
TWI837179B (en) 2024-04-01
KR20210066808A (en) 2021-06-07

Similar Documents

Publication Publication Date Title
JP6555115B2 (en) Photosensitive resin material
JP6929198B2 (en) Photosensitive resin compositions, dry films, cured products, semiconductor devices, printed wiring boards and electronic components
JP7256015B2 (en) Photosensitive resin compositions, dry films, cured products, and electronic components
JP2020056847A (en) Photosensitive resin composition, dry film, cured product, and electronic component
TWI837179B (en) Photosensitive resin compositions, dry films, hardened materials and electronic parts
JP7191622B2 (en) Photosensitive resin compositions, dry films, cured products, and electronic components
JP2019032489A (en) Photosensitive resin composition, dry film, cured product, printed wiring board and semiconductor element
JP7264688B2 (en) Photosensitive resin composition, dry film, cured product, and electronic component
TWI834824B (en) Polybenzoxazole precursors, photosensitive resin compositions, dry films, cured products and electronic parts containing ester diamines
JP7195102B2 (en) Photosensitive resin compositions, dry films, cured products, and electronic components
JP2019012223A (en) Photosensitive resin composition, dry film, cured product, printed wiring board and semiconductor element
JP7312536B2 (en) Photosensitive resin compositions, dry films, cured products, and electronic components
TW202120596A (en) Photosensitive resin composition, dry film, cured object, and electronic component
JP2020154246A (en) Photosensitive resin composition, dry film, cured product, and electronic component
JP2019148816A (en) Photosensitive resin material
JP7360380B2 (en) Photosensitive resin compositions, dry films, cured products, printed wiring boards and semiconductor devices
JP7312000B2 (en) Photosensitive resin compositions, dry films, cured products, and electronic components
JP7370145B2 (en) Photosensitive resin composition
JP7403268B2 (en) Photosensitive resin compositions, dry films, cured products, and electronic components
JP7094150B2 (en) Photosensitive resin compositions, dry films, cured products, and electronic components
TW202212969A (en) Photosensitive resin composition, method for producing patterned cured film, patterned cured film and semiconductor element
WO2020195804A1 (en) Photosensitive resin composition, dry film, cured object, and electronic component
JP2021060458A (en) Photosensitive resin composition, dry film, cured object, and electronic component
JP2021085977A (en) Photosensitive polyimide resin composition, pattern formation method, and method for manufacturing semiconductor device
KR20100014093A (en) Photosensitive resin composition, cured film, protection film and insulation film, and semiconductor device and display device therewith

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19868030

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19868030

Country of ref document: EP

Kind code of ref document: A1