WO2020066477A1 - パターン形成方法、及び、有機溶剤現像用レジスト積層体 - Google Patents

パターン形成方法、及び、有機溶剤現像用レジスト積層体 Download PDF

Info

Publication number
WO2020066477A1
WO2020066477A1 PCT/JP2019/034460 JP2019034460W WO2020066477A1 WO 2020066477 A1 WO2020066477 A1 WO 2020066477A1 JP 2019034460 W JP2019034460 W JP 2019034460W WO 2020066477 A1 WO2020066477 A1 WO 2020066477A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resist layer
resist
laminate
pattern
Prior art date
Application number
PCT/JP2019/034460
Other languages
English (en)
French (fr)
Inventor
亘 二橋
三千紘 白川
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2020548258A priority Critical patent/JPWO2020066477A1/ja
Priority to KR1020217007776A priority patent/KR20210045444A/ko
Publication of WO2020066477A1 publication Critical patent/WO2020066477A1/ja
Priority to US17/200,912 priority patent/US20210200098A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/32Liquid compositions therefor, e.g. developers
    • G03F7/325Non-aqueous compositions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0041Photosensitive materials providing an etching agent upon exposure
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0384Macromolecular compounds which are rendered insoluble or differentially wettable with ethylenic or acetylenic bands in the main chain of the photopolymer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0397Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having an alicyclic moiety in a side chain
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0752Silicon-containing compounds in non photosensitive layers or as additives, e.g. for dry lithography
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2004Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/38Treatment before imagewise removal, e.g. prebaking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes

Definitions

  • the present disclosure relates to a method for forming a pattern and a resist laminate for organic solvent development.
  • Patent Document 1 discloses that as a component (A), a silicon-containing compound obtained by hydrolyzing or condensing one or more silicon compounds represented by the following formula (AI), or both, R 1A a1 R 2A a2 R 3A a3 Si (OR 0A ) (4-a1-a2-a3) (AI) (In the formula, R 0A is a hydrocarbon group having 1 to 6 carbon atoms, and R 1A , R 2A , and R 3A are a hydrogen atom or a monovalent organic group having 1 to 30 carbon atoms.
  • AI silicon-containing compound obtained by hydrolyzing or condensing one or more silicon compounds represented by the following formula (AI), or both, R 1A a1 R 2A a2 R 3A a3 Si (OR 0A ) (4-a1-a2-a3) (AI)
  • R 0A is a hydrocarbon group having 1 to 6 carbon atoms
  • R 1A , R 2A , and R 3A are a
  • the component (B) contains a titanium-containing compound obtained by hydrolyzing or condensing one or more hydrolyzable titanium compounds represented by the following formula (BI), or both.
  • a composition for forming a titanium-containing resist underlayer film which is characterized by the following. Ti (OR 0B ) 4 ( BI ) (In the formula, R 0B is an organic group having 1 to 10 carbon atoms.)
  • Patent Document 2 discloses that the component (A) contains a silicon-containing compound obtained by hydrolyzing and / or condensing one or more silicon compounds represented by the following formula (A-1). Which describes a composition for forming a resist underlayer film.
  • R 0A is a hydrocarbon group having 1 to 6 carbon atoms
  • at least one of R 1A , R 2A , and R 3A is an organic group having a nitrogen atom, a sulfur atom, a phosphorus atom, or an iodine atom.
  • the other is a hydrogen atom or a monovalent organic group having 1 to 30 carbon atoms, and a1, a2, and a3 are 0 or 1, and 1 ⁇ a1 + a2 + a3 ⁇ 3.
  • Patent Document 3 discloses a silicon-containing surface modifier comprising at least one of a structural unit represented by the following formula (A) and a partial structure represented by the following formula (C): Is described.
  • R 1 is an organic group having a hydroxy group or a carboxylic acid group substituted with an acid labile group.
  • R 2 and R 3 are each independently the same as R 1 , a hydrogen atom or a carbon atom having 1 carbon atom. It is a monovalent organic group of up to 30.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2014-134592
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2014-157242
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2013-167669
  • a problem to be solved by the embodiments of the present invention is to provide a pattern forming method which can obtain a pattern excellent in etching resistance and has excellent resolution.
  • Another problem to be solved by the embodiments of the present invention is to provide a resist laminate for organic solvent development, which can provide a pattern excellent in etching resistance and has excellent resolution.
  • Means for solving the above problems include the following aspects. ⁇ 1> a step of preparing a laminate having a substrate, an inorganic base layer on the substrate, and a resist layer provided on the inorganic base layer in contact with the inorganic base layer, and exposing the resist layer And a step of developing the laminate with a developer containing an organic solvent to form a negative pattern.
  • a step of developing the laminate with a developer containing an organic solvent to form a negative pattern In the laminate, an integrated light amount of 40 mJ / cm from the resist layer is irradiated with ultraviolet light having a wavelength of 13.5 nm. 2 , and the surface energy ⁇ A of the resist layer after heating at 110 ° C. for 60 seconds is 60 mJ / m 2 or more.
  • ultraviolet rays having a wavelength of 13.5 nm are integrated from the resist layer side.
  • irradiating light quantity 40 mJ / cm 2 the surface energy gamma B of the inorganic undercoat layer in after heating for 60 seconds at 110 ° C., and at 55 mJ / m 2 or more, the following formula (a)
  • the pattern forming method in the difference gamma AB defined by surface energy is 5.0mJ / m 2 or less.
  • ⁇ AB ⁇ A ⁇ B formula (A) ⁇ 2>
  • the surface energy gamma A The pattern forming method according to at 62mJ / m 2 or more ⁇ 1>.
  • ⁇ 3> The pattern forming method according to ⁇ 1> or ⁇ 2>, wherein the surface energy ⁇ B is 60 mJ / m 2 or more.
  • ⁇ 4> The pattern forming method according to any one of ⁇ 1> to ⁇ 3>, wherein the exposing in the exposing step is performed with ultraviolet light having a wavelength of 5 nm to 20 nm.
  • ⁇ 5> The pattern forming method according to any one of ⁇ 1> to ⁇ 4>, wherein the inorganic underlayer is a layer containing a silicon atom.
  • ⁇ 6> a resin having a constitutional unit having at least two phenolic hydroxy groups and a constitutional unit having a polar group protected by an acid-decomposable group, and a photoacid generator, before the exposure step;
  • ⁇ 1> The pattern forming method according to any one of ⁇ 1> to ⁇ 5>.
  • ⁇ 7> The pattern forming method according to ⁇ 5>, wherein the structural unit having two or more phenolic hydroxy groups is a structural unit represented by the following formula (I-1).
  • R 11 and R 12 each independently represent a hydrogen atom or an alkyl group
  • R 13 represents a hydrogen atom or an alkyl group, or represents a single bond or an alkylene group
  • L is bonded to L or Ar to form a ring
  • L represents a single bond or a divalent linking group
  • Ar represents an aromatic ring
  • n represents an integer of 2 or more.
  • ⁇ 8> The pattern formation according to any one of ⁇ 1> to ⁇ 7>, wherein the value of the pattern height / pattern width in at least a part of the obtained pattern is 1.5 to 1.8.
  • Method. ⁇ 9> a substrate, An inorganic underlayer on the substrate, Having a resist layer provided on the inorganic base layer in contact with the inorganic base layer, UV light having a wavelength of 13.5 nm is irradiated from the resist layer side at an integrated light amount of 40 mJ / cm 2 , and the surface energy ⁇ A of the resist layer after heating at 110 ° C.
  • An organic solvent developing resist laminate having a surface energy difference ⁇ AB defined by the following formula (A) of 5.0 mJ / m 2 or less.
  • ⁇ AB ⁇ A ⁇ B formula (A) ⁇ 10> the surface energy gamma A is at 62mJ / m 2 or more organic solvents development resist laminate according to ⁇ 9>.
  • the resist layer contains a resin having a structural unit having two or more phenolic hydroxy groups and a structural unit having a polar group protected by an acid-decomposable group, and a photoacid generator.
  • ⁇ 14> The resist laminate for organic solvent development according to ⁇ 13>, wherein the structural unit having two or more phenolic hydroxy groups is a structural unit represented by the following formula (I-1).
  • R 11 and R 12 each independently represent a hydrogen atom or an alkyl group
  • R 13 represents a hydrogen atom or an alkyl group, or represents a single bond or an alkylene group
  • L is bonded to L or Ar to form a ring
  • L represents a single bond or a divalent linking group
  • Ar represents an aromatic ring
  • n represents an integer of 2 or more.
  • a pattern excellent in etching resistance can be obtained, and a pattern forming method excellent in resolution can be provided.
  • a pattern having excellent etching resistance can be obtained, and a resist laminate for organic solvent development having excellent resolution can be provided.
  • the description of the constituent elements described below may be made based on typical embodiments of the present invention, but the present invention is not limited to such embodiments.
  • the notation of not indicating substituted or unsubstituted includes those having no substituent and those having a substituent.
  • the “alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • the “organic group” in the present specification refers to a group containing at least one carbon atom.
  • actinic ray refers to, for example, an emission line spectrum of a mercury lamp, far ultraviolet light represented by an excimer laser, extreme ultraviolet light (EUV light: Extreme Ultraviolet), X-ray, and electron beam (EB). : Electron Beam).
  • Light in this specification means actinic rays or radiation unless otherwise specified.
  • exposure in the present specification means, unless otherwise specified, the emission line spectrum of a mercury lamp, far ultraviolet light represented by excimer laser, extreme ultraviolet light, X-ray, and EUV light, as well as electron beam, and Exposure by a particle beam such as an ion beam is also included.
  • “to” is used to mean that the numerical values described before and after it are included as a lower limit and an upper limit.
  • (meth) acrylate represents acrylate and methacrylate
  • (meth) acryl represents acryl and methacryl
  • the weight average molecular weight (Mw), number average molecular weight (Mn), and degree of dispersion (also referred to as molecular weight distribution) (Mw / Mn) of a resin component are measured by a GPC (Gel Permeation Chromatography) apparatus (Tosoh Corporation).
  • the amount of each component in the composition when there are a plurality of substances corresponding to each component in the composition, unless otherwise specified, the total amount of the plurality of corresponding substances present in the composition means.
  • the term “step” is included in the term as well as an independent step, even if it cannot be clearly distinguished from other steps as long as the intended purpose of the step is achieved.
  • total solids refers to the total mass of components excluding the solvent from the total composition of the composition.
  • the “solid content” is a component excluding the solvent, and may be a solid or a liquid at 25 ° C., for example.
  • “mass%” and “weight%” have the same meaning
  • “mass part” and “part by weight” have the same meaning.
  • a combination of two or more preferred embodiments is a more preferred embodiment.
  • the pattern forming method includes a substrate, an inorganic base layer on the substrate, and a step of preparing a laminate having a resist layer provided in contact with the inorganic base layer on the inorganic base layer, Exposing the resist layer, and developing the negative electrode pattern by developing the laminate with a developer containing an organic solvent, wherein the laminate is exposed to ultraviolet light having a wavelength of 13.5 nm on the resist layer side.
  • the surface energy ⁇ B of the inorganic underlayer after irradiation from the resist layer side with an integrated light amount of 40 mJ / cm 2 and heating at 110 ° C. for 60 seconds is 55 mJ / m 2. 2
  • the surface energy difference ⁇ AB defined by the following formula (A) is 5.0 mJ / m 2 or less.
  • ⁇ AB ⁇ A ⁇ B formula (A)
  • the present inventors have found that by employing the above-described structure, a pattern having excellent etching resistance can be obtained, and a pattern forming method having excellent resolution can be obtained.
  • the difference between the surface energy of the inorganic underlayer and the surface energy of the resist layer after exposure is adjusted to 5.0 mJ / m 2 or less, so that the mutual effect of the layers can be improved.
  • Adhesion is improved, and by further increasing the surface energy of the resist layer to the high value (hydrophilicity) shown above to suppress penetration of the organic solvent developer during development, the resolution is excellent and the aspect ratio is improved. It is presumed that a pattern having a high value can be formed and the obtained pattern has excellent etching resistance.
  • the pattern forming method includes a step of preparing a laminate having a substrate, an inorganic base layer on the substrate, and a resist layer provided on the inorganic base layer in contact with the inorganic base layer. .
  • the laminate may be manufactured in the above-described preparation step, or may be prepared.
  • the laminate used in the present disclosure has a substrate, an inorganic base layer on the substrate, and a resist layer provided on the inorganic base layer in contact with the inorganic base layer. Further, the laminate used in the present disclosure, the ultraviolet rays having a wavelength 13.5nm was irradiated at a cumulative amount of light 40 mJ / cm 2 from the resist layer side, the surface energy of the resist layer in after heating for 60 seconds at 110 ° C.
  • gamma A Is not less than 60 mJ / m 2 , and in the laminate, the inorganic base layer after irradiating ultraviolet rays having a wavelength of 13.5 nm from the resist layer side with an integrated light quantity of 40 mJ / cm 2 and heating at 110 ° C. for 60 seconds.
  • ⁇ AB ⁇ A ⁇ B formula (A)
  • ultraviolet rays having a wavelength of 13.5nm was irradiated at a cumulative amount of light 40 mJ / cm 2 from the resist layer side, the surface energy gamma A of the resist layer in after heating for 60 seconds at 110 °C, 60mJ / m 2 or more, etching resistance, and, in terms of resolution, is preferably 61mJ / m 2 or more, more preferably 62mJ / m 2 or more, 62mJ / m 2 or more 80 mJ / m 2 or less More preferably, it is more preferably 62 mJ / m 2 or more and 70 mJ / m 2 or less.
  • the surface energy ⁇ B of the inorganic underlayer after irradiating ultraviolet rays having a wavelength of 13.5 nm from the resist layer side at an integrated light amount of 40 mJ / cm 2 and heating at 110 ° C. for 60 seconds is 55 mJ. / m 2 or more, etching resistance, and, in terms of resolution, it is preferably 58MJ / m 2 or more, more preferably 60 mJ / m 2 or more, 61MJ / m 2 or more 80 mJ / m 2 or less, more preferably 61 mJ / m 2 or more and 70 mJ / m 2 or less.
  • the surface energy difference ⁇ AB defined by the above formula (A) is 5.0 mJ / m 2 or less, and from the viewpoint of etching resistance and resolution, it is 4.0 mJ / m 2 or less. It is preferred, more preferably 3.0 mJ / m 2 or less, further preferably 2.0 mJ / m 2 or less, -2.0mJ / m 2 or more 2.0 mJ / m 2 that less is Is particularly preferred.
  • the method of measuring the surface energies ⁇ A and ⁇ B in the present disclosure is performed by the following method.
  • the surface energy in the present disclosure is synonymous with the surface free energy.
  • the laminated body is irradiated with ultraviolet light having a wavelength of 13.5 nm at an integrated light amount of 40 mJ / cm 2 from the resist layer side.
  • the irradiated laminate is heated at 110 ° C. for 60 seconds.
  • the contact angle of pure water to the surface of the sample cut out from the heated laminate and the contact angle of diiodomethane to the surface are measured at 25 ° C.
  • the measurement of these contact angles is performed using, for example, a solid-liquid interface analyzer “Drop Master 500” manufactured by Kyowa Interface Science Co., Ltd. Based on these contact angles, the surface energies ⁇ A and ⁇ B are derived by the following Owens-Wendt method.
  • the surface energy gamma i of any substance i is a non-polar dispersion force and component gamma d i of, consists polar hydrogen bonding component gamma h i.
  • ⁇ i ⁇ d i + ⁇ h i
  • the following formula is established by the extended Forkes model at the interface between the substance a and the substance b.
  • the components of the surface energy of water and diiodomethane are as follows. Dispersion component of water ⁇ d : 21.8 mJ / m 2 Hydrogen bonding component ⁇ h of water: 51.0 mJ / m 2 Surface energy of water ⁇ : 72.8 mJ / m 2 ( ⁇ d ) 0.5 value of water: 4.7 (mJ / m 2 ) 0.5 Value of ( ⁇ h ) 0.5 for water: 7.1 (mJ / m 2 ) 0.5 Dispersion force component ⁇ d of diiodomethane: 49.5 mJ / m 2 Hydrogen bonding component ⁇ h of diiodomethane: 1.3 mJ / m 2 Surface energy ⁇ of diiodomethane: 50.8 mJ / m 2 ( ⁇ d ) 0.5 value of diiodomethane: 7.0 (mJ / m 2 ) 0.5 ( ⁇ h ) 0.5 value
  • the laminate used in the present disclosure has an inorganic base layer and a resist layer on a substrate.
  • the substrate is not particularly limited, and is generally used in a process of manufacturing a semiconductor such as an integrated circuit (IC), a process of manufacturing a circuit board such as a liquid crystal or a thermal head, and a lithography process of other photofabrication.
  • a commonly used substrate can be used.
  • Specific examples of the substrate include an inorganic substrate made of a material such as Si, amorphous silicon ( ⁇ -Si), p-Si, SiO 2 , SiN, SiON, W, TiN, and Al.
  • a substrate eg, silicon, silicon dioxide coating
  • the substrate may include a known member or a known layer such as an electrode, a wiring, and various kinds of base films (such as an antireflection film).
  • the laminate used in the present disclosure has an inorganic base layer provided in contact with the resist layer.
  • the inorganic underlayer is a layer containing an inorganic compound, and the content of the inorganic compound is preferably at least 10% by mass, more preferably at least 70% by mass, based on the total mass of the inorganic underlayer. .
  • the inorganic underlayer is preferably a layer containing metal atoms from the viewpoint of etching resistance, and is preferably boron, silicon, aluminum, gallium, yttrium, germanium, titanium, zirconium, hafnium, bismuth, tin, vanadium, niobium, and tantalum. More preferably a layer containing at least one metal atom selected from the group consisting of silicon, titanium, and more preferably a layer containing at least one metal atom selected from the group consisting of silicon and titanium. A layer containing atoms is particularly preferred.
  • a metal compound is preferably exemplified.
  • Preferred examples of the metal compound include an alkoxy metal compound, a metal halide, a metal hydroxide, and a metal oxide.
  • at least one compound selected from the group consisting of an alkoxy metal compound and a metal halide is preferable.
  • hydrolysis-condensation metal compound such as a single alkoxy metal compound or a metal halide
  • two or more hydrolysis-condensation metal compounds are hydrolyzed and condensed. Is also good.
  • alkoxysilane compound used in the present disclosure examples include, for example, trimethoxysilane, triethoxysilane, tripropoxysilane, triisopropoxysilane, methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, methyltriisopropoxysilane , Ethyltrimethoxysilane, ethyltriethoxysilane, ethyltripropoxysilane, ethyltriisopropoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltripropoxysilane, vinyltriisopropoxysilane, propyltrimethoxysilane, propyltrimethoxysilane Ethoxysilane, propyltripropoxysilane, propyltriisopropoxysilane, isopropyltrimethoxysilane, isopropyltriethoxysilane,
  • the titanium compounds used in the present disclosure include titanium methoxide, titanium ethoxide, titanium propoxide, titanium butoxide, titanium amiloxide, titanium hexoxide, titanium cyclopentoxide, titanium cyclohexyloxide, titanium allyloxide.
  • Titanium phenoxide, titanium methoxy ethoxide, titanium ethoxy ethoxide, titanium dipropoxy bisethyl acetoacetate, titanium dibutoxy bisethyl acetoacetate, titanium dipropoxy bis 2,4-pentanedionate, titanium dibutoxy bis 2,4- Pentandionate and the like can be exemplified.
  • the method for forming the inorganic underlayer is not particularly limited, but can be formed by a known method such as a sputtering method, an evaporation method, and a coating method. Among them, a coating method is preferable, and a spin coating method is more preferable.
  • aqueous solvent that may be contained in the coating liquid for forming an inorganic base layer used for forming the inorganic base layer include water and a water-soluble organic solvent.
  • water-soluble organic solvent examples include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, acetone, tetrahydrofuran, acetonitrile, propylene glycol monomethyl ether, and ethylene glycol monomethyl ether.
  • an auxiliary solvent may be added in addition to the water-soluble organic solvent.
  • Examples thereof include methyl, ethyl 3-ethoxypropionate, t-butyl acetate, t-butyl propionate, propylene glycol mono-t-butyl ether acetate, ⁇ -butyrolactone, methyl isobutyl ketone, and cyclopentyl methyl ether.
  • the solid content of the coating liquid for forming an inorganic base layer is not particularly limited, but is preferably 0.1% by mass to 20% by mass. At the time of application, the solid content can be adjusted so as to facilitate application.
  • the inorganic underlayer may include other known components.
  • Other components include, for example, a photoacid generator, a thermal crosslinking accelerator, an organic acid, a stabilizer, a surfactant and the like. These include, for example, those described in JP-A-2013-167669.
  • the thickness of the inorganic base film is not particularly limited and may be formed as desired, but is preferably from 1 nm to 500 nm, more preferably from 1 nm to 300 nm, and still more preferably from 1 nm to 200 nm. It is particularly preferred that there is.
  • the laminate used in the present disclosure has a resist layer provided in contact with the inorganic underlayer.
  • the resist layer is preferably an organic solvent developing resist layer.
  • the resist layer is preferably a chemically amplified resist layer from the viewpoint of resolution and sensitivity.
  • the resist layer is preferably a negative resist layer.
  • a positive type or a negative type can be selected depending on the polarity of a developer such as an organic solvent used for development.
  • the resist layer has a resin having a structural unit having two or more phenolic hydroxy groups and a structural unit having a polar group protected by an acid-decomposable group (hereinafter referred to as resin). (Also referred to as (A).) And a photoacid generator.
  • the resist layer is a resin having a constituent unit having two or more phenolic hydroxy groups and a constituent unit having a polar group protected by an acid-decomposable group as a base resin from the viewpoint of etching resistance and resolution (resin).
  • (A)) a structural unit (a) having two or more phenolic hydroxy groups represented by the following formula (I-1), and a protective group containing a single ring by the action of an acid: It is more preferable to include a resin having a structural unit (b) having a group capable of forming a polar group upon elimination (hereinafter, referred to as “polar group protected by an acid-decomposable group”).
  • the structural unit (a) having two or more phenolic hydroxy groups is preferably a structural unit represented by the following formula (I-1) from the viewpoint of etching resistance and resolution.
  • R 11 and R 12 each independently represent a hydrogen atom or an alkyl group
  • R 13 represents a hydrogen atom or an alkyl group, or represents a single bond or an alkylene group
  • L is bonded to L or Ar to form a ring
  • L represents a single bond or a divalent linking group
  • Ar represents an aromatic ring
  • n represents an integer of 2 or more.
  • Examples of the alkyl group represented by R 11 , R 12 and R 13 in the formula (I-1) include, for example, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, sec-butyl group, hexyl group And 2-ethylhexyl, octyl and dodecyl groups having 20 or less carbon atoms.
  • the alkyl group represented by R 11 , R 12 and R 13 is preferably an alkyl group having 8 or less carbon atoms, and more preferably an alkyl group having 3 or less carbon atoms.
  • the alkyl group represented by R 11 , R 12 and R 13 may have a substituent.
  • Preferred substituents include, for example, cycloalkyl group, aryl group, amino group, amide group, ureido group, urethane group, hydroxyl group, carboxyl group, halogen atom, alkoxy group, thioether group, acyl group, acyloxy group, alkoxycarbonyl Group, cyano group, nitro group and the like, and the substituent preferably has 8 or less carbon atoms.
  • Examples of the divalent linking group represented by L include an ester bond, —CONR 64 (R 64 represents a hydrogen atom or an alkyl group) —, or an alkylene group, or any one of these. And two or more combinations.
  • R 64 may represent hydrogen atom or an alkyl group
  • the alkyl group for R 64 in, preferably the substituent methyl group which may have a ethyl group, a propyl group, an isopropyl group
  • -CONR 64- is preferably -CONH-.
  • Examples of the alkylene group represented by L include those having 1 to 8 carbon atoms such as a methylene group, an ethylene group, a propylene group, a butylene group, a hexylene group, and an octylene group.
  • the alkylene group may have a substituent.
  • L is preferably a single bond, an ester bond-or -CONH-, more preferably a single bond or an ester bond, and particularly preferably a single bond.
  • Examples of the aromatic ring represented by Ar include an aromatic hydrocarbon ring having 6 to 18 carbon atoms such as a benzene ring, a naphthalene ring, an anthracene ring, a fluorene ring and a phenanthrene ring, or a thiophene ring, a furan ring, Aromatic heterocycles including heterocycles such as a pyrrole ring, a benzothiophene ring, a benzofuran ring, a benzopyrrole ring, a triazine ring, an imidazole ring, a benzimidazole ring, a triazole ring, a thiadiazole ring, and a thiazole ring can be given. Above all, from the viewpoint of resolution, a benzene ring and a naphthalene ring are preferable, and a benzene ring is more preferable.
  • aromatic rings may have a substituent.
  • substituents include, for example, specific examples of the alkyl group represented by R 11 , R 12 and R 13 described above; alkoxy such as methoxy, ethoxy, hydroxyethoxy, propoxy, hydroxypropoxy and butoxy groups. Groups; aryl groups such as phenyl groups; and the like.
  • N represents an integer of 2 or more, preferably represents an integer of 2 or more and 5 or less, and more preferably 2 or 3.
  • the resin (A) may contain two or more types of the structural unit (a).
  • specific examples of the structural unit (a) will be shown, but the present invention is not limited thereto.
  • R represents a hydrogen atom or a methyl group
  • a represents 2 or 3.
  • the content of the structural unit (a) (the total content when two or more kinds are contained) is determined based on the total content of the resin (A) from the viewpoint of compatibility between the reactivity of the resin (A) and the ability to suppress the diffusion of generated acid. It is preferably from 5 mol% to 60 mol%, more preferably from 10 mol% to 50 mol%, even more preferably from 20 mol% to 40 mol%, based on the constitutional unit.
  • the “structural unit” when the content of the “structural unit” is defined by a molar ratio, the “structural unit” has the same meaning as the “monomer unit”.
  • the “monomer unit” may be modified after polymerization by a polymer reaction or the like. The same applies to the following.
  • the structural unit (b) is a structural unit having a polar group protected by an acid-decomposable group, and a structural unit having an acid-decomposable group in which a protective group containing a single ring is eliminated by the action of an acid to generate a polar group. It is preferred that Protecting groups containing a single ring have both higher deprotection reactivity in acid-decomposable groups and lower diffusivity of generated acid compared to protecting groups containing a polycyclic structure and protecting groups containing a chain-type group. It is possible.
  • the monocyclic ring contained in the protective group of the structural unit (b) is an aliphatic ring and may contain an unsaturated bond. Further, the monocyclic ring is preferably a monocyclic hydrocarbon group consisting of only carbon atoms and hydrogen atoms.
  • the number of carbon atoms constituting a single ring is preferably small.
  • the number of carbon atoms constituting the single ring is preferably 5 to 10, more preferably 5 to 8, and even more preferably 5 to 7.
  • the single ring may have a substituent, and the substituent may contain an atom other than a carbon atom and a hydrogen atom.
  • substituent which may be present include, for example, an alkyl group (1 to 4 carbon atoms), a halogen atom, a hydroxy group, an alkoxy group (1 to 4 carbon atoms), a carboxy group, and an alkoxycarbonyl group (2 to 6 carbon atoms).
  • examples of the polar group generated by the removal of a protective group containing a monocyclic hydrocarbon group by the action of an acid include a carboxy group (aliphatic carboxy group), an aromatic carboxy group, and a phenolic hydroxy group. Groups, hydroxy groups (aliphatic hydroxy groups) and the like. Among them, the polar group is preferably a carboxy group.
  • the fact that the polar group is a carboxy group is preferred from the viewpoint of achieving both high reactivity in the resin (A) and ability to suppress the diffusion of generated acid.
  • the polar group is a carboxy group
  • the Tg after exposure is particularly high and the diffusion of acid is excellent, as compared with the case where the polar group is a phenolic hydroxy group or a hydroxy group.
  • the polar group when combined with a protecting group, the polar group has a higher acid strength, and thus has excellent deprotection reactivity.
  • the structural unit (b) is preferably, for example, a structural unit represented by the following formula (pA).
  • R 21 , R 22 and R 23 each independently represent a hydrogen atom or an alkyl group.
  • A represents a single bond or a divalent linking group.
  • Rp 1 represents a group represented by the formula (pI).
  • R 24 represents a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group or a tert-butyl group. Further, R 24 is preferably a methyl group.
  • Z represents an atomic group necessary for forming a monocyclic cycloalkyl group together with carbon atoms in the formula. * Represents a connecting part with the rest of the structural unit represented by the formula (pA).
  • alkyl group represented by R 21 , R 22 and R 23 in the formula (pA) specific examples of the alkyl group represented by R 11 , R 12 and R 13 in the above formula (I-1) Specific examples similar to the examples are given, and preferred specific examples are also the same.
  • the alkyl group represented by R 21 , R 22 and R 23 may have a substituent.
  • Preferred examples of the substituent include the same specific examples as those exemplified for the substituent which the alkyl group represented by R 11 , R 12 and R 13 in the formula (I-1) may have.
  • Examples of the divalent linking group represented by A include an arylene group, a -COO-Rt- group, and the like.
  • Rt represents an alkylene group or a cycloalkylene group.
  • A is preferably a single bond.
  • Z represents an atomic group necessary for forming a cycloalkyl group together with carbon atoms in the formula as described above.
  • the number of carbon atoms of the cycloalkyl group formed by Z together with the carbon atoms in the formula is preferably 5 to 10, more preferably 5 to 8, and preferably 5 to 7. Is more preferred.
  • the structural unit (b) may be a structural unit represented by the following formula (pB).
  • R 31 , R 32 and R 33 each independently represent a hydrogen atom or an alkyl group.
  • a 2 represents a single bond or a divalent linking group.
  • R 41 , R 42 and R 43 each independently represent a linear or branched alkyl group, or a monocyclic or polycyclic cycloalkyl group. However, at least one of R 41 , R 42 and R 43 represents a monocyclic cycloalkyl group.
  • alkyl group represented by R 31 , R 32 and R 33 in the formula (pB) specific examples of the alkyl group represented by R 11 , R 12 and R 13 in the above formula (I-1) Specific examples similar to the examples are given, and preferred specific examples are also the same.
  • the alkyl group represented by R 31 , R 32 and R 33 may have a substituent.
  • Preferred examples of the substituent include the same specific examples as those exemplified for the substituent which the alkyl group represented by R 11 , R 12 and R 13 in the formula (I-1) may have.
  • Examples of the divalent linking group represented by A 2 include specific examples illustrated in the divalent linking group represented by A in formula (pA) as described above.
  • a 2 is preferably a single bond.
  • Examples of the linear or branched alkyl group represented by R 41 , R 42 and R 43 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group and the like. Are preferably those having 1 to 4 carbon atoms.
  • the monocyclic cycloalkyl group represented by R 41 , R 42 and R 43 is preferably a cycloalkyl group having 5 to 10 carbon atoms, more preferably a cycloalkyl group having 5 to 8 carbon atoms. And more preferably a cycloalkyl group having 5 to 7 carbon atoms.
  • polycyclic cycloalkyl group represented by R 41 , R 42 and R 43 for example, a polycyclic cycloalkyl group such as a norbornyl group, a tetracyclodecanyl group, a tetracyclododecanyl group, and an adamantyl group is preferable. .
  • the resin (A) may contain two or more types of the structural unit (b).
  • R represents a hydrogen atom or a methyl group
  • Rx each independently represents an alkyl group having 1 to 4 carbon atoms.
  • the content of the structural unit (b) (when two or more types are contained, the total content) is preferably from 20 mol% to 90 mol%, more preferably from 25 mol% to 80 mol%, based on all the structural units in the resin (A). Mol% is more preferable, and 30 to 70 mol% is still more preferable.
  • the resin (A) may further contain a structural unit (b) different from a structural unit having an acid-decomposable group in which a protective group containing a single ring is eliminated by the action of an acid to generate a polar group. .
  • the structural unit having a group which is decomposed by the action of an acid to generate a carboxy group is a structural unit having a group in which a hydrogen atom of the carboxy group is substituted with a group which is decomposed and eliminated by the action of an acid.
  • the acid eliminable group there can be, for example, -C (R 36) (R 37) (R 38), - C (R 36) (R 37) (OR 39), - C (R 01) (R 02 ) (OR 39 ).
  • R 36 to R 39 each independently represent an alkyl group, a polycyclic cycloalkyl group, an aryl group, an aralkyl group or an alkenyl group.
  • R 36 and R 37 may combine with each other to form a ring.
  • R 01 and R 02 each independently represent a hydrogen atom, an alkyl group, a polycyclic cycloalkyl group, an aryl group, an aralkyl group or an alkenyl group.
  • a structural unit represented by the following formula (AI) is preferable.
  • Xa 1 represents a hydrogen atom or an alkyl group which may have a substituent.
  • T represents a single bond or a divalent linking group.
  • Rx 1 to Rx 3 each independently represent an alkyl group (linear or branched) or a polycyclic cycloalkyl group. However, when all of Rx 1 to Rx 3 are alkyl groups (linear or branched), at least two of Rx 1 to Rx 3 are preferably methyl groups. Two of Rx 1 to Rx 3 may combine to form a polycyclic cycloalkyl group.
  • Examples of the alkyl group optionally having a substituent represented by Xa 1 include a methyl group and a group represented by —CH 2 —R X11 .
  • R X11 represents a halogen atom (such as a fluorine atom), a hydroxyl group or a monovalent organic group, and examples thereof include an alkyl group having 5 or less carbon atoms and an acyl group having 5 or less carbon atoms, and preferably 3 or less carbon atoms. And more preferably a methyl group.
  • Xa 1 is preferably a hydrogen atom, a methyl group, a trifluoromethyl group or a hydroxymethyl group.
  • Examples of the divalent linking group of T include an alkylene group, an arylene group, a -COO-Rt- group, a -O-Rt- group and the like.
  • Rt represents an alkylene group or a cycloalkylene group.
  • T is preferably a single bond, an arylene group or a -COO-Rt- group, more preferably a single bond or an arylene group.
  • arylene group an arylene group having 6 to 10 carbon atoms is preferable, and a phenylene group is more preferable.
  • Rt is preferably an alkylene group having 1 to 5 carbon atoms, more preferably a —CH 2 — group, a — (CH 2 ) 2 — group, and a — (CH 2 ) 3 — group.
  • an alkyl group having 1 to 4 carbon atoms such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group and a t-butyl group is preferable.
  • a polycyclic cycloalkyl group such as a norbornyl group, a tetracyclodecanyl group, a tetracyclododecanyl group, and an adamantyl group is preferable.
  • a polycyclic cycloalkyl group such as a norbornyl group, a tetracyclodecanyl group, a tetracyclododecanyl group, and an adamantyl group is preferable.
  • a polycyclic cycloalkyl group such as a norbornyl group, a tetracyclodecanyl group, a tetracyclododecanyl group, and an adamantyl group is preferable.
  • one of the methylene groups constituting the ring has a hetero atom such as an oxygen atom or a hetero atom such as a carbonyl group. It may be replaced by a group having.
  • Each of the above groups may have a substituent.
  • substituents include an alkyl group (1 to 4 carbon atoms), a halogen atom, a hydroxy group, an alkoxy group (1 to 4 carbon atoms), a carboxyl group, Examples thereof include an alkoxycarbonyl group (having 2 to 6 carbon atoms), preferably having 8 or less carbon atoms.
  • the structural unit represented by the formula (AI) is preferably an acid-decomposable (meth) acrylic acid tertiary alkyl ester-based structural unit (Xa 1 represents a hydrogen atom or a methyl group, and T represents a single bond. (Structural unit to represent). More preferably, Rx 1 to Rx 3 are each independently a structural unit representing a linear or branched alkyl group, and still more preferably, each of Rx 1 to Rx 3 is independently a linear alkyl group. Is a unit.
  • Rx and Xa 1 represent a hydrogen atom, CH 3 , CF 3 , or CH 2 OH.
  • Rxa and Rxb each represent an alkyl group having 1 to 4 carbon atoms.
  • Z represents a substituent containing a polar group, and when there are a plurality of substituents, each is independent.
  • p represents 0 or a positive integer.
  • the substituent containing a polar group represented by Z include a hydroxy group, a cyano group, an amino group, an alkylamide group or a sulfonamide group, a linear or branched alkyl group, a cycloalkyl group, Preferably, it is an alkyl group having a hydroxy group.
  • An isopropyl group is particularly preferred as the branched alkyl group.
  • the content of the structural unit is 20 mol% based on all the structural units in the resin (A). It is preferably from 90 to 90 mol%, more preferably from 25 to 80 mol%, even more preferably from 30 to 70 mol%.
  • the resin (A) preferably has a structural unit having at least one selected from the group consisting of a lactone structure, a sultone structure, and a carbonate structure.
  • Any lactone structure or sultone structure can be used as long as it has a lactone structure or a sultone structure, but it is preferably a 5- to 7-membered lactone structure or a 5- to 7-membered sultone structure.
  • Other ring structures in which a bicyclic structure or a spiro structure is formed in a membered lactone structure and another ring structure is formed in a 5- to 7-membered sultone structure in which a bicyclo structure or a spiro structure is formed. are more preferably condensed.
  • the lactone structure portion or the sultone structure portion may or may not have a substituent (Rb 2 ).
  • Preferred substituents (Rb 2 ) include an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 4 to 7 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, an alkoxycarbonyl group having 2 to 8 carbon atoms, and a carboxyl group.
  • n2 represents an integer of 0 to 4.
  • a plurality of substituents (Rb 2 ) may be the same or different. Further, a plurality of substituents (Rb 2 ) may be bonded to each other to form a ring.
  • the constituent unit having a lactone structure or a sultone structure is preferably a constituent unit represented by the following formula III from the viewpoint of the depth of focus tolerance and the pattern linearity.
  • the resin having a structural unit having an acid-decomposable group preferably contains a structural unit represented by the following formula III from the viewpoint of the depth of focus tolerance and the pattern linearity.
  • A represents an ester bond (a group represented by —COO—) or an amide bond (a group represented by —CONH—).
  • n is the number of repetitions of the structure represented by -R 0 -Z-, represents an integer of 0 to 5, is preferably 0 or 1, and is more preferably 0.
  • R 0 represents an alkylene group, a cycloalkylene group, or a combination thereof.
  • Z represents a single bond, an ether bond, an ester bond, an amide bond, a urethane bond or a urea bond.
  • Z represents a single bond, an ether bond, an ester bond, an amide bond, a urethane bond or a urea bond independently when there are a plurality of them.
  • R 8 represents a monovalent organic group having a lactone structure or a sultone structure.
  • R 7 represents a hydrogen atom, a halogen atom other than a fluorine atom, or a monovalent organic group (preferably a methyl group).
  • the alkylene group or cycloalkylene group of R 0 may have a substituent.
  • Z is preferably an ether bond or an ester bond, and more preferably an ester bond.
  • the following monomers are also suitably used as a raw material of the resin (A).
  • the resin (A) may have a structural unit having a carbonate structure.
  • the carbonate structure is preferably a cyclic carbonate structure.
  • the structural unit having a cyclic carbonate structure is preferably a structural unit represented by the following formula A-1.
  • R A 1 represents a hydrogen atom, a halogen atom other than a fluorine atom or a monovalent organic group (preferably a methyl group), n represents an integer of 0 or more, and R A 2 represents a substituted Represents a group.
  • the resin (A) is a structural unit having at least one selected from the group consisting of a lactone structure, a sultone structure, and a carbonate structure, as described in paragraphs 0370 to 0414 of US Patent Application Publication No. 2016/0070167. It is also preferable to have a structural unit.
  • the resin (A) may include at least one structural unit selected from the group consisting of a lactone structure, a sultone structure, and a carbonate structure, singly or in combination of two or more.
  • the content of a structural unit having at least one selected from the group consisting of a lactone structure, a sultone structure, and a carbonate structure contained in the resin (A) (selected from the group consisting of a lactone structure, a sultone structure, and a carbonate structure)
  • the total is preferably 5 mol% to 70 mol%, and more preferably 10 mol% to 65 mol%, based on all the structural units of the resin (A). Is more preferable, and more preferably 20 to 60 mol%.
  • the resin (A) may further have a structural unit having a polar group, particularly a structural unit having an alicyclic hydrocarbon structure substituted with a polar group.
  • the alicyclic hydrocarbon structure of the alicyclic hydrocarbon structure substituted with a polar group is preferably an adamantyl group, a diamantyl group, or a norbornane group.
  • a polar group a hydroxy group or a cyano group is preferable. Specific examples of the structural unit having a polar group are shown below, but the present disclosure is not limited thereto.
  • the resin (A) has a structural unit having a polar group
  • its content is preferably from 1 mol% to 30 mol%, more preferably from 5 mol% to 25 mol%, based on all the structural units in the resin (A). Is more preferably 5 mol% to 20 mol%.
  • a structural unit having a group capable of generating an acid upon irradiation with light may be included.
  • the constituent unit having the photoacid generator can be considered to be a photoacid generator. Examples of such a structural unit include a structural unit represented by the following formula (4).
  • R 41 represents a hydrogen atom or a methyl group.
  • L 41 represents a single bond or a divalent linking group.
  • L 42 represents a divalent linking group.
  • R 40 represents a structural moiety that is decomposed by irradiation with actinic rays or radiation to generate an acid in a side chain.
  • examples of the structural unit represented by the formula (4) include structural units described in paragraphs 0094 to 0105 of JP-A-2014-041327.
  • the content of the structural unit having a photoacid-generating group is from 1 mol% to 40 mol% based on all the structural units in the resin (A). Is preferably 1 to 35 mol%, more preferably 1 to 30 mol%.
  • the resin (A) can be synthesized according to a conventional method (for example, radical polymerization).
  • a conventional method for example, radical polymerization
  • a general synthesis method a batch polymerization method in which a monomer species and an initiator are dissolved in a solvent and polymerization is performed by heating, or a solution of the monomer species and the initiator is dropped in a heating solvent over 1 hour to 10 hours. And the like, and the drop polymerization method is preferable.
  • reaction solvent examples include ethers such as tetrahydrofuran, 1,4-dioxane and diisopropyl ether; ketones such as methyl ethyl ketone and methyl isobutyl ketone; ester solvents such as ethyl acetate; amide solvents such as dimethylformamide and dimethylacetamide; And a solvent that dissolves the components of the resist layer, such as propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, and cyclohexanone. More preferably, polymerization is carried out using the same solvent as that used for the composition for forming the resist layer. Thereby, generation of particles during storage can be suppressed.
  • ethers such as tetrahydrofuran, 1,4-dioxane and diisopropyl ether
  • ketones such as methyl ethyl ketone and methyl isobutyl ketone
  • ester solvents such as
  • the polymerization reaction is preferably performed in an atmosphere of an inert gas such as nitrogen or argon.
  • the polymerization is started using a commercially available radical initiator (such as an azo-based initiator or a peroxide) as the polymerization initiator.
  • a commercially available radical initiator such as an azo-based initiator or a peroxide
  • an azo initiator is preferable, and an azo initiator having an ester group, a cyano group, and a carboxyl group is preferable.
  • Preferred initiators include azobisisobutyronitrile, azobisdimethylvaleronitrile, dimethyl 2,2'-azobis (2-methylpropionate) and the like.
  • an initiator is added or added in portions, and after completion of the reaction, the mixture is poured into a solvent and a desired polymer is recovered by a method such as powder or solid recovery.
  • the concentration of the reaction is preferably 5% by mass to 50% by mass, more preferably 10% by mass to 30% by mass.
  • the reaction temperature is preferably from 10 ° C to 150 ° C, more preferably from 30 ° C to 120 ° C, even more preferably from 60 ° C to 100 ° C.
  • Purification is carried out by a liquid-liquid extraction method that removes residual monomer or oligomer components by washing with water or combining an appropriate solvent, a purification method in a solution state such as ultrafiltration that extracts and removes only those having a specific molecular weight or less, In a solid state such as re-precipitation method of removing residual monomers and the like by coagulating the resin in the poor solvent by dropping the resin solution into the poor solvent, or washing the filtered resin slurry with the poor solvent, etc. Ordinary methods such as a purification method can be applied.
  • the weight average molecular weight of the resin (A) is preferably from 1,000 to 200,000, more preferably from 3,000 to 20,000, and more preferably from 5,000 to 15, in terms of polystyrene by the GPC method. More preferably, it is 2,000.
  • the weight average molecular weight is preferably from 1,000 to 200,000, deterioration of heat resistance and dry etching resistance can be prevented, and developability is deteriorated, and viscosity is increased to deteriorate film formability. Can be prevented.
  • Another particularly preferable weight average molecular weight of the resin (A) is 3,000 to 9,500 in terms of polystyrene by GPC.
  • resist residues hereinafter also referred to as “scum”
  • the degree of dispersion (molecular weight distribution) of the resin (A) is preferably from 1 to 5, more preferably from 1 to 3, further preferably from 1.2 to 3.0, and more preferably from 1.2 to 3.0. 2.0 is particularly preferred.
  • the content of the resin (A) is preferably 50% by mass to 99.9% by mass, and more preferably 60% by mass to 99.0% by mass based on the total mass of the resist layer. Is more preferred.
  • the resin (A) only one type may be used, or a plurality of types may be used in combination.
  • the resist layer contains a compound that generates an acid upon irradiation with actinic rays or radiation (hereinafter, also referred to as “photoacid generator” (PAG) or “photoacid generator (B)”). contains.
  • PAG photoacid generator
  • B photoacid generator
  • the photoacid generator may be in the form of a low-molecular compound or may be in a form incorporated into a part of the polymer. Further, the form of the low molecular compound and the form incorporated in a part of the polymer may be used in combination.
  • the molecular weight is preferably 3,000 or less, more preferably 2,000 or less, and even more preferably 1,000 or less.
  • the photoacid generator When the photoacid generator is in a form incorporated in a part of the polymer, it may be incorporated in a part of the resin (A) or in a resin different from the resin (A).
  • the number of fluorine atoms contained in the photoacid generator is appropriately adjusted.
  • the fluorine atoms it is possible to control the uneven distribution of the surface of the photoacid generator in the resist film.
  • the photoacid generator is preferably in the form of a low-molecular compound.
  • the photoacid generator is not particularly limited as long as it is a known one. However, by irradiation with light, preferably an electron beam or extreme ultraviolet light, an organic acid such as sulfonic acid, bis (alkylsulfonyl) imide, or tris (alkyl) Compounds that generate at least one of sulfonyl) methide are preferred. More preferably, a compound represented by the following formula (ZI), formula (ZII) or formula (ZIII) can be mentioned.
  • R 201 , R 202 and R 203 each independently represent an organic group.
  • the carbon number of the organic group as R 201 , R 202 and R 203 is preferably 1 to 30, more preferably 1 to 20.
  • Two of R 201 to R 203 may combine to form a ring structure, and the ring may contain an oxygen atom, a sulfur atom, an ester bond, an amide bond, or a carbonyl group.
  • Examples of the group formed by combining two of R 201 to R 203 include an alkylene group (for example, a butylene group and a pentylene group).
  • Z ⁇ represents a non-nucleophilic anion (anion having an extremely low ability to cause a nucleophilic reaction).
  • Non-nucleophilic anions include, for example, sulfonic acid anions (aliphatic sulfonic acid anions, aromatic sulfonic acid anions, camphorsulfonic acid anions, etc.), carboxylic acid anions (aliphatic carboxylic acid anions, aromatic carboxylic acid anions, aralkyl Carboxylate anion), sulfonylimide anion, bis (alkylsulfonyl) imide anion, tris (alkylsulfonyl) methide anion and the like.
  • sulfonic acid anions aliphatic sulfonic acid anions, aromatic sulfonic acid anions, camphorsulfonic acid anions, etc.
  • carboxylic acid anions aliphatic carboxylic acid anions, aromatic carboxylic acid anions, aralkyl Carboxylate anion
  • sulfonylimide anion bis (alkylsulfonyl) imide
  • the aliphatic site in the aliphatic sulfonic acid anion and the aliphatic carboxylate anion may be an alkyl group or a cycloalkyl group, preferably a linear or branched alkyl group having 1 to 30 carbon atoms and a carbon number. And 3 to 30 cycloalkyl groups.
  • an aryl group having preferably 6 to 14 carbon atoms for example, a phenyl group, a tolyl group, a naphthyl group and the like can be mentioned.
  • the alkyl group, cycloalkyl group and aryl group mentioned above may have a substituent. Specific examples thereof include a halogen atom such as a nitro group and a fluorine atom, a carboxyl group, a hydroxy group, an amino group, a cyano group, an alkoxy group (preferably having 1 to 15 carbon atoms), and a cycloalkyl group (preferably having 3 to carbon atoms).
  • an aryl group preferably having 6 to 14 carbon atoms
  • an alkoxycarbonyl group preferably having 2 to 7 carbon atoms
  • an acyl group preferably having 2 to 12 carbon atoms
  • an alkoxycarbonyloxy group preferably having 2 carbon atoms 7
  • an alkylthio group preferably having 1 to 15 carbon atoms
  • an alkylsulfonyl group preferably having 1 to 15 carbon atoms
  • an alkyliminosulfonyl group preferably having 1 to 15 carbon atoms
  • an aryloxysulfonyl group preferably C6-20
  • alkylaryloxysulfonyl group preferably C7-20
  • cycloalkyl Examples include a reeloxysulfonyl group (preferably having 10 to 20 carbon atoms), an alkyloxyalkyloxy group (preferably having 5 to 20 carbon atoms), and a cycloalkylalkyloxyalkyloxy group (preferably having 8 to 20 carbon
  • the aralkyl group in the aralkyl carboxylate anion preferably includes an aralkyl group having 7 to 12 carbon atoms, such as a benzyl group, a phenethyl group, a naphthylmethyl group, a naphthylethyl group and a naphthylbutyl group.
  • Sulfonylimide anion includes, for example, saccharin anion.
  • the alkyl group in the bis (alkylsulfonyl) imide anion and tris (alkylsulfonyl) methide anion is preferably an alkyl group having 1 to 5 carbon atoms.
  • substituent of these alkyl groups include a halogen atom, an alkyl group substituted with a halogen atom, an alkoxy group, an alkylthio group, an alkyloxysulfonyl group, an aryloxysulfonyl group, and a cycloalkylaryloxysulfonyl group.
  • a fluorine atom or an alkyl group substituted with a fluorine atom is preferred.
  • the alkyl groups in the bis (alkylsulfonyl) imide anion may be bonded to each other to form a ring structure. This increases the acid strength.
  • non-nucleophilic anions include, for example, phosphorus fluorinated (eg, PF 6 ⁇ ), boron fluorinated (eg, BF 4 ⁇ ), antimony fluorinated (eg, SbF 6 ⁇ ), and the like. .
  • non-nucleophilic anion examples include an aliphatic sulfonic acid anion in which at least the ⁇ -position of the sulfonic acid is substituted with a fluorine atom, an aromatic sulfonic acid anion substituted with a fluorine atom or a group having a fluorine atom, and an alkyl group in which the alkyl group is a fluorine atom. And a tris (alkylsulfonyl) methide anion in which the alkyl group is substituted by a fluorine atom.
  • non-nucleophilic anion more preferably a perfluoroaliphatic sulfonic acid anion (more preferably 4 to 8 carbon atoms) or a benzenesulfonic acid anion having a fluorine atom, even more preferably a nonafluorobutanesulfonic acid anion, Perfluorooctanesulfonic acid anion, pentafluorobenzenesulfonic acid anion, or 3,5-bis (trifluoromethyl) benzenesulfonic acid anion.
  • the pKa of the generated acid is preferably -1 or less for improving sensitivity.
  • an anion represented by the following formula (AN1) is also mentioned as a preferred embodiment.
  • Xf each independently represents a fluorine atom or an alkyl group substituted with at least one fluorine atom.
  • R 1 and R 2 each independently represent a hydrogen atom, a fluorine atom, or an alkyl group, and when a plurality of R 1 and R 2 are present, R 1 and R 2 may be the same or different.
  • L represents a divalent linking group, and when a plurality of L are present, L may be the same or different.
  • A represents a cyclic organic group.
  • x represents an integer of 1 to 20
  • y represents an integer of 0 to 10
  • z represents an integer of 0 to 10.
  • the alkyl group in the alkyl group substituted with a fluorine atom for Xf preferably has 1 to 10 carbon atoms, and more preferably has 1 to 4 carbon atoms. Further, the alkyl group substituted with a fluorine atom for Xf is preferably a perfluoroalkyl group.
  • Xf is preferably a fluorine atom or a perfluoroalkyl group having 1 to 4 carbon atoms.
  • Xf fluorine atom, CF 3, C 2 F 5 , C 3 F 7, C 4 F 9, CH 2 CF 3, CH 2 CH 2 CF 3, CH 2 C 2 F 5, CH 2 CH 2 C 2 F 5, CH 2 C 3 F 7, CH 2 CH 2 C 3 F 7, CH 2 C 4 F 9, and include CH 2 CH 2 C 4 F 9 .
  • a fluorine atom or CF 3 is preferable.
  • both Xf are fluorine atoms.
  • the alkyl group of R 1 and R 2 may have a substituent (preferably a fluorine atom), and preferably has 1 to 4 carbon atoms. More preferably, it is a perfluoroalkyl group having 1 to 4 carbon atoms.
  • substituents preferably a fluorine atom
  • R 1 and R 2 include CF 3 , C 2 F 5 , C 3 F 7 , C 4 F 9 , C 5 F 11 , C 6 F 13 , and C 7 F 15.
  • C 8 F 17, CH 2 CF 3, CH 2 CH 2 CF 3, CH 2 C 2 F 5, CH 2 CH 2 C 2 F 5, CH 2 C 3 F 7, CH 2 CH 2 C 3 F 7, include CH 2 C 4 F 9, CH 2 CH 2 C 4 F 9, inter alia CF 3 are preferred.
  • R 1 and R 2 are preferably a fluorine atom or CF 3 .
  • x is preferably from 1 to 10, more preferably from 1 to 5.
  • y is preferably from 0 to 4, and more preferably 0.
  • z is preferably from 0 to 5, more preferably from 0 to 3.
  • the divalent linking group for L is not particularly limited, and may include —COO—, —OCO—, —CO—, —O—, —S—, —SO—, —SO 2 —, an alkylene group, a cycloalkylene group, Examples thereof include an alkenylene group and a linking group in which a plurality thereof are linked, and a linking group having a total carbon number of 12 or less is preferable. Among these, —COO—, —OCO—, —CO—, and —O— are preferable, and —COO— and —OCO— are more preferable.
  • the cyclic organic group of A is not particularly limited as long as it has a cyclic structure, and is not limited to an alicyclic group, an aryl group, or a heterocyclic group (not only an aromatic group but also an aromatic group). And the like).
  • the alicyclic group may be monocyclic or polycyclic, and may be a monocyclic cycloalkyl group such as a cyclopentyl group, a cyclohexyl group, or a cyclooctyl group, a norbornyl group, a tricyclodecanyl group, a tetracyclodecanyl group, or a tetracyclododeca.
  • Polycyclic cycloalkyl groups such as a nyl group and an adamantyl group are preferred.
  • an alicyclic group having a bulky structure having 7 or more carbon atoms such as a norbornyl group, a tricyclodecanyl group, a tetracyclodecanyl group, a tetracyclododecanyl group, and an adamantyl group is present in the film in the post-exposure heating step. Diffusivity can be suppressed, and this is preferable from the viewpoint of improving MEEF (mask error enhancement factor).
  • aryl group examples include a benzene ring, a naphthalene ring, a phenanthrene ring and an anthracene ring.
  • heterocyclic group examples include those derived from a furan ring, a thiophene ring, a benzofuran ring, a benzothiophene ring, a dibenzofuran ring, a dibenzothiophene ring, and a pyridine ring.
  • those derived from a furan ring, a thiophene ring or a pyridine ring are preferred.
  • the cyclic organic group may also include a lactone structure, and specific examples thereof include a lactone structure represented by any of the above formulas (LC1-1) to (LC1-17). .
  • the cyclic organic group may have a substituent, and the substituent may be an alkyl group (which may be linear, branched or cyclic, and preferably has 1 to 12 carbon atoms), Cycloalkyl group (which may be monocyclic, polycyclic or spiro ring, preferably 3 to 20 carbon atoms), aryl group (preferably 6 to 14 carbon atoms), hydroxy group, alkoxy group, ester Groups, amide groups, urethane groups, ureido groups, thioether groups, sulfonamide groups, sulfonic acid ester groups, and the like.
  • the carbon constituting the cyclic organic group (carbon contributing to ring formation) may be a carbonyl carbon.
  • Examples of the organic groups for R 201 , R 202 and R 203 include an aryl group, an alkyl group, and a cycloalkyl group. At least one of R 201 , R 202 and R 203 is preferably an aryl group, and more preferably all three are aryl groups. As the aryl group, in addition to a phenyl group and a naphthyl group, a heteroaryl group such as an indole residue and a pyrrole residue can be used.
  • alkyl group and cycloalkyl group of R 201 to R 203 preferably, a linear or branched alkyl group having 1 to 10 carbon atoms and a cycloalkyl group having 3 to 10 carbon atoms can be exemplified. More preferred examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, and an n-butyl group.
  • the cycloalkyl group includes a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and the like. These groups may further have a substituent. Examples of the substituent include a nitro group, a halogen atom such as a fluorine atom, a carboxy group, a hydroxy group, an amino group, a cyano group, an alkoxy group (preferably having 1 to 15 carbon atoms) and a cycloalkyl group (preferably having 3 to 15 carbon atoms).
  • an aryl group preferably having 6 to 14 carbon atoms
  • an alkoxycarbonyl group preferably having 2 to 7 carbon atoms
  • an acyl group preferably having 2 to 12 carbon atoms
  • an alkoxycarbonyloxy group preferably having 2 carbon atoms
  • To 7 but are not limited thereto.
  • Suitable examples of the anion represented by the formula (AN1) include the following.
  • A represents a cyclic organic group.
  • R 204 to R 207 each independently represent an aryl group, an alkyl group, or a cycloalkyl group.
  • the aryl group, alkyl group and cycloalkyl group of R 204 to R 207 are the same as the aryl group, alkyl group and cycloalkyl group of R 201 to R 203 in the aforementioned compound (ZI).
  • the aryl group, alkyl group and cycloalkyl group of R 204 to R 207 may have a substituent.
  • substituents include those which the aryl group, alkyl group and cycloalkyl group of R 201 to R 203 in the above-mentioned compound (ZI) may have.
  • Z ⁇ represents a non-nucleophilic anion, and examples thereof include the same non-nucleophilic anions as Z ⁇ in formula (ZI).
  • the volume is more preferable (more preferably sulfonic acid) acid volume 270 ⁇ 3 or more in size is more preferably a compound which generates an (more preferably sulfonic acid) acid volume 400 ⁇ 3 or more dimensions to generate Particularly preferred are compounds.
  • the volume is more preferably preferably at 2000 ⁇ 3 or less, and 1500 ⁇ 3 or less.
  • the value of the volume was determined using “WinMOPAC” manufactured by Fujitsu Limited. That is, first, the chemical structure of the acid according to each example is input, and then the most stable conformation of each acid is determined by a molecular force field calculation using the MM3 method with this structure as an initial structure. By performing a molecular orbital calculation using the PM3 method for these most stable conformations, the “accessible volume” of each acid can be calculated.
  • Examples of the photoacid generator include paragraphs 0368 to 0377 of JP-A-2014-41328 and paragraphs [240 to 0262 of JP-A-2013-228681 (paragraph 0339 of the corresponding US Patent Application Publication No. 2015/004533). ) Can be incorporated by reference, and their contents are incorporated herein. In addition, preferred specific examples include the following compounds, but are not limited thereto.
  • the photoacid generator can be used alone or in combination of two or more.
  • the content of the photoacid generator is preferably from 0.1% by mass to 50% by mass, more preferably from 5% by mass to 50% by mass, and further preferably from 8% by mass to 40% by mass, based on the total mass of the resist layer. preferable.
  • the content of the photoacid generator is preferably higher, more preferably from 10% by mass to 40% by mass, and more preferably from 10% by mass to 40% by mass. Most preferred is 3535% by weight.
  • the resist layer preferably contains a basic compound in order to reduce a change in performance over time from exposure to heating.
  • R 200 , R 201 and R 202 may be the same or different and include a hydrogen atom, an alkyl group (preferably having 1 to 20 carbon atoms), a cycloalkyl group (preferably carbon atom). Represents an aryl group (preferably having 6 to 20 carbon atoms), wherein R 201 and R 202 may be bonded to each other to form a ring.
  • the alkyl group having a substituent is preferably an aminoalkyl group having 1 to 20 carbon atoms, a hydroxyalkyl group having 1 to 20 carbon atoms, or a cyanoalkyl group having 1 to 20 carbon atoms.
  • R 203 , R 204 , R 205 and R 206 may be the same or different and represent an alkyl group having 1 to 20 carbon atoms.
  • alkyl groups in the formulas (A) and (E) are more preferably unsubstituted.
  • Preferred compounds include guanidine, aminopyrrolidine, pyrazole, pyrazoline, piperazine, aminomorpholine, aminoalkylmorpholine, piperidine, and the like.
  • More preferred compounds are imidazole structure, diazabicyclo structure, onium hydroxide structure, onium carboxylate. Examples thereof include a compound having a structure, a trialkylamine structure, an aniline structure or a pyridine structure, an alkylamine derivative having a hydroxy group and / or an ether bond, and an aniline derivative having a hydroxy group and / or an ether bond.
  • ⁇ Preferable basic compounds further include amine compounds having a phenoxy group and ammonium salt compounds having a phenoxy group.
  • amine compound a primary, secondary or tertiary amine compound can be used, and an amine compound in which at least one alkyl group is bonded to a nitrogen atom is preferable.
  • the amine compound is more preferably a tertiary amine compound.
  • the amine compound may be, in addition to the alkyl group, a cycloalkyl group (preferably having 3 to 20 carbon atoms) or an aryl group ( Preferably, carbon atoms having 6 to 12) may be bonded to the nitrogen atom.
  • the amine compound has an oxygen atom in the alkyl chain and an oxyalkylene group is formed.
  • the number of oxyalkylene groups is one or more, preferably 3 to 9, and more preferably 4 to 6 in the molecule.
  • an oxyethylene group (—CH 2 CH 2 O—) or an oxypropylene group (—CH (CH 3 ) CH 2 O— or —CH 2 CH 2 CH 2 O—) is preferable.
  • Ethylene groups are more preferred.
  • ammonium salt compound a primary, secondary, tertiary or quaternary ammonium salt compound can be used, and an ammonium salt compound in which at least one alkyl group is bonded to a nitrogen atom is preferable.
  • the ammonium salt compound may be a cycloalkyl group (preferably having 3 to 20 carbon atoms) or an aryl group as long as at least one alkyl group (preferably having 1 to 20 carbon atoms) is bonded to a nitrogen atom. (Preferably having 6 to 12 carbon atoms) may be bonded to the nitrogen atom.
  • the ammonium salt compound preferably has an oxygen atom in the alkyl chain and an oxyalkylene group is formed.
  • the number of oxyalkylene groups is one or more, preferably 3 to 9, and more preferably 4 to 6 in the molecule.
  • an oxyethylene group (—CH 2 CH 2 O—) or an oxypropylene group (—CH (CH 3 ) CH 2 O— or —CH 2 CH 2 CH 2 O—) is preferable. Groups are more preferred.
  • Examples of the anion of the ammonium salt compound include a halogen atom, a sulfonate, a borate and a phosphate, and among them, a halogen atom or a sulfonate is preferable.
  • a halogen atom chloride, bromide and iodide are preferred.
  • a sulfonate an organic sulfonate having 1 to 20 carbon atoms is preferable.
  • the amine compound having a phenoxy group is obtained by reacting a primary or secondary amine having a phenoxy group with a haloalkyl ether by heating, and then adding an aqueous solution of a strong base such as sodium hydroxide, potassium hydroxide, or tetraalkylammonium. , Ethyl acetate, chloroform and the like.
  • the resist layer has a proton acceptor functional group as a basic compound, and is decomposed by irradiation with actinic rays or radiation to reduce or eliminate the proton acceptor property, or change from the proton acceptor property to acidic.
  • a proton acceptor functional group as a basic compound, and is decomposed by irradiation with actinic rays or radiation to reduce or eliminate the proton acceptor property, or change from the proton acceptor property to acidic.
  • PA compound
  • the proton acceptor functional group is a group having an electron capable of interacting electrostatically with a proton or a functional group having an electron, for example, a functional group having a macrocyclic structure such as a cyclic polyether, or a ⁇ conjugate.
  • the nitrogen atom having a lone pair that does not contribute to ⁇ conjugation is, for example, a nitrogen atom having a partial structure represented by the following formula.
  • Preferable partial structures of the proton acceptor functional group include, for example, crown ether, azacrown ether, primary to tertiary amine, pyridine, imidazole, and pyrazine structures.
  • the compound (PA) is decomposed by light irradiation to generate a compound in which the proton acceptor property is reduced or eliminated, or the proton acceptor property is changed from acidic to acidic.
  • the decrease in proton acceptor property, disappearance, or change from proton acceptor property to acidic means a change in proton acceptor property due to addition of a proton to the proton acceptor functional group, and specifically, Specifically, it means that when a proton adduct is generated from a compound having a proton acceptor functional group (PA) and a proton, the equilibrium constant in the chemical equilibrium thereof is reduced.
  • Specific examples of compound (PA) include, for example, the following compounds. Further, specific examples of the compound (PA) include those described in paragraphs 0421 to 0428 of JP-A-2014-41328 and paragraphs 0108 to 0116 of JP-A-2014-134686. , The contents of which are incorporated herein.
  • the content of the basic compound is preferably from 0.001% by mass to 10% by mass, more preferably from 0.01% by mass to 5% by mass, based on the total mass of the resist layer.
  • the resist layer may further contain a hydrophobic resin different from the resin (A).
  • the hydrophobic resin is preferably designed so as to be unevenly distributed on the surface of the resist film.
  • a surfactant unlike a surfactant, it is not necessary to have a hydrophilic group in the molecule, and a polar / non-polar substance is uniformly mixed. It does not have to contribute to the task.
  • Advantages of adding the hydrophobic resin include control of static / dynamic contact angle of the resist film surface with water and suppression of outgassing.
  • the hydrophobic resin has at least one of “fluorine atom”, “silicon atom”, and “CH 3 partial structure contained in the side chain portion of the resin” from the viewpoint of uneven distribution on the film surface layer. And more preferably two or more. Further, the hydrophobic resin preferably contains a hydrocarbon group having 5 or more carbon atoms. These groups may be present in the main chain of the resin or may be substituted on the side chain.
  • the hydrophobic resin contains a fluorine atom or a silicon atom, or both
  • the fluorine atom and the silicon atom in the hydrophobic resin may be contained in the main chain of the resin or contained in the side chain. May be.
  • the hydrophobic resin contains a fluorine atom, as a partial structure having a fluorine atom, it may be a resin having an alkyl group having a fluorine atom, a cycloalkyl group having a fluorine atom, or an aryl group having a fluorine atom. preferable.
  • the alkyl group having a fluorine atom (preferably having 1 to 10 carbon atoms, more preferably having 1 to 4 carbon atoms) is a linear or branched alkyl group in which at least one hydrogen atom is substituted with a fluorine atom, May have a substituent other than the above.
  • the cycloalkyl group having a fluorine atom is a monocyclic or polycyclic cycloalkyl group in which at least one hydrogen atom is substituted with a fluorine atom, and may further have a substituent other than a fluorine atom.
  • aryl group having a fluorine atom examples include those in which at least one hydrogen atom of an aryl group such as a phenyl group and a naphthyl group is substituted with a fluorine atom, and may further have a substituent other than a fluorine atom. .
  • Examples of the structural unit having a fluorine atom or a silicon atom include those exemplified in paragraph 0519 of US Patent Application Publication No. 2012/0251948.
  • the hydrophobic resin preferably includes a CH 3 partial structure in a side chain portion.
  • CH 3 partial structure contained in the side chain portion of the hydrophobic resin is intended to encompass CH 3 partial structure an ethyl group, and a propyl group having.
  • a methyl group directly bonded to the main chain of the hydrophobic resin (for example, an ⁇ -methyl group of a structural unit having a methacrylic acid structure) contributes to uneven distribution of the surface of the hydrophobic resin due to the influence of the main chain. Because of its small size, it is not included in the CH 3 partial structure in the present invention.
  • hydrophobic resin those described in JP-A-2011-248019, JP-A-2010-175859, and JP-A-2012-032544 can also be preferably used.
  • the hydrophobic resin may contain one kind alone, or may contain two or more kinds.
  • the content of the hydrophobic resin is preferably 0.01% by mass to 20% by mass, more preferably 0.01% by mass to 10% by mass, and more preferably 0.01% by mass to 10% by mass based on the total mass of the resist layer. It is more preferably from 05% by mass to 8% by mass, particularly preferably from 0.5% by mass to 5% by mass.
  • the resist layer may further include a surfactant.
  • a surfactant By containing a surfactant, a wavelength of 250 nm or less, particularly when using an exposure light source of 220 nm or less, with good sensitivity and resolution, it is possible to form a pattern with less adhesion and less development defects. Become.
  • the surfactant it is particularly preferable to use a fluorine-based surfactant, a silicon-based surfactant, or both.
  • fluorine-based and / or silicon-based surfactant examples include surfactants described in paragraph 0276 of US Patent Application Publication No. 2008/0248425.
  • F-top EF301, EF303 manufactured by Shin-Akita Chemical Co., Ltd.
  • Florado FC430, 431, 4430 manufactured by Sumitomo 3M Limited
  • R08 manufactured by DIC Corporation
  • Surflon S-382, SC101, 102, 103, 104, 105, 106 manufactured by Asahi Glass Co., Ltd.
  • Troysol S-366 manufactured by Troy Chemical Corporation
  • Aron GF-300 , GF-150 manufactured by Toagosei Co., Ltd.
  • Surflon S-393 manufactured by Seimi Chemical Co., Ltd.
  • PF6 6, PF656, PF6320, PF6520 OMNOVA Inc.
  • FTX-204G examples include surfactants described in paragraph 0276 of US Patent Application Publication No. 2008/02484
  • the surfactant may be a fluoroaliphatic compound produced by a telomerization method (also called a telomer method) or an oligomerization method (also called an oligomer method). And may be used for synthesis. Specifically, a polymer having a fluoroaliphatic group derived from the fluoroaliphatic compound may be used as the surfactant. This fluoroaliphatic compound can be synthesized, for example, by the method described in JP-A-2002-90991.
  • surfactants other than fluorine-based and / or silicon-based surfactants described in paragraph 0280 of US Patent Application Publication No. 2008/0248425 may be used.
  • One of these surfactants may be used alone, or two or more thereof may be used in combination.
  • the content of the surfactant is preferably from 0.0001% by mass to 2% by mass, more preferably from 0.0005% by mass to 1% by mass, based on the total mass of the resist layer.
  • the resist layer may further contain other additives other than those described above.
  • additives can be used as other additives.
  • a dissolution inhibiting compound for example, a dye, a plasticizer, a photosensitizer, a light absorber, and / or a compound that promotes solubility in a developer (for example, a phenol compound having a molecular weight of 1,000 or less, Alicyclic or aliphatic compounds).
  • the resist layer may further contain a dissolution inhibiting compound.
  • the "dissolution inhibiting compound” is a compound having a molecular weight of 3,000 or less, which is decomposed by the action of an acid to decrease the solubility in an organic developer.
  • the resist layer can be suitably formed by preparing a photosensitive resin composition containing the above components.
  • the photosensitive resin composition the above-mentioned components are dissolved in a predetermined organic solvent, preferably the above-mentioned mixed solvent, filtered, and then applied, for example, onto the above-mentioned inorganic base layer.
  • the pore size (pore diameter) of the filter used for filter filtration is preferably 0.1 ⁇ m or less, more preferably 0.05 ⁇ m or less, and still more preferably 0.03 ⁇ m or less.
  • the filter is preferably made of polytetrafluoroethylene, polyethylene, or nylon.
  • cyclic filtration may be performed, or filtration may be performed by connecting a plurality of types of filters in series or in parallel.
  • the composition may be filtered a plurality of times. Further, the composition may be subjected to a degassing treatment before and after the filtration.
  • the photosensitive resin composition preferably contains a solvent (also referred to as a “resist solvent”).
  • the solvent may contain isomers (compounds having the same number of atoms but different structures). Further, only one isomer may be contained, or a plurality of isomers may be contained.
  • the solvent is a group consisting of (M1) propylene glycol monoalkyl ether carboxylate and (M2) propylene glycol monoalkyl ether, lactate ester, acetate ester, alkoxypropionate ester, linear ketone, cyclic ketone, lactone, and alkylene carbonate. It is preferable to include at least one of at least one selected from the group consisting of: This solvent may further contain components other than the components (M1) and (M2).
  • component (M1) at least one selected from the group consisting of propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether propionate, and propylene glycol monoethyl ether acetate is preferable, and propylene glycol monomethyl ether acetate is particularly preferable.
  • the propylene glycol monoalkyl ether propylene glycol monomethyl ether or propylene glycol monoethyl ether is preferable.
  • the lactic acid ester ethyl lactate, butyl lactate, or propyl lactate is preferable.
  • acetic ester methyl acetate, ethyl acetate, butyl acetate, isobutyl acetate, propyl acetate, isoamyl acetate, methyl formate, ethyl formate, butyl formate, propyl formate, or 3-methoxybutyl acetate are preferred. Also, butyl butyrate is preferred.
  • alkoxypropionate methyl 3-methoxypropionate (MMP) or ethyl 3-ethoxypropionate (EEP) is preferable.
  • chain ketones include 1-octanone, 2-octanone, 1-nonanone, 2-nonanone, acetone, 4-heptanone, 1-hexanone, 2-hexanone, diisobutylketone, phenylacetone, methylethylketone, methylisobutylketone, acetylacetone, Acetonylacetone, ionone, diacetonyl alcohol, acetylcarbinol, acetophenone, methylnaphthylketone, or methylamylketone is preferred.
  • cyclic ketone methylcyclohexanone, isophorone, or cyclohexanone is preferable.
  • lactone ⁇ -butyrolactone is preferred.
  • alkylene carbonate propylene carbonate is preferred.
  • the component (M2) is more preferably propylene glycol monomethyl ether, ethyl lactate, ethyl 3-ethoxypropionate, methyl amyl ketone, cyclohexanone, butyl acetate, pentyl acetate, ⁇ -butyrolactone or propylene carbonate.
  • an ester solvent having 7 or more carbon atoms (preferably 7 to 14, more preferably 7 to 12, and still more preferably 7 to 10), and having 2 or less hetero atoms.
  • ester solvent having 7 or more carbon atoms and 2 or less heteroatoms include amyl acetate, 2-methylbutyl acetate, 1-methylbutyl acetate, hexyl acetate, pentyl propionate, hexyl propionate, butyl propionate, Examples thereof include isobutyl isobutyrate, heptyl propionate, and butyl butanoate. It is particularly preferable to use isoamyl acetate.
  • component (M2) those having a flash point (hereinafter also referred to as fp) of 37 ° C or more are preferably used.
  • a component (M2) propylene glycol monomethyl ether (fp: 47 ° C.), ethyl lactate (fp: 53 ° C.), ethyl 3-ethoxypropionate (fp: 49 ° C.), methyl amyl ketone (fp: 42 ° C.) ° C), cyclohexanone (fp: 44 ° C), pentyl acetate (fp: 45 ° C), methyl 2-hydroxyisobutyrate (fp: 45 ° C), ⁇ -butyrolactone (fp: 101 ° C) or propylene carbonate (fp: 132 ° C) Is preferred.
  • propylene glycol monoethyl ether, ethyl lactate, pentyl acetate, or cyclohexanone is more preferred, and propylene glycol monoethyl ether or ethyl lactate is particularly preferred.
  • flash point means a value described in a reagent catalog of Tokyo Chemical Industry Co., Ltd. or Sigma-Aldrich.
  • the solvent preferably contains the component (M1). More preferably, the solvent consists essentially of the component (M1) or is a mixed solvent of the component (M1) and other components. In the latter case, the solvent more preferably contains both the component (M1) and the component (M2).
  • the mass ratio between component (M1) and component (M2) is preferably in the range of 100: 0 to 15:85, more preferably in the range of 100: 0 to 40:60, and 100: More preferably, it is in the range of 0 to 60:40. That is, it is preferable that the solvent be composed of only the component (M1) or contain both the component (M1) and the component (M2), and their mass ratios are as follows. That is, in the latter case, the mass ratio of the component (M1) to the component (M2) is preferably 15/85 or more, more preferably 40/60 or more, and further preferably 60/40 or more. preferable. By adopting such a configuration, it is possible to further reduce the number of development defects.
  • the mass ratio of the component (M1) to the component (M2) is, for example, 99/1 or less.
  • the solvent may further contain components other than the components (M1) and (M2).
  • the content of the components other than the components (M1) and (M2) is preferably in the range of 5% by mass to 30% by mass based on the total amount of the solvent.
  • the content of the solvent in the photosensitive resin composition is preferably such that the solid content concentration of all components is 0.5% by mass to 30% by mass, and 1% by mass to 20% by mass. % Is more preferable.
  • the solid content concentration of the photosensitive resin composition can be appropriately adjusted for the purpose of adjusting the thickness of a resist film to be formed.
  • the thickness of the resist film made of the photosensitive resin composition according to the present disclosure is not particularly limited, but is preferably 200 nm or less, more preferably 90 nm or less, and more preferably 10 nm or more and 85 nm or less, from the viewpoint of improving resolution. Is more preferable, and it is particularly preferable that it is 30 nm or more and 70 nm or less. Such a film thickness can be easily obtained by setting the solid content concentration in the composition to an appropriate range, giving an appropriate viscosity, and improving coatability or film forming property.
  • the laminate may have other layers other than those described above. As the other layers, known layers can be included.
  • the laminate may have a top coat layer on the resist layer.
  • the top coat layer is not particularly limited, and a conventionally known top coat layer can be formed by a conventionally known method.
  • a top coat is formed based on the description in paragraphs 0072 to 0082 of JP-A-2014-059543. it can.
  • the thickness of the top coat layer is preferably from 10 nm to 200 nm, more preferably from 20 nm to 100 nm, and particularly preferably from 40 nm to 80 nm.
  • the pattern forming method according to the present disclosure includes a step of exposing the resist layer (also referred to as an “exposure step”).
  • the exposure step can be performed, for example, by the following method.
  • the resist layer is irradiated with light through a predetermined mask. In electron beam irradiation, drawing (direct drawing) without using a mask is generally performed.
  • the light used for the exposure is not particularly limited, and examples thereof include a KrF excimer laser, an ArF excimer laser, extreme ultraviolet (EUV, Extreme Ultra Violet), and an electron beam (EB, Electron Beam). preferable.
  • the exposure may be immersion exposure. Above all, from the viewpoints of etching resistance and resolution, it is preferable to perform the exposure in the exposure step using ultraviolet light having a wavelength of 5 nm to 20 nm.
  • the exposure amount is preferably from 5mJ / cm 2 ⁇ 200mJ / cm 2, more preferably 10mJ / cm 2 ⁇ 100mJ / cm 2.
  • the baking promotes the reaction in the exposed part, and the sensitivity and pattern shape are further improved.
  • the heating temperature is preferably from 80 ° C to 150 ° C, more preferably from 80 ° C to 140 ° C, even more preferably from 80 ° C to 130 ° C.
  • the heating time is preferably 30 seconds to 1,000 seconds, more preferably 60 seconds to 800 seconds, and still more preferably 60 seconds to 600 seconds. Heating can be performed by means provided in a known exposure developing machine, and may be performed using a hot plate or the like.
  • the pattern forming method includes a step of developing the above-described laminate with a developer containing an organic solvent to form a negative-type pattern (also referred to as a “developing step”).
  • the development in the development step is performed with a developer containing an organic solvent.
  • a developing method for example, a method in which a substrate is immersed in a bath filled with a developer containing an organic solvent for a certain period of time (dip method); (Paddle method), a method of spraying a developer containing an organic solvent on the substrate surface (spray method), while scanning a developing solution discharge nozzle at a constant speed on a substrate rotating at a constant speed.
  • a method of continuously discharging a developer containing an organic solvent (dynamic dispense method) or the like can be applied.
  • a step of stopping the development while replacing the solvent with another solvent may be performed.
  • the development time is not particularly limited as long as the resin in the exposed portion or the unexposed portion is sufficiently dissolved, and is preferably from 10 seconds to 300 seconds, and more preferably from 10 seconds to 120 seconds.
  • the temperature of the developer containing the organic solvent is preferably from 0 ° C to 50 ° C, more preferably from 15 ° C to 35 ° C.
  • the vapor pressure of the organic solvent (in the case of a mixed solvent, the overall vapor pressure) at 20 ° C. is preferably 5 kPa or less, more preferably 3 kPa or less, particularly preferably 2 kPa or less.
  • the organic solvent Various organic solvents are widely used as the organic solvent.
  • solvents such as ester solvents, ketone solvents, alcohol solvents, amide solvents, ether solvents, and hydrocarbon solvents can be used.
  • the developer is a developer containing at least one organic solvent selected from the group consisting of ketone solvents, ester solvents, alcohol solvents, amide solvents, ether solvents, and hydrocarbon solvents. It is preferred that
  • ketone solvents include 1-octanone, 2-octanone, 1-nonanone, 2-nonanone, acetone, 2-heptanone (methyl amyl ketone), 4-heptanone, 1-hexanone, 2-hexanone, diisobutyl ketone, Examples include cyclohexanone, methylcyclohexanone, phenylacetone, methylethylketone, methylisobutylketone, acetylacetone, acetonylacetone, ionone, diacetonyl alcohol, acetylcarbinol, acetophenone, methylnaphthylketone, isophorone, and propylene carbonate.
  • ester solvents include, for example, methyl acetate, butyl acetate, ethyl acetate, isopropyl acetate, pentyl acetate, isopentyl acetate, amyl acetate, propylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl Ether acetate, ethyl-3-ethoxypropionate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, methyl formate, ethyl formate, butyl formate, propyl formate, ethyl lactate, butyl lactate, propyl lactate, butanoic acid
  • ester solvents include, for example, methyl acetate, butyl acetate, ethyl acetate, isopropyl acetate, pent
  • a plurality of the above-mentioned solvents may be mixed, or a solvent other than the above or water may be mixed.
  • the water content of the entire developer is preferably less than 50% by mass, more preferably less than 20% by mass, further preferably less than 10% by mass, and particularly preferably substantially no water.
  • the content of the organic solvent in the developer is preferably from 50% by weight to 100% by weight, more preferably from 80% by weight to 100% by weight, and more preferably from 90% by weight to 100% by weight, based on the total amount of the developer. Is more preferably, and particularly preferably from 95% by mass to 100% by mass.
  • the organic solvent contained in the developer has a carbon atom number of 6 or more (6 to 6) from the viewpoint that the swelling of the resist layer can be suppressed when extreme ultraviolet (EUV) or electron beam (EB) is used in the exposure step. 14 is more preferable, 6 to 12 is more preferable, and 6 to 10 is more preferable.) And it is preferable to use an ester solvent having 2 or less hetero atoms.
  • the hetero atom in the ester solvent is an atom other than a carbon atom and a hydrogen atom, and examples thereof include an oxygen atom, a nitrogen atom, and a sulfur atom.
  • the number of hetero atoms is preferably 2 or less.
  • ester solvent having 6 or more carbon atoms and 2 or less hetero atoms include butyl acetate, amyl acetate, isoamyl acetate, 2-methylbutyl acetate, 1-methylbutyl acetate, hexyl acetate, pentyl propionate, and propion.
  • examples thereof include hexyl acid, butyl propionate, isobutyl isobutyrate, heptyl propionate, and butyl butanoate. It is particularly preferable to use isoamyl acetate.
  • the developer preferably also contains an antioxidant. Thereby, generation of the oxidizing agent over time can be suppressed, and the content of the oxidizing agent can be further reduced.
  • an antioxidant known ones can be used, but when used for semiconductor applications, amine-based antioxidants and phenol-based antioxidants are preferably used.
  • the content of the antioxidant is not particularly limited, it is preferably 0.0001% by mass to 1% by mass, more preferably 0.0001% by mass to 0.1% by mass, and more preferably 0. 0.0001% by mass to 0.01% by mass is more preferred.
  • the content is 0.0001% by mass or more, a more excellent antioxidant effect is obtained, and when the content is 1% by mass or less, development residues tend to be suppressed.
  • the developer may contain a basic compound, and specific examples include the same basic compounds as those contained in the resist layer.
  • the developer may contain a surfactant.
  • a surfactant When the developer contains a surfactant, the wettability to the actinic ray-sensitive or radiation-sensitive film is improved, and the development proceeds more effectively.
  • the surfactant the same surfactant as the surfactant that the resist layer can contain can be used.
  • the content of the surfactant is preferably from 0.001 to 5% by mass, more preferably from 0.005 to 2% by mass, based on the total mass of the developer. %, More preferably 0.01 to 0.5% by mass.
  • the pattern forming method according to the present disclosure may include, after the developing step, a step of treating the surface of the laminate with a rinsing liquid 2 (also referred to as a “rinsing step”).
  • a rinsing step the developed wafer is cleaned using a rinsing liquid.
  • the method of the cleaning treatment is not particularly limited. For example, a method of continuously discharging the rinsing liquid onto the substrate rotating at a constant speed (rotary discharge method), or immersing the substrate in a bath filled with the rinsing liquid for a predetermined time A method (dip method), a method of spraying a rinsing liquid on the substrate surface (spray method), and the like can be applied.
  • a cleaning treatment is performed by a rotary discharge method, and after the cleaning, the substrate is 2,000 to 4,000 rpm. It is preferable that the rinsing liquid is removed from the substrate by rotating at a rotation speed of.
  • the rinsing time is not particularly limited, but is preferably from 10 seconds to 300 seconds, more preferably from 10 seconds to 180 seconds, and particularly preferably from 20 seconds to 120 seconds.
  • the temperature of the rinsing liquid is preferably from 0 ° C to 50 ° C, more preferably from 15 ° C to 35 ° C.
  • the pattern forming method may include, after the developing step or the rinsing step, a step of performing a process of removing a developing solution or a rinsing solution attached to the pattern with a supercritical fluid. Further, after the development step, the rinsing step, or the step of performing the treatment with the supercritical fluid, a heat treatment can be performed to remove the solvent remaining in the pattern.
  • the heating temperature is not particularly limited as long as a good resist pattern is obtained, and is preferably 40 ° C. to 160 ° C., more preferably 50 ° C. to 150 ° C., and 50 ° C. to 110 ° C. Is particularly preferred.
  • the heating time is not particularly limited as long as a good resist pattern is obtained, but is preferably 15 seconds to 300 seconds, more preferably 15 seconds to 180 seconds.
  • rinsing liquid used in the rinsing treatment performed after the developing step pure water is used, and a suitable amount of a surfactant may be added.
  • a rinsing liquid containing an organic solvent is preferably used.As the organic solvent, a hydrocarbon solvent, a ketone solvent, an ester solvent, an alcohol solvent, an amide solvent and an ether solvent are used. At least one organic solvent selected is preferred.
  • the organic solvent contained in the rinsing liquid is preferably at least one selected from the group consisting of ester solvents, hydrocarbon solvents, ether solvents and ketone solvents, and more preferably ester solvents.
  • the vapor pressure of the rinsing liquid at 20 ° C. is preferably from 0.05 kPa to 5 kPa, more preferably from 0.1 kPa to 5 kPa, most preferably from 0.12 kPa to 3 kPa.
  • the overall vapor pressure is preferably in the above range.
  • the rinsing liquid may contain only one organic solvent or two or more organic solvents.
  • a mixed solvent of butyl acetate and isoamyl acetate is exemplified.
  • the rinsing liquid may contain a surfactant.
  • the rinsing liquid contains a surfactant, the wettability to the resist film is improved, the rinsing property is improved, and the generation of foreign matter tends to be suppressed.
  • the same surfactant as the surfactant which may be contained in the resist layer can be used.
  • the content of the surfactant is preferably 0.001% by mass to 5% by mass, and more preferably 0.005% by mass to 2% by mass, based on the total mass of the rinsing solution. More preferably, the content is 0.01% to 0.5% by mass.
  • the rinsing liquid may contain an antioxidant.
  • the antioxidant that may be contained in the rinsing liquid is the same as the above-described antioxidant that may be contained in the developer.
  • the content of the antioxidant is not particularly limited, but is preferably 0.0001% by mass to 1% by mass, more preferably 0.0001% by mass, based on the total mass of the rinsing solution. -0.1% by mass is more preferable, and 0.0001% by mass -0.01% by mass is further preferable.
  • a rinsing step may be included, but from the viewpoint of throughput (productivity), the rinsing step may not be included.
  • a treatment method without a rinsing step for example, the description in paragraphs 0014 to 008 of JP-A-2015-216403 can be cited, and the contents thereof are incorporated in the specification of the present application.
  • MIBC methyl isobutyl carbinol
  • developer particularly butyl acetate
  • ⁇ Impurities of various materials> Various materials used in the pattern forming method according to the present disclosure (for example, an inorganic base layer forming layer coating solution, a resist layer forming photosensitive resin composition, a developing solution, a rinsing solution, an antireflection film forming composition, or a top)
  • the coat-forming composition preferably does not contain impurities such as metal components, isomers, and residual monomers.
  • the content of these impurities contained in the above-mentioned various materials is preferably 1 ppm or less, more preferably 100 ppt or less, and still more preferably 10 ppt or less, and it is substantially not contained (below the detection limit of the measuring device). Is particularly preferred.
  • Examples of a method for removing impurities such as metals from the above various materials include filtration using a filter.
  • the pore size of the filter is preferably 10 nm or less, more preferably 5 nm or less, and even more preferably 3 nm or less.
  • a filter made of polytetrafluoroethylene, polyethylene, or nylon is preferable.
  • the filter may be one that has been washed in advance with an organic solvent.
  • a plurality of types of filters may be connected in series or in parallel. When a plurality of types of filters are used, filters having at least one of different pore sizes and different materials may be used in combination.
  • various materials may be filtered a plurality of times, and the step of filtering a plurality of times may be a circulation filtration step.
  • a filter in which eluted substances are reduced as disclosed in JP-A-2016-201426 is preferable.
  • removal of impurities by an adsorbent may be performed, or filter filtration and an adsorbent may be used in combination.
  • a known adsorbent can be used.
  • an inorganic adsorbent such as silica gel or zeolite, or an organic adsorbent such as activated carbon can be used.
  • the metal adsorbent include those disclosed in JP-A-2016-206500.
  • a material having a low metal content is selected as a material constituting the various materials, a filter filtration is performed on the materials constituting the various materials, Alternatively, there is a method in which distillation is performed under conditions in which contamination is suppressed as much as possible by lining the inside of the apparatus with Teflon (registered trademark). Preferred conditions for filter filtration performed on raw materials constituting various materials are the same as those described above.
  • a method for improving surface roughness of a pattern may be applied to a pattern formed by the pattern forming method according to the present disclosure.
  • a method for improving the surface roughness of the pattern for example, there is a method of treating a resist pattern by a plasma of a gas containing hydrogen disclosed in US Patent Application Publication No. 2015/0104957.
  • a known method as described in 8328 83280N-1 “EUV Resist Curing Technology for LWR Reduction and Etch Selection Enhancement” may be applied.
  • the resist pattern formed by the above method can be used as a core material (Core) in a spacer process disclosed in, for example, JP-A-3-270227 and US Patent Application Publication No. 2013/0209941.
  • the shape of the pattern obtained by the pattern forming method according to the present disclosure is not particularly limited and may be any desired shape.
  • the pattern forming method according to the present disclosure is based on the adhesion between the resist layer and the inorganic base layer. Therefore, a high pattern can be easily formed.
  • the value of pattern height / pattern width in at least a part of the pattern obtained by the pattern forming method according to the present disclosure is 1.2 to 2.0 or more from the viewpoint of the balance between etching resistance and resolution. It is more preferably 1.4 to 1.9, particularly preferably 1.5 to 1.8.
  • ⁇ Application> Using a pattern obtained by the pattern forming method according to the present disclosure as a mask, an etching process, ion implantation, and the like are appropriately performed, so that a semiconductor fine circuit, a mold structure for imprint, a photomask, and the like can be suitably manufactured.
  • the pattern obtained by the pattern forming method according to the present disclosure can also be used for guide pattern formation in DSA (Directed Self-Assembly) (for example, see ACS Nano Vol. 4 No. 8 Page 4815-4823). Further, the pattern obtained by the pattern forming method according to the present disclosure can be used, for example, as a core in a spacer process disclosed in JP-A-3-270227 and JP-A-2013-164509.
  • the photomask manufactured by the pattern forming method according to the present disclosure may be a light transmission type mask used in ArF excimer laser or the like, or a light reflection type mask used in reflection lithography using EUV light as a light source. Is also good.
  • the method for manufacturing an electronic device according to the present disclosure includes the pattern forming method according to the present disclosure.
  • An electronic device manufactured by the method for manufacturing an electronic device according to the present disclosure is suitable for electric and electronic devices (for example, home appliances, OA (Office Automation) related devices, media related devices, optical devices, communication devices, and the like). Will be installed.
  • a resist laminate for organic solvent development has a substrate, an inorganic base layer on the substrate, and a resist layer provided on the inorganic base layer in contact with the inorganic base layer, and has a wavelength of 13 UV light of 0.5 nm is irradiated from the resist layer side at an integrated light amount of 40 mJ / cm 2 , and after heating at 110 ° C. for 60 seconds, the surface energy ⁇ A of the resist layer is 60 mJ / m 2 or more, and the wavelength is 13.5 nm. Is irradiated from the resist layer side at an integrated light amount of 40 mJ / cm 2 , and after heating at 110 ° C.
  • the surface energy ⁇ B of the underlayer is 50 mJ / m 2 or more, and the following formula (A) ) Is 5.0 mJ / m 2 or less.
  • ⁇ AB ⁇ A- ⁇ B Formula (A)
  • the resist laminate for organic solvent development according to the present disclosure is a resist laminate that can be developed with a developer containing an organic solvent.
  • a developer containing an organic solvent those described above are preferably exemplified.
  • the resist laminate for organic solvent development according to the present disclosure is the same as the laminate in the pattern forming method according to the present disclosure described above, and the preferred embodiments are also the same.
  • Resins P-2 to P-44 were synthesized in the same manner as in the synthesis of resin P-1, except that the monomers used in the synthesis of resin P-1 were changed to the monomers and contents shown in Table 1 below. Synthesized.
  • Mw of the resins P-1 to P-44 was in the range of 8,000 to 15,000, and the degree of dispersion (Mw / Mn) was in the range of 1.3 to 1.7.
  • Coating solutions 1 to 5 for forming inorganic base layer (bases 1 to 5): All are coating solutions containing a silane compound, and inorganic base layers containing silicon atoms exhibiting surface energies shown in Table 4 by the method described below. Was formed in each of Examples and Comparative Examples.
  • a coating liquid for forming an inorganic underlayer shown in Table 3 was applied on a silicon wafer, and baked at 205 ° C. for 60 seconds to form an inorganic underlayer having a thickness shown in Table 3, and further thereon, The resist composition shown was applied and baked at 120 ° C. for 60 seconds to form a resist layer having a thickness shown in Table 3 to obtain a laminate.
  • ⁇ Method of measuring film thickness The thicknesses of the inorganic base layer and the resist layer in the obtained laminate were measured using a light interference type thickness gauge (Lambda Ace VM-3100, manufactured by Dainippon Screen Mfg. Co., Ltd.). .
  • the film thickness is the average of the measured values at 25 points in the wafer plane.
  • the obtained laminate was irradiated with ultraviolet light having a wavelength of 13.5 nm from the resist layer side at an integrated light amount of 40 mJ / cm 2 and heated at 110 ° C. for 60 seconds.
  • the contact angle of pure water to the surface of the sample cut out from the heated laminate and the contact angle of diiodomethane to the surface were measured at 25 ° C.
  • These contact angles were measured using a solid-liquid interface analyzer “Drop Master 700” manufactured by Kyowa Interface Science Co., Ltd. As the contact angle, a value 6 seconds after the lowering was used. Based on these contact angles, the surface energies ⁇ A and ⁇ B were derived by the above-mentioned Owens-Wendt method.
  • PEB Micro Exposure Tool
  • a developing solution butyl acetate
  • the line width of the falling pattern is 15.5 nm or less 7: The line width of the falling pattern is more than 15.5 nm and 16.5 nm or less 6: The line width of the falling pattern is more than 16.5 nm and 17.5 nm or less 5: The falling pattern line width is more than 17.5 nm and 18.5 nm or less 4: The falling pattern line width is more than 18.5 nm and 19.5 nm or less 3: The falling pattern line width is 19.5 nm or less More than 5 nm and not more than 20.5 nm 2: The above-mentioned slant pattern line width is more than 20.5 nm and not more than 21.5 nm 1: The above-mentioned slant pattern line width is more than 21.5 nm
  • the obtained resist pattern was subjected to a plasma etching apparatus (manufactured by Hitachi, Ltd., apparatus name: Hitachi ECR plasma etching apparatus U-621, plasma conditions: Ar 500 ml / min, N 2 500 mL / min, O 2 10 mL / min).
  • the resist was etched while changing the time, and the remaining film of the resist pattern was observed with a scanning electron microscope (S4800, manufactured by Hitachi, Ltd.) to determine the shortest time required for the pattern to disappear.
  • S4800 scanning electron microscope
  • the etching time selectivity determined above was evaluated as follows. 5: The value of the etching time selectivity is 3.5 or more 4: The value of the etching time selectivity is 3.0 or more and less than 3.5 3: The value of the etching time selectivity is 2.5 or more It is less than 3.0 2: The value of the etching time selectivity is 2.0 or more and less than 2.5 1: The value of the etching time selectivity is 1.5 or more and less than 2.0 0: The etching Time selection ratio value is less than 1.5
  • the pattern forming methods and the organic solvent-developing resist laminates of Examples 1 to 35 were the same as the pattern forming methods and the organic solvent-developing resist laminates of Comparative Examples 1 to 9. As compared with the above, a pattern excellent in etching resistance is obtained, and the resolution is excellent.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials For Photolithography (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

基板と無機下地層とレジスト層とを有する積層体を準備する工程、上記レジスト層を露光する工程、及び、上記積層体を有機溶剤を含む現像液により現像してネガ型のパターン形成を行う工程を含み、上記積層体において、波長13.5nmの紫外線を上記レジスト層側から積算光量40mJ/cmで照射し、110℃で60秒間加熱した後における、上記レジスト層の表面エネルギーγが、60mJ/m以上であり、上記無機下地層の表面エネルギーγが、55mJ/m以上であり、式(A)で定義される表面エネルギーの差γABが、5.0mJ/m以下であるパターン形成方法、及び、有機溶剤現像用レジスト積層体。 γAB=γ-γ 式(A)

Description

パターン形成方法、及び、有機溶剤現像用レジスト積層体
 本開示は、パターン形成方法、及び、有機溶剤現像用レジスト積層体に関する。
 従来、IC(Integrated Circuit、集積回路)やLSI(Large Scale Integrated circuit、大規模集積回路)などの半導体デバイスの製造プロセスにおいては、レジスト組成物を用いたリソグラフィーによる微細加工が行われている。近年、集積回路の高集積化に伴い、サブミクロン領域やクオーターミクロン領域の超微細パターン形成が要求されるようになってきている。それに伴い、露光波長もg線からi線に、更にKrF等のエキシマレーザー光に、というように短波長化の傾向が見られ、更に現在では、エキシマレーザー光以外にも、電子線やX線、あるいはEUV光(Extreme Ultra Violet、極紫外線)を用いたリソグラフィーも開発が進んでいる。
 また、従来の組成物としては、特許文献1~3に記載されたものが知られている。
 特許文献1には、(A)成分として、1種以上の下記式(A-I)で示されるケイ素化合物を加水分解もしくは縮合、又はその両方をすることにより得られるケイ素含有化合物と、
  R1A a12A a23A a3Si(OR0A(4-a1-a2-a3)  (A-I)
(式中、R0Aは炭素数1~6の炭化水素基であり、R1A、R2A、R3Aは水素原子又は炭素数1~30の1価の有機基である。また、a1、a2、a3は0又は1であり、1≦a1+a2+a3≦3である。)
 (B)成分として、1種以上の下記式(B-I)で示される加水分解性チタン化合物を加水分解もしくは縮合、又はその両方をすることにより得られるチタン含有化合物とを含有するものであることを特徴とするチタン含有レジスト下層膜形成用組成物が記載されている。
  Ti(OR0B)4  (B-I)
(式中、R0Bは炭素数1~10の有機基である。)
 特許文献2には、(A)成分として、1種以上の下記式(A-1)で示されるケイ素化合物を加水分解もしくは縮合、又はその両方をすることにより得られるケイ素含有化合物を含むものであることを特徴とするレジスト下層膜形成用組成物が記載されている。
  R1A a12A a23A a3Si(OR0A(4-a1-a2-a3)  (A-1)
(式中、R0Aは炭素数1~6の炭化水素基であり、R1A、R2A、R3Aのうち、いずれか一つ以上は窒素原子、硫黄原子、リン原子又はヨウ素原子を有する有機基であり、他は水素原子又は炭素数1~30の1価の有機基である。また、a1、a2、a3は0又は1であり、1≦a1+a2+a3≦3である。)
 特許文献3には、下記式(A)で表される構成単位、及び下記式(C)で表される部分構造のいずれか1つ以上を含有することを特徴とするケイ素含有表面改質剤が記載されている。
Figure JPOXMLDOC01-appb-C000003

(式中、Rは酸不安定基で置換されたヒドロキシ基又はカルボン酸基を有する有機基である。R、Rはそれぞれ独立に、Rと同じか、水素原子又は炭素数1~30の1価の有機基である。)
  特許文献1:特開2014-134592号公報
  特許文献2:特開2014-157242号公報
  特許文献3:特開2013-167669号公報
 本発明の実施形態が解決しようとする課題は、エッチング耐性に優れるパターンが得られ、解像性に優れるパターン形成方法を提供することである。
 本発明の実施形態が解決しようとする他の課題は、エッチング耐性に優れるパターンが得られ、解像性に優れる有機溶剤現像用レジスト積層体を提供することである。
 上記課題を解決するための手段には、以下の態様が含まれる。
<1> 基板と、上記基板上に無機下地層と、上記無機下地層上に上記無機下地層に接して設けられたレジスト層とを有する積層体を準備する工程、上記レジスト層を露光する工程、及び、上記積層体を有機溶剤を含む現像液により現像してネガ型のパターン形成を行う工程を含み、上記積層体において、波長13.5nmの紫外線を上記レジスト層側から積算光量40mJ/cmで照射し、110℃で60秒間加熱した後における上記レジスト層の表面エネルギーγが、60mJ/m以上であり、上記積層体において、波長13.5nmの紫外線を上記レジスト層側から積算光量40mJ/cmで照射し、110℃で60秒間加熱した後における上記無機下地層の表面エネルギーγが、55mJ/m以上であり、下記式(A)で定義される表面エネルギーの差γABが、5.0mJ/m以下であるパターン形成方法。
  γAB=γ-γ   式(A)
<2> 上記表面エネルギーγが、62mJ/m以上である<1>に記載のパターン形成方法。
<3> 上記表面エネルギーγが、60mJ/m以上である<1>又は<2>に記載のパターン形成方法。
<4> 上記露光する工程における露光を、5nm~20nmの波長の紫外線により行う<1>~<3>のいずれか1つに記載のパターン形成方法。
<5> 上記無機下地層が、ケイ素原子を含む層である<1>~<4>のいずれか1つに記載のパターン形成方法。
<6> 上記露光する工程前における上記レジスト層が、2以上のフェノール性ヒドロキシ基を有する構成単位及び酸分解性基により保護された極性基を有する構成単位を有する樹脂、並びに、光酸発生剤を含む<1>~<5>のいずれか1つに記載のパターン形成方法。
<7> 上記2以上のフェノール性ヒドロキシ基を有する構成単位が、下記式(I-1)で表される構成単位である<5>に記載のパターン形成方法。
Figure JPOXMLDOC01-appb-C000004
 式(I-1)中、R11及びR12はそれぞれ独立に、水素原子又はアルキル基を表し、R13は、水素原子若しくはアルキル基を表すか、又は、単結合若しくはアルキレン基を表し、かつL又はArに結合して環を形成し、Lは、単結合又は2価の連結基を表し、Arは、芳香環を表し、nは、2以上の整数を表す。
<8> 得られたパターンの少なくとも一部におけるパターンの高さ/パターンの幅の値が、1.5~1.8である<1>~<7>のいずれか1つに記載のパターン形成方法。
<9> 基板と、
 上記基板上に無機下地層と、
 上記無機下地層上に上記無機下地層に接して設けられたレジスト層とを有し、
 波長13.5nmの紫外線を上記レジスト層側から積算光量40mJ/cmで照射し、110℃で60秒間加熱した後における上記レジスト層の表面エネルギーγが、60mJ/m以上であり、
 波長13.5nmの紫外線を上記レジスト層側から積算光量40mJ/cmで照射し、110℃で60秒間加熱した後における後における上記下地層の表面エネルギーγが、50mJ/m以上であり、
 下記式(A)で定義される表面エネルギーの差γABが、5.0mJ/m以下である
 有機溶剤現像用レジスト積層体。
  γAB=γ-γ   式(A)
<10> 上記表面エネルギーγが、62mJ/m以上である<9>に記載の有機溶剤現像用レジスト積層体。
<11> 上記表面エネルギーγが、60mJ/m以上である<9>又は<10>に記載の有機溶剤現像用レジスト積層体。
<12> 上記無機下地層が、ケイ素原子を含む層である<9>~<11>のいずれか1つに記載の有機溶剤現像用レジスト積層体。
<13> 上記レジスト層が、2以上のフェノール性ヒドロキシ基を有する構成単位及び酸分解性基により保護された極性基を有する構成単位を有する樹脂、並びに、光酸発生剤を含む<9>~<12>のいずれか1つに記載の有機溶剤現像用レジスト積層体。
<14> 上記2以上のフェノール性ヒドロキシ基を有する構成単位が、下記式(I-1)で表される構成単位である<13>に記載の有機溶剤現像用レジスト積層体。
Figure JPOXMLDOC01-appb-C000005
 式(I-1)中、R11及びR12はそれぞれ独立に、水素原子又はアルキル基を表し、R13は、水素原子若しくはアルキル基を表すか、又は、単結合若しくはアルキレン基を表し、かつL又はArに結合して環を形成し、Lは、単結合又は2価の連結基を表し、Arは、芳香環を表し、nは、2以上の整数を表す。
 本発明の実施形態によれば、エッチング耐性に優れるパターンが得られ、解像性に優れるパターン形成方法を提供することができる。
 本発明の他の実施形態によれば、エッチング耐性に優れるパターンが得られ、解像性に優れる有機溶剤現像用レジスト積層体を提供することができる。
 以下、本開示について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されない。
 本明細書中における基(原子団)の表記について、置換及び無置換を記していない表記は、置換基を有さないものと共に置換基を有するものをも包含する。例えば、「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含する。また、本明細書中における「有機基」とは、少なくとも1個の炭素原子を含む基をいう。
 本明細書中における「活性光線」又は「放射線」とは、例えば、水銀灯の輝線スペクトル、エキシマレーザーに代表される遠紫外線、極紫外線(EUV光:Extreme Ultraviolet)、X線、及び電子線(EB:Electron Beam)等を意味する。本明細書中における「光」とは、特に断らない限り、活性光線又は放射線を意味する。
 本明細書中における「露光」とは、特に断らない限り、水銀灯の輝線スペクトル、エキシマレーザーに代表される遠紫外線、極紫外線、X線、及びEUV光等による露光のみならず、電子線、及びイオンビーム等の粒子線による露光も含む。
 本明細書において、「~」とはその前後に記載される数値を下限値及び上限値として含む意味で使用される。
 本明細書において、(メタ)アクリレートはアクリレート及びメタクリレートを表し、(メタ)アクリルはアクリル及びメタクリルを表す。
 本明細書において、樹脂成分の重量平均分子量(Mw)、数平均分子量(Mn)、及び分散度(分子量分布ともいう)(Mw/Mn)は、GPC(Gel Permeation Chromatography)装置(東ソー(株)製HLC-8120GPC)によるGPC測定(溶媒:テトラヒドロフラン、流量(サンプル注入量):10μL、カラム:東ソー(株)製TSK gel Multipore HXL-M、カラム温度:40℃、流速:1.0mL/分、検出器:示差屈折率検出器(Refractive Index Detector))によるポリスチレン換算値として定義される。
 本明細書において組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する該当する複数の物質の合計量を意味する。
 本明細書において「工程」との語は、独立した工程だけでなく、他の工程と明確に区別できない場合であっても工程の所期の目的が達成されれば、本用語に含まれる。
 本明細書において「全固形分」とは、組成物の全組成から溶剤を除いた成分の総質量をいう。また、「固形分」とは、上述のように、溶剤を除いた成分であり、例えば、25℃において固体であっても、液体であってもよい。
 本明細書において、「質量%」と「重量%」とは同義であり、「質量部」と「重量部」とは同義である。
 また、本明細書において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
(パターン形成方法)
 本開示に係るパターン形成方法は、基板と、上記基板上に無機下地層と、上記無機下地層上に上記無機下地層に接して設けられたレジスト層とを有する積層体を準備する工程、上記レジスト層を露光する工程、及び、上記積層体を有機溶剤を含む現像液により現像してネガ型のパターン形成を行う工程を含み、上記積層体において、波長13.5nmの紫外線を上記レジスト層側から積算光量40mJ/cmで照射し、110℃で60秒間加熱した後における上記レジスト層の表面エネルギーγが、60mJ/m以上であり、上記積層体において、波長13.5nmの紫外線を上記レジスト層側から積算光量40mJ/cmで照射し、110℃で60秒間加熱した後における上記無機下地層の表面エネルギーγが、55mJ/m以上であり、下記式(A)で定義される表面エネルギーの差γABが、5.0mJ/m以下である。
  γAB=γ-γ   式(A)
 本発明者らは、鋭意検討した結果、上記構成とすることにより、エッチング耐性に優れるパターンが得られ、解像性に優れるパターン形成方法が得られることを見出した。
 上記効果が得られる詳細な機序は不明であるが、無機下地層の表面エネルギーと露光後のレジスト層の表面エネルギーとの差を5.0mJ/m以下とすることにより、互いの層の密着性が向上し、更にレジスト層の表面エネルギーを上記に示す高い値(親水性)とすることで現像時の有機溶剤現像液の浸透を抑制させることにより、解像性が優れるとともに、アスペクト比が高いパターンを形成でき、得られるパターンのエッチング耐性にも優れると推定している。
 以下、本開示に係るパターン形成方法の詳細について説明する。
<準備工程>
 本開示に係るパターン形成方法は、基板と、上記基板上に無機下地層と、上記無機下地層上に上記無機下地層に接して設けられたレジスト層とを有する積層体を準備する工程を含む。
 上記積層体は、上記準備工程において作製してもよいし、作製されたものを用意してもよい。
<<積層体>>
 本開示に用いられる積層体は、基板と、上記基板上に無機下地層と、上記無機下地層上に上記無機下地層に接して設けられたレジスト層とを有する。
 また、本開示に用いられる積層体は、波長13.5nmの紫外線を上記レジスト層側から積算光量40mJ/cmで照射し、110℃で60秒間加熱した後における上記レジスト層の表面エネルギーγが、60mJ/m以上であり、上記積層体において、波長13.5nmの紫外線を上記レジスト層側から積算光量40mJ/cmで照射し、110℃で60秒間加熱した後における上記無機下地層の表面エネルギーγが、55mJ/m以上であり、下記式(A)で定義される表面エネルギーの差γABが、5.0mJ/m以下である。
  γAB=γ-γ   式(A)
 上記積層体において、波長13.5nmの紫外線を上記レジスト層側から積算光量40mJ/cmで照射し、110℃で60秒間加熱した後における上記レジスト層の表面エネルギーγは、60mJ/m以上であり、エッチング耐性、及び、解像性の観点から、61mJ/m以上であることが好ましく、62mJ/m以上であることがより好ましく、62mJ/m以上80mJ/m以下であることが更に好ましく、62mJ/m以上70mJ/m以下であることが特に好ましい。
 また、上記積層体において、波長13.5nmの紫外線を上記レジスト層側から積算光量40mJ/cmで照射し、110℃で60秒間加熱した後における上記無機下地層の表面エネルギーγは、55mJ/m以上であり、エッチング耐性、及び、解像性の観点から、58mJ/m以上であることが好ましく、60mJ/m以上であることがより好ましく、61mJ/m以上80mJ/m以下であることが更に好ましく、61mJ/m以上70mJ/m以下であることが特に好ましい。
 更に、上記式(A)で定義される表面エネルギーの差γABは、5.0mJ/m以下であり、エッチング耐性、及び、解像性の観点から、4.0mJ/m以下であることが好ましく、3.0mJ/m以下であることがより好ましく、2.0mJ/m以下であることが更に好ましく、-2.0mJ/m以上2.0mJ/m以下であることが特に好ましい。
 本開示における上記表面エネルギーγ及びγの測定方法は、以下の方法により行うものとする。なお、本開示における表面エネルギーは、表面自由エネルギーと同義である。
 まず、積層体に対し、上記レジスト層側から、波長13.5nmの紫外線を積算光量40mJ/cmで照射する。照射した後、照射された積層体を110℃で60秒間加熱する。
 次に、上記加熱後の積層体から切り出したサンプルの表面に対する純水の接触角、及び、上記表面に対するジヨードメタンの接触角を25℃においてそれぞれ測定する。これらの接触角の測定は、例えば、協和界面科学(株)製の固液界面解析装置「Drop Master 500」を用いて行う。これらの接触角に基づき、表面エネルギーγ及びγを、下記Owens-Wendtの方法によって導出する。
-Owens-Wendtの方法-
 まず、任意の物質iの表面エネルギーγが、非極性の分散力成分γ と、極性の水素結合性成分γ からなると仮定する。
  γ=γ +γ
 また、物質aと物質bとの界面で、拡張Forkesモデルにより、次式が成立すると仮定する。
  γab=γ+γ-2(γ γ 0.5-2(γ γ 0.5
 液体Lと固体Sとの場合について、Youngの式と組み合わせると、液体Lと固体Sとの接触角θを含む以下の式となる。
  γcosθ=-γ+2(γ γ 0.5+2(γ γ 0.5
 これより、下記式が導き出される。
  γ(1+cosθ)=2(γ γ 0.5+2(γ γ 0.5
 表面エネルギーの成分値が既知の液体(水、及び、ジヨードメタン)でθを測定し、それにより連立方程式を解くことにより、上記レジスト層、及び、上記無機下地層の表面エネルギーをそれぞれ算出する。
 なお、水及びジヨードメタンの各表面エネルギーの成分は以下の通りである。
 水の分散力成分γ:21.8mJ/m
 水の水素結合性成分γ:51.0mJ/m
 水の表面エネルギーγ:72.8mJ/m
 水の(γ0.5の値:4.7(mJ/m0.5
 水の(γ0.5の値:7.1(mJ/m0.5
 ジヨードメタンの分散力成分γ:49.5mJ/m
 ジヨードメタンの水素結合性成分γ:1.3mJ/m
 ジヨードメタンの表面エネルギーγ:50.8mJ/m
 ジヨードメタンの(γ0.5の値:7.0(mJ/m0.5
 ジヨードメタンの(γ0.5の値:1.1(mJ/m0.5
-基板-
 本開示に用いられる積層体は、基板上に、無機下地層と、レジスト層とを有する。
 上記基板は、特に限定されるものではなく、集積回路(IC)等の半導体の製造工程、又は液晶若しくはサーマルヘッド等の回路基板の製造工程のほか、その他のフォトファブリケーションのリソグラフィー工程等で一般的に用いられる基板を用いることができる。
 上記基板の具体例としては、材質が、Si、アモルファスシリコン(α-Si)、p-Si、SiO、SiN、SiON、W、TiN、Al等の無機基板等が挙げられる。
 また、上記基板としては、集積回路(IC)素子の製造に使用されるような基板(例:シリコン、二酸化シリコン被覆)が好ましく挙げられる。
 また、上記基板は、電極、配線、各種下地膜(反射防止膜など)等、公知の部材や公知の層を有していてもよい。
-無機下地層-
 本開示に用いられる積層体は、レジスト層に接して設けられた無機下地層を有する。
 上記無機下地層は、無機化合物を含む層であり、無機化合物の含有量は、無機下地層の全質量に対し、10質量%以上であることが好ましく、70質量%以上であることがより好ましい。
 上記無機下地層は、エッチング耐性の観点から、金属原子を含む層であることが好ましく、ホウ素、ケイ素、アルミニウム、ガリウム、イットリウム、ゲルマニウム、チタン、ジルコニウム、ハフニウム、ビスマス、スズ、バナジウム、ニオブ及びタンタルよりなる群から選ばれた少なくとも1種の金属原子を含む層であることがより好ましく、ケイ素及びチタンよりなる群から選ばれた少なくとも1種の金属原子を含む層であることが更に好ましく、ケイ素原子を含む層であることが特に好ましい。
 上記無機下地層の形成に用いられる無機化合物としては、金属化合物が好ましく挙げられる。
 上記金属化合物としては、例えば、アルコキシ金属化合物、金属ハロゲン化物、金属水酸化物、金属酸化物等が好適に挙げられる。
 中でも、加水分解縮合を行い上記無機下地層を形成する場合は、アルコキシ金属化合物、及び、金属ハロゲン化物よりなる群から選ばれた少なくとも1種の化合物が好ましい。
 上記加水分解縮合には、1種単独のアルコキシ金属化合物又は金属ハロゲン化物等の加水分解縮合性金属化合物を加水分解縮合しても、2種以上の加水分解縮合性金属化合物を加水分解縮合してもよい。
 本開示に用いられるアルコキシシラン化合物としては、例えば、トリメトキシシラン、トリエトキシシラン、トリプロポキシシラン、トリイソプロポキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリイソプロポキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリプロポキシシラン、エチルトリイソプロポキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリプロポキシシラン、ビニルトリイソプロポキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、プロピルトリプロポキシシラン、プロピルトリイソプロポキシシラン、イソプロピルトリメトキシシラン、イソプロピルトリエトキシシラン、イソプロピルトリプロポキシシラン、イソプロピルトリイソプロポキシシラン、ブチルトリメトキシシラン、ブチルトリエトキシシラン、ブチルトリプロポキシシラン、ブチルトリイソプロポキシシラン、sec-ブチルトリメトキシシラン、sec-ブチルトリエトキシシラン、sec-ブチルトリプロポキシシラン、sec-ブチルトリイソプロポキシシラン、t-ブチルトリメトキシシラン、t-ブチルトリエトキシシラン、t-ブチルトリプロポキシシラン、t-ブチルトリイソプロポキシシラン、シクロプロピルトリメトキシシラン、シクロプロピルトリエトキシシラン、シクロプロピルトリプロポキシシラン、シクロプロピルトリイソプロポキシシラン、シクロブチルトリメトキシシラン、シクロブチルトリエトキシシラン、シクロブチルトリプロポキシシラン、シクロブチルトリイソプロポキシシラン、シクロペンチルトリメトキシシラン、シクロペンチルトリエトキシシラン、シクロペンチルトリプロポキシシラン、シクロペンチルトリイソプロポキシシラン、シクロヘキシルトリメトキシシラン、シクロヘキシルトリエトキシシラン、シクロヘキシルトリプロポキシシラン、シクロヘキシルトリイソプロポキシシラン、シクロヘキセニルトリメトキシシラン、シクロヘキセニルトリエトキシシラン、シクロヘキセニルトリプロポキシシラン、シクロヘキセニルトリイソプロポキシシラン、シクロヘキセニルエチルトリメトキシシラン、シクロヘキセニルエチルトリエトキシシラン、シクロヘキセニルエチルトリプロポキシシラン、シクロヘキセニルエチルトリイソプロポキシシラン、シクロオクチルトリメトキシシラン、シクロオクチルトリエトキシシラン、シクロオクチルトリプロポキシシラン、シクロオクチルトリイソプロポキシシラン、シクロペンタジエニルプロピルトリメトキシシラン、シクロペンタジエニルプロピルトリエトキシシラン、シクロペンタジエニルプロピルトリプロポキシシラン、シクロペンタジエニルプロピルトリイソプロポキシシラン、ビシクロヘプテニルトリメトキシシラン、ビシクロヘプテニルトリエトキシシラン、ビシクロヘプテニルトリプロポキシシラン、ビシクロヘプテニルトリイソプロポキシシラン、ビシクロヘプチルトリメトキシシラン、ビシクロヘプチルトリエトキシシラン、ビシクロヘプチルトリプロポキシシラン、ビシクロヘプチルトリイソプロポキシシラン、アダマンチルトリメトキシシラン、アダマンチルトリエトキシシラン、アダマンチルトリプロポキシシラン、アダマンチルトリイソプロポキシシラン、
 フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリプロポキシシラン、フェニルトリイソプロポキシシラン、ベンジルトリメトキシシラン、ベンジルトリエトキシシラン、ベンジルトリプロポキシシラン、ベンジルトリイソプロポキシシラン、トリルトリメトキシシラン、トリルトリエトキシシラン、トリルトリプロポキシシラン、トリルトリイソプロポキシシラン、アニシルトリメトキシシラン、アニシルトリエトキシシラン、アニシルトリプロポキシシラン、アニシルトリイソプロポキシシラン、フェネチルトリメトキシシラン、フェネチルトリエトキシシラン、フェネチルトリプロポキシシラン、フェネチルトリイソプロポキシシラン、ナフチルトリメトキシシラン、ナフチルトリエトキシシラン、ナフチルトリプロポキシシラン、ナフチルトリイソプロポキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、メチルエチルジメトキシシラン、メチルエチルジエトキシシラン、ジメチルジプロポキシシラン、ジメチルジイソプロポキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、ジエチルジプロポキシシラン、ジエチルジイソプロポキシシラン、ジプロピルジメトキシシラン、ジプロピルジエトキシシラン、ジプロピルジプロポキシシラン、ジプロピルジイソプロポキシシラン、ジイソプロピルジメトキシシラン、ジイソプロピルジエトキシシラン、ジイソプロピルジプロポキシシラン、ジイソプロピルジイソプロポキシシラン、ジブチルジメトキシシラン、ジブチルジエトキシシラン、ジブチルジプロポキシシラン、ジブチルジイソプロポキシシラン、ジsec-ブチルジメトキシシラン、ジsec-ブチルジエトキシシラン、ジsec-ブチルジプロポキシシラン、ジsec-ブチルジイソプロポキシシラン、ジt-ブチルジメトキシシラン、ジt-ブチルジエトキシシラン、ジt-ブチルジプロポキシシラン、ジt-ブチルジイソプロポキシシラン、
 ジシクロプロピルジメトキシシラン、ジシクロプロピルジエトキシシラン、ジシクロプロピルジプロポキシシラン、ジシクロプロピルジイソプロポキシシラン、ジシクロブチルジメトキシシラン、ジシクロブチルジエトキシシラン、ジシクロブチルジプロポキシシラン、ジシクロブチルジイソプロポキシシラン、ジシクロペンチルジメトキシシラン、ジシクロペンチルジエトキシシラン、ジシクロペンチルジプロポキシシラン、ジシクロペンチルジイソプロポキシシラン、ジシクロヘキシルジメトキシシラン、ジシクロヘキシルジエトキシシラン、ジシクロヘキシルジプロポキシシラン、ジシクロヘキシルジイソプロポキシシラン、ジシクロヘキセニルジメトキシシラン、ジシクロヘキセニルジエトキシシラン、ジシクロヘキセニルジプロポキシシラン、ジシクロヘキセニルジイソプロポキシシラン、ジシクロヘキセニルエチルジメトキシシラン、ジシクロヘキセニルエチルジエトキシシラン、ジシクロヘキセニルエチルジプロポキシシラン、ジシクロヘキセニルエチルジイソプロポキシシラン、ジシクロオクチルジメトキシシラン、ジシクロオクチルジエトキシシラン、ジシクロオクチルジプロポキシシラン、ジシクロオクチルジイソプロポキシシラン、ジシクロペンタジエニルプロピルジメトキシシラン、ジシクロペンタジエニルプロピルジエトキシシラン、ジシクロペンタジエニルプロピルジプロポキシシラン、ジシクロペンタジエニルプロピルジイソプロポキシシラン、ビス(ビシクロヘプテニル)ジメトキシシラン、ビス(ビシクロヘプテニル)ジエトキシシラン、ビス(ビシクロヘプテニル)ジプロポキシシラン、ビス(ビシクロヘプテニル)ジイソプロポキシシラン、ビス(ビシクロヘプチル)ジメトキシシラン、ビス(ビシクロヘプチル)ジエトキシシラン、ビス(ビシクロヘプチル)ジプロポキシシラン、ビス(ビシクロヘプチル)ジイソプロポキシシラン、ジアダマンチルジメトキシシラン、ジアダマンチルジエトキシシラン、ジアダマンチルジプロポキシシラン、ジアダマンチルジイソプロポキシシラン、
 ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、メチルフェニルジメトキシシラン、メチルフェニルジエトキシシラン、ジフェニルジプロポキシシラン、ジフェニルジイソプロポキシシラン、トリメチルメトキシシラン、トリメチルエトキシシラン、ジメチルエチルメトキシシラン、ジメチルエチルエトキシシラン、ジメチルフェニルメトキシシラン、ジメチルフェニルエトキシシラン、ジメチルベンジルメトキシシラン、ジメチルベンジルエトキシシラン、ジメチルフェネチルメトキシシラン、ジメチルフェネチルエトキシシラン、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトライソプロポキシシラン、テトラブトキシシラン、テトラフェノキシシラン、テトラアセトキシシラン等が例示できる。
 また、本開示に用いられるチタン化合物としては、チタンメトキシド、チタンエトキシド、チタンプロポキシド、チタンブトキシド、チタンアミロキシド、チタンヘキシロキシド、チタンシクロペントキシド、チタンシクロヘキシロキシド、チタンアリロキシド、チタンフェノキシド、チタンメトキシエトキシド、チタンエトキシエトキシド、チタンジプロポキシビスエチルアセトアセテート、チタンジブトキシビスエチルアセトアセテート、チタンジプロポキシビス2,4-ペンタンジオネート、チタンジブトキシビス2,4-ペンタンジオネート等が例示できる。
 上記無機下地層の形成方法としては、特に制限はないが、スパッタリング法、蒸着法、塗布法等、公知の方法により形成することができる。
 中でも、塗布法が好ましく、スピンコート法がより好ましい。
 無機下地層の形成に用いる無機下地層形成用塗布液に含んでいてもよい水系溶媒としては、例えば、水、及び、水溶性有機溶剤が挙げられる。
 水溶性有機溶剤としては、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、2-メチル-1-プロパノール、アセトン、テトラヒドロフラン、アセトニトリル、プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、エチレングリコールモノプロピルエーテル、プロピレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテル等が挙げられる。
 また、上記水溶性有機溶剤に加え、補助溶剤を添加してもよい。
 補助溶剤としては、トルエン、ヘキサン、酢酸エチル、シクロヘキサノン、メチルアミルケトン、プロピレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ピルビン酸エチル、酢酸ブチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、酢酸t-ブチル、プロピオン酸t-ブチル、プロピレングリコールモノt-ブチルエーテルアセテート、γ-ブチロラクトン、メチルイソブチルケトン、シクロペンチルメチルエーテルなどを例示できる。
 上記無機下地層形成用塗布液の固形分量としては、特に制限はないが、0.1質量%~20質量%であることが好ましい。
 また、塗布時において、塗布しやすいように、固形分量を調製することもできる。
 また、上記無機下地層は、その他の公知の成分を含んでいてもよい。
 その他の成分としては、例えば、光酸発生剤、熱架橋促進剤、有機酸、安定剤、界面活性剤等が挙げられる。
 これらは、例えば、特開2013-167669号公報に記載されたものが挙げられる。
 上記無機下地膜の厚さは、特に制限はなく、所望に応じて形成すればよいが、1nm以上500nm以下であることが好ましく、1nm以上300nm以下であることがより好ましく、1nm以上200nm以下であることが特に好ましい。
-レジスト層-
 本開示に用いられる積層体は、上記無機下地層に接して設けられたレジスト層を有する。
 上記レジスト層は、有機溶剤現像用レジスト層であることが好ましい。
 また、上記レジスト層は、解像度、及び、感度の観点から、化学増幅型のレジスト層であることが好ましい。
 更に、上記レジスト層は、ネガ型レジスト層であることが好ましい。例えば、現像に使用する有機溶剤等の現像液の極性により、ポジ型又はネガ型を選択することも可能である。
 また、上記レジスト層は、エッチング耐性、及び、解像度の観点から、2以上のフェノール性ヒドロキシ基を有する構成単位及び酸分解性基により保護された極性基を有する構成単位を有する樹脂(以下、樹脂(A)ともいう。)、並びに、光酸発生剤を含むことが好ましい。
〔樹脂(A)〕
 上記レジスト層は、ベース樹脂として、エッチング耐性、及び、解像度の観点から、2以上のフェノール性ヒドロキシ基を有する構成単位及び酸分解性基により保護された極性基を有する構成単位を有する樹脂(樹脂(A))を含むことが好ましく、下記式(I-1)で表される、フェノール性ヒドロキシ基を2つ以上有する構成単位(a)、及び、酸の作用により単環を含む保護基が脱離して極性基を生じる基(以下、「酸分解性基により保護された極性基」という。)を有する構成単位(b)を有する樹脂を含むことがより好ましい。
〔〔構成単位(a)〕〕
 上記2以上のフェノール性ヒドロキシ基を有する構成単位(a)は、エッチング耐性、及び、解像度の観点から、下記式(I-1)で表される構成単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000006
 式(I-1)中、R11及びR12はそれぞれ独立に、水素原子又はアルキル基を表し、R13は、水素原子若しくはアルキル基を表すか、又は、単結合若しくはアルキレン基を表し、かつL又はArに結合して環を形成し、Lは、単結合又は2価の連結基を表し、Arは、芳香環を表し、nは、2以上の整数を表す。
 式(I-1)におけるR11、R12及びR13により表されるアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、ヘキシル基、2-エチルヘキシル基、オクチル基、ドデシル基など炭素数20以下のアルキル基が挙げられる。R11、R12及びR13により表されるアルキル基は、一形態において、炭素数8以下のアルキル基であることが好ましく、炭素数3以下のアルキル基であることがより好ましい。
 R11、R12及びR13により表されるアルキル基は、置換基を有していてもよい。好ましい置換基としては、例えば、シクロアルキル基、アリール基、アミノ基、アミド基、ウレイド基、ウレタン基、ヒドロキシル基、カルボキシル基、ハロゲン原子、アルコキシ基、チオエーテル基、アシル基、アシロキシ基、アルコキシカルボニル基、シアノ基、ニトロ基等を挙げることができ、置換基の炭素数は8以下が好ましい。
 Lにより表される2価の連結基としては、例えば、エステル結合、-CONR64(R64は、水素原子又はアルキル基を表す。)-、若しくは、アルキレン基、又は、これらのいずれかから選択される2以上の組み合わせが挙げられる。
 -CONR64-(R64は、水素原子又はアルキル基を表す。)におけるR64のアルキル基としては、好ましくは置換基を有していてもよいメチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、ヘキシル基、2-エチルヘキシル基、オクチル基、ドデシル基など炭素数20以下のアルキル基が好ましく挙げられ、炭素数8以下のアルキル基がより好ましく挙げられる。また、一実施形態において、-CONR64-は、-CONH-が好ましい。
 Lにより表されるアルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ヘキシレン基、オクチレン基等の炭素数1~8個のものが挙げられる。アルキレン基は、置換基を有していてもよい。
 また、Lは、単結合、エステル結合-又は-CONH-が好ましく、単結合又はエステル結合がより好ましく、単結合が特に好ましい。
 Arにより表される芳香環としては、例えば、ベンゼン環、ナフタレン環、アントラセン環、フルオレン環、フェナントレン環などの炭素数6~18の芳香族炭化水素環、又は、例えば、チオフェン環、フラン環、ピロール環、ベンゾチオフェン環、ベンゾフラン環、ベンゾピロール環、トリアジン環、イミダゾール環、ベンゾイミダゾール環、トリアゾール環、チアジアゾール環、チアゾール環等のヘテロ環を含む芳香環ヘテロ環を挙げることができる。中でも、解像性の観点から、ベンゼン環、ナフタレン環が好ましく、ベンゼン環がより好ましい。
 これら芳香環は置換基を有していてもよい。好ましい置換基としては、例えば、上述したR11、R12及びR13により表されるアルキル基の具体例;メトキシ基、エトキシ基、ヒドロキシエトキシ基、プロポキシ基、ヒドロキシプロポキシ基、ブトキシ基などのアルコキシ基;フェニル基などのアリール基;等が挙げられる。
 nは、2以上の整数を表し、好ましくは2以上5以下の整数を表し、より好ましくは2又は3である。
 樹脂(A)は、構成単位(a)を2種以上含有してもよい。
 以下、構成単位(a)の具体例を示すが、本発明はこれに限定されるものではない。式中、Rは水素原子又はメチル基を表し、aは2又は3を表す。
Figure JPOXMLDOC01-appb-C000007
 構成単位(a)の含有率(2種以上含有する場合は合計の含有率)は、樹脂(A)の反応性と発生酸の拡散抑制能の両立の観点から、樹脂(A)中の全構成単位に対し、5モル%~60モル%が好ましく、10モル%~50モル%がより好ましく、20モル%~40モル%が更に好ましい。
 なお、本開示において、「構成単位」の含有量をモル比で規定する場合、上記「構成単位」は「モノマー単位」と同義であるものとする。また、本開示において上記「モノマー単位」は、高分子反応等により重合後に修飾されていてもよい。以下においても同様である。
〔〔構成単位(b)〕〕
 構成単位(b)は、酸分解性基により保護された極性基を有する構成単位であり、酸の作用により単環を含む保護基が脱離して極性基を生じる酸分解性基を有する構成単位であることが好ましい。
 単環を含む保護基は、多環構造を含む保護基や鎖状式の基を含む保護基と比較して、酸分解性基における高い脱保護反応性と発生酸の低拡散性の両立が可能である。
 ここで、構成単位(b)が有する保護基に含まれる単環は、脂肪族環であり、不飽和結合を含んでいてもよい。また、上記単環は、炭素原子と水素原子のみからなる単環式炭化水素基であることが好ましい。
 親水性の観点から、単環を構成する炭素数は少ない方が好ましい。
 単環を構成する炭素数は、5個~10個が好ましく、5個~8個がより好ましく、5個~7個が更に好ましい。
 上記単環は置換基を有していてもよく、この置換基は、炭素原子及び水素原子以外の原子を含んでいてもよい。有してもよい置換基としては、例えば、アルキル基(炭素数1~4)、ハロゲン原子、ヒドロキシ基、アルコキシ基(炭素数1~4)、カルボキシ基、アルコキシカルボニル基(炭素数2~6)シアノ基、アミノ基、スルホンアミド基、アルキルアミド基等が挙げられる。
 構成単位(b)において、酸の作用により単環式炭化水素基を含む保護基が脱離して生じる極性基としては、例えば、カルボキシ基(脂肪族カルボキシ基)、芳香族カルボキシ基、フェノール性ヒドロキシ基、ヒドロキシ基(脂肪族ヒドロキシ基)等が挙げられる。中でも、極性基は、カルボキシ基であることが好ましい。
 ここで、極性基がカルボキシ基であることは、樹脂(A)における高反応性と発生酸の拡散抑制能の両立の観点から好ましい。例えば、極性基がカルボキシ基であることは、極性基がフェノール性ヒドロキシ基やヒドロキシ基の場合と比較して、特に露光後のTgが高く酸の拡散抑制に優れる。また保護基と組み合わせた場合も、極性基の酸強度がより高いために脱保護反応性に優れる。
 構成単位(b)は、例えば、下記式(pA)で表される構成単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000008
 式(pA)中、
 R21、R22及びR23はそれぞれ独立に、水素原子又はアルキル基を表す。
 Aは、単結合又は2価の連結基を表す。
 Rpは、式(pI)により表される基を表す。
 式(pI)中、
 R24は、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基又はtert-ブチル基を表す。また、R24は、メチル基であることが好ましい。
 Zは、式中の炭素原子と共に単環のシクロアルキル基を形成するのに必要な原子団を表す。
 *は、式(pA)により表される構成単位の残部との連結部を表す。
 式(pA)におけるR21、R22及びR23により表されるアルキル基としては、上述した式(I-1)中のR11、R12及びR13により表されるアルキル基において例示した具体例と同様の具体例が挙げられ、好ましい具体例も同様である。
 R21、R22及びR23により表されるアルキル基は、置換基を有していてもよい。好ましい置換基としては、上述した式(I-1)中のR11、R12及びR13により表されるアルキル基が有してもよい置換基において例示した具体例と同様の具体例が挙げられる。
 Aにより表される2価の連結基としては、例えば、アリーレン基、-COO-Rt-基、等があげられる。式中、Rtは、アルキレン基又はシクロアルキレン基を表す。
 また、Aは、単結合であることが好ましい。
 Zは、上述の通り、式中の炭素原子と共にシクロアルキル基を形成するのに必要な原子団を表す。親水性の観点から、Zが式中の炭素原子と共に形成する上記シクロアルキル基の炭素数は、5~10であることが好ましく、5~8であることがより好ましく、5~7であることが更に好ましい。
 構成単位(b)は、下記式(pB)で表される構成単位であってもよい。
Figure JPOXMLDOC01-appb-C000009
 式(pB)中、
 R31、R32及びR33はそれぞれ独立に、水素原子又はアルキル基を表す。
 Aは、単結合又は2価の連結基を表す。
 R41、R42及びR43はそれぞれ独立に、直鎖若しくは分岐アルキル基、又は、単環若しく多環シクロアルキル基を表す。ただし、R41、R42及びR43の少なくとも1つは単環のシクロアルキル基を表す。
 式(pB)におけるR31、R32及びR33により表されるアルキル基としては、上述した式(I-1)中のR11、R12及びR13により表されるアルキル基において例示した具体例と同様の具体例が挙げられ、好ましい具体例も同様である。
 R31、R32及びR33により表されるアルキル基は、置換基を有していてもよい。好ましい置換基としては、上述した式(I-1)中のR11、R12及びR13により表されるアルキル基が有してもよい置換基において例示した具体例と同様の具体例が挙げられる。
 Aにより表される2価の連結基としては、上述した式(pA)中のAにより表される2価の連結基において例示した具体例が挙げられる。
 また、Aは、単結合であることが好ましい。
 R41、R42及びR43により表される直鎖又は分岐アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基などの炭素数1~4のものが好ましい。
 R41、R42及びR43により表される単環のシクロアルキル基は、炭素数5~10のシクロアルキル基であることが好ましく、炭素数5~8のシクロアルキル基であることがより好ましく、炭素数5~7のシクロアルキル基であることが更に好ましい。
 R41、R42及びR43により表される多環のシクロアルキル基としては、例えば、ノルボルニル基、テトラシクロデカニル基、テトラシクロドデカニル基、アダマンチル基などの多環のシクロアルキル基が好ましい。
 樹脂(A)は、構成単位(b)を2種以上含有してもよい。
 以下、構成単位(b)の具体例を示すが、本開示はこれに限定されるものではない。式中、Rは水素原子又はメチル基を表し、Rxはそれぞれ独立に、炭素数1~4のアルキル基を表す。
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
 構成単位(b)の含有率(2種以上含有する場合は合計の含有率)は、樹脂(A)中の全構成単位に対し、20モル%~90モル%が好ましく、25モル%~80モル%がより好ましく、30モル%~70モル%が更に好ましい。
 樹脂(A)は、上述した酸の作用により単環を含む保護基が脱離して極性基を生じる酸分解性基を有する構成単位とは異なる構成単位(b)を更に含有していてもよい。
 酸の作用により分解してカルボキシ基を生じる基を有する構成単位は、カルボキシ基の水素原子が酸の作用により分解して脱離する基で置換された基を有する構成単位である。
 酸で脱離する基としては、例えば、-C(R36)(R37)(R38)、-C(R36)(R37)(OR39)、-C(R01)(R02)(OR39)等を挙げることができる。
 式中、R36~R39はそれぞれ独立に、アルキル基、多環のシクロアルキル基、アリール基、アラルキル基又はアルケニル基を表す。R36とR37とは、互いに結合して環を形成してもよい。
 R01及びR02は、各々独立に、水素原子、アルキル基、多環のシクロアルキル基、アリール基、アラルキル基又はアルケニル基を表す。
 酸の作用により分解してカルボキシ基を生じる基を有する構成単位としては、下記式(AI)で表される構成単位が好ましい。
Figure JPOXMLDOC01-appb-C000012
 式(AI)において、
 Xaは、水素原子、又は置換基を有していてもよいアルキル基を表す。
 Tは、単結合又は2価の連結基を表す。
 Rx~Rxはそれぞれ独立に、アルキル基(直鎖若しくは分岐)又は多環のシクロアルキル基を表す。ただし、Rx~Rxの全てがアルキル基(直鎖若しくは分岐)である場合、Rx~Rxのうち少なくとも2つはメチル基であることが好ましい。
 Rx~Rxの2つが結合して、多環のシクロアルキル基を形成してもよい。
 Xaにより表される、置換基を有していてもよいアルキル基としては、例えば、メチル基又は-CH-RX11で表される基が挙げられる。RX11は、ハロゲン原子(フッ素原子など)、ヒドロキシル基又は1価の有機基を表し、例えば、炭素数5以下のアルキル基、炭素数5以下のアシル基が挙げられ、好ましくは炭素数3以下のアルキル基であり、より好ましくはメチル基である。Xaは、水素原子、メチル基、トリフルオロメチル基又はヒドロキシメチル基であることが好ましい。
 Tの2価の連結基としては、アルキレン基、アリーレン基、-COO-Rt-基、-O-Rt-基等が挙げられる。Rtは、アルキレン基又はシクロアルキレン基を表す。
 Tは、単結合、アリーレン基又は-COO-Rt-基が好ましく、単結合又はアリーレン基がより好ましい。アリーレン基としては炭素数6~10のアリーレン基が好ましく、フェニレン基がより好ましい。Rtは、炭素数1~5のアルキレン基が好ましく、-CH-基、-(CH-基、-(CH-基がより好ましい。
 Rx~Rxのアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基などの炭素数1~4のものが好ましい。
 Rx~Rxの多環のシクロアルキル基としては、ノルボルニル基、テトラシクロデカニル基、テトラシクロドデカニル基、アダマンチル基などの多環のシクロアルキル基が好ましい。
 Rx~Rxの2つが結合して形成される多環のシクロアルキル基としては、ノルボルニル基、テトラシクロデカニル基、テトラシクロドデカニル基、アダマンチル基などの多環のシクロアルキル基が好ましい。
 Rx~Rxの2つが結合して形成される多環のシクロアルキル基は、例えば、環を構成するメチレン基の1つが、酸素原子等のヘテロ原子、又は、カルボニル基等のヘテロ原子を有する基で置き換わっていてもよい。
 上記各基は置換基を有していてもよく、置換基としては、例えば、アルキル基(炭素数1~4)、ハロゲン原子、ヒドロキシ基、アルコキシ基(炭素数1~4)、カルボキシル基、アルコキシカルボニル基(炭素数2~6)などが挙げられ、炭素数8以下が好ましい。
 式(AI)で表される構成単位としては、好ましくは、酸分解性(メタ)アクリル酸3級アルキルエステル系構成単位(Xaが水素原子又はメチル基を表し、かつ、Tが単結合を表す構成単位)である。より好ましくは、Rx~Rxが各々独立に、直鎖又は分岐のアルキル基を表す構成単位であり、さらに好ましくは、Rx~Rxが各々独立に、直鎖のアルキル基を表す構成単位である。
 酸の作用により分解してカルボキシ基を生じる基を有する構成単位の具体例を以下に示すが、本開示は、これに限定されるものではない。
 具体例中、Rx、Xaは、水素原子、CH、CF、又はCHOHを表す。Rxa、Rxbは各々炭素数1~4のアルキル基を表す。Zは、極性基を含む置換基を表し、複数存在する場合は各々独立である。pは0又は正の整数を表す。Zにより表される極性基を含む置換基としては、例えば、ヒドロキシ基、シアノ基、アミノ基、アルキルアミド基又はスルホンアミド基を有する、直鎖又は分岐のアルキル基、シクロアルキル基が挙げられ、好ましくは、ヒドロキシ基を有するアルキル基である。分岐状アルキル基としてはイソプロピル基が特に好ましい。
 また、酸の作用により分解してカルボキシ基を生じる基を有する構成単位の具体例として、特開2014-232309号公報の段落0227~0233に記載の具体例を援用でき、この内容は本願明細書に組み込まれる。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
 樹脂(A)が、酸の作用により分解してカルボキシル基を生じる基を有する構成単位を含有する場合、その構成単位の含有率は、樹脂(A)中の全構成単位に対し、20モル%~90モル%が好ましく、25モル%~80モル%がより好ましく、30モル%~70モル%が更に好ましい。
〔〔ラクトン構造、スルトン構造、及びカーボネート構造よりなる群から選択される少なくとも1種を有する構成単位〕〕
 樹脂(A)は、ラクトン構造、スルトン構造、及びカーボネート構造よりなる群から選択される少なくとも1種を有する構成単位を有することが好ましい。
 ラクトン構造又はスルトン構造としては、ラクトン構造又はスルトン構造を有していればいずれでも用いることができるが、好ましくは5~7員環ラクトン構造又は5~7員環スルトン構造であり、5~7員環ラクトン構造にビシクロ構造、スピロ構造を形成する形で他の環構造が縮環しているもの、又は5~7員環スルトン構造にビシクロ構造、スピロ構造を形成する形で他の環構造が縮環しているものがより好ましい。下記式LC1-1~LC1-21のいずれかで表されるラクトン構造、又は下記式SL1-1~SL1-3のいずれかで表されるスルトン構造を有する構成単位を有することが更に好ましい。また、ラクトン構造又はスルトン構造が主鎖に直接結合していてもよい。好ましい構造としてはLC1-1、LC1-4、LC1-5、LC1-8、LC1-16、LC1-21、SL1-1である。
Figure JPOXMLDOC01-appb-C000015
 ラクトン構造部分又はスルトン構造部分は、置換基(Rb)を有していても有していなくてもよい。好ましい置換基(Rb)としては、炭素数1~8のアルキル基、炭素数4~7のシクロアルキル基、炭素数1~8のアルコキシ基、炭素数2~8のアルコキシカルボニル基、カルボキシル基、フッ素原子以外のハロゲン原子、水酸基、シアノ基、及び酸分解性基などが挙げられる。より好ましくは炭素数1~4のアルキル基、シアノ基、及び酸分解性基である。n2は、0~4の整数を表す。n2が2以上の時、複数存在する置換基(Rb)は、同一でも異なっていてもよい。また、複数存在する置換基(Rb)同士が結合して環を形成してもよい。
 ラクトン構造又はスルトン構造を有する構成単位は、焦点深度の許容度及びパターン直線性の観点から、下記式IIIで表される構成単位であることが好ましい。
 また、酸分解性基を有する構成単位を有する樹脂は、焦点深度の許容度及びパターン直線性の観点から、下記式IIIで表される構成単位を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000016
 上記式III中、
 Aは、エステル結合(-COO-で表される基)又はアミド結合(-CONH-で表される基)を表す。
 nは、-R-Z-で表される構造の繰り返し数であり、0~5の整数を表し、0又は1であることが好ましく、0であることがより好ましい。nが0である場合、-R-Z-は存在せず、AとRとが単結合により結合される。
 Rは、アルキレン基、シクロアルキレン基、又はその組み合わせを表す。Rは、複数個ある場合にはそれぞれ独立に、アルキレン基、シクロアルキレン基、又はその組み合わせを表す。
 Zは、単結合、エーテル結合、エステル結合、アミド結合、ウレタン結合又はウレア結合を表す。Zは、複数個ある場合にはそれぞれ独立に、単結合、エーテル結合、エステル結合、アミド結合、ウレタン結合又はウレア結合を表す。
 Rは、ラクトン構造又はスルトン構造を有する1価の有機基を表す。
 Rは、水素原子、フッ素原子以外のハロゲン原子又は1価の有機基(好ましくはメチル基)を表す。
 Rのアルキレン基又はシクロアルキレン基は置換基を有してもよい。
 Zは好ましくは、エーテル結合、又はエステル結合であり、より好ましくはエステル結合である。
 以下に式IIIで表される構成単位に相当するモノマーの具体例、及び後述する式A-1で表される構成単位に相当するモノマーの具体例を挙げるが、本開示は、これらの具体例に限定されない。下記の具体例は、式IIIにおけるR及び後述する式A-1におけるR がメチル基である場合に相当するが、R及びR は、水素原子、フッ素原子以外のハロゲン原子、又は1価の有機基に任意に置換することができる。
Figure JPOXMLDOC01-appb-C000017
 上記モノマーの他に下記に示すモノマーも樹脂(A)の原料として好適に用いられる。
Figure JPOXMLDOC01-appb-C000018
 樹脂(A)は、カーボネート構造を有する構成単位を有していてもよい。カーボネート構造は、環状炭酸エステル構造であることが好ましい。
 環状炭酸エステル構造を有する構成単位は、下記式A-1で表される構成単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000019
 式A-1中、R は、水素原子、フッ素原子以外のハロゲン原子又は1価の有機基(好ましくはメチル基)を表し、nは0以上の整数を表し、R は、置換基を表す。R は、nが2以上の場合は各々独立して、置換基を表し、Aは、単結合、又は2価の連結基を表し、Zは、式中の-O-C(=O)-O-で表される基と共に単環構造又は多環構造を形成する原子団を表す。
 樹脂(A)は、ラクトン構造、スルトン構造、及びカーボネート構造よりなる群から選択される少なくとも1種を有する構成単位として、米国特許出願公開第2016/0070167号明細書の段落0370~0414に記載の構成単位を有することも好ましい。
 樹脂(A)は、ラクトン構造、スルトン構造、及びカーボネート構造からなる群から選択される少なくとも1種を有する構成単位を、1種単独で含んでもよく、2種以上を併用して含んでもよい。
 樹脂(A)に含まれるラクトン構造、スルトン構造、及びカーボネート構造からなる群から選択される少なくとも1種を有する構成単位の含有量(ラクトン構造、スルトン構造、及びカーボネート構造からなる群から選択される少なくとも1種を有する構成単位が複数存在する場合はその合計)は、樹脂(A)の全構成単位に対して、5モル%~70モル%であることが好ましく、10モル%~65モル%であることがより好ましく、20モル%~60モル%であることが更に好ましい
 樹脂(A)は、極性基を有する構成単位、特に、極性基で置換された脂環炭化水素構造を有する構成単位を更に有することができる。
 これにより基板密着性、現像液親和性が向上する。極性基で置換された脂環炭化水素構造の脂環炭化水素構造としては、アダマンチル基、ジアマンチル基、又は、ノルボルナン基が好ましい。極性基としては、ヒドロキシ基、又は、シアノ基が好ましい。
 極性基を有する構成単位の具体例を以下に挙げるが、本開示はこれらに限定されない。
Figure JPOXMLDOC01-appb-C000020
 樹脂(A)が、極性基を有する構成単位を有する場合、その含有量は、樹脂(A)中の全構成単位に対し、1モル%~30モル%が好ましく、5モル%~25モル%がより好ましく、5モル%~20モル%が更に好ましい。
 更に、上記以外の構成単位として、光の照射により酸を発生する基(光酸発生基)を有する構成単位を含むこともできる。この場合、この光酸発生基を有する構成単位が、光酸発生剤にあたると考えることができる。
 このような構成単位としては、例えば、下記式(4)で表される構成単位が挙げられる。
Figure JPOXMLDOC01-appb-C000021
 R41は、水素原子又はメチル基を表す。L41は、単結合又は2価の連結基を表す。L42は、2価の連結基を表す。R40は、活性光線又は放射線の照射により分解して側鎖に酸を発生させる構造部位を表す。
 以下に、式(4)で表される構成単位の具体例を示すが、本発明がこれに限定されるものではない。
 そのほか、式(4)で表される構成単位としては、例えば、特開2014-041327号公報の段落0094~0105に記載された構成単位が挙げられる。
 樹脂(A)が光酸発生基を有する構成単位を含有する場合、光酸発生基を有する構成単位の含有量は、樹脂(A)中の全構成単位に対し、1モル%~40モル%が好ましく、1~35モル%がより好ましく、1モル%~30モル%が更に好ましい。
 樹脂(A)は、常法に従って(例えばラジカル重合)合成することができる。例えば、一般的合成方法としては、モノマー種及び開始剤を溶剤に溶解させ、加熱することにより重合を行う一括重合法、加熱溶剤にモノマー種と開始剤の溶液を1時間~10時間かけて滴下して加える滴下重合法などが挙げられ、滴下重合法が好ましい。
 反応溶媒としては、例えば、テトラヒドロフラン、1,4-ジオキサン、ジイソプロピルエーテルなどのエーテル類;メチルエチルケトン、メチルイソブチルケトンなどのケトン類;酢酸エチルなどのエステル溶媒;ジメチルホルムアミド、ジメチルアセトアミドなどのアミド溶剤;後述のプロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、シクロヘキサノンなどの上記レジスト層の成分を溶解する溶媒;等が挙げられる。より好ましくは上記レジスト層を形成する組成物に用いられる溶剤と同一の溶剤を用いて重合することが好ましい。これにより保存時のパーティクルの発生が抑制できる。
 重合反応は窒素やアルゴンなど不活性ガス雰囲気下で行われることが好ましい。重合開始剤としては市販のラジカル開始剤(アゾ系開始剤、パーオキサイドなど)を用いて重合を開始させる。ラジカル開始剤としてはアゾ系開始剤が好ましく、エステル基、シアノ基、カルボキシル基を有するアゾ系開始剤が好ましい。好ましい開始剤としては、アゾビスイソブチロニトリル、アゾビスジメチルバレロニトリル、ジメチル2,2’-アゾビス(2-メチルプロピオネート)などが挙げられる。所望により開始剤を追加、あるいは分割で添加し、反応終了後、溶剤に投入して粉体あるいは固形回収等の方法で所望のポリマーを回収する。反応の濃度は5質量%~50質量%であることが好ましく、10質量%~30質量%であることがより好ましい。反応温度は、10℃~150℃であることが好ましく、30℃~120℃であることがより好ましく、60℃~100℃であることが更に好ましい。
 精製は、水洗や適切な溶媒を組み合わせることにより残留単量体やオリゴマー成分を除去する液液抽出法、特定の分子量以下のもののみを抽出除去する限外ろ過等の溶液状態での精製方法や、樹脂溶液を貧溶媒へ滴下することで樹脂を貧溶媒中に凝固させることにより残留単量体等を除去する再沈殿法や、濾別した樹脂スラリーを貧溶媒で洗浄する等の固体状態での精製方法等の通常の方法を適用できる。
 樹脂(A)の重量平均分子量は、GPC法によりポリスチレン換算値として、1,000~200,000であることが好ましく、3,000~20,000であることがより好ましく、5,000~15,000であることが更に好ましい。重量平均分子量を、1,000~200,000とすることにより、耐熱性やドライエッチング耐性の劣化を防ぐことができ、且つ現像性が劣化したり、粘度が高くなって製膜性が劣化したりすることを防ぐことができる。
 樹脂(A)の重量平均分子量の特に好ましい別の形態は、GPC法によるポリスチレン換算値で3,000~9,500である。重量平均分子量を3,000~9,500にすることにより、特にレジスト残渣(以降、「スカム」ともいう)が抑制され、より良好なパターンを形成することができる。
 樹脂(A)の分散度(分子量分布)は、1~5であることが好ましく、1~3であることがより好ましく、1.2~3.0であることが更に好ましく、1.2~2.0であることが特に好ましい。分散度の小さいものほど、解像度、レジスト形状が優れ、且つレジストパターンの側壁がスムーズであり、ラフネス性に優れる。
 上記レジスト層において、樹脂(A)の含有率は、上記レジスト層の全質量に対し、50質量%~99.9質量%であることが好ましく、60質量%~99.0質量%であることがより好ましい。
 また、樹脂(A)は、1種のみを使用してもよいし、複数種を併用してもよい。
〔光酸発生剤(B)〕
 上記レジスト層は、活性光線又は放射線の照射により酸を発生する化合物(以下、「光酸発生剤」(PAG:Photo Acid Generator)、又は、「光酸発生剤(B)」ともいう。)を含有する。
 光酸発生剤は、低分子化合物の形態であってもよく、重合体の一部に組み込まれた形態であってもよい。また、低分子化合物の形態と重合体の一部に組み込まれた形態を併用してもよい。
 光酸発生剤が、低分子化合物の形態である場合、分子量が3,000以下であることが好ましく、2,000以下であることがより好ましく、1,000以下であることが更に好ましい。
 光酸発生剤が、重合体の一部に組み込まれた形態である場合、樹脂(A)の一部に組み込まれてもよく、樹脂(A)とは異なる樹脂に組み込まれてもよい。
 パターン断面形状調整を目的に、光酸発生剤が有するフッ素原子の数は適宜調整される。フッ素原子を調整することで、レジスト膜中における光酸発生剤の表面偏在性の制御が可能になる。酸発生剤が有するフッ素原子が多いほど表面に偏在する。
 本開示において、光酸発生剤が、低分子化合物の形態であることが好ましい。
 光酸発生剤としては、公知のものであれば特に限定されないが、光、好ましくは電子線又は極紫外線の照射により、有機酸、例えば、スルホン酸、ビス(アルキルスルホニル)イミド、又はトリス(アルキルスルホニル)メチドの少なくともいずれかを発生する化合物が好ましい。
 より好ましくは下記式(ZI)、式(ZII)、又は、式(ZIII)で表される化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000022
 上記式(ZI)において、
 R201、R202及びR203はそれぞれ独立に、有機基を表す。 
 R201、R202及びR203としての有機基の炭素数は、1~30が好ましく、1~20がより好ましい。
 また、R201~R203のうち2つが結合して環構造を形成してもよく、環内に酸素原子、硫黄原子、エステル結合、アミド結合、カルボニル基を含んでいてもよい。R201~R203の内の2つが結合して形成する基としては、アルキレン基(例えば、ブチレン基、ペンチレン基)を挙げることができる。
 Zは、非求核性アニオン(求核反応を起こす能力が著しく低いアニオン)を表す。
 非求核性アニオンとしては、例えば、スルホン酸アニオン(脂肪族スルホン酸アニオン、芳香族スルホン酸アニオン、カンファースルホン酸アニオンなど)、カルボン酸アニオン(脂肪族カルボン酸アニオン、芳香族カルボン酸アニオン、アラルキルカルボン酸アニオンなど)、スルホニルイミドアニオン、ビス(アルキルスルホニル)イミドアニオン、トリス(アルキルスルホニル)メチドアニオン等を挙げられる。
 脂肪族スルホン酸アニオン及び脂肪族カルボン酸アニオンにおける脂肪族部位は、アルキル基であってもシクロアルキル基であってもよく、好ましくは炭素数1~30の直鎖又は分岐のアルキル基及び炭素数3~30のシクロアルキル基が挙げられる。
 芳香族スルホン酸アニオン及び芳香族カルボン酸アニオンにおける芳香族基としては、好ましくは炭素数6~14のアリール基、例えば、フェニル基、トリル基、ナフチル基等を挙げることができる。
 上記で挙げたアルキル基、シクロアルキル基及びアリール基は、置換基を有していてもよい。この具体例としては、ニトロ基、フッ素原子などのハロゲン原子、カルボキシル基、ヒドロキシ基、アミノ基、シアノ基、アルコキシ基(好ましくは炭素数1~15)、シクロアルキル基(好ましくは炭素数3~15)、アリール基(好ましくは炭素数6~14)、アルコキシカルボニル基(好ましくは炭素数2~7)、アシル基(好ましくは炭素数2~12)、アルコキシカルボニルオキシ基(好ましくは炭素数2~7)、アルキルチオ基(好ましくは炭素数1~15)、アルキルスルホニル基(好ましくは炭素数1~15)、アルキルイミノスルホニル基(好ましくは炭素数1~15)、アリールオキシスルホニル基(好ましくは炭素数6~20)、アルキルアリールオキシスルホニル基(好ましくは炭素数7~20)、シクロアルキルアリールオキシスルホニル基(好ましくは炭素数10~20)、アルキルオキシアルキルオキシ基(好ましくは炭素数5~20)、シクロアルキルアルキルオキシアルキルオキシ基(好ましくは炭素数8~20)等を挙げることができる。各基が有するアリール基及び環構造については、置換基として更にアルキル基(好ましくは炭素数1~15)を挙げることができる。
 アラルキルカルボン酸アニオンにおけるアラルキル基としては、好ましくは炭素数7~12のアラルキル基、例えば、ベンジル基、フェネチル基、ナフチルメチル基、ナフチルエチル基、ナフチルブチル基等を挙げることができる。
 スルホニルイミドアニオンとしては、例えば、サッカリンアニオンを挙げることができる。
 ビス(アルキルスルホニル)イミドアニオン、トリス(アルキルスルホニル)メチドアニオンにおけるアルキル基は、炭素数1~5のアルキル基が好ましい。これらのアルキル基の置換基としてはハロゲン原子、ハロゲン原子で置換されたアルキル基、アルコキシ基、アルキルチオ基、アルキルオキシスルホニル基、アリールオキシスルホニル基、シクロアルキルアリールオキシスルホニル基等を挙げることができ、フッ素原子又はフッ素原子で置換されたアルキル基が好ましい。
 また、ビス(アルキルスルホニル)イミドアニオンにおけるアルキル基は、互いに結合して環構造を形成してもよい。これにより、酸強度が増加する。
 その他の非求核性アニオンとしては、例えば、弗素化燐(例えば、PF )、弗素化硼素(例えば、BF )、弗素化アンチモン(例えば、SbF )等を挙げることができる。
 非求核性アニオンとしては、スルホン酸の少なくともα位がフッ素原子で置換された脂肪族スルホン酸アニオン、フッ素原子又はフッ素原子を有する基で置換された芳香族スルホン酸アニオン、アルキル基がフッ素原子で置換されたビス(アルキルスルホニル)イミドアニオン、又は、アルキル基がフッ素原子で置換されたトリス(アルキルスルホニル)メチドアニオンが好ましい。非求核性アニオンとして、より好ましくはパーフルオロ脂肪族スルホン酸アニオン(更に好ましくは炭素数4~8)、又は、フッ素原子を有するベンゼンスルホン酸アニオン、更により好ましくはノナフルオロブタンスルホン酸アニオン、パーフルオロオクタンスルホン酸アニオン、ペンタフルオロベンゼンスルホン酸アニオン、又は、3,5-ビス(トリフルオロメチル)ベンゼンスルホン酸アニオンである。
 酸強度の観点からは、発生酸のpKaが-1以下であることが、感度向上のために好ましい。
 また、非求核性アニオンとしては、以下の式(AN1)で表されるアニオンも好ましい態様として挙げられる。
Figure JPOXMLDOC01-appb-C000023
 式中、
 Xfはそれぞれ独立に、フッ素原子、又は少なくとも1つのフッ素原子で置換されたアルキル基を表す。
 R及びRはそれぞれ独立に、水素原子、フッ素原子、又は、アルキル基を表し、複数存在する場合のR、Rは、それぞれ同一でも異なっていてもよい。
 Lは、二価の連結基を表し、複数存在する場合のLは同一でも異なっていてもよい。
 Aは、環状の有機基を表す。
 xは1~20の整数を表し、yは0~10の整数を表し、zは0~10の整数を表す。
 式(AN1)について、更に詳細に説明する。
 Xfのフッ素原子で置換されたアルキル基におけるアルキル基としては、好ましくは炭素数1~10であり、より好ましくは炭素数1~4である。また、Xfのフッ素原子で置換されたアルキル基は、パーフルオロアルキル基であることが好ましい。
 Xfとして好ましくは、フッ素原子又は炭素数1~4のパーフルオロアルキル基である。Xfの具体的としては、フッ素原子、CF、C、C、C、CHCF、CHCHCF、CH、CHCH、CH、CHCH、CH、及び、CHCHが挙げられる。中でも、フッ素原子、又は、CFが好ましい。特に、双方のXfがフッ素原子であることが好ましい。
 R、Rのアルキル基は、置換基(好ましくはフッ素原子)を有していてもよく、炭素数1~4のものが好ましい。更に好ましくは炭素数1~4のパーフルオロアルキル基である。R、Rの置換基を有するアルキル基の具体例としては、CF、C、C、C、C11、C13、C15、C17、CHCF、CHCHCF、CH、CHCH、CH、CHCH、CH、CHCHが挙げられ、中でもCFが好ましい。
 R、Rとしては、好ましくはフッ素原子又はCFである。
 xは、1~10が好ましく、1~5がより好ましい。
 yは、0~4が好ましく、0がより好ましい。
 zは、0~5が好ましく、0~3がより好ましい。
 Lの2価の連結基としては特に限定されず、―COO-、-OCO-、-CO-、-O-、-S―、-SO―、―SO-、アルキレン基、シクロアルキレン基、アルケニレン基又はこれらの複数が連結した連結基などを挙げることができ、総炭素数12以下の連結基が好ましい。このなかでも―COO-、-OCO-、-CO-、-O-が好ましく、―COO-、-OCO-がより好ましい。
 Aの環状の有機基としては、環状構造を有するものであれば特に限定されず、脂環基、アリール基、複素環基(芳香族性を有するものだけでなく、芳香族性を有さないものも含む)等が挙げられる。
 脂環基としては、単環でも多環でもよく、シクロペンチル基、シクロヘキシル基、シクロオクチル基などの単環のシクロアルキル基、ノルボルニル基、トリシクロデカニル基、テトラシクロデカニル基、テトラシクロドデカニル基、アダマンチル基などの多環のシクロアルキル基が好ましい。中でも、ノルボルニル基、トリシクロデカニル基、テトラシクロデカニル基、テトラシクロドデカニル基、アダマンチル基等の炭素数7以上のかさ高い構造を有する脂環基が、露光後加熱工程での膜中拡散性を抑制でき、MEEF(mask error enhancement factor)向上の観点から好ましい。
 アリール基としては、ベンゼン環、ナフタレン環、フェナンスレン環、アントラセン環が挙げられる。
 複素環基としては、フラン環、チオフェン環、ベンゾフラン環、ベンゾチオフェン環、ジベンゾフラン環、ジベンゾチオフェン環、ピリジン環由来のものが挙げられる。中でもフラン環、チオフェン環又はピリジン環由来のものが好ましい。
 また、環状の有機基としては、ラクトン構造も挙げることができ、具体例としては、上記式(LC1-1)~式(LC1-17)のいずれかで表されるラクトン構造を挙げることができる。
 上記環状の有機基は、置換基を有していてもよく、上記置換基としては、アルキル基(直鎖、分岐、環状のいずれであっても良く、炭素数1~12が好ましい。)、シクロアルキル基(単環、多環、スピロ環のいずれであってもよく、炭素数3~20が好ましい。)、アリール基(炭素数6~14が好ましい。)、ヒドロキシ基、アルコキシ基、エステル基、アミド基、ウレタン基、ウレイド基、チオエーテル基、スルホンアミド基、スルホン酸エステル基等が挙げられる。なお、環状の有機基を構成する炭素(環形成に寄与する炭素)はカルボニル炭素であってもよい。
 R201、R202及びR203の有機基としては、アリール基、アルキル基、シクロアルキル基などが挙げられる。
 R201、R202及びR203のうち、少なくとも1つがアリール基であることが好ましく、三つ全てがアリール基であることがより好ましい。アリール基としては、フェニル基、ナフチル基などの他に、インドール残基、ピロール残基などのヘテロアリール基も可能である。R201~R203のアルキル基及びシクロアルキル基としては、好ましくは、炭素数1~10の直鎖又は分岐アルキル基、炭素数3~10のシクロアルキル基を挙げることができる。アルキル基として、より好ましくはメチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基等を挙げることができる。シクロアルキル基として、より好ましくは、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロへプチル基等を挙げることができる。これらの基は更に置換基を有していてもよい。その置換基としては、ニトロ基、フッ素原子などのハロゲン原子、カルボキシ基、ヒドロキシ基、アミノ基、シアノ基、アルコキシ基(好ましくは炭素数1~15)、シクロアルキル基(好ましくは炭素数3~15)、アリール基(好ましくは炭素数6~14)、アルコキシカルボニル基(好ましくは炭素数2~7)、アシル基(好ましくは炭素数2~12)、アルコキシカルボニルオキシ基(好ましくは炭素数2~7)等が挙げられるが、これらに限定されるものではない。
 式(AN1)で表されるアニオンの好ましい例としては、以下が挙げられる。下記例においてAは環状の有機基を表す。
 SO-CF-CH-OCO-A、SO-CF-CHF-CH-OCO-A、SO-CF-COO-A、SO-CF-CF-CH-A、SO-CF-CH(CF)-OCO-A
 式(ZII)、(ZIII)中、R204~R207はそれぞれ独立に、アリール基、アルキル基又はシクロアルキル基を表す。
 R204~R207のアリール基、アルキル基、シクロアルキル基としては、前述の化合物(ZI)におけるR201~R203のアリール基、アルキル基、シクロアルキル基として説明したアリール基と同様である。
 R204~R207のアリール基、アルキル基、シクロアルキル基は、置換基を有していてもよい。この置換基としても、上述の化合物(ZI)におけるR201~R203のアリール基、アルキル基、シクロアルキル基が有していてもよいものが挙げられる。
 Zは、非求核性アニオンを表し、式(ZI)におけるZの非求核性アニオンと同様のものを挙げることができる。
 本開示においては、上記光酸発生剤は、露光で発生した酸の非露光部への拡散を抑制し解像性を良好にする観点から、電子線又は極紫外線の照射により、体積130Å(10Å=1nm)以上の大きさの酸(より好ましくはスルホン酸)を発生する化合物であることが好ましく、体積190Å以上の大きさの酸(より好ましくはスルホン酸)を発生する化合物であることがより好ましく、体積270Å以上の大きさの酸(より好ましくはスルホン酸)を発生する化合物であることが更に好ましく、体積400Å以上の大きさの酸(より好ましくはスルホン酸)を発生する化合物であることが特に好ましい。ただし、感度や塗布溶剤溶解性の観点から、上記体積は、2000Å以下であることが好ましく、1500Å以下であることが更に好ましい。上記体積の値は、富士通(株)製の「WinMOPAC」を用いて求めた。すなわち、まず、各例に係る酸の化学構造を入力し、次に、この構造を初期構造としてMM3法を用いた分子力場計算により、各酸の最安定立体配座を決定し、その後、これら最安定立体配座についてPM3法を用いた分子軌道計算を行うことにより、各酸の「accessible volume」を計算することができる。
 光酸発生剤としては、特開2014-41328号公報の段落0368~0377、特開2013-228681号公報の段落[240~0262(対応する米国特許出願公開第2015/004533号明細書の段落0339)が援用でき、これらの内容は本願明細書に組み込まれる。また、好ましい具体例として以下の化合物が挙げられるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
 光酸発生剤は、1種類単独で又は2種類以上を組み合わせて使用することができる。
 光酸発生剤の含有量は、上記レジスト層の全質量に対し、0.1質量%~50質量%が好ましく、5質量%~50質量%がより好ましく、8質量%~40質量%が更に好ましい。特に、電子線や極紫外線露光の際に高感度化、高解像性を両立するには光酸発生剤の含有率は高いほうが好ましく、10質量%~40質量%が特に好ましく、10質量%~35質量%が最も好ましい。
〔塩基性化合物〕
 上記レジスト層は、露光から加熱までの経時による性能変化を低減するために、塩基性化合物を含有することが好ましい。
 塩基性化合物としては、好ましくは、下記式(A)~式(E)で示される構造を有する化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000028
 式(A)及び式(E)中、R200、R201及びR202は、同一でも異なってもよく、水素原子、アルキル基(好ましくは炭素数1~20)、シクロアルキル基(好ましくは炭素数3~20)又はアリール基(好ましくは炭素数6~20)を表し、ここで、R201とR202は、互いに結合して環を形成してもよい。
 上記アルキル基について、置換基を有するアルキル基としては、炭素数1~20のアミノアルキル基、炭素数1~20のヒドロキシアルキル基、又は炭素数1~20のシアノアルキル基が好ましい。
 R203、R204、R205及びR206は、同一でも異なってもよく、炭素数1~20のアルキル基を表す。
 これら式(A)及び式(E)中のアルキル基は、無置換であることがより好ましい。
 好ましい化合物として、グアニジン、アミノピロリジン、ピラゾール、ピラゾリン、ピペラジン、アミノモルホリン、アミノアルキルモルフォリン、ピペリジン等を挙げることができ、更に好ましい化合物として、イミダゾール構造、ジアザビシクロ構造、オニウムヒドロキシド構造、オニウムカルボキシレート構造、トリアルキルアミン構造、アニリン構造又はピリジン構造を有する化合物、ヒドロキシ基及び/又はエーテル結合を有するアルキルアミン誘導体、ヒドロキシ基及び/又はエーテル結合を有するアニリン誘導体等を挙げることができる。
 好ましい塩基性化合物として、更に、フェノキシ基を有するアミン化合物、フェノキシ基を有するアンモニウム塩化合物を挙げることができる。
 アミン化合物は、一級、二級又は三級のアミン化合物を使用することができ、少なくとも1つのアルキル基が窒素原子に結合しているアミン化合物が好ましい。アミン化合物は、三級アミン化合物であることがより好ましい。アミン化合物は、少なくとも1つのアルキル基(好ましくは炭素数1~20)が窒素原子に結合していれば、アルキル基の他に、シクロアルキル基(好ましくは炭素数3~20)又はアリール基(好ましくは炭素数6~12)が窒素原子に結合していてもよい。
 また、アミン化合物は、アルキル鎖中に、酸素原子を有し、オキシアルキレン基が形成されていることが好ましい。オキシアルキレン基の数は、分子内に1つ以上、好ましくは3個~9個、より好ましくは4個~6個である。オキシアルキレン基の中でも、オキシエチレン基(-CHCHO-)、又は、オキシプロピレン基(-CH(CH)CHO-若しくは-CHCHCHO-)が好ましく、オキシエチレン基がより好ましい。
 アンモニウム塩化合物は、一級、二級、三級又は四級のアンモニウム塩化合物を使用することができ、少なくとも1つのアルキル基が窒素原子に結合しているアンモニウム塩化合物が好ましい。アンモニウム塩化合物は、少なくとも1つのアルキル基(好ましくは炭素数1~20)が窒素原子に結合していれば、アルキル基の他に、シクロアルキル基(好ましくは炭素数3~20)又はアリール基(好ましくは炭素数6~12)が窒素原子に結合していてもよい。
 アンモニウム塩化合物は、アルキル鎖中に、酸素原子を有し、オキシアルキレン基が形成されていることが好ましい。オキシアルキレン基の数は、分子内に1つ以上、好ましくは3個~9個、より好ましくは4個~6個である。オキシアルキレン基の中でもオキシエチレン基(-CHCHO-)、又は、オキシプロピレン基(-CH(CH)CHO-若しくは-CHCHCHO-)が好ましく、オキシエチレン基がより好ましい。
 アンモニウム塩化合物のアニオンとしては、ハロゲン原子、スルホネート、ボレート、フォスフェート等が挙げられるが、中でも、ハロゲン原子、又は、スルホネートが好ましい。ハロゲン原子としては、クロライド、ブロマイド、アイオダイドが好ましい。スルホネートとしては、炭素数1~20の有機スルホネートが好ましい。
 フェノキシ基を有するアミン化合物は、フェノキシ基を有する一級又は二級アミンとハロアルキルエーテルを加熱して反応させた後、水酸化ナトリウム、水酸化カリウム、テトラアルキルアンモニウム等の強塩基の水溶液を添加した後、酢酸エチル、クロロホルム等の有機溶剤で抽出することにより得ることができる。又は、一級又は二級アミンと末端にフェノキシ基を有するハロアルキルエーテルを加熱して反応させた後、水酸化ナトリウム、水酸化カリウム、テトラアルキルアンモニウム等の強塩基の水溶液を添加した後、酢酸エチル、クロロホルム等の有機溶剤で抽出することにより得ることができる。
 上述した塩基性化合物の具体例としては、例えば、国際公開第2015/178375号の段落0237~0294に記載されたものを援用することができ、これらの内容は本明細書に組み込まれる。
 上記レジスト層は、塩基性化合物として、プロトンアクセプター性官能基を有し、かつ、活性光線又は放射線の照射により分解してプロトンアクセプター性が低下、消失、又はプロトンアクセプター性から酸性に変化した化合物を発生する化合物〔以下、化合物(PA)ともいう〕を更に含んでいてもよい。
 プロトンアクセプター性官能基とは、プロトンと静電的に相互作用し得る基或いは電子を有する官能基であって、例えば、環状ポリエーテル等のマクロサイクリック構造を有する官能基や、π共役に寄与しない非共有電子対をもった窒素原子を有する官能基を意味する。π共役に寄与しない非共有電子対を有する窒素原子とは、例えば、下記式に示す部分構造を有する窒素原子である。
Figure JPOXMLDOC01-appb-C000029
 プロトンアクセプター性官能基の好ましい部分構造として、例えば、クラウンエーテル、アザクラウンエーテル、一級~三級アミン、ピリジン、イミダゾール、ピラジン構造などを挙げることができる。
 化合物(PA)は、光の照射により分解してプロトンアクセプター性が低下、消失、又はプロトンアクセプター性から酸性に変化した化合物を発生する。ここで、プロトンアクセプター性の低下、消失、又はプロトンアクセプター性から酸性への変化とは、プロトンアクセプター性官能基にプロトンが付加することに起因するプロトンアクセプター性の変化であり、具体的には、プロトンアクセプター性官能基を有する化合物(PA)とプロトンからプロトン付加体が生成する時、その化学平衡における平衡定数が減少することを意味する。
 化合物(PA)の具体例としては、例えば、下記化合物を挙げることができる。更に、化合物(PA)の具体例としては、例えば、特開2014-41328号公報の段落0421~0428、特開2014-134686号公報の段落0108~0116に記載されたものを援用することができ、これらの内容は本明細書に組み込まれる。
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
 これらの塩基性化合物は、単独であるいは2種以上一緒に用いられる。
 塩基性化合物の含有量は、上記レジスト層の全質量に対し、0.001質量%~10質量%であることが好ましく、0.01質量%~5質量%であることがより好ましい。
 酸発生剤と塩基性化合物との使用割合は、酸発生剤/塩基性化合物(モル比)=2.5~300であることが好ましい。すなわち、感度、及び、解像度の点から、モル比が2.5以上であることが好ましく、露光後加熱処理までの経時でのレジストパターンの太りによる解像度の低下抑制の点から、300以下であることが好ましい。また、酸発生剤/塩基性化合物(モル比)は、5.0~200であることがより好ましく、7.0~150であることが更に好ましい。
 塩基性化合物としては、例えば、特開2013-11833号公報の段落0140~0144に記載の化合物(アミン化合物、アミド基含有化合物、ウレア化合物、含窒素複素環化合物等)を用いることができる。
〔疎水性樹脂〕
 上記レジスト層は、樹脂(A)とは異なる疎水性樹脂を更に含有していてもよい。
 疎水性樹脂は、レジスト膜の表面に偏在するように設計されることが好ましいが、界面活性剤とは異なり、必ずしも分子内に親水基を有する必要はなく、極性/非極性物質を均一に混合することに寄与しなくてもよい。
 疎水性樹脂を添加することの効果として、水に対するレジスト膜表面の静的/動的な接触角の制御、アウトガスの抑制などを挙げることができる。
 疎水性樹脂は、膜表層への偏在化の観点から、“フッ素原子”、“ケイ素原子”、及び、“樹脂の側鎖部分に含有されたCH部分構造”のいずれか1種以上を有することが好ましく、2種以上を有することがさらに好ましい。また、上記疎水性樹脂は、炭素数5以上の炭化水素基を含有することが好ましい。これらの基は樹脂の主鎖中に有していても、側鎖に置換していてもよい。
 疎水性樹脂が、フッ素原子若しくはケイ素原子、又は、その両方を含む場合、疎水性樹脂における上記フッ素原子及びケイ素原子は、樹脂の主鎖中に含まれていてもよく、側鎖中に含まれていてもよい。
 疎水性樹脂がフッ素原子を含んでいる場合、フッ素原子を有する部分構造として、フッ素原子を有するアルキル基、フッ素原子を有するシクロアルキル基、又は、フッ素原子を有するアリール基を有する樹脂であることが好ましい。
 フッ素原子を有するアルキル基(好ましくは炭素数1~10、より好ましくは炭素数1~4)は、少なくとも1つの水素原子がフッ素原子で置換された直鎖又は分岐アルキル基であり、更にフッ素原子以外の置換基を有していてもよい。
 フッ素原子を有するシクロアルキル基は、少なくとも1つの水素原子がフッ素原子で置換された単環又は多環のシクロアルキル基であり、更にフッ素原子以外の置換基を有していてもよい。
 フッ素原子を有するアリール基としては、フェニル基、ナフチル基などのアリール基の少なくとも1つの水素原子がフッ素原子で置換されたものが挙げられ、更にフッ素原子以外の置換基を有していてもよい。
 フッ素原子又はケイ素原子を有する構成単位の例としては、米国特許出願公開第2012/0251948号明細書の段落0519に例示されたものを挙げることができる。
 また、上記したように、疎水性樹脂は、側鎖部分にCH部分構造を含むことも好ましい。
 ここで、疎水性樹脂中の側鎖部分が有するCH部分構造には、エチル基、プロピル基等が有するCH部分構造を包含するものである。
 一方、疎水性樹脂の主鎖に直接結合しているメチル基(例えば、メタクリル酸構造を有する構成単位のα-メチル基)は、主鎖の影響により疎水性樹脂の表面偏在化への寄与が小さいため、本発明におけるCH部分構造に包含されないものとする。
 疎水性樹脂に関しては、特開2014-010245号公報の段落0348~0415の記載を参酌でき、これらの内容は本願明細書に組み込まれる。
 なお、疎水性樹脂としてはこの他にも特開2011-248019号公報、特開2010-175859号公報、特開2012-032544号公報に記載のものも好ましく用いることができる。
 疎水性樹脂は、1種単独で含有していても、2種以上を含有していてもよい。
 疎水性樹脂の含有量は、上記レジスト層の全質量に対し、0.01質量%~20質量%であることが好ましく、0.01質量%~10質量%であることがより好ましく、0.05質量%~8質量%であることが更に好ましく、0.5質量%~5質量%であることが特に好ましい。
〔界面活性剤〕
 上記レジスト層は、界面活性剤を更に含んでいてもよい。界面活性剤を含有することにより、波長が250nm以下、特には220nm以下の露光光源を使用した場合に、良好な感度及び解像度で、密着性及び現像欠陥のより少ないパターンを形成することが可能となる。
 界面活性剤としては、フッ素系界面活性剤、シリコン系界面活性剤、又は、その両方を用いることが特に好ましい。
 フッ素系及び/又はシリコン系界面活性剤としては、例えば、米国特許出願公開第2008/0248425号明細書の段落0276に記載の界面活性剤が挙げられる。また、エフトップEF301、EF303(新秋田化成(株)製);フロラードFC430、431、4430(住友スリーエム(株)製);メガファックF171、F173、F176、F189、F113、F110、F177、F120、R08(DIC(株)製);サーフロンS-382、SC101、102、103、104、105、106(旭硝子(株)製);トロイゾルS-366(トロイケミカル(株)製);アロンGF-300、GF-150(東亞合成(株)製)、サーフロンS-393(セイミケミカル(株)製);エフトップEF121、EF122A、EF122B、RF122C、EF125M、EF135M、EF351、EF352、EF801、EF802、EF601((株)ジェムコ製);PF636、PF656、PF6320、PF6520(OMNOVA社製);又は、FTX-204G、208G、218G、230G、204D、208D、212D、218D、222D((株)ネオス製)を用いてもよい。なお、ポリシロキサンポリマーKP-341(信越化学工業(株)製)も、シリコン系界面活性剤として用いることができる。
 また、界面活性剤は、上記に示すような公知のものの他に、テロメリゼーション法(テロマー法ともいわれる。)又はオリゴメリゼーション法(オリゴマー法ともいわれる。)により製造されたフルオロ脂肪族化合物を用いて合成してもよい。具体的には、このフルオロ脂肪族化合物から導かれたフルオロ脂肪族基を備えた重合体を、界面活性剤として用いてもよい。このフルオロ脂肪族化合物は、例えば、特開2002-90991号公報に記載された方法によって合成することができる。
 また、米国特許出願公開第2008/0248425号明細書の段落0280に記載されているフッ素系及び/又はシリコン系以外の界面活性剤を使用してもよい。
 これら界面活性剤は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 界面活性剤の含有量は、上記レジスト層の全質量に対し、0.0001質量%~2質量%であることが好ましく、0.0005質量%~1質量%であることがより好ましい。
〔その他の添加剤〕
 上記レジスト層は、上述した以外のその他の添加剤を更に含んでいてもよい。
 その他の添加剤としては、公知の添加剤を用いることができる。例えば、溶解阻止化合物、染料、可塑剤、光増感剤、光吸収剤、及び/又は現像液に対する溶解性を促進させる化合物(例えば、分子量1,000以下のフェノール化合物、又はカルボキシ基を含んだ脂環族若しくは脂肪族化合物)等が挙げられる。
 上記レジスト層は、溶解阻止化合物を更に含んでいてもよい。ここで「溶解阻止化合物」とは、酸の作用により分解して有機系現像液中での溶解度が減少する、分子量3,000以下の化合物である。
〔レジスト層の形成方法〕
 レジスト層は、上記成分を含む感光性樹脂組成物を調製し、好適に形成することができる。
 感光性樹脂組成物としては、上記の成分を所定の有機溶剤、好ましくは上記混合溶剤に溶解し、これをフィルター濾過した後、例えば、上記無機下地層上に塗布して用いる。フィルター濾過に用いるフィルターのポアサイズ(孔径)は0.1μm以下が好ましく、0.05μm以下がより好ましく、0.03μm以下が更に好ましい。上記フィルターは、ポリテトラフルオロエチレン製、ポリエチレン製、又はナイロン製のものが好ましい。フィルター濾過においては、例えば特開第2002-62667号公報に開示されるように、循環的な濾過を行ってもよく、複数種類のフィルターを直列又は並列に接続して濾過を行ってもよい。また、組成物を複数回濾過してもよい。更に、フィルター濾過の前後で、組成物に対して脱気処理等を行ってもよい。
〔〔溶剤〕〕
 上記感光性樹脂組成物は、溶剤(「レジスト溶剤」ともいう。)を含むことが好ましい。溶剤には異性体(同じ原子数で異なる構造の化合物)が含まれていてもよい。また、異性体は、1種のみが含まれていてもよいし、複数種含まれていてもよい。溶剤は、(M1)プロピレングリコールモノアルキルエーテルカルボキシレートと、(M2)プロピレングリコールモノアルキルエーテル、乳酸エステル、酢酸エステル、アルコキシプロピオン酸エステル、鎖状ケトン、環状ケトン、ラクトン、及びアルキレンカーボネートよりなる群から選択される少なくとも1つとの少なくとも一方を含んでいることが好ましい。なお、この溶剤は、成分(M1)及び(M2)以外の成分を更に含んでいてもよい。
 成分(M1)としては、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルプロピオネート、及び、プロピレングリコールモノエチルエーテルアセテートよりなる群から選択される少なくとも1つが好ましく、プロピレングリコールモノメチルエーテルアセテートが特に好ましい。
 成分(M2)としては、以下のものが好ましい。
 プロピレングリコールモノアルキルエーテルとしては、プロピレングリコールモノメチルエーテル又はプロピレングリコールモノエチルエーテルが好ましい。
 乳酸エステルとしては、乳酸エチル、乳酸ブチル、又は、乳酸プロピルが好ましい。
 酢酸エステルとしては、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸イソブチル、酢酸プロピル、酢酸イソアミル、蟻酸メチル、蟻酸エチル、蟻酸ブチル、蟻酸プロピル、又は酢酸3-メトキシブチルが好ましい。また、酪酸ブチルも好ましい。
 アルコキシプロピオン酸エステルとしては、3-メトキシプロピオン酸メチル(MMP)、又は、3-エトキシプロピオン酸エチル(EEP)が好ましい。
 鎖状ケトンとしては、1-オクタノン、2-オクタノン、1-ノナノン、2-ノナノン、アセトン、4-ヘプタノン、1-ヘキサノン、2-ヘキサノン、ジイソブチルケトン、フェニルアセトン、メチルエチルケトン、メチルイソブチルケトン、アセチルアセトン、アセトニルアセトン、イオノン、ジアセトニルアルコール、アセチルカービノール、アセトフェノン、メチルナフチルケトン、又はメチルアミルケトンが好ましい。
 環状ケトンとしては、メチルシクロヘキサノン、イソホロン、又は、シクロヘキサノンが好ましい。
 ラクトンとしては、γ-ブチロラクトンが好ましい。
 アルキレンカーボネートとしては、プロピレンカーボネートが好ましい。
 成分(M2)としては、プロピレングリコールモノメチルエーテル、乳酸エチル、3-エトキシプロピオン酸エチル、メチルアミルケトン、シクロヘキサノン、酢酸ブチル、酢酸ペンチル、γ-ブチロラクトン又はプロピレンカーボネートがより好ましい。
 上記成分の他、炭素数が7以上(7~14が好ましく、7~12がより好ましく、7~10が更に好ましい。)、かつヘテロ原子数が2以下のエステル系溶剤を用いることが好ましい。
 炭素数が7以上かつヘテロ原子数が2以下のエステル系溶剤の好ましい例としては、酢酸アミル、酢酸2-メチルブチル、酢酸1-メチルブチル、酢酸ヘキシル、プロピオン酸ペンチル、プロピオン酸ヘキシル、プロピオン酸ブチル、イソ酪酸イソブチル、プロピオン酸ヘプチル、ブタン酸ブチルなどが挙げられ、酢酸イソアミルを用いることが特に好ましい。
 成分(M2)としては、引火点(以下、fpともいう)が37℃以上であるものを用いることが好ましい。このような成分(M2)としては、プロピレングリコールモノメチルエーテル(fp:47℃)、乳酸エチル(fp:53℃)、3-エトキシプロピオン酸エチル(fp:49℃)、メチルアミルケトン(fp:42℃)、シクロヘキサノン(fp:44℃)、酢酸ペンチル(fp:45℃)、2-ヒドロキシイソ酪酸メチル(fp:45℃)、γ-ブチロラクトン(fp:101℃)又はプロピレンカーボネート(fp:132℃)が好ましい。これらのうち、プロピレングリコールモノエチルエーテル、乳酸エチル、酢酸ペンチル、又はシクロヘキサノンが更に好ましく、プロピレングリコールモノエチルエーテル又は乳酸エチルが特に好ましい。なお、ここで「引火点」とは、東京化成工業(株)又はシグマアルドリッチ社の試薬カタログに記載されている値を意味している。
 溶剤は、成分(M1)を含んでいることが好ましい。溶剤は、実質的に成分(M1)のみからなるか、又は、成分(M1)と他の成分との混合溶剤であることがより好ましい。後者の場合、溶剤は、成分(M1)と成分(M2)との双方を含んでいることが更に好ましい。
 成分(M1)と成分(M2)との質量比は、100:0乃至15:85の範囲内にあることが好ましく、100:0乃至40:60の範囲内にあることがより好ましく、100:0乃至60:40の範囲内にあることが更に好ましい。即ち、溶剤は、成分(M1)のみからなるか、又は、成分(M1)と成分(M2)との双方を含んでおり且つそれらの質量比が以下の通りであることが好ましい。即ち、後者の場合、成分(M2)に対する成分(M1)の質量比は、15/85以上であることが好ましく、40/60以上であることよりが好ましく、60/40以上であることが更に好ましい。このような構成を採用すると、現像欠陥数を更に減少させることが可能となる。
 なお、溶剤が成分(M1)と成分(M2)との双方を含んでいる場合、成分(M2)に対する成分(M1)の質量比は、例えば、99/1以下とする。
 上述した通り、溶剤は、成分(M1)及び(M2)以外の成分を更に含んでいてもよい。この場合、成分(M1)及び(M2)以外の成分の含有量は、溶剤の全量に対して、5質量%乃至30質量%の範囲内にあることが好ましい。
 上記感光性樹脂組成物における溶剤の含有量は、塗布性の観点から、全成分の固形分濃度が0.5質量%~30質量%となる量であることが好ましく、1質量%~20質量%となる量であることがより好ましい。
 また、上記感光性樹脂組成物の固形分濃度は、作製するレジスト膜の厚みを調整する目的で適宜調整できる。
 本開示に係る感光性樹脂組成物からなるレジスト膜の膜厚は、特に限定されないが、解像力向上の観点から、200nm以下であることが好ましく、90nm以下であることがより好ましく、10nm以上85nm以下であることが更に好ましく、30nm以上70nm以下であることが特に好ましい。組成物中の固形分濃度を適切な範囲に設定して適度な粘度をもたせ、塗布性又は製膜性を向上させることにより、容易にこのような膜厚とすることができる。
-その他の層-
 上記積層体は、上述した以外のその他の層を有していてもよい。
 その他の層としては、公知の層を有することができる。
 例えば、上記積層体は、上記レジスト層上にトップコート層を有していてもよい。
 トップコート層については、特に限定されず、従来公知のトップコート層を、従来公知の方法によって形成でき、例えば、特開2014-059543号公報の段落0072~0082の記載に基づいてトップコートを形成できる。
 トップコート層の厚さは、10nm~200nmであることが好ましく、20nm~100nmであることがより好ましく、40nm~80nmであることが特に好ましい。
<露光工程>
 本開示に係るパターン形成方法は、上記レジスト層を露光する工程(「露光工程」ともいう。)を含む。
 露光工程は、例えば次の方法により行うことができる。
 上記レジスト層に、所定のマスクを通して光を照射する。なお、電子ビームの照射では、マスクを介さない描画(直描)が一般的である。
 露光に使用する光としては特に限定されないが、例えばKrFエキシマレーザー、ArFエキシマレーザー、極紫外線(EUV、Extreme Ultra Violet)、電子線(EB、Electron Beam)等であり、極紫外線又は電子線が特に好ましい。露光は液浸露光であってもよい。
 中でも、エッチング耐性、及び、解像度の観点から、上記露光工程における露光を、5nm~20nmの波長の紫外線により行うことが好ましい。
 露光量としては、5mJ/cm~200mJ/cmであることが好ましく、10mJ/cm~100mJ/cmであることがより好ましい。
<ベーク工程>
 本開示に係るパターン形成方法は、露光工程後、現像工程前にベーク(PEB:Post Exposure Bake)を行うことが好ましい。ベークにより露光部の反応が促進され、感度やパターン形状がより良好となる。
 加熱温度は、80℃~150℃が好ましく、80℃~140℃がより好ましく、80℃~130℃が更に好ましい。
 加熱時間は、30秒~1,000秒が好ましく、60秒~800秒がより好ましく、60秒~600秒が更に好ましい。
 加熱は、公知の露光現像機に備わっている手段で行うことができ、ホットプレート等を用いて行ってもよい。
<現像工程>
 本開示に係るパターン形成方法は、上記積層体を有機溶剤を含む現像液により現像してネガ型のパターン形成を行う工程(「現像工程」ともいう。)を含む。
 上記現像工程における現像は、有機溶剤を含む現像液で行う。
 現像方法としては、例えば、有機溶剤を含む現像液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、基板表面に有機溶剤を含む現像液を表面張力によって盛り上げて一定時間静止することで現像する方法(パドル法)、基板表面に有機溶剤を含む現像液を噴霧する方法(スプレー法)、一定速度で回転している基板上に一定速度で現像液吐出ノズルをスキャンしながら有機溶剤を含む現像液を吐出しつづける方法(ダイナミックディスペンス法)などを適用することができる。
 また、現像工程の後に、他の溶剤に置換しながら、現像を停止する工程を実施してもよい。
 現像時間は露光部又は未露光部の樹脂が十分に溶解する時間であれば特に制限はなく、10秒~300秒であることが好ましく、10秒~120秒であることがより好ましい。
 有機溶剤を含む現像液の温度は、0℃~50℃が好ましく、15℃~35℃がより好ましい。
 次に、現像液に含まれる有機溶剤について説明する。
 有機溶剤の蒸気圧(混合溶剤である場合は全体としての蒸気圧)は、20℃において、5kPa以下が好ましく、3kPa以下が更に好ましく、2kPa以下が特に好ましい。有機溶剤の蒸気圧を5kPa以下にすることにより、現像液の基板上あるいは現像カップ内での蒸発が抑制され、ウエハ面内の温度均一性が向上し、結果としてウエハ面内の寸法均一性が良化する。
 有機溶剤としては、種々の有機溶剤が広く使用されるが、たとえば、エステル系溶剤、ケトン系溶剤、アルコール系溶剤、アミド系溶剤、エーテル系溶剤、炭化水素系溶剤等の溶剤を用いることができる。
 中でも、上記現像液は、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤、エーテル系溶剤、及び炭化水素系溶剤からなる群より選択される少なくとも1種の有機溶剤を含有する現像液であることが好ましい。
-ケトン系溶剤-
 ケトン系溶剤としては、例えば、1-オクタノン、2-オクタノン、1-ノナノン、2-ノナノン、アセトン、2-ヘプタノン(メチルアミルケトン)、4-ヘプタノン、1-ヘキサノン、2-ヘキサノン、ジイソブチルケトン、シクロヘキサノン、メチルシクロヘキサノン、フェニルアセトン、メチルエチルケトン、メチルイソブチルケトン、アセチルアセトン、アセトニルアセトン、イオノン、ジアセトニルアルコール、アセチルカービノール、アセトフェノン、メチルナフチルケトン、イソホロン、及びプロピレンカーボネート等を挙げることができる。
-エステル系溶剤-
 エステル系溶剤としては、例えば、酢酸メチル、酢酸ブチル、酢酸エチル、酢酸イソプロピル、酢酸ペンチル、酢酸イソペンチル、酢酸アミル、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、エチルー3-エトキシプロピオネート、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、蟻酸メチル、蟻酸エチル、蟻酸ブチル、蟻酸プロピル、乳酸エチル、乳酸ブチル、乳酸プロピル、ブタン酸ブチル、2-ヒドロキシイソ酪酸メチル、酢酸イソアミル、イソ酪酸イソブチル、及びプロピオン酸ブチル等を挙げることができる。
-その他の溶剤-
 アルコール系溶剤、アミド系溶剤、エーテル系溶剤、及び炭化水素系溶剤としては、米国特許出願公開第2016/0070167号明細書の段落0715~0718に開示された溶剤を使用できる。
 上記の溶剤は、複数混合してもよいし、上記以外の溶剤又は水と混合してもよい。現像液全体としての含水率は、50質量%未満が好ましく、20質量%未満がより好ましく、10質量%未満であることが更に好ましく、実質的に水を含有しないことが特に好ましい。
 上記現像液における有機溶剤の含有量は、現像液の全量に対して、50質量%以上100質量%以下が好ましく、80質量%以上100質量%以下がより好ましく、90質量%以上100質量%以下が更に好ましく、95質量%以上100質量%以下が特に好ましい。
 現像液に含まれる有機溶剤は、上記露光工程において極紫外線(EUV)又は電子線(EB)を用いる場合において、上記レジスト層の膨潤を抑制できるという点から、炭素原子数が6以上(6~14が好ましく、6~12がより好ましく、6~10が更に好ましい。)、かつヘテロ原子数が2以下のエステル系溶剤を用いることが好ましい。
 上記エステル系溶剤のヘテロ原子は、炭素原子及び水素原子以外の原子であって、例えば、酸素原子、窒素原子、硫黄原子等が挙げられる。ヘテロ原子の数は、2以下が好ましい。
 炭素原子数が6以上かつヘテロ原子数が2以下のエステル系溶剤の好ましい例としては、酢酸ブチル、酢酸アミル、酢酸イソアミル、酢酸2-メチルブチル、酢酸1-メチルブチル、酢酸ヘキシル、プロピオン酸ペンチル、プロピオン酸ヘキシル、プロピオン酸ブチル、イソ酪酸イソブチル、プロピオン酸ヘプチル、ブタン酸ブチルなどが挙げられ、酢酸イソアミルを用いることが特に好ましい。
 上記現像液は、酸化防止剤を含有することも好ましい。これにより、経時的な酸化剤の発生を抑制でき、酸化剤の含有量をより低下できる。酸化防止剤としては、公知のものが使用できるが、半導体用途に用いる場合、アミン系酸化防止剤、フェノール系酸化防止剤が好ましく用いられる。
 酸化防止剤の含有量は、特に限定されないが、現像液の全質量に対して、0.0001質量%~1質量%が好ましく、0.0001質量%~0.1質量%がより好ましく、0.0001質量%~0.01質量%が更に好ましい。0.0001質量%以上であるとより優れた酸化防止効果が得られ、1質量%以下であることで、現像残渣を抑制できる傾向にある。
 現像液は、塩基性化合物を含有していてもよく、具体的には、上記レジスト層が含有してもよい塩基性化合物と同様のものが挙げられる。
 現像液は、界面活性剤を含有してもよい。現像液が界面活性剤を含有することにより、感活性光線性又は感放射線性膜に対する濡れ性が向上して、現像がより効果的に進行する。
 界面活性剤としては、上記レジスト層が含有し得る界面活性剤と同様のものを用いることができる。
 現像液が界面活性剤を含有する場合、界面活性剤の含有量は、現像液の全質量に対して、0.001~5質量%であることが好ましく、より好ましくは0.005~2質量%であり、更に好ましくは0.01~0.5質量%である。
<リンス工程>
 本開示に係るパターン形成方法は、現像工程の後に、上記積層体の表面をリンス液二より処理する工程(「リンス工程」ともいう。)を含んでいてもよい。
 リンス工程においては、現像を行ったウエハをリンス液を用いて洗浄処理する。
 洗浄処理の方法は特に限定されないが、例えば、一定速度で回転している基板上にリンス液を吐出しつづける方法(回転吐出法)、リンス液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、基板表面にリンス液を噴霧する方法(スプレー法)、などを適用することができ、この中でも回転吐出方法で洗浄処理を行い、洗浄後に基板を2,000rpm~4,000rpmの回転数で回転させ、リンス液を基板上から除去することが好ましい。
 リンス時間は、特に制限はないが、好ましくは10秒~300秒であり、より好ましくは10秒~180秒であり、特に好ましくは20秒~120秒である。
 リンス液の温度は、0℃~50℃が好ましく、15℃~35℃がより好ましい。
 また、本開示に係るパターン形成方法は、現像工程又はリンス工程の後に、パターン上に付着している現像液又はリンス液を超臨界流体により除去する処理を行う工程を含んでいてもよい。
 更に、現像工程、リンス工程又は超臨界流体により処理を行う工程の後、パターン中に残存する溶剤を除去するために加熱処理を行うことができる。加熱温度は、良好なレジストパターンが得られる限り特に限定されるものではなく、40℃~160℃であることが好ましく、50℃~150℃であることがより好ましく、50℃~110℃であることが特に好ましい。加熱時間に関しては良好なレジストパターンが得られる限り特に限定されないが、15秒~300秒であることが好ましく、15秒~180秒であることがより好ましい。
-リンス液-
 現像工程の後に行うリンス処理において用いられるリンス液としては、純水を使用し、界面活性剤を適当量添加して使用することもできる。
 リンス液としては、有機溶剤を含むリンス液を用いることが好ましく、有機溶剤としては、炭化水素系溶剤、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤及びエーテル系溶剤よりなる群から選択される少なくとも1種の有機溶剤が好ましい。
 リンス液に含まれる有機溶剤は、エステル系溶剤、炭化水素系溶剤、エーテル系溶剤及びケトン系溶剤よりなる群から選ばれる少なくとも1種であることが好ましく、エステル系溶剤であることがより好ましい。
 これらの有機溶剤の具体例は、上述の現像液に含有される有機溶剤で説明したものと同様である。
 リンス液の蒸気圧は、20℃において0.05kPa以上、5kPa以下が好ましく、0.1kPa以上、5kPa以下が更に好ましく、0.12kPa以上、3kPa以下が最も好ましい。リンス液が複数の溶剤の混合溶剤である場合は全体としての蒸気圧が上記範囲であることが好ましい。リンス液の蒸気圧を0.05kPa以上、5kPa以下にすることにより、ウエハ面内の温度均一性が向上し、更にはリンス液の浸透に起因した膨潤が抑制され、ウエハ面内の寸法均一性が良化する。
 リンス液が含む有機溶剤は1種のみでも2種以上でもよい。2種以上含む場合としては、例えば、酢酸ブチルと酢酸イソアミルとの混合溶剤などが挙げられる。
 リンス液は、界面活性剤を含有してもよい。リンス液が界面活性剤を含有することにより、レジスト膜に対する濡れ性が向上して、リンス性が向上し、異物の発生が抑制される傾向にある。
 界面活性剤としては、上記レジスト層に含まれていてもよい界面活性剤と同様のものを用いることができる。
 リンス液が界面活性剤を含有する場合、界面活性剤の含有量は、リンス液の全質量に対して、0.001質量%~5質量%が好ましく、0.005質量%~2質量%がより好ましく、0.01質量%~0.5質量%が更に好ましい。
 リンス液は酸化防止剤を含有してもよい。リンス液が含有してもよい酸化防止剤としては、上述の現像液が含有してもよい酸化防止剤と同様である。
 リンス液が酸化防止剤を含有する場合、酸化防止剤の含有量は、特に限定されないが、リンス液の全質量に対して、0.0001質量%~1質量%が好ましく、0.0001質量%~0.1質量%がより好ましく、0.0001質量%~0.01質量%が更に好ましい。
 現像工程の後には、リンス工程を含んでいてもよいが、スループット(生産性)の観点から、リンス工程を含まなくてもよい。
 リンス工程を有さない処理方法として、例えば、特開2015-216403号公報の段落0014~0086に記載が援用でき、この内容は本願明細書に組み込まれる。
 なお、リンス液としてはMIBC(メチルイソブチルカルビノール)、現像液と同じ液体を使用すること(特に酢酸ブチル)も好ましい。
<各種材料の不純物>
 本開示に係るパターン形成方法において使用される各種材料(例えば、無機下地層形成層塗布液、レジスト層形成用感光性樹脂組成物、現像液、リンス液、反射防止膜形成用組成物、又はトップコート形成用組成物等)は、金属成分、異性体、及び残存モノマー等の不純物を含まないことが好ましい。上記の各種材料に含まれるこれらの不純物の含有量としては、1ppm以下が好ましく、100ppt以下がより好ましく、10ppt以下が更に好ましく、実質的に含まないこと(測定装置の検出限界以下であること)が特に好ましい。
 上記各種材料から金属等の不純物を除去する方法としては、例えば、フィルターを用いた濾過を挙げることができる。フィルター孔径としては、ポアサイズ10nm以下が好ましく、5nm以下がより好ましく、3nm以下が更に好ましい。フィルターの材質としては、ポリテトラフルオロエチレン製、ポリエチレン製、又はナイロン製のフィルターが好ましい。フィルターは、有機溶剤であらかじめ洗浄したものを用いてもよい。フィルター濾過工程では、複数種類のフィルターを直列又は並列に接続して用いてもよい。複数種類のフィルターを使用する場合は、孔径及び材質の少なくとも一方が異なるフィルターを組み合わせて使用してもよい。また、各種材料を複数回濾過してもよく、複数回濾過する工程が循環濾過工程であってもよい。フィルターとしては、特開2016-201426号公報に開示されるような溶出物が低減されたものが好ましい。
 フィルター濾過のほか、吸着材による不純物の除去を行ってもよく、フィルター濾過と吸着材を組み合わせて使用してもよい。吸着材としては、公知の吸着材を用いることができ、例えば、シリカゲル若しくはゼオライト等の無機系吸着材、又は活性炭等の有機系吸着材を使用することができる。金属吸着剤としては、例えば、特開2016-206500号公報に開示されるものを挙げることができる。
 また、上記各種材料に含まれる金属等の不純物を除去する方法としては、各種材料を構成する原料として金属含有量が少ない原料を選択する、各種材料を構成する原料に対してフィルター濾過を行う、又は装置内をテフロン(登録商標)でライニングする等してコンタミネーションを可能な限り抑制した条件下で蒸留を行う等の方法が挙げられる。各種材料を構成する原料に対して行うフィルター濾過における好ましい条件は、上記した条件と同様である。
 上記の各種材料は、不純物の混入を防止するために、米国特許出願公開第2015/0227049号明細書、特開2015-123351号公報、特開2017-13804号公報等に記載された容器に保存されることが好ましい。
<表面荒れの改善>
 本開示に係るパターン形成方法により形成されるパターンに、パターンの表面荒れを改善する方法を適用してもよい。パターンの表面荒れを改善する方法としては、例えば、米国特許出願公開第2015/0104957号明細書に開示された、水素を含有するガスのプラズマによってレジストパターンを処理する方法が挙げられる。その他にも、特開2004-235468号公報、米国特許出願公開第2010/0020297号明細書、Proc. of SPIE Vol.8328 83280N-1“EUV Resist Curing Technique for LWR Reduction and Etch Selectivity Enhancement”に記載されるような公知の方法を適用してもよい。
 また、上記の方法によって形成されたレジストパターンは、例えば特開平3-270227号公報及び米国特許出願公開第2013/0209941号明細書に開示されたスペーサープロセスの芯材(Core)として使用できる。
<得られるパターンの形状>
 本開示に係るパターン形成方法により得られたパターンの形状は、特に制限はなく、所望の形状であればよいが、本開示に係るパターン形成方法は上記レジスト層と上記無機下地層との密着性に優れるため、高さの高いパターンを容易に形成することができる。
 本開示に係るパターン形成方法により得られたパターンの少なくとも一部におけるパターンの高さ/パターンの幅の値は、エッチング耐性と解像性とのバランスの観点から、1.2~2.0以上であることが好ましく、1.4~1.9であることがより好ましく、1.5~1.8であることが特に好ましい。
<用途>
 本開示に係るパターン形成方法により得られたパターンをマスクとして用い、適宜エッチング処理及びイオン注入などを行い、半導体微細回路、インプリント用モールド構造体、フォトマスク等を好適に製造することができる。
 また、本開示に係るパターン形成方法により得られたパターンは、DSA(Directed Self-Assembly)におけるガイドパターン形成(例えば、ACS Nano Vol.4 No.8 Page4815-4823参照)にも用いることができる。
 また、上本開示に係るパターン形成方法により得られたパターンは、例えば、特開平3-270227及び特開2013-164509号公報に開示されたスペーサープロセスの芯材(コア)として使用できる。
 なお、本開示に係るパターン形成方法を用いてインプリント用モールドを作製する場合のプロセスについては、例えば、特許第4109085号公報、特開2008-162101号公報、及び「ナノインプリントの基礎と技術開発・応用展開―ナノインプリントの基板技術と最新の技術展開―編集:平井義彦(フロンティア出版)」に記載されている。
 本開示に係るパターン形成方法により製造されるフォトマスクは、ArFエキシマレーザー等で用いられる光透過型マスクであっても、EUV光を光源とする反射系リソグラフィーで用いられる光反射型マスクであってもよい。
(電子デバイスの製造方法)
 本開示に係る電子デバイスの製造方法は、本開示に係るパターン形成方法を含む。本開示に係る電子デバイスの製造方法により製造された電子デバイスは、電気電子機器(例えば、家電、OA(Office Automation)関連機器、メディア関連機器、光学用機器、及び通信機器等)に、好適に搭載される。
(有機溶剤現像用レジスト積層体)
 本開示に係る有機溶剤現像用レジスト積層体は、基板と、上記基板上に無機下地層と、上記無機下地層上に上記無機下地層に接して設けられたレジスト層とを有し、波長13.5nmの紫外線を上記レジスト層側から積算光量40mJ/cmで照射し、110℃で60秒間加熱した後における上記レジスト層の表面エネルギーγAが、60mJ/m以上であり、波長13.5nmの紫外線を上記レジスト層側から積算光量40mJ/cmで照射し、110℃で60秒間加熱した後における後における上記下地層の表面エネルギーγBが、50mJ/m以上であり、下記式(A)で定義される表面エネルギーの差γABが、5.0mJ/m以下である。
  γAB=γA-γB   式(A)
 本開示に係る有機溶剤現像用レジスト積層体は、有機溶剤を含む現像液により現像可能なレジスト積層体であり、有機溶剤を含む現像液としては、上述したものが好適に挙げられる。
 本開示に係る有機溶剤現像用レジスト積層体は、上述した本開示に係るパターン形成方法における積層体と同様であり、好ましい態様も同様である。
 以下に実施例を挙げて本発明の実施形態を更に具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、及び、処理手順等は、本発明の実施形態の趣旨を逸脱しない限り、適宜、変更することができる。したがって、本発明の実施形態の範囲は以下に示す具体例に限定されない。なお、特に断りのない限り、「部」、「%」は質量基準である。
<樹脂P-1の合成>
  3,4-ジヒドロキシスチレン(34DHS)30質量部と、下記に示すノルボルナンエステル系メタクリレート(N、下記化合物)20質量部と、メタクリル酸(MA)10質量部と、1-イソプロピルシクロペンチルメタクリレート(エステル3、下記化合物)40質量部と、重合開始剤V-601(ジメチル2,2’-アゾビス(2-メチルプロピオネート)、和光純薬工業(株)製)2.5質量部とを、シクロヘキサノン367質量部に溶解させた。反応容器中にシクロヘキサノン200質量部を入れ、窒素ガス雰囲気下、85℃の系中に4時間かけて滴下した。反応溶液を2時間に亘って加熱撹拌した後、これを室温まで放冷した。上記反応溶液を、n-ヘプタン及び酢酸エチルの混合溶液(n-ヘプタン/酢酸エチル=9/1(質量比))665質量部中に滴下し、ポリマーを沈殿させ、ろ過した。n-ヘプタン及び酢酸エチルの混合溶液(n-ヘプタン/酢酸エチル=9/1(質量比))200質量部を用いて、ろ過した固体のかけ洗いを行った。その後、洗浄後の固体を減圧乾燥に供して、樹脂P-1を得た。
Figure JPOXMLDOC01-appb-C000032
<樹脂P-2~P-44の合成>
 樹脂P-1の合成において、使用するモノマーを下記表1に記載のモノマー及び含有量に変更した以外は、樹脂P-1の合成と同様の方法により、樹脂P-2~P-44をそれぞれ合成した。
 なお、樹脂P-1~P-44のMwは、8,000~15,000の範囲内であり、分散度(Mw/Mn)は、1.3~1.7の範囲内であった。
Figure JPOXMLDOC01-appb-T000033
 上述した以外の表1に記載した各モノマーの詳細を以下に示す。
 PHS:4-ヒドロキシスチレン
 エステル1:1-メチルシクロペンチルメタクリレート
 エステル2:t-ブチルメタクリレート
 エステル4:2-メタクリロイルオキシ-2-メチルアダマンタン
 エステル5:1-フェニルシクロヘキシルメタクリレート
<PAG1~PAG44の調製>
 表2に記載のアニオンを有する塩と表2に記載のカチオンを有する塩とを反応させ、表2に記載のモル比となるように、PAG1~PAG44をそれぞれ調製した。
Figure JPOXMLDOC01-appb-T000034
 以下に表2に記載のアニオン(AN-1~AN-13)及びカチオン(CA-1~CA-6)の詳細を示す。
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
 また、以下に実施例又は比較例で使用したアミン化合物を示す。
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
 また、実施例又は比較例で使用した他のポリマーを以下に示す。
Figure JPOXMLDOC01-appb-C000041
・無機下地層形成用塗布液1~5(下地1~5):いずれも、シラン化合物を含む塗布液であり、後述する方法により表4に記載の表面エネルギーを示すケイ素原子を含む無機下地層を各実施例及び比較例において形成した。
(実施例1~実施例35、及び、比較例1~比較例9)
<レジスト組成物の調製> 
 下記表3に示す成分を下記表3に示す組成で溶剤に溶解させ、それぞれについて表3に記載の固形分濃度の溶液を調製し、これを0.03μmのポアサイズを有するポリエチレンフィルターでろ過してレジスト組成物を得た。
<積層体の作製>
 シリコンウエハ上に表3に記載の無機下地層形成用塗布液を塗布し、205℃で60秒間ベークを行い表3に記載の厚さの無機下地層を形成し、その上に、表3に示すレジスト組成物を塗布し、120℃で60秒間に亘ってベークを行い、表3に記載の厚さのレジスト層を形成し、積層体を得た。
<膜厚の測定方法>
 得られた積層体における無機下地層、及び、レジスト層の膜厚を、光干渉式の膜厚計(大日本スクリーン製造(株)製、ラムダエースVM-3100)を用いて膜厚を測定した。膜厚はウェハ面内25点の測定値の平均値である。
<表面エネルギーの測定方法>
 得られた積層体に対し、波長13.5nmの紫外線をレジスト層側から積算光量40mJ/cmで照射し、110℃で60秒間加熱した。
 上記加熱後の積層体から切り出したサンプルの表面に対する純水の接触角、及び、上記表面に対するジヨードメタンの接触角を25℃においてそれぞれ測定した。これらの接触角の測定は、協和界面科学(株)製の固液界面解析装置「Drop Master 700」を用いて行った。接触角は、適下後6秒後の値を用いた。これらの接触角に基づき、表面エネルギーγ及びγを、上述したOwens-Wendtの方法によって導出した。
<EUV露光>
 EUV露光装置(Exitech社製 Micro Exposure Tool、NA0.33、Quadrupole、アウターシグマ0.848、インナーシグマ0.307)を用い、露光マスク(ライン/スペース=1/5を有するマスク)を使用して、パターン露光を行った。パターン露光を行った後、ホットプレート上で110℃において60秒間ベーク(PEB)を行い、現像液(酢酸ブチル)をパドルして30秒間現像した。次いで、2,000rpmの回転数で30秒間ウエハを回転させた後、線幅15nm~30nmまでの1:5孤立ラインパターンを得た。
<評価>
-解像性(パターンの倒れ性)評価-
 得られた孤立ラインパターンのライン幅を測定した。この際、5μm四方にわたりパターンが倒れることなく解像している最小のライン幅を、倒れパターン線幅とし、パターン倒れ抑制性を評価した。この値が小さいほど、パターン倒れのマージンが広く、パターン倒れ抑制性が良好であることを示す。
 上記で求められるパターン倒れ抑制性を下記のように評価した。
  8:上記倒れパターン線幅が15.5nm以下である
  7:上記倒れパターン線幅が15.5nmを超え16.5nm以下である
  6:上記倒れパターン線幅が16.5nmを超え17.5nm以下である
  5:上記倒れパターン線幅が17.5nmを超え18.5nm以下である
  4:上記倒れパターン線幅が18.5nmを超え19.5nm以下である
  3:上記倒れパターン線幅が19.5nmを超え20.5nm以下である
  2:上記倒れパターン線幅が20.5nmを超え21.5nm以下である
  1:上記倒れパターン線幅が21.5nmを超える
-エッチング耐性評価-
 得られたレジストパターンをプラズマエッチング装置((株)日立製作所製、装置名:日立ECRプラズマエッチング装置U-621、プラズマ条件:Ar 500ml/分、N 500mL/分、O 10mL/分)を用いて時間を変えながらエッチングし、レジストパターンの残膜を走査型電子顕微鏡((株)日立製作所製S4800)で観察することでパターンが消失するのに要した最短の時間を求めた。
 無機下層膜についても同様の実験を行い、該膜が消失するのに要した最短の時間を求めた。
  (エッチング時間選択比)=(パターン消失時間)/(無機下層膜消失時間)
 上記で求められるエッチング時間選択比を下記のように評価した。
  5:上記エッチング時間選択比の値が3.5以上である
  4:上記エッチング時間選択比の値が3.0以上3.5未満である
  3:上記エッチング時間選択比の値が2.5以上3.0未満である
  2:上記エッチング時間選択比の値が2.0以上2.5未満である
  1:上記エッチング時間選択比の値が1.5以上2.0未満である
  0:上記エッチング時間選択比の値が1.5未満である
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000043
 表3及び表4に示すように、実施例1~実施例35のパターン形成方法及び有機溶剤現像用レジスト積層体は、比較例1~比較例9のパターン形成方法及び有機溶剤現像用レジスト積層体に比べ、エッチング耐性に優れるパターンが得られ、解像性に優れる。
 2018年9月27日に出願された日本国特許出願第2018-182231号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び、技術規格は、個々の文献、特許出願、及び、技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
 

Claims (14)

  1.  基板と、前記基板上に無機下地層と、前記無機下地層上に前記無機下地層に接して設けられたレジスト層とを有する積層体を準備する工程、
     前記レジスト層を露光する工程、及び、
     前記積層体を有機溶剤を含む現像液により現像してネガ型のパターン形成を行う工程を含み、
     前記積層体において、波長13.5nmの紫外線を前記レジスト層側から積算光量40mJ/cmで照射し、110℃で60秒間加熱した後における前記レジスト層の表面エネルギーγが、60mJ/m以上であり、
     前記積層体において、波長13.5nmの紫外線を前記レジスト層側から積算光量40mJ/cmで照射し、110℃で60秒間加熱した後における前記無機下地層の表面エネルギーγが、55mJ/m以上であり、
     下記式(A)で定義される表面エネルギーの差γABが、5.0mJ/m以下である
     パターン形成方法。
      γAB=γ-γ   式(A)
  2.  前記表面エネルギーγが、62mJ/m以上である請求項1に記載のパターン形成方法。
  3.  前記表面エネルギーγが、60mJ/m以上である請求項1又は請求項2に記載のパターン形成方法。
  4.  前記露光する工程における露光を、5nm~20nmの波長の紫外線により行う請求項1~請求項3のいずれか1項に記載のパターン形成方法。
  5.  前記無機下地層が、ケイ素原子を含む層である請求項1~請求項4のいずれか1項に記載のパターン形成方法。
  6.  前記露光する工程前における前記レジスト層が、2以上のフェノール性ヒドロキシ基を有する構成単位及び酸分解性基により保護された極性基を有する構成単位を有する樹脂、並びに、光酸発生剤を含む請求項1~請求項5のいずれか1項に記載のパターン形成方法。
  7.  前記2以上のフェノール性ヒドロキシ基を有する構成単位が、下記式(I-1)で表される構成単位である請求項5に記載のパターン形成方法。
    Figure JPOXMLDOC01-appb-C000001

     式(I-1)中、R11及びR12はそれぞれ独立に、水素原子又はアルキル基を表し、R13は、水素原子若しくはアルキル基を表すか、又は、単結合若しくはアルキレン基を表し、かつL又はArに結合して環を形成し、Lは、単結合又は2価の連結基を表し、Arは、芳香環を表し、nは、2以上の整数を表す。
  8.  得られたパターンの少なくとも一部におけるパターンの高さ/パターンの幅の値が、1.5~1.8である請求項1~請求項7のいずれか1項に記載のパターン形成方法。
  9.  基板と、
     前記基板上に無機下地層と、
     前記無機下地層上に前記無機下地層に接して設けられたレジスト層とを有し、
     波長13.5nmの紫外線を前記レジスト層側から積算光量40mJ/cmで照射し、110℃で60秒間加熱した後における前記レジスト層の表面エネルギーγが、60mJ/m以上であり、
     波長13.5nmの紫外線を前記レジスト層側から積算光量40mJ/cmで照射し、110℃で60秒間加熱した後における後における前記下地層の表面エネルギーγが、50mJ/m以上であり、
     下記式(A)で定義される表面エネルギーの差γABが、5.0mJ/m以下である
     有機溶剤現像用レジスト積層体。
      γAB=γ-γ   式(A)
  10.  前記表面エネルギーγが、62mJ/m以上である請求項9に記載の有機溶剤現像用レジスト積層体。
  11.  前記表面エネルギーγが、60mJ/m以上である請求項9又は請求項10に記載の有機溶剤現像用レジスト積層体。
  12.  前記無機下地層が、ケイ素原子を含む層である請求項9~請求項11のいずれか1項に記載の有機溶剤現像用レジスト積層体。
  13.  前記レジスト層が、2以上のフェノール性ヒドロキシ基を有する構成単位及び酸分解性基により保護された極性基を有する構成単位を有する樹脂、並びに、光酸発生剤を含む請求項9~請求項12のいずれか1項に記載の有機溶剤現像用レジスト積層体。
  14.  前記2以上のフェノール性ヒドロキシ基を有する構成単位が、下記式(I-1)で表される構成単位である請求項13に記載の有機溶剤現像用レジスト積層体。
    Figure JPOXMLDOC01-appb-C000002

     式(I-1)中、R11及びR12はそれぞれ独立に、水素原子又はアルキル基を表し、R13は、水素原子若しくはアルキル基を表すか、又は、単結合若しくはアルキレン基を表し、かつL又はArに結合して環を形成し、Lは、単結合又は2価の連結基を表し、Arは、芳香環を表し、nは、2以上の整数を表す。
     
PCT/JP2019/034460 2018-09-27 2019-09-02 パターン形成方法、及び、有機溶剤現像用レジスト積層体 WO2020066477A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020548258A JPWO2020066477A1 (ja) 2018-09-27 2019-09-02 パターン形成方法、及び、有機溶剤現像用レジスト積層体
KR1020217007776A KR20210045444A (ko) 2018-09-27 2019-09-02 패턴 형성 방법, 및 유기 용제 현상용 레지스트 적층체
US17/200,912 US20210200098A1 (en) 2018-09-27 2021-03-15 Pattern forming method and resist laminate for organic solvent development

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018182231 2018-09-27
JP2018-182231 2018-09-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/200,912 Continuation US20210200098A1 (en) 2018-09-27 2021-03-15 Pattern forming method and resist laminate for organic solvent development

Publications (1)

Publication Number Publication Date
WO2020066477A1 true WO2020066477A1 (ja) 2020-04-02

Family

ID=69950540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/034460 WO2020066477A1 (ja) 2018-09-27 2019-09-02 パターン形成方法、及び、有機溶剤現像用レジスト積層体

Country Status (5)

Country Link
US (1) US20210200098A1 (ja)
JP (1) JPWO2020066477A1 (ja)
KR (1) KR20210045444A (ja)
TW (1) TW202026320A (ja)
WO (1) WO2020066477A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005268303A (ja) * 2004-03-16 2005-09-29 Matsushita Electric Ind Co Ltd 半導体装置の製造方法
JP2013167669A (ja) * 2012-02-14 2013-08-29 Shin Etsu Chem Co Ltd ケイ素含有表面改質剤、これを含むレジスト下層膜形成用組成物、及びパターン形成方法
JP2016139123A (ja) * 2014-12-30 2016-08-04 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド オーバーコートされたフォトレジストと共に使用するためのコーティング組成物
JP2017095643A (ja) * 2015-11-27 2017-06-01 信越化学工業株式会社 ケイ素含有縮合物、ケイ素含有レジスト下層膜形成用組成物、及びパターン形成方法
WO2018061944A1 (ja) * 2016-09-29 2018-04-05 富士フイルム株式会社 感活性光線性又は感放射線性樹脂組成物、パターン形成方法及び電子デバイスの製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5859466B2 (ja) 2013-01-08 2016-02-10 信越化学工業株式会社 チタン含有レジスト下層膜形成用組成物及びパターン形成方法
JP5830044B2 (ja) 2013-02-15 2015-12-09 信越化学工業株式会社 レジスト下層膜形成用組成物及びパターン形成方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005268303A (ja) * 2004-03-16 2005-09-29 Matsushita Electric Ind Co Ltd 半導体装置の製造方法
JP2013167669A (ja) * 2012-02-14 2013-08-29 Shin Etsu Chem Co Ltd ケイ素含有表面改質剤、これを含むレジスト下層膜形成用組成物、及びパターン形成方法
JP2016139123A (ja) * 2014-12-30 2016-08-04 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド オーバーコートされたフォトレジストと共に使用するためのコーティング組成物
JP2017095643A (ja) * 2015-11-27 2017-06-01 信越化学工業株式会社 ケイ素含有縮合物、ケイ素含有レジスト下層膜形成用組成物、及びパターン形成方法
WO2018061944A1 (ja) * 2016-09-29 2018-04-05 富士フイルム株式会社 感活性光線性又は感放射線性樹脂組成物、パターン形成方法及び電子デバイスの製造方法

Also Published As

Publication number Publication date
KR20210045444A (ko) 2021-04-26
TW202026320A (zh) 2020-07-16
US20210200098A1 (en) 2021-07-01
JPWO2020066477A1 (ja) 2021-05-20

Similar Documents

Publication Publication Date Title
JP6457640B2 (ja) パターン形成方法、積層体、及び、有機溶剤現像用レジスト組成物
JP6002554B2 (ja) パターン形成方法、及び、これを用いる電子デバイスの製造方法
JP6743158B2 (ja) レジスト組成物、パターン形成方法及び電子デバイスの製造方法
WO2019045107A1 (ja) 反転パターン形成方法、電子デバイスの製造方法
JP6025600B2 (ja) 感活性光線性又は感放射線性樹脂組成物、感活性光線性又は感放射線性膜及びパターン形成方法
US10018913B2 (en) Active-light-sensitive or radiation-sensitive resin composition, pattern forming method, and method for manufacturing electronic device
US20190187558A1 (en) Actinic ray-sensitive or radiation-sensitive resin composition, pattern forming method, and method of manufacturing electronic device
KR101892553B1 (ko) 감활성광선성 또는 감방사선성 수지 조성물, 패턴 형성 방법, 및 전자 디바이스의 제조 방법
WO2017110352A1 (ja) 感活性光線性又は感放射線性樹脂組成物、感活性光線性又は感放射線性膜、パターン形成方法、及び、電子デバイスの製造方法
WO2016190368A1 (ja) 基板処理方法、樹脂組成物及び電子デバイスの製造方法
KR20170130526A (ko) 패턴 형성 방법, 전자 디바이스의 제조 방법, 및 감활성광선성 또는 감방사선성 수지 조성물
KR20180034628A (ko) 패턴 형성 방법, 전자 디바이스의 제조 방법, 및 적층체
KR20180039671A (ko) 패턴 형성 방법, 전자 디바이스의 제조 방법, 및 적층체
JPWO2017057288A1 (ja) パターン形成方法、電子デバイスの製造方法、及び積層体
JP6633103B2 (ja) パターン形成方法、電子デバイスの製造方法
JP6427684B2 (ja) レジスト組成物、並びに、これを用いたレジスト膜、パターン形成方法及び電子デバイスの製造方法
JP7220229B2 (ja) 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法
JP6571774B2 (ja) 感活性光線性又は感放射線性樹脂組成物、感活性光線性又は感放射線性膜、パターン形成方法及び電子デバイスの製造方法
TWI805669B (zh) 抗蝕劑組成物、抗蝕劑膜、圖案形成方法及電子元件的製造方法
WO2014141858A1 (ja) 感活性光線性又は感放射線性樹脂組成物、該組成物を用いたレジスト膜、パターン形成方法、電子デバイスの製造方法及び電子デバイス
JP6582053B2 (ja) 感活性光線又は感放射線性組成物、並びに、これを用いたレジスト膜、パターン形成方法及び電子デバイスの製造方法
JP2018084783A (ja) レジストプロセス用膜形成材料、パターン形成方法及び重合体
WO2020066477A1 (ja) パターン形成方法、及び、有機溶剤現像用レジスト積層体
CN114207526A (zh) 感光化射线性或感放射线性树脂组合物、感光化射线性或感放射线性膜、图案形成方法及电子器件的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19867232

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020548258

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217007776

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19867232

Country of ref document: EP

Kind code of ref document: A1