WO2020066426A1 - Infrared absorbing material fine particle dispersion liquid and producing method thereof - Google Patents

Infrared absorbing material fine particle dispersion liquid and producing method thereof Download PDF

Info

Publication number
WO2020066426A1
WO2020066426A1 PCT/JP2019/033534 JP2019033534W WO2020066426A1 WO 2020066426 A1 WO2020066426 A1 WO 2020066426A1 JP 2019033534 W JP2019033534 W JP 2019033534W WO 2020066426 A1 WO2020066426 A1 WO 2020066426A1
Authority
WO
WIPO (PCT)
Prior art keywords
absorbing material
infrared absorbing
material fine
particle dispersion
fine particles
Prior art date
Application number
PCT/JP2019/033534
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 啓一
健二 福田
幸浩 小山
中山 博貴
英昭 福山
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to US17/280,687 priority Critical patent/US20210380433A1/en
Priority to KR1020217012139A priority patent/KR102618176B1/en
Priority to EP19864140.9A priority patent/EP3868713A4/en
Priority to JP2020548214A priority patent/JP7367686B2/en
Priority to CN201980063630.4A priority patent/CN113039159B/en
Publication of WO2020066426A1 publication Critical patent/WO2020066426A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • C01G41/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/22Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/42Coatings comprising at least one inhomogeneous layer consisting of particles only
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/112Deposition methods from solutions or suspensions by spraying
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation

Definitions

  • the present invention relates to an infrared absorbing material fine particle dispersion containing infrared absorbing material fine particles and a solvent, and more specifically, the infrared absorbing material fine particles include composite tungsten oxide fine particles, and the solvent includes water.
  • the present invention relates to a fine particle dispersion and a method for producing the same.
  • a light-shielding member used for a window material or the like a light-shielding member using an inorganic pigment such as carbon black or titanium black having an absorption characteristic from a visible light region to a near-infrared region, and having a strong absorption characteristic only in a visible light region.
  • Various light-blocking members have been proposed, such as a light-blocking member using a black pigment containing an organic pigment such as aniline black, and a half-mirror-type light-blocking member in which a metal such as aluminum is deposited.
  • Patent Document 1 on a transparent glass substrate, as a first layer from the substrate side, it was selected from the group consisting of Group IIIa, Group IVa, Group Vb, Group VIb and Group VIIb of the periodic table.
  • a composite tungsten oxide film containing at least one metal ion is provided, a transparent dielectric film is provided as a second layer on the first layer, and a group IIIa of the periodic table is provided as a third layer on the second layer;
  • a composite tungsten oxide film containing at least one metal ion selected from the group consisting of IVa group, Vb group, VIb group and VIIb group is provided, and the refractive index of the transparent dielectric film of the second layer is set to the above-mentioned value.
  • the composite tungsten oxide film of the first layer and the third layer can be suitably used in a part where high visible light transmittance and good infrared blocking performance are required. Infrared cut-off glass that may have been proposed.
  • Patent Document 2 in the same manner as Patent Document 1, a first dielectric film is provided as a first layer from a substrate side on a transparent glass substrate, and tungsten oxide is formed as a second layer on the first layer.
  • An infrared shielding glass in which a film is provided and a second dielectric film is provided as a third layer on the second layer has been proposed.
  • Patent Document 3 a composite tungsten oxide film containing a metal element similar to that of Patent Document 1 is provided on a transparent glass substrate as a first layer on the transparent glass substrate in the same manner as in Patent Document 1, A heat ray blocking glass in which a transparent dielectric film is provided as a second layer on a layer has been proposed.
  • Patent Document 4 tungsten trioxide (WO 3 ), molybdenum trioxide (MoO 3 ), niobium pentoxide (Nb 2 O 5 ), and tantalum pentoxide containing additional elements such as hydrogen, lithium, sodium and potassium
  • tungsten trioxide (WO 3 ) molybdenum trioxide (MoO 3 ), niobium pentoxide (Nb 2 O 5 ), and tantalum pentoxide containing additional elements such as hydrogen, lithium, sodium and potassium
  • a metal oxide film selected from one or more of (Ta 2 O 5 ), vanadium pentoxide (V 2 O 5 ), and vanadium dioxide (VO 2 ) is coated by a CVD method or a spray method, 250 ° C.
  • a solar control glass sheet having solar light shielding properties formed by being thermally decomposed to a certain degree has been proposed.
  • Patent Literature 5 proposes a solar light-modulated light-insulating material using tungsten oxide obtained by hydrolyzing tungstic acid and adding an organic polymer having a specific structure called polyvinylpyrrolidone to the tungsten oxide.
  • the sunlight is irradiated with the sunlight, the ultraviolet light in the light is absorbed by the tungsten oxide to generate excited electrons and holes, and a small amount of the ultraviolet light significantly increases the appearance amount of pentavalent tungsten.
  • the coloring reaction increases to increase the coloring reaction, and accordingly, the coloring concentration increases.
  • the pentavalent tungsten is very quickly oxidized to hexavalent and the decoloring reaction is increased.
  • Patent Document 6 the present inventors dissolve tungsten hexachloride in alcohol and evaporate the medium as it is, or heat and reflux, evaporate the medium, and then heat it at 100 ° C. to 500 ° C. To obtain tungsten oxide fine particles comprising tungsten trioxide, a hydrate thereof, or a mixture of both. Then, it was disclosed that an electrochromic element can be obtained using the tungsten oxide fine particles, that optical properties of the film can be changed when protons are introduced into the film by forming a multilayer laminate, and the like. .
  • Patent Document 7 discloses that a dried product of a mixed aqueous solution is heated at a heating temperature of about 300 to 700 ° C. using a meta-type ammonium tungstate and various water-soluble metal salts as raw materials.
  • a hydrogen gas to which an active gas (addition amount: about 50 vol% or more) or water vapor (addition amount: about 15 vol% or less) is added, a general formula MxWO 3 (where M is an alkali, alkaline earth, rare earth, or the like)
  • a method for producing various tungsten bronze represented by the following metal element, 0 ⁇ x ⁇ 1) has been proposed. Then, it has been proposed to carry out the operation on a support to produce various tungsten bronze-coated composites and use them as electrode catalyst materials for fuel cells and the like.
  • Patent Document 8 an infrared shielding material fine particle dispersion in which infrared shielding material fine particles are dispersed in a medium such as a resin, and the optical characteristics, conductivity, and manufacturing method of the infrared shielding material fine particle dispersion. was disclosed.
  • the infrared shielding material fine particles are fine particles of tungsten oxide represented by the general formula WyOz (W is tungsten, O is oxygen, 2.2 ⁇ z / y ⁇ 2.999), and / or Formula MxWyOz (where M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag , Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re , Be, Hf, Os, Bi, and I, at least one element selected from the group consisting of W, tungsten, O, oxygen, 0.001 ⁇ x / y ⁇ 1, 2.2 ⁇ z / y ⁇ 3. 0) fine particles of the composite tungsten oxide represented by
  • an infrared absorbing material fine particle dispersion in which the infrared absorbing material fine particles are dispersed in a medium such as a resin an infrared absorbing material fine particle dispersion in which the infrared absorbing material fine particles are dispersed in a solvent is prepared. Then, a method of dissolving a resin or the like in the dispersion liquid of the infrared absorbing material fine particles to form a coating liquid, applying the coating liquid to a substrate, for example, and then drying the coating liquid may be adopted.
  • the solvent in the above-mentioned coating liquid contains water.
  • the present inventors have conducted research and found that the infrared absorbing material fine particle dispersion has excellent long-term preservability when it has a predetermined zeta potential value. And completed the present invention.
  • a first invention for solving the above-mentioned problem is: An infrared absorbing material fine particle dispersion containing infrared absorbing material fine particles and a solvent,
  • the infrared absorbing material fine particles may have a general formula MxWOy (where M is at least one element selected from Cs, Rb, K, Tl, and Ba, 0.1 ⁇ x ⁇ 0.5, 2.2 ⁇ y). ⁇ 3.0), comprising composite tungsten oxide fine particles represented by the following formula:
  • the solvent includes water, An infrared absorbing material fine particle dispersion, wherein the absolute value of the zeta potential of the infrared absorbing material fine particle dispersion is 5 mV or more and 100 mV or less.
  • the second invention is The infrared absorbing material fine particle dispersion according to the first invention, wherein the value of the zeta potential is -100 mV or more and -5 mV or less.
  • the third invention is The infrared absorbing fine particle dispersion according to the first or second invention, wherein the pH value is 4 or more.
  • the fourth invention is The infrared absorbing material fine particle dispersion according to any one of the first to third inventions, wherein the composite tungsten oxide fine particles have a particle diameter of 800 nm or less.
  • the fifth invention is The dispersion liquid of the infrared absorbing material fine particles according to any one of the first to fourth inventions, further comprising one or more dispersants.
  • the sixth invention is The infrared absorbing material fine particle dispersion according to the fifth invention, wherein the dispersant contains at least one of an amino group and an oxo acid.
  • the seventh invention is The content according to any one of the first to sixth inventions, wherein the content of the infrared absorbing material fine particles contained in the infrared absorbing material fine particle dispersion is 0.01% by mass or more and 80% by mass or less. It is a dispersion of the infrared absorbing material fine particles described in the above.
  • the eighth invention is A method for producing an infrared absorbing material fine particle dispersion containing infrared absorbing material fine particles and a solvent, To the solvent containing water, a general formula MxWOy (where M is at least one element selected from Cs, Rb, K, Tl, and Ba, 0.1 ⁇ x ⁇ 0.5, 2.2 ⁇ y ⁇ 3.0) by dispersing the infrared absorbing material fine particles containing the composite tungsten oxide fine particles represented by A method for producing a fine particle dispersion of an infrared absorbing material, characterized in that the absolute value of the zeta potential of the fine particle dispersion of an infrared absorbing material is 5 mV or more and 100 mV or less.
  • the ninth invention is The method for producing an infrared-absorbing fine particle dispersion according to the eighth invention, wherein the pH value of the infrared-absorbing material fine particle dispersion is 4 or more.
  • the present invention it is possible to obtain an infrared absorbing material fine particle dispersion having excellent long-term storage properties while using a solvent containing water. In addition, it is possible to suppress the occurrence of bleed-out when a film is formed by mixing the dispersion of the infrared absorbing material fine particles and a binder.
  • the infrared absorbing material fine particle dispersion according to the present invention is an infrared absorbing material fine particle dispersion containing infrared absorbing material fine particles and a solvent, wherein the infrared absorbing material fine particles have a general formula MxWOy (where M element is Cs, Rb, K, Tl, at least one element selected from Ba, and 0.1 ⁇ x ⁇ 0.5, 2.2 ⁇ y ⁇ 3.0).
  • MxWOy where M element is Cs, Rb, K, Tl, at least one element selected from Ba, and 0.1 ⁇ x ⁇ 0.5, 2.2 ⁇ y ⁇ 3.0.
  • the solvent contains water, and the absolute value of the zeta potential of the infrared ray absorbing material fine particle dispersion is 510 mV or more and 100 mV or less.
  • the fine particles of the infrared-absorbing material according to the present invention are referred to as [1] fine particles of the infrared-absorbing material, [2] a solvent used for the fine particles of the infrared-absorbing material, [3] a fine particle dispersion of the infrared-absorbing material, and [4] infrared.
  • a dispersant added to the dispersion of fine particles of the absorbing material [5] a method of producing fine particles of the infrared absorbing material, [6] a method of producing a fine particle of the infrared absorbing material, and [7] a method of using the fine particle of the infrared absorbing material. It will be described in order.
  • the infrared absorbing material fine particle dispersion according to the present invention contains at least a general formula MxWyOz (where M element is one selected from Cs, Rb, K, Tl, and Ba) as infrared absorbing material fine particles.
  • M element is one selected from Cs, Rb, K, Tl, and Ba
  • These include the composite tungsten oxide fine particles represented by the above elements, 0.1 ⁇ x ⁇ 0.5, 2.2 ⁇ y ⁇ 3.0).
  • the infrared absorbing material fine particles according to the present invention will be described by taking composite tungsten oxide fine particles as an example.
  • a material containing free electrons exhibits a reflection-absorption response to an electromagnetic wave around a solar ray region having a wavelength of 200 nm to 2600 nm due to plasma vibration.
  • the particles of the powder of such a substance are formed into fine particles having a particle size smaller than the wavelength of light, geometric scattering in the visible light region (wavelength from 380 nm to 780 nm) is reduced, and transparency in the visible light region is obtained.
  • “transparency” is used to mean “there is little scattering and high transmittance with respect to light in the visible light region”.
  • the infrared absorbing material fine particles using both the control of the oxygen amount and the addition of the M element for generating free electrons have a general formula of MxWyOz (where M is 1 selected from Cs, Rb, K, Tl, and Ba). (W is tungsten and O is oxygen.) And infrared rays satisfying the relationship of 0.001 ⁇ x / y ⁇ 1, 2.2 ⁇ z / y ⁇ 3. Absorption material fine particles.
  • the value of x / y indicating the amount of addition of the element M
  • the value of x / y is larger than 0.001
  • a sufficient amount of free electrons is generated in the composite tungsten oxide, and the desired infrared absorption effect is reduced. Can be obtained.
  • the addition amount of the M element increases, the supply amount of free electrons increases and the infrared absorption efficiency also increases, but the effect is saturated when the value of x / y is about 1.
  • the value of x / y is smaller than 1 because generation of an impurity phase in the infrared absorbing material fine particles can be avoided.
  • the composite tungsten oxide fine particles have a hexagonal crystal structure
  • transmission of the fine particles in the visible light region is improved, and absorption in the infrared region is improved.
  • the addition amount of the M element is preferably 0.2 or more and 0.5 or less in terms of x / y, more preferably 0.33.
  • the value of x / y is 0.33, it is considered that the above-described M element is arranged in all the hexagonal voids.
  • the hexagonal crystal is easily formed.
  • the M element is one or more elements selected from Cs, Rb, K, Tl, and Ba
  • a hexagonal crystal is easily formed.
  • Typical examples are Cs 0.33 WO z , Cs 0.03 Rb 0.30 WO z , Rb 0.33 WO z , K 0.33 WO z , Ba 0.33 WO z (2.0 ⁇ z ⁇ 3.0) and the like.
  • other elements may be used as long as the above-mentioned M element is present in the hexagonal void formed by WO 6 units, and is not limited to the above-described elements.
  • the addition amount of the M element is preferably 0.2 or more and 0.5 or less in terms of x / y, and more preferably 0. 33.
  • the value of x / y is 0.33, it is considered that the above-described M element is arranged in all the hexagonal voids.
  • tetragonal and cubic composite tungsten oxides other than hexagonal are also effective as infrared absorbing material fine particles.
  • the absorption position in the infrared region tends to change depending on the crystal structure, and the absorption position tends to move to the longer wavelength side in the order of cubic crystal ⁇ tetragonal crystal ⁇ hexagonal crystal.
  • the absorption in the visible light region is low in the order of hexagonal, tetragonal and cubic. Therefore, it is preferable to use a hexagonal composite tungsten oxide for applications in which light in the visible light region is more transmitted and light in the infrared region is more absorbed.
  • the tendency of the optical characteristics described here is only a rough tendency and varies depending on the type of the added element, the added amount, and the amount of oxygen, and the present invention is not limited to this.
  • the transmission color tone is often from blue to green.
  • the fine particles of the infrared absorbing material according to the present invention preferably have a particle size of 1 nm or more and 800 nm or less, and more preferably 100 nm or less.
  • the particle diameter of the fine particles is preferably 1 nm or more and 40 nm or less, more preferably 1 nm or more and 30 nm or less, and most preferably 1 nm or more and 25 nm or less. It is.
  • Such a particle size is preferable because scattering due to Mie scattering and Rayleigh scattering of the fine particles is sufficiently suppressed, visibility in a visible light wavelength region is maintained, and transparency can be efficiently maintained.
  • the particle size is the average value of the diameters of the individual non-aggregated infrared absorbing material fine particles, and is the average value of the individual non-aggregated infrared absorbing material fine particles contained in the infrared absorbing material fine particle dispersion described below.
  • the average particle diameter of the infrared absorbing material fine particles is measured and calculated from an electron microscope image of the infrared absorbing material fine particles.
  • the solvent used in the infrared absorbing material fine particle dispersion according to the present invention contains water in its constitution.
  • “contains water in the composition” means that the solvent contains water in an amount of 1% by mass or more, and an organic solvent compatible with water, for example, alcohols or glycols, and water.
  • This is a concept that includes a mixed solvent.
  • the concept includes a solvent composed of only water.
  • water is a concept including ion-exchanged water from which anions such as chlorine have been removed with an ion-exchange resin, ultrapure water, and the like.
  • the infrared absorbing material fine particle dispersion according to the present invention is a dispersion in which the above-described infrared absorbing material fine particles are dispersed in a solvent.
  • the fine particle dispersion of the infrared absorbing material according to the present invention is a dispersion having an absolute value of the zeta potential of 5 mV or more and 100 mV or less. That is, the dispersion has a zeta potential value of 5 mV or more and 100 mV or less, or -100 mV or more and -5 mV or less.
  • the absolute value of the zeta potential of the infrared absorbing material fine particle dispersion according to the present invention is in the range of 5 mV or more and 100 mV or less, preferably, in the case where the absolute value of the zeta potential is in the range of 10 mV or more and 100 mV or less. It has been found that gelation and sedimentation of particles can be avoided for 6 months or more at a temperature of 25 ° C. From this viewpoint, the zeta potential is preferably -100 mV or more and -5 mV or less, and more preferably the zeta potential is -100 mV or more and -10 mV or less.
  • the dispersed particle size of the infrared absorbing material fine particles in the infrared absorbing material fine particle dispersion according to the present invention can be selected depending on the purpose of use.
  • the dispersed particle diameter of the infrared absorbing material fine particles is a concept that is different from the particle diameter of the infrared absorbing material fine particles described above and includes the particle size of the aggregate of the infrared absorbing material fine particles.
  • the infrared absorbing material fine particle dispersion according to the present invention preferably have a dispersed particle diameter of 800 nm or less in the dispersion. This is because particles having a dispersed particle diameter of less than 800 nm do not completely block light due to scattering, maintain visibility in the visible light region, and at the same time can efficiently maintain transparency. .
  • the dispersed particle diameter of the infrared absorbing material fine particles in the dispersion is preferably 200 nm or less, more preferably 100 nm or less. The reason is that if the dispersed particle diameter of the infrared absorbing material fine particles is small, the scattering of light in the visible light region having a wavelength of 400 nm to 780 nm due to geometrical scattering or Mie scattering is reduced. And clear transparency can no longer be obtained.
  • the dispersed particle diameter of the infrared absorbing material fine particles in the dispersion becomes 200 nm or less, the geometric scattering or Mie scattering is reduced, and the dispersion becomes a Rayleigh scattering region.
  • the scattered light is proportional to the sixth power of the particle diameter, so that the scattering is reduced and the transparency is improved with a decrease in the dispersed particle diameter.
  • the dispersed particle diameter is 100 nm or less, the scattered light is very small, which is preferable. From the viewpoint of avoiding light scattering, it is preferable that the dispersed particle diameter is small. If the dispersed particle diameter is 1 nm or more, industrial production is easy.
  • the haze value of the infrared absorbing material fine particle dispersion in which the infrared absorbing material fine particles according to the present invention are dispersed in a medium has a visible light transmittance of 85% or less and a haze of 30% or less. It can be.
  • the haze value is less than 30%, the appearance of the infrared-absorbing material fine particle dispersion does not look like frosted glass, and clear transparency can be obtained.
  • the dispersed particle diameter of the infrared absorbing material fine particles can be measured using ELS-8000 manufactured by Otsuka Electronics Co., Ltd. based on the dynamic light scattering method.
  • the zeta potential of the infrared absorbing material fine particle dispersion according to the present invention can be controlled by adjusting the pH of the dispersion and adding a dispersant to the dispersion. Specifically, it is preferable that the pH value of the dispersion liquid of the infrared absorbing material fine particles is 3 or more and 10 or less, and it is more preferable that the pH value is 4 or more and 7 or less. For the pH adjustment, addition of a weak acid or the like to the dispersion is also effective.
  • a dispersant when added to the infrared absorbent material fine particle dispersion according to the present invention, it is preferable to add a water-soluble dispersant having an amino group.
  • a water-soluble dispersant having an amino group for example, as a commercially available dispersant, Disperbyk 183, Disperbyk 185, Disperbyk 184, Disperbyk 190, Disperbyk 191 and Disperbyk 2010 (manufactured by Big Chemie) can be preferably exemplified.
  • amino acids such as serine and phenylalanine may be added as a dispersant.
  • a water-soluble dispersant having oxo acid can be mentioned.
  • the oxo acid is preferably a carboxyl group.
  • Solsperse 41090, Solsperse 43000, Solsperse 44000, Solsperse 46000, Solsperse 47000, Solsperse 53095 manufactured by Lubrizol Co., Ltd.
  • Solsperse 41090, Solsperse 43000, Solsperse 44000, Solsperse 46000, Solsperse 47000, Solsperse 53095 manufactured by Lubrizol Co., Ltd.
  • Solsperse 53095 manufactured by Lubrizol Co., Ltd.
  • the dispersant added to the infrared absorbing material fine particle dispersion is a polymer dispersant
  • a large amount of the additive causes a decrease in the absolute value of the zeta potential, but the effect of the polymer dispersant is long-term stability. May be kept.
  • bleed-out occurs when a film is formed by further mixing with a binder.
  • the amount of the polymer dispersant added to the dispersion of the infrared absorbing material fine particles does not cause a decrease in the absolute value of the zeta potential, no significant bleed-out occurs.
  • the dispersant to be added to the infrared absorbing material fine particle dispersion is a low molecular dispersant, no significant bleed-out occurs.
  • bleed-out is to prepare a mixed solution in which a binder such as a resin is added to a dispersion of fine particles of an infrared-absorbing material, apply the mixed solution to a substrate to obtain a coating film, and further obtain a dried film by heating and drying. Means the occurrence of spots due to the liquid mixture generated on the dried film. Significant bleed-out can be visually confirmed.
  • a binder such as a resin
  • a suitable addition amount is less than 2 parts by mass per 1 part by mass of the infrared-absorbing material fine particles. . More preferably, the content is 0.2 parts by mass or more and 1.5 parts by mass or less per 1 part by mass of the infrared absorbing material fine particles, and even more preferably 0.3 parts by mass or more and 1.2 parts by mass per 1 part by mass of the infrared absorbing material fine particles. Not more than parts by mass.
  • tungsten compound and an M element compound are used as a raw material.
  • the tungsten compound include tungstic acid (H 2 WO 4 ), ammonium tungstate, tungsten hexachloride, and tungsten hexachloride dissolved in alcohol, which is hydrolyzed by adding water, and then the solvent is evaporated to obtain a tungsten hydrate.
  • the general formula MxWyOz (where M is one or more elements selected from Cs, Rb, K, Tl, and Ba; 0.001 ⁇ x / y ⁇ 1, 2.2 ⁇ z /Y ⁇ 3.0)
  • the M element compound used in the production of the raw material of the composite tungsten oxide fine particles represented by the formula (I) is selected from oxides, hydroxides, nitrates, sulfates, chlorides, and carbonates of the M element. It is preferable that one or more types be used.
  • a mixed powder can be produced by wet mixing of a tungsten compound and an M element compound.
  • the produced mixed powder is fired in one step under an atmosphere of an inert gas alone or a mixed gas of an inert gas and a reducing gas.
  • the firing temperature is preferably close to the temperature at which the composite tungsten oxide fine particles start to crystallize.
  • the firing temperature is preferably 1000 ° C. or lower, more preferably 800 ° C. or lower, and even more preferably 800 ° C. or lower and 500 ° C. or higher.
  • the infrared absorbing material fine particle dispersion it is important that the dispersion state of the infrared absorbing material fine particles is ensured during the pulverization and dispersion treatment steps, and that the fine particles are not aggregated. That is, particles of the infrared absorbing material are added to the solvent, and pulverization / dispersion treatment is performed until the particle diameter becomes the above-mentioned. At this time, it is preferable to appropriately add the above-described dispersant and adjust the pH value.
  • the absolute value of the zeta potential of the dispersion liquid of the infrared absorbing material fine particles after the pulverization / dispersion treatment can be maintained at 5 mV or more and 100 mV or less.
  • pulverization / dispersion treatment examples include, for example, pulverization / dispersion treatment methods using devices such as a bead mill, a ball mill, a sand mill, a paint shaker, and an ultrasonic homogenizer.
  • pulverization / dispersion treatment methods using devices such as a bead mill, a ball mill, a sand mill, a paint shaker, and an ultrasonic homogenizer.
  • pulverizing and dispersing with a medium stirring mill such as a bead mill, a ball mill, a sand mill, and a paint shaker are necessary to reach a desired dispersed particle diameter. This is preferable because the time is short.
  • the content of the infrared absorbing material fine particles contained in the infrared absorbing material fine particle dispersion according to the present invention is 0.01% by mass or more and 80% by mass from the viewpoint of ease of use of the dispersion and stability. % Is preferable.
  • the substrate is glass
  • the dispersion liquid and the coating liquid of the infrared absorbing material fine particles according to the present invention are not limited to the use for the infrared shielding window, but can be widely used in a site where the infrared absorbing material is required. Further, the dispersion liquid and the coating liquid of the infrared absorbing material fine particles according to the present invention can be applied to a known coating method such as ink jet or spray coating.
  • Example 1 0.216 kg of Cs 2 CO 3 was added to and dissolved in 0.330 kg of water, and the obtained solution was added to 1.000 kg of H 2 WO 4, sufficiently stirred, and dried to obtain a dried product.
  • the dried product was heated while supplying 5% H 2 gas using N 2 gas as a carrier, and calcined at 800 ° C. for 1 hour. Thereafter, a composite tungsten oxide (Cs 0.33 WO 3 ) was obtained by a solid-phase method in which the mixture was baked at 800 ° C. for 2 hours in an N 2 gas atmosphere.
  • Example 1 40 g (20% by mass) of the obtained composite tungsten oxide, 160 g (80% by mass) of ion-exchanged water as a solvent, and 750 g of ⁇ 0.3 zirconia beads were charged into a paint shaker, and pulverized and dispersed. An infrared absorbing material fine particle dispersion according to Example 1 was obtained.
  • the zeta potential of the obtained fine particle dispersion of the infrared absorbing material was measured using a zeta potential meter (DT-200, manufactured by Nippon Lucas Co., Ltd.) and found to be -62 mV.
  • the pH was measured using a pH meter (manufactured by Horiba, Ltd .: portable pH meter D-71) and was 4.1. The results are shown in Table 1.
  • a silica binder having a solid content of 25% was mixed with the obtained infrared absorbing material fine particle dispersion in an amount of 3 parts by mass per 1 part by mass of the infrared absorbing material fine particles to obtain a mixed solution.
  • the mixed solution was coated on a glass plate and dried at 180 ° C. for 30 minutes to obtain a dried film according to Example 1.
  • Table 1 shows the measurement results. In addition, when the dried film according to Example 1 was visually confirmed, no bleed-out was confirmed.
  • Example 2 40 g (20% by mass) of the composite tungsten oxide produced in Example 1, 16 g (8% by mass) of a commercially available polymer dispersant A (compound containing an organic oxo acid), and 144 g (72% by mass) of water And 750 g of ⁇ 0.3 zirconia beads were loaded into a paint shaker, and crushed and dispersed in the same manner as in Example 1 to obtain a dispersion liquid of the infrared absorbing material fine particles according to Example 2 and a dried film. The obtained infrared absorbing material fine particle dispersion liquid and the dried film according to Example 2 were evaluated and confirmed in the same manner as in Example 1. The zeta potential was -40 mV and the pH value was 6.9. Table 1 shows the evaluation and confirmation results.
  • Example 3 40 g (20% by mass) of the composite tungsten oxide produced in Example 1, 40 g (20% by mass) of phenylalanine as low molecular dispersant B, 120 g (60% by mass) of water, and 750 g of ⁇ 0.3 zirconia beads.
  • Example 3 40 g (20% by mass) of the composite tungsten oxide produced in Example 1, 40 g (20% by mass) of phenylalanine as low molecular dispersant B, 120 g (60% by mass) of water, and 750 g of ⁇ 0.3 zirconia beads.
  • Example 3 40 g (20% by mass) of the composite tungsten oxide produced in Example 1
  • 40 g (20% by mass) of phenylalanine as low molecular dispersant B 120 g (60% by mass) of water, and 750 g of ⁇ 0.3 zirconia beads.
  • the obtained infrared absorbing material fine particle dispersion liquid and the dried film according to Example 3 were evaluated and confirmed in the same manner
  • Example 4 40 g (20% by mass) of the composite tungsten oxide produced in Example 1, 16 g (8% by mass) of a commercially available polymer dispersant C (block copolymer having an amino group), and 144 g (72% by mass) of water And 750 g of ⁇ 0.3 zirconia beads were loaded into a paint shaker, and pulverized and dispersed in the same manner as in Example 1 to obtain a dispersion liquid of infrared absorbing material fine particles according to Example 4 and a dried film. The obtained infrared absorbing material fine particle dispersion liquid and the dried film according to Example 4 were evaluated and confirmed in the same manner as in Example 1. The zeta potential was -23 mV and the pH value was 6.5. Table 1 shows the evaluation and confirmation results.
  • Example 1 The same procedures as in Example 1 were carried out except that the zeta potential value and the pH value were adjusted by adding hydrochloric acid of a reagent as an acid agent to the dispersion liquid of the infrared-absorbing material fine particles according to Example 1, and according to Comparative Example 1. An infrared absorbing material fine particle dispersion and a dried film were obtained. The obtained infrared absorbing material fine particle dispersion and the dried film were evaluated and confirmed in the same manner as in Example 1. The zeta potential was 2 mV and the pH value was 2.4. Table 1 shows the evaluation and confirmation results.
  • Example 2 The same procedure as in Example 1 was carried out, except that the zeta potential value and the pH value were adjusted by adding hydrochloric acid of a reagent as an acid agent to the fine particle dispersion of the infrared-absorbing material according to Example 2, to obtain Comparative Example 2. An infrared absorbing material fine particle dispersion and a dried film were obtained. The obtained infrared-absorbing material fine particle dispersion and the dried film were evaluated and confirmed in the same manner as in Example 1. The zeta potential was -1 mV and the pH value was 2.5. Table 1 shows the evaluation and confirmation results.
  • Example 3 The same procedure as in Example 1 was carried out, except that the zeta potential value and the pH value were adjusted by adding hydrochloric acid of a reagent as an acid agent to the fine particle dispersion of the infrared-absorbing material according to Example 3, and the procedure of Comparative Example 3 was repeated. An infrared absorbing material fine particle dispersion and a dried film were obtained. The obtained infrared absorbing material fine particle dispersion and the dried film were evaluated and confirmed in the same manner as in Example 1. The zeta potential was 1 mV and the pH value was 4.1. Table 1 shows the evaluation and confirmation results.
  • Example 4 The same procedure as in Example 1 was carried out, except that the zeta potential value and the pH value were adjusted by adding hydrochloric acid of a reagent as an acid agent to the fine particle dispersion of the infrared-absorbing material according to Example 4, and the method of Comparative Example 4 was repeated. An infrared absorbing material fine particle dispersion and a dried film were obtained. The obtained infrared absorbing material fine particle dispersion and the dried film were evaluated and confirmed in the same manner as in Example 1. The zeta potential was 1 mV and the pH value was 4.5. Table 1 shows the evaluation and confirmation results.
  • Example 5 40 g (20% by mass) of the composite tungsten oxide produced in Example 1, 80 g (40% by mass) of a commercially available polymer dispersant C (block copolymer having an amino group), and 80 g (40% by mass) of water And 750 g of ⁇ 0.3 zirconia beads were loaded into a paint shaker and subjected to pulverization and dispersion treatment to obtain a dispersion of fine particles of an infrared absorbing material according to Comparative Example 5 and a dried film. The obtained infrared absorbing material fine particle dispersion and the dried film were evaluated and confirmed in the same manner as in Example 1. The zeta potential was -0.5 mV and the pH value was 7.2. Table 1 shows the evaluation and confirmation results.
  • the infrared absorbing material fine particle dispersions according to Comparative Examples 1 to 4 in which the absolute value of the zeta potential was out of the range of 5 mV or more and 100 mV or less were all stored at 25 ° C. for 6 months, and then the state of the bottom of the sample bottle was observed. Was visually observed to find that precipitation occurred and the stability was poor.
  • the infrared absorbent material fine particle dispersion according to Comparative Example 5 was stored at 25 ° C. for 6 months, and then the appearance of the bottom of the sample bottle was visually confirmed. No precipitation occurred, and the stability was good.
  • the dried film according to Example 5 produced significant bleed-out.

Abstract

Provided is an infrared absorbing material fine particle dispersion liquid including infrared absorbing material fine particles and a solvent, wherein the infrared absorbing material fine particles include composite tungsten oxide fine particles represented by the general formula, MxWOy, the solvent includes water, and the absolute value of the zeta potential of the infrared absorbing material fine particle dispersion liquid is 5-100 mV.

Description

赤外線吸収材料微粒子分散液とその製造方法Infrared absorbing material fine particle dispersion and production method thereof
 本発明は、赤外線吸収材料微粒子と溶媒とを含む赤外線吸収材料微粒子分散液に関し、より具体的には、前記赤外線吸収材料微粒子は複合タングステン酸化物微粒子を含み、前記溶媒は水を含む赤外線吸収材料微粒子分散液とその製造方法に関する。 The present invention relates to an infrared absorbing material fine particle dispersion containing infrared absorbing material fine particles and a solvent, and more specifically, the infrared absorbing material fine particles include composite tungsten oxide fine particles, and the solvent includes water. The present invention relates to a fine particle dispersion and a method for producing the same.
 近年、赤外線吸収体の需要が急増しており、赤外線吸収体に関し多くの提案が為されている。
 これらの赤外線吸収体に係る提案を、機能的観点から俯瞰してみる。
 すると、例えば、各種建築物や車両の窓材等の分野において、可視光線を十分に取り入れながら近赤外領域の光を遮蔽することにより、明るさを維持しつつ室内の温度上昇を抑制することを目的としたものがある。
In recent years, demand for infrared absorbers has been rapidly increasing, and many proposals have been made regarding infrared absorbers.
Let's look at these proposals for infrared absorbers from a functional perspective.
Then, for example, in the field of window materials of various buildings and vehicles, by sufficiently taking in visible light and blocking light in the near-infrared region, it is possible to suppress a rise in indoor temperature while maintaining brightness. Some are aimed at.
 次に、これらの赤外線吸収体に係る提案を、遮光部材の観点から俯瞰してみる。
 すると、例えば窓材等に使用される遮光部材として、可視光領域から近赤外線領域に吸収特性があるカーボンブラック、チタンブラック等の無機顔料を用いた遮光部材、可視光領域のみに強い吸収特性のあるアニリンブラック等の有機顔料等を含む黒色系顔料を用いた遮光部材、さらに、アルミ等の金属を蒸着したハーフミラータイプの遮光部材、といった各種の遮光部材が提案されている。
Next, the proposals regarding these infrared absorbers will be looked down from the viewpoint of the light shielding member.
Then, for example, as a light-shielding member used for a window material or the like, a light-shielding member using an inorganic pigment such as carbon black or titanium black having an absorption characteristic from a visible light region to a near-infrared region, and having a strong absorption characteristic only in a visible light region. Various light-blocking members have been proposed, such as a light-blocking member using a black pigment containing an organic pigment such as aniline black, and a half-mirror-type light-blocking member in which a metal such as aluminum is deposited.
 先行技術文献として、例えば特許文献1では、透明なガラス基板上に、基板側より第1層として周期律表のIIIa族、IVa族、Vb族、VIb族およびVIIb族から成る群から選ばれた少なくとも1種の金属イオンを含有する複合酸化タングステン膜を設け、当該第1層上に第2層として透明誘電体膜を設け、当該第2層上に第3層として周期律表のIIIa族、IVa族、Vb族、VIb族およびVIIb族から成る群から選ばれた少なくとも1種の金属イオンを含有する複合酸化タングステン膜を設け、且つ、前記第2層の透明誘電体膜の屈折率を前記第1層および前記第3層の複合酸化タングステン膜の屈折率よりも低くすることにより、高い可視光透過率および良好な赤外線遮断性能が要求される部位に好適に使用することが出来る赤外線遮断ガラスが提案されている。 As a prior art document, for example, in Patent Document 1, on a transparent glass substrate, as a first layer from the substrate side, it was selected from the group consisting of Group IIIa, Group IVa, Group Vb, Group VIb and Group VIIb of the periodic table. A composite tungsten oxide film containing at least one metal ion is provided, a transparent dielectric film is provided as a second layer on the first layer, and a group IIIa of the periodic table is provided as a third layer on the second layer; A composite tungsten oxide film containing at least one metal ion selected from the group consisting of IVa group, Vb group, VIb group and VIIb group is provided, and the refractive index of the transparent dielectric film of the second layer is set to the above-mentioned value. By making the refractive index lower than the refractive index of the composite tungsten oxide film of the first layer and the third layer, the composite tungsten oxide film can be suitably used in a part where high visible light transmittance and good infrared blocking performance are required. Infrared cut-off glass that may have been proposed.
 また特許文献2では、特許文献1と同様の方法で、透明なガラス基板上へ、基板側より第1層として第1の誘電体膜を設け、当該第1層上に第2層として酸化タングステン膜を設け、当該第2層上に第3層として第2の誘電体膜を設けた赤外線遮断ガラスが提案されている。 In Patent Document 2, in the same manner as Patent Document 1, a first dielectric film is provided as a first layer from a substrate side on a transparent glass substrate, and tungsten oxide is formed as a second layer on the first layer. An infrared shielding glass in which a film is provided and a second dielectric film is provided as a third layer on the second layer has been proposed.
 また特許文献3では、特許文献1と同様な方法で、透明なガラス基板上へ、基板側より第1層として特許文献1と同様の金属元素を含有する複合酸化タングステン膜を設け、当該第1層上に第2層として透明誘電体膜を設けた熱線遮断ガラスが提案されている。 In Patent Document 3, a composite tungsten oxide film containing a metal element similar to that of Patent Document 1 is provided on a transparent glass substrate as a first layer on the transparent glass substrate in the same manner as in Patent Document 1, A heat ray blocking glass in which a transparent dielectric film is provided as a second layer on a layer has been proposed.
 また特許文献4では、水素、リチウム、ナトリウムまたはカリウム等の添加元素を含有する、三酸化タングステン(WO)、三酸化モリブデン(MoO)、五酸化ニオブ(Nb)、五酸化タンタル(Ta)、五酸化バナジウム(V)および二酸化バナジウム(VO)の1種以上から選択される金属酸化物膜が、CVD法またはスプレー法で被覆された後、250℃程度で熱分解されることにより形成された、太陽光遮蔽特性を有する太陽光制御ガラスシートが提案されている。 In Patent Document 4, tungsten trioxide (WO 3 ), molybdenum trioxide (MoO 3 ), niobium pentoxide (Nb 2 O 5 ), and tantalum pentoxide containing additional elements such as hydrogen, lithium, sodium and potassium After a metal oxide film selected from one or more of (Ta 2 O 5 ), vanadium pentoxide (V 2 O 5 ), and vanadium dioxide (VO 2 ) is coated by a CVD method or a spray method, 250 ° C. A solar control glass sheet having solar light shielding properties formed by being thermally decomposed to a certain degree has been proposed.
 また特許文献5には、タングステン酸を加水分解して得られた酸化タングステンを用い、当該酸化タングステンに、ポリビニルピロリドンという特定の構造の有機ポリマーを添加した太陽光可変調光断熱材料が提案されている。
 当該太陽光可変調光断熱材料は太陽光が照射されると、光線中の紫外線が酸化タングステンに吸収されて励起電子とホールとが発生し、少量の紫外線量により5価タングステンの出現量が著しく増加して着色反応が速くなり、これに伴って着色濃度が高くなるものである。他方、光が遮断されることによって、前記5価タングステンが極めて速やかに6価に酸化されて消色反応が高くなるものである。当該着色/消色特性を用い、太陽光に対する着色および消色反応が速く、着色時に近赤外域の波長1250nmに吸収ピークが現れ、太陽光の近赤外線を遮断することが出来る太陽光可変調光断熱材料が得られることが提案されている。
Patent Literature 5 proposes a solar light-modulated light-insulating material using tungsten oxide obtained by hydrolyzing tungstic acid and adding an organic polymer having a specific structure called polyvinylpyrrolidone to the tungsten oxide. I have.
When the sunlight is irradiated with the sunlight, the ultraviolet light in the light is absorbed by the tungsten oxide to generate excited electrons and holes, and a small amount of the ultraviolet light significantly increases the appearance amount of pentavalent tungsten. The coloring reaction increases to increase the coloring reaction, and accordingly, the coloring concentration increases. On the other hand, when the light is blocked, the pentavalent tungsten is very quickly oxidized to hexavalent and the decoloring reaction is increased. By using the coloring / decoloring characteristics, a coloring and decoloring reaction to sunlight is fast, and an absorption peak appears at a wavelength of 1250 nm in a near-infrared region at the time of coloring, and sunlight-modulating light capable of blocking the near-infrared ray of sunlight. It has been proposed that an insulating material be obtained.
 一方、本発明者等は特許文献6において、六塩化タングステンをアルコールに溶解し、そのまま媒質を蒸発させるか、または加熱還流した後、媒質を蒸発させ、その後100℃~500℃で加熱することにより、三酸化タングステンまたはその水和物または両者の混合物からなる酸化タングステン微粒子粉末を得ることを開示した。そして、当該酸化タングステン微粒子を用いてエレクトロクロミック素子が得られること、多層の積層体を構成し膜中にプロトンを導入したときに当該膜の光学特性を変化させることが出来ること、等を開示した。 On the other hand, in Patent Document 6, the present inventors dissolve tungsten hexachloride in alcohol and evaporate the medium as it is, or heat and reflux, evaporate the medium, and then heat it at 100 ° C. to 500 ° C. To obtain tungsten oxide fine particles comprising tungsten trioxide, a hydrate thereof, or a mixture of both. Then, it was disclosed that an electrochromic element can be obtained using the tungsten oxide fine particles, that optical properties of the film can be changed when protons are introduced into the film by forming a multilayer laminate, and the like. .
 また特許文献7には、メタ型タングステン酸アンモニウムと水溶性の各種金属塩とを原料とし、その混合水溶液の乾固物を約300~700℃の加熱温度で加熱し、この加熱の際に不活性ガス(添加量;約50vol%以上)または水蒸気(添加量;約15vol%以下)を添加した水素ガスを供給することにより、一般式MxWO(但し、Mはアルカリ、アルカリ土類、希土類などの金属元素、0<x<1)で表される種々のタングステンブロンズを作製する方法が提案されている。そして、当該操作を支持体上で実施して種々のタングステンブロンズ被覆複合体を製造し、燃料電池等の電極触媒材料として用いることが提案されている。 Further, Patent Document 7 discloses that a dried product of a mixed aqueous solution is heated at a heating temperature of about 300 to 700 ° C. using a meta-type ammonium tungstate and various water-soluble metal salts as raw materials. By supplying a hydrogen gas to which an active gas (addition amount: about 50 vol% or more) or water vapor (addition amount: about 15 vol% or less) is added, a general formula MxWO 3 (where M is an alkali, alkaline earth, rare earth, or the like) A method for producing various tungsten bronze represented by the following metal element, 0 <x <1) has been proposed. Then, it has been proposed to carry out the operation on a support to produce various tungsten bronze-coated composites and use them as electrode catalyst materials for fuel cells and the like.
 そして、本発明者等は特許文献8において、赤外線遮蔽材料微粒子が樹脂などの媒質中に分散してなる赤外線遮蔽材料微粒子分散体、当該赤外線遮蔽材料微粒子分散体の光学特性、導電性、製造方法について開示した。
 尚、前記赤外線遮蔽材料微粒子は、一般式WyOz(但し、Wはタングステン、Oは酸素、2.2≦z/y≦2.999)で表記されるタングステン酸化物の微粒子、または/および、一般式MxWyOz(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iのうちから選択される1種類以上の元素、Wはタングステン、Oは酸素、0.001≦x/y≦1、2.2≦z/y≦3.0)で表記される複合タングステン酸化物の微粒子であって、当該赤外線遮蔽材料微粒子の粒子直径は1nm以上800nm以下である。
The present inventors have disclosed in Patent Document 8 an infrared shielding material fine particle dispersion in which infrared shielding material fine particles are dispersed in a medium such as a resin, and the optical characteristics, conductivity, and manufacturing method of the infrared shielding material fine particle dispersion. Was disclosed.
The infrared shielding material fine particles are fine particles of tungsten oxide represented by the general formula WyOz (W is tungsten, O is oxygen, 2.2 ≦ z / y ≦ 2.999), and / or Formula MxWyOz (where M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag , Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re , Be, Hf, Os, Bi, and I, at least one element selected from the group consisting of W, tungsten, O, oxygen, 0.001 ≦ x / y ≦ 1, 2.2 ≦ z / y ≦ 3. 0) fine particles of the composite tungsten oxide represented by Particle diameter of the infrared shielding material microparticle is 1nm or more 800nm or less.
特開平8-59300号公報JP-A-8-59300 特開平8-12378号公報JP-A-8-12378 特開平8-283044号公報JP-A-8-283044 特開2000-119045号公報JP 2000-119045 A 特開平9-127559号公報JP-A-9-127559 特開2003-121884号公報JP 2003-121884 A 特開平8-73223号公報JP-A-8-73223 国際公開第2005/37932号International Publication No. 2005/37932
 赤外線吸収材料微粒子を樹脂などの媒質中に分散させた赤外線吸収材料微粒子分散体を得るには、当該赤外線吸収材料微粒子を溶媒に分散した赤外線吸収材料微粒子分散液を調製する。そして当該赤外線吸収材料微粒子分散液へ樹脂などを溶解して塗工液とし、当該塗工液を例えば基材へ塗布した後これを乾燥する、等の方法を採ればよい。
 ここで、近年、各種の工業材料において環境負荷を低減することが求められており、上述した塗工液においても、溶媒が水を含むことを求められている。
In order to obtain an infrared absorbing material fine particle dispersion in which the infrared absorbing material fine particles are dispersed in a medium such as a resin, an infrared absorbing material fine particle dispersion in which the infrared absorbing material fine particles are dispersed in a solvent is prepared. Then, a method of dissolving a resin or the like in the dispersion liquid of the infrared absorbing material fine particles to form a coating liquid, applying the coating liquid to a substrate, for example, and then drying the coating liquid may be adopted.
Here, in recent years, it has been required to reduce the environmental load of various industrial materials, and it is also required that the solvent in the above-mentioned coating liquid contains water.
 しかしながら、上述した先行技術文献に記載されているのは、複合タングステン酸化物微粒子等をトルエンなどの水への溶解度が低い有機溶媒へ分散した赤外線吸収材料微粒子分散液の技術である。そして、当該溶媒が水を含む場合、または、溶媒を水で構成した場合の赤外線吸収材料微粒子分散液についての開示はない。
 本発明は上述の状況の下で為されたものであり、その課題とするところは、溶媒が水を含む場合、または、溶媒が全て水である場合であっても、長期保存性に優れる赤外線吸収材料微粒子分散液とその製造方法を提供することである。
However, what is described in the above-mentioned prior art document is a technique of an infrared absorbing material fine particle dispersion in which composite tungsten oxide fine particles and the like are dispersed in an organic solvent having low solubility in water such as toluene. And there is no disclosure about the infrared absorbing material fine particle dispersion when the solvent contains water or when the solvent is composed of water.
The present invention has been made under the above circumstances, and the subject thereof is that when the solvent contains water, or even when the solvent is all water, infrared rays having excellent long-term storage properties An object of the present invention is to provide an absorbent material fine particle dispersion and a method for producing the same.
 上述の課題を解決する為、本発明者らが研究を行った結果、赤外線吸収材料微粒子分散液が所定のゼータ電位の値を有するとき長期保存性に優れるものとなる、という画期的な知見を得て本発明を完成した。 In order to solve the above-mentioned problems, the present inventors have conducted research and found that the infrared absorbing material fine particle dispersion has excellent long-term preservability when it has a predetermined zeta potential value. And completed the present invention.
 即ち、上述の課題を解決するための第1の発明は、
 赤外線吸収材料微粒子と溶媒とを含む赤外線吸収材料微粒子分散液であって、
 前記赤外線吸収材料微粒子は、一般式MxWOy(ただし、Mは、Cs、Rb、K、Tl、Baから選択される1種類以上の元素、0.1≦x≦0.5、2.2≦y≦3.0)で表される複合タングステン酸化物微粒子を含み、
 前記溶媒は水を含み、
 前記赤外線吸収材料微粒子分散液のゼータ電位の絶対値が、5mV以上100mV以下であることを特徴とする赤外線吸収材料微粒子分散液である。
 第2の発明は、
 前記ゼータ電位の値が、-100mV以上-5mV以下であることを特徴とする第1の発明に記載の赤外線吸収材料微粒子分散液である。
 第3の発明は、
 pH値が4以上であることを特徴とする第1または第2の発明に記載の赤外線吸収微粒子分散液である。
 第4の発明は、
 前記複合タングステン酸化物微粒子の粒子径が、800nm以下であることを特徴とする第1から第3の発明のいずれかに記載の赤外線吸収材料微粒子分散液である。
 第5の発明は、
 さらに、1種以上の分散剤を含むことを特徴とする第1から第4の発明のいずれかに記載の赤外線吸収材料微粒子分散液である。
 第6の発明は、
 前記分散剤が、アミノ基、オキソ酸のいずれか1種以上を含むことを特徴とする第5の発明に記載の赤外線吸収材料微粒子分散液である。
 第7の発明は、
 前記赤外線吸収材料微粒子分散液中に含有されている赤外線吸収材料微粒子の含有量が、0.01質量%以上80質量%以下であることを特徴とする第1から第6の発明のいずれかに記載の赤外線吸収材料微粒子分散液である。
 第8の発明は、
 赤外線吸収材料微粒子と溶媒とを含む赤外線吸収材料微粒子分散液の製造方法であって、
 水を含む前記溶媒へ、一般式MxWOy(ただし、Mは、Cs、Rb、K、Tl、Baから選択される1種類以上の元素、0.1≦x≦0.5、2.2≦y≦3.0)で表される複合タングステン酸化物微粒子を含む前記赤外線吸収材料微粒子を分散させて、赤外線吸収材料微粒子分散液とし、
 前記赤外線吸収材料微粒子分散液のゼータ電位の絶対値を、5mV以上100mV以下とすることを特徴とする赤外線吸収材料微粒子分散液の製造方法である。
 第9の発明は、
 前記赤外線吸収材料微粒子分散液のpH値を、4以上とすることを特徴とする第8の発明に記載の赤外線吸収微粒子分散液の製造方法である。
That is, a first invention for solving the above-mentioned problem is:
An infrared absorbing material fine particle dispersion containing infrared absorbing material fine particles and a solvent,
The infrared absorbing material fine particles may have a general formula MxWOy (where M is at least one element selected from Cs, Rb, K, Tl, and Ba, 0.1 ≦ x ≦ 0.5, 2.2 ≦ y). ≦ 3.0), comprising composite tungsten oxide fine particles represented by the following formula:
The solvent includes water,
An infrared absorbing material fine particle dispersion, wherein the absolute value of the zeta potential of the infrared absorbing material fine particle dispersion is 5 mV or more and 100 mV or less.
The second invention is
The infrared absorbing material fine particle dispersion according to the first invention, wherein the value of the zeta potential is -100 mV or more and -5 mV or less.
The third invention is
The infrared absorbing fine particle dispersion according to the first or second invention, wherein the pH value is 4 or more.
The fourth invention is
The infrared absorbing material fine particle dispersion according to any one of the first to third inventions, wherein the composite tungsten oxide fine particles have a particle diameter of 800 nm or less.
The fifth invention is
The dispersion liquid of the infrared absorbing material fine particles according to any one of the first to fourth inventions, further comprising one or more dispersants.
The sixth invention is
The infrared absorbing material fine particle dispersion according to the fifth invention, wherein the dispersant contains at least one of an amino group and an oxo acid.
The seventh invention is
The content according to any one of the first to sixth inventions, wherein the content of the infrared absorbing material fine particles contained in the infrared absorbing material fine particle dispersion is 0.01% by mass or more and 80% by mass or less. It is a dispersion of the infrared absorbing material fine particles described in the above.
The eighth invention is
A method for producing an infrared absorbing material fine particle dispersion containing infrared absorbing material fine particles and a solvent,
To the solvent containing water, a general formula MxWOy (where M is at least one element selected from Cs, Rb, K, Tl, and Ba, 0.1 ≦ x ≦ 0.5, 2.2 ≦ y ≦ 3.0) by dispersing the infrared absorbing material fine particles containing the composite tungsten oxide fine particles represented by
A method for producing a fine particle dispersion of an infrared absorbing material, characterized in that the absolute value of the zeta potential of the fine particle dispersion of an infrared absorbing material is 5 mV or more and 100 mV or less.
The ninth invention is
The method for producing an infrared-absorbing fine particle dispersion according to the eighth invention, wherein the pH value of the infrared-absorbing material fine particle dispersion is 4 or more.
 本発明によれば、水を含む溶媒を用いながら、長期保存性に優れる赤外線吸収材料微粒子分散液を得ることができる。また、当該赤外線吸収材料微粒子分散液とバインダーとを混合し、製膜した時にブリードアウトの発生を抑えることができる。 According to the present invention, it is possible to obtain an infrared absorbing material fine particle dispersion having excellent long-term storage properties while using a solvent containing water. In addition, it is possible to suppress the occurrence of bleed-out when a film is formed by mixing the dispersion of the infrared absorbing material fine particles and a binder.
 本発明に係る赤外線吸収材料微粒子分散液は、赤外線吸収材料微粒子と溶媒とを含む赤外線吸収材料微粒子分散液であって、前記赤外線吸収材料微粒子は、一般式MxWOy(ただし、M元素は、Cs、Rb、K、Tl、Baから選択される1種類以上の元素、0.1≦x≦0.5、2.2≦y≦3.0)で表される複合タングステン酸化物微粒子を含み、前記溶媒は水を含み、前記赤外線吸収材料微粒子分散液のゼータ電位の絶対値が、510mV以上100mV以下である赤外線吸収材料微粒子分散液である。
 以下、本発明に係る赤外線吸収材料微粒子分散液を、[1]赤外線吸収材料微粒子、[2]赤外線吸収材料微粒子分散液に用いられる溶媒、[3]赤外線吸収材料微粒子分散液、[4]赤外線吸収材料微粒子分散液へ添加される分散剤、[5]赤外線吸収材料微粒子の製造方法、[6]赤外線吸収材料微粒子分散液の製造方法、[7]赤外線吸収材料微粒子分散液の使用方法、の順に説明する。
The infrared absorbing material fine particle dispersion according to the present invention is an infrared absorbing material fine particle dispersion containing infrared absorbing material fine particles and a solvent, wherein the infrared absorbing material fine particles have a general formula MxWOy (where M element is Cs, Rb, K, Tl, at least one element selected from Ba, and 0.1 ≦ x ≦ 0.5, 2.2 ≦ y ≦ 3.0). The solvent contains water, and the absolute value of the zeta potential of the infrared ray absorbing material fine particle dispersion is 510 mV or more and 100 mV or less.
Hereinafter, the fine particles of the infrared-absorbing material according to the present invention are referred to as [1] fine particles of the infrared-absorbing material, [2] a solvent used for the fine particles of the infrared-absorbing material, [3] a fine particle dispersion of the infrared-absorbing material, and [4] infrared. A dispersant added to the dispersion of fine particles of the absorbing material, [5] a method of producing fine particles of the infrared absorbing material, [6] a method of producing a fine particle of the infrared absorbing material, and [7] a method of using the fine particle of the infrared absorbing material. It will be described in order.
[1]赤外線吸収材料微粒子
 本発明に係る赤外線吸収材料微粒子分散液は、赤外線吸収材料微粒子として、少なくとも一般式MxWyOz(但し、M元素はCs、Rb、K、Tl、Baから選択される1種類以上の元素、0.1≦x≦0.5、2.2≦y≦3.0)で表記される複合タングステン酸化物微粒子を含んでいる。
 以下、複合タングステン酸化物微粒子を例として、本発明に係る赤外線吸収材料微粒子について説明する。
[1] Infrared Absorbing Material Fine Particles The infrared absorbing material fine particle dispersion according to the present invention contains at least a general formula MxWyOz (where M element is one selected from Cs, Rb, K, Tl, and Ba) as infrared absorbing material fine particles. These include the composite tungsten oxide fine particles represented by the above elements, 0.1 ≦ x ≦ 0.5, 2.2 ≦ y ≦ 3.0).
Hereinafter, the infrared absorbing material fine particles according to the present invention will be described by taking composite tungsten oxide fine particles as an example.
 一般に、自由電子を含む材料は、プラズマ振動によって波長200nmから2600nmの太陽光線の領域周辺の電磁波に反射吸収応答を示すことが知られている。このような物質の粉末の粒子を、光の波長より小さい粒径を有する微粒子にすると、可視光領域(波長380nmから780nm)の幾何学散乱が低減されて、可視光領域の透明性が得られることが知られている。
 尚、本発明において「透明性」とは、「可視光領域の光に対して散乱が少なく透過性が高い。」という意味で用いている。
In general, it is known that a material containing free electrons exhibits a reflection-absorption response to an electromagnetic wave around a solar ray region having a wavelength of 200 nm to 2600 nm due to plasma vibration. When the particles of the powder of such a substance are formed into fine particles having a particle size smaller than the wavelength of light, geometric scattering in the visible light region (wavelength from 380 nm to 780 nm) is reduced, and transparency in the visible light region is obtained. It is known.
In the present invention, “transparency” is used to mean “there is little scattering and high transmittance with respect to light in the visible light region”.
 ここで、タングステン酸化物(WO)中には有効な自由電子が存在しない為、赤外線領域の吸収反射特性が少なく、赤外線吸収材料微粒子としては有効ではない。しかしながら、酸素欠損を持つWOの構成、または、WOへCs等の元素を添加した複合タングステン酸化物の構成をとることで、タングステン酸化物や複合タングステン酸化物中に自由電子が生成され、赤外線領域に自由電子由来の吸収特性が発現することが知られている。そして、これらの自由電子を持つ材料の単結晶等の分析により、赤外線領域の光に対する自由電子の応答が示唆された。 Here, since effective free electrons do not exist in tungsten oxide (WO 3 ), the absorption and reflection characteristics in the infrared region are small, and the particles are not effective as infrared absorbing material fine particles. However, by adopting a structure of WO 3 having an oxygen vacancy or a structure of a composite tungsten oxide obtained by adding an element such as Cs to WO 3 , free electrons are generated in the tungsten oxide or the composite tungsten oxide, It is known that absorption characteristics derived from free electrons appear in the infrared region. The analysis of single crystals of these materials having free electrons suggests the response of free electrons to light in the infrared region.
 そして当該WOに対し、酸素量の制御と、自由電子を生成する元素を添加する構成とを併用することで、より効率の良い赤外線吸収材料微粒子を得ることが出来た。当該構成をとることで、複合タングステン酸化物中に自由電子が生成され、特に近赤外線領域に自由電子由来の強い吸収特性が発現し、波長1000nm付近の近赤外線吸収材料微粒子として有効となる。
 この酸素量の制御と、自由電子を生成するM元素の添加とを併用した赤外線吸収材料微粒子は、一般式をMxWyOz(但し、Mは、Cs、Rb、K、Tl、Baから選択される1種類以上の元素であることが好ましい、Wはタングステン、Oは酸素である。)と記載したとき、0.001≦x/y≦1、2.2≦z/y≦3の関係を満たす赤外線吸収材料微粒子である。
And with respect to the WO 3, and control of oxygen content, by a combination of structure and adding an element for generating free electrons, it was possible to obtain a more efficient infrared absorbing material particles. With this configuration, free electrons are generated in the composite tungsten oxide, and strong absorption characteristics derived from free electrons are exhibited particularly in the near-infrared region, which is effective as near-infrared absorbing material fine particles having a wavelength around 1000 nm.
The infrared absorbing material fine particles using both the control of the oxygen amount and the addition of the M element for generating free electrons have a general formula of MxWyOz (where M is 1 selected from Cs, Rb, K, Tl, and Ba). (W is tungsten and O is oxygen.) And infrared rays satisfying the relationship of 0.001 ≦ x / y ≦ 1, 2.2 ≦ z / y ≦ 3. Absorption material fine particles.
 M元素の添加量を示すx/yの値については、x/yの値が0.001より大きければ、複合タングステン酸化物において十分な量の自由電子が生成され、目的とする赤外線吸収効果を得ることが出来る。そして、M元素の添加量が多いほど、自由電子の供給量が増加し赤外線吸収効率も上昇するが、x/yの値が1程度で当該効果も飽和する。また、x/yの値が1より小さければ、当該赤外線吸収材料微粒子中に不純物相が生成されるのを回避できるので好ましい。 Regarding the value of x / y indicating the amount of addition of the element M, if the value of x / y is larger than 0.001, a sufficient amount of free electrons is generated in the composite tungsten oxide, and the desired infrared absorption effect is reduced. Can be obtained. Then, as the addition amount of the M element increases, the supply amount of free electrons increases and the infrared absorption efficiency also increases, but the effect is saturated when the value of x / y is about 1. Further, it is preferable that the value of x / y is smaller than 1 because generation of an impurity phase in the infrared absorbing material fine particles can be avoided.
 また、酸素量の制御を示すz/yの値については、MxWyOzで表記される複合タングステン酸化物においても、上述したWOで表記されるタングステン酸化物と同様の機構が働くことに加え、z/y=3.0や2.0≦z/y≦2.2においても、上述したM元素の添加量による自由電子の供給がある。好ましくは2.45≦z/y≦3.0である。 Also, the value of z / y showing the control of the oxygen content, even in the composite tungsten oxide indicated by MxWyOz, in addition to the same mechanism as tungsten oxide indicated by the WO 3 described above acts, z Even when /y=3.0 and 2.0 ≦ z / y ≦ 2.2, there is a supply of free electrons depending on the amount of the M element added. Preferably, 2.45 ≦ z / y ≦ 3.0.
 さらに、当該複合タングステン酸化物微粒子が六方晶の結晶構造を有する場合、当該微粒子の可視光領域の透過が向上し、赤外領域の吸収が向上する。
 そして、六方晶の結晶構造を有する複合タングステン酸化物微粒子が均一な結晶構造を有するとき、M元素の添加量は、x/yの値で0.2以上0.5以下が好ましく、さらに好ましくは0.33である。x/yの値が0.33となることで、上述したM元素が六角形の空隙の全てに配置されると考えられる。
Further, when the composite tungsten oxide fine particles have a hexagonal crystal structure, transmission of the fine particles in the visible light region is improved, and absorption in the infrared region is improved.
When the composite tungsten oxide fine particles having a hexagonal crystal structure have a uniform crystal structure, the addition amount of the M element is preferably 0.2 or more and 0.5 or less in terms of x / y, more preferably 0.33. When the value of x / y is 0.33, it is considered that the above-described M element is arranged in all the hexagonal voids.
 この六角形の空隙にM元素の陽イオンが添加されて存在するとき、可視光領域における光の透過が向上し、赤外領域における光の吸収が向上する。ここで一般的には、イオン半径の大きなM元素を添加したとき当該六方晶が形成され易い。具体的には、M元素を、Cs、Rb、K、Tl、Baの中から選択される1種類以上の元素としたとき六方晶が形成され易い。典型的な例としてはCs0.33WO、Cs0.03Rb0.30WO、Rb0.33WO、K0.33WO、Ba0.33WO(2.0≦z≦3.0)などを、好ましく挙げることができる。勿論これら以外の元素でも、WO単位で形成される六角形の空隙に上述したM元素が存在すれば良く、上述の元素に限定される訳ではない。 When cations of the M element are added to the hexagonal voids, light transmission in the visible light region is improved, and light absorption in the infrared region is improved. Here, generally, when the M element having a large ionic radius is added, the hexagonal crystal is easily formed. Specifically, when the M element is one or more elements selected from Cs, Rb, K, Tl, and Ba, a hexagonal crystal is easily formed. Typical examples are Cs 0.33 WO z , Cs 0.03 Rb 0.30 WO z , Rb 0.33 WO z , K 0.33 WO z , Ba 0.33 WO z (2.0 ≦ z ≦ 3.0) and the like. Of course, other elements may be used as long as the above-mentioned M element is present in the hexagonal void formed by WO 6 units, and is not limited to the above-described elements.
 六方晶の結晶構造を有する複合タングステン酸化物微粒子が均一な結晶構造を有するとき、M元素の添加量は、x/yの値で0.2以上0.5以下が好ましく、さらに好ましくは0.33である。x/yの値が0.33となることで、上述したM元素が六角形の空隙の全てに配置されると考えられる。 When the composite tungsten oxide fine particles having a hexagonal crystal structure have a uniform crystal structure, the addition amount of the M element is preferably 0.2 or more and 0.5 or less in terms of x / y, and more preferably 0. 33. When the value of x / y is 0.33, it is considered that the above-described M element is arranged in all the hexagonal voids.
 また、六方晶以外であって、正方晶、立方晶の複合タングステン酸化物も赤外線吸収材料微粒子として有効である。但し、結晶構造によって、赤外線領域の吸収位置が変化する傾向があり、立方晶<正方晶<六方晶の順に、吸収位置が長波長側に移動する傾向がある。また、それに付随して可視光線領域の吸収が少ないのは、六方晶、正方晶、立方晶の順である。
 従って、可視光領域の光をより透過し、赤外線領域の光をより吸収する用途には、六方晶の複合タングステン酸化物を用いることが好ましい。ただし、ここで述べた光学特性の傾向は、あくまで大まかな傾向であり、添加元素の種類や、添加量、酸素量によって変化するものであり、本発明がこれに限定されるわけではない。
In addition, tetragonal and cubic composite tungsten oxides other than hexagonal are also effective as infrared absorbing material fine particles. However, the absorption position in the infrared region tends to change depending on the crystal structure, and the absorption position tends to move to the longer wavelength side in the order of cubic crystal <tetragonal crystal <hexagonal crystal. Along with this, the absorption in the visible light region is low in the order of hexagonal, tetragonal and cubic.
Therefore, it is preferable to use a hexagonal composite tungsten oxide for applications in which light in the visible light region is more transmitted and light in the infrared region is more absorbed. However, the tendency of the optical characteristics described here is only a rough tendency and varies depending on the type of the added element, the added amount, and the amount of oxygen, and the present invention is not limited to this.
 上述した複合タングステン酸化物微粒子は、赤外線領域、特に波長1000nm付近の光を大きく吸収するため、その透過色調は青色系から緑色系となる物が多い。 複合 Since the above-mentioned composite tungsten oxide fine particles largely absorb light in the infrared region, particularly in the vicinity of a wavelength of 1000 nm, the transmission color tone is often from blue to green.
 そして、本発明に係る赤外線吸収材料微粒子は、その粒子径が1nm以上800nm以下であることが好ましいが、100nm以下のものであることがさらに好ましい。そして、より優れた可視光透過特性、赤外線吸収特性を発揮させる観点から、当該微粒子の粒子径は1nm以上40nm以下であることが好ましく、より好ましくは1nm以上30nm以下、最も好ましくは1nm以上25nm以下である。このような粒径が好ましいのは微粒子のミー散乱およびレイリー散乱による散乱が十分に抑制され、可視光波長域の視認性を保持し、効率よく透明性を保持することができる為である。 The fine particles of the infrared absorbing material according to the present invention preferably have a particle size of 1 nm or more and 800 nm or less, and more preferably 100 nm or less. From the viewpoint of exhibiting more excellent visible light transmission characteristics and infrared absorption characteristics, the particle diameter of the fine particles is preferably 1 nm or more and 40 nm or less, more preferably 1 nm or more and 30 nm or less, and most preferably 1 nm or more and 25 nm or less. It is. Such a particle size is preferable because scattering due to Mie scattering and Rayleigh scattering of the fine particles is sufficiently suppressed, visibility in a visible light wavelength region is maintained, and transparency can be efficiently maintained.
 ここで粒子径とは、凝集していない個々の赤外線吸収材料微粒子がもつ径の平均値であり、後述する赤外線吸収材料微粒子分散液に含まれる、凝集していない個々の赤外線吸収材料微粒子の平均粒子径である。尚、赤外線吸収材料微粒子の平均粒子径は、当該赤外線吸収材料微粒子の電子顕微鏡像から測定され、算出される。 Here, the particle size is the average value of the diameters of the individual non-aggregated infrared absorbing material fine particles, and is the average value of the individual non-aggregated infrared absorbing material fine particles contained in the infrared absorbing material fine particle dispersion described below. The particle size. The average particle diameter of the infrared absorbing material fine particles is measured and calculated from an electron microscope image of the infrared absorbing material fine particles.
[2]赤外線吸収材料微粒子分散液に用いられる溶媒
 本発明に係る赤外線吸収材料微粒子分散液に用いられる溶媒は、その構成に水を含むものである。本発明において「構成に水を含む」とは、当該溶媒中に水を1質量%以上含むもののことであり、水と相溶する有機溶媒、例えば、アルコール類やグリコール類等と、水との混合溶媒を包括する概念である。さらに、水のみで構成される溶媒も包括する概念である。
 尚、本発明において水とは、塩素などの陰イオンをイオン交換樹脂で除去したイオン交換水、超純水等を含む概念である。
[2] Solvent Used in Infrared Absorbing Material Fine Particle Dispersion The solvent used in the infrared absorbing material fine particle dispersion according to the present invention contains water in its constitution. In the present invention, “contains water in the composition” means that the solvent contains water in an amount of 1% by mass or more, and an organic solvent compatible with water, for example, alcohols or glycols, and water. This is a concept that includes a mixed solvent. Furthermore, the concept includes a solvent composed of only water.
In the present invention, water is a concept including ion-exchanged water from which anions such as chlorine have been removed with an ion-exchange resin, ultrapure water, and the like.
[3]赤外線吸収材料微粒子分散液
 本発明に係る赤外線吸収材料微粒子分散液は、上述した赤外線吸収材料微粒子を溶媒に分散させた分散液である。
 本発明に係る赤外線吸収材料微粒子分散液は、ゼータ電位の絶対値が5mV以上100mV以下の範囲にある分散液である。即ち、ゼータ電位の値が、5mV以上100mV以下、または、-100mV以上-5mV以下の範囲にある分散液である。
[3] Infrared absorbing material fine particle dispersion The infrared absorbing material fine particle dispersion according to the present invention is a dispersion in which the above-described infrared absorbing material fine particles are dispersed in a solvent.
The fine particle dispersion of the infrared absorbing material according to the present invention is a dispersion having an absolute value of the zeta potential of 5 mV or more and 100 mV or less. That is, the dispersion has a zeta potential value of 5 mV or more and 100 mV or less, or -100 mV or more and -5 mV or less.
 これは、本発明に係る赤外線吸収材料微粒子分散液のゼータ電位の絶対値が5mV以上100mV以下での範囲、好ましくは、ゼータ電位の絶対値が10mV以上100mV以下の範囲であれば当該分散液において、温度25℃の下で6ヶ月以上、ゲル化や粒子の沈降が発生を回避できるとの知見による。尚、当該観点から、ゼータ電位は-100mV以上-5mV以下であることが、さらに好ましくは、ゼータ電位は-100mV以上-10mV以下であることである。 This is because the absolute value of the zeta potential of the infrared absorbing material fine particle dispersion according to the present invention is in the range of 5 mV or more and 100 mV or less, preferably, in the case where the absolute value of the zeta potential is in the range of 10 mV or more and 100 mV or less. It has been found that gelation and sedimentation of particles can be avoided for 6 months or more at a temperature of 25 ° C. From this viewpoint, the zeta potential is preferably -100 mV or more and -5 mV or less, and more preferably the zeta potential is -100 mV or more and -10 mV or less.
 一方、本発明に係る赤外線吸収材料微粒子分散液中における、赤外線吸収材料微粒子の分散粒子径はその使用目的によって各々選定することが出来る。
 本発明において、赤外線吸収材料微粒子の分散粒子径とは、上述した赤外線吸収材料微粒子の粒子径とは異なり、赤外線吸収材料微粒子の凝集体の粒径も含む概念である。
On the other hand, the dispersed particle size of the infrared absorbing material fine particles in the infrared absorbing material fine particle dispersion according to the present invention can be selected depending on the purpose of use.
In the present invention, the dispersed particle diameter of the infrared absorbing material fine particles is a concept that is different from the particle diameter of the infrared absorbing material fine particles described above and includes the particle size of the aggregate of the infrared absorbing material fine particles.
 本発明に係る赤外線吸収材料微粒子分散液を、透明性を保持したい用途に使用する場合は、当該分散液中において赤外線吸収材料微粒子が800nm以下の分散粒子径を有していることが好ましい。これは、分散粒子径が800nmよりも小さい粒子は、散乱により光を完全に遮蔽することが無く、可視光線領域の視認性を保持し、同時に効率良く透明性を保持することができるからである。 In the case where the infrared absorbing material fine particle dispersion according to the present invention is used for an application in which transparency is desired to be maintained, the infrared absorbing material fine particles preferably have a dispersed particle diameter of 800 nm or less in the dispersion. This is because particles having a dispersed particle diameter of less than 800 nm do not completely block light due to scattering, maintain visibility in the visible light region, and at the same time can efficiently maintain transparency. .
 本発明に係る赤外線吸収材料微粒子分散液において、特に可視光領域の透明性を重視する場合は、さらに粒子による散乱を考慮することが好ましい。
 この粒子による散乱の低減を重視するとき、当該分散液中における赤外線吸収材料微粒子の分散粒子径は200nm以下、好ましくは100nm以下が良い。この理由は、赤外線吸収材料微粒子の分散粒子径が小さければ、幾何学散乱もしくはミー散乱による、波長400nm~780nmの可視光線領域の光の散乱が低減される結果、赤外線吸収膜が曇りガラスのようになり、鮮明な透明性が得られなくなるのを回避できるからである。即ち、当該分散液中における赤外線吸収材料微粒子の分散粒子径が200nm以下になると、上記幾何学散乱もしくはミー散乱が低減し、レイリー散乱領域になる。レイリー散乱領域では、散乱光は粒子径の6乗に比例しているため、分散粒子径の減少に伴い散乱が低減し透明性が向上するからである。
 さらに分散粒子径が100nm以下になると、散乱光は非常に少なくなり好ましい。光の散乱を回避する観点からは、分散粒子径が小さい方が好ましく、分散粒子径が1nm以上あれば工業的な製造は容易である。
In the dispersion liquid of the fine particles of the infrared absorbing material according to the present invention, in particular, when importance is placed on transparency in the visible light region, it is preferable to further consider scattering by particles.
When emphasis is placed on the reduction of scattering due to the particles, the dispersed particle diameter of the infrared absorbing material fine particles in the dispersion is preferably 200 nm or less, more preferably 100 nm or less. The reason is that if the dispersed particle diameter of the infrared absorbing material fine particles is small, the scattering of light in the visible light region having a wavelength of 400 nm to 780 nm due to geometrical scattering or Mie scattering is reduced. And clear transparency can no longer be obtained. That is, when the dispersed particle diameter of the infrared absorbing material fine particles in the dispersion becomes 200 nm or less, the geometric scattering or Mie scattering is reduced, and the dispersion becomes a Rayleigh scattering region. This is because, in the Rayleigh scattering region, the scattered light is proportional to the sixth power of the particle diameter, so that the scattering is reduced and the transparency is improved with a decrease in the dispersed particle diameter.
Further, when the dispersed particle diameter is 100 nm or less, the scattered light is very small, which is preferable. From the viewpoint of avoiding light scattering, it is preferable that the dispersed particle diameter is small. If the dispersed particle diameter is 1 nm or more, industrial production is easy.
 上記分散粒子径を800nm以下とすることにより、本発明に係る赤外線吸収材料微粒子を媒質中に分散させた赤外線吸収材料微粒子分散体のヘイズ値は、可視光透過率85%以下でヘイズ30%以下とすることができる。一方、ヘイズ値が30%より小さい値であれば、当該赤外線吸収材料微粒子分散体の外観が曇りガラスのようにならず、鮮明な透明性を得ることが出来る。
 尚、赤外線吸収材料微粒子の分散粒子径は、動的光散乱法を原理とした大塚電子株式会社製ELS-8000等を用いて測定することができる。
By setting the dispersion particle diameter to 800 nm or less, the haze value of the infrared absorbing material fine particle dispersion in which the infrared absorbing material fine particles according to the present invention are dispersed in a medium has a visible light transmittance of 85% or less and a haze of 30% or less. It can be. On the other hand, if the haze value is less than 30%, the appearance of the infrared-absorbing material fine particle dispersion does not look like frosted glass, and clear transparency can be obtained.
The dispersed particle diameter of the infrared absorbing material fine particles can be measured using ELS-8000 manufactured by Otsuka Electronics Co., Ltd. based on the dynamic light scattering method.
[4]赤外線吸収材料微粒子分散液へ添加される分散剤
 本発明に係る赤外線吸収材料微粒子分散液のゼータ電位は、当該分散液のpH調整、当該分散液への分散剤の添加により制御出来る。
 具体的には、赤外線吸収材料微粒子分散液のpH値を3以上10以下とすることが好ましく、pH値を4以上7以下とすることがより好ましい。当該pH調整には、当該分散液への弱酸等の添加も有効である。
[4] Dispersant Added to Infrared Absorbing Material Fine Particle Dispersion The zeta potential of the infrared absorbing material fine particle dispersion according to the present invention can be controlled by adjusting the pH of the dispersion and adding a dispersant to the dispersion.
Specifically, it is preferable that the pH value of the dispersion liquid of the infrared absorbing material fine particles is 3 or more and 10 or less, and it is more preferable that the pH value is 4 or more and 7 or less. For the pH adjustment, addition of a weak acid or the like to the dispersion is also effective.
 一方、本発明に係る赤外線吸収材料微粒子分散液へ分散剤を添加する場合は、アミノ基を備える水溶性の分散剤を添加することが好ましい。例えば市販の分散剤として、Disperbyk183、Disperbyk185、Disperbyk184、Disperbyk190、Disperbyk191、Disperbyk2010(ビックケミー社製)等を好ましく挙げることが出来る。
 また、セリン、フェニルアラニン等のアミノ酸を、分散剤として添加してもよい。
 また、好ましい分散剤として、オキソ酸を備える水溶性の分散剤を挙げることも出来る。ここで、オキソ酸としてはカルボキシル基を好ましく挙げることができる。例えば市販の分散剤として、ソルスパース41090、ソルスパース43000、ソルスパース44000、ソルスパース46000、ソルスパース47000、ソルスパース53095(ルーブリゾール社製)等を好ましく挙げることが出来る。
On the other hand, when a dispersant is added to the infrared absorbent material fine particle dispersion according to the present invention, it is preferable to add a water-soluble dispersant having an amino group. For example, as a commercially available dispersant, Disperbyk 183, Disperbyk 185, Disperbyk 184, Disperbyk 190, Disperbyk 191 and Disperbyk 2010 (manufactured by Big Chemie) can be preferably exemplified.
Further, amino acids such as serine and phenylalanine may be added as a dispersant.
In addition, as a preferred dispersant, a water-soluble dispersant having oxo acid can be mentioned. Here, the oxo acid is preferably a carboxyl group. For example, as a commercially available dispersant, Solsperse 41090, Solsperse 43000, Solsperse 44000, Solsperse 46000, Solsperse 47000, Solsperse 53095 (manufactured by Lubrizol Co., Ltd.) and the like can be preferably mentioned.
 ここで、赤外線吸収材料微粒子分散液へ添加する分散剤が高分子分散剤の場合、添加量が多量であるとゼータ電位の絶対値の低下を招くが、高分子分散剤の効果として長期安定性を保てる場合がある。しかし、この場合、さらにバインダーと混合して製膜した際にブリードアウトを生じる。一方、赤外線吸収材料微粒子分散液へ高分子分散剤を添加しても、ゼータ電位の絶対値の低下を招かない程度の添加量である場合は、著しいブリードアウトを生じることはない。
 これに対し、赤外線吸収材料微粒子分散液へ添加する分散剤が低分子分散剤の場合、著しいブリードアウトを生じることはない。
Here, when the dispersant added to the infrared absorbing material fine particle dispersion is a polymer dispersant, a large amount of the additive causes a decrease in the absolute value of the zeta potential, but the effect of the polymer dispersant is long-term stability. May be kept. However, in this case, bleed-out occurs when a film is formed by further mixing with a binder. On the other hand, if the amount of the polymer dispersant added to the dispersion of the infrared absorbing material fine particles does not cause a decrease in the absolute value of the zeta potential, no significant bleed-out occurs.
On the other hand, when the dispersant to be added to the infrared absorbing material fine particle dispersion is a low molecular dispersant, no significant bleed-out occurs.
 尚、ブリードアウトとは、赤外線吸収材料微粒子分散液へ樹脂などのバインダーを添加した混合液を調製し、この混合液を基板に塗布して塗布膜を得、さらに加熱乾燥などで乾燥膜を得た際、当該乾燥膜に発生する当該混合液に起因するシミ出しをいう。著しいブリードアウトは目視で確認することができる。 In addition, bleed-out is to prepare a mixed solution in which a binder such as a resin is added to a dispersion of fine particles of an infrared-absorbing material, apply the mixed solution to a substrate to obtain a coating film, and further obtain a dried film by heating and drying. Means the occurrence of spots due to the liquid mixture generated on the dried film. Significant bleed-out can be visually confirmed.
 上述した観点から、赤外線吸収材料微粒子分散液へ高分子分散剤を添加する場合の好適な添加量は、赤外線吸収材料微粒子1質量部あたり、高分子分散剤の添加量が2質量部未満である。より好適には、赤外線吸収材料微粒子1質量部あたり0.2質量部以上1.5質量部以下であり、さらに好適には、赤外線吸収材料微粒子1質量部あたり0.3質量部以上1.2質量部以下である。 From the viewpoints described above, when the polymer dispersant is added to the infrared-absorbing material fine particle dispersion, a suitable addition amount is less than 2 parts by mass per 1 part by mass of the infrared-absorbing material fine particles. . More preferably, the content is 0.2 parts by mass or more and 1.5 parts by mass or less per 1 part by mass of the infrared absorbing material fine particles, and even more preferably 0.3 parts by mass or more and 1.2 parts by mass per 1 part by mass of the infrared absorbing material fine particles. Not more than parts by mass.
[5]赤外線吸収材料微粒子の製造方法
 本発明に係る赤外線吸収材料微粒子分散液に含まれる赤外線吸収材料微粒子の製造方法について、例として、固相反応による複合タングステン酸化物微粒子の製造例を用いて説明する。
[5] Method for Producing Infrared Absorbing Material Fine Particles Regarding the method for producing the infrared absorbing material fine particles contained in the infrared absorbing material fine particle dispersion according to the present invention, as an example, a production example of composite tungsten oxide fine particles by a solid phase reaction will be described. explain.
 原料として、タングステン化合物およびM元素化合物を用いる。
 タングステン化合物としては、タングステン酸(HWO)、タングステン酸アンモニウム、六塩化タングステン、アルコールに溶解した六塩化タングステンに水を添加して加水分解した後、溶媒を蒸発させたタングステンの水和物、から選ばれる1種以上であることが好ましい。
As a raw material, a tungsten compound and an M element compound are used.
Examples of the tungsten compound include tungstic acid (H 2 WO 4 ), ammonium tungstate, tungsten hexachloride, and tungsten hexachloride dissolved in alcohol, which is hydrolyzed by adding water, and then the solvent is evaporated to obtain a tungsten hydrate. And at least one member selected from the group consisting of:
 一方、好ましい実施形態である一般式MxWyOz(但し、Mは、Cs、Rb、K、Tl、Baから選択される1種類以上の元素、0.001≦x/y≦1、2.2≦z/y≦3.0)で示される複合タングステン酸化物微粒子の原料の製造に用いるM元素化合物には、M元素の酸化物、水酸化物、硝酸塩、硫酸塩、塩化物、炭酸塩、から選ばれる1種以上であることが好ましい。 On the other hand, the general formula MxWyOz (where M is one or more elements selected from Cs, Rb, K, Tl, and Ba; 0.001 ≦ x / y ≦ 1, 2.2 ≦ z /Y≦3.0) The M element compound used in the production of the raw material of the composite tungsten oxide fine particles represented by the formula (I) is selected from oxides, hydroxides, nitrates, sulfates, chlorides, and carbonates of the M element. It is preferable that one or more types be used.
 タングステン化合物とM元素化合物とを湿式混合等により混合粉体を製造することができる。製造された混合粉体を、不活性ガス単独または不活性ガスと還元性ガスとの混合ガス雰囲気下、1段階で焼成する。このとき、焼成温度は複合タングステン酸化物微粒子が結晶化し始める温度に近いことが好ましい。具体的には、焼成温度が1000℃以下であることが好ましく、800℃以下であることがより好ましく、800℃以下500℃以上であることがさらに好ましい。 混合 A mixed powder can be produced by wet mixing of a tungsten compound and an M element compound. The produced mixed powder is fired in one step under an atmosphere of an inert gas alone or a mixed gas of an inert gas and a reducing gas. At this time, the firing temperature is preferably close to the temperature at which the composite tungsten oxide fine particles start to crystallize. Specifically, the firing temperature is preferably 1000 ° C. or lower, more preferably 800 ° C. or lower, and even more preferably 800 ° C. or lower and 500 ° C. or higher.
[6]赤外線吸収材料微粒子分散液の製造方法
 本発明に係る赤外線吸収材料微粒子と溶媒とを含む赤外線吸収材料微粒子分散液の製造方法は、上述した溶媒へ、一般式MxWOyで表される複合タングステン酸化物微粒子を含む前記赤外線吸収材料微粒子を分散させて赤外線吸収材料微粒子分散液を製造し、当該分散液のゼータ電位の絶対値を所定の値の範囲内とするものである。
[6] Method for Producing Infrared Absorbing Material Fine Particle Dispersion A method for producing an infrared absorbing material fine particle dispersion comprising the infrared absorbing material fine particles and a solvent according to the present invention is described by using the above-described solvent in which the composite tungsten represented by the general formula MxWOy is added. The infrared absorbing material fine particles containing the oxide fine particles are dispersed to produce an infrared absorbing material fine particle dispersion, and the absolute value of the zeta potential of the dispersion is set within a predetermined value range.
 本発明に係る赤外線吸収材料微粒子分散液を得るには、粉砕、分散処理工程中において赤外線吸収材料微粒子の分散状態を担保し、当該微粒子同士を凝集させないことが肝要である。即ち、溶媒中に赤外線吸収材料粒子を加え、上述した粒径となるまで粉砕・分散処理を行う。このとき、適宜、上述した分散剤の添加、pH値の調整を行うことが好ましい。
 そして、当該粉砕・分散処理後における赤外線吸収材料微粒子分散液のゼータ電位の絶対値を5mV以上100mV以下に維持できればよい。
In order to obtain the infrared absorbing material fine particle dispersion according to the present invention, it is important that the dispersion state of the infrared absorbing material fine particles is ensured during the pulverization and dispersion treatment steps, and that the fine particles are not aggregated. That is, particles of the infrared absorbing material are added to the solvent, and pulverization / dispersion treatment is performed until the particle diameter becomes the above-mentioned. At this time, it is preferable to appropriately add the above-described dispersant and adjust the pH value.
Then, it is sufficient that the absolute value of the zeta potential of the dispersion liquid of the infrared absorbing material fine particles after the pulverization / dispersion treatment can be maintained at 5 mV or more and 100 mV or less.
 粉砕・分散処理の具体的方法としては、例えば、ビーズミル、ボールミル、サンドミル、ペイントシェーカー、超音波ホモジナイザーなどの装置を用いた粉砕・分散処理方法が挙げられる。その中でも、ビーズ、ボール、オタワサンドといった媒体メディアを用いた、ビーズミル、ボールミル、サンドミル、ペイントシェーカー等の媒体攪拌ミルで粉砕、分散処理を行うことは、所望の分散粒子径に到達することに要する時間が短いことから好ましい。 具体 Specific examples of the pulverization / dispersion treatment include, for example, pulverization / dispersion treatment methods using devices such as a bead mill, a ball mill, a sand mill, a paint shaker, and an ultrasonic homogenizer. Among them, using a medium such as beads, balls, and Ottawa sand, pulverizing and dispersing with a medium stirring mill such as a bead mill, a ball mill, a sand mill, and a paint shaker are necessary to reach a desired dispersed particle diameter. This is preferable because the time is short.
 また、本発明に係る赤外線吸収材料微粒子分散液に含まれる赤外線吸収材料微粒子の含有量は、当該分散液の使用のし易さ、および、安定性の観点から、0.01質量%以上80質量%以下であることが好ましい。 In addition, the content of the infrared absorbing material fine particles contained in the infrared absorbing material fine particle dispersion according to the present invention is 0.01% by mass or more and 80% by mass from the viewpoint of ease of use of the dispersion and stability. % Is preferable.
[7]赤外線吸収材料微粒子分散液の使用方法
 本発明に係る赤外線吸収材料微粒子分散液へ、バインダーとして水溶性のポリスチレン、水溶性のスチレン‐ブタジエン共重合物、水溶性のアクリル酸エステル共重合物のエマルジョン等を加え混合することで、本発明に係る赤外線吸収材料微粒子を含む水溶性の塗工液を製造することが出来る。
 製造された塗工液を、ガラス等の基材に塗布し、乾燥させれば、塗工液の塗布した膜が硬化し、赤外線吸収材料微粒子分散体を得ることが出来る。例えば、基材がガラスならば、赤外線吸収材料微粒子分散体を備えたガラスを得ることが出来るので、これを窓等に用いると赤外線遮蔽窓を得ることが出来る。
[7] Method of Using Fine Particle Dispersion of Infrared Absorbing Material In the fine particle dispersion of infrared absorbing material according to the present invention, water-soluble polystyrene, water-soluble styrene-butadiene copolymer, and water-soluble acrylate copolymer are used as binders. By adding and mixing the above emulsion or the like, a water-soluble coating liquid containing the infrared absorbing material fine particles according to the present invention can be produced.
When the produced coating liquid is applied to a substrate such as glass and dried, the film coated with the coating liquid is cured, and a fine particle dispersion of infrared absorbing material can be obtained. For example, if the substrate is glass, it is possible to obtain a glass provided with a dispersion of fine particles of an infrared-absorbing material. If this is used for a window or the like, an infrared-shielding window can be obtained.
 もちろん、本発明に係る赤外線吸収材料微粒子分散液や塗工液は、赤外線遮蔽窓用途に限定されるものではなく、赤外線吸収材料が必要な部位に広く用いることができる。
 また、本発明に係る赤外線吸収材料微粒子分散液や塗工液は、インクジェットやスプレー塗装など公知の塗布方法に適用出来る。
Of course, the dispersion liquid and the coating liquid of the infrared absorbing material fine particles according to the present invention are not limited to the use for the infrared shielding window, but can be widely used in a site where the infrared absorbing material is required.
Further, the dispersion liquid and the coating liquid of the infrared absorbing material fine particles according to the present invention can be applied to a known coating method such as ink jet or spray coating.
 実施例を参照しながら、本発明をより具体的に説明する。ただし、本発明は当該実施例に限定される訳ではない。 The present invention will be described more specifically with reference to examples. However, the present invention is not limited to the embodiment.
(実施例1)
 水0.330kgへCsCO0.216kgを加えて溶解し、得られた溶液をHWO1.000kgへ添加して十分攪拌した後、乾燥して乾燥物を得た。Nガスをキャリアーとした5%Hガスを供給しながら当該乾燥物を加熱し、800℃の温度で1時間焼成した。その後、さらにNガス雰囲気下800℃で2時間焼成する固相法によって、複合タングステン酸化物(Cs0.33WO3)を得た。
(Example 1)
0.216 kg of Cs 2 CO 3 was added to and dissolved in 0.330 kg of water, and the obtained solution was added to 1.000 kg of H 2 WO 4, sufficiently stirred, and dried to obtain a dried product. The dried product was heated while supplying 5% H 2 gas using N 2 gas as a carrier, and calcined at 800 ° C. for 1 hour. Thereafter, a composite tungsten oxide (Cs 0.33 WO 3 ) was obtained by a solid-phase method in which the mixture was baked at 800 ° C. for 2 hours in an N 2 gas atmosphere.
 得られた複合タングステン酸化物40g(20質量%)と、溶媒であるイオン交換水160g(80質量%)と、φ0.3ジルコニアビーズ750gとをペイントシェーカーに装填し粉砕・分散処理を行って、実施例1に係る赤外線吸収材料微粒子分散液を得た。 40 g (20% by mass) of the obtained composite tungsten oxide, 160 g (80% by mass) of ion-exchanged water as a solvent, and 750 g of φ0.3 zirconia beads were charged into a paint shaker, and pulverized and dispersed. An infrared absorbing material fine particle dispersion according to Example 1 was obtained.
 得られた赤外線吸収材料微粒子分散液のゼータ電位をゼータ電位計日本ルフト社製:DT-200)を用いて測定したところ-62mVであった。また、pH値をpH計(堀場製作所製:ポータブルpHメーターD-71)を用いて測定したところ4.1であった、当該測定結果を表1に示す。 The zeta potential of the obtained fine particle dispersion of the infrared absorbing material was measured using a zeta potential meter (DT-200, manufactured by Nippon Luft Co., Ltd.) and found to be -62 mV. The pH was measured using a pH meter (manufactured by Horiba, Ltd .: portable pH meter D-71) and was 4.1. The results are shown in Table 1.
 また、得られた赤外線吸収材料微粒子分散液100mlをサンプル瓶に入れ、25℃にて6ヶ月保管したのち、サンプル瓶底の様子を目視で確認したところ沈殿発生はなかった。当該確認結果を表1に示す。 (4) Further, 100 ml of the obtained dispersion liquid of the infrared absorbing material fine particles was put in a sample bottle and stored at 25 ° C. for 6 months, and the appearance of the bottom of the sample bottle was visually observed. The results are shown in Table 1.
 さらに、得られた赤外線吸収材料微粒子分散液へ、固形分25%のシリカバインダーを前記赤外線吸収材料微粒子1質量部あたり3質量部となるように混合して混合液を得た。当該混合液をガラス板上に塗膜し、180℃で30分乾燥させて実施例1に係る乾燥膜を得た。そして電子顕微鏡像を用いて、実施例1に係る乾燥膜における赤外線吸収材料微粒子の平均粒子径(D50粒子径)を測定した。当該測定結果を表1に示す。また、実施例1に係る乾燥膜を目視で確認したところ、ブリードアウトは確認されなかった。 Furthermore, a silica binder having a solid content of 25% was mixed with the obtained infrared absorbing material fine particle dispersion in an amount of 3 parts by mass per 1 part by mass of the infrared absorbing material fine particles to obtain a mixed solution. The mixed solution was coated on a glass plate and dried at 180 ° C. for 30 minutes to obtain a dried film according to Example 1. And using an electron microscope image were measured an average particle diameter of the infrared absorbing material particles (D 50 particle size) in a dry film in accordance with Example 1. Table 1 shows the measurement results. In addition, when the dried film according to Example 1 was visually confirmed, no bleed-out was confirmed.
 (実施例2)
 実施例1にて製造した複合タングステン酸化物40g(20質量%)と、市販の高分子分散剤A(有機オキソ酸を含む化合物)16g(8質量%)と、水144g(72質量%)と、φ0.3ジルコニアビーズ750gとをペイントシェーカーに装填し、実施例1と同様に粉砕・分散処理を行って、実施例2に係る赤外線吸収材料微粒子分散液と乾燥膜とを得た。
 得られた実施例2に係る赤外線吸収材料微粒子分散液と乾燥膜とを、実施例1と同様の方法で評価、確認した。ゼータ電位は-40mV、pH値は6.9であった。当該評価、確認結果を表1に示す。
(Example 2)
40 g (20% by mass) of the composite tungsten oxide produced in Example 1, 16 g (8% by mass) of a commercially available polymer dispersant A (compound containing an organic oxo acid), and 144 g (72% by mass) of water And 750 g of φ0.3 zirconia beads were loaded into a paint shaker, and crushed and dispersed in the same manner as in Example 1 to obtain a dispersion liquid of the infrared absorbing material fine particles according to Example 2 and a dried film.
The obtained infrared absorbing material fine particle dispersion liquid and the dried film according to Example 2 were evaluated and confirmed in the same manner as in Example 1. The zeta potential was -40 mV and the pH value was 6.9. Table 1 shows the evaluation and confirmation results.
 (実施例3)
 実施例1にて製造した複合タングステン酸化物40g(20質量%)と、低分子分散剤Bとしてフェニルアラニン40g(20質量%)と、水120g(60質量%)と、φ0.3ジルコニアビーズ750gとをペイントシェーカーに装填し、実施例1と同様に粉砕・分散処理を行って、実施例3に係る赤外線吸収材料微粒子分散液と乾燥膜とを得た。
 得られた実施例3に係る赤外線吸収材料微粒子分散液と乾燥膜とを、実施例1と同様の方法で評価、確認した。ゼータ電位は-70mV、pH値は5.3であった。当該評価、確認結果を表1に示す。
(Example 3)
40 g (20% by mass) of the composite tungsten oxide produced in Example 1, 40 g (20% by mass) of phenylalanine as low molecular dispersant B, 120 g (60% by mass) of water, and 750 g of φ0.3 zirconia beads. Was loaded into a paint shaker, and crushed and dispersed in the same manner as in Example 1 to obtain a dispersion of the infrared absorbing material fine particles according to Example 3 and a dried film.
The obtained infrared absorbing material fine particle dispersion liquid and the dried film according to Example 3 were evaluated and confirmed in the same manner as in Example 1. The zeta potential was -70 mV and the pH value was 5.3. Table 1 shows the evaluation and confirmation results.
 (実施例4)
 実施例1にて製造した複合タングステン酸化物40g(20質量%)と、市販の高分子分散剤C(アミノ基を持つブロック共重合体)16g(8質量%)、水144g(72質量%)と、φ0.3ジルコニアビーズ750gとをペイントシェーカーに装填し、実施例1と同様に粉砕・分散処理を行って、実施例4に係る赤外線吸収材料微粒子分散液と乾燥膜とを得た。
 得られた実施例4に係る赤外線吸収材料微粒子分散液と乾燥膜とを、実施例1と同様の方法で評価、確認した。ゼータ電位は-23mV、pH値は6.5であった。当該評価、確認結果を表1に示す。
(Example 4)
40 g (20% by mass) of the composite tungsten oxide produced in Example 1, 16 g (8% by mass) of a commercially available polymer dispersant C (block copolymer having an amino group), and 144 g (72% by mass) of water And 750 g of φ0.3 zirconia beads were loaded into a paint shaker, and pulverized and dispersed in the same manner as in Example 1 to obtain a dispersion liquid of infrared absorbing material fine particles according to Example 4 and a dried film.
The obtained infrared absorbing material fine particle dispersion liquid and the dried film according to Example 4 were evaluated and confirmed in the same manner as in Example 1. The zeta potential was -23 mV and the pH value was 6.5. Table 1 shows the evaluation and confirmation results.
 (比較例1)
 実施例1に係る赤外線吸収材料微粒子分散液へ、酸剤である試薬の塩酸を添加してゼータ電位値、pH値を調整した以外は実施例1と同様に操作して、比較例1に係る赤外線吸収材料微粒子分散液と乾燥膜とを得た。
 得られた赤外線吸収材料微粒子分散液と乾燥膜とを、実施例1と同様の方法で評価、確認した。ゼータ電位は2mV、pH値は2.4であった。当該評価、確認結果を表1に示す。
(Comparative Example 1)
The same procedures as in Example 1 were carried out except that the zeta potential value and the pH value were adjusted by adding hydrochloric acid of a reagent as an acid agent to the dispersion liquid of the infrared-absorbing material fine particles according to Example 1, and according to Comparative Example 1. An infrared absorbing material fine particle dispersion and a dried film were obtained.
The obtained infrared absorbing material fine particle dispersion and the dried film were evaluated and confirmed in the same manner as in Example 1. The zeta potential was 2 mV and the pH value was 2.4. Table 1 shows the evaluation and confirmation results.
 (比較例2)
 実施例2に係る赤外線吸収材料微粒子分散液へ、酸剤である試薬の塩酸を添加してゼータ電位値、pH値を調整した以外は実施例1と同様に操作して、比較例2に係る赤外線吸収材料微粒子分散液と乾燥膜とを得た。
 得られた赤外線吸収材料微粒子分散液をと乾燥膜と、実施例1と同様の方法で評価、確認した。ゼータ電位は-1mV、pH値は2.5であった。当該評価、確認結果を表1に示す。
(Comparative Example 2)
The same procedure as in Example 1 was carried out, except that the zeta potential value and the pH value were adjusted by adding hydrochloric acid of a reagent as an acid agent to the fine particle dispersion of the infrared-absorbing material according to Example 2, to obtain Comparative Example 2. An infrared absorbing material fine particle dispersion and a dried film were obtained.
The obtained infrared-absorbing material fine particle dispersion and the dried film were evaluated and confirmed in the same manner as in Example 1. The zeta potential was -1 mV and the pH value was 2.5. Table 1 shows the evaluation and confirmation results.
 (比較例3)
 実施例3に係る赤外線吸収材料微粒子分散液へ、酸剤である試薬の塩酸を添加してゼータ電位値、pH値を調整した以外は実施例1と同様に操作して、比較例3に係る赤外線吸収材料微粒子分散液と乾燥膜とを得た。
 得られた赤外線吸収材料微粒子分散液と乾燥膜とを、実施例1と同様の方法で評価、確認した。ゼータ電位は1mV、pH値は4.1であった。当該評価、確認結果を表1に示す。
(Comparative Example 3)
The same procedure as in Example 1 was carried out, except that the zeta potential value and the pH value were adjusted by adding hydrochloric acid of a reagent as an acid agent to the fine particle dispersion of the infrared-absorbing material according to Example 3, and the procedure of Comparative Example 3 was repeated. An infrared absorbing material fine particle dispersion and a dried film were obtained.
The obtained infrared absorbing material fine particle dispersion and the dried film were evaluated and confirmed in the same manner as in Example 1. The zeta potential was 1 mV and the pH value was 4.1. Table 1 shows the evaluation and confirmation results.
 (比較例4)
 実施例4に係る赤外線吸収材料微粒子分散液へ、酸剤である試薬の塩酸を添加してゼータ電位値、pH値を調整した以外は実施例1と同様に操作して、比較例4に係る赤外線吸収材料微粒子分散液と乾燥膜とを得た。
 得られた赤外線吸収材料微粒子分散液と乾燥膜とを、実施例1と同様の方法で評価、確認した。ゼータ電位は1mV、pH値は4.5であった。当該評価、確認結果を表1に示す。
(Comparative Example 4)
The same procedure as in Example 1 was carried out, except that the zeta potential value and the pH value were adjusted by adding hydrochloric acid of a reagent as an acid agent to the fine particle dispersion of the infrared-absorbing material according to Example 4, and the method of Comparative Example 4 was repeated. An infrared absorbing material fine particle dispersion and a dried film were obtained.
The obtained infrared absorbing material fine particle dispersion and the dried film were evaluated and confirmed in the same manner as in Example 1. The zeta potential was 1 mV and the pH value was 4.5. Table 1 shows the evaluation and confirmation results.
(比較例5)
 実施例1にて製造した複合タングステン酸化物40g(20質量%)と、市販の高分子分散剤C(アミノ基を持つブロック共重合体)80g(40質量%)、水80g(40質量%)と、φ0.3ジルコニアビーズ750gとをペイントシェーカーに装填し粉砕・分散処理を行って、比較例5に係る赤外線吸収材料微粒子分散液と乾燥膜とを得た。
 得られた赤外線吸収材料微粒子分散液と乾燥膜とを、実施例1と同様の方法で評価、確認した。ゼータ電位は-0.5mV、pH値は7.2であった。当該評価、確認結果を表1に示す。
(Comparative Example 5)
40 g (20% by mass) of the composite tungsten oxide produced in Example 1, 80 g (40% by mass) of a commercially available polymer dispersant C (block copolymer having an amino group), and 80 g (40% by mass) of water And 750 g of φ0.3 zirconia beads were loaded into a paint shaker and subjected to pulverization and dispersion treatment to obtain a dispersion of fine particles of an infrared absorbing material according to Comparative Example 5 and a dried film.
The obtained infrared absorbing material fine particle dispersion and the dried film were evaluated and confirmed in the same manner as in Example 1. The zeta potential was -0.5 mV and the pH value was 7.2. Table 1 shows the evaluation and confirmation results.
 (まとめ)
 構成に水を含む溶媒中に、赤外線吸収材料微粒子として、一般式CsWOyで表される複合タングステン酸化物微粒子を分散し、そのゼータ電位の絶対値が5mV以上100mV以下である実施例1~3に係る赤外線吸収材料微粒子分散液は、いずれも25℃にて6ヶ月保管した後、サンプル瓶底の様子を目視で確認したところ沈殿発生はなく、安定性は良好であった。
 一方、ゼータ電位の絶対値が5mV以上100mV以下の範囲外であった比較例1~4に係る赤外線吸収材料微粒子分散液は、いずれも25℃にて6ヶ月保管した後、サンプル瓶底の様子を目視で確認したところ沈殿の発生があり、安定性に劣るものであった。
 比較例5にかかる係る赤外線吸収材料微粒子分散液は、25℃にて6ヶ月保管した後、サンプル瓶底の様子を目視で確認したところ沈殿発生はなく、安定性は良好であったが、比較例5に係る乾燥膜には著しいブリードアウトを生じた。
(Summary)
Examples 1 to 3 in which composite tungsten oxide fine particles represented by the general formula CsWOy are dispersed as infrared absorbing material fine particles in a solvent containing water, and the absolute value of the zeta potential is 5 mV or more and 100 mV or less. The dispersion of the fine particles of the infrared absorbing material was stored at 25 ° C. for 6 months, and the appearance of the bottom of the sample bottle was visually observed. As a result, no precipitation occurred and the stability was good.
On the other hand, the infrared absorbing material fine particle dispersions according to Comparative Examples 1 to 4 in which the absolute value of the zeta potential was out of the range of 5 mV or more and 100 mV or less were all stored at 25 ° C. for 6 months, and then the state of the bottom of the sample bottle was observed. Was visually observed to find that precipitation occurred and the stability was poor.
The infrared absorbent material fine particle dispersion according to Comparative Example 5 was stored at 25 ° C. for 6 months, and then the appearance of the bottom of the sample bottle was visually confirmed. No precipitation occurred, and the stability was good. The dried film according to Example 5 produced significant bleed-out.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Claims (9)

  1.  赤外線吸収材料微粒子と溶媒とを含む赤外線吸収材料微粒子分散液であって、
     前記赤外線吸収材料微粒子は、一般式MxWOy(ただし、Mは、Cs、Rb、K、Tl、Baから選択される1種類以上の元素、0.1≦x≦0.5、2.2≦y≦3.0)で表される複合タングステン酸化物微粒子を含み、
     前記溶媒は水を含み、
     前記赤外線吸収材料微粒子分散液のゼータ電位の絶対値が、5mV以上100mV以下であることを特徴とする赤外線吸収材料微粒子分散液。
    An infrared absorbing material fine particle dispersion containing infrared absorbing material fine particles and a solvent,
    The infrared absorbing material fine particles may have a general formula MxWOy (where M is at least one element selected from Cs, Rb, K, Tl, and Ba, 0.1 ≦ x ≦ 0.5, 2.2 ≦ y). ≦ 3.0), comprising composite tungsten oxide fine particles represented by the following formula:
    The solvent includes water,
    An infrared absorbing material fine particle dispersion, wherein the absolute value of the zeta potential of the infrared absorbing material fine particle dispersion is 5 mV or more and 100 mV or less.
  2.  前記ゼータ電位の値が、-100mV以上-5mV以下であることを特徴とする請求項1に記載の赤外線吸収材料微粒子分散液。 (4) The fine particle dispersion of infrared absorbing material according to (1), wherein the value of the zeta potential is from -100 mV to -5 mV.
  3.  pH値が4以上であることを特徴とする請求項1または2に記載の赤外線吸収微粒子分散液。 (3) The dispersion liquid of infrared absorbing fine particles according to (1) or (2), wherein the pH value is 4 or more.
  4.  前記複合タングステン酸化物微粒子の粒子径が、800nm以下であることを特徴とする請求項1から3のいずれかに記載の赤外線吸収材料微粒子分散液。 (4) The infrared absorbing material fine particle dispersion according to any one of (1) to (3), wherein the composite tungsten oxide fine particles have a particle size of 800 nm or less.
  5.  さらに、1種以上の分散剤を含むことを特徴とする請求項1から4のいずれかに記載の赤外線吸収材料微粒子分散液。 (5) The infrared absorbent material fine particle dispersion according to any one of (1) to (4), further comprising one or more dispersants.
  6.  前記分散剤が、アミノ基、オキソ酸のいずれか1種以上を含むことを特徴とする請求項5に記載の赤外線吸収材料微粒子分散液。 (6) The dispersion liquid of infrared absorbing material fine particles according to (5), wherein the dispersant contains at least one of an amino group and an oxo acid.
  7.  前記赤外線吸収材料微粒子分散液中に含有されている赤外線吸収材料微粒子の含有量が、0.01質量%以上80質量%以下であることを特徴とする請求項1から6のいずれかに記載の赤外線吸収材料微粒子分散液。 The content of the infrared absorbing material fine particles contained in the infrared absorbing material fine particle dispersion is 0.01% by mass or more and 80% by mass or less, according to any one of claims 1 to 6, wherein Infrared absorbing material fine particle dispersion.
  8.  赤外線吸収材料微粒子と溶媒とを含む赤外線吸収材料微粒子分散液の製造方法であって、
     水を含む前記溶媒へ、一般式MxWOy(ただし、Mは、Cs、Rb、K、Tl、Baから選択される1種類以上の元素、0.1≦x≦0.5、2.2≦y≦3.0)で表される複合タングステン酸化物微粒子を含む前記赤外線吸収材料微粒子を分散させて、赤外線吸収材料微粒子分散液とし、
     前記赤外線吸収材料微粒子分散液のゼータ電位の絶対値を、5mV以上100mV以下とすることを特徴とする赤外線吸収材料微粒子分散液の製造方法。
    A method for producing an infrared absorbing material fine particle dispersion containing infrared absorbing material fine particles and a solvent,
    Into the solvent containing water, a general formula MxWOy (where M is one or more elements selected from Cs, Rb, K, Tl and Ba, 0.1 ≦ x ≦ 0.5, 2.2 ≦ y ≦ 3.0) by dispersing the infrared absorbing material fine particles containing the composite tungsten oxide fine particles represented by
    A method for producing an infrared absorbing material fine particle dispersion, wherein the absolute value of the zeta potential of the infrared absorbing material fine particle dispersion is 5 mV or more and 100 mV or less.
  9.  前記赤外線吸収材料微粒子分散液のpH値を、4以上とすることを特徴とする請求項8に記載の赤外線吸収微粒子分散液の製造方法。 The method for producing an infrared-absorbing fine particle dispersion according to claim 8, wherein the pH value of the infrared-absorbing material fine particle dispersion is 4 or more.
PCT/JP2019/033534 2018-09-27 2019-08-27 Infrared absorbing material fine particle dispersion liquid and producing method thereof WO2020066426A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/280,687 US20210380433A1 (en) 2018-09-27 2019-08-27 Infrared absorbing material fine particle dispersion liquid and producing method thereof
KR1020217012139A KR102618176B1 (en) 2018-09-27 2019-08-27 Infrared absorbing material particulate dispersion and method for producing the same
EP19864140.9A EP3868713A4 (en) 2018-09-27 2019-08-27 Infrared absorbing material fine particle dispersion liquid and producing method thereof
JP2020548214A JP7367686B2 (en) 2018-09-27 2019-08-27 Infrared absorbing material fine particle dispersion and its manufacturing method
CN201980063630.4A CN113039159B (en) 2018-09-27 2019-08-27 Fine particle dispersion of infrared absorbing material and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-182812 2018-09-27
JP2018182812 2018-09-27

Publications (1)

Publication Number Publication Date
WO2020066426A1 true WO2020066426A1 (en) 2020-04-02

Family

ID=69952075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033534 WO2020066426A1 (en) 2018-09-27 2019-08-27 Infrared absorbing material fine particle dispersion liquid and producing method thereof

Country Status (7)

Country Link
US (1) US20210380433A1 (en)
EP (1) EP3868713A4 (en)
JP (1) JP7367686B2 (en)
KR (1) KR102618176B1 (en)
CN (1) CN113039159B (en)
TW (1) TW202019826A (en)
WO (1) WO2020066426A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117229664A (en) * 2023-11-16 2023-12-15 北京航空航天大学 Corrosion control method of marine environment-resistant stealth material system based on mixed potential

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812378A (en) 1994-06-30 1996-01-16 Nissan Motor Co Ltd Heat ray cut-off glass and its production
JPH0859300A (en) 1994-08-25 1996-03-05 Nissan Motor Co Ltd Heat radiation-insulating glass
JPH0873223A (en) 1994-09-08 1996-03-19 Agency Of Ind Science & Technol Production of tungsten bronze and its coated composite body
JPH08283044A (en) 1995-04-11 1996-10-29 Asahi Glass Co Ltd Heat ray cutoff glass
JPH09127559A (en) 1995-10-27 1997-05-16 Teiji Haniyu Sunshine variable light controllable thermally insulating material
JP2000119045A (en) 1998-10-13 2000-04-25 Glaverbel Sa Coated glass for controlling solar light
JP2003121884A (en) 2001-10-17 2003-04-23 Sumitomo Metal Mining Co Ltd Method for manufacturing tungsten oxide fine particle exhibiting elecrochromic characteristic, coating liquid containing the fine particle, and electrochromic element
WO2005037932A1 (en) 2003-10-20 2005-04-28 Sumitomo Metal Mining Co., Ltd. Infrared shielding material microparticle dispersion, infrared shield, process for producing infrared shielding material microparticle, and infrared shielding material microparticle
WO2009110234A1 (en) * 2008-03-04 2009-09-11 株式会社 東芝 Aqueous dispersion, coating material using the same, membrane using the same, and article using the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4355945B2 (en) * 2004-11-08 2009-11-04 住友金属鉱山株式会社 Near-infrared absorbing fiber and fiber product using the same
CN102942818B (en) * 2007-11-05 2014-09-17 巴斯夫欧洲公司 Tungsten oxides used to increase the heat-input amount of near infrared radiation
JP5176492B2 (en) * 2007-11-06 2013-04-03 住友金属鉱山株式会社 Near-infrared absorbing adhesive, near-infrared absorbing filter for plasma display panel, and plasma display panel
JP2012082109A (en) * 2010-10-12 2012-04-26 Sumitomo Metal Mining Co Ltd Method for producing tungsten oxide fine particle for forming highly heat-resistant heat ray-shielding material, tungsten oxide fine particle for forming highly heat-resistant heat ray-shielding material and dispersion for forming highly heat-resistant heat ray-shielding material, and highly heat-resistant heat ray-shielding material
US10308823B2 (en) * 2015-01-27 2019-06-04 Sumitomo Metal Mining Co., Ltd. Near-infrared absorbing fine particle dispersion liquid and method for producing the same
JP2017109892A (en) * 2015-12-15 2017-06-22 コニカミノルタ株式会社 Laminated glass
CN108779381B (en) * 2015-12-18 2021-08-17 住友金属矿山株式会社 Near-infrared-shielding ultrafine particle dispersion, intermediate film for solar radiation shielding, infrared-shielding sandwich structure, and method for producing near-infrared-shielding ultrafine particle dispersion

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812378A (en) 1994-06-30 1996-01-16 Nissan Motor Co Ltd Heat ray cut-off glass and its production
JPH0859300A (en) 1994-08-25 1996-03-05 Nissan Motor Co Ltd Heat radiation-insulating glass
JPH0873223A (en) 1994-09-08 1996-03-19 Agency Of Ind Science & Technol Production of tungsten bronze and its coated composite body
JPH08283044A (en) 1995-04-11 1996-10-29 Asahi Glass Co Ltd Heat ray cutoff glass
JPH09127559A (en) 1995-10-27 1997-05-16 Teiji Haniyu Sunshine variable light controllable thermally insulating material
JP2000119045A (en) 1998-10-13 2000-04-25 Glaverbel Sa Coated glass for controlling solar light
JP2003121884A (en) 2001-10-17 2003-04-23 Sumitomo Metal Mining Co Ltd Method for manufacturing tungsten oxide fine particle exhibiting elecrochromic characteristic, coating liquid containing the fine particle, and electrochromic element
WO2005037932A1 (en) 2003-10-20 2005-04-28 Sumitomo Metal Mining Co., Ltd. Infrared shielding material microparticle dispersion, infrared shield, process for producing infrared shielding material microparticle, and infrared shielding material microparticle
WO2009110234A1 (en) * 2008-03-04 2009-09-11 株式会社 東芝 Aqueous dispersion, coating material using the same, membrane using the same, and article using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117229664A (en) * 2023-11-16 2023-12-15 北京航空航天大学 Corrosion control method of marine environment-resistant stealth material system based on mixed potential
CN117229664B (en) * 2023-11-16 2024-02-23 北京航空航天大学 Corrosion control method of marine environment-resistant stealth material system based on mixed potential

Also Published As

Publication number Publication date
CN113039159B (en) 2023-11-24
JP7367686B2 (en) 2023-10-24
EP3868713A4 (en) 2022-09-07
TW202019826A (en) 2020-06-01
KR20210060604A (en) 2021-05-26
EP3868713A1 (en) 2021-08-25
CN113039159A (en) 2021-06-25
US20210380433A1 (en) 2021-12-09
JPWO2020066426A1 (en) 2021-08-30
KR102618176B1 (en) 2023-12-28

Similar Documents

Publication Publication Date Title
JP6813019B2 (en) Near-infrared shielding material fine particles and their manufacturing method, and near-infrared shielding material fine particle dispersion
JP6825619B2 (en) Near-infrared shielding material Fine particle dispersion, near-infrared shielding body and combined structure for near-infrared shielding, and their manufacturing method
JP5034272B2 (en) Tungsten-containing oxide fine particles, method for producing the same, and infrared shielding body using the same
JP6508224B2 (en) Near infrared ray absorbing fine particle dispersion and method for producing the same
JP6187540B2 (en) Composite tungsten oxide fine particles for solar radiation shield formation, dispersion thereof, and solar radiation shield
JP2012072402A (en) Particulate dispersion of infrared-shielding material, infrared-shielding body, method for producing particulate of infrared-shielding material, and particulate of infrared-shielding material
JP7367686B2 (en) Infrared absorbing material fine particle dispersion and its manufacturing method
JP4904714B2 (en) Infrared shielding material fine particle dispersion, infrared shielding body, method for producing infrared shielding material fine particles, and infrared shielding material fine particles
JP6171733B2 (en) Heat ray shielding dispersion forming coating solution and heat ray shielding body
US20220251400A1 (en) Infrared-absorbing fine particle-containing composition and method for producing the same
JP5999361B2 (en) Infrared shielding material, infrared shielding material fine particle dispersion, infrared shielding material fine particle dispersion, and infrared shielding material
JP6575443B2 (en) Heat ray shielding film and heat ray shielding glass
JP6623944B2 (en) Heat ray shielding fine particles and heat ray shielding fine particle dispersion
TWI832929B (en) Surface-treated infrared absorbing fine particle dispersion liquid and method for producing the same
JPWO2020110906A1 (en) Surface-treated infrared absorbing fine particle dispersion and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19864140

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020548214

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217012139

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019864140

Country of ref document: EP

Effective date: 20210428